PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)				
(51) International Patent Classification ⁶ :		(11) International Publication Number: WO 95/25573		
B01D 15/00, C02F 1/50	A1	(43) International Publication Date: 28 September 1995 (28.09.95)		
 (21) International Application Number: PCT/US (22) International Filing Date: 1 November 1994 ((30) Priority Data: 08/210,876 18 March 1994 (18.03.94) (71) Applicant: KANSAS STATE UNIVERSITY REFOUNDATION [US/US]; 146 Durland Hall, Manh 66506 (US). (72) Inventors: MARCHIN, George, L.; 3600 Monare Manhattan, KS 66502 (US). LAMBERT, Jack, Ratone, Manhattan, KS 66502 (US). (74) Agent: TILTON, Timothy, L.; Tilton, Fallon, Lur Chestnut, Suite 960, 100 South Wacker Drive, Che 60606-4002 (US). 	O1.11.9 SEARChattan, Keh Circl, L.; 80	FI, GE, HU, JP, KG, KP, KR, KZ, LK, LT, LV, MD, MG, MN, NO, NZ, PL, RO, RU, SI, SK, TJ, TT, UA, UZ, VN, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG), ARIPO patent (KE, MW, SD, SZ). Published With international search report.		
(54) Title: TREATING WATER WITH RESIN BOUND	IONIC	SILVER		
(57) Abstract				
For performing the disinfection or iodide removal with min	nimal re	eting and/or removing iodide. The method utilizes resin bound silver ions. elease of silver ions into the water being treated, a chelating resin having loaded with not over 0.5 mol of silver ion per mol of iminodiacetate.		

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	GB	United Kingdom	MR	Mauritania
ΑU	Australia	GE	Georgia	MW	Malawi
BB	Barbados	GN	Guinea	NE	Niger
BE	Belgium	GR	Greece	NL	Netherlands
BF	Burkina Faso	HU	Hungary	NO	Norway
BG	Bulgaria	IE	Ireland	NZ	New Zealand
BJ	Benin	IT	Italy	PL	Poland
BR	Brazil	JP	Japan	PT	Portugal
BY	Belarus	KE	Kenya	RO	Romania
CA	Canada	KG	Kyrgystan	RU	Russian Federation
CF	Central African Republic	KP	Democratic People's Republic	SD	Sudan
CG	Congo		of Korea	SE	Sweden
CH	Switzerland	KR	Republic of Korea	SI	Slovenia
CI	Côte d'Ivoire	KZ	Kazakhstan	SK	Slovakia
CM	Cameroon	LI	Liechtenstein	SN	Senegal
CN	China	LK	Sri Lanka	TD	Chad
CS	Czechoslovakia	LU	Luxembourg	TG	Togo
CZ	Czech Republic	LV	Latvia	TJ	Tajikistan
DE	Germany	MC	Monaco	TT	Trinidad and Tobago
DK	Denmark	MD	Republic of Moldova	UA	Ukraine
ES	Spain	MG	Madagascar	US	United States of America
FI	Finland	ML	Mali	UZ	Uzbekistan
FR	France	MN	Mongolia	VN	Viet Nam
GA	Gabon		•		

-1-

TREATING WATER WITH RESIN BOUND IONIC SILVER

5

FIELD OF INVENTION

The field of this invention is the treatment

water with silver to disinfect the water and/or remove
halide therefrom. The invention is particularly
concerned with the treatment of drinking water to remove
iodide.

15

20

25

30

BACKGROUND OF INVENTION

It is known that metallic silver can be an effective bactericide for treating water. For this purpose U.S. Patent 2,434,190 describes the preparation of a "silvered" anion exchange resin. As described in this patent, the anion exchange resin in the sodium form may be treated with a solution of silver nitrate to load the resin with silver ions. The resin is next treated with a reducing agent such as potassium metabisulfite to form metallic silver. It is stated that the silvered resin can be used for disinfecting water.

U.S. Patent 2,692,855 discloses using a cation exchange resin in a silver ion form for disinfection of water. As described in the patent, for example, a cation exchange resin in the hydrogen form may be treated with a solution of a silver salt to exchange

-2-

silver ions for hydrogen ions, thereby producing a resin for disinfecting water. However, the presence of silver ions in drinking water can be a health hazard, and drinking water contains metal ions that will exchange with the silver ions on the resin. To minimize release of silver ions into the solution being treated, the water can first be demineralized by passing it through an cation exchange resin in the hydrogen form to remove metal cations.

10 Cation exchangers, such as zeolite and synthetic cation exchange resins, have been reacted with solutions of silver salts to exchange the silver ion for the hydrogen or alkali metal cations of the exchangers. Such silver ion-containing resins have been used to remove halides from water, such as the removal of 15 chloride ions from sea water. See United States Patent 3,32,039, United Kingdom Patent 576,969 and Australian Patent 122,647. Silver ion-containing cation exchange resins have also been proposed for use in removing 20 iodine and methyl iodide from waste streams, and removing halides from liquid carboxylic acid (U.S. Patent 5,139,981). In such applications, the release of silver ions into the solution being processed may not be as objectionable as with potable water.

5

-3-

SUMMARY OF INVENTION

Prior art methods of using silver ion-containing zeolites and synthetic cation exchange resins to treat drinking water have the disadvantage of 5 releasing silver ions into the treated water. water contains cations such as calcium, magnesium, and sodium which tend to exchange with the silver ions in the zeolite or resin. For health reasons, it is desired to avoid excessive amounts of silver ions in drinking 10 water. For example, United States Environmental Protection Agency established as a safety standard that drinking water should contain less than 50 µg (micrograms) of silver per liter of water. In treating drinking water to disinfect the water and/or to remove iodide therefrom it is therefore important to carry out the treatment with minimized release of silver ions.

15

20

25

The present invention utilizes a novel resin composition which comprises a chelating resin containing iminodiacetate acid groups at the metal chelating sites, which provide paired acetic acids for chelating action. The resin composition is further characterized by containing diacetate chelated silver ions in a ratio of not over 1 silver ion per two iminodiacetate groups. The resin is thereby loaded with silver ions to not over 50% of resin capacity. The silver ions are thereby retained within the resin beads while effectively killing

microorganisms, and/or removing iodide from the water. The resulting resin beads tenaciously retain the silver ions and resists their elution by the cations normally found in water, such as hydrogen, sodium, calcium, and magnesium ions.

5

20

25

The method of this invention also utilizes the retaining capacity of the silver chelating resin composition to minimize the release of silver iodide, silver chloride, or other silver halide into the drinking water. Although the exact mechanism of retention is not fully understood, it has been found that the soluble silver iodide or other silver halide formed within the resin granules or beads are retained therein, resulting in the production of drinking water with minimal content of iodide, silver ion, or silver iodide.

The method of this invention can be used as a desirable secondary treatment for drinking water which has been contacted with porous granules of a polyiodide anion exchange resin to disinfect the water. Such treatment may release iodide ions into the drinking water. In one preferred embodiment, the drinking water has initially been disinfected by being contacted with an anion exchange resin containing pentaiodide (I_5^-) ions.

-5-

DETAILED DESCRIPTION

chelating resin composition, a resin containing iminodiacetate groups is used. Bio-Rad Laboratories,

Richmond, CA sells such chelating resins which are polystyrene divinyl benzene copolymers containing iminodiacetate functional groups. These resins are identified as "Chelex 20" (macroporous form) and "Chelex 100" (gel form). Either the gel or macroporous form can be used, but the gel form Chelex resin is preferred. Chelex 100 is available in analytical and biotechnology grades which both are suitable for use in this invention. Chelex 20 is a technical grade resin which can also be used.

The described chelating resin is contacted with an aqueous solution of a silver salt, such as the nitrate, perchlorate, or acetate salts. With the cation exchange resin in the hydrogen form, the hydrogen ions are replaced with the silver ions. The silver ions are removed from the solution and immobilized by the paired chelating groups. This conversion to a silver form should be carried out in relation to the stated cation capacity of the resin, viz. in millieqivalents per milliliter. The resin composition is prepared so that it does not contain silver ion which easily exchange and/or elute. The quantity of silver ions applied to

the chelating resin should not exceed one silver ion per two iminodiacetate groups, which corresponds to a 50% or less capacity loading. Stated otherwise, the prepared resin composition should contain not over 0.5 mol of silver per mol of iminodiacetate. Resin compositions can also be used which contain less the stated maximums of silver, such as 0.3 to 0.5 mol of silver per mol of iminodiacetate.

10 Preparation of Silver-Chelex 100 Resin

WO 95/25573

5

15

20

Approximately 300 milliequivalents of Chelex 100, a gel-type chelating resin (50-100 mesh or 100-200 mesh, sodium form; Bio-Rad Laboratories, Richmond, CA) is suspended in an excess of distilled water. The settled wet capacity of this resin is 0.40 meg/ml. This resin contains iminodiacetate chelating groups. Total volume is approximately 750 ml of settled bed volume. The pH of the aqueous suspension is measured with a standard glass electrode and adjusted with 1.0 N NaOH to at least pH 8.0 if required. Most commercial lots of the resin will generate a suspension with pH >8.0 but an occasional lot may require standardization. It is believed important to open up both of the acetate groups on the iminodiacetate to accept the silver cation, Ag⁺.

A solution of silver nitrate (AgNO₃) 150 milli- equivalents (25.48 grams) in 200 ml distilled

water is added to the suspended Chelex 100. The mixture is stirred with an overhead glass stirring rod to prevent bead fracture. After one hour the stirrer is turned off and the gel allowed to settle. The bed volume typically shrinks to 500 ml due to neutralization of the electrorepulsive effects of the adjacent diacetate groups.

The supernatant solution is tested with 0.10 M KI solution and produces no silver iodide precipitate.

The free silver ion concentration of the supernatant solution is undetectable with a silver select ion electrode (Ag⁺<1x10⁻⁶M). If more than 0.5 equivalent Ag⁺: equivalent Chelex resin is used in preparation an extensive washing procedure is required to eliminate the free silver ion in aqueous washes.

Preparation of Silver-Chelex 20 Resin

5

20

25

Approximately 300 milliequivalents of Chelex 20, a macroporous chelating resin (20-50 mesh, sodium form; Bio-Rad Laboratories, Richmond, CA) is suspended in an excess of distilled water. This resin contains iminodiacetic acid-type chelating groups. Total volume is approximately 500 ml of settled bed volume. (This resin requires only 500 ml to provide 300 meg of binding capacity.) The pH of the aqueous suspension is measured with a standard glass electrode and adjusted with 1.0 N

NaOH to at least pH 8.0 if required. Most commercially available lots of the resin will generate a suspension with pH >8.0 but the occasional lot requires standardization. This is important to open up both of the acetate groups on the iminodiacetate to accept the silver cation, Ag⁺.

5

20

A solution of silver nitrate (AgNO₃) 150
milli- equivalents (25.48 grams) in 200 ml distilled
water is added to the suspended Chelex 20. The mixture

10 is stirred with an overhead glass stirring rod to
prevent bead fracture. After one hour the stirrer is
turned off and the gel allowed to settle. The bed
volume typically shrinks to 450 ml due to neutralization
of the electrorepulsive effects of the adjacent

15 diacetate groups.

The supernatant solution is tested with 0.10 M KI solu- tion and produces no silver iodide precipitate. The free silver ion concentration of the supernatant solution is undetectable with a silver-selective ion electrode (Ag⁺<1x10⁻⁶ M). If more than 0.5 equivalent Ag⁺:equivalent Chelex resin is used in preparation an extensive washing procedure is required to eliminate the free silver ion in aqueous washes.

An experimental investigation was conducted with the resins prepared as described above.

15

20

First Experiment

Escherichia coli B, strain NP 4, was grown overnight in Benzer Broth (9.0 gm Bacto Tryptone [Difco] and 5.0 gm NaCl per liter) in a shaking water bath (New Brunswick) at 37°C. Organisms were centrifuged at 10,000 x g for 5 minutes in a Beckman J-21 centrifuge at 4°C, resuspended in deionized water, washed, centrifuged and diluted 1:100 in deionized water to give approximately 1 x 10⁷ colony forming units per ml (cfu/ml). These organisms were allowed to flow through beds of the silver resins.

Samples of the water were plated on nutrient agar plates (Benzer Broth solidified with 15 gm Bacto Agar [Difco] per liter); 0.10 ml samples were spread with a sterile glass rod. Platings were done in triplicate. As a control the input culture was appropriately diluted (10⁻⁵) and also plated in triplicate as described above. Plates were incubated for 16 hrs. at 37°and colony forming units determined. Data are expressed in the following table.

Bacterial Concentration E. Coli (CFU/ML)

	<u>Trial</u>	Input	Output	
	Silver-CHELEX 20 Resin	2.79×10^7	-0-	
25	Silver-CHELEX 100 Resin	2.79×10^7	-0-	

This data illustrates the bactericidal activity of the silver resin compounds. The data is surprising in light of the tenacity with which the silver ion are held by the iminodiacetate resin. Further, tests of the resin eluates with a solution of 1 x 10^{-1} M KI formed no visible precipitate, indicated no significant elution of the silver ion, Ag⁺.

Second Experiment

An aqueous solution of potassium iodide (KI) 1

x 10⁻⁵ M which contains 1.27 mg per liter of iodide anion

(I⁻) was passed under gravity flow through a small 5 ml

column of the three silver ion-containing resin

materials prepared as described above. The iodide anion

15 concentration was determined using an iodide-selective

electrode to record the electrode potential. The

electrode potential was converted to iodide

concentration by reference to a standard curve. The

results of four trials are reported in the following

20 table.

<u>Iodide (I⁻) Removal by Silver Resins</u>

25	<u>Trial</u>		Input <u>livolts</u>	Solution ppm (mg/l)I	· · · F - · · ·	Solution ppm (Mg/1)I
	Ag-Chelex	20	+120	1.27		+490<.00127
	Ag-Chelex	100	+120	1.27		+545<.00127

30

In both trials the iodide anion concentration

-11-

in the eluates was less than the lowest concentration that could be detected with the iodide-selective electrode (220 millivolts: .00127 ppm).

5 <u>Preferred Combination Treatment</u>

In a preferred application of the method of this invention, the water to be treated is first passed through a quaternary ammonium exchange resin, which as first used has more than sixty-five percent of the ion exchange sites therein associated with pentaiodide ion 10 (I_5) . For example, a resin of this kind can be prepared as described in the example of U.S. Patent 4,999,190. The resulting resin will have about ninety- seven percent of its total sites iodinated and about seventy 15 percent of the sites will be I_5^- sites. The water to be disinfected is first passed through a bed containing granules of this resin. Bacteria and other microorganisms will be killed and the treated water will contain iodide ions (I). To assure complete 20 disinfection and to remove the iodide ions, the initially treated water is passed through one of the silver ion-containing resins prepared as described above. The combined treatment will produce bacterially sterile water substantially free of iodide and silver ions. To assure that the treated water complies with 25 the EPA standard of $50\mu230g$ silver/1, activated charcoal

may be mixed with the silver chelating resin or used as a tertiary treatment.

Comparative Example

5 Silver Chelex 20

10

Silver Chelex 20 and 100 resins were prepared as described above containing 0.5 mol of silver ion per mol of iminodiacetate. A sulfonic acid resin was loaded with silver ions to 50% capacity and three zeolite exchangers were loaded at less than their maximum capacities. The preparation procedure is described below.

Preparation of Silver Sulfonic Acid Resin

- Approximately 300 milliequivalents of AG
 50W-X8, a strong cation exchange resin (20-100 mesh,
 hydrogen form; Bio-Rad Laboratories, Richmond, CA) is
 suspended in an excess of distilled water. Total volume
 is approximately 500 ml of settled bed volume.
- A solution of silver nitrate (AgNO₃) 150
 milliequivalents (25.48 grams) in 200 ml distilled water
 is added to the suspended AG 50W-X8 resin. (This
 corresponded to 0.5 mol silver per mol sulfonate.) The
 mixture is stirred with an overhead glass stirring rod
 to prevent bead fracture. After one hour the stirrer is
 turned off and the gel allowed to settle.

Preparation of Silver Zeolites

5

25

Zeolite cation exchange material (Fisher Chemical Company) was utilized in three commercially available forms which are marketed as molecular sieves; Type 5!, in 1/16 inch pellets; Grade 512, in 4-8 mesh beads; and Grade 513, in 4-8 mesh beads. These zeolites were composed of alumina silicate with either sodium or calcium cations.

The three zeolites were "converted" to the 10 silver cation form by suspending 100 cm3 of each material in 100 ml of 0.10 M silver nitrate (AgNO₃) solution for 24 hr. at room temperature. The total volume of each of the silver nitrate-zeolite preparations was in excess of 150 ml. After overnight 15 reaction some darkening of the solution occurred. After 24 hr. the excess $AgNO_3$ was decanted and the zeolite washed three times with borosilicate-glass distilled water.

20 Column Experiments

All six materials (two Chelexes, the silver sulfonic acid resin and three zeolites) were individually paced into 20 ml syringes with fiber glass plugs. Distilled water, Manhattan, Kansas City tap water (approximately 300 ppm total dissolved solids), or tapwater spiked with 1 x 10⁻⁵ M KI was allowed to flow

through the resin beds. This concentration of KI was chosen because it is a typical concentration of iodide anion that is encountered when polyiodide anion exchange resins (triiodide or pentaiodide) are used in the chemical disinfection of water. Column eluates were then tested for free silver or iodide ions (Ag⁺ or I⁻) using appropriate ion selective electrodes and reference to a standard Nernst equation relating a millivolt reading to the respective ion concentration.

The results of these tests are summarized below in Tables 1 and 2.

Table 1. Free silver ion concentrations of eluates from small columns of silver resins using distilled water.

15		
15	RESIN MATERIALS	[Ag ⁺] M
	Ag-Chelex 20, 100	0.9 x 10 ⁻⁵
20	Ag-Sulfonic Acid	1.3 x 10 ⁻³
	Ag-Zeolite 5A	1.1 x 10 ⁻²
25	Ag-Zeolite 512	1.7 x 10 ⁻²
	Ag-Zeolite 513	1.6 x 10 ⁻²

Table 2. Free silver ion concentrations of eulates from small columns of silver resins using tap water containing 1 x 10^{-5} M KI (120 mVolts).

-15-

	Ag-Chelex 20, 100	$<1.0 \times 10^{-6}$
	Ag-Sulfonic Acid	1.2 x 10 ⁻³
5	Ag-Zeolite 5A	1.1×10^{-2}
	Ag-Zeolite 512	1.7×10^{-2}
10	Ag-Zeolite 513	1.6×10^{-2}

All resin materials removed the iodide,
reducing I mol concentration to below 1.0 x 10⁻⁷. The
important difference was that the sulfonate and zeolites
released much more silver ion into the water than did
the Chelex 20 and/or resins. The difference was several
orders of magnitude.

-16-

CLAIMS

We claim:

- A method of treating drinking water for
 disinfecting and/or removing iodide, comprising
 contacting the drinking water with porous granules of a
 chelating resin having iminodiacetic acid chelating
 groups bonded to silver ions, said resin containing not
 over 0.5 mol of silver ion per mol of iminodiacetate,
 and separating the treated water from the granules.
 - 2. The method of claim 1 in which the drinking water contains iodide ions which are removed therefrom by said contacting.
- 3. The method of claim 1 in which the water
 15 contains microorganism that are killed by said contacting.
 - 4. The method of claims 1, 2 or 3 in which said chelating resin is a gel-type resin.
- 5. The method of treating drinking water to
 20 kill microorganisms therein in which the water to be
 disinfected is initially contacted with porous granules
 of a polyiodide anion exchange resin resulting in the
 release of iodide ions into the treated water, wherein
 the improvement comprises contacting the treated
 25 iodide-containing water with porous granules of a
 chelating resin, said granules containing bound silver

ions which react with the iodide ions to form substantially insoluble silver iodide, said chelating resin having iminodiacetic acid chelating groups and containing not over 0.5 mol of silver ion per mol of iminodiacetate.

5

10

15

20

- 6. A composition for treating water, comprising porous granules of a chelating resin having iminodiacetate chelating groups with silver ions bound thereto, said bound silver ions being present in an effective amount for disinfecting water but not over 0.5 mol of silver ions per mol of iminodiacetate.
 - 7. The composition of claim 6 in which said silver ions are present in said granules in an amount within the range from 0.3 to 0.5 moles of silver per mol of iminodiacetate.
 - 8. The compositions of claims 6 or 7 in which said chelating resin is a gel-type resin.
- 9. A composition for treating drinking water to disinfect and/or remove iodide therefrom, comprising porous granules of chelating resin having iminodiacetate chelating groups with silver ions bound thereto, said resin containing from 0.3 to 0.5 mol of bound silver ions per mol of iminodiacetate.
- 10. The composition of claim 9 in which said chelating resin is a gel-type resin.

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US94/12525

A. CLASSIFICATION OF SUBJECT MATTER IPC(6): B01D 15/00; CO2F 1/50 US CL: 210/665, 683, 764; 424/78.1, 78.17, 78.18, 78.26, 618; 521/27 According to International Patent Classification (IPC) or to both national classification and IPC					
B. FIELDS SEA					
Minimum documenta	tion searched (classification system followed	by classification symbols)			
	683, 764; 424/78.1, 78.17, 78.18, 78.26, 61				
NONE	hed other than minimum documentation to the	extent that such documents are included	in the fields searched		
Electronic data base NONE	consulted during the international search (name	ne of data base and, where practicable,	search terms used)		
C. DOCUMENT	S CONSIDERED TO BE RELEVANT				
Category* Cita	ation of document, with indication, where app	propriate, of the relevant passages	Relevant to claim No.		
4 '	A, 55-38855 (NITTO ELECTI), abstract.	RIC IND KK) 18 MARCH	1-10		
A JP,	JP, A, 55-38358 (NITTO ELECTRIC IND KK) 17 MARCH 1-5				
1), abstract.		 C 10		
Y	•	·	6-10		
A US,	US, A, 3,734,897 (STOY) 22 MAY 1973, entire document. 1-10				
A US,	A, 2,692,855 (JUDA) 26	OCTOBER 1954, entire	1-5		
docu	iment.				
Υ	6-10				
Further documents are listed in the continuation of Box C. See patent family annex.					
	Special categories of cited documents: "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention				
to be part of	particular relevance ment published on or after the international filing date	"X" document of particular relevance; th	e claimed invention cannot be		
"I" document wh	ich may throw doubts on priority claim(s) or which is	considered novel or cannot be conside when the document is taken alone	ered to myorve an inventive step		
cited to establish the publication date of another citation or other special reason (as specified) document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is					
"O" document referring to an oral disclosure, use, exhibition or other means combined with one or more other such documents, such combination being obvious to a person skilled in the art					
*P" document published prior to the international filing date but later than *&" document member of the same patent family the priority date claimed					
Date of the actual completion of the international search 17 JANUARY 1995 Date of mailing of the international search report JAN 2 4 1995					
Name and mailing address of the ISA/US Commissioner of Patents and Trademarks Authorized officer Janua Mackey for					
Box PCT Washington, D.C. 20231 NEIL M. MCCARTHY					
Facsimile No. (7	03) 305-3230	Telephone No. (703) 308-3842			