PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

{51) International Patent Classification 6. (11) International Publication Number: WO 98/37486
GOGF 9/445 Al . I

(43) International Publication Date: 27 August 1998 (27.08.98)

(21) International Application Number: PCT/IB97/00135 | (81) Designated States: JP, US, European patent (AT, BE, CH, DE,

(22) International Filing Date: 18 February 1997 (18.02.97)

(71) Applicant (for all designated States except US): INTER-
NATIONAL BUSINESS MACHINES CORPORATION
[US/US]; Old Orchard Road, Armonk, NY 10504 (US).

(72) Inventor; and
(75) Inventor/Applicant (for US only): EIRICH, Thomas [DE/CHJ;
Zopfstrasse 16, CH-8804 Au (CH).

(74) Agent: HEUSCH, Christian; International Business Machines
Corporation, Saumerstrasse 4, CH-8803 Rueschlikon (CH).

DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

Published
With international search report.
With amended claims.

(54) Title: METHOD FOR LOOKUP OF PACKAGES AND CLASSES IN JAVA, AND DEVICES MAKING USE OF THIS METHOD

(57) Abstract

The present invention concerns a client system comprising a Java interpreter for the execution of a Java program (Java applet) and a
set of Java classes for interaction with the client system. The client system only holds a reduced set of Java classes, and comprises means
for loading Java classes which do not belong to the reduced set of Java classes into the client system only if needed during execution of
said Java program. It may also include means for erasing such a loaded class and/or means for storing such a loaded class permanently,

i.e., adding it to the reduced set of Java classes.




AL
AM
AT
AU
AZ
BA
BB
BE
BF
BG
BJ
BR
BY
CA
CF
CG
CH
CI
CM
CN
CU
cz
DE
DK
EE

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT,

Albania
Armenia
Austria
Australia
Azerbaijan
Bosnia and Herzegovina
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus

Canada

Central African Republic
Congo
Switzerland
Cote d’Tvoire
Cameroon
China

Cuba

Czech Republic
Germany
Denmark
Estonia

ES
F1
FR
GA
GB
GE
GH
GN
GR
HU
IE
IL
IS
IT
JP
KE
KG
KP

KR
KZ

LC

LI
LK
LR

Spain

Finland

France

Gabon

United Kingdom
Georgia

Ghana

Guinea

Greece

Hungary

Ireland

Israel

Tceland

Italy

Japan

Kenya
Kyrgyzstan
Democratic People’s
Republic of Korea
Republic of Korea
Kazakstan

Saint Lucia
Liechtenstein

Sri Lanka

Liberia

LS
LT
Lu
LV
MC
MD
MG
MK

ML
MN
MR
MW
MX
NE
NL
NO
NZ
PL
PT
RO
RU
SD
SE
SG

Lesotho

Lithuania
Luxembourg

Latvia

Monaco

Republic of Moldova
Madagascar

The former Yugoslav
Republic of Macedonia
Mali

Mongolia

Mauritania

Malawi

Mexico

Niger

Netherlands

Norway

New Zealand

Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore

SI
SK
SN
SZ
TD
TG
TJ
™
TR
T
UA
UG
uUs
UZ
VN
YU
W

Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Turkmenistan
Turkey

Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam
Yugoslavia
Zimbabwe




10

15

20

25

30

WO 98/37486 PCT/1B97/00135

DESCRIPTION

Method for lookup of packages and classes in Java,

and devices making use of this method

TECHNICAL FIELD

The present invention relates to a method for loading Java classes or
packages into a client system where these classes or packages could not be
found otherwise (“Java” is a programming language deveicped by and a
trademark of SUN Microsystems Inc., USA). Furthermore, the present
invention relates to a new group of Java-enabled devices making use of the

method for loading Java classes or packages.

BACKGROUND OF THE INVENTION

Current networks, such as the Internet are heterogeneous systems linking
computers of various manufacturers. There are many different hardware
platforms - based on Intel processors, RISC processors, and the like - each
of which has a specific architecture. In addition, there are various operating
systems which are installed on these platforms. In order to access the
world-wide-web (WWW) part of the Internet for example, one also needs a
so-called browser which is able to fetch information from a remote server.
Such information is then stored in the client computer, i.e. the computer
where the browser is located, before it is displayed on the local display.

Such a browser is able to invoke a suitable editor for viewing information.

Currently, the hypertext markup language (HTML) is used on many network
servers. HTML is mainly suited for loading information into a client
computer where this information is then displayed. Interaction between

client and server is only possible if the browser makes use of the Common



10

15

20

25

30

WO 98/37486 PCT/1IB97/00135

Gateway Interface (CGl). CGl enables a user to insert information in an entry
panel. Based on the information inserted by the user, certain tasks can be
carried out by the server. A typical example is a search engine which
supports the user in searching for a particular word or combination of

words.

Real interactivity is possible if one uses Java programs (also called Java
applets). It is an important feature of Java that the client computer instead
of the server is the computer which carries out certain task upon request of
the user. The time a task takes does no longer depend on the load of the
server or on the load of the network linking the client to the server. Once a
Java program is loaded into the client, it runs on the client and is

completely under control of the user.

A Java applet is a program written in the Java language. By means of a
Java compiler it is transformed into Java code. This Java code is a byte
code being platform-independent. Usually, the byte code is made available
on a server. |f a user wants to use a Java applet, he fetches the applet from
the server, i.e. the respective byte code is transmitted via the network from
the server to the client and loaded into the client computer. This is done
under control of a Java interpreter being located at the client. The Java
interpreter checks the process of loading the byte code and performs some
verification tasks to ensure that the byte code received conforms to a

required specification, the Java Byte Code specification.

Next, the Java interpreter executes the byte code step-by-step. Because
this interpreter is required for the execution of the byte code, a Java applet
usually is much slower than a comparable applet written in a native
programming language which can be directly understood and executed by

the processor of the client.

From time to time, the interpreter needs to interact with the client system

directly, e.g. if there is information on a local disk to be loaded. In order to



10

15

20

25

30

WO 98/37486 PCT/IB97/00135

enable the interaction between the Java interpreter and the client system, a
so-called Java system API (application program interface) is provided. The
APl is client-specific. In today’s systems, a built-in Java class loader is
provided which searches for a class or package needed and loads the
respective package or class. All these packages and classes have to be

installed on the client before Java applets are executed.

It is a disadvantage of this approach that the Java packages and classes
need to be made available by the client, i.e., memory is occupied by the
packages and classes kept in the client. It is another disadvantage that new
or updated packages and classes can only be added by loading them into

all client computers.

It is an object of the present invention to provide low-cost client systems,
such as computers, set-top boxes, telephones and the like, which support

Java, which do not require the memory space identified above.

It is another object of the present invention to provide a method which
allows to execute Java applets on low-cost systems, such as small network

computers, set-top boxes, telephones and the like.

A further object of the present invention is to minimize the size of the
pre-loaded functionality, especially the number of Java classes on client

systems.

A still further object is to avoid loading the network with bulk transmissions
of notifications, updates and/or modifications of Java classes from servers

to a large plurality of clients.



10

15

20

25

30

WO 98/37486 PCT/IB97/00135

SUMMARY OF THE INVENTION

This is achieved by providing a new and inventive approach which allows to
reduce the number of classes to be kept in a client system. In order to be
able to execute Java code using a Java interpreter, a special mechanism for
loading those classes which are not found on the local client system is
provided. This special class loader, referred to as extended class loader,
enables the loading of unavailable classes into a client system, before they

are loaded into the runtime system via the existing API.

Thus, the number of classes in a client system can be reduced, such that a
client system according to the present invention needs far less storage
space than a conventional Java client. In other words, smaller and cheaper
systems can be made. Network computers, a new category of machines
designed to cut the cost of personal computing, can be realized, which just
provide the functionally that is permanently needed. Classes which are not
available at the client are loaded only upon demand by the extended class

loader according to the present invention.

It is another advantage of the present invention that all classes, except for
those being stored in the client system, remain under the control of the
server. These classes can be modified and updated from time to time
without having to notity the clients and/or transmit modifications and

updates automatically to a large number of clients.



10

15

20

25

30

WO 98/37486 PCT/IB97/00135

GENERAL DESCRIPTION

The expression ‘client system’ is used hereinafter as a synonym for any
kind of system enabled to execute a Java applet. Typical examples of such
client systems are: computers, in particular network computers, set-top
boxes, telephones, cellular phones, pagers, printers and the like. Also
included are browsers and other software which is able to execute a Java

applet.

The network which is used to interconnect the client system with a server
from where a Java applet can be fetched, may be a conventional network or
a wireless IR or RF network. The expression network is also meant to cover
a simple link (peer-to-peer, for example) between a client system and a

server. Also included are telephone, video on demand and other networks.

A client system comprises a Java interpreter which is mainly employed to
control the loading of a Java applet from the network. This Java interpreter
checks the process of loading the respective byte code and performs

verification tasks to ensure that the byte code received was transmitted

properly.

Either automatically, or upon request of the user, the Java interpreter now
executes the byte code step-by-step. During the execution of a Java applet,
the interpreter needs to interact with the client system directly, e.g. if there
is information on a local disk to be loaded, or information to be displayed
on a display. In order to enable the exchange of information between the
Java interpreter and the client system, the Java system APl is provided.

This API is client-specific.

In today’s systems, the Java interpreter comprises a built-in Java class
ioader which handles the binding of said Java classes with the Java applet
executed. It initiates the access to a class referred to by a string in the byte

code of said applet. Then, it looks up the respective class to be accessed



10

15

20

25

30

WO 98/37486 PCT/IB97/00135

and loads it into the Java interpreter. A pointer is returned which indicates

where said respective class is located in said client system’s memory.

In current client systems, all these packages and classes have to be

pre-instalied before a Java applet can be executed by the interpreter.

Packages and classes in Java are organized in a tree, where the inner
nodes of the tree are package components and the leaves are class names.
A class is specified by a possibly empty sequence of package components
followed by a class name. These components are separated by dots such as
for example : java.util.Date. In this example ’'Date’ is the class name and
‘util” and ‘java’ are package components and the whole string is referred to
as qualified class name. The class name specifications are translated into
path names of the client system’s operating system (e.g. java/util/Date) and
are expected to refer to a file containing the definition of a Java class, i.e. a
pointer is provided which indicates where the respective file is to be found

in the client’s memory.

It has been realized that these packages and classes can be divided up into
classes and packages which are required by the client system to ensure
proper operation (hereinafter referred to as essential classes), and other

classes and packages.

The underlying idea of the present invention is to reduce the burden of a
client system by pre-installing only those classes and packages which are
essential for the execution of most Java applets. In addition to these
essential classes and packages, one may pre-install those classes and
packages which are expected to be needed frequently during the execution
of specific Java applets the respective client system is designed for. It is to
be noted that the number and kind of essential classes may differ from

client system to client system.



10

15

20

25

30

WO 98/37486 PCT/IB97/00135

According to the present invention, means are provided for loading a
package, package component, or class which is not present in the file
system held in the client system’s memory. Instead of indicating to the Java
runtime interpreter that a particular class was not found (simply because
this class is not stored in the client) a special class loader may be provided
which handles the loading of classes from another system. This special
class loader receives the qualified class name from the Java runtime
interpreter. It handles the lookup of the package components until it
reaches the requested class. The class then is loaded from the other system
into the client’s runtime system via the existing Java APIl. While parsing the
package components, the extended class loader may hand over to yet

another class loader which is responsible for a subtree.

According to the present invention, a class loader may be employed which
does not require to change the Java runtime interpreter. The extended class
loader simply interacts with a standard Java runtime interpreter, for

example.

First, the extended class loader, according to the present invention, may
check if there exists a special Java class file instead of the missing directory
related to a package component. The name is derived from the package
name in such a way that it will not interfere with any legal class or package
name, e.g. a dash may be used in the name of a class file replacing a
missing directory. The class file could be called ‘util-ioader’, for example, if
the “util” directory is missing in the client. This class is automatically loaded
to handle requests for the missing directory. A second possibility to
implement the extended class loader is to explicitly register those classes
which do not belong to the reduced set of classes. This requires an initial

setup before user applications can be executed but gives more flexibility.

In a client system, according to the present invention, only the essential
classes are pre-installed. For execution, the byte code of a Java applet

needs to be interpreted. Only those classes which are available in the client



10

15

20

25

30

WO 98/37486 PCT/IB97/00135

system can be accessed directly using the built-in class loader. All other
classes are not available in the client system and are loaded using the

extended class loader described above.

It is important to note that the implementation of the extended class loader
according to the present invention does not require any modification of
existing Java application sources code and compiled Java code. The Java
applets need not to be aware of the fact that a client system operates only
on a reduced set of classes (namely at least the essential classes). It is
conceivable that the present invention can also be implemented by

modification of the built-in class loader of the Java runtime system.

To sustain a homogenous network platform, it is necessary that all Java
platforms have the same set of Java APIs available, i.e. all these platforms
connected to one and the same network should have the same set of Java
classes. For small Java client systems the required disk space to hold all
Java classes might be a problem. With the present class loading
mechanism, it is possible to fetch ali classes which are not available at the

client (APls) on demand over the network.

The present invention has the advantage that the newest class versions can
be loaded from the server, i.e. the operator needs to replace an old version
of a class by a newer version only in the server. Each time a client system
asks for a class which is not stored in the client, the inventive class loader

automatically fetches the newest version provided by the server.

A further arrangement of the invention includes an automatic erasing
function in the client system. Such a function would erase any class tetched
by the class loader according to the invention after it was used. This erase
function may be executed either immediately after the loaded class was
used or may be conditioned on the lapse of a predetermined time or the
non-use for a predetermined time or any other condition, e.g. the remaining

space of the storage/memory in the client system.



10

15

20

25

30

WO 98/37486 PCT/IB97/00135

A still further embodiment adds a function that permanently stores a fetched
class in the client system whenever a predetermined condition is met. Such
a condition may be the repeated use of a fetched class within a

predetermined time space.

The present invention is of particular importance for network computers
which are equipped with a storage/memory of limited capacity to keep them
as simple and inexpensive as possible. Such a network computer still may
execute any Java applet. If a particular class is needed which is not stored
in the client’s storage, the inventive class loader fetches this respective
class or classes from another system, such as a server. It is conceivable
that the loading of a class or set of classes is billed using an electronic cash
billing system. Furthermore, it is possible that certain classes are only
available for down-loading for a specific set of customers, e.g. system

administrators.

The present class loader can be further modified such that a message is
returned to the user which allows him to stop the process of loading a class
not belonging to the reduced set of classes being held in the client system,
i.e. the user may control the loading of classes from remote systems. The
user may even be provided with information concerning the lengths of a

class file to be loaded, the duration the foading will take, and the price.

The present class loader can also be used as template mechanism. the
class loader can create and compile a Java class on-the-fly, depending on
the passed class specification. Since Java presently lacks a template
mechanism, and the Java language is intended to be kept simple, this is a
good way of introducing a template mechanism. A class loader, according
to the present invention, need not to load an existing class file from a
remote system, but can create such a class file itself using a template
mechanism. The information given in a qualified class name may be used to

create a respective class file.



10

15

20

25

30

WO .98/37486 PCT/IB97/00135

-10 -

CLAIMS

Client system comprising

J a Java interpreter for the execution of a Java program, and

. a set of Java classes for interaction with the client system,

said client system being characterized in that said set of Java classes is
a reduced set of Java classes, and in that said client system comprises
means for loading Java classes which do not belong to said reduced set
of Java classes into said client system only if needed during execution

of said Java program.

The client system of claim 1, wherein the Java interpreter returns a
string to the means for loading Java classes, said string being used to
enable the loading of a class not belonging to the reduced set of

classes.

The client system of claim 1, wherein the means for loading Java
classes fetches a class not belonging to the reduced set of classes from
another system holding at least those classes which do not belong to

said reduced set of classes.

The client system of claim 3, wherein the other system is a remote
system, especially a server, connected to said client system via a

network.

The client system of claim 1, wherein the class not belonging to the
reduced set of classes is loaded into a memory of said client system or

a storage device connected to said client system.

The client system according to any of the preceding claims, further
including an erase function for automatically erasing any fetched class
not belonging to the reduced set of classes, in particular erasing it

whenever one or more predetermined first conditions are met, and/or



10

15

20

25

30

WO 98/37486 PCT/IB97/00135

10.

11.

-11 -

an addition function adding any fetched class to said reduced set of

classes whenever one or more predetermined second conditions are
met.

The client system of claim 1, wherein the means for loading Java
classes returns a message to the user which allows the user to stop the

process of loading a class not belonging to the reduced set of classes.

The client system of claim 1 being a computer, in particular a network

computer, a set-top box, a telephone, in particular a cellular telephone,
a pager, or a printer.

The client system of claim 1 being a browser or software tool.
Method for executing the byte code of a Java program in a client

system, said method comprising the step of:

o executing said byte code using a Java interpreter,

. initiating the access to a class referred to by a string in said byte
code,

. looking up the respective class to be accessed,

. if said respective class belongs to a reduced set of classes found

in said client system, loading said respective class into said Java
interpreter and returning a pointer which indicates where said
respective class is located in said client system’s memory,

. else loading said respective class from another system into said
ciient system’s memory using said string and returning a pointer
which indicates where said respective class was put in said client

system’s memory.

The method of claim 10, whereby the respective class not belonging to
the reduced set of ciasses is automatically erased whenever a
predetermined first condition is met, and/or is added to said reduced

set of classes whenever a predetermined second condition is met.



10

15

20

25

30

WO 98/37486 PCT/1B97/00135

12.

13.

14.

-12 -

The method of claim 10, whereby either the steps for loading classes
from another system are repeated such that several classes are loaded

sequentially, or wherein several classes are loaded together.

The method of claim 10, whereby a network connection to the other

system is established before a class is loaded from said other system.

The method of claim 10, whereby a message is returned to the user
allowing the latter to stop the process of loading a class not belonging

to the reduced set of classes.



WO .98/37486 PCT/IB97/00135

-13-

AMENDED CLAIMS
[received by the International Bureau on 19 February 1998 (19.02.98);
original claims 1, 6, 8 and 10-11 amended;
remaining claims unchanged (3 pages)]

1. Client system comprising a Java interpreter for the execution of a Java program and a

stored set of Java classes for interaction with the client system,
said client system being characterized in that

- said stored set is a reduced set of Java classes and said client system comprises

- means for loading an additional Java class, which does not belong to said reduced set
of Java classes, into said client system whenever said additional Java class is needed
during execution of said Java program, and

- means for automatically erasing said additional Java class, preferably after is has been
used.

2. The client system of claim 1,
wherein the Java interpreter returns a string to the means for loading an additional Java

class, said string being used to enabie the loading of an additional class not belonging to

the reduced set of classes.

3. The client system of claim 1,

wherein the means for loading an additional Java class fetches a class not belonging to the
reduced set of classes from another system holding at least those classes which do not
belong to said reduced set of classes.

4. The client system of claim 3,

wherein the other system is a remote system, especially a server, connected to said client
system via a network.

5. The client system of claim 1,

wherein the class not belonging to the reduced set of classes is loaded into a memory of

said client system or a storage device connected to said client system.

AMENDED SHEET (ARTICLE 19)



WO 98/37486 PCT/1B97/00135

-14-

6. The client system of claim 1,

wherein the means for automatically erasing an additional class erases the latter whenever
one or more predetermined first conditions are met, preferably after said additional class
has been used, and, whenever one or more predetermined second conditions are met,

maintains it and may add it to to said reduced set of classes.

7. The client system of claim 1,
wherein the means for loading an additional Java class returns a message to the user
which allows the user to stop the process of loading a class not belonging to the reduced

set of classes.

8. The client system of claim 1 being a computer, in particular a small network computer, a
smartcard, a set-top box, a telephone, in particular a cellular telephone, a pager, or a

printer.
9. The client system of claim 1 being a browser or software tool.
10. Method for executing the byte code of a Java program in a client system, said method

comprising the step of:

- executing said byte code using a Java interpreter,

initiating the access to a class referred to by a string in said byte code,

- looking up the respective class to be accessed,

- if said respective class belongs to a reduced set of classes found in said client system,
loading said respective class into said Java interpreter and returning a pointer which
indicates where said respective class is located in said client system's memory,

- else loading said respective class from another system into said client system's memory

using said string and returning a pointer which indicates where said respective class

was put in said client system's memory, and

- automatically erasing said respective class, preferably after it has been used.

11. The method of claim 10,
whereby the respective class not belonging to the reduced set of classes is automatically
erased if a predetermined first condition is met, and is maintained and, preferably, added to

said reduced set of classes whenever a predetermined second condition is met.

AMENDED SHEET (ARTICLE 19)



WO 98/37486 PCT/IB97/00135

-15-

12. The method of claim 10,
whereby either the steps for loading classes from another system are repeated such that

several classes are loaded sequentially or wherein several classes are loaded together.

13. The method of claim 10,
whereby a network connection to the other system is established before a class is loaded

from said other system.
14. The method of claim 10,

whereby a message is returned to the user allowing the latter to stop the process of loading

a class not belonging to the reduced set of classes.

AMENDED SHEET (ARTICLE 19)



INTERNATIONAL SEARCH REPORT

Interna at Application No

PCT/IB 97/00135

TPC 6 GOBFY

. CLASSIFICATION 0F/S4U4B§ECT MATTER

According to intermationai Patent Classification (IPC) or to both national classification and {PC

B. FIELDS SEARCHED

IPC 6 GO6F

Minimum documentation searched (classification system foliowed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the intemationai search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category ° | Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

EMBEDDED SYSTEMS"
COMPUTER DESIGN,
vol. 35, no. 6,

Tine 51

X “JAVA PERKS DEVELOPER INTEREST FROM IS TO

pages 32-34, 37, XP000593778
see page 33, right-hand column, line 2 -

../-_

1-14

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

° Special categories of cited documents :

*A* document defining the general state of the art which is not
considered to be of particular relevance

*E' earlier document but published on or after the intemational
tiling date

*L* document which may throw doubts on priority claim(s) or
which is cited to establish the publication date of another
citation or other special reason (as speoified)

*O" document referring to an orai disclosure, use, exhibition or
other means

*P" document published prior to the international filing date but
|ater than the priority date claimed

*T" later document published after the international filing date
or priority date and not in confiict with the application but
cited to understand the principle or theory underlying the

invention

*X* document of particular relevance; the claimed invention
cannot be considered novel or cannot be considered to
involve an inventive step when the document is taken alone

*Y* document of particular relevance; the claimed invention
cannot be considered to involve an inventive step when the
document is combined with one or more other such docu-
ments, such combination being obvious to a person skilled

in the art.

*&" document member of the same patent family

Date of the actual completion of the international search

8 October 1997

23.10.97

Date of mailing of the intemational search report

Name and mailing address of the {1SA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,

Fax: (+31-70) 340-3016

Authorized officer

Fonderson, A

Fom PCT/ISA/210 {second sheet) (July 1992}

page 1 of 2




INTERNATIONAL SEARCH REPORT

Intern: al Application No

PCT/IB 97/00135

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category ° | Citation of document, with indication, where appropriate, of the relevant passages

Reievant to claim No.

X JAMES GOSLING & HENRY MCGILTON: "The Java

Language Environment: A White Paper"

SUN MICROSYSTEMS, INC.,

October 1995, MOUNTAIN VIEW, CA, USA,
pages 1-85, XP002042922
(ftp.javasoft.com/docs/papers/whitepaper.A
4.ps.zip)
see page 16, paragraph 2
see page 52, line 1 - page 53, paragraph 3
see page 55, paragraph 2
see page 72, line 1 - last line
see page 75, line 1 - page 81, paragraph 2
X EP © 718 761 A (SUN MICROSYSTEMS INC) 26
June 1996
see page 1, 1ine 13 - page 7, line 5;
figures 1-3
X "JAVA DYNAMIC CLASS LOADER"

IBM TECHNICAL DISCLOSURE BULLETIN,

vol. 39, no. 11,

page 107/108 XP000679837

see the whole document

X JAMES GOSLING ET AL.: "The Java Language
Specification"

August 1996 , ADDISON-WESLEY , USA
XP002042923

ISBN:0-201-63451-1
(ftp.javasoft.com/docs/spe
cs/langspec-1.0.ps.zip)
see page 215, line 1 - page 217, line 18
see page 218, line 13 - page 219, last
line
see page 221, line 24 - line 33
see page 235, line 15 - line 26

1-14

1-14

1-14

1-14

Form PCT/ISA/210 {continuation of second sheet) (July 1992)

page 2 of 2




INTERNATIONAL SEARCH REPORT

Intern 1al Application No
ormation on patent family me ]
information on patent family member. PCT/IB 97/00135
Patent document Publication Patent family Publication
cited in search report date member(s) date
EP 0718761 A 26-06-96 US 5630066 A 13-05-97
JP 8263447 A 11-16-96

- - - = = T e R W A R W SR R Ge AR A A R R R Y SR T ST SR SN R SN e R T W B e e e e G R G e S RS e M e Em e e

Form PCT/ISA/210 (patent family annex) (July 1992)



	BIBLIOGRAPHY
	DESCRIPTION
	CLAIMS
	SEARCH_REPORT

