PCT WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6 : (11) International Publication Number: WO 97715018
F 17/30 Al
Go6 (43) International Publication Date: 24 April 1997 (24.04.97)
(21) International Application Number: PCT/US96/15620 | (81) Designated States: CA, CN, JP, KR, European patent (AT,
BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC,
(22) International Filing Date: 26 September 1996 (26.09.96) | . NL, PT, SE).
(30) Priority Data: Published
08/543,644 16 October 1995 (16.10.95) uUs With international search report.

(71) Applicant: BELL. COMMUNICATIONS RESEARCH, INC.
{US/US]; 445 South Street, Morristown, NJ 07960-6438
(US).

(72) Inventors: MARCUS, Howard; 12 Harrison Street, Edison, NJ
08817 (US). SHAH, Kshitij, Jawahar; 119 Jeremy Court,
Edison, NJ 08817 (US). SHETH, Amit, Pravinkumar; 1140
Laurel Pointe, Bogart, GA 30622-2856 (US). SHKLAR,
Leon, A.; 160 Stults Lane, East Brunswick, NJ 08816
(US). SURAK, Jerome, Raymond; 277 Mohawk Trail,
Bridgewater, NJ 08807 (US). THATTE, Satish, Mukund;
18 Crestview Drive, Kendall Park, NJ 08824 (US).

(74) Agents: WHITE, Lionel, N. et al.; International Coordinator,
Room 1G112R, 445 South Street, Morristown, NJ 07960-
6438 (US).

-

(54) Title: METHOD AND SYSTEM FOR PROVIDING UNIFORM.ACCESS TO HETEROGENEOUS INFORMATION

12\ /_ 14
End User/” 18 (Gateway| ["Reposit

24
28
26

HTTP Browser / lectio _— IE
\ 50 O
\I-z7 CTadex]| D
22/Selrlv*er 30>—/ D
16
/

10

(57) Abstract

Our invention is a system and methodology for integrating heterogencous information in a distributed environment by encapsulating
data about existing and new information into objects (16). The process of encapsulating the information requires extracting from the
information metadata. Creating from the metadata, a database (30), where the metadata is grouped into objects (26) and groups of objects
(28) which are logically associated into collections (28). This database of object and collections is instantiated into runtime memory of a
server (22), organized into repositories (24) of objects (20) and collections (28). A user (12) seeking access to the information would then,
using an HTTP compliant browser (20), access the server (22) to access the information through the objects (26) created and stored in the
server.

applications under the PCT.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international

Armmenia
Austria
Australia
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus
Canada

Central African Republic
Congo
Switzerland
Cdte d’Ivoire
Cameroon
China
Czechoslovakia
Czech Republic
Germany
Denmark
Estonia

Spain

Finland

France

Gabon

United Kingdom
Georgia

Guinea

Greece

Hungary

Ireland

Italy

Japan

Kenya

Kyrgystan
Democratic People’s Republic
of Korea
Republic of Korea
Kazakhstan
Liechtenstein

Sri Lanka

Liberia

Lithuania
Luxembourg
Latvia

Monaco

Republic of Moldova
Madagascar

Mali

Mongolia
Mauritania

Malawi

Mexico

Niger

Netherlands
Norway

New Zealand
Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore
Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan

Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam

10

15

20

25

WO 97/15018 PCT/US96/15620

METHOD AND SYSTEM FOR PROVIDING -
UNIFORM ACCESS TO HETEROGENEOUS INFORMATION

TECHNICAL FIFLD OF THE INVENTION

This invention relates to data processing systems and
networks. More specifically, this invention relates to methods
and systems for accessing distributed heterogeneous information
sources and databases.

BACKGROUND QOF THE INVENTION

Given the advances in modern computer technology and the
proliferation of relatively inexpensive off-the-shelf authoring
and office automation software, the ability to create
information has increased dramatically. Naturally therefore,
the size, diversity, and quantity of information repositories
have also increased. As a result, enormous amounts of
information have been accumulated within corporations,
government organizations, and universities. With the advances
in data communication technology and computer networking, much
of this information is in electronic repositories on networks
accessible to anyone with a computer connected to these
networks. However, the information is heterogeneous; i.e.
stored in many forms of differing types and representations.

In such an environment in order for users to access these
heterogeneous types of information, they not only have to know
the about the existence and location of the information but also
the format of the information, the different database query
languages procedures, and differing access and retrieval

procedures for accessing and retrieving this information.

10

15

20

25

WO 97/15018 PCT/US96/15620

Accordingly, knowledge workers are spending too much time -
trying to locate, access and retrieve the information they
need. Often times because of these barriers to access,
knowledge worker's give up trying to access the information and
recreate the same information in another repository in yet
another inconsistent manner. These problems in accessing
heterogeneous information reduce individual and organization
productivity, thereby increasing the cost of doing business.

To address these problems, those practicing in the art
have attempted to build uniform information repositories by
relocating and reformatting the original information in some
standard format and at centralized locations. This approach
requires the design and maintenance of an ever-increasing
number of ever-changing format translators. In addition, the
ihitial conversion of the information often regquires
substantial human and computing resources. Furthermore,
maintaining the repositories requires either creating new and
updating information in the uniform format, or continuously
managing changing data in different formats. These approaches
are not only resource intensive, but because they are based on a
centralized model of system management, they are characterized
by a performance, administrative and reliability bottleneck,
inherent in centralized systems.

Another problem presented by the prior art is that
sophisticated indexing and search techniques are available only

for certain types of information, or such techniques come

embedded within an application and cannot be applied to other

10

15

20

25

WO 97/15018 PCT/US96/15620

kinds of information, i.e., such techniques are part of a closed
system. Therefore, on a network with heterogeneous information,
users are therefore burdened with having to cope with multiple
indexing and search techniques that are developed and applied
in idiosyncratic ways to handle different kinds of information.

One recent advance in the art of providing users easy
access to information from a variety of sources is the
development of the World Wide Web on the Internet. The users,
using hypertext transfer protocol (HTTP) browsers, connecting
to HTTP servers have access to numerous sources of information.
The information they are be able to retrieve are textual files
formatted using a hypertext markup language (HTML). These HTML
files not only provide users with textual information, but
embedded within the text are pointers to other sources of
iﬁformation, they may be graphic, audio, video or textual. Most
commercially available browsers (e.g. Mosaic, Netscape) contain
tools capable of displaying graphic or textual information.
However, in order for this information to be displayed it must
have been at some point converted into HTML files. However,
there is a tremendous amount of legacy information in networks
that could be made available to users if there was a means to
access it without the owners or providers of the information
having to convert it to HTML files.

Accordingly, what is needed in the art is a system and
method for providing users with integrated access to large
amounts of heterogeneous information without the end-user

needing to know the type, format or location of the information

10

15

20

25

WO 97/15018 PCT/US96/15620

and without burdening the owners or providers of the -
information with having to translate, relocate or re-format the
information.
SUMMARY OF THE INVENTION

It is therefore an object of the present invention to
provide users with integrated access to large amounts of
heterogeneous information without the end-user needing to know
the type, format or location of the information. It is a further
object of the present invention to accomplish these goals
without having to burden the information owners with having to
translate, relocate or reformat the information. These
objectives are achieved and an advance in the art is made by our
invention. Our invention is a system and methodology for
integrating heterogenous information in a distributed
environment by encapsulating data about existing and new
information in objects without converting, restructuring, or
reformatting the information. The process of encapsulating the
information requires extracting from the information metadata.
Creating from the metadata, a database, where the metadata is
grouped into objects and groups of objects are which logically
associated into collections. This database of object and
collections is instantiated into runtime memory of a server,
organized into repositories of objects and collections. A user
seeking access to the information would then, using an HTTP
compliant browser, access the server to access the information
through the objects created and stored in the server. Our

invention provides an integrated view of and access to diverse

10

15

20

25

WO 97/15018 PCT/US96/15620

heterogeneous information. Our invention also provides tools _
for accessing, retrieving, browsing and administering the
information.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 illustrates a system in accordance with one
embodiment of our invention.

Figure 2 depicts a method for pre-processing the
information units in accordance with one embodiment of our
invention.

Figure 3 depicts a method for accessing heterogeneous
information in accordance with one embodiment of our invention.

Figure 4(a) depicts the format a of the metadata as used
in the present embodiment of our invention

Figure 4(b) depicts a table defining the metadata fields
as used in the metadata format of the present embodiment of our
invention.

Figure 5 depicts the format of one embodiment of an object
identifier as used in our invention.

Figure 6 depicts a table that defines the attributes of an
ihMeta object.

Figure 7 depicts a class inheritance diagram for the
ihArtifact family of classes as defined for the present
embodiment or our invention.

Figure 8 is a table of ihArtifact classes as used in the
present embodiment of our invention.

Figure 9 is a table of ihArtifact sub-class definitions
as used in the present embodiment of our invention.

Figure 10 is a table the defines ihGraph class as used in

the present embodiment of our invention.

10

15

20

25

WO 97/15018 PCT/US96/15620

Figure 11 illustrates the relationship between the run- -
time modules operating in a server in accordance with our
invention.

Figure 12 depicts an example interaction diagram of the
operating in accordance with the present embodiment of our
invention.

Figure 13 illustrates the ih _prep process and extractors
and indexers in accordance with the present invention.

Figure 14 illustrates the process for conducting metadata
context queries in accordance with the present embodiment of
our invention.

Figure 15 illustrates the process for conducting
information content gueries in accordance with the present
embodiment of our invention.

Figure 16 illustrates the process for invoking a server
side browser in accordance with the present embodiment of our
invention.

Figure 17 illustrates the process for invoking a client
side browser in accordance with the present embodiment of our
invention.

DETAILED DESCRIPTION

Described below is one preferred implementation of the
present invention which is illustrated in the accompanying
drawings. This one embodiment or our invention is described as
it has been implemented in a product, known as the InfoHarness™
software and system. This description of our invention is

organized into six sections. First, we define terms that will be

™ InforHarness is a trademark of Bell Communications Research Inc., the assignee of this patent.

10

15

20

25

WO 97/15018 PCT/US96/15620

used throughout the specification. Second, we provide a high _
level overview of our system and method. Thirdly, we describe in
detail the process for metabase preparation. In the fourth
section, we describe the operation of a gateway, necessary in
our embodiment, to connect the HTTP server to the InfoHarness
Server (It isn’'t material to our invention to have this gateway
as a stand alone process but could in other embodiments be
embedded within the server). In the fifth section, we describe
the operation of the InfoHarness server which operates in
accordance with our invention. Finally in the sixth section, we
describe the interactions between the components of our
inventive system. These descriptions are only exemplary of the
invention. The present invention is not limited to the
implementations described, but may be realized by other

implementations.
A. DEFINITIONS

An information unit, or IU, is a piece of information that
may be of interest to an end user. The most common kind of IU is
a document stored in a single file. An IU can also represent a
portion of a file (such as a single program function in the C
language within a larger source code file, or a single email
message in an email file, etc.), a grouping of many files, or
other kinds of information.

Metabase is a file or database of metadata extracted from
the information units and organized into InfoHarness Objects
and collections.

Metadata is “data about data” -- it is data that describes

10

15

20

25

WO 97/15018 PCT/US96/15620

various saliant characteristics of some other data. For

instance, metadata about this patent specification could
include its filing date, the inventors names, a keyword

summary, etc.

An InfoHarness Object, or IHO, is an encapsulation of an
information unit that is be accessed using our inventive
system. An IHO encapsulates metadata describing the salient
characteristics of an IU.

A collection represents a set of IHOs. Collections are
logical entities; that is, the information units encapsulated
by the member IHOs do not have to be physically co-located in
the same directory. Encapsulated files can be distributed on
many systems of a network. Further, IHOs can be members of more
than one collection. Collections can be nested (i.e., contain
ther collections). They can also be indexed or non-indexed
(e.g. processed to permit content searches). Collections, thus,
provide a logical view of physically distributed, heterogeneous
information.

A repository is the a of collections. Its contents are
accessed through an InfoHarness server operating in accordance
with our invention.

A gateway is a component of the present embodiment of our
of our invention that provides an means for connecting an
Hypertext Transfer Protocol (hereinafter HTTP) server to an
InfoHarness server according to the Common Gateway Interface
(CGI) specification which is well known by those who practice in

the art.

10

15

20

25

WO 97/15018 PCT/US96/15620

An InfoHarness Server (IH server), is a server operating

in accordance with our invention.
B. QVERVIEW

One embodiment of our invention is illustrated in
Figure 1. Our inventive system 10 is interposed between a
plurality of end users 12 who want access to heterogeneous
information 14 composed of a plurality of IUs 16. In the
embodiment described herein, the end users 12 use an HTTP-
compliant browser 18 to connect to an HTTP server 20, which in
turn connects to an IH server 22. Within the IH server 22
instantiated into memory is a respository 24 of IHOs 26 and
collections 28. This respository 24 was created from a database
30 of IHOs and collections created from metatdata extracted
from the IUs 16 and stored in a database. Users 12 connected to
tﬂe IH Server 22 then can obtain IHO, metadata or search
collections, using any user-specified criteria to retrieve the
target information from the IUs 16.

Our inventive method is composed of two phases. Phase 1 is
the registration phase under which IU’s are pre-processed to
create THO’s, collections and repositories. Phase 2 is the
information access phase wherein end-users access the IH server
through the HTTP server and use the IHO’s, created in the
registration phase and loaded in the memory of the IH server, to
locate and access the IU's.

Figure 2 illustrates the methodology embodied within the
registration phase. An information provider or InfoHarness

administrator having information which the provider desires to

10

15

20

25

WO 97/15018 PCT/US96/15620

make accessible to users, would invoke an InforHarness
registration procedure (software) to register the information
units 30. Upon invoking the InfoHarness registration procedure,
the administrator would first invoke a pre-processor 32 to
prepare the information for the extraction process. The next
step involves the administrator invoking one of a plurality of
extraction processes 33 to extract metadata from the
information units that are be registered (the appropriate
extractor process depends on the type of information the
administrator is registering). The output of the extraction
process is the creation of a metabase (which is a file or
database) of IHOs 34. This metabase contains metadata of the
information units logically collected into a collection, and
also information about IHOs and collections and the
rélationships among them. Upon the creation of the metabase the
registration phase is complete.

Figure 3 illustrates the methodology for accessing the
information in accordance with our invention. First the IH
server must be initialized, then the IHOs are loaded from the
metabase into the server’'s memory and organized into
repositories 36. After the server is initialized and running,
the IH server enters a main event loop and waits for reguests
from clients 38. End-users then access the IH server through an
HTTP server 40. Once the end-users access the IH server, they
perform one of three actions to select an object 42: (1) a
metadata based query, (2) a content based query, or (3)

explicitly navigate around the IHOs. Once an object is

10

15

20

25

WO 97/15018 PCT/US96/15620

selected, it can be accessed and browsed by activating either a
client side browser 44 or server side browser 46. The user may
also operate on the object choosing from a set of procedures
such as print, store, fax, etc.

C. REGISTRATION PRQCESS

As described above, the registration process involves an
owner, creator, or provider of information working with a
system administrator to pre-processing the information for the
purposes of extracting metatdata in a format usable by our IH
server. Registration is accomplished in four steps: pre-
processing the physical data, extracting the metadata, storing
the metadata in a metabase, and transferring the extracted
metadata from the metabase to the IH server.

The main function of the pre-processing is to process the
ﬁhysical data and build logical structures (IHOs and
collections) which the IH server can later use for presentation
to end users. Physical data, in this sense, includes formatted,
unformatted, structured, and unstructured data. It could also
be dynamic; e.g., SQL queries or newsfeeds.

Metadata, which is extracted in accordance with the
methods described herein can be content-dependent, content-
descriptive, or content-independent. Content-dependent metadata
is based strictly on the contents of the physical data. Examples
of content-dependent metadata are keyword indices for textual
data, grids for image data, speaker change lists for audio data,
etc. As the name “content-descriptive” suggests, it describes

the physical contents of the data. Examples include spatial

10

15

20

25

WO 97/15018 PCT/US96/15620

information for video data, the subject of a talk for audio .
data, document composition for multimedia data, etc. Content-
independent metadata, on the other hand, does not rely on the
specific content of the underlying data for it’'s values. Media
type, document history and location, temporal information for
video and audio, etc., are examples of content-independent
metadata.

In accordance with this embodiment of our invention, all
data to be registered with the system must be accessible as a
file on a mounted file system. This typically means that the
data must all be on the same LAN, although it may be stored on
multiple file servers if those servers are directly accessible,
such as via an network file server (NFS) mount.

Related data, although physically scattered, is usually
é&ouped together in some logical structure superimposed on the
underlying physical data. A directory structure is one example
of a logical structure which usually exists for most file
systems. Also, the system administrator working with the
InfoHarness application builder may determine that users might
be interested in relationships among collections and IHOs. As
and example, a parent-child relationship between the two
collections could be imposed. Other relationships that could be
modeled are: ‘contains,’ ‘is contained in,’ and ‘part-of.’

The end result of pre-processing and metadata extraction
is the creation of a metabase (which may be a file or database)
containing metadata, IHOs and collections. As described above,

when this information is loaded from the metabase into an IH

10

15

20

25

WO 97/15018 PCT/US96/15620

server, it is materialized as IHOs and collections in the
server’s memory organized into repositories. In our invention,
we use different extractor processes for various document data
types. These extractor processes are easily created using
skills well known in that art. As an example, we use extractors
for Text, PostScript, HTML, man pages, and e-mail message
files.

An THO encapsulates a single IU. A collection does not
encapsulate any IU, rather it is a set of other IHOs or
collections. An IHO, encapsulating an IU, would thus have a
unique identifier by which to distinguish itself from other
IHOs.

A collection, is a set of IHOs, related together at the
discretion of the system administrator of InfoHarness
épplication builder. Physically, in the embodiment described
herein, a collection is represented by a number of Unix files in
a common subdirectory, whose name is the name of the collection.
This collection directory contains several important files:

IH_SUMMARY file -- This file contains some meta-
information about the collection itself, such as where the
index is located (if any), what the collection metadata
filename is called, etc.

Metadata file -- A file that contains the metadata
extracted during the registration process.

Index -- Depending upon the indexing scheme used, one
or more index files may be present.

Our metadata extraction processes are summarized by the
following pseudocode:

1. Validate user supplied options for the extraction
process.

10

15

20

25

WO 97/15018 PCT/US96/15620

2. For each directory to be scanned
For each file eligible for extraction
Invoke extractor
Process returned metadata
Collect extracted text

3. Index extracted text if requested

Pre-processing consists of extracting metadata from
physical information sources, creating representations for
IHOs, collections and relationships, and optionally creating an
index on textual contents of the sources. In the current
embodiment, the physical information sources should exist on
the same file system as the pre-processor and indexer. The
metadata is also stored on this file system at the location
specified by the administrator.

The pre-processor uses extractor methods for the
extraction of metadata from the physical information sources.
Tﬁese are type-specific methods which process the information
sources and return metadata in a specific format. In our
embodiment, the preprocessor does not analyze the source type
to invoke an extractor; instead the system administrator of our
IH server is expected to indicate a particular extractor which
will then be used for metadata extraction. The pre-processor
treats all the IHOs generated as constituents of a collection. A
user-specified location is used to store the metadata files
created. The user has the option to append newly generated
metadata to an existing collection.

The user can also indicate whether this generated

collection should have a text index built for it, and if so,

which indexing technology to use for this purpose. The indexing

10

15

20

25

WO 97/15018 PCT/US96/15620

technology itself is not part of the present invention. -
However, the architecture of the present invention allows a
variety of indexing technologies to be used in a plug-and-play
fashion. Example indexing technologies are WAIS and GLIMPSE. If
an index is generated, it is installed in the same directory as
the metadata files. A cross-reference file is also generated
which maps the index database objects to the to IHOs. If
indexing is not performed the generated collection is treated
as a set.

A typical extractor takes as input the location of the
information source which is to be encapsulated. It returns a
formatted string which the pre-processor interprets to generate
metadata entries that are stored in a metadata file. The
metadata file itself has a well-defined format, described in
ﬁbre detail below. The extractor also extracts the text
associated with the generated IHOs. To extract text from a ‘C!
file, for instance, the C file has to be parsed to recognize
comments and function signatures, because indexing the language
constructs and variable names does not usually make sense. In
this case an IU would be associated with either a function or
the file as a whole. Representative information is also
extracted and associated with the IU. This will be displayed to
the user at browse time; e.g., for mail messages the subject
line is used as a representative, for HTML documents the
contents of the TITLE construct are used, etc.

Metadata is passed from the extractor in a format called

the metadata transfer format. This format (a Perl data

10

15

20

25

WO 97/15018 PCT/US96/15620

structure) has constructs which allow arbitrary graph -
structures to be imposed on top of the IHOs (e.g., parent-child
relationships between collections). The object’s type and
subtype are associated with the IUs and are both determined by
the extractor process. Finally, the location attribute (i.e., a
value used to locate the IU in the file system) is also
determined by the extractor. This could be the full path for a
UNIX file for cases where the IU is associated with the whole
file. It could also be a Uniform Resource Locator (URL) (as it
is understood on the World Wide Web) or some other locator. URLs
are used for HTML documents. The location of a ‘C’ function, on
the other hand, could be specified as 'filename%function_name’.
There is no requirement on the precise format of this locator,
as long as the browsing methods can decipher it to retrieve the
dfiginal data associated with that IU. Besides these, any
number of attribute-value pairs can be associated with the IU.
e.g. the attribute name associated with an IU will contain the
representative information extracted by the extractor. For IHOs
which do not contain an IU any arbitrary text could be assigned
to this attribute; e.g., for a collection IHO the name of the
collection can be assigned and this will be displayed to the
user.

Metadata is transferred between the extractors and the
pre-processor as a structured Perl string, whose format is
shown as 48 in Figure 4(a). Each IU has six fields of metadata
associated with it (e.g., f11 through f16), each separated by a

colon, and each IU’'s metadata is separated from the next IU’s by

10

15

20

25

WO 97/15018 PCT/US96/15620

a vertical bar 52. Figure 4(b) depicts a table 54 that -
summarizes the purpose of each field.

The location field 55 is created by the extractor process
to identify where the IU is stored.

The Unique ObjId Indicator field 56 instructs the pre-
processor whether to use the Location to construct a unique
object identifier. For some cases the extractor supplied
locator is guaranteed to be unique so that the pre-processor
need not manipulate it. One such case is IUs associated with
HTML files, for which URLS are generated by the extractor as IU
locations. These URLs are unique. If this flag is set, the pre-
processor constructs a unique identifier for the object.

The ordinal value of the Depth field 58 indicates the
depth of that IU in an in-order traversal of the desired
fépository structure. The collection object, which is the root
of this tree, is pre-assigned a depth of 0. An extractor
returning a simple list of file IUs that are to be a part of
this collection would assign a depth of 1 to each of these file
IUs. The pre-processor then makes all of these file IUs children
of the collection object. An example of the structure in the
metadata transfer format is shown in Fig. 5.

The Subtype field 60 is determined by the extractor and is
used later by the IH server to determine how to access the
actual IU.

The Subject field 62 contains summary information related
to an IU and is what the user will see as the “name” of the

object at the time of browsing.

10

15

20

25

WO 97/15018 PCT/US96/15620

The last field 64 is the text body of the IU, to be used
if the collection is being indexed.

The sequence of the entries in this metadata transfer
format stream 48, along with the value of its depth field 58,
determines it’s position in the collection structure built by
the pre-processor. An IU may be represented multiple times in
this stream, possibly to assert a relationship with other IUs,
but a metadata entry is made for only the first occurrence. An
empty text field indicates that the IU need not be cross-
referenced for indexing.

Since the colon (':’) and vertical bar ('|’) characters
are used as delimiters for the fields and IU entries,
respectively, they need to be “escaped” with a backslash (‘'\’)
if they occur anywhere within the content of any of the fields.
] After the pre-processor has parsed the stream returned by
the extractors it stores the object representations into a
single metadata file. These metadata entities will be read in by
the IH server when it is brought up and instantiated as in-
memory IHO representations. There is a fixed structure to the
entries appearing in the metadata files.

There are two kinds of entries in the metadata file,
object entries and relationship entries. Object entries are
flat representations of the IHOs whereas relationship entries
represent parent-child relationships between IHOs.

Object entries have an object identifier. This object
identifier could be constructed by the pre-processor or the

extractor as specified by the indicator in the metadata

10

15

20

25

WO 97/15018 PCT/US96/15620

transfer format. If the pre-processor constructs the object _
identifier, it does so in a specific format. The format is:
machineid:location:subtype

The machineid is a unique physical machine identifier of
the machine on which the pre-processor is run. This field is
automatically generated by the pre-processor. The location and
subtype field values are assigned based on the values returned
in the metadata transfer stream. The location field, for a
simple or composite IHO would be the location of the associated
IU. For a collection IHO this would be the location of the
collection; e.g., for an indexed collection it would be the
location of the index. The subtype field value is the same as
the subtype value returned in the metadata transfer stream. For
a collection IHO this is the index type; i.e., wais or glimpse.

An object entry is of the form as shown in Figure 5. The
first field 70 serves as the object identifier. This object
identifier is used for uniquely identifying the object and
serves as a key. The type 71 and subtype 72 values correspond to
non-terminal and terminal classes in the server abstract class
hierarchy. The location value 73 is used by the browser methods
to retrieve the data associated with the IU encapsulated by this
object. Following this there could be an arbitrary number of
attribute-value pairs 74. The ‘name=string’ pair is used when
the user is browsing the repository. The string is displayed to
the user.

A relationship entry is of the form: [objidl | objid2]
This establishes a parent-child relationship between the
objects represented by objidl and objid2, with the former being

treated as a parent of the latter.

10

15

20

25

WO 97/15018 PCT/US96/15620

There are no constraints on the order in which entries _
appear in the metadata file except that the object entry has to

appear before its object identifier can take part in a

relationship.
D. GATEWAY PROCESS

In our illustrative embodiment, the HTTP server is
connected to the IH server through a gateway. This gateway
interacts with two types of programs: an HTTP server (which in
turn interacts with an HTTP browser (e.g. Mosaic or Netscape).
Any HTTP-compliant browser can interact with the HTTP server.
and the IH servers. There are five actions exported by the
gateway to the HTTP browser. They are: Setup, Init, Expand,
Query, and Show. There are four actions exported by the IH
server that the gateway uses. They are: Init, Expand, Query,
Show

By design, the HTTP protocol is stateless (see http://
info.cern.ch/hypertext/WWW/Protocols/HTTP/HTTP2.html for
information). This implies that interactions between an HTTP
browser and any HTTP server is stateless. No information about
clients is kept by the HTTP server between connections. This is
contrary to the needs of many applications, including our
gateway. To understand why this is so, consider the information
necessary for a user to issue a content-based query against a
collection. The user must specify: the machine where the IH
server they wish to interact with is running, the port number
the IH server is using to accept connections, their X display

value, the query text that should be used to select objects from

10

15

20

25

WO 97/15018 PCT/US96/15620

the collection, the maximum number of hits to return on a
successful query, and the collection against which the query
will be executed. One approach to gathering this information
would be to force the user to specify all necessary parameters
by hand on each interaction with the gateway. However, that
would clearly not be a very user-friendly approach. Instead,
our design is such that the user only needs to enter certain
information once, on a “setup” screen. All screens that are
presented to the user after the setup screen have “state”
information embedded into the URLs, so that if the user
activates the URL link, the embedded state information can be
eXtracted from it. One side effect of this is that, since some
of the HTML pages created by the gateway have many URLs, and
each of these URLs contains all of the information necessary to
maintain the state of the user’s interactions, there is a large
amount of duplicated information in the URLs on a single page.

This arrangement causes the gateway to spend time
performing two tasks: retrieving information from incoming
URLs, and reformatting the output of the IH server into URLS
(and HTML) .

Given the fact that interaction between the HTTP browser
and the HTTP server is stateless, it does not necessarily make
sense to talk about a correct sequence of calls to the HTTP
server. As long as the HTTP browser passes valid requests to the
gateway, the requests will be processed without regard to
order. However, in order to develop a basic understanding of how

the HTTP browser and the HTTP server interact, consider the

10

15

20

25

WO 97/15018 PCT/US96/15620

following sequence of events which many users will find
typical.

The HTTP browser opens a URL pointing to the gateway
(e.g., http://http.ctt.bellcore.com/cgi-bin/nph-ih.cgi). The
HTTP server responds by returning the setup screen to the HTTP
browser. The user determines the IH server to connect to and
enters the correct information on the fill out form on the setup
screen. Once the form is submitted, the gateway connects to the
specified IH server and requests a list of collections managed
by the IH server. For each item in the list returned by the IH
server, the gateway generates a URL containing all the
necessary information required to access this collection on the
next interaction, and returns the list to the HTTP server, which
in passes it to the requesting HTTP browser. The user can then
select one of the collections returned by the gateway for
further interrogation. If the collection is indexed, the
gateway presents a form to the user for entering the search
text. If the collection is not indexed, the gateway connects to
the appropriate IH server (as specified in the URL) and requests
the contents of the list. The list contents are then formatted
appropriately in HTML by the gateway, and URLs are generated for
each item in the list.

If the HTTP browser receives a fill out form, a search can
be initiated. If the user submits a query, the gateway sends
that request to the IH server. The IH server response is similar
to the results returned when the members of a list are

requested, and again, the gateway formats the results into a

10

15

20

25

WO 97/15018 PCT/US96/15620

list with their corresponding URLs. In either the search _
results list, or the simple list, the HTTP browser can select
any of the items in the list. If the user selects an item (i.e.,
clicks on the link), this translates to saying “show me this
item.” The gateway contacts the appropriate IH server (again
determined by the state information embedded within the URL)
and requests the particular item. If the item has been
designated as displayable by the IH server, the IH server
retrieves the item and uses X to display the item back to the
user. If the item has been designated as displayable by the HTTP
browser, the IH server retrieves the item and sends it back to
the gateway. The gateway determines (based upon the type of data
returned) what Multimedia Internet Mail Extension (MIME) type
the item corresponds to and returns the appropriate header
iﬁformation as well as the actual data to the HTTP browser.
Although IH users will find the steps outlined in the
previous paragraph familiar, it is important to remember that
these steps can occur in any sequence as long as the appropriate
information is passed to the gateway. Again, the reason for this
is the stateless nature of the HTTP. Some users may wish to
exploit this feature. A user may wish to construct several
"canned” queries against a particular IH server. The URL's
representing these queries can be imbedded in other HTML
documents providing more descriptive text regarding the
queries, or their intended results. Another user may want to
provide access to individual objects held by the IH server. They

may construct URLs that point directly to the objects (even

10

15

20

25

WO 97/15018 PCT/US96/15620

objects that are members of an indexed collection) and _
circumvent the need for search queries to retrieve the objects.
The processing that occurs at the gateway is relatively
straightforward. When an IH server generated link is activated
by the user (e.g., the user clicks on an object on the query
results screen), the gateway examines the URL that was
activated. All such URLs are unescaped and validated.
Unescaping a URL consists of replacing all sequences of the form
%$XX (where X is a valid hexadecimal value) with their
corresponding ASCII value. Validating a URL consists of
extracting the information contained in the URL (i.e., IH
server address, port, query text, etc.) and checking that the
values are within certain constraints (e.g., the address is a
valid TCP/IP address, the port number is non-negative, etc.).
after validation, the gateway identifies the action being
requested by the user and performs the specified action. For
some actions (e.g., query, expand, show) the IH server is
contacted for the desired information. For others, the gateway
can handle the request itself. In cases where interaction with
the IH server 1s necessary, the gateway determines the response
type for the IH server and performs the necessary reformatting
of any returned data. The gateway converts the response into an
HTTP compliant message and ships it back to the HTTP browser.
The gateway supports a number of different “actions” that
a HTTP browser can request. Each of these actions is described

below.

A “setup” request presents the user with the initial IH

10

15

20

25

WO 97/15018 PCT/US96/15620

server setup screen. This screen is used to set default values
used in other interactions with the gateway. This action is
normally the first action in a set of interactions between the
user and the gateway.

The “init” request determines the host name of the IH
server, the port where the server is accepting requests, and the
DISPLAY value of the user’s machine. Default values for these
variables are maintained in the gateway and are presented to the
user. The end user may alter any of these values from the setup
screen. The values submitted by the user are then maintained
across invocations of the gateway by adding them to all URLs
created by the gateway and returned to the user. Once the user
has specified these values and has submitted the request to the
gateway, they are presented with the list of collections that
ﬁhe IH server they specified can access.

The “expand” request expands collections. Expanding a
collection has a different meaning for different types of
collections. For indexed (i.e., searchable) collections, expand
provides a form-based interface for specifying search arguments
for the collection. For all other collections, expand causes a
request to be sent to the IH server asking for a particular IH
collection (specified by an object ID). The results of this
request are formatted in HTML for display back to the HTTP
browser. The HTML will not include a URL to the parent
collection when the object’s type is LIST: otherwise, a URL to
the parent will be included in the HTML.

A “query” request performs a query on an indexed

10

15

20

25

WO 97/15018 PCT/US96/15620

collection. The query text is passed to the IH server and if the
collection contains any information units that satisfy the
search criteria, the IH server returns a list of the IHO IDs
corresponding to the information units. If no matching
information units were found, the IH server returns a message
stating that no matches were found.

The “show” request provides the user with a capability to
view particular object. The object ID of the desired object and
the HTTP browser’'s DISPLAY value are passed to the IH server.
The IH server will either return the desired object to the
gateway (which then passes the object back to the HTTP browser),
or it will start a process to display the object back to the
HTTP browser.

E. DESCRIPTION QF THE IH SERVER

) The IH Server is key to our inventive system and provides
the end-users with access to a set of IH Objects (IHOs) that
make up that server's repository. Upon start-up, the server is
told what collections will make up that server’'s repository.
For each collection specified, the server locates, reads, and
parses the collection’s metadata file, constructing an internal
(in-memory) representation of the IHOs and their relationships.
Each IHO in memory is an instance of an “artifact” C++ subclass;
the particular subclass depends upon the type of the IHO and
determines how the object will handle incoming HTTP browser
requests. Once it has read the metadata, the server goes into an
event loop where it waits for incoming requests from the

Gateway, processes those requests, and sends back appropriate

10

15

20

25

WO 97/15018 PCT/US96/15620

responses. -

The following sections describe the processing performed
by the server in more detail.

The IH server is initialized either manually by an
administrator or automatically during a machine’s boot cycle.
The server is told which collections will make up its repository
through various command-line arguments. For each collection, an
ihMeta object is constructed to read and parse the metadata for
that collection (see table 75 in Figure 6). Each collection is
stored in its own subdirectory and contains a file called
IH_SUMMARY that contains meta-information about the collection.
The server uses that meta-information to determine specifically
which IHO metadata files to read.

Each metadata file contains entities describing
eﬁcapsulated IHOs and their inter-relationships. The ihMeta
object parses each entity one at a time. An entity can be either
an IHO or a relationship. For each IHO entity, a new ihAnifact C++
object is constructed. The object is actually an instance of one
of the concrete classes derived from ihArifact. The particular
concrete class generated depends on the IHO's type attribute;
each artifact subclass defines specific behavior for various
requests against that type of object. The type thus determines
how the artifact will respond to end-user actions on the object.
Once the object has been created, it is added to a global object
table for future reference, using the ObjectId as the key.

Relationship entities designate parent-child associations

between two objects. When a relationship is read from the

10

15

20

25

WO 97/15018 PCT/US96/15620

metadata file, the server looks up both “ends” of the
relationship in a global object table and establishes a bi-
directional reference between the parent and child artifacts
(i.e., the child is added to the parent’'s set of children and
the parent is added to the child’s set of parents).

While parsing metadata, if the ihMeta object detects
malformed entities it reports appropriate error messages to the
administrator. If too many errors are found, the server aborts
before reaching the event loop.

Once the server has successfully read in all of its
collections, it goes into the main event loop and waits for
requests from clients.

The IH server runtime object model is based upon a class
hierarchy of abstract and concrete C++ classes. Every IH Object
has both a type and a subtype. The type defines which concrete
class will represent the IHO in the server’s internal
representation of the object and how, in general, the object
will respond to user actions. The subtype determines how those
general actions on the object will actually be implemented (for
instance, server-side PostScript objects (type MM, subtype
postscript) get displayed by running Ghostview while server-
side FrameMaker objects (type MM, subtype frame) get displayed
by running FrameMaker software. The types and subtypes of the
objects are determined by the extractors during collection
preparation.

Figure 7 shows a class inheritance diagram for the ihArtifact

family of classes. ihArtifact is an abstract class that defines the

10

15

20

25

WO 97/15018 PCT/US96/15620

interface to all IH Objects in the system. As an example, the _
ihArtifact abstract class 80 inherits the attributes from the
ihArtFile objects 82 and the inArtSet objects 84.

Figure 8 depicts a table that defines the abstract
interface to artifact objects. Figure 9 depicts a table
containing descriptions of how each of the subclasses
implements those methods described in Figure 8.

Each metadata entity in a repository is represented at
runtime by an instance of a class in the ihArifact hierarchy.
These artifacts are maintained via two mechanisms: (1) an
object table that maps object IDs to artifacts, and (2) a graph,
linking objects by two-way parent-child relationships. As the
metadata entries are read from files and instantiated as
artifacts, they are added to the object table. This table is
stored in an instance of the ihGraph class (see Figure 10) called
“graph”. Figure 11 shows an example of the primary object
relationships in the server at runtime.

Once the server has finished loading all of the metadata
from the repository’s collections, the server enters the main
event loop. The main loop is responsible for reading and
processing requests. In pseudocode:

Do forever:
Wait for an incoming connection from a client
Spawn a new process to handle the request (s)
For each incoming request (normally only one),
Read the request
Process the request
Return the response to the client

Close connection and exit child process

The server processes each incoming request as it is

10

15

20

25

WO 97/15018 PCT/US96/15620

received from the HTTP browser. The server contains a global
instance of the class ihipc called “server” that handles the
inter-process communications. The main event loop asks the
“server” object to read the next request; once read, the request
is passed on to the metadata graph object for processing. The
graph parses the request to determine the object ID of the
object being acted on as well as the action to take on it. The
graph looks up the artifact in its object mapping table, invokes
the appropriate method on that artifact, and captures the
results. The results are then returned back to the HTTP browser.
Figure 12 shows an example of this behavior in an object
interaction diagram. The main event loop 100 tells the server
object 101 to read a request and tells the graph to process 102
the request. The graph invokes the appropriate method on the
a}tifact (in this case, activate 103), which may in turn runs a
browser script 104 to actually retrieve the desired data. The
results are returned to the gateway by the server object.

Each object type in the IH server responds to user
interactions in its own way. Sometimes this functionality is
coded directly in C++ in the IH server, other times the
functionality is dependent upon “helper” programs called
“browser-scripts.” A browser-script defines type/subtype-
specific mechanisms for accessing an object.

The input to a browser-script is a location parameter
that identifies the object to be viewed. The responsibility of
the browser-script is to display this cobject to the user; how

this is achieved depends upon the kind of data contained in the

10

15

20

25

WO 97/15018 PCT/US96/15620

object and how that data is to be shown to the user. For -
example, the browser-script for PostScript documents is invoked
when the user wants to display a document whose type is MM
(“server-side” multimedia) and whose subtype is ps. The
PostScript browser-script takes the name of a PostScript
document and executes a viewer program (i.e., ghostview) to
display that document. The C browser-script is passed the name
of a C file and the name of a function within that file; the
script extracts the specified function and sends that text back
to the invoking program (the server).

There are two implementation details that are not central
our invention but which are important to highlight in this
embodiment: (1) The encapsulate method for executing system
commands; and, (2) the ihBlockMgr class for capturing large
oﬁtput.

There are several instances where the IH server needs to
execute a UNIX program (such as a Perl script) and capture its
output. For example, the server runs Perl programs called
"Browser-scripts;” these scripts display the contents of an
object to the user in a type- and subtype-specific manner.
Additionally, when the server queries an index, it needs to run
an indexer-specific Perl program, which in turn executes a
search program and formats the responses. The stand-alone
function “encapsulate” is used for both of these tasks.

Encapsulate forks a new child process and establishes the
equivalent of a pipe between the parent and child processes: the

child’'s standard error and output are redirected back to the

10

15

20

25

WO 97/15018 PCT/US96/15620

parent, which then reads that output. The output from the child
is collected in a dynamically sized buffer (see the Block
Manager, below); the buffer can then be sent back to the HTTP
browser if necessary.

The GNU String class is not sufficient by itself as a data
structure for storing arbitrarily long byte streams because it
is restricted to containing a maximum of about 32,768 bytes.
Therefore, a more sophisticated mechanism is required for
capturing the output of browser scripts or for reading in
arbitrarily large files. The ihBlockMgr class serves this
purpose. This class maintains a sequence of zero or more
“blocks,” or buffers, of data. Each block can hold up to a fixed
number of bytes. As data is being captured by the encapsulate
function or read in from a file, it is written into the last
biock in the block manager’s sequence. When the current block
fills up, a new block is added to the sequence. Thus, the block
manager is an efficient way to hold a dynamically growing stream
of bytes. In addition to providing mechanisms to add data to the
block manager (which is instantiated once globally), ihBlockMgr
includes methods for iterating through the blocks one at a time
and for clearing out the manager’s contents.

E. SUBSYSTEM INTERACTION

Within our pre-processing methodology we define a process
“in_prep”, which is a Perl script used to extract metadata.
In_prep cooperates with two other types of programs: extractors
and indexers. Extractors are type specific Perl subroutines

required by in_prep to traverse physical data and extract the

10

15

20

25

WO 97/15018 PCT/US96/15620

necessary information required for metadata and indexes. A -
separate extractor is needed for each type of data placed under
control of an IH server. Indexers can be implemented using any
language desirable. The only limitation imposed is that the
in_prep process must be able to access the indexer via the Perl
“system()” function. Indexers are not type specific, since they
can be applied to any text data. Indexers are used to provide
content-oriented qgueries over physical data. Figure 13
illustrates the interaction that take place between in_prep,
extractors, and indexers. For each invocation of in_prep 111,
an extractor is called to process each member of the desired
information units. The in_prep process passes the location of
the physical data (usually a file name) to the extractor 112.
The extractor in turn processes the physical data (referred to
aé an information unit IU) and extracts metadata as well as text
to be indexed from the IU, and if there is more than one IHO in
the IU, the extractor also establishes relationships between
the objects.

The objects and relationships created by the extractor
112 are returned to in_prep 111 which writes them to the
metabase for use later by the IH server.

In_prep 111 invokes the appropriate indexer to index 113
the text data extracted from the IU. The output of the indexer
is saved in the metabase for later use by the IH server.

The metadata entries produced by in_prep and stored in
the metabase are loaded into memory by the IH server at run

time. The IH server then enters a loop where it responds to

10

15

20

25

WO 97/15018 PCT/US96/15620

incoming requests from HTTP browsers. Referring back to Fig. 3,
after the server is initialized and running, the IH server
enters a main event loop and waits for requests from clients 38.
End-users then access the IH server through an HTTP server 40.
Once the end-users access the IH server, they perform one of
three actions to select an object 42: (1) a metadata based
query, (2) a content based query, or (3) explicitly navigate
around the IHOs. Once an object is selected, it can be accessed
and browsed by activating either a client side browser 44 or
server side browser 46. The user may also operate on the object
choosing from a set of procedures such as print, store, fax,
etc.

Figure 14 illustrates the processing of a request by an
end-user for conducting a metadata query. A client requests
151, via HTTP, the initial collection held by an IH server. The
request is passed, via the CGI 122, to the gateway. The gateway
connects to the IH server and requests 123 the initial
collection via a internal protocol. The IH server determines
the initial collection based upon its in-memory metadata and
returns the results to the gateway 124. The gateway reformats
the response into HTML and sends 125 its response to the HTTP
server. The HTTP server passes 126 the results back to the HTTP
browser client without interruption since our gateway is a “no
parse header” gateway. This means that the HTTP server will do
no parsing of our response, and the gateway must be able to form
correct HTTP responses.

Figure 15 illustrates the process for conducting a

10

15

20

25

WO 97/15018 PCT/US96/15620

context-oriented query. The end-user via HTTP, for an B
InfoHarness collection held by an ih_server requests a context-
oriented query 151. The request is passed via the CGI to the
gateway 152. The gateway connects to the ih_server and requests
a context-oriented query 153, passing the query text. Based
upon the type of the InfoHarness collection, the proper indexer
is invoked to perform the search 154. The indexer returns a list
of TIHOs that satisfy the query 155. The IH server returns the
list of IHOs to the gateway 156. The gateway reformats the list
of InfoHarness objects in the HTML and returns the list to the
HTTP server 157. The HTTP server transmits the list of objects
to the HTTP browser 158.

Figure 16 illustrates a the processing of a request for
invoking a server side browser. A client requests, via HTTP, an
IH object held by an IH server 161. The request is passed via
the CGI to the gateway 162. The gateway connects to the IH
server and requests the IH object via any internal protocol 163.
IH server determines that the requested object requires the
invocation of a server side browser 164. The correct browser is
invoked with the location of the object. The browser starts a
process that displays the object back to the client’s machine
164. Any error text generated by the browser is returned to IH
server 166. IH server returns a message to the gateway
indicating either successful invocation of the browser, or
error text generated by the browser 167. If an error message was
received from IH server, it is reformatted into HTML and passed

back to the HTTP server 168, otherwise, the gateway indicates

10

15

20

25

WO 97/15018 PCT/US96/15620

success via the HTTP 169 OK message. The response from the -
gateway is transmitted to the user via HTTP 170. As long &as the
user does not close the application started by the browser, they
can invoke any actions supported by the application and the
results will be sent back to the machine where the browser was
started. (Note the security risks associated with server side
browsers. The user has access to an application that runs with
the inherited permissions of IH server. This implies that the
user may be able to open other files, change other files, and
may even be able to escape to the shell on the machine where the
browser was started (again inheriting the identity of the user
that started IH server).

Figure 17 illustrates the process for a request for
invoking a client side browser. A client requests via HTTP, to
sée an IH object held by an IH server 171. The request 1s passed
via the CGI to the gateway 172. The gateway connects to the IH
server and requests the IH object 173. IH server examines the
type of the object requested and determines that the object can
be displayed using a client side browser (or in HTTP browser
terms, an external viewer). The location of the object is
determined and the IH server returns the contents of the file to
the gateway 174. The gateway performs a mapping between the IH
subtype of the object and the MIME type corresponding to the
object. This MIME type is returned with the object contents to
the HTTP server 175. The HTTP browser receives the contents of
the object and determines which external viewer to invoke for

the specified MIME type 176. The contents of the object are

WO 97/15018 PCT/US96/15620

stored in a temporary file. The external viewer is started 177

with the name of a temporary file that contains the contents of

the requested object.
It is to be understood that the method and system for
5 providing uniform access to heterogeneous information as
illustrated herein are not limited to the specific forms
disclosed and illustrated, but may assume other embodiments

limited only by the scope of the appended claims.

10

15

20

25

10

15

20

25

WO 97/15018 PCT/US96/15620

We Claim:

1. A system for providing uniform access heterogerieous
data from a plurality of end-users, said system comprising:

a database of metadata extracted from a plurality of
information sources; and

a server having locaded in memory, instantiations of
said metadata from said database

2. The system as claimed in claim 1 wherein further
comprising information servers containing said information
sources connected to said server.

3. The system as claimed in claim 2 further comprising a
plurality of end-users operating HTTP compatible browsers all
connected to said server.

4. The system as claimed in claim 3 wherein said
instantiations of said metadata lcaded in said server memory
are organized into objects, collections, and respositories.

5. A method for providing a plurality of end-users access
to individual information units of heterogeneous information,
said method comprising:

pre-processing said individual information units of
heterogenous information to extract metadata for each of said
informtion units;

creating a database of said metadata;

loading said metadata from said database into a
server’'s resident memory;

placing said server into a main line loop awaiting
reguests from said end-users;

receiving requests for information at said server
from said end-users; and

responding to said requests using said metadata

10

15

20

25

WO 97/15018 PCT/US96/15620

stored in said resident memory. -

6. The method as recited in claim 5 wherein said database
created from said metadata organizes said metadata into objects
and collections.

7. The method as recited in claim 6 wherein the step of
loading said metadata from said database includes the steps of
loading said objects and collections, and further includes the
step of organizing said objects and collections into
repositories.

8. The method as recited in claim 6 wherein said request
received from said end-users is either a metadata query or a
information content query and wherein said server responds to
said query returning one of said objects satisfying said query.

9. The method as recited in claim 8 wherein said
responding step further includes the step of invoking a client
side browser to view said information units identified by said
one of said objects.

10. The method as recited in claim 8 wherein said
responding step further includes the step of invoking a server
side browser to view said information units identified by said

one of said objects.

WO 97/15018 PCT/US96/15620

1/14

4

12\
End User/”
HTTP Browse'r/

J

R
\a—

18 Gateway| [Repositofy

” - 28

e
/

HTTP
‘_‘

R

16

Fig. I

WO 97/15018 PCT/US96/15620

2/14

Information Provider Invokes 30
Registration Procedure _/
. 2
Administrator invokes pre-processor of physical data —/
* 33
Adminstrator invokes extraction process -
- 34
Creation of a metabase (file or database of IHOs) _/

Tig. 2

WO 97/15018

PCT/US96/15620

3/14

36
THOs loaded in IH Server Memory —/

Y 8

Server enters Main Event Loop —

* 40

Client request access to IH Server _/
through Gateway '

+ 42
Select Object by:
(1) metadata based query
(2) content based query
(3) explicitly navigate around IHOs

|

| l 44

Access using Access using _/
Client Side Server Side
Browser Browser

Fig. 3

WO 97/15018 PCT/US96/15620

4/14
48 52

fll:fl2:fl3:fl4:f15:fl6lf21:f22:f23:f24:f25:f26|
L J

[
50

Fg. 4(a)
Field Number Name Description
1 " Location Indicates where the IU is stored so that it
/_ can be retrieved later
55 2 Unique Objld Whether ih_prep should use the location
/— Indicator to construct a unique object ID
3 Depth Used to create parent-child relationships
- 56 between [Us
/ Subtype Subtype for the object (e.g., frame, ps)
58/ 5 Subject Summary information displayed to the
user during browsing
60 6 Text The extracted text from the IU, used if
necessary during indexing

\S

54 —

g

Fig. 4(8)

WO 97/15018 PCT/US96/15620

5/14

(objid|type|subtype|location|attribute= =value|attribute=value. .)

70 j 71j 72j 73 j 74 j
Fig. 5

ihMeta Class

Description Reads and parses the metadata entries for a
collection, constructing artifact objects and
establishing relationships between them as the
data is read.

Primary Methods * readMetadata: Static method called by main
module to read metadata from a file.

* getNextKind: Determines the next “kind” of
metadata entity (object/relationship).

* getArtifact: Reads and constructs the next
artifact object.

* getRelationship: Reads the next

relationship.
Primary — ihGraph (uses)
Collaborations — ihArtifact (constructs)
— main() (used by)
75 —

Fig. 6

WO 97/15018

PCT/US96/15620
6/14
80
ihArtifact .)

82 84

ihArtFile ihArtSet /

Base class for file- Base class for
based objects collections
ihFileServer ihArtFileClient ihArtIND ihArtList
Base class for Base class for Indexed Non-indexed

server-side objects client-side objects collections collections

ihAnEX ihArtMM ihAntCMM ihArtHTML ihArtTxt
Executable| | Server-side Client-side Web ASCII-
Multi-media Multi-media Hypertext based

WO 97/15018

PCT/US96/15620

7/14

ihArtifact Class

Description

Defines abstract interface to artifact objects,
which are in-memory instantiations of the IOs
encapsulated by metadata. These objects respond
to actions taken by the end-user during
navigation through “IH-space.”

Primary Methods

* getAttribute: Returns the value of an
attribute.

* getType: Retumns the type of the artifact.

® getParent/getChild: Retumns an artifact’s
parent or child given an Objectld.

* format: Creates a “flattened” ASCII
representation of the metadata in the
artifact, including attribute/value pairs and
numbers of parents/children.

* formatChildren: Creates a string of the
artifact’s children, flattened by format.

* display: View the object encapsulated by
the artifact.

The following are directly invoked by client
requests:

* query: For indexed collections, issue a
query against the collection and return the
matching objects.

* expand: Return a representation of the
object (typically via format).

* activate: Perform appropriate action when
user “clicks” on the object (e.g., view the
object by calling display).

Primary
Collaborations

— ihGraph (managed by)

— ihMeta (constructed by)

Fig. 8

PCT/US96/15620

WO 97/15018
8/14
ihArtifact Subclasses -- How they Override Key Methods
Class query (QUERY) expand (EXPAND) activate (SHOW)
ihArtFile ERROR Return formatted object and | Invokes virtual display method.
its children. which is overridden in derived
classes to “show" the object.
(Descriptions below describe how
display works).
ihArtFileClient ERROR? Return formatted object and | For subtype none. returns contents
its children.? of file. Otherwise, runs browser
script and returns its output.
ihArtFileServer ERROR? Retumn formatted object and N/A (pure virtual)
its children.2
ihArtTxt ERROR? Return formatted object and | For subtype none, returns contents
its children.? of file. Otherwise, runs browser
script and retums its output.?
ihArtHTML ERROR? Return formatted object and | For subtype none, returns contents
its children.? of file. Otherwise, runs browser
script and retumns its output.?
ihAntMM ERROR? Return formatted object and | Run the browser script to display
its children.? the object (usually over X
- connection) and return the results.
ihAntCMM ERROR? Retumn formatted object and | Return the contents of the file;
its children.? Gateway will add MIME-type to
header so client will view object.
ihArtEX® ERROR? Return formatted object and | Run the executable for the object’s
its children.® subtype, returning the results.
ihArtSet ERROR? Return formatted object Return formatted object without its
without its children. children.
ihArtList Returns the entire list { Return formatted object and | Return formatted object and a list
of objects. alistof children, making sure| of children, making sure returned
returned results won't results won’t overflow size limits.
overflow size limits.
ihArtIND Issues a query against | Return formatted object Return formatted object without its
the indexed collection | withour its children.? children ®
and returns list of
matching objects.

a. Inherited method from parent class.

9

WO 97/15018

PCT/US96/15620

9/14

ihGraph Class

Description

Maintains map of object IDs to artifact objects;
processes incoming requests by passing them to
appropriate artifact.

Primary Methods

* getEntry: Returns the “top-level” object,
the collection without any parents.

* getartifact: Returns an artifact object
given its object ID

* process: Process an incoming request from
the client.

Primary
Collaborations

— ihMeta (modified by)

— main() (constructed by, used by)

(inGraph)

graph 1" Ceeeaal L, FrameCollection
(ihArtIND)

«« - « & Graph Entry

G- Parent-Chitd Link

Fig. 10

XICOIcHo
------------ D)

.
ia
‘e,

-
-
-~ -

LY gu TextFile1
Y (IhArtTxt)
FrameFile1
(ihArtMM)

Fig. 11

WO 97/15018 PCT/US96/15620
101 102 103 103
\ server grap artifact
event loop (ihlpc) (ihGraph) (ihArtifact) Browser-script
read
process
activate
encapsulate
write
112
extractor _/
"'ln_prcpll
—/ 113
1 .
11 indexer _/

Fig. 13

WO 97/15018

PCT/US96/15620

11/14
HTTP
Browser
121 126
HTTP
HTTP server
122 CGI 125
124 Metadata
—]
Gateway Internal Protocol | ih_server
-
. 123

Fig. 14

WO 97/15018

PCT/US96/15620
12/14
HTTP
Browser
151| HTTP 158
Y
HTTP server Indexer
152 CGI | 157 154 155
156
G
ateway Private Protocol ih_server
—

153

Fig. 15

WO 97/15018

HTTP

Browser

163 HTTP

HTTP server

162| CGI

Gateway

13/14

167

PCT/US96/15620

X client displayf

X
163 Proto. | 160

Browser

Pipe

Internal Protocol

163

-

ih_server

ig. 16

WO 97/15018

PCT/US96/15620
14/14
HTTP External
Browser =% Viewer
177
171| HTTP
HTTP server
172 CGI1 175
174
Gateway Private Protocol ih_server

Fig. 17

INTERNATIONAL SEARCH REPORT International application No.
PCT/US96/15620

A. CLASSIFICATION OF SUBJECT MATTER
IPC(6) :GO6F 17/30
US CL : 395/601,604,610,200.09
According o International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
US. : 395/601,604,610,200.09

Documentation searched other than minimum documentation to the extent that such documents are included in the ficlds searched

Electronic data base consuited during the international search (name of data base and, where practicable, search terms used)
APS, DIALOG (PATENTS, COMPSCI, 35), COMPUTER SELECT, PROQUEST, INTERNET

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of documeat, with indication, where appropriate, of the relevant passages Relevant to claim No.

X,P US 5,493,677 A [BALOGH ET AL.] 20 February 1996, see| 1-3
---------- entire document. ———eee

Y,P 4-10
A _| Slonim et al., The Information Utility: a Project Retrospective, | 1-10
Software Engineering Journal, Vol: J5, No: 4, July 1990,
pp. 223-236.
X Freeman et al., Hosting Services- Linking the Information| 1-2,5

---------- Warehouse to the Information Consumer, Digest of Papers. | --------=—---
- Spring COMPCON 94, San Francisco, California, 28 February| 3,4,6-10
Y - 04 March 1994, pp.165-171, especially p 165, col 2, p.
166, col 1,p. 167 col. 2, Figure 1, Figure 2.

E] Further documents are listed in the continuation of Box C. D Scc patent family annex.

s Special categories of cited d T later documcot published after the international filing date or priority

. L . date and not in coaflict with the application but cited to understand the
"A° d d the general state of the art which is not idered nci) i >
I:f:ﬂ:’?l eﬁﬂﬂln [of which is not cons principle or theory underlying the inveation
carlier document published 0n or afier the intcrnational filing date X document of partic relovance; the clum ‘f‘":“."”“?‘"‘-:
document which may throw doubls oa priority claims) or which i when the document is taken alone
::;:’-lwmm (ns :cs'“nbd) date of ‘ or other °Y" document of particular reicvance; the claimed invention cannot be
considered to involve an invenlive step when the document is
*0" document referring 0 an oral disch use, exhibition or other combinod with one or more other such documents, such combination
means being obvious 10 a person skilled in the art
°pP* document published prior to the international filing date but later than g * i
the ori 'wdb;lecl .P"“I filing r & document member of the same patent family
Date of the actual completion of the international search Date of mailing of the international scarch report
18 NOVEMBER 1996 1 3 D EC 1996
Name and mailing address of the ISA/US uthorized officer ‘
Commissioner of Patents and Trademarks U . ’\ ! “! {
Box PCT NJ
Washington, D.C. 20231 -\ PAUL R. LINTZ -
Facsimile No. (703) 305-3230 lephone No. (703) 305-3832

Form PCT/ISA/210 (sccond sheet)(July 1992)

INTERNATIONAL SEARCH REPORT International application No.

PCT/US96/15620

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

Y

Robert Hess, "Cyberdog to Fetch Internet Resources for OpenDoc
Apps.*, MacWEEK, Vol: 8, No: 44, 07 November 1994, pp 1-2.,
especially page 1, lines 13-22

David Stodder, Reinventing the Database: Data Warehouse and
Economics will Shift the Database Landscape in 1995, Database
Programming and Design, vol. 8, no. 1, January 1995, pp. 7-9.

Colin White, The Key to a Data Warehouse: Unlocking the
Secrets of Data Warehousing With thye Information Directory,
Database Programming and Design, vol. 8, no. 2, February
1995, pp 23-265.

Ellis Booker, US West Chanpions Internal Internet,
Computerworld, vol. 29, no. 11, 13 March 1995, pp. 2.

R. Oswald, Manitoba Land Related Information System: The
Information Utility, IEEE WESCANEX 95: Communications,
Power, and Computing Conference Proceedings. Winnipeg,
Manitoba, Canada, 15-16 May 1995, pp. 252-257, especially,
p252, 253 column 1, Figure 1, p. 255, Cols. 1 & 2.

George A. Thompson, Warehouse? There House!, HP
Professional, vol. 9, no. 5, May 1995, pp11-13.

Amy Rogers, Oracle Intros Add-Ons for Data Warehouses,
Communications Week, no. 567, 24 July 1995, pp. 15-16

C. James, What goes into an Information Warehouse?, Computer,
vol. 28, no. 8, August 1995, pp. 84-85,

1-10

1-10

1-10

1-10

1-10

1-10

1-10

1-10

Form PCT/ISA/210 (continuation of second sheet)(July 1992)«

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

