e

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 4 :

GO6F 15/18 Al

(11) International Publication Number:

WO 88/ 10470

(43) International Publication Date:

29 December 1988 (29.12.88)

(74) Agent: ALLEN, Kenneth; R.; Townsend and Town-

(21) International Application Number: PCT/US88/02081

(22) International Filing Date: 16 June 1988 (16.06.88)

064,971
19 June 1987 (19.06.87)

(31) Priority Application Number:

(32) Priority Date:

(33) Priority Country: us

(71) Applicant: INTELLICORP, INC. [US/US]; 1975 El
Camino Real West, Mountain View, CA 94040 (US).

(72) Inventors: TOU, Frederich, Nelson ; 1018 Thistle Court,

Sunnyvale, CA 94086 (US). HASAN, Wagqar ; De-
partment of Computer Sciences, Stanford University,

Stanford, CA 94305 (US).

send, One Market Plaza, 2000 Steuart Tower, San
Francisco, CA 94105 (US).

(81) Designated States: DE (European patent), FR (Euro-
pean patent), GB (European patent), IT (European
patent), JP.

Published
With international search report.
Before the expiration of the time limit for amending the
claims and to be-republished in the event of the receipt
of amendments.

(54) Title: METHOD FOR INTEGRATING A KNOWLEDGE-BASED SYSTEM WITH AN ARBITRARY RELA-

TIONAL DATABASE SYSTEM
(57) Abstract . 72 64 ~ 70 66~ KBS)"
FUNCTIONS mmsmmul WTOFEI
A method and sys- K8 k8 KIB 12
tem are provided for map- | 7%% 80 ~ : 1 ‘ s = R
ping between an applica- USER MODIFY KB QUERY SOLQUERES SOLGUERY 34
tion relational database | [NTERFACE :: INTERFACE i 627 " LINTEREACE
(32) of arbitrary structure 94— %0 7T) 86~
and an application knowl- aouery lke P SR :, UPDATE [es | % oo)
edge base (18) in order to WTERFACE MAi!;lNG—-* MAP!;NG TRANSLATE = NTERFACE "
permit a user to draw in- N £ | UPDATE £
ferences through a knowl- 84 | m APPLICATION RDB vy
edge base. Also included <‘:>J b l [RELCATION 38
?:gngrocgggﬁi dt:; trg::e' APPLICATION KB e :o RE"A:::B::ES\ F456
quer@es (58) into databfise » ‘/‘UN':N" - \ et e~ alslclolele ol
queries, for transforming T Wp’:&%m“‘ S
data retrieved from the N St e ;—'—' : :3f‘ 2
database . (76) into units B — o 5
(structured objects) in the SO T — N oasswe w3
knowledge base and for ”/ 7 50 5 —
updating a relational data- 30 2 storust ¥
base based on changes

made to the application
knowledge base. These procedures are supported by general

purpose knowledge bases. The method includes providing

mapping knowledge bases for storing the mapping between an arbitrary relational database and the application knowl-
edge base. The mapping between classes in the application knowledge base and the relations on a database is stored expli-
citly in units in a user mapping knowledge base (14). These units are called class maps. The mapping between the slots of a
class in an application knowledge base and the attributes of the above relations on the database is stored explicitly in a slot

of the class map corresponding to the class.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to ldenufy States party to the PCT on the front pages of pamphlets publishing international appli-
cations under the PCT.

AT Aus;:n'a

FR France ML Mali
AU Australia GA Gabon MR Mauritania
BB Barbados GB United Kingdom MW Malawi
BE Belgium HU Hungary NL Netherlands
BG Bulgaria IT Ttaly NO Norway
BJ Benin JP Japan RO Romania
BR Brazil KP Democratic People’s Republic SD Sudan
CF Central African Republic of Korea SE Sweden
CG Congo KR - Republic of Korea SN Senegal
CH Switzerland LI Liechtenstein SU Soviet Union
CM Camercon LK SriLanka TD Chad
DE Germany, Federal Repubhc of LU Luxembourg TG Togo
DK Denmark MC Monaco US United States of America
FI Finland MG Madagascar

WO 88/10470

PR

10

15

20

25

30

35

PCT/US88/02081

1

METHOD FOR INTEGRATING A KNOWLEDGE-BASED SYSTEM
WITH AN ARBITRARY RELATIONAL DATABASE SYSTEM

Notice Regarding Copyrighted Material

A portion of the disclosure of this patent
document contains material which is subject to
copyright protection. The copyright owner has no
objection to the facsimile reproduction by anyone of
the patent document or the patent disclosure, as it
appears in the Patent and Trademark Office file or
records, but otherwise reserves all copyright rights

whatsoever.

Background of the Invention)
This invention relates to information

processing and more particularly to a method for
combining .a knowledge-based system with an arbitrary
relational database system. This invention presumes
familiarity with basic relational database systems
terminology, including structured query languages used
for database queries, and basic knowledge-based systems
terminology, including object-oriented programming
techniques and terminology used for knowledge
processing applications, that is, applications
conventionally associated with the field of artificial
intelligence (AI). Object-oriented programming is
particularly powerful because mere identification of an
object implies the behavior of the object, that is, the
allowable functions which can be applied to the object.

To aid in an understanding of this invention,
a glossary of terms is included hereinbelow.

The advent of knowledge processing has made
possible advances in the capabilities of data
processing and software engineering. Knowledge
processing has been widely accepted in business,

WO 88/10470 : PCT/US88/02081

10

15

20

25

30

35

industry and engineering as valuable for handiing
information.

Heretofore, most of the advances provided by
knowledge processing have been limited to use of
customized systems and sources of information.
Numerous custom systems have been built which éxchange
data between a knowledge processing application and
nElatH (without hierarchy) file sources on host
computer sstems (generally referred to as mainframes
and associated'storage devices), but no general system
has yet been develdped. This represents a major
limitation to the potential use of knowledge ,
processing. For many years, one of the valued assets
in a business was the ability to store and retrieve
information. A good example is a set of records of a
large insurance dompany with many policy holders. The
requirements of information users impose significant
limitations on the accessibility or the nature of the .
accessibility of that information. Frequently because
of the need to access information quickly from very
large databases, it was necessary to design and provide
database management systems which were optimized for
speed of access. The emphasis was then on the ability
to manage large amounts of data. The practical result
was relatively easy accessibility of information but
lack of tools necessary to process large amounts of
information and draw inferences from the implications
of the information. Knowledge processing technology is
potentially a major advance which would enhance the
ability to draw inferences and make decisions based on
large amounts of data. The primary limitation,
however, is the limited accessibility of existing
databases by knowlédge processing systems.

' The problem of integrating a knowledge-based
system with a database system has been known for many
years. There are three standard methods for

PCT/US88/02081

WO 88/10470

10

15

20

25

30

35

integrating a knowledge-based system with a database
system. These are:

1. Enhancing an existing knowledge-based
system to include database capabilities or the
converse: enhancing an existing database system to
include knowledge base capabilities;

2. Coupling a knowledge-based system with a
database system; and

3. Integrating the technology of a
knowledge-based system with the technology of a
database system to create a new class of systems.

Of these, the technique of enhancing a system
to provide an extension of a database or
knowledge-based system is merely a short-term partial
solution; in the long term it may never lead to a
generally acceptable solution. _

Work is being pursued by others to integrate
the technologies. For example, reports of such work ‘
are found in a publication edited by Michael L. Brodie
and John Mylopoulos entitled On Knowledge Base
Management Systems, Springer-Verlag New York Inc.,
1986. Particular referenceris made to Chapter 28
entitled: "The Role of Databases in Knowledge-Based
Systems" by M.S. Fox and J. McDermott (pp. 407-430).
This chapter describes the current state of the art in
coupling technology (method 2) but focuses mostly on
the requirements for database techniques in the
construction of knowledge-based systems. As such, the
work is not directly relevant to the present invention
because it deals with the integrating technology
(method 3).

The particular field of this invention is an

instance of the coupling technology above. It has been
found, however, that coupling a knowledge-based system
with a database system is extremely difficult unless
severe constraints are imposed on the knowledge base or
on the database. As a consequence, although custom

WO 88/10470 PCT/US88/02081

10

15

20

25

30

35

systems have been provided for coupling a database with
a knowledge base, no general system has yet been
developed. ' €

Some knowledge-based systems provide

Es

communication between a database and a knowledge base
via rules, the rules being specific to the application
knowledge base. As a consequence, all possible queries
that could be asked by the knowledge-based system must
be known a priori and coded into the rules. Ad hoc
querying of the database is not supported in these
types of systems.

Other knowledge-based systems are known for
accessing large volumes of data stored in a database.
These types of systems often require that the
information be stored on the database in a highly
stylized format called a schema, which is a form
recognizable and accessible by a particular type of
query system designed for a specialized knowledge-based
system.

Some predicate calculus-based systems provide
for coupling a database system to a particular type of
knowledge-based system. An example is Quintus Prolog,
a language provided by Quintus Computer Systems of
Mountain View, California. Therein each table of a
relational database system can be directly identified
with a Prolog functor. The Prolog compiler is
operative to convert Prolog goals based on such a
functor into a simple database query. It will be
observed that the Prolog query is merely a restatement
of the database query in Prolog syntax.

A precursor to the present invention is
described by R.M. Abarbanel and M.D. Williams entitled
"A Relational Representation for Knowledge Bases,"
presented at the First International Conference on
Expert Database Systems, April 1-4, 1986 (sponsored by
the Institute of Information Management, Technology and
Policy and the University of South Cardlina). In this

s

WO 88/10470

10

15

20

25

30

35

PCT/US88/02081

work, ad hoc querying was supported, but the data in
the database had to be fully normalized into what is
known as the Third Normal Form, and each record in the
database had to be provided with a unique identifier.
Thus the database was required to adopt a predefined
format.

Another precursor to the present invention is
KEEMAP, a ﬁrototype specialty product which has been
licensed by IntelliCorp, Inc., the assignee of the
present invention, to third parties on a limited basis.
The system is described in work by Raymond E. Carhart,
"Installing and Using the KEE/MAPPER Interface,"
(unpublished 1987). This system represents each
database attribute as a unit and supports simple
single-variable predicates on those attributes. This
is essentially a direct representation of database
attributes in a knowledge base so that a knowledge base
query is merely a restatement of a database query.

Glossary

The following is a glossary of some of the
terms used in these technologies.
Data: Raw facts or values which are physically
recorded and which can be extracted and objectively

verified.
Information: Anything learned from data, i.e., the

"meaning" of data.

Value: An amount of worth.

Knowledge: Abstractions, categorizations and
generalizations derived from data which cannot be
easily objectively verified.

Database (DB): A computerized collection of data.
Relational Database (RDB): A database in which all

data are stored and organized in tables and in which
each field containing a datum is equally accessible.
Relational Database Management System (RDBMS):

WO 88/10470 ' PCT/US88/02081

10

15

20

25

30

35

The.software and hardware environment supporting a
Relational Database including the decision making
elements but without a notion of knowledge in the data.
Knowledge Base (KB): A computerized collection of

knowledge organized into a taxonomy and including a
theory (calculus) for interpreting the knowledge abodt
a subject. '

Knowledge-Based System (KBS): The software and

hardware environment supporting a knowledge base.
Knowledge Processing: Application of inferences to
data and knowledge to obtain further knowledge.

File: A bounded storage element of a computer-based
storage system.
Database Terms:

Record: A collection of fields; the basic
accessible element of a file.

Field: An elemental entity of a record.
Relational Database Terms:

Relation: An orderly arrangement of data in
columns and rows; a table.

Attribute: A "Column" of a relation; a field
of a tuple.

Tuple: A record of a relational database;

one line or row of a table or relation.
Knowledge Base Terms: '

Object: Elemental accessible entity of a
knowledge base file; the elemental abstract entity
of knowledge about a subject; a structure of
information which describes a physical item, a
concept or an activity, including a group of other
- objects.
Unit: A structured representat@on of a particular
object; contains declarative, procedural and
structured information'about the object; consists
of an identifying name and a set of slots
representing characteristics about the object.
Units describe objects or groups of objects.

»

WO 88/10470

10

15

20

25

30

35

PCT/US88/02081

Frame: A variant of the term "unit". A frame,
unit or object may differ in characteristics
depending on the theory of interpretation
associated with the knowledge base.
Slot: An elemental entity of an object, analogous
to a database field; represents characteristics of
an object.
Class: A unit which describes a category or group
of objects.
‘Member: A unit which is contained within a class.
If Unit A is a member of Class B, then Class B is
a Parent of Unit A.
Map (to map): To translate source data via a
process into target data.
Inference: A conclusion drawn about an object
from premises or facts. .
Inheritance: The process of transferring
characteristics (slots and their values) to an
object from its ancestors in the context of the
process for interpreting the knowledge.base.

Other terms will be defined in the context of

the invention hereinafter explained.

Summary of the Invention

According to the invention, a method and
system are provided for representing a mapping between
the relations and attributes of a relational database
of arbitrary structure and the classes and members of
an application knowledge base, and employing the
mapping to translate knowledge base queries into
database queries and to transform data retrieved from
the database into units (structured objects) in the
knowledge base by providing a mapping knowledge base
for storing the mapping between a database and a
knowledge base. The mapping between classes in a
knowledge base and the relations on a database is
stored explicitly in units in a mapping knowledge base.

WO 88/10470 PCT/USS88/02081

10

15

20

25

30

35

These units are called class maps. The mapping between
the slots of a class in a knowledge base and the
attributes of the above relations on the database is
stored explicitly in a slot of the class map

corresponding to the class. This slot of the class map 7

is called the "slot map" slot. The values of the "slot
map" slot are called slot maps.

The method according to the invention
includes a procedure for using the mapping knowledge
base to translate queries expressed in the terminology
of a knowledge base into queries expressed in the
terminology of a database. The knowledge of how to
translate é knowledge base function into a database

‘function is stored in yet another set of knowledge

bases called, respectively, the functions knowledge
base, the translation knowledge base and the
translators knowledge base. The knowledge of how to
translate a slot into attributes in a relational
database is stored in a special-purpoée mapping
knowledge base which is derived from a system mappinq
knowledge base as hereinafter explained.

An advantage of the invention lies in the .
separation of the mapping component (which defines the
structure and relationship between the database and the
knowledge base) from the procedural components (which
set out the generalized principles for translation of
queries and transformation of data). The mapping
component contains strictly declarative elements
(except for trivial procedural elements such as naming
of units). The procedural components may contain
declarative elements and procedural elements. Thus,
the same procedural components can be used with
different mapping knowledge bases for different
applications.

| The invention will be better understood by
reference to the following detailed description taken

in connection with the accompanying drawings.

WO 88/10470

10

15

20

25

30

35

PCT/US88/02081

Brief Description of the Drawings

Figure 1 is a block diagram of the structure
of a knowledge-based system according to the invention
in connection with an arbitrary relational database
management system.

Figure 2 is a diagram of a specific
embodiment of a class map of a user mapping knowledge
base illustrating an example of the invention.

Figure 3 is a diagram of a specific
embodiment of a plurality of relations in an arbitrary
relational database for illustrating the invention.

Figure 4 is a diagram of a specific
embodiment of a member unit of a class unit in an
application knowledge base illustrating an example of

the invention.
Figure 5 is a taxonomy of an application

knowledge base illustrating an example of the
invention.

Figure 6 is a taxonomy of the class maps of a
user mapping knowledge base illustrating an example of
the invention.

Figure 7 is a slot map of a user mapping
knowledge ﬁase illustrating an example of the

invention.
Figure 8 illustrates the structure of a

specific class unit in the application knowledge base
illustrating an example of the inventiocn.

Figure 9 is a flow diagram for a Download
tuple procedure of the Transformation procedure in
accordance with the invention.

Figure 10 is a flow diagram of the Compute
slot values procedure corresponding to Step F1l of
Figure 9.

Figure 11 is a flow diagram of the procedure
Download units, which is one of the procedures forming

a part of the Query translate procedure.

WO 88/10470 7 PCT/USS88/02081

10

15

20

25

30

35

10

Figure 12 is a flow diagram of the Download
class members prOCedure corresponding to Step T of
Figure 11.

Figure 13 is a flow diagram describing the
procedure Compute SQL for slots corresponding to Step X
of Figure 12. |

Figure 14 is a flow diagram describing the
Language translate procedure corresponding to Step S of
Figure 11.

Figure 15 is a flow diagram describing the
Translate expression procedure corresponding to Step AR
of Figure 14. _

Figure 16 is a flow diagram describing the
Create unit procedure.

Figure 17 is a flow diagram-describing the
Delete unit procedure. .

Figure 18 is a flow diagram describing the

" Update unit procedure.

Detailed Description of Specific Embodiments

According to the invention, several new
concepts are introduced to the field of knowledge-based
systems (KBS) among which are slot maps and class maps,
mapping knowledge bases, functions knowledge bases, a
translation knowledge base and translators knowledge
bases. An understanding of these terms will be helpful
in an appreciation of this invention.

A slot map is a description of the mapping
between a slot in a knowledge base (KB) and one or more
attributes in a relational database (RDB).

A class map is a description of the mapping
between a class in a knowledge base and one or more
relations in a relational database.

A mapping knowledge base is a knowledge base
which defines structures of class maps and slot maps.

A system mapping knowledge base is a

knowledge base defining structures of all class maps

“,

b4

WO 88/10470

10

15

20

25

30

35

PCT/US88/02081

11

and all slot maps. In other words, it is the
vocabulary for all mapping knowledge bases. This
system mapping knowledge base is useful for generalized
knowledge-based systems and is particularly useful in

the KEE ™ system product provided by IntelliCorp, Inc.

of Mountain View, California.

A description of the knowledge bases, a
listing of the units within the knowledge bases and a
listing of the source code in the LISP language .
implementing three primary procedures and procedures
employed in selected units in accordance with a
specific embodiment of the invention are contained
herein in the attached appendix.

The user mapping knowledge base is that
knowledge base containing the structures of the user
class maps and user slot maps which are constructed
within the constraints defined by the system mapping
knowledge base. Structures within the user mapping
knowledge base which are not defined by the system
mapping knowledge base are ignored unless provision is
made for extending the functionality of the user
mapping knowledge base in a particular instance to
include the functionality from a translation knowledge
base.

A translation knowledge base is a knowledge
base containing class hierarchy information defining
all the classes of the environment excluding the
classes defined by the system mapping knowledge base.
The class hierarchy information so defined is true
across all relational database management systems. The
translation knowledge base is a generalized vocabulary
for taking queries and data contained in a knowledge
base of an application (an application KB) and
translating it into queries and data in a relational
database of an application (an application RDB). The
translation knowledge base described herein is complete

WO 88/10470 PCT/US88/02081

10

15

20

25

30

35

12

except for trivial features which can be supplied by
one of ordinary skill in the art.

The functions knowledge base is the knowledge
base containing the members of classes in the
translation knowledge base representing functions of
the application KB (the "application KB functions").

The translators knowledge base is the 7
knowledge base containing members of classes in the
translation knowledge base representing the processes
for mapping application KB functions to application RDB
functions for each application RDB used with the
application KB. '

- The translation knowledge base, the functions
knowledge base and the translators knowledge base
require only knowledge about the application RDB and
the query language used with the application KB. Thus,
the concept of querying an RDB can be separated from |
the problem of mapping the data of the application RDB
into the application KB.

Description of the Mapping Knowledge Bases

The system mapping knowledge base and uéer
mapping knowledge base are closely related. The system
mapping knowledge base defines the structure or
template for all user mapping knowledge bases. The
user mapping knowledge base is tailored to the
application knowledge base. Thus, the user mapping
knowledge base represents the mapping between the
relations and attributes of the application RDB and the
units and slots of the application KB. Each pairing of
an application RDB and an application XB will have its
own user mapping knowledge base.

The structure of a system mapping knowledge
base is quite general and can represent very complex
mappings. In particular, a system mapping knowledge
base can represent the mapping from multiple relations
to a single class, the mapping from one relation to

e

WO 88/10470

10

15

20

25

30

35

PCT/US88/02081
13

multiple classes, the mapping from multiple attributes
of a relation to the value or values of a single slot,
the mapping from one attribute of a relation to the
values of multiple slots,'the mapping of tuples of
relations into member units organized into a ’
multiple-inheritance taxonomy, and the transforming of
attribute values into knowledge base units, numbers or
strings, or more generally, any type of data. structure
supported by the LISP programming language.

Once a user has defined class maps and slot
maps of a user mapping KB for a pairing of an
application RDB and an application KB, the invention is
capable of three functions:

First, it is possible to translate queries
expressed in terms of predicates on knowledge base
units and slots into queries expressed in terms of
predicates on relational database relations and
attributes.

Sécond, it is possible to transform the data
retrieved from the application RDB by the above queries
into units and slot values of the application KB.

Third, it is possible to translate
modifications made to the units and slots in the
application KB into relational database commands which
make analogous modifications to the relations and
attributes in the application RDB. 1In other words, it
is possible to update the tuples (records) in a
relational database by modifications to an application
knowledge base. This becomes important wherever it is
necessary to maintain a current database.

Figure 1 illustrates the relationship between
a knowledge-based system (XKBS) 10 and a relational
database management system (RBDMS) 12 and illustrates
the role of a user mapping knowledge base 14. 1In
Figure 1, there is a representation of an application
knowledge-based system 10, including a knowledge base
query interface 16 and application knowledge base 18

WO 88/10470 PCT/US88/02081

10

15

20

25

30

35

14

comprising units 20, 22, 24 having slots 26, 28, 30.
The RDBMS 12 has an application relational database RDB
32 and a structured query language database interface
comprising a structured query language query interface
34 and structured query language update interface 36.
The RDB 32 contains all of the data in relations 38,
40. Each relation consists of tuples 42, 44, 46, 48,
50, etc. described by values of attributes 52, 54, 56,
etc.

The KBS 10 further comprises other knowledge
bases and procedures. Functionally coupling the
knowledge base query interface 16 to the SQL query
interface 34 is a first translator or Query translate
procedure 58 whereby knowledge base queries on path 60
are translated into structured query language queries
on path 62. The translation is derived from a
translation knowledge base 64, a translators knowledge
base 66 and a functions knowledge base 68. The
translators knowledge base 66 and the functions
knowledge base 68 derive from the translation knowledge
base 64 as indicated by the paths 70 and 72. The Query
translate procedure 58 is coupled to receive
application-specific mapping information from the user
mapping KB 14. The Query translate procedure 58 uses
the user mapping KB 14 to perform the translation

- functions. The user mapping KB 14 is derived from the

system mapping KB 74.

A second procedure is the Transformation
procedure 76. The Transformation procedure 76 is
coupled to the user mapping KB 14 to receive

application-specific mapping information for mapping

the data retrieved from the application relational
database 32 into units and slot values of the
application knowledge base 18. The Transformation
procedure 76 receives data contained in the tuples 42,
etc. and transforms the data into units and slot values

20, etc. A conventional user interface 78 is provided

WO 88/10470

10

15

20

25

30

35

PCT/US88/02081

15

for communicating with the KB gquery interface 16 and
with a modify KB interface 80. (A KEETM-type interface
may be used.)

Thus, a query in the knowledge base query
language from the KB query interface 16 is addressed to
the RDBMS 12 via the Query translate procedure 58 where
it is translated into a structured query language query
and addressed to the application RDB 32 containing the
relevant tuples 42, etc. The tuples 42, etc. are
transformed via Transformation procedure 76 into units
20, 22, etc. and slot values 26, 28, etc. in the
application knowledge base 18 for further
interpretation. Query may be made of the application
KB 18 directly through the KB query interface 16 via
bidirectional couplings 82 and 84.

A third procedure is the Update translate
procedure 86. The user mapping knowledge base 14
provides the necessary mapping to a second translator
called the Update translate procedure 86 between the
application knowledge base 18 and the RDBMS 12.
Specifically[once units and slot values of the
application KB 18 have been updated, these updates can
be translated via the Update translate procedure 86
into SQL update commands on path 88 to the RDBMS 12,
addressed to the SQL update interface 36, which in turn
updates the tuples 42, etc.

It should be understood that this knowledge
base configuration and interconnection can be used with
multiple databases so long as translators and
transformers are provided between each RDBMS and the
KBS. The caveat is that a query cannot be made which
involves interaction of the databases with one another.

Class Maps

The user mapping knowledge base contains
units herein referred to as '"class maps'". Each class

map defines the mapping between a single class of the

WO 88/10470 PCT/US88/02081

10

15

20

25

30

35

16

application knowledge base and a single "view relation"
on the application relational database.

In relational database terminology, there are
several recognized operations: select, project,
product, union, intersect, difference, join, and
divide. The result of performing any of these
operations on one or more relations is yet another
relation. Of these operations, three operations define
the view relation used in accordance with the
invention. The view relation is defined as the result
of the join, the select and the project operations of a
relational database. The join operation builds a
relation from two specified relations consisting of all
possible concatenated pairs of tubles, one from each of
the two specified relations, such that in each pair the
two tuples satisfy some specified condition. The
select operation extracts specified tuples from a
specified relation (not to be confused with the
structured duery language SELECT command or statement).
The project operation extracts specified attributes
from the specified relation.

A class map is illustrated with reference to
Figure 2. 1In Figure 2, there is shown a sample of
elements in a user mapping knowledge base which in this
case, is an example of the user mapping knowledge base
14. The reason for focussing on class maps according

to the invention is the ability to produce a

correspondence between elements of a relational
database and elements of a knowledge base. »For
example, in certain knowledge-based systems, it is
possible to draw a one-to-one relationship between a
relational database and a knowledge base. In the
simplest example, a class in a knowledge base is
equivalent to a relation in a relational database, the
attributes of a relational database correspond to slots
in a knowledge base, and the tuples in a relational
database correspond to the member units in a knowledge

WO 88/10470

10

15

20

25

30

35

PCT/US88/02081

17

base. Referring again to Figure 2, a class map 100 has
the following slots: Class.name 102, Covering.relation
104, UID.attributes (Unit identifier attributes) 106,
Relations 108, Join.conditions 110, Member.conditions
112, Slot.maps 114, Pname.slot.map 116, UID.name! 118,
UID.name.inversion! 120 and Deletable.member.units.p
122. Of these slots, Relations 108, Join.conditions
110, Member.conditions 112 and Slot.maps 114 are for
storing explicitly the names of the relations, the
joins, the selection constraints and the names of the
projected attributes, respectively, of the view
relation. In this example, the class map
SALES.FORCE-CM defines the mapping between the class
SALES.FORCE in the Personnel application knowledge base
and the view relation resulting from the join of the
Employees relation and the Salaries relation, the
selection of tuples whose value of the attribute Dept
(Department) is "Sales", and the projection of the
attributes Empno (Employee Number), Name, Address,
Salary and Bonus.

Figure 8 illustrates the structure of the
class unit 700 named SALES.FORCE. The class unit
SALES.FORCE 700 contains slots Emp.Id 702, Name 704,
Address 706, Wage 708, Class.Maps 710. The class unit
700 could be one of the units 20, 22, 24, etc. in the
application KB 18 (Figure 1) or alternatively, one of
the Classes A through F in the taxonomy 448 in Figure 5
hereinafter explained. -

In addition, the class map 100 contains slots
which are for containing cached information. In the
example given, these slots are:
Member.conditions.relations 124,
Member.conditions.joins 126, Pname.relations 128,
Slot.map.partitions-first 130, Slot.map.partitions-rest
132, Slot.map.partitions.local-first 134 and
Slot.map.partitions.local-rest 136.

WO 88/10470 o ' PCT/US88/02081

10

15

20

25

30

35

18

Attached to each of the slots in class map
100 are values represented by terms of a particular
format. The terms in the format shown are merely
examples. For example, a value in slots containing
relations 104, 108, 124 and 128 are represented in the
format:

(relation name . relation alias) as a pair,
where "relation alias" is a user-defined abbreviation
for "relation name." A value in slots containing
attributes 106, 110, 112, 114, 116 and 126 is
represented in the format:

(relation alias . attribute name)
as a pair. A wvalue in slots containing joins 110, 114,
116 and 126 is represented as a pair of attributes with
an implied “equals" predicate between the attributes.
And a value in a slot containing the member conditions
112 is represented as a predicate on attributes and
constants. (In Figure 2, comments are surrounded by
angle brackets.) Those of ordinary skill will
recognize that the class map of Figure 2 is based on
the LISP list structure from the LISP programming
language.

A class map as in Figure 2 specifies how each
tuple of a view relation maps into a single member unit
of the subject class of the application knowledge base.
The name of the class is the value in the Class.name
slot 102. 1In this example (Figure 2), the name of the
subject class is SALES.FORCE.

More than one tuple may map into the same
member unit. One or more attributes of the view
relation are specially designated by the mapping
knowledge base developer as the UID.attributes 106 in

order to identify which member unit a given tuple maps

‘into. The values of these attributes in a tuple,

called the user identifier or UID (not shown in the
figure) of the tuple of the relational database, are
assumed to'identify uniquely a single member unit.

WO 88/10470

10

15

20

25

30

35

PCT/US88/02081

19

Thus in the simplest case, one tuple maps into one
member unit. The UID identifies the specific member
unit. The transformer 76 includes code which assures
that tuples from the same view relation and with the
same UID always map into the same unit of the
application knowledge base and that tuples with
different UIDs always map into different units. The
UID information found in the class map is vital to the
correct operation of the transformer 76.

Referring to Figure 3, there are shown two
simple relations 200 and 202 from a relational database
and one resulting view relation 204 which is a join of
the two simple relations 200 and 202. The first
relation 200 is labelled Employees. The second
relation 202 is labelled Salaries. The view relation
204 is the join of the first relation 200 and the
second relation 202 joined on the attribute Empno 206.
In this view relation 204, the selection constraints
extract the rows whose Dept attribute 208 has the value
"Sales", and the projection eliminates the attribute
Dept 208. Also in this view relation 204 the UID is
the value of the attribute Empno 206, which is unique
for each member unit of the application knowledge base.

Figure 4 illustrates a member unit 300 of an
application knowledge base. The member unit 300 is
assigned a name by the transformer 76 in accordance
with the invention. A typical name 302 might be
SALES.FORCES$(12) where 12 is the UID value from the UID
attribute Empno 206 (Figure 3). Within that member
unit are the slots, for example, Emp.Id 304, which has
the value "12", Name 306, which has the value "John",
Address 308, which has the value "Palo Alto'", Wage 310,
which has the value "1020" (in dollars), and
$Print.name$ 312, which also has the value "John".

In accordance with the invention, the mapping
between the UID value and the member unit 300 is
represented in the member unit name 302. Ideally, UIDs

WO 88/10470 PCT/US88/02081

10

15

20

25

30

35

20

are unique across all view relations. The value of the
UID.name! slot 118 is a LISP function which is used to
compute the member name 302 for each member unit 300.
The value of the UID.name.inversion! slot 120 is the
LISP function which computes the UID given a member
name (for example member unit name 302). This is
extremely useful for querying and updating the
application relational database.

Each user mapping knowledge base 14 contains
many class maps. Each of the class maps, however, has
the same structure as the CLASS.MAPS class of the
system happing KB 74.

Referring to Figure 5, there is shown a
taxonomy 448 of an application knowledge base 18 having
classes A through F designated 400, 402, 404, 406, 408
and 410, respectively, arranged in a taxonomy of
multiple-inheritance. Class maps are arranged in the
same multiple-inheritance taxonomy as the application
KB 18. ' '

In Figure 6, there is shown the class map
taxonomy 550 of the class maps of a user’mapping
knowledge base 14 comprising class maps A through F
designated 500, 502, 504, 506, 508 and 510,
respectively. When a class map is itself a subclass of
another class map, its member conditions comprise the
member conditions inherited from its parents and any
additional local member conditions which distinguish
that class map from its sibling class maps. Member
conditions are expressed as predicates (Boolean
functions) on the attributes in the view relation, as
for example, in the view relation 204. For example,
the Member.conditions 112 (Figure 2) restrict Dept 208
to be the "“Sales" value, so the employee with Dept 208
having value "Research" does not appear in the view
relation 204.

While this invention has general application,
the implementation of the invention can be rendered

w

WO 88/10470

10

15

20

25

30

35

PCT/US88/02081

21

more efficient and less complex by imposing a single
restriction on the view relation. The restriction,
which normally is the case, is that one of the base
relations forming the source of the view relation of
the relational database contains at least one tuple for
every member unit of the class in the application
knowledge base. (In the present terminology, one of
the base relations is thus a "covering relation' 104.)
By employing this restriction, it becomes unnecessary
to take the union of base relations (a relational
database operation) when retrieving all of the member
units of a class in the application knowledge base.
Nevertheless, a straightforward extension of the
preferred implementation of the invention is to remove
the restriction that all view relations have a covering
relation. ‘

Referring again to Figure 2, slots 102, 104,
106, 108, 110, 112, 114, 118 and 120 have been
explained previously. The remaining slots of a class
map 100 are described briefly below:

The Deletable.member.units.p slot 122 is a
Boolean flag indicating if deleting a member unit
should cause the corresponding tuple or tuples on the
database to be deleted also. The Pname.slot.map slot
116 is the slot map for the $Print.name$ slot 312,
which is a special slot containing the print name of.
the member unit which is used for output displays.

The Pname.relations slot 128 is a cache which
contains the relation or relations referenced in the
Pname.slot.map slot 116.

The Member.conditions.joins slot 126 is a
cache which contains the joins needed to connect the
value in the Covering.relation slot 104 with the
relations referenced in the Member.conditions slot 112.

The Member.conditions.relations slot 124 is a
cache containing the relations referenced in the

Member.conditions.joins slot 126.

WO 88/10470 , , PCT/US88/02081

10

15

20

25

30

35

22

Four slots are closely interrelated, namely,
Slot.map.partitions-first 130, Slot.map.partitions-rest
132, Slot.map.partitions.local-first 134 and
Slot.map.partitions.local-rest 136. These slots are
caches which are derived from the Slot.maps slot 114.
The values of these slots enable efficient generation
of the queries in the structured query language for
retrieving the values of slots of members of the class
whose name is the value of the slot Class.name 102. In
this example, the class is SALES.FORCE in the
application knowledge base 18 called Personnel.

Slots 130 and 132 have as values a

- mathematically complete and disjoint partition of the

slot maps in the Slot.maps slot 114. Slots 134 and 136
have as values a mathematically complete and disjoint
partition of the slot maps in the Slot.maps slot 114
which represent local slots of the class whose name is
the value of the slot Class.name 102. The partitions
of these four slots 130, 132, 134 and 136 are computed
as follows: ,

(1) For each slot map in the Slot.maps slot
114, a partition is created containing the slot name
and the relations needed by the slot map. ' 7

(2) All'partitionsrwhich depend only on the
value of the Covering.relation slot 104 and/or the
value in the Member.conditions.relations slot 124 are
merged, and the result is placed in the slot named
Slot.map.partitions-first 130.

(3) From the remaining partitions computed
under step 1, the partitions which depend on exactly
the same relations are merged, and the results are
placed in the slot named'Slot.map.partitions*rest 132.

The above process is repeated for the values
of the slot maps which represent the slots which are
local to the class whose name is in Class.name 102 with
the resulting partitions stored in the slots
Slot.map.partitions.local-first 134 and

WO 88/10470

10

15

20

25

30

35

PCT/US88/02081
23

Slot.map.partitions.local-rest 136. Each such
partition has the following format:

([1list of the relation aliases] . [list of slot
names]).

To retrieve all of the slots for a particular
unit, it is only necessary to run one query for each
partition. Due to limitations on the implementation of
most relational database management systems, it is not
universally possible to run a single query which
retrieves all of the slots. The above method overcomes
the problem using the tools available in the
knowledge-based system according to the invention.

Slot Maps

A slot map describes how the value or values
of a particular slot for a particular member unit are
computed from the value or values of a field or fields
of a tuple. There is one slot map for each slot of the
class represented by a class map. If more than one
tuple maps into a particular member unit, then the
additional tuples provide additional slot values, i.e.,
the slots have multiple values.

Referring again to Figure 2, there is shown a
Slot.maps slot 114 listing four slot maps in the class
map 100. Referring to Figure 7, there is a
representation of the fourth slot map with name Wage
from the élot.maps slot 114. This slot map 600
contains entries ("fields" without the full
characteristics of slots in one embodiment or in an
alternative embodiment slots wherein each slot map is a
unit which contains slots). The entries are Slotname
602, Attributes 604, Interface-function-unit 606,
Attribute-expression 608, Joins 610 and Updatable 612.
The Slotname 602 is the name of a slot 708 in the class
SALES.FORCE 700.

Attributes 604 contain the attribute or

attributes whose value or values in a tuple are needed

WO 88/10470 : : PCT/US88/02081

10

15

20

25

30

35

24

to compute the value or values of the slot.
Interface-function-unit 606 contains the value
"IDENTITY", referring to a unit in the translation KB
64. Together, the Interface-function-unit 606 and the
Attribute-expression 608 indicate how the slot value is
computed. Joins 610 contain the joins needed to
connect the relations containing the attributes of the
slot map to the covering relation of the class map.
Updatable 612 is a flag indicating if the attributes
upon which this slot is based can be updated. If they
can, then changing the value or values of the slot will
change the corresponding attribute value or values on
the relational database 32.

There are two types of slot maps, one where
the slot values are computed by the relational database
32 and one where the slot values are computed by the
user mapping knowledge base 14. For
database-computable slot values, the value in the
Interface-function-unit 606 (Figure 7) is a unit with
an associated structured query language function for
coercing database data of one type into database data
of another type, e.g., a structured query language
function which coerces numbers into strings. The
structureé query language function uses as its argument
the SQL translation of the value in the ,
Attribute-expression 608. Such interface function
units are called "simple interface-function-units."

For knowledge-base computable slot values,
the unit identified by the Interface-function-unit 60s
includes a slot whose value is a LISP function. This
LISP function can be applied to the values of the slot
map Attributes 604 retrieved from the RDB 32 (Figure 1)
to produce the slot values. Such units are called
"LISP interface-function units." Herein the user
mapping knowledge base computes the slot values.

Furthermore, there is a third type of slot

map wherein database-computed slot values and knowledge

WO 88/10470

10

15

20

25

30

35

PCT/US88/02081
25

base-computed slot values are combined in a single slot
map. In this hybrid slot map, the value in
Attribute~expression 608 is computed on the RCB 32 from
attribute values and then are supplied to a LISP
function in the user mapping knowledge base 14, from
which are computed corresponding slot values.

Transformation
In Figure 1, a Transformation procedure 76 is

provided for converting tuples of a relational database
32 into slot values or new units in the application
knowledge base 18. 1In fact, in accordance with the
invention it is merely required that a query be
provided to the RDBMS 12 from any source in order to
generate output to be applied to the Transformation
procedure 76 and in order to return information to the
application knowledge base 18. According to the
invention, the Transformation procedure 76 is a general
procedure which works with any user mapping knowledge
base 14. However, the Transformation procedure 76 does
require as input, in addition to a tuple from the
application RDB 32, a list of slots 77 and a class map
79 (Figure 1), so that the Transformation procedure 76
knows how to handle the tuple input. The slot 1list 77
and class map 79 may be provided in any manner,
including through the user interface 78 directly or as
a result of the query of the Query translate procedure
58. |

The Transformation procedure 76 1is the
conceptual expression of several procedures. The
Transformation procedure 76 comprises a Download tuple
procedure, also known as a Download class tuple
procedure, in a specific embodiment. It uses a Compute
slot values procedure. Broadly, the Download tuple
procedure takes tuples of information from an arbitrary
RDB 32, transforms the tuples into slot values and
directs the slot values to slots in member units of the

WO 88/10470 PCT/US88/02081

10

15

20

25

30

35

26

application knowledge base 18. If the addressed member
unit does not yet exist, the Download tuple procedure
creates that unit as needed and then the slot value or
values of the new unit.

Referring to Figure 9, there is shown a flow
diagram for the Download tuple procedure 800. The
Download tuple procedure 800 takes as its inputs a
database tuple 42, a slot list 77 and a class map 79
(Figure 1) (Step A and Step B). The Download tuple
procedure 800 first extracts the UID from the
UID.attributes field of the tuple 42 (Step C). The UID
attributes field would be, for example, the Empno 206
in Figure 3. The procedure 800 then searches the 7
application XB 18 for a uﬁit whose name corresponds to
the retrieved UID (Step D). If no such unit exists,
the procedure creates a new unit (Step E). If such a
unit exists, the procedure immediately proceeds to the
next step. The next step includes the computation of
the slot value from the values in the tuple (Step F1)
and the addition of the slot values so computed to the
existing or neﬁly created unit (Step F2). This step is
carried out for each slot in the slot list 77 (Step F).
Thus is the procedure completed (Step G).

- Figure 10 is a flow diagram of the procedure
Compute slot values 802 corresponding to Step F1 of
Figure 9. The Compute slot values procedure 802 takes
as inputs a slot listed in the slot list 77 and one or
more values computed by the RDB 32 (Steps H and J).
Next, the procedure 802 gets the
Interface-function-unit from the slot map describing
the slot listed on .the slot 1list 77 (Step K). If the
Interface~-function-unit is of the class of "simple"
interface'function units (i.e., the slot is a
database~computable slot), then the procedure simply
returns the database valuesr(Step L to Step M). If the
Interface-function-unit is a LISP type of interface

function unit (i.e., the slot is a knowledge

WO 88/10470

10

15

20

25

30

35

PCT/US88/02081

27

base-computable slot), then the procedure 802 gets the
LISP function attached to the Interface-function-unit
and calls that function with the database values as
arguments (Step L to Step N). The procedure 802
returns the values slot values computed by the function
to the calling procedure, or as otherwise directed .
(Step P). '

The above procedures 800 and 802 are used by
all other procedures in order to transform data into
slot values in units. Thus, these procedures are
general.

In order to execute a specific query and
retrieve information in the general case, it is
necessary to execute a query which is understood by the
application knowledge-based system 10. This involves,
for example, the use of procedures from the Query
translate procedure 58 (Figure 1). Figure 11 is a flow
diagram of the procedure Download units 900, which is
one of the brocedures forming a part of the Query
translate procedure 58 and which assures that a query
is generated and a transformation is performed on the
returned data.

Referring to Figure 11, the Download units
procedure 900 takes as its inputs the KB-query and a
list of slots to be retrieved (slot list) (Steps Q and
R). The procedure then calls the Language translate
procedure 1200 (Figure 14 hereinbelow) to return a
structured query languagé query to temporary storage in
DB-subquery (Step S). This query, if executed on the
RDB 32, returns the UIDs of the member units which
satisfy the query. However, it is desired to obtain
all member units which satisfy the query and the values
of the slots listed in the slot list from Step Q.
Therefore, for each top-level class in the input query
KB-query from Step Q, the procedure 900 calls the
Download class members procedure 1000 (Figure 12

hereinbelow), which creates the units (transformed from

WO 88/10470 PCT/US88/02081

10

15

20

25

30

35

28

tuples from the RDB 32 satiSfying the DB-subquery)
which satisfy the KB-query (Step T). The procedure 900
then returns the downloaded units listed (Step U).
Referring now to Figure 12, there is shown a
flow diagram of the Download class members procedure
1000 corresponding to Step T of Figure 11. The
Download class members procedure 1000 takes as inputs
the class, DB-subquery and the slot list passed to
procedure 900 (Steps V and W). Its purpose is to
search the RDB 32 for the tuples comprising the members
of the SUbject class which satisfy the DB-subquery, to
create new units in the application KB 18 for those
tuples which have no corresponding units in the
application KB 18, and finally to create the slot
values in all units for the slots given in the slot
list. The Download class members procedure 1000 calls

the Compute SQL for slots procedure 1100 (Figure 13) to

produce the structured query language query for 7
retrieving the values of the slots given in the slot
list for the members of the subject class (Step X).
This single value (a structured query language query)
is stored in the temporary storage DB-query. Then the
DB-query and the DB-subquery (from Step S) are combined
into a single structured query language query and sent
to the SQL query interface 34 (Figure 1) (Step Y). The
RDB 32 returns the matching tuples. For each tuple
returned from the RDB 32, the Transformation pfocedure
76 is called and, more specifically, the Download tuple
procedure 800 (Figure 9) is called (Step Z). The
procedure 1000 checks to determine if all slots have
been retrieved (Step 2A). If they have, then it
returns to the Download units procedure 900 (Step AB).
If not, then the procedure becomes recursive, calling
the Download class members procedure 1000 for each
subclass of the subject class, with inputs Subclass,
Unretrieved slots of the slot list, and the outstanding
DB-subquery (Steps AC, AD). When the recursive

e

WO 88/10470

10

15

20

25

30

35

PCT/US88/02081

29

procedure is completed, it returnsrto the Download
units procedure 900 at Step T (Step AE).

Referring now to Figure 13, there is shown a
flow diagram for the procedure Compute SQL for slots
1100. This procedure computes the select, join and
project operations of the RDBMS 12 based on the class
map of the input class (the subject class) and the
input slot 1list. Its purpose is to return the
structured query language query for retrieving the
slots named in the slot list. The procedure 1100 takes
as inputs the class and the slot list (Steps AF and
AG). It computes in any order the relations, the
joins, the selections and the projections (Steps AH,
AJ, AK, AL). The relations are computed by combining
the relations mentioned in the slot maps (one slot map
is obtained for each slot in the slot list) with '
relations contained in the Member.conditions.relations
slot 124 (Figure 2) of the class map of the subject
class (Step AH). The relations mentioned in a slot map
have no corresponding entry in a slot map and so must
be computed from the entries in the slot map labelled
Attributes and Joins. The joins are computed by
combining the entry in the slot map labkelled Joins with
the joins of the Member.conditions.joins slot 126
(Figure 2) of the class map of the subject class (Step
AJ). The selections are the contents of the
Member.conditions slot 112 (Figure 2) of the class map
of the subject class (Step AK). The projections are
computed for each slot map, based on whether the slot
map is database-computable or knowledge base-computable
(Step AL). In a specific exanmple, if it is
database-computable, the projection is the structured
query language function associated with the
Interface-function-unit entry 606 applied to the SQL
translation of the value in the Attribute-expression
entry 608 (Figure 7). If it is knowledge
base-computable, it is simply the names in the

WO 88/10470 , PCT/US88/02081

10

15

20

25

30

35

30

Attributes entry 604 of the slot map 600 (Figure 7).
The,procedure 1100 returns the structured query
language query comprising the relations, joins,
selections and projections (Step AM).

Figure 14 is a flow diagram describing the
Language translate procedure 1200 (Step S of Figure
11). In a particular embodiment, the Language
translate procedure 1200 takes as input a knowledge
base query expressed in a specific query language, such
as TellAndAskTM from IntelliCorp, Inc. of Mountain
View, California, and translates it into a structured
query language query, such as the ANSI standard SQL
structured query language (or more specifically
according to the SQL structured query language from IBM
of Armonk, New York and the dialects of the SQL
structured query language from Oracle, of Belmont,
california and Britton-Lee of Los Gatos, Californiaj.
A TellAndAsk query is a predicate calculus for forming
a Booléan expression which is a combination of
predicates applied to variables whose values may be
units or slot values. The pdrpose of the Language
translate procedure 1200 is to return an equivalent
database query in a structured query language.

Referring to Figure 14, the Language
translate procedure takes as input the TellAndAsk
knowledge base query (Steps AN and AP) and builds'a
first tree representing the knowledge base query (Step

AQ). This is a function which is built relatively

easily in the KEE language. Users may build their own
function in languages supporting other knowledge-based
systems. The leaves of the tree are (1) predicates or
functions applied to variables, hereafter
"expressions", or (2) assignments of variables. Each
variable is assigned a list of one or more types. a
type is either a string, number, symbol, list, etc.

(simple data type) or a class name. A class name type

WO 88/10470

10

15

20

25

30

35

PCT/US88/02081
31

indicates’ that the value of a variable must be a unit
which is a member of the named class.

Thereafter, the first tree is used to build a
second tree of structured query language translations
of the expressions from the first tree (Step AR). To
perform the translations, the procedure uses the
translation KB 64, the user mapping KB 14, the
functions KB 68 and the translators KB 66.

The functions KB 68, referred to in a
specific embodiment as the KCFunctions KB, contains one
member unit, called a function unit, for each KB
predicate or function. Typical member units represent
(=) the equals predicate, (+) the plus function, (-)
the minus function, and so forth.

The translators KB 66, referred to in a
specific embodiment as the ANSI_SQL KB, typically
contains one member unit, called a translator unit, for
each member unit in the functions KB 68. Each of the
translator units contains the information needed to
translate a KB predicate or function into a structured
query language predicate or function. If a specific KB
predicate or KB function translates into a plurality of
DB predicates or DB functions, depending on the
computed types of the arguments, then there will be one
translator unit for each possible translation of a KB
predicate or KB function. The computed types of
arguments are taken from the first tree (Step AQ). The
translators KB 66 also contains member units which can
be used as the value of the Interface-function-unit 606
of any slot map (example slot map 600 Figure 7). These
member units are application-independent
interface-function-units. The end user or programmer
can define additional application-specific member units
which may be added to the translators KB 66 or the user
mapping KB 14.

The translation KB 64 contains a taxonomy of

classes defining the structure of the member units in

WO 88/10470 ' PCT/US88/02081

10

15

20

25

30

35

32

the functions KB 68, the structure of the member units
in the translators KB 66 and the structure of
interface-function-units in the user mapping KB 14, as
well as other units as needed.

Continuing with a description of the Language
translate procedure 1200, the second tree is converted
into a single structured query language query string
(Step AS) which is returned for use by the RDBMS SQL
query interface 34 (Step AT).

Figure 15 is a flow diagram describing the
Translate expression procedure 1300 or how to use the
function units and the translator units from the
functions KB 68 and the translators KB 66 to translate
an expression of a KB query into a structﬁred guery

‘language string forming a DB query. The Translate

expression procedure 1300 starts with the inputs
expression from the KB query, and the current user
mapping KB 14 (Steps AU and AV), gets the predicate
from the input expression (Step AW) and finds the
function unit in the functions KB 68 which represents
the predicate (Step AX). Thereafter, the procedure
gets the types of the arguments in the expression (Step
AY) and uses the types to find the translator unit in -
the translators KB 66 for the function unit (Step AZ7).
Thereafter, the procedure gets the database predicate
from the translator unit in the translators KB 66 (Step
BA) and translates the arguments in the expression
using the user mapping KB 14 (Step BB). Finally, the
procedure combines the translation of the arguments
with the database predicate (of Step BA) to form a
structured query language string (Step BC) which is
returned to the Language translate procedure 1200 (Step
BD) . '
Updating the database typically involves
respect for certain conditions limiting the scope of
the update. While class maps and slot maps allow very

general mapping of information in a relational database

WO 88/10470

10

15

20

25

30

35

PCT/US88/02081
33

to a knowledge base, relational databases are not able
to accept information of the same richness as is found
in a knowledge base. In particular, there must be a
one-to-one correspondence between a slot value and the
value or values of one or more attributes in a tuple.

"The following procedures 1400, 1500 and 1600
comprise the update translate procedure 86.

Figure 16 is a flow diagram describing the
Create unit procedure 1400 for adding information to
the RDB 32 based on information contained in a unit
existing in the application KB 18. The Create unit
procedure 1400 starts with a unit from the application
KB 18 as its input, or in other words with a pointer to
an object in the application KB 18 which contains a
full description of the unit to be processed (Steps BE
and BF). Thereupon the procedure computes the values
of the UID attributes 106 to be stored in the
application RDB 32 (Step BG). The value is computed
from the values of specific slots in the unit which
correspond one-to-one with the UID attributes. Next
the procedure gets the value of the Covering.relation
slot 104 of each class map of each parent of the
subject unit (Step BH). Finally, for each covering
relation value, the procedure inserts a tuple in the
corresponding relation in the application RDB 32
containing fields whose values are the values of the
UID attributes 106 (Step BJ). The procedure returns to
the calling procedure (Step BK).

Figure 17 is a flow diagram describing the
Delete unit procedure 1500 for deleting information
from the RDB 32 based on information contained in a
unit to be deleted in the application KB 18. The
Delete unit procedure 1500 starts with a unit from the
application KB 18 (Steps BL and BM). The procedure
then extracts the values of the UID attributes from the
name of the unit, since the name of the unit contains
the UID and usually the name of a parent of the unit

WO 88/10470 PCT/US$8/02081

10

15

20

25

30

35

34

(Step BN). Next the procedure gets the value of the
Covering.relationrslot 104 of each class map of each
parent of, the subject unit (Step BP). Finally, for
each covering relation value, the procedure deletes the
tuple or tuples in the application RDB 32 containing
fields whose values are the values of the UID 7
attributes 106 (Step BQ). The procedure returns to the
calling procedure (Step BR). ')

Figure 18 is a flow diagram describing the
Update unit procedure 1600 for updating information in
the RDB 32 based on information contained in a unit in
the application KB 18. The Update unit procedure 1600
starts with a unit from the application KB 18 as its
input, or in other words with a pointer to an object in
the application KB 18 which contains a full description
of the unit to be processed (Steps BS and BT). The
procedure then performs a repetitive subprocedure for
each slot in the unit which has been modified by the
user. Specifically, the procedure tests to determine
if the slot is single-valued (Step BU). If it is

 single-valued, then the procedure updates the

attributes in the tuple identified by the UID, which
attributes correspond to the slot map Attributes entry
(Step BV). This step implies generating the structured
query language command to perform an update and ,
transmitting the command to the RDBMS 12. The new
attribute values are computed from the current slot
value. The proéedure then tests to determine if the
update succeeded on the RDB 32 (Step BW). If the
update succeeded, then the procedure continues for the
next slot. If the ﬂpdate did not succeed, then the
procedure inserts a new tuple in the RDB 32, where the
new tuple contains the UID (values of the UID
attributes) and the attribute values computed from the
new slot value (Step BX). The procedure then continues
for the next slot. '

WO 88/10470 PCT/US88/02081

35

, If the slot is not single-valued, then the
procedure deletes or updates those tuples from the RDB
32 which contain the UID and attribute values computed
from the previous slot values (Step BY). Finally, the
5 procedure inserts a new tuple in the RDB 32 for each
slot value, where the new tuple contains the UID
(values of the UID attributes) and the attribute values
computed from the new slot value (Step BZ). The
procedure then continues for the next slot. When all
10 modified slots have been considered, the procedure

returns to the calling procedure (Step CA).

The invention thus allows for querying and
updating an arbitrary relational database using the
versatile: tools of a knowledge-based system based on

15 the use of a generalized mapping knowledge base and
generalized translation and transformation procedures,
which are adapted for use with a épecific application
knowledge base through a user mapping knowledge base
tailored to the application knowledge base. The

20 invention has been explained with respect to specific
embodiments. Other embodiments will be apparent to
those of ordinary skill in this art in light of this
specification. For example, the user mapping knowledge
base may be integrated into the application knowledge

25 base without loss of generality of application of the
invention. Similarly, the various individual
procedures can be integrated into a single generalized
procedure. It is therefore not intended that this
invention be limited except as indicated by the

30 appended claims.

35

WO 88/10470 . ' PCT/US88/02081

10

15

20

25

30

35

- 36

Claims

1. A method for manipulating an arbitrary
relational database in a relational database management
system having a database query interface, said
relational database including relations of tuples with
attributes, in order to retrieve information for use in
an application knowledge base of a .knowledge-based
system, said method comprising the steps of:

(1) querying said relational database
management system as specified by a slot list and a
class map, said class map having a slot whose values.
are slot maps, to return selected tuples;

(2) transforming said selected tuples into
slot values; and

(3) supplying said slot values to slots of
units of said application knowledge base.

2. The method according to claim' 1 further
including the step of creating units in said
application knowledge base if units addressed by said
slot values are nonexistent.

3. The method according to claims 1 or 2
including the steps of:

(a) providing to said knowledge-based system
a system mapping knowledge base of general
applicability;

) (b) providing a.transformation procedure of
general applicability for transforming tuples into slot
values and for creating new units; and

(c) providing a user mapping knowledge base
of specific applicability to said application knowledge
base, said user mapping.knowledge base being distinct
from said system mapping knowledgé base, said user
mapping knowledge base supplying descriptions of said
application knowledge base to said transformation
procedure.

WO 88/10470

10

15

20

25

30

35

PCT/US88/02081
37

4, The method according to claim 3 wherein
said querying step (1) comprises:

(1) providing a query translation procedure
of substantially general applicability for translating
a knowledge base query into a structured query language
query; and

(ii) translating a specific knowledge base
query into a specific structured query language guery
in response to descriptions supplied to said query
translation procedure by said user mapping knowledge

base.

5. The method according to claim 4 further
including the steps of:

(iii) providing a functions knowledge base;

(iv) providing a translation knowledge base;

(v) providing a translators knowledge base;

(vi) providing function descriptions to said
guery translation procedure from said functions
knowledge base; '

(vii) providing translation descriptions to
said query translation procedure from said translation
knowledge base; and

(viii) providing translator descriptions to
said query translation procedure from said translators

knowledge base.

6. The method according to claim 1 wherein
said relational database has base relations which form
a source of view relations, wherein one of said base
relations forming said view relation source is
restricted to contain at least one tuple for every
class member unit in said application knowledge base in
order to promote efficient conversion of information
between said relational database and said application

knowledge base.

WO 88/10470 PCT/US88/02081

10

15

20

25

30

35

38

7. The method according to claim 1 wherein
said slot maps comprise database type, knowledge base
type, and computable type.

8. The apparatus according to claim 7
wherein said units contain at least four related slot
map partition slots, including

a first partitions slot,

a rest partitions slot,

a first local partitions slot, and

a rest local partitions slot,

said related partition slots being derived
from a slot maps slot, said first partitions slot and
said rest partitions slot having as values a
mathematically complete and disjoint partition of first
slot maps in said slot maps slot, said first local
partitions slot, and said rest local partitions slot
having as values a mathematically complete and disjoint
partition. of second slot maps in said slot maps slot,
said second slot maps representing local slots of a
class whose name is the value in a class name slot, the
method further including the steps for computing
partitions of said related partition slots of:

' (1) creating a partition for each slot map
in said slot maps slot, said partition containing the
slot name and the relations needed by each said slot
map; thereafter

(2) merging all partitions created by Step
(1) which depend only on the value of a covering

relation slot and/or the value in a member conditions

‘relations slot and placing the merged result in said

first partitions slot; thereafter

' (3) merging all partitions remaining from
said step (1) and said Step (2) which depend on exactly
the same relations and placing the merged result in

said rest partitions slot; and thereafter

WO 88/10470 PCT/US88/02081

10

15

20

25

30

35

39

(4) repeating said Steps (1) through (3) for
the values of the slot maps which represent the slots
which are local to the class whose name is in the class
name slot and storing the resulting partitions in said
first local partitions slot, and said rest local
partitions slot, so that only one query is needed to
retrieve all of the slots in one partition for use in
efficient generation of queries in a structured query

language.

9. The method according to claim 1 further
including the step of:

updating data in a tuple in said application
relational database in response to a command of said

knowledge-based system.

10. The method according to claim 9 wherein
said updating step includes converting a
knowledge-based system update command into a structured
query update command in response to mapping
instructions of a user mapping knowledge base.

11. An apparatus for using an arbitrary
relational database in a relational database management
system having a database query interface, said
relational database including relations of tuples with
attributes, for use in an application knowledge base of
a knowledge-based system, said apparatus comprising:

(1) means for accessing said relational
database management system as specified by a slot list
and a class map, said class map having a slot whose
values are slot maps, in ordér to return selected
tuples;

(2) means for transforming said selected
tuples into slot values; and

(3) means for supplying said slot values to

slots of units of said application knowledge base.

WO 88/10470 - PCT/US88/02081

10

15

20

25

30

35

40

712., The apparatus according to claim 11
further including means for creating units in said
application knowledge base.

‘ 13. The apparatus according to claim 12
further including:

(a) means providing a system mapping
knowledge base of general applicability:;

(b) means providing a transformation
procedure of general applicability for transforming
tuples into slot values and for creating new units; and

(c) means providing a user mapping knowledge
base of specific applicability to said application
knowledge base, said user mapping knowledge base being
distinct from said system mapping knowledge base, said
user mapping knowledge base for supplying descriptions
of said application knowledge base to said
transformation procedure.

14. The apparatus according to claim 13
wherein said accessing means comprises: ,

(1) means providing a query translation
procedure of substantially general applicability for
translating a knowledge base query into a structured
query language guery; and

(ii) means for translating a specific
knowledge base query into a specific structured query
language query,in response to descriptions supplied to
said query translation procedure by said user mapping
knowledge base.

15. The apparatus according to claim 14
further comprising: '
(iii) means providing a functions knowledge
base;
- (iv) means providing a translation knowledge
base:;

WO 88/10470

10

15

20

25

30

35

PCT/US88/02081

41

(v) means providing a translators knowledge
base;

(vi) means providing function descriptions to
said query translation procedure from said functions
knowledge base;

(vii) means providing translation
descriptions to said query translation procedure from
said translation knowledge base; and

(viii) means providing translator
descriptions to said query translation procedure from
said translators knowledge base.

16. The apparatus according to claim 13
wherein said relational database has base relations
which form a source of view relations, and wherein one
of said base relations forming said view relation
source is restricted to contain at least one tuple for
every class member unit in said user mapping knowledge
base in order to promote efficient conversion of
information between said relational database and said

application knowledge base.

17. The apparatus according to claim 13
wherein said system mapping knowledge has a structure
representing at least the mapping from one relation to
one class and the mapping of one attribute to a single
slot.

18. The apparatus according to claim 13
wherein said system mapping knowledge base has a
structure representing at least the mapping from one
relation to multiple classes.

19. The apparatus according to claim 13
wherein said system mapping knowledge base has a
structure representing at least the mapping from

multiple relations to a single class.

WO 88/10470 PCT/US$8/02081

10

15

20

25

30

35

42

20. The apparatus according to claim 13
wherein said system mapping knowledge has a structure
representing at least the mappiﬁg from multiple
attributes of a relation to the value or values of a
single slot.

21. The apparatus according to claim 13
wherein said system mapping knowledge has a structure
representing at least the mapping from one attribute of
a relation to the values of multiple slots.

22. The apparatus according to claim 13
wherein said system mapping knowledge has a structure
representing at least the mapping of tuples of
relations into member units organized into a multiple
inheritance taxonomy.

23. The apparatus according'to claim 13
wherein said system mapping knowledge has a structure
representing at least the transforming of attribute
values into knowledge base units, numbers or strings,
and any type of data structure supported by the LISP-
programming language.

24. The apparatus according to claim 13
wherein said system mapping knowledge has a structure
representing the mapping from multiple relations to a
single class, the mapping from one relation to multiple
classes, the mapping from multiple attributes of a
relation to the value or values of a single slot, the
mapping from one attribute of a relation to the values

of multiple slots, the mapping of tuples of relations

into member units organized into a multiple inheritance

taxonomy, and the transforming of attribute values into
knowledge base units, numbers or strings, and any type
of data structure supported by the LISP programming
language.

W

WO 88/10470

10

15

20

25

30

35

PCT/US88/02081

43

25. The apparatus according to claim 23
wherein the mapping between the identification value of
a unit (UID value) and a member unit is represented in
a member unit name, wherein each said UID is unique
across all view relations, and the value of a UID name
slot is a LISP function which is used to compute the

member name for each member unit.

26. The apparatus according to claim 24
wherein a UID name inversion slot is provided whose
value is a LISP function which computes said UID given
a member name for querying and updating said
application relational database.

27. The apparatus according to claim 11,
wherein at least one class map is a subclass of a
parent class map such that member conditions of said at
least one class map comprise the member conditions
inherited from parents plus local member conditions
which distinguish said at least one class map from

sibling class maps.

28. The apparatus according to claim 26,
wherein said member conditions are expressed as
predicates (Boolean functions) on attributes in a view

relation.

29. The apparatus according to claim 11
wherein said slot maps comprise database type,
knowledge base type, and computable type.

30. The apparatus according to claim 28
wherein said units contain at least four related slot
map partition slots, including

a first partitions slot,

a rest partitions slot,

a first local partitions slot, and

WO 88/10470 PCT/US88/02081

10

15

20

25

30

35

44

a rest local partitions slot,

said related partition slots being derived
from a slot maps slot, said first partitions slot and
said rest partitions slot having as values a
mathématically complete and disjoint partition of first
slot maps in said slot maps slot, said first local
partitions slot, and said rest local partitions slot
having as values a mathematically complete and disjoint
partition of second slot maps in said slot maps slot, '
said second slot maps representing local slots of a
class whose name is the value in a class name slot for
use in efficient generation of queries in a structured
query language.

31. The apparatus according to claim 29
wherein each said partition has the following format:
([list of the relation aliases] . [list of slot
names]). ' '

32. The apparatus according to claim 11
wherein said slot maps are of at least a first type and
a second type, said first type wherein slot values are
computed by said relational database and said second

type wherein slot values are computed by a knowledge

base associated with said application knowledge base.

e

w

PCT/US88/02081

WO 88/10470

}

3HNODIA

/1]

9 0§ 11 ’ [P 107S H 0
S - A dvssvio 1INN _ o5 H-
, | 6L M3N , 9z
| 9v HO | - 1018 H~
m B 9/~ INVA 0z
—1 2V Funazoodd | 19| Y
NOILYWHO-SNYHL
o|4|3laloalv[~&3dnL Jdnt I = vz
|/
L SILNGIYLLY * f\ _ LINN
e a3 NOILVOIlddVY
95 g ,/Nm NOILY 13y w" X Y
se/ & % Nouwviad | b <
o’ & SANVIN o 7
ga4 NOILVYOI1ddVv -NOD - | 91
ee” CRTAE :.,__ m?mmm SHNa3004d ax a A
2vadn oS [[3LvIshvaL) ONIddVYIN fe—] ONiddyw| |SAH3N0} FOVAHILIN
3¢ 88| 3Lvadn yasn WALSAS 8] Ad3n0 eX
| Tos ! Il Ny ~ oo\.ﬁ
| r 29 Ly JHNAA00Hd 8
JOVIHIALINI | g A1visNviL (el | 3ovauEine | | sovauaN
m\ AHINOTOS SFAHINDTOS — AHENO M AdIaoOn Hasn
swaay "’ 85 K * K Tog C
LT [1 8/
a ax ax
SHOLVISNVHL ., NOILYISNVYHL , - SNOLLONNA /m 9
oﬁ1 SaM S99 oz N9 2L

-t

PCT/US88/02081

Covering.relation: |~ 106
UID.attributes: 108
Relations: ——"
Join.conditions:]—-’“D
Member.conditions: ! 12

WO 88/10470
100 2/11
Y
Class Map SALES.FORCE-CM
102
[Class.name: p— 104 (SALES.FORCE PERSONNEL)

(EMPLOYEES . E)
(E . EMPNO))

(EMPLOYEES . E),(SALARIES. S)

(E . EMPNO) (S . EMPNOY)
(= (E . DEPT) "SALES")

' 114

<joins > < updatable >

< name > < attrs > < func-unit > < attr-expr >
(EMP.ID ((E.EMPNO)) IDENTITY (E.EMPNO) NIL NIL)
(NAME ((E . NAME)) IDENTITY (E . NAME) NIL NIL)
(ADDRESS ((E . ADDRESS)) IDENTITY (E . ADDRESS) NIL NIL)
(WAGE ((S . SALARY) IDENTITY (+ (S . SALARY) ((E. EMPNO) NIL)
(S . BONUS)) (S.BONUS)) (S. EMPNO))
=116
[Pname.slot.map: |
(SPRINT.NAMES$ ((E.NAME)) IDENTITY (E.NAME) NIL NIL)

118
“—ﬁUlg,name!: 120 [(UID.NAME | CLASS.MAPS MAPPINGKB) | method|
UID.name.iversionl -] I(UID.NAMEINVERSION | CLASS.MAPS MAPPINGKB) | method

Deletable.member.units.p :{ NO
~122
< slots containing cached information >
124
Member.conditions.relations: | 126 (EMPLOYEES.E)
Member.conditions.joins: | 128 NIL
Pname.relations: —130 (EMPLOYEES . E)
Slot.map.partitions-first: | 132 ((E) EMP.ID NAME ADDRESS) .

Slot.map.partitions-rest: —~134 ((E S) WAGE)
Slot.map.partitions.local-first: | ((E) EMP.ID NAME ADDRESS)
Slot.map.partitions.local-rest: | . ((E 8) WAGE)

\-136

FIGURE 2

WO 88/10470 PCT/US88/02081

/11
206 206
/< EMPLOYEES/ZOB /200 >~\ SALARIES /202
[EMPNO| NAME / DEPT \ ADDRESS EMPNO SALARY BONUS
12 JOHN SALES PALO ALTO 12 1000 20
15 BETH SALES SUNNYVALE 15 3000 400
18) BILL |RESEARCH| PALOALTO \18] 800 0
204
2°6>\ \ VIEW RELATION
EMPNO) ADDRESS ~ SALARY BONUS
JOHN PALOALTO 1000 20
ETH SUNNYVALE 3000 400
FIGURE 3
300*\
Member unit of class unit SALES.FORCE in Application KB .
[SALES.FORCE § (12) |
Slots: ’
304 JEMP.ID: 12 302

306 — NAME: JOHN
308 — ADDRESS: PALOALTO|
310 — WAGE: 1020 |

312 — § PRINT.NAMES: JOHN |

FIGURE4
' 550 ~

CLASSMAPC

504
CLASS MAP B

506

CLASS MAPD
CLASS MAP E

510
CLASSMAPF

FIGURES FIGURE 6

PCT/US88/02081

WO 88/10470
411
600 —a
(SLOT MAP representing slot WAGE of class SALES.FORCE)
602
“~SLOT NAME: WAGE
: g‘; J ATTRIBUTES: | (S . SALARY) (S . BONUS)
508 “ INTERFACE-FUNCTION-UNIT: IDENTITY
51 0\ ATTRIBUTE-EXPRESSION: (+ (S . SALARY) (S . BONUS))
612 4 JOINS: ((E . EMPNO) (S . EMPNO))
UPDATABLE: NIL
FIGURE 7
700 -~
CLASS UNIT : SALES.FORCE
702
704
706 ~
708 ~

710 ~"CIASSMAPS: | SALES.FORCE-CM

FIGURE 8

WO 88/10470 ' PCT/US88/02081

800 5/11
™
B “\

INPUTS:

START

TUPLE, SLOT LIST
COWNLOAD TUPL; CLASS MAP /
c~ ¥
GET UID
FROM TUPLE
D E
FIND

UNIT FOR CREATE UNIT

uiD

YES

F \ T
FOR EACH SLOT DO:

[COMPUTE SLOT VALUE(S) FROM VALUES IN TUPLE |

/~ F2 F1
['ADD SLOT VALUE TOUNIT |
@~ Y
RETURN)
FIGURE 9

802
\‘ -
START INPUTS SLOT
GOMPUTE SLOT VALUES DB- VALUES

K~
GET INTERFACE-FUNCTION- UNlT FROM SLOT'S SLOT-MAP

/-N

M

RETURN
DB-VALUES

SIMPLE

COMPUTE SLOT VALUES BY CALLING
INTERFACE-FUNCTION-UNIT'S LISP
FUNCTION WITH DB-VALUES AS
ARGUMENT

P~ +
RETURNSLOT
VALUES

FIGURE 10

WO 88/10470

PCT/US88/02081

6/11

Q
START INPUTS: SLOT LIST,
DOWNLOAD UNITS KB-QUERY

DB-SUBQUERY: = LANGUAGE
TRANSLATE (KB-QUERY)

T~ Y
FOR EACH TOP-LEVEL CLASS IN KB-QUERY DO

DOWNLOAD THE MEMBERS OF THAT CLASS & OF ITS SUBCLASSES WHICH
MATCH DB-SUBQUERY AND RETRIEVE THE SLOTS IN INPUT SLOT LIST.

800 \\
R
SN

RETURN
DOWNLOADED
UNITS

FIGURE 11

INPUTS: CLASS,
DB-SUBQUERY,
SLOT LIST

X

DB-QUERY:: COMPUTE SQL FOR RETRIEVING SLOTS IN INPUT SLOT ST
OF MEMBERS OF CLASS.
! N
COMBINE DB-QUERY WITH DB-SUBQUERY AND SEND TO DB
y 2~
FOR EACH TUPLE RECEIVED FROM DB DO:
| DOWNLOAD-TUPLE |

RETURN

AD
FOR EACHSUBCILASS OF CLASS DOY| V{j‘,j’:g?gli‘jig?fg%s
DOWNLOAD CLASS MEMBERS / DbBsusquERY.

AE

RETURN

FIGURE 12

WO 88/10470 PCT/US88/02081

7711
1100 —~
e AF—
COMPUTE SQL ?L%UTTS:S.?LASS/
FORSLOTS

AH \

RELATIONS : = THE RELATIONS MENTIONED IN THE SLOT MAPS PLUS THE
RELATIONS OF THE MEMBER.CONDITIONS. RELATIONS OF
THE SUBJECT CLASS'S CLASS MAP.,

!

JOINS : = JOINS OF THE SLOT MAP PLUS THE JOINS OF THE
MEMBER.CONDITIONS.JOINS OF THE SUBJECT CLASS'S CLASS MAP

MKy
SELECTIONS :: THE MEMBER.CONDITIONS
AN Y

PROJECTIONS :* IF THE SLOT MAP IS DB-COMPUTABLE, THEN IT IS THE
- SQL FUNCTION ASSOCIATED WITH THE INTERFACE-
FUNCTION-UNIT ENTRY, APPLIED TO THE TRANSLATION
OF THE ATTRIBUTE-EXPRESSION ENTRY. ELSE THE
SLOT MAP IS KB-COMPUTABLE AND IT IS THE NAMES IN
THE ATTRIBUTES ENTRY IN THE SLOT MAP.

AM —~ +
RETURN THE SQL COMPRISING
RELATIONS, JOINS, SELECTIONS
AND PROJECTIONS

FIGURE 13

WO 88/10470 PCT/US88/02081

&/11

INPUT:
KB-QUERY

LANGUAGE
TRANSLATE

BUILD FIRST TREE REPRESENTATION OF KB-QUERY

By

USE THE FIRST TREE TO BUILD A SECOND TREE CONTAINING THE
SQL TRANSLATION OF THE EXPRESSIONS IN THE FIRST TREE.

Sy
N\
CONVERT THE SQLTREE INTO A SINGLE SQL QUERY STRING

RETURN
SQL-QUERY

FIGURE 14

Ay

WO 88/10470

PCT/US88/02081

a/1t

AU~
TRANSLATE
EXPESSION

INPUTS:
EXPRESSION, USER
MAPPING KB

AVR

GET PREDICATE FROM EXPRESSION

A~y
FIND FUNCTION UNIT IN FUNCTIONS KB
REPRESENTING PREDICATE

ANy

GET TYPES OF ARGUMENTS IN
EXPRESSION

AZ ~ &
EIND TRANSLATOR UNIT IN TRANSLATORS KB FOR THE
FUNCTION UNIT AND THE ARGUMENT TYPES

BA\ + .
GET DATABASE PREDICATE FROM TRANSLATOR UNIT

BB~y

TRANSLATE THE ARGUMENTS IN THE EXPRESSION

BC~N
COMBINE THE TRANSLATION OF THE ARGUMENTS WITH THE
DATABASE PREDICATE INTO A STRING

BD

RETURN
" SQLSTRING

FIGURE 15

-

WO 88/10470

PCT/US88/02081

10/11

1400 BF BE—~

START
CREATE UNIT

INPUT: UNIT /

COMPUTE A UID FOR THE UNIT USING THE VALUES OF CERTAIN SLOTS

BNy

GET THE COVERING RELATION OF EACH CLASS MAP OF EACH
PARENT OF UNIT

BJ
~ v
FOR EACH COVERING RELATION, INSERT A TUPLE CONTAINING

FIELDS WHOSE VALUES ARE THE VALUE OF THE UID
BK

RETURN

1500

\BM

FIGURE 16
START
DELETE UNIT

INPUT: UNIT /
BN\

[GET THE UID VALUE ENCODED IN THE UNIT'S NAVE |
BP~ *

GET THE COVERING RELATION OF EACH CLASS MAP OF EACH
PARENT OF UNIT

2~y

~
FOR EACH COVERING RELATION, DELETE THE TUPLE(S)
WHOSE FIELDS CONTAIN THE UID

BR~..

RETURN

FIGURE 17

WO 88/10470 PCT/US88/02081

11/11

1600
BT BS‘\ _\\
START .
UPDATE UNIT INPUT: UNIT /
FOR EACH MODIFIED SLOT OF THE UNIT DO
UPDATE OR DELETE TUPLES FROM
THE DATABASE CONTAINING THE

UID AND ATTRIBUTE VALUES COM-
PUTED FROM THE OLD SLOT VALUES

B2~ Y

IN THE TUPLE IDENTIFIED BY UID, UPDATE
THE SLOT MAP ATTRIBUTES WITH VALUES
COMPUTED FROM THE NEW SLOT VALUE.

INSERT NEW TUPLES CONTAINING THE UID
AND ATTRIBUTE VALUES COMPUTED FROM
NEW SLOT VALUES

UPDATE

SUCCEEDED

BX~\

INSERT NEW TUPLE CONTAINING UID AND
ATTRIBUTE VALUES COMPUTED FROM
NEW SLOT VALUE

FIGURE 18

INTERNATIONAL SEARCH REPORT
International Application No. PC T /USS 8 / 02081

1. CLASSIFICATION OF SUBJECT MATTER (if several classification symbols apply, indicate all) &

According to International Patent Classification (IPC) or to both National Classification and IPC
IPC(4). GOGF 15/18
US Cl. 364/200

Il. FIELDS SEARCHED

Minimum Documentation Searched 7

Classification System _ Classification Symbols

U.s. 364/200, 900, 513

Documentation Searched other than Minimum Documentation
to the Extent that such Documents are Included in the Fields Searched 8

IIl. DOCUMENTS CONSIDERED TO BE RELEVANT 9

Category * Citation of Document, 1! with indication, where appropriate, of the relevant passages 12 Reifevant to Claim Na. 13-

AP U.S., A, 4,675,829 (CLEMENSON), 1-32
23 JUNE 1987, See entire document.

A M.L. BRODIE, "On Knowledge Base Management 1-32
Systems", published 1986 by Springer
-Verlag, See chapter 28.

A R.E. CARHART, "Installingand Using the 1-32
MAPPER Interface (KEEMAP)", published :
1987 by Intellicorp (Mountain View, CA).

A R.M. Abarbanel, M.D. WILLIAMS, "A 1-32
Relational Representation for Knowledge
Bases'", published 1986 by Intellicorp
(Mountain View, CA).

* Special categories of cited documents: 10 “T" later docun;ent published afterﬂthe internationallﬁling dgte
. . el or priority date and not in conflict with the application but
“A" document defining the general state of the art which is not cited to understand the principle or theory underlying the
considered to be of particular relevance invention
“E" g?rlierddscument but published on or after the international ux" document of particular relevance; the claimed invention
ing cate cannot be considered novel or cannot be considered to
“L" document which may throw doubts on priority claim(s) or involve an inventive step
which is cited to establish the publication date of another wy" document of particular relevance; the claimed invention
citation or other special reason (as specified) cannot be considered to involve an inventive step when the
“"O" document referring to an oral disclosure, use, exhibition or document is combined with one or more other such docu-
other means ments, such combination being obvious to a person skilled
“P" document published prior to the international filing date but in the art.
later than the priority date claimed “&" document member of the same patent family

1V, CERTIFICATION

Date of the Actual Completion of the International Search Dat(sof Mailing of_ipisiggg‘onal Search Report
27 AUGUST 1988 £ 4‘2 OCI

International Searching Authority Signature of Authorized, Officer
A?iina Aeer]
ISA/US Debra Chun

Form PCT/SA/210 (second sheet) (Rev,11-87)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

