

J. D. TAYLOR.
RAILWAY SWITCHING AND SIGNALING APPARATUS.
APPLICATION FILED FEB. 10, 1903.

J. D. TAYLOR.
RAILWAY SWITCHING AND SIGNALING APPARATUS.
APPLICATION FILED FEB. 10, 1903.

UNITED STATES PATENT OFFICE.

JOHN D. TAYLOR, OF BUFFALO, NEW YORK, ASSIGNOR, BY MESNE ASSIGNMENTS, TO GENERAL RAILWAY SIGNAL COMPANY, OF BUFFALO, NEW YORK, A CORPORATION OF NEW YORK.

RAILWAY SWITCHING AND SIGNALING APPARATUS.

No 821,385.

Specification of Letters Patent.

ratented may 22, 1906.

Application filed February 10, 1903. Serial No. 142,729.

To all whom it may concern:

Be it known that I, JOHN D. TAYLOR, a citizen of the United States, residing at Buffalo, New York, have invented certain new and 5 useful Improvements in Railway Switching and Signaling Apparatus, of which the following is a full, clear, and exact description.

This improvement relates to that class of apparatus in which electricity is the motive 10 and controlling power; and the objects of this improvement are to guard against the bad effects of crossed wires and of an open common wire, to enable the operator to readily determine which wires are in trouble, and 15 to reduce the effects of a fall in potential in the common wire on the safety apparatus These objects are accomplished by the arrangement of apparatus and circuits shown in the accompanying diagram.

The construction and operation of the interlocking machine referred to is fully illustrated and described in my Patent, No. 605,359, June 7, 1898, and the reissue thereof, No. 707,181, August 19, 1902, and in my pend-²⁵ ing applications, Serial No. 42,994, filed January 12, 1901, and Serial No. 95,460, filed February 24, 1902. The signal-operating mechanism is fully set forth in my Patents No. 516,903, March 20, 1894; No. 707,180, August 19, 1902; No. 707,182, August 19, 1902. The switch-operating mechanism is fully illustrated and described in my Patents No. 554,097, February 4, 1896; No. 681,589, August 27, 1901; No. 707,181, August 19,

Figure 1 is a diagram of the circuits, showing a single switch or cut-out placed in the operating common. Fig. 2 is a similar diagram showing a double switch for breaking 40 both the operating common and the indication common.

As illustrating typical means for carrying out my invention I have shown in the diagram at 36 a source of energy; at 1a, 1b, and 45 1c electric motors for operating signals and switches, as described in the above-named The parts having the suffix "a" patents. are those connecting with the signal A and the parts having the suffixes "b" and "c" are those connecting with the switches B and C, respectively. The brushes 13, 19, and 20 and their respective contacts constitute the manually-operated controllers for the signal | and switches. The brush 5 and the arms 3 and 4, with their respective contacts, consti- 55 tute the automatically-operated controllers.

29 represents indication-magnets, and 30 represents safety-magnets operating as described in said aforementioned patents.

39 40 41 42 are parts of a two-pole electric 60 switch. The parts 39 40 are held in contact with the parts 41 42, respectively, by the electromagnet 51, which is in a circuit capable of being closed with a battery.

47 represents polarized relays which con- 65 trol the circuit of the magnet 51.

The brush 13ª is connected to the signaloperating bar or lever and together with the contacts 10^a, 11^a, and 12^a form a controller for the operating and indication circuits of 7c the signal. The brushes 19b and 20b, connected to a switch-operating bar or lever, together with the contacts 16^b 17^b 18^b 21^b 22^b 23^b, form a controller for the operating and indication circuits of switch B. The brushes 75 and contacts of similar numerals, with the suffix "c," form a controller for the operating and indication circuits of switch C. magnet 29^a is indication-magnet for signal A. The magnet 29^b is indication-magnet 8_o for switch B. The magnet 30b is a safetymagnet corresponding to magnet designated 21 in my said former application, Serial No. 42,994. The magnets 29° and 30°, respectively, perform similar functions with refer- 85 ence to switch C. The magnet 20° is the brake-magnet holding the signal clear when the signal-lever stands reversed.

This invention is, furthermore, an improvement upon the invention shown and 90 disclosed in my Patent No. 759,327, issued

May 10, 1904.

As set forth in the above-named patents, the switches and signals are operated by electric motors suitably geared to them and sup- 95 plied with current from a battery or other generator located in the cabin or a suitablylocated power-house, and the locking between the controlling-levers is governed by what are generally known as "indication-magnets," which magnets are operated by currents generated by the switch or signal operating motors themselves, which are for the purpose and for the time being converted into generators.

In the diagram two switch and one signal

operating mechanisms are illustrated. It will be seen that one wire (designated as "common" wire) connects all the operatingmotors with one pole of the battery, which for convenience I will call the "negative" pole. This wire is common to all indicationcircuits, as well as all operating-circuits. In addition to this wire one wire leads from the interlocking machine to the signal-motor, which serves as operating-wire when the signal is "reversed" or put in clear position and as indication-wire when the signal is returned to "normal" or danger position by the counterweight, and two wires lead from the inter-15 locking machine to each switch-motor, of which one is operating and the other indication wire; but these functions are reversed for opposite movements of the switch—that is, the wire that is operating-wire for "reverse" movements of the switch becomes indication-wire for normal movements, and the wire that is indication-wire on reverse movements becomes operating-wire on normal movements. From this it is clear that each indication-wire becomes operating-wire on the next movement of its corresponding mechanism and for this reason must be in connection with its corresponding motor to enable the operator to control it at will. For 30 the same reason each operating-motor must be at all times in connection with the common wire. From this it is clear that if one of these indication-wires is crossed with any active wire current will be supplied to its cor-35 responding motor, and the switch or signal operated by it will be moved, and this would be equally true whether the wire is used for indication purposes or not. I prevent this occurrence in the following manner and by 40 the means hereinafter described.

I construct the controller connected to and operated by the controlling-lever so that the indication-wires remain normally in connection with the common wire—that is, so that 45 the indication-circuit is not broken by the final movement of the lever after indication. It is immaterial to the operation of this invention whether the controller is constructed to open the operating-circuit on the final 50 movement of the lever after indication, as shown in the diagram of this application, or leaves it normally in connection with the battery, as shown in my said pending application, Serial No. 95,460. I control the oper-55 ating and indication circuits by means of a double-pole magnetic cut-out, using one of its switch-arms to control all operating-circuits by inserting it in a branch common to all operating-circuits, and the other switch-60 arm is inserted in a branch common to all indication-circuits. This magnetic cut-out may be of any of the well-known types suitable for the purpose and needs no further description. As heretofore stated and as shown 65 in the drawings, a single switch may be employed in the common wire leading to either pole of the battery, and this will be clearly understood from a description of the construction of Fig. 2, wherein switches are placed in both wires. I control this mag- 70 netic cut-out by means of polarized relays, one for each switch and signal to be operated. The coils of these relays are placed, respectively, in the indication-circuits of the corresponding switches or signals, and conse- 75 quently form part of the connections between the indication-wires and the common wire, so that any current supplied to an indication-wire from the positive of the battery will find its way back to the negative of the 80 battery through the corresponding relay. The circuit of the magnet which holds the cut-out switches in place is taken in series through the relay-tongues, so that if any relay-tongue is thrown away from its contact- 85 piece the magnet-circuit is opened and the switches are withdrawn from their respective contacts by a spring. These polarized relays may be of any of the well-known types and, as is well known, may be adjusted so that 90 the tongue will remain against either the forward or back stop even after the current which put it there has subsided. For the purposes herein mentioned they should be so adjusted.

The current which drives the signal-motor 95 on "reversing" the signal turns the armature in such direction as to lift the counterweight. When the signal - lever is put normal, thereby cutting off the connection with the battery and connecting the operating-wire to 100 the common wire through the indicationmagnet and one of the polarized relays, the motor is on a closed circuit independent of the battery. The counterweight then drives the armature in a reverse direction, and the 105 electromotive force induced by the fieldmagnets is reversed, thus causing a current to flow in the same direction through the field - magnet coils and through the common wire as that in which the battery- 110 current previously flowed—that is, the current flows from the signal-motor through the common wire, the wire 49, switch-arm 40, contact 42, wires 56 57 48a, coils of the relay 47a, wire 46a, indication-magnet 29a, wire 24a, 115 contact 12a, brush 13a, contact 10a, wire 6a, back to the signal-motor.

Assuming that the brushes and controllers are standing in the normal position to reverse the switch B—in other words, to set the 120 railswitch for the crossover—the brush 19b is put into contact with the contacts 16b and 17b, the brush 20b being at the same time put in connection with the contacts 22b and 23b. This movement of the controller establishes 125 a circuit of the battery 36, so that the current flows through the wires 37 38, switch-arm 39, contact 41, wires 43 44, fuse 31b, magnet 30b, wire 26b, contact 17b, brush 19b, contact 16b, wire 14b, contact 7b, switch-arm 4b, wire 9b, 130

back through the common wire to the battery; but since the resistance of the indication-magnet and polarized relay combined is less than that of the switch-operating motor and their combined inductance is very much less by far the larger part of the current will return through the polarized-relay coils. Now if the polarized relay is so adjusted that a smaller amount of current is required to throw the 10 tongue away from its forward stop than is required to move a switch or signal operating motor the arrangement will be perfectly safe, as the relay and magnetic cut-out are both practically instantaneous in their action. $_{15}$ instead of the sgnal-lever, the lever of sw. $tch\,B$ had been reversed, the circuit would have been from battery 36, through wires 37 38, sw tch 39, contact 41, w res 43 44, magnet 30^b, w re 28^b, w re 26^b, contact 17^b, brush 19^b, contact 16^b, wire 14^b, through the cross connect on to wire 6^a, to contact 10^a, brush 13^a, contact 12^a, wire 24^a, indication-magnet 29^a, wire 46^a, relay-co ls 47^a, wires 48^a 57 56, contact 42, switch 40, wire 49, back to battery 36. 25 This throws the relay-tongue 54ª away from the stop 53° and opens the c reuit of the magnet 51, as before, but in another place.

The reading of the c reuits upon the dia-

gram of Fig. 1 will be exactly the same as 30 above described, with the except on that currents flowing from the wire 56 back to battery through the contact 42, arm 40, and wires 46 49, as in Fig. 2, the wire 56 is continued to and connects directly with the battery 36. 35 It is also to be noted that while I have shown a relay to each switch or signal it is not necessary to employ a single relay for each separate switch or signal in all cases, since a number of switches or signals or switches and 40 signals may be grouped together and be controlled through a single relay. By this construction we would simply have two or more mechanisms connected with a single relay and two or more mechanisms connected with 45 another relay, thus grouping the mechanisms and reducing the number of relays, but in no wise departing from the spirit of my invention, since this would reduce the current by division of paths, so that the end sought would be

50 attained.
When the cut-out opens simultaneously with the movement of a lever, it is evident that the wire connected to that lever is one of the wires in trouble, and an inspection of the 55 line of relays will show the other one, as it will be one corresponding to the relay found When a switch-lever is concerned in the trouble, the position of the lever determines which of the two wires leading to that 60 switch is crossed. The cut-out might be opened by the grounding of two wires on the frame of the interlocking machine and when none of the levers is being moved. In that case the relay will indicate one of the points

searched for, but to be able to find and remove one of the grounds is a great advantage, as the removal of one destroys the cross and will permit the machine to be operated with safety. If the common wire is broken, say, 70 between the cabin and the first switch and the lever of signal A is reversed, current from the battery will pass out through the wire 6°, the signal-operating motor to the common wire, and as the switch-operating motors are 75 in connection with the common wire and with their respective indication-wires and through them and their respective relays with the negative end of the battery the signal-operating current will return through the 80 switch-motors, through the switch-indication wires, and polarized relays back to the As this return-current is divided between two or more paths, depending on the number of other switches and signals in con- 85 nection with the piece of the common wire to which the signal being operated is connected, this current may or may not be enough to open the relays through which it passes; but since these relays are adjusted to open on a 9c smaller current than is sufficient to move a switch or signal motor if the current is not strong enough to open the relays it is not strong enough to move the corresponding motors and no harm will be done. In fact, 95 a large plant might be operated with a broken common wire and with perfect safety. If, however, the return-paths are so few in number that the current through the relays is strong enough to open them, the cut-out will 100 be open in the same manner as described for crossed wires. Two or more relays being opened simultaneously would indicate that the common wire might be broken, although such condition might be caused by a number 105 of wires being crossed or grounded. To determine which of these conditions actually exists, an ammeter could be placed in the common wire just outside of its connection with the wire 49.

Since opening an electric circuit is equivalent to introducing an infinite resistance into the circuit, the breaking of the common wire would be equivalent to making its resistance infinite, and since the fall in potential in any 115 wire due to any given current is proportional to the resistance the fall of potential in the common wire due to the operation of a switch or a number of switches would tend to send a current back through the indication-wires of 120 the other switches and would act on their corresponding polarized relays in a similar manner to but to a much less extent than a broken common wire. If only one relay were used for the entire plant, the entire vol- 125 ume of current returning through the abovenamed paths might easily be sufficient to cause it to open the magnetic cut-out. By the use of a separate relay for each separate 65 of trouble and the other will have to be switch and signal the return current due to 130

armature of switch-operating motor 1b, wire 10^b, switch-arm 3^b, contact 8^b, wires 12^b 11^b, field-coils of switch-operating motor 2^b, wire 13b, wires 34 35, back to battery 36. This current causes rotation of the motor 1b and movement of the switch-rails. the movement is completed and the railswitch locked, the switch-arms 3b and 4b are shifted from the contacts 8^b 7^b, respectively, to the contacts 5^b 6^b, respectively, thus opening the circuit just described and establishing. a new one, including the motor 1b, the indication-magnet 29b, and the polarized relay 47b so that the current generated by the con-15 tinued rotation of the armature flows from the armature 1^b, through wire 9^b, switch-arm 4^b, contact 6^b, wire 11^b, field-coils 2^b, wires 13h 34 35 49 46, switch-arm 40, contact 42, wires 56 48^b, coils of relay 47^b, wire 46^b, in20 dication-magnet 29^b, wire 27^b, contact 23^b,
brush 20^b, contact 22^b, wire 15^b, contact 5^b, switch-arm 3b, wire 10b, back to the armature 1b. This current energizes the indication-magnet 29^b to permit final movement of the switch-operating bar. This current 25 the switch-operating bar. This current flows through the coils of the relay 47^b in such direction as to tend to hold the tongue 54b against the active stop 53b. To put the switch B normal—in other

30 words, to set the switch-rail for the main track—the operating-bar is moved so as to cause the brush 19b to make connection with the contacts 16b and 18b and the brush 20b makes connection with the contacts 22b and This causes a current of the battery to flow through the wires 37 38, switch-arm 39, contact 41, wires 43 44, fuse 31b, safety-magnet 30^b, wire 28^b, wire 25^b, contact 21^b, brush 20^b, contact 22^b, wire 15^b, contact 5^b, switch-40 arm 3^b, wire 10^b, armature of switch-operating motor 1^b, wire 9^b, switch-arm 4^b, contact 6^b, wire 11^b, field-coils of motor 2^b, wires 13^b 34 35 back to the battery 36. This energizes the motor and returns the rail-switch to nor-45 mal. The final movement of the lock-bolt moves the switch-arms 3b 4b, so as to separate them from the contacts 5b and 6b, respectively, and put them into connection with the contacts 8^b and 7^b, respectively. This breaks 50 the battery-circuit last named and establishes a new one, including the motor, indication-magnet, and relay, so that the current generated in the switch-motor armature flows from the armature 1b through the wire 55 10^b, switch-arm 3^b, contact 8^b, wires 12^b 11^b, field-coils 2^b, wires 13^b 34 35 49 46, switcharm 40, contact 42, wires 56 48^b, coils of relay 47^b, wire 46^b, indication-magnet 29^b, wires 27^b 24^b, contact 18^b, brush 19^b, con-65 tact 16^b, wire 14^b, contact 7^b, switch-arm 4^b, wire 9^b back to the armature 1^b. This current energizes the indication-magnet 29b, as

before, to permit final movement of the oper-

ating-bar. It also flows through the coils of

first-described indication-current—that is, in such direction as to tend to hold the tongue 54b against the active stop 53b.

I have merely traced enough of the circuits in the above to show the direction of the ind - 70 cation-currents, that it is the same for switches and signals, and that the flow through the common wire is in the same direction as the battery-currents and through the indicationwires in the same direction as the battery- 75 current flows through them when they are

operating-wires. The switch-arms 39 and 40 are held normally against their respective stops 41 42 by the electromagnet 51. The circuit of this 80 magnet is such that the current from the battery 36 flows through the wires 37.50, magnet 51, wire 55, relay-tongue 54°, stop 53°, wire 52, relay-tongue 54b, stop 53b, wire 58, relay-tongue 54a, stop 53a, w res 59 57 56, Es contact 42, switch-arm 40, wire 49 back to battery 36. The relay-tongues 54 are held normally against stops 53 by the permanent magnets, so long as no current is flowing in Current in the cols 47 in the 90 the coils 47. direction of the indication-currents noted above also tends to hold the tongues $54\,\mathrm{against}$ the stops 53. Consequently so long as no current is flowing in the coils 47 or current is flowing in the direction of the indication-cur- 95 rents the circuit of the magnet 51 w ll remain unbroken, and the switches 39 and 40 will be held against the stops 41 and 42. Now suppose the wires 6a, in operative connection with a signal-motor, and the wire 14b, in oper- 100 ative connection with a switch-motor, should be connected or crossed, as shown by the dotted line, and the signal-lever is reversed, putting the brush 13ª into connection with contacts 10° and 11°. Current from the battery 105 36 would then flow through the wires 37:38 switch 39, contact 41, wires 43 44 45, fuse 19ª, contact 11ª, brush 13ª, contact 10ª, wire 6a, through the cross-connection, to wire 14b contact 16b, brush 19b, contact 18b, wires 24b 110 27^b, indication-magnet 29^b, wire 46^b, relay-colls 47^b, wire 48^b, wire 56, contact 42, switch 40, wire 49 back to battery 36. It will be noticed that this current flows through the relay-coils 47b in the opposite direction to 115 that of the indication-current mentioned above. It therefore has the effect of throwing the tongue 54b away from the stop 53b and against the back stop, where it remains unt l put back by the operator. The separation 120. of tongue 54b and stop 53b opens the c reuit of the magnet 51, which allows the switches 39 and 40 to be drawn away from their contacts 41 and 42, thus opening the operating and indication circuits, cutting off the supply 125 of current from the wire 14b, and thus preventing the switch B from being moved. Of course a part of the current which reaches the wire 14b through the cross connection passes out through the switch-motor and 130 65 the relay 476 in the same direction as the

fall in potential is divided between as many relays as there are return-paths, and the current through any one of the relays will not be sufficient to open it, and still the common wire need not be larger than required to carry the operating-currents with the efficiency usually allowed in such work.

Having thus described my invention and its method of operation, what I claim is—

1. In combination with controllers, switch and signal apparatus, operating and indication circuits, a conductor common to all operating and indication circuits, a conductor common to all operating-circuits, a conduc-15 tor common to all indication-circuits, a magnetic cut-out for breaking the operating common or the indication common, a circuit for said cut-out, polarized relays, one for each switch and one for each signal, or groups of switches or signals, having their coils in the indication-circuits of their respective switches and signals, the circuit of the magnetic cutout taken in series through the tongue of said relays, whereby a cross between any operat-25 ing-wire and any indication-wire will cause a reverse current to flow through the coil of the relay of the indication-wire involved to open the cut-out circuit and thus break the circuit involved in the cross, substantially as and for 30 the purposes set forth.

2. A source of electric energy, a plurality of motors, a plurality of controllers, a plurality of polarized relays, conductors connecting each of said motors through the energizing-35 coil of a polarized relay to one pole of the source of energy, and a wire connected to the other pole of the source of energy, a switch in said wire, a circuit governed by said relay, a magnet and a source of energy in said circuit 40 governing said switch, whereby a cross between said last-named conductors will cause a current to flow through the coils of the relay in circuit with the wire crossed in the direction to cause the relay to open the circuit 45 of said magnet, and thereby causing said switch to open, substantially as and for the

purposes set forth.

3 In combination with controllers, switch and signal apparatus, operating and indica-50 tion circuits, a conductor common to all circuits, a conductor common to all operatingcircuits, a conductor common to all indication-circuits, a double-pole magnetic cut-out for breaking both operating and indication 55 circuits, a circuit for said cut-out, polarized relays, one for each switch and signal, having their coils in the indication-circuits of their respective switches and signals, the circuit of the magnetic cut-out taking in series through 60 the tongues of said relays, all so arranged that a cross between any operating-wire and any indication-wire will cause a reverse current to flow through the coil of the relay of the indication-wire involved to open the cut-65 out circuit and thus break all operating and indication circuits involved, substantially as and for the purposes set forth.

4. In combination with controllers, switch and signal apparatus, operating and indication circuits, a magnetic cut-out for breaking 70 all operating-circuits, polarized relays, a circuit including the tongues of said relays for energizing the magnet of said cut-out to hold the same normally closed, polarized relays corresponding to each switch and signal with 75 their coils in circuit with their respective indication-circuits, and each relay arranged so that in the event of a cross of its circuit with any operating-circuit, a reverse current will flow through the coil of the relay of the indi- 8c cation-wire involved and cause it to open said magnetic cut-out, substantially as and for the purposes set forth.

5. In combination with controllers, switch and signal apparatus, operating and indication circuits, a conductor common to all operating and indication circuits, a conductor common to all operating-circuits, a conductor common to all indication-circuits, a circuit including and indication circuits, a circuit including the tongues of the polarized relays governing said cut-out, all so arranged that currents flowing normally all flow of through the magnets of said relays in one direction, and the direction to hold said relays closed, and so that any current due to cross or ground flowing therethrough will flow in reverse direction, and thus break the roo circuit of said magnet of said cut-out, substantially as and for the purposes set forth.

6. In combination with switch and signal apparatus, operating and indication circuits, a controller normally in connection with the 105 common wire, a conductor common to all operating and indication circuits, a conductor common to all operating-circuits, a conductor common to all indication-circuits, a double-pole magnetic cut-out for breaking 110 both operating and indication circuits, a circuit for said cut-out, polarized relays, one for each switch and signal, having their coils in the indication-circuits of their respective switches and signals, the circuit of the mag- 115 netic cut-out taking in series through the tongues of said polarized relays, all so arranged that a cross between any operatingwire and any indication-wire will cause a reverse current to flow through the relay of the 120 indication-wire involved, and open the cutout circuit, and thus break all operating and indication circuits involved, substantially as

and for the purposes set forth.
7. In combination with switch and signal 125 apparatus, operating and indication-circuits, polarized relays in the indication-circuits, controllers normally connecting the indication-wires with their respective relays, a conductor common to all operating and indica-130

tion circuits, a conductor common to all erating-circuits, a conductor common to all indication-circuits, a double-pole magnetic cut-out for breaking both operating and indication circuits, a circuit including the tongues of the polarized relays governing said cut-out, all so arranged that currents flowing normally all flow through the magnets of said relays in one direction, and the direction to hold such relays closed, and so that any current due to cross or ground flowing therethrough will flow in reverse direction, and thus break the circuit of said magnet of said cut-out, substantially as and for the purposes set forth.

8. In combination with switch and signal apparatus, controllers normally connecting the indication-wires with their respective relays, a conductor common to all circuits, a conductor common to all operating-circuits,

a conductor common to all indication-circuits, a double-pole magnetic cut-out for breaking both operating and indication circuits, a circuit including the tongues of the relays governing said cut-out, polarized relays in the indication-circuits, all so arranged that the currents flowing normally all flow through the magnets of said relays in one direction, and the direction to hold said relays closed, and so that any current due to cross or ground flowing the through will flow in reverse direction, and thus break the circuit of said magnet of said cut-out, substantially as and for the purposes set forth.

In witness whereof I have nereunto set my 35 hand in the presence of two witnesses.

JNO. D. TAYLOR.

Witnesses:
Edward C. Rischman,
A. W. Macomper