

DAVID W. R. BROWN

INVENTOR
DAVID W. R. BROWN

 TAPE, AND THE LIKE, AND METHOD

Jan. 16, 1968

Jan. 16, 1968

3,364,306
 SPLICE SIMULATOR FOR MOTION PICTURE FILM, TELEVISION TAPE, AND THE LIKE, AND METHOD
 David W. R. Brown, 409 Marshall Court, Apt. E, Laurel, Md. 20810
 Filed Mar. 11, 1964, Ser. No. 351,117 16 Claims. (Cl. 178-6)

Abstract

ARSTRACT OF THE DISCLOSURE Apparatus and method for simulating a motion picture film splice by first advancing and visually inspecting a first film strip whereby a place where it would appear desirable to splice the firm is selected, then advancing and visually inspecting a second film strip whereby a place thereon where it would appear desirable to splice is selected, next backing up both of the film strips the same predetermined number of frames and advancing both strips of film together while projecting the first strip of film on a visual receiving means, automatically shifting the projection on the visual receiving means from the first to the second strip of film at the above-mentioned preselected places so that the desired splice is simulated on the visual receiving means.

Background and summary of the invention

This invention relates generally to film and television tape editing apparatus and, more particularly, to a device which optically or electronically simulates a splice of two pieces of motion picture film or television tape at preselected points.
The artistic editing involving the strips of motion picture film requires the illusion of a continuous flow of action at the point where the splice of the two films occurs. An experienced film editor can usually approximate within a few frames where the splice should occur. However, a selection of the exact frames of the two films between which the splice is to occur is usually determined by splicing the films together at a probable point. The spliced film is then viewed in motion and the sensitivity of the editor's eye determines whether the splice gives the illusion of continuous action. In the event that the splice does not produce the wanted illusion, then the two films are separated at the spliced point and another possible point for a splice is selected, spliced and again viewed. This process is repeated until the editor is satisfied with the splice. The process of selecting, splicing and viewing for each occasion is time-consuming and can result in the loss of a portion of the picture in the frame adjacent to the splice due to the nature of the splicing process.
Where magnetic tape is utilized as the recording medium for television signals, a frame-by-frame consideration for the purposes of splicing is precluded. The normal editing procedure is to record a cue word on the cue track carried by the tapes at the point where the same are to be spliced. Subsequently, such cue signals are located and the two tapes are cut and spliced together in the area of the cue words. With magnetic tape, the operation of erasing and recording up to the desired point may be substiluted for the actual cutting and splicing operation. But, however accomplished, the results are viewed after the splice has been made and the same detriments are present as with film wherein the difference of even one frame can mean the difference between a good or poor splice.
In view of the foregoing, an object of the invention is to provide an optical simulation of a splice of two films before any actual splice of the film is made.

In a like manner, a further object of the invention is to provide a picture showing a simulated splice of television tape prior to making the actual splice.

Another object of the invention is to simulate a splice of the sound tracks which accompany the two pieces of film or television tape at the instant that the optical or electronic splice is simulated.

A still further object of the invention is to indicate to the operator the exact point on the films or television tape at which the actual splice is to be made.
The invention and other important advantages thereof will be better understood by referring to the following text, read in conjunction with the accompanying drawings in which:

Brief description of the drawings

FIGURE 1 is a perspective view of the film editing machine embodying my invention;

FIGURE 2 is a schematic diagram of the electrical distribution in the machine of FIGURE 1;
FIGURE 3 is a cross-sectional view of the optical axis of the machine of FIGURE 1;
FIGURE 4 is a cross-sectional view of the sound axis of the machine of FIGURE 1;

FIGURE 5 is a block schematic of the electrical connections for the invention shown in FIGURE 1;

FIGURE 6 shows in perspective the arrangement of the dise utilized in the machine shown in FIGURE 1;

FIGURE 7 shows in perspective the underside of the disc for the machine shown in FIGURE 1;

FIGURE 8 is a block schematic of the electrical connections for the dissolve and fade circuits of the invention;

FIGURE 9 is a block schematic of the electrical connections of the television tape splice simulator;

FIGURE 10 is a block schematic of the electrical components for utilizing the system shown in FIGURE 9 for motion picture film editing.

Description of the preferred embodiments

Referring now to FIGURE 1, a metal console 10 supported by legs 11 carries a control panel 12 containing a plurality of switches having functions which will be explained subsequently. Above the control panel 12 is a translucent viewing screen 14, to the right and left of which are loud speakers 15 and 16. To the left of speaker 15 and to the right of speaker 16 are further switches, functions of which will be set forth hereinafter.

Utility shelves 17 are located in the front slope of the console on either side of the control panel 12 and a ledge 20 is provided to support scripts, papers or the like which may be placed in areas 21 and 22 .
Since the two films to be viewed and any separate sound track films or tapes which accompany them follow similar paths, the letter " a " will be utilized with reference numeral with the second film and sound track medium to distinguish them from the same reference numerals applied to like elements of the first film and sound track medium.
Films 24 and $24 a$ to be viewed are carried on reels 25 and $25 a$, respectively, which are affixed to spindles (not shown) on the arms 26 and $26 a$. Films 24 and $24 a$ each first pass between a pair of rollers 27 and $27 a$, then over the film marking template 30, and, finally emerging from the optical and sound housings 28 and $28 a$, the films 24 and $24 a$ pass out between a pair of rollers 31 and $\mathbf{3 1} a$ to take-up reels $\mathbf{3 2}$ and $\mathbf{3 2} a$ carried by spindles (not shown) located on arms 34 and $34 a$.
If sound tracks accompanying films 24 and $24 a$ are on separate optical film or magnetic tape, such sound track media 35 and $35 a$ are carried on reels 36 and $36 a$ which are carried on spindles (not shown) extending from arms 37 and $37 a$. It will be noted from the drawings
that the sound track media 35 and $35 a$ pass from the reels 36 and $36 a$ between the pairs of rollers 40 and $40 a$, over the marking template 30 to under the upper optical and sound housings 28 and $28 a$. From the housings, the sound track media 35 and $35 a$ pass between the pairs of rollers 41 and $41 a$ to their take-up reels 42 and $42 a$ mounted on spindles (not shown) on arms 44 and $44 a$. Hand cranks 45 and $45 a$ are provided so that the operator can advance the films frame by frame. A foot pedal 33 can be used to control the speed of the film.

Two script lights 46 and $46 a$ which may be controlled from the console are mounted on the ceiling above the console 10 and cast rectangles of light on the surface areas 21 and 22.
In FIGURE 1, the dotted line 47 indicates the optical axis while the dotted line 48 indicates the sound axis. It should be noted that hand cranks 45 and $45 a$ and 170 and $170 a$ contain spring-loaded internal clutches so that they must be depressed slightly in order for them to engage their respective connective shafts.

FIGURE 2 is a schematic diagram of the electrical distribution within the invention. A switch 38 controls the flow of electricity to the invention. A general power supply 39 provides proper operating voltages to various elements which will be discussed hereinafter. Electricity to the two audio amplifiers 165 and $165 a$ is controlled by a switch 49 . Script lights 46 and $46 a$ are turned on and off by switches 50 and $50 a$ whereas their brightness may be controlled by rheostats 53 and $53 a$. Motor voltage can be 12 volts, D.C., relay and lamp voltage 6 volts, D.C., and the solenoid voltage 50 volts, D.C.

Referring now to FIGURE 3, it will be seen that films $24,24 a$ pass under the upper optical and sound housings $28,28 a$ which contain reflectors $60,60 a$, light sources 61 and $61 a$, heat filters 62 and $62 a$, mirrors 63 and $63 a$, and condenser lenses 64 and $64 a$. Light from sources 61 and $61 a$ passes via filters 62 and $62 a$, mirrors 63 and $63 a$, and condenser lenses 64 and $64 a$ through the films 24 and 24a, respectively. These films each rest in film grides 65 and $\mathbf{6 5 a}$. Light passed through the films is received by rotating eight-sided prisms 66 and $66 a$ which in this embodiment of the invention serve optically to hold the film frame moving above them on the viewing screen 14, thus producing the motion picture effect. Below the prisms 66 and $66 a$, the images pass through righting prisms 67 and 67a, objective lenses 70 and $70 a$ to mirrors 71 and $71 a$, from wheace they are reflected onto the translucent viewing screen 14.

Immediately below each objective lens 70 and $70 a$ is a shutter. Each such shutter 72 and $72 a$ is pivoted by its respective solenoid 74 and $74 a$.

The octagon prisms 66 and $66 a$ are attached to film drive wheels 75 and $75 a$ which have sprocket teeth around their perimeters to fit into sprocket holes and drive the films 24 and $24 a$ in a familiar manner. The film drive wheels 75 and $75 a$ are attached to shafts 76 and $76 a$, respectively, which are carried by supports 77 and 80 and $77 a$ and $80 a$. To shafts 76 and $76 a$ are also attached drive gears 81 and $81 a$ and further sound media drive wheels 82 and 82 a, respectively, with sprocket teeth around the perimeter of the latter wheels which engage and drive the sound track media 35 and $35 a$ in the same direction and speed as the films 24 and $24 a$.

The sound track media 35 and $35 a$ are carried in film guides 83 and $83 a$ under pressure plates 84 and $84 a$. Drive gears 81 and $81 a$ are driven by worm gears 85 and $85 a$.

The threading of films 24 and $24 a$ and the sound track media 35 and $35 a$ is accomplished by raising the upper optical and sound housings 28 and $28 a$ which are hinged to the console 10 by hinges 86 and $86 a$.

Referring now to FIGURE 4, the films 24 and $24 a$ rest in their film guides 65 and $65 a$ under the pressure plates 89 and 89 . A system for reproducing an optical sound track on films 24 and $24 a$ comprises reflectors 90 and $90 a$,
light sources 91 and $91 a$, heat filters 92 and $92 a$, and condenser lenses 93 and $93 a$ located under the films 24 and $24 a$, and photoelectric cells 34 and $94 a$ located above films 28 and $24 a$ within the housings 28 and $28 a$. Since the sound track media 35 and $35 a$ may comprise either an optical or a magnetic sound track, provision is made for both kinds of pickup. Thus, there is also provided an optical system which includes reflectors 95 and $95 a$, light sources 95 and $96 a$, heat filters 97 and $97 a$, and condenser lenses 98 and $98 a$ below the sound track media 35 and $35 a$ which rest in their film guides 83 and $83 a$. Above the sound track media 35 and $35 a$ are photoelectric cells 100 and $100 a$ which are located in their respective housings 28 and $28 a$. Pickup of a magnetic sound track is accomplished through the magnetic pickup heads 101 and $101 a$ against which the sound track media 35 and $35 a$ are held by the respective pressure plates 102 and $102 a$.

The motive power for moving the films 24 and $24 a$ via shafts 76, 76 a is drive motors 51, 51 a (see FIGURE 5). This is accomplished by drive shafts 52 and $52 a$ from motors 51 and $51 a$, respectively, which carry gears 54 and 54 a. A linkage, not shown but of any known type as would occur to those skilled in the art, is provided between gear 54 and gears 81 and 85 on shaft 76 and also between gear $54 a$ and gears $81 a$ and $85 a$ on shaft $76 a$, whereby a complete revolution of the shaft 52 moves the film 24 one frame and in a like manner, a complete revolution of the shaft $\mathbf{5 2} a$ moves the film $\mathbf{2 4 a}$ a single frame.
It will be understood that take-up belts (not shown) are provided between the spindles for the reels 25, 25a, 32, $32 a, 36,36 a, 42$ and $42 a$ and the corresponding drive shafts 52 and $52 a$ to maintain the films on such reels in the desired taut condition in a manner well known in the motion picture art.
Shafts 52 and $52 a$ have keyed to them worm gears 56 and $56 a$ which engage gear teeth around the perimeters of the discs 55 and $55 a$. In order to retain the shafts 52 and $52 a$ in the same position when the motors 51 and $51 a$ are not energized, weights 58 and $58 a$ are provided, appropriately connected to their shafts 52 and $52 a$ so that when the weights are in their downward position, a single frame of films 24 and $24 a$ is projected through the eight-sided prisms 66 and $66 a$ for projection on the screen 14.
Referring to FIGURE 6, there is a counter for each of the two films 24 and 24a. The counters essentially comprise two pairs of rotatable discs--the aforementioned lower discs 55 and $55 a$ and upper discs 57 and $57 a$. All of the discs are provided with gear teeth around their periphery. The discs $\mathbf{5 5}$ and $\mathbf{5 7}$ are rotatable about shaft 104 and the discs $55 a$ and $57 a$ are in a like manner rotatable about the shaft $104 a$, the shafts 104 and $104 a$ being suitably affixed within the console 10.
The upper discs 57 and 57 are driven by direct current motors 105 and $105 a$ through worm gears 106 and $106 a$ which engage the gear teeth around the peripheries of the upper discs 57 and $57 a$. The lower discs 55 and $55 a$ and the upper discs 57 and $57 a$ have printed c.rcuitry on their upper surfaces, the same being in concentric circles on 57,57a. Each such circle contacts a brush on brush carriers 107 and $107 a$ (not shown) which are disposed above the discs 57 and $57 a$. Accordingly, it will be appreciated that there is an electrical connection between each brush on the brush carriers 107 and 107a and a corresponding circular circuit on the top of the discs 57 and 57 a. Each of the circular circuits on the top of the discs 57 and $57 a$ also have an electrical connection with a further brush which protrudes from the underside of the discs 57 and 57 a, as shown in FIGURE 7. These latter brushes in turn make electrical selective contact with the printed circuitry on the top of the discs 55 and 55 a.
Referring back to FIGURE 5, the multiple throw 5 switch 110 controls, among other things, the feeding of
an electrical voltage to the motors 51 and $51 a$ when in a position designated D (view or rewind film 1) or E (view or rewind film 2) and when switch 111 is in a position designated \mathbf{H} (view) or \mathbf{J} (rewind).
Assuming that the operator desires to view the film 24 for the first scene and the film $24 a$ for the second scene, switch 110 is first placed in the D (view or rewind film 1) position and the multiple throw switch 111 is placed in the H (view) position. Voltage is then led ot the motor 51 whereby the film 24 is caused to run forward by the linkage heretofore described. It will be understood that because of the position of switch 110 , relay voltage will be conveyed to relay 74 whereby the shutter 72 is held away from the light path conveying the image from film 24 to screen 14 while the shutter $72 a$ blocks off an image to the screen 14 from the film $24 a$. When the operator comes to approximately that point at which he desires to start the next scene, he turns the switch 111 to I (stop), and may either rewind as desired by placing switch 111 on J (rewind) or open the switch 112 and crank by hand through means of crank 45 to the particular frame he desires to be the last frame in scene one, following which switch 112 is closed. When this is accomplished, the operator turns switch 110 to the E (view or rewind film 2) position and repeats the operation with film 2 , the electric current now being led to the motor $51 a$ and the shutter 72 being shut with the shutter $72 a$ opened to admit an image from the film $24 a$ to the viewing screen 14. This time, of course, the operator determines that frame which he desires to be the first frame of the second scene.

It will be appreciated that at this point wherein the first and last film of the scene have been provisionally selected, the normal procedure would be to splice the film together and to try it out to determine the visual effect. However, it is the object of this invention now to simulate the splice without recourse to actual splicing. This is accomplished by first closing switches 114 and 114a. When these switches are closed, it will be noted that motor voltage current supplied to the circular contacts 115 and $115 a$ through brushes 116 and $116 a$ which extend downwardly through the respective upper discs 57 and $57 a$ is permitted to flow through the circuits 117 and $117 a$ through either brush 120 or 121 to motor 105 , or through $120 a$ or $121 a$ to motor $105 a$, depending upon the position of the lower discs 55 and $55 a$ with respect to the upper discs 57 and $57 a$.
Since the motors 105 and $105 a$ rotate the upper discs 57 and $57 a$, it will be understood that the flow of electricity from brushes 120 and $120 a$ oauses the discs 57 and $57 a$ to rotate in a counterclockwise direction whereas electricity flowing through the brushes $\mathbf{1 2 1}$ and 121 a causes the upper discs 57 and $57 a$ to rotate in a clockwise direction. When the brushes 120 and 121 reach a position along a radial line marked 122 with respect to the lower disc 53 the current to the motor 105 is reversed and, accordingly, the brushes 120 and 121 will tend to home in exactly over the position 122 on dise 55 . The same occurs with respect to brushes $120 a$ and $121 a$ for the position on radial line $122 a$ of the disc $55 a$. When this occurs with each of the discs, the control lights 124 and $124 a$ will go out since no further current will be passing through the motors 105 and $105 a$. It will be noted that weights 125 and $125 a$ are affixed to the shafts carrying the worm gears 106 and $106 a$ in the same manner as weights 58 and $58 a$ were affixed to the shafts 52 and $52 a$. In this respect it will be understood that the relationship between the worm gears 106 and $106 a$ and the upper discs 57 and $57 a$ are the same as between the worm gears 56 and $56 a$ and the lower discs 55 and 55a. Accordingly, the weights 125 and $125 a$ are so arranged that they will be in a downward position when the brushes 120 and 121 home over the position 122 and when the brushes $120 a$ and $121 a$ home over the position 122a. When both lights 124 and $124 a$ are out, switches

114 and $114 a$ are opened. Switch 126 is then placed to the selected number of seconds for which it is desired the film to run before the simulated splice takes place, switch 111 is set to F (simulate splice) and switch 110 is set to the position to indicate whether film 24 (\#1) or film $24 a$ (\#2) is to form the first part of the spice, that is, either A (film 1, first scene) or B (film 2, first scene). Current is then fed to the circular contacts 115 and $115 a$ to conduct current through brushes 130, 131, 132, 133, and $130 a, 131 a, 132 a$, or $133 a$, depending upon the number of seconds chosen on switch 126, whereby the motors 51 and $51 a$ rotate the lower discs 55 and $55 a$ counterclockwise so as to bring the positions 122 and $122 a$ under the particular brushes selected. In this respect, it will be understood that the brushes 130, 131, 132, and 133 extend from the underside of the upper disc 57 and, in a like manner, the brushes 130a, 131a, $132 a_{0}$ and $133 a$ extend from the underside of the disc $57 a$. If the motors 51 and $51 a$ cause the selected brushes to overshoot the positions 122 and $122 a$, it is to be appreciated that the motors reverse the discs and cause the brushes to home in over the positions in the same manner as previously described with reference to motors 105 and $105 a$.

When both of the motors $\mathbf{5 1}$ and $\mathbf{5 1} a$ have homed the positions 122 and $122 a$ in under the desired brushes, electricity will cease flowing in the ground circuit from the motors 51 and $51 a$ to a relay 134. Relay voltage will then be entered into a circuit at point 135. Relay $136 \mathrm{op-}$ erates to introduce solenoid voltage current to a solenoid 137 which in turn moves a clutch member 140 into contact with its opposing face 141 to join the shafts 52 and $52 a$ together for the splice simulation run. The relay 136 also introduces relay voltage current to the relay 142 to operate a four-blade, two-way switch 144 which cuts off the supply of reverse current to motors 51 and $51 a$ through the switch 126 and starts the now interlocked motors to run forward through the connections made by switch 144. The relay 136 is normally a delayed action relay to insure that the weights 58 and $58 a$ have come to rest before the interlocking of the shafts $\mathbf{5 2}$ and $52 a$ occurs.

A frame pulse wheel 145 is affixed to the shaft $\mathbf{5 2 a}$. On the perimeter of the wheel 145 is a contact 146 which is supplied a positive electrical current through a brush 147, the positive current being supplied from any suitable source such as a relay voltage current source. As the wheel 145 rotates, the contact 146 comes into contact with a brush 150, thus seading out a positive pulse for each revolution of the wheel 145 and since, in this embodiment, each revolution of the shaft $\mathbf{5 2 a}$ causes the passage of one frame of film through the film gates, each pulse represents one frame of film. The wheel 145 with contact 146 is so located on the shaft $\mathbf{5 2} a$ that a pulse will be generated at that moment that one frame of film is being shifted to the subsequent frame. In other words, the pulse is sent between the projection of each frame of film.

The frame pulses are conducted through brush 151 located on the underside of the disc $57 a$ to a commuter ring circuit 152 printed on the lower disc $55 a$. Extending outwardly from the circuit 152 coincident with the radial position $122 a$ is a short spur circuit 154. An inwardly extending spur circuit 155 is located clockwise a distance equivalent to the running of 18 frames of film from the circuit 154 and is connected to the circuit 152. Frame pulses from the circuit 154 are picked up by a brush 156 extending from the underside of the upper disc $57 a$ when the circuit 154 is directly beneath it. In a like manner, pulses from the circuit 155 are picked up by a brush 157 also extending from the underside of the disc $57 a$ when the circuit 155 is directly under the brush 157. A light 160 is connected to the circuit which leads from the brush 157. The light 160 is located directly under a slit 161 in the console 10 under the marking template 33
(see FIG. 1). The slit 161 is disposed eighteen frames to the right of the optical center of the gates, and thus is positioned so that the film will be marked as will be explained later at the point where the actual splice is to be made.
It will be noted that the frame pulses from the wheel 145 are conducted from brushes 156 and 157 to the switch 110 and from there are relayed to the solenoids 74 and $74 a$ to control the opening and closing of the shutters 72 and $72 a$.
As the film was backed up for the simulation run and the discs were rotated counterclockwise, the circuit 154 passed under the brush 156 and the frame pulse occurring at that time energized the solenoid $74 a$ which pulled the shutter arm for shutter $72 a$ away from the optical axis of film No. 2. At the same time the contact 162 was broken, thus terminating relay voltage current to the solenoid 74 whereby the shutter arm for shutter 72 moved shutter 72 into the optical axis of film No. 1. However, as the disc $55 a$ continued to rotate in preparation for the simulation run in a counterclockwise direction, the circuit 155 came under the brush 157 and the frame pulse occurring at that time energized the solenoid 74 which pulled the shutter arm for the shutter 72 away from the optical axis of the film No. 1, thereby allowing images from such film to be projected on screen 14. At the same time, the contact 164 was broken, whereby relay voltage current was no longer supplied to the solenoid at 74a, and whereby the shutter $72 a$ returned to its previous position and intercepted the image projection from film No. 2. It will be understood that this is the position that the shutters 72 and $72 a$ are in when the splice simulation phase begins.

With the motors 51 and 51 , which are interlocked through the clutch faces 140 and 141, running forward and the discs 55 and $55 a$ running in a clockwise position, the films and the discs having previously been backed up for the splice simulation run, the circuit 155 comes underneath the brush 157 to energize solenoid 74 which was the last solenoid energized so no change in the shutter 72 occurs. However, when the position $122 a$ together with the circuit 154 passes under the brush 156, a frame pulse is conveyed to the solenoid 74a. When this occurs, in a manner previously described the shutter $72 a$ is removed from the optical axis of the film No. 2 and simultaneously the shutter 72 intercepts the optical axis of the film No. 1 so that the projection of film No. 2 is now projected on the viewing screen 14 whereas that from film No. 1 is thus cut off, thus completing the splice simulation.

The solenoid 74 also actuates switches 169 and $169 a$ whereby the loudspeakers 15 and 16 may have their signal source shifted, at the same time the simulated splice occurs, from the sound track medium accompanying the first film to the sound track medium accompanying the second film. Also, it will be noted that two switches $16{ }^{6}$ and $166 a$ allow for the selective connection of any one of the audio pickup elements, i.e., photoelectric cells 94 , $94 a, 100,100 a$, magnetic pickup heads 101 or 101a to either of the two amplifiers 165 and $165 a$. Each amplifier 165 and $165 a$ has tone controls 167 and $167 a$ and yolume controls 168 and $168 a$. It will be understood from FIGURE 5 that when the simulated splice of the first film to the second film occurs, there will also occur a simulated splice of the sound track media provided the switches 166 and $166 a$ have previously been set for the sound track media involved, and that the amplifiers 165 and $165 a$ are in operation and set at the proper volume and tone control.

If, after viewing the simulated splice, the operator believes that either film might need the addition or deletion of a frame adjacent to the splice point, he enters this into the counter concerned by turning the appropriate hand crank $\mathbf{1 7 0}$ or $\mathbf{1 7 0 a}$ for the respective motors 105 and $105 a$. A full turn counterclockwise of crank 170
adds a frame to the first film of the scene whereas a full turn clockwise of crank $170 a$ will also move the second film a frame forward for the simulated splice. By cranking the other way, the reverse takes place. After this is accomplished, the film is backed up and run through the simulated splice as explained above. The process of adjusting and viewing continues until the operator is satisfied with the splice location. At that time, in order to mark the film for actual splicing, the operator sets the switch 126 for a five second run time and switch 111 to " F " (simulate splice). However, as soon as the films have locked together and start to move forward, he opens the switch 112, thus cutting off the current flow through the motors 51 and $51 a$ and cranks the film by hand crank 45 or $45 a$, or both, until the marking light 160 is turned on, at which time the exact frame lines on which the splice is to occur will be over the marking light slit 161. If desired, the sound media can be marked for splice by moving the film splice mark over line 159 (26 frames to the right on 16 mm . film) which places the splice point for the sound media over slit 161.

The operator can then mark the film with a grease pencil for later splicing or he can cut the film and make the splice at that moment if he so desires. Having either marked the film for splicing or having spliced the film together, the operator moves on to the next two scenes to be edited and repeats the process, examining each scene, setting the counters, viewing and adjusting the splice simulation until he is satisfied, and then marking or splicing the film.

Instead of the splice, it is frequently desirable from the artistic point of view to fade one scene into another or to fade one scene completely out and then fade the subsequent scene back to normal brightness. The diagram set forth on FIGURE 8 shows how a simulation of this may be accomplished. It will be understood that the circuitry shown in FIGURE 8 is set forth separately for clarity, but that the upper portion of discs 55 and $55 a$ is the same as shown in FIGURE 5, except that in FIGURE 5 the fade-in, fade-out circuitry has not been shown since it is felt that it would tend to overcomplicate that figure. Broken lines $\mathbf{1 7 3}$ and $173 a$ on FIGURES 5 and 8 indicate the relationship of the two drawings to each other.
A positive source of electricity is fed to the lights 61 and $61 a$ from the circuit $\mathbf{1 7 1}$. A negative source of electricity is introduced from circuit 172 through the brush 174 extending through the lower part of the dise $57 a$ and contacting the ring circuit 175. In a similar manner, the negative circuit connects with a brush 176 which extends through the lower portion of the disc 57 and makes contact with a ring circuit 177 on the upper side of disc 55 . When the switch $\mathbf{1 1 0}$ is in position "C" (dissolve or fade), both solenoids 74 and $74 a$ are energized and both shutters "72 and 72a are removed from the optical axis of the lights 61 and $61 a$.
On the upper side of the disc 55 there are located six circuits, $180,181,182,183,184$, and 185 , which effect the simulation of a dissolve of the picture on one film into that of the other film. Each of the six circuits consists of a length of normally conductive wire affixed to the upper side of disc 55 indicated by the smooth line and a length of high resistance wire wound on an insulated core of the same diameter as the normally conductive wire indicated by the zigzag line. Current is supplied to these six circuits through a cross circuit 186 which connects to the ring circuit 177. Brushes 190, 191, 192, 193, 194, and 195, each contact the corresponding one of the six aforenamed circuits and conduct current flowing from such circuits to the switch 187 and thence to lights 61 and $61 a$. The high resistance circuit varies in its resistance whereby an even and constant dimming or brightening of lights 61 and $61 a$ is produced.
On disc $55 a$ there are located six somewhat similar circuits, $198,199,200,201,202$, and 203 , which effect the
simulation of a fade-out-fade-in wherein one picture fades to a black and the other picture then fades from black to its normal brightness. These circuits receive their current from a crossover circuit 204 which connects to the negative electrical circle source ring 175. It will be appreciated that these six circuits also consist of a normally conductive portion indicated by a straight line and a highly resistant portion indicated by a zigzag line, the latter having a variable resistance to give a smooth fade-in, fadeout effect. The brushes 206, 207, 208, 209, 210, and 211, extend from the underside of the disc $57 a$ and contact the various circuits on the upper portion of disc 55a, as shown, to conduct current to the switch 187.

The brushes 190, 191, 192, 193, 194, and 195 are in a radial alignment with brushes 120 and 121. By the same token, the brushes 206, 207, 208, 209, 210, and 211 are in radial alignment with the brushes $120 a$ and $121 a$.

As was previously shown, the films 24 and $24 a$ may be aligned for the simulated phase wherein the discs 55 and $55 a$ rotate at the same speed and direction and the radial locations 122 and $122 a$ pass under the aligned brushes at the same instant. The speed at which the dissolve or fade is effected is determined by the length and winding of the resistance wire placed in the particular circuit.

It will be noted that the switch 187 provides for selection of a splice, dissolve or fade, the speed at which the dissolve or fade will progress (slow, medium or fast), and which film is to form the first part of the effect. In the drawing, switch 187 is set to simulate a fast fade-out-fade-in with film No. 1 forming the first part of the effect so that film No. 1 will fade out to black and then film No. 2 will fade in from black to normal brightness.
In operation, at the start of the simulation phase, the locations 122 and $122 a$ are counterclockwise from the aligned brushes at a distance of approximately one-eighth to one-half of a revolution, depending upon the amount of lead time the operator has set the switch 126 for the film to run before the simulation takes place. In the example, brush 211 would thus be contacting the normally conductive portion of circuit 198 and, accordingly, conducts full current through the switch 187 to light the bulb 61 and thus project film No. 1 on the viewing screen 14. As the two films 24 and $24 a$ move through the invention together, the discs 55 and $55 a$ rotate in a clockwise direction and as the location $122 a$ comes under the brush 211, said brush contacts the high resistant portion of the circuit 198. As the disc $55 a$ continues to rotate clockwise, the light 61 fades out and when the brush 210 starts to contact the high resistant portion of the circuit 199 and convey current through the switch 187 to the light $61 a$ for film No. 2, the light $61 a$ becomes brighter as the brush 210 gets closer to the normally conductive part of the circuit 199. Once the brush 210 reaches the normally conductive portion of the circuit 199 , the light $61 a$ is at its maximum brightness and the fade-out-fade-in simulation is completed.

When a straight splice of the two films is to be simulated, switch 187 is turned to its extreme right position as shown in the drawing, in which position the maximum current flows through both of the lights 61 and $61 a$.
From an inspection of FIGURE 8, it is to be seen that a fade-in, fade-out or dissolve simulation can be accomplished at the various speeds indicated. Thus the operator can try various combinations until he has the one which suits him best. Also, as explained before, if he is not satisfied with where the film begins to dissolve or fade back in any case, this can be easily adjusted by turning the cranks 170 or $170 a$ to add or subtract frames as desired.

FIGURE 9 illustrates a solid state circuitry and other elements of the embodiment of my invention as applied to television tape recorders. The design of the solid state components, consisting of gates, inverters, switches and delays, are well known to the art and are therefore shown 241 and $241 a$ to turn off which stops the reverse capstan drive power to the capstan drive motors 245 and $245 a$. Off-delays 246 and $246 a$ of about 0.5 second allow frame pulses to continue to the "add one" sides of the respective 75 binary counters while their respective tapes slow to a stop.

The current from the operation of gates 236 and $236 a$ in combination with that from switch 226 causes gates 247 and $247 a$ to pass cuirent to delays 250 and $250 a$ where it is delayed for one second then onto the forward pulsers 251 and $251 a$ which causes a pulsing forward drive signal to be sent to the capstan drive motors and the tapes to be moved forward a fraction of an inch several times per second.
The operation of gates 236 and $236 a$ also causes latching switches 242 and $242 a$ to turn on.
A current from the one second delays 250 and $250 a$ in conjunction with the frame pulses causes gates 232 and $232 a$ to pass the pulses to the "subtract one" side of the binary counters 225 and $225 a$ as the tapes pulse forward from where they finally stopped (roughly around frame 520). The instant that the binary counters register frame 511, gates 236 and $236 a$ turn off which, in turn, turn off gates 247 and $247 a$, delays 250 and $250 a$, and the forward pulsers 251 and $251 a$, thus causing the respective tapes 221 and $221 a$ to stop pulsing forward.

The turning off of gates 236 and $236 a$ causes inverters 237 and $237 a$ to pass current to gates 252 and $252 a$ which in conjunction with the current from the latching switches 242 and $242 a$ cause gates 252 and $252 a$ to convey current onto gate 253 and gate 254, respectively. Gate 253 with current from switch 226 then passes a current to a gate 254 which operates in conjunction with current supplied by gate $252 a$ to cause forward capstan motor drive power, designated 255, to cause capstan motors 245 and $245 a$ to move the tapes in a forward direction. Also, the operation of gate 254 activates a locking unit 256 comprising television signal syachronizer (of which there are several commercial models currently available) which locks the two tapes together in synchronization. It is to be understood that gate 254 operates only after both tapes have backed up, stopped, pulsed forward to frame 511, stopped, and are ready to be locked together and run forward to simulate a splice.

Currents from gates 252 and $252 a$ also pass to gates 231 and $231 a$ through off-delays 255 and $256 a$ (which have a turn-off delay of about 0.5 second) thus causing each frame pulse detected to subtract one from the binary counter as the tape moves forward in the splice simulation phase.

A switching system designated generally 260 controls the display and possible ultimate recording of the splice simulation of both the television and audio. As the two tapes 221 and $221 a$ move forward in the splice simulation run, the binary counters count down together, and on reaching 0 , the next frame pulse causes all stages to invert to an "on" condition. This characteristic of binary counters is taken advantage of by having this described inversion to trigger the splice simulation. Specifically, a stage 261 of the binary counter $225 a$ when turned on (which is at the instant that the splice simulation is to occur) passes a current to gate 262 which turns on in conjunction with the current from the latching switch 242a. Thus, current flowing from gate 262 is an indication that the television signals representing the second part of the scene should now be displayed or recorded and that the audio to accompany the second part of the scene should now be heard or recorded. A switch 260 controls the display and recording functions. The letters on switch 260 designate the following: A-View \#1, first scene; B-View \#2, first scene; K-Record \#2 after \#1; L-Record \#1 after \#2; M-\#1 first scene on \#3; N-\#2 first scene on \#3; and O -Record mark signal on cue track.
For example, in the drawing, switch 260 is set at "A" (for view \#1, first scenc). As the tapes begin their splice simulation run, gate 262 is conducting no current and switch 263 is connected to point $264 a$, therefore no current fiows to operate relay $265 a$. However, inverter $266 a$ does cause current to flow and operate relay 265 which causes the television signal from tape 221 and television
head 270 to be conveyed to a television screen 267. As the tapes move forward, scene one continues to be displayed on the television screen 267 until the instant at which binary counter $225 a$ inverts after registering 0 . As previously described, gate 262 then starts to conduct current which, through inverter $266 a$, turns off relay 265 and now turns on relay $265 a$ which immediately conducts the television signal from tape $221 a$ picked up by television head $270 a$ to the television screen 267 , thus completing the visual simulation of the splice. The selection of the audio to the splice is made through two switches 271 and $271 a$ whose inputs are audio pickup heads 269 and $269 a$ and whose outputs pass, respectively, through relays 265 and $265 a$, to loudspeaker 272 . The splice operation of the audio signal is similar to that of the television. As shown on the drawing, if the audio from tape \#1 is to be used for the first part of the splice and that of tape \#2 for the second part of the splice, as the tapes begin their splice simulation run, the audio portion of tape \#1 passes through relay 265 (previously described as on) to the loudspeaker. On reaching the splice point, relay 265 turns off and relay $265 a$ comes on thereby allowing the audio signal from tape \#2 to pass onto the loudspeaker 272 thus consummating the audio splice.
If, after viewing a splice, the operator wishes to add or delete frames adjacent to the splice point, he does this (after turning switch 226 off) by momentarily pressing, once for each frame, switches 273, 273a, 274 or $274 a$ which add or subtract one from the binary counters 225 and 225a. Switches 273 and 273a each subtract a frame from the first scene or add a frame to the second scene for their respective tapes, depending upon whether the tape concerned is the first or second scene. Switches 274 and $274 a$ accomplish the opposite result.
Because of the close recording tolerances of television tape, it is necessary that one record on tape which is free of other television signals, that is, erased tape. If it is desired to record on a tape with existing television information (for example, if one is to splice electronically a scene from tape \#1 onto a scene on tape \#2), it is necessary to provide erased tape at the television heads of tape \#2 at the instant that the splice is to be made. Since the master erase head is several inches (approximately 18 frames) ahead of the television record head on recorders in general contemporary use, it is necessary that the invention anticipate the splice by 18 frames so that the master erase head can be started thus clearing tape from a point which will arrive at the record heads at the instant that the new television signal is to be recorded on the tape.

Provision for this anticipation of the splice is made in my invention by a number of gates $275 a, 275 b, 275 c$, 275d, 275e, 275f, 275g, 275h, 275j, and 275 k which are connected to binary counter 225 and which, it will be readily appreciated, cooperate with each other to cause gate 275 a to pass a current when the counter 225 has reduced to 17 , which is 18 frames ahead of the splice since the splice does not occur until the counter inversion after the counter reaches 0 . This current is led to a gang, designated 276 , of switch 260 where it is directed to the proper recorder to activate the master erase head.

When the operator wishes to stop the machines after a splice simulation, he turns switch 226 to "off" which turns off gate 254 thus stopping and unlocking the two recorders. Also, the turning off of switch 226 causes currents to flow to reset elements 277 and $277 a$ which in turn unlatch (turn off) latching switches 242 and $242 a$. If the operator desires a dissolve, fade, or other effect between the two scenes, a commercially available special effects amplifier 288 which has suitable input and output switches for combining two scenes into a third is provided. It is actuated by the current which flows from gate 262 at the instant of the aforementioned counter inversion.

Another gang, designated 280, of switch 260 passes the current which starts flowing from gate 262 at the instant of the splice to the proper machine during the splicing run to switch it over to the record mode. It is assumed that if the operator were recording onto a third machine, he would put the machine into the record mode by using the appropriate switch on such machine.
A further gang, designated 281, of switch 263 puts a signal on the cue track of the two tapes involved so that, where desired, the tapes can later be actually cut and spliced.

Still another gang, designated 283, of switch 260 directs the audio to the proper recorder. And lastly, a designated gang 284 of switch 260 directs the video signal to the proper machine for recording.

Switches 285 and 285 a and 286 and 286 are intended as representative tape movement switches in conventional recorders. Should the operator wish to review a tape after the possible splice point has been selected, he would use the switches on the existing machine. However, the frame-by-frame movement of the tape would be kept account of so that when he did desire a splice simulation, my invention would go through the simulation with reference to his original possible splice points.

Off-delays 287 and $287 a$ and 290 and $290 a$ of 0.5 second are provided following the aforementioned switches so that the respective binary counters 225 and $225 a$ can continue counting (as previously described) until the tapes come to rest after the aforementioned switches have been turned off.

Operating current for the various independent switches is from a general power supply (not shown) and is designated by the initials "O.C." in a box.

FIGURE 10 shows a modification of a portion of the circuitry of FIGURE 9 comprising generally gates 230 , 230a, 231, 231a, 232, 232a, 233, 233 $a, 234$, and 234a, switches 285, 285a, 286 and 286a, delays 246, 246a, 256, 256a, 287, 287a, 290 and 290a, and frame pulse discriminators 228 and 228a. In this embodiment of my invention, electronic counters similar in design and function to those in FIGURE 9 are used in place of mechanical counters, as in the previously explained embodiment of FIGURES 1 through 8 comprising generally rotatable discs $55,55 a, 57,57 a$, printed circuits, brushes, and other associated elements.

Except as otherwise stated, no connection exists between the circuitry outside the line designated 316 in FIGURE 9 and that of FIGURE 10 other than through the counters 225 and 225 a. Circuitry inside the line 316 is eliminated insofar as that shown in FIGURE 10 is concerned.
The primary purpose of the circuitry of FIGURE 10 is to direct frame pulses to the proper inputs (either plus one or minus one) of the binary counters 225 and $225 a$ (depending on the directions that the films are traveling) which in turn activate various elements of my invention to cause for one thing a simulation of a splice of two motion picture films.

Specifically, frame pulse wheels 291 and $291 a$ are attached to shafts 52 and $52 a$. It will be recalled from the previous discussion that one rotation of shafts 52 and $52 a$ represents the passage of one frame of film through the optical axis 47. On the perimeters of frame pulse wheels 291 and $291 a$ are contacts 292 and $292 a$ which, as the frame pulse wheels rotate in a forward direction, come into contact in turn with three brushes 293, 294 and 295 on wheel 291, and 293a, 294a, and 295a on wheel $291 a$.
An operating current is supplied through brushes 296 and $296 a$ to commuter tings 297 and $297 a$ from which current passes to contacts 292 and 292a. As frame pulse wheels 291 and $291 a$ rotate in a forward direction (indicated by the arrow on the drawing), they normally contact brushes 293 and $293 a$ first. This causes operating current to flow to latching switches $\mathbf{3 0 0}$ and $\mathbf{3 0 0} a$ which turn on, causing the triggering of reset elements 301 and
$301 a$ to turn off latching switches 302 and $302 a$ and 303 and $303 a$ and providing current to gates 304 and $304 a$.

As contacts 292 and $292 a$ continue to rotate forward, they next contact brushes 294 and $294 a$ which pass current onto gates 304 and $304 a$ and 305 and $305 a$. Since switches $\mathbf{3 0 0}$ and $\mathbf{3 0 0} a$ are also providing current to gates 304 and $304 a$ at this time, said gates permit the passage of current to the minus one input of binary counters 225 and 225a. It will be recalled from the discussion pertaining to FIGURE 9 that forward movement of the picture medium causes a subtraction of bits from the binary counter while a reverse movement causes an addition of bits. The current passed by gates 304 and $304 a$ causes resct elements 306 and $306 a$ to turn off latching switches 300 and $300 a$ whereupon gates 304 and $304 a$ become inoperative. Thus is a single pulse to be sent from each brush 294 and $294 a$ to their binary counters, and should the operator be performing a frame-by-frame examination and cause current to pass through brushes 294 and $294 a$ several times in succession as he goes back and forth on a particular frame of film, only the initial pulse would be passed. The aforementioned pulse from gates 304 and $304 a$ also causes latching switches 307 and $307 a$ to turn on (the function of which will be explained shortly).
Gates 305 and $305 a$ do not operate at this time because switches 302 and $302 a$ which supply the necessary second operating current are off. The contacts 292 and $292 a$ are so positioned on the perimeter of wheels 291 and $291 a$ as to come into contact with brushes 294 and $294 a$ at the instant that a frame line of the motion picture film is in the optical axis 47 of the invention.
As contacts 292 and 292a continue forward, they next come into contact with brushes 295 and $295 a$ which cause the turning on of switches 302 and 302a and trigger reset elements 310 and $310 a$ to turn latching switches 300 and $300 a$ and 307 and $307 a$ off. Also, switches $\mathbf{3 0 2}$ and $302 a$ pass current onto gates $\mathbf{3 0 5}$ and $305 a$ so that said gates can now pass current from brushes 294 and 294a. This completes the description of a typical forward revolution of frame pulse wheels 291 and $291 a$.
In the typical reverse revolution of frame pulse wheels 291 and 291a, contacts 292 and 292a first contact brushes 295 and $295 a$ which turn on switches 302 and $302 a$ and cause switches 300 and $300 a$ and 307 and $307 a$ to be turned off through the triggering of reset elements 310 and 310a. Also, the turning on of switches 302 and $302 a$ passes current onto gates 305 and $305 a$ which now allows said gates to pass a current which they could receive from brushes 294 and $294 a$.
Contacts 292 and 292a continue to rotate in a reverse direction to contact brushes 294 and $294 a$ causing current to flow to gates 304 and $304 a$ and 305 and $305 a$. Since gates 304 and $304 a$ are not activated at the moment, no current passes through them. However, gates 305 and $305 a$ are in an activated condition so the current from brushes 294 and 294 a passes on through and causes one bit to be added into the plus one side of the binary counters 225 and 225a. Also, the aforementioned pulse causes switches 302 and $302 a$ to be turned off through reset elements 311 and $311 a$, and the aforementioned pulse also turns on latching switches 303 and $303 a$.
Contacts 292 and 292a next in the reverse cycle contact brushes 293 and $293 a$ which cause switches 300 and $300 a$ to turn on and turn off, through reset elements 301 and $301 a$, switches 302 and $\mathbf{3 0 2} a$ and 303 and $303 a$. This completes the description of a typical reverse revolution of frame puise wheels 291 and $291 a$.

It will sometimes occur during a frame-by-frame examination of the film by the operator that as he moves the films forwards and backwards, he may not cause the frame pulse wheels 291 and $291 a$ to turn a full revolution before he starts to view the films in the opposite direction. For example, if he were viewing the films in a forward direction, contacts 292 and $292 a$ may have passed under brushes 293 and $293 a$ and 294 and $294 a$
(causing a pulse to be sent to the minus one side of the respective binary counters). However, before contacts 292 and $292 a$ get to brushes 295 and $295 a$, the operator may decide to back up the film. The minus one pulse which was just entered into the binary counters must be "added out" of the binary counters if the counters are to keep an exact record of frame movement. This is accomplished in the following manner: as contacts 292 and 292a pass back under brushes 29a and 294a, nothing happens since gates $\mathbf{3 0 4}$ and $\mathbf{3 0 4 a}$ have already allowed their one pulse to pass (as previously explained). Then, as contacts 292 and $292 a$ come under brushes 293 and $293 a$, current is sent to gates 312 and $312 a$ and in conjunction with the current from switch 307 and $307 a$ (previously turned on) cause a pulse to be added into the plus one side of the binary counter thus counteracting the minus one pulse just subtracted. This plus one pulse also turns off switch 307 and $307 a$ through reset elements 313 and $313 a$ which brings the invention back to its original condition where it is ready to account for further revolutions of frame pulse wheels 291 and $291 a$.
In a similar manuer, if the operator had been backing up the films and contacts 292 and $292 a$ had passed under brushes 295 and $295 a$ and 294 and 294a (causing a plus one entry into the respective binary counters), and he then started viewing forward (before reaching brushes 293 and $293 a$ to complete the cycle), contacts 292 and $292 a$ cause current to be applied to brushes 294 and $294 a$ but nothing would happen since gates 305 and $305 a$ had already passed their one pulse. Contacts 292 and $292 a$ would continue moving and next contact brushes 295 and $295 a$ causing current to flow to gates 314 and $314 a$ which along with the current from the previously turned on switches 303 and $303 a$ cause current to pass onto the minus one sides of the binary counters 225 and 225a. This current also operates through reset elements 315 and $315 a$ to turn off switches 303 and $303 a$ to provide a one time pulse to the binary counters and to return the invention to its original condition.

It is to be appreciated that should the operator, in a frame-by-frame examination, cause contacts 292 and $292 a$ to come under only the extremely located brushes 293 and $293 a$ or 295 and $295 a$ and then reverse viewing directions, that upon completing almost a full revolution and coming into contact with the opposite extreme brushes 295 and $295 a$ or 293 and $293 a$, the turning on of switches 302 and $302 a$ or 300 and $300 a$ and their previously described consequential actions cause the invention to be reset, ready to account for the new direction of film travel.

The function of the elements within the dotted line 316 on FIGURE 9 remain the same for the embodiment presently under discussion. However, the following should be kept in mind. The current which fiows from gate 275 a when binary counter 225 is at frame 17 is the equivalent of that current which flows from brush 157 into switch 110, while the current that flows from gate 262 at the instant that the splice simulation is to take place is the equivalent of that from brush 156 which also enters switch 110. All wiring to the " F " (simulate splice) and " G " (stop) positions of switch 111 is replaced by an additional gang to switch 111 which has the corresponding elements of switch 226 for its first and second positions. The reverse capstan drives 244 and $244 a$ of FIGURE 9 rotate drive motors 51 and $51 a$ of FIGURE 5 in a reverse direction while forward pulsers 251 and $251 a$ cause drive motors 51 and $51 a$ to rotate forward one revolution at a time a few times per second. The locking unit 256 in FIGURE 9 is equivalent to the solenoid 137 which locks shafts 52 and $52 a$ together in FIGURE 5 when the films are ready to begin their splice simulation run. The forward capstan drive 255 , in the embodiment referred to in FIGURE 10, supplies power to cause both drive motors 51 and $\$ 1 a$ to rotate in a forward direction. The function of relays 134,136 and

142 have been replaced by circuitry within dotted line 316 and therefore are eliminated.

It can readily be seen that if one desires to use the circuitry of FIGURE 10 with that of FIGURE 9 to control television tape recorders, the three brushes 293 and 293a, 294 and 294a, and 295 and 295a can be applied to magnetic pickup heads located adjacent to each other along the aforementioned control tracks of tapes 221 and 221a. Here they pick up the frame pulses recorded on the control tracks and deliver them to the circuitry of FIGURE 10 and thence onto the circuitry of FIGURE 9 for functioning as previously described.

The foregoing detailed description has been given for clearness of understanding only, and no unnecessary limitations should be understood therefrom, for modifications will be obvious to those skilled in the art. Whereas solid state electronic elements have been described, it is to be appreciated that tubes, relays, and hydraulic or pneumatic equivalents may be utilized. In a like manner, where circuits have been shown carried by discs, it is to be understood that the number of dises may be increased and that other types of endless members may be substituted.

Having thus described my invention, what I claim as new and desire to secure by Letters Patent of the United States is:

1. Apparatus for simulating a splice of a pair of film strips which comprises visual receiving means, a pair of image-projecting means conveying images to said visual receiving means, driving means adapted to advance and back up selectively and independently said two film strips and to advance them simultaneously during the splice simulation run, switeh means for shifting the image conveyed to said visual receiving means from one of said projecting means to the other, responsive means associated with said films and said switch means for shifting said images conveyed to said visual receiving means at a preselected place on one of said film strips and at a separately preselected place on the other of said film strips from one of said projecting means to the other, and identifying means for selectively indicating the places on said films wherein said images to said visual receiving means are shifted from one of said film strips to the other for future splicing.
2. Apparatus in accordance with claim 1, wherein said film strip comprises television tape.
3. Apparatus in accordance with claim 1, wherein said film strip comprises motion picture film.
4. Apparatus for shifting signals emitted from one intelligence carrier to signals emitted from a second intelligence carrier at a point predetermined with reference to each of said carriers, which comprises a first intelligence carrier, a first intelligence communication means adapted to communicate information from said first intelligence carrier, first motive means, said first intelligence carrier means movable selectively in both a first direction and a direction reverse thereto by said motive means relative to said first intelligence communication means, a first measuring device, a first synchronization control selectively interconnecting said first measuring device and said first motive means, a first quantitative reverse selection means associated with said first measuring device for reversing said first intelligence carrier means a predetermined amount, a second intelligence carrier, a second intelligence communication means adapted to communicate information from said second intelligence carrier, second motive means, said second intelligence carrier means movable selectively in a first direction and a direction reverse thereto by said motive means relative to said second intelligence commurication means, a second measuring device, a second synchronization control selectively interconnecting said second measuring device and said second motive means, a second quantitative reverse selection means associated with said second measuring device for reversing said second intelligence carrier a predetermined amount, intelligence receiving means adapted to
receive intelligence from said communications means, shifting means associated with said measuring devices, adapted to shift the communication of intelligence from one of said carriers to the other of said carriers when the quantity measured by each said measuring device is a predetermined amount.
5. Apparatus in accordance with claim 4 wherein said carriers comprise television tapes.
6. Apparatus in accordance with claim 5 wherein said measuring devices comprise binary counters.
7. Apparatus in accordance with claim 4 wherein said carriers comprise motion picture film.
8. Apparatus in accordance with claim 7 wherein said measuring devices comprise binary counters.
9. Apparatus in accordance with claim 7 wherein said measuring devices comprise endless members.
10. Apparatus in accordance with claim 9 wherein said endless members are discs.
11. Apparatus for simulating a splice on film strips which comprises image-receiving means, first and second image-producing means for selectively producing visual images on said image-receiving means, first and second film strips respectively received by said first and second image-producing means, said first and second image-producing means each including motive means for moving said strips, said first and second image-producing means each including image communication means between the corresponding film strips and said image-receiving means, first and second synchronizing means respectively associated with said first image producing means, said first and second selection means selectively synchronizing said synchronizing means with the motion of the respective strips when the corresponding selection means is actuated, motion control means associated with each of said selection means whereby each said strip may be backed up independently through their respective image-producing means from the points of actuation of said selection means an equal distance, switching means associated with both of said image communication means and both said selection means whereby when said film strips are moved forward together with said switch means said switching means switches the image on said image-producing means from an image from said first film strip to an image from said second film strip.
12. Apparatus in accordance with claim 11, wherein said film strip comprises television tape.
13. Apparatus in accordance with claim 11, wherein said film strip comprises moving picture film.
14. Apparatus in accordance with claim 11, wherein locking means is provided for selectively locking together the motion of said film strips after same have been backed up an equal distance from the points of actuation of said selection means.
15. A method for simulating a splice on film which comprises advancing and visually inspecting a first strip of film to a first place, advancing and visually inspecting a second strip of film to a second place, backing up both of said film strips the same predetermined number of frames, and advancing both strips of film while projecting and visually inspecting said first strip of film on said visual receiving means for said predetermined number of frames and thereafter projecting and visually inspecting said second strip of film on said visual receiving means.
16. A method of shifting signals emitted from one continuously moving intelligence carrier to signals emitted from a second continuously moving intelligence carrier at a predetermined point which comprises separately receiving said signals emitted from each of said carriers, synchronizing a pair of measuring instruments with each of said carriers at the desired shift point on each of said carriers, reversing each of said carriers in equal quantity as measured by said measuring instruments, synchronizing said measuring instruments with each other, running said carrier forward and receiving said signals from one of said carriers until said measuring instruments reach the point they were synchronized with respect to their respective carriers, and at said point shifting the receipt of signals from the other of said carriers.

References Cited

 UNITED STATES PATENTS| 2,927,154 | 3/1960 | Wolfe |
| :---: | :---: | :---: |
| 3,230,307 | 1/1966 | Bou |

ROBERT L. GRIFFIN, Primary Examiner.
JOHN W. CALDWELL, Examiner.
H. W. BRITTON, Assistant Examiner.

