
JP 2017-538217 A 2017.12.21

10

(57)【要約】
　未変更アプリケーションを変更することによって取得
された変更済みアプリケーションの実行（Ｓ３０２）中
、デバイス（１１０）は、未変更アプリケーションに対
応するコードが変更済みアプリケーションにも対応して
いると判定し（Ｓ３０４）、未変更アプリケーションの
記憶されているチェックサムと比較される（Ｓ３０６）
、未変更アプリケーションに対応するコードに関するチ
ェックサムを生成して、これらが一致するかどうかを判
定し、変更済みアプリケーションが未変更アプリケーシ
ョンに対応するコードに対応している場合、及び未変更
アプリケーションに対応するコードに関するチェックサ
ムが未変更アプリケーションの記憶されているチェック
サムと一致する場合、変更済みアプリケーションの整合
性の検証に成功したものとして判定する（Ｓ３１０）。
このソリューションは、Android OSを使用するデバイス
に特に適しており、これは、インストール中にＤＥＸが
最適化されてＯＤＥＸファイルになるか、又はＯＡＴコ
ンパイルされてＥＬＦファイルになり、これらに対して
証明済みチェックサムが存在しないためである。

(2) JP 2017-538217 A 2017.12.21

10

20

30

40

50

【特許請求の範囲】
【請求項１】
　初期アプリケーションを変更することによって取得された変更済みアプリケーションの
整合性を判定するデバイス（１１０）であって、
　前記変更済みアプリケーションと、前記初期アプリケーションのコードに関する記憶さ
れているチェックサムとを記憶するように構成されたメモリ（１１２）と、
　前記変更済みアプリケーションの実行中に、
　　前記初期アプリケーションの前記コードが前記変更済みアプリケーションのコードに
対応していると判定することと、
　　前記初期アプリケーションの前記コードに関するチェックサムを生成して、生成され
たチェックサムを取得することと、
　　前記生成されたチェックサムと、前記初期アプリケーションの前記コードに関する前
記記憶されているチェックサムとを比較して、これらが一致するかどうかを判定すること
と、
　　前記変更済みアプリケーションの前記コードが前記初期アプリケーションの前記コー
ドに対応している場合、及び前記生成されたチェックサムが前記アプリケーションのコー
ドに関する前記記憶されているチェックサムと一致する場合、前記変更済みアプリケーシ
ョンの整合性の検証に成功したものとして判定することと
を行うように構成された処理装置（１１１）と
を含むデバイス。
【請求項２】
　前記メモリ（１１２）は、前記未変更アプリケーションの前記記憶されているチェック
サムの署名と、署名証明書とを記憶するように構成されており、前記処理装置は、前記署
名証明書を使用して前記署名の妥当性を検証することと、前記署名の検証に成功する場合
にも、前記変更済みアプリケーションの前記整合性の検証に成功したものとして判定する
こととを行うように構成されている、請求項１に記載のデバイス。
【請求項３】
　前記プロセッサは、前記変更済みコードに対して逆変更を実施して前記未変更アプリケ
ーションに対応するコードを取得して、前記未変更アプリケーションに対応する前記コー
ドが前記変更済みアプリケーションにも対応していると判定するように構成されている、
請求項１に記載のデバイス。
【請求項４】
　前記未変更アプリケーションに対応する前記コードは、前記未変更アプリケーションで
あり、前記メモリは、前記未変更アプリケーションを記憶するように更に構成されている
、請求項１に記載のデバイス。
【請求項５】
　前記プロセッサは、前記変更済みコードと、前記未変更アプリケーションに対応する前
記コードとの間の何らかの差が前記変更中に取得された正当な変換に対応しているかどう
かを判定して、前記未変更アプリケーションに対応する前記コードが前記変更済みアプリ
ケーションにも対応していると判定するように構成されている、請求項４に記載のデバイ
ス。
【請求項６】
　前記プロセッサは、前記未変更アプリケーションに対応する前記コードに対して前記変
更を実施して、第２の変更済みコードを取得し、前記変更済みコードと前記第２の変更済
みコードとを比較して、前記未変更アプリケーションに対応する前記コードが前記変更済
みアプリケーションにも対応していると判定するように構成されている、請求項４に記載
のデバイス。
【請求項７】
　前記未変更アプリケーションは、インタプリタ型コードとして実装され、及び前記変更
済みアプリケーションは、最適化されたインタプリタ型コードとして又はネイティブコー

(3) JP 2017-538217 A 2017.12.21

10

20

30

40

50

ドとして実装される、請求項１に記載のデバイス。
【請求項８】
　スマートフォン又はタブレットである、請求項１に記載のデバイス。
【請求項９】
　未変更アプリケーションを変更することによって取得された変更済みアプリケーション
の整合性を判定する方法であって、前記変更済みアプリケーションの実行（Ｓ３０２）中
、デバイス（１１０）において、
　　前記未変更アプリケーションに対応するコードが前記変更済みアプリケーションにも
対応していると判定すること（Ｓ３０４）と、
　　前記未変更アプリケーションに対応する前記コードに関するチェックサムを生成する
ことと、
　　前記未変更アプリケーションに対応する前記コードに関する前記チェックサムと、前
記未変更アプリケーションの記憶されているチェックサムとを比較して（Ｓ３０６）、こ
れらが一致するかどうかを判定することと、
　　前記変更済みアプリケーションが前記未変更アプリケーションに対応する前記コード
に対応している場合、及び前記未変更アプリケーションに対応する前記コードに関する前
記チェックサムが前記未変更アプリケーションの前記記憶されているチェックサムと一致
する場合、前記変更済みアプリケーションの整合性の検証に成功したものとして判定する
こと（Ｓ３１０）と
を含む方法。
【請求項１０】
　署名証明書を使用して署名の妥当性を検証することと、前記署名の検証に成功する場合
にも、前記変更済みアプリケーションの前記整合性の検証に成功したものとして判定する
こととを更に含む、請求項９に記載の方法。
【請求項１１】
　前記未変更アプリケーションに対応するコードが前記変更済みアプリケーションにも対
応していると判定することは、前記変更済みコードに対して逆変更を実施して、前記未変
更アプリケーションに対応する前記コードを取得することを含む、請求項９に記載の方法
。
【請求項１２】
　前記未変更アプリケーションに対応するコードが前記変更済みアプリケーションにも対
応していると判定することは、前記変更済みコードと、前記未変更アプリケーションに対
応する前記コードとの間の何らかの差が前記変更中に取得された正当な変換に対応してい
るかどうかを判定することを含む、請求項９に記載の方法。
【請求項１３】
　前記未変更アプリケーションに対応するコードが前記変更済みアプリケーションにも対
応していると判定することは、前記未変更アプリケーションに対応する前記コードに対し
て前記変更を実施して、第２の変更済みコードを取得することと、前記変更済みコードと
前記第２の変更済みコードとを比較することとを含む、請求項９に記載の方法。
【請求項１４】
　プロセッサ（１１０）によって実行されると、請求項９に記載の方法を前記プロセッサ
に実施させる命令を含む、コンピュータで実行可能なプログラム（２２０）。

【発明の詳細な説明】
【技術分野】
【０００１】
　本開示は、概して、コンピュータシステムに関し、特に、そのようなシステムにおける
ソフトウェアコードの整合性に関する。
【背景技術】
【０００２】

(4) JP 2017-538217 A 2017.12.21

10

20

30

40

50

　本セクションは、以下で説明及び／又は特許請求される本開示の様々な態様に関連し得
る当該技術分野の様々な態様を読者に紹介することを意図している。この説明は、本開示
の様々な態様のよりよい理解を促進するための背景情報を読者に提供することに役立つと
考えられる。従って、これらの記載がこの観点から読まれるべきであり、先行技術の容認
として読まれるべきでないことが理解されるべきである。
【０００３】
　様々な理由により、処理装置が実行するソフトウェアが改ざんされていないことを保証
することが多くの場合で望ましい。このため、ソフトウェアイメージを改ざん攻撃から保
護するために様々な技術が使用され得る。最も一般的な技術は、コードセグメントの署名
又はチェックサムを計算し、後の段階でこの署名又はチェックサムを検証することである
。チェックサムは、一般的に、秘密性が全くない状態で計算及び検証されるが、暗号署名
の生成にはプライベート鍵及び対応する公開鍵の署名の検証が必要である。
【０００４】
　チェックサム方式の保護の一例として、Windows（登録商標）オペレーティングシステ
ムで使用されるPortable Executable（ＰＥ）フォーマットのためのＣＲＣ３２がある。
ＰＥヘッダがＣＲＣ３２フィールドを含み、このフィールドは、対応するコードセクショ
ンのチェックサムを与える。この保護を首尾よく回避するために、攻撃者は、まずコード
セクションを変更し、次に、元のチェックサムを、変更されたコードセクションに対して
計算された新しい値に置き換える。攻撃者が秘密性を全く必要とせずに、変更されたコー
ドセクションのチェックサムを更新できるため、このタイプの攻撃が可能である。
【０００５】
　チェックサムでは弱い場合、暗号署名が好ましいソリューションである。署名の生成は
コードの公開前に行われ、プライベート鍵（従って秘密鍵）を使用する。関連付けられた
公開鍵はコードに付加され、その後、コードのインストール時又は実行時にコード整合性
をチェックするために使用される。この場合も攻撃者はコードを変更できるが、このコー
ドの正しい署名はプライベート鍵がないと生成できないため、攻撃は失敗する。
【０００６】
　ネイティブコードで配信されて実行されるアプリケーションの整合性をチェックするソ
リューションが多く存在し、例えば、Arxan社（GuardIT（商標））、Metaforic社（Metaf
ortress（商標））などから提供されるソリューションが存在する。ネイティブコードは
、プロセッサが直接実行できるアセンブラ命令セットである。この命令セットは、インス
トール後に変化しない。即ち、インストールの前後でプログラムの整合性値は同じままで
ある（即ち、時間に対して一定である）。この場合、署名は、あらかじめ生成され、アプ
リケーションパッケージとともに配信され得る。
【０００７】
　これに対し、インタプリタ型コード（例えば、Java（登録商標）で書かれたコード、An
droid（登録商標） DEXコードなど）の形式で配布されるアプリケーションは、実行前に
インタプリタを通さなければならない中間命令を含む。ネイティブコードと異なり、イン
タプリタ型コードは、インストール時より後に最適化のために変更され得る。コード変更
は、一般に、ターゲットプラットフォームに非常に依存するので、必ずしも予測可能では
ない。コードが変更された場合、インタプリタ型コードに対して生成された署名は、コー
ドの整合性及び信憑性を実行時に動的に確認するために使用することができない。
【０００８】
　前述のAndroidオペレーティングシステムにアプリケーションソフトウェアを配布して
インストールするために、ＡＰＫ　－　Androidアプリケーションパッケージ　－　と呼
ばれるファイルフォーマットが使用される。ＡＰＫファイルを作成するには、まず、Andr
oid用プログラムを中間言語にコンパイルし、その各部分を圧縮アーカイブファイル（Ｚ
ＩＰフォーマット）にパッケージする。このアーカイブファイルは、単一ＤＥＸ（Dalvik
（登録商標）実行可能コード）ファイル内の全プログラムコード、様々なリソース（例え
ば、イメージファイル）、及びＡＰＫファイルのマニフェストを含む。このアーカイブフ

(5) JP 2017-538217 A 2017.12.21

10

20

30

40

50

ァイルは、２つの追加ファイルＣＥＲＴ．ＳＦ及びＣＥＲＴ．ＲＳＡを含む。ＣＥＲＴ．
ＳＦは、他の全てのアーカイブファイルの暗号ハッシュを含み、ＣＥＲＴ．ＲＳＡは、署
名の検証に使用される公開鍵を含む。ＣＥＲＴ．ＳＦのみがＲＳＡプライベート鍵によっ
て署名される。ＣＥＲＴ．ＳＦのＲＳＡ署名は、インストール中のＡＰＫファイルの全内
容の妥当性検査を可能にする。実際、ＣＥＲＴ．ＳＦファイル内で言及されている全ての
ファイルが間接的に署名されている。なぜなら、それらのハッシュがＣＥＲＴ．ＳＦに含
まれているからである。インストール前にいずれかのファイルを変更すると、ファイルダ
イジェストがＣＥＲＴ．ＳＦファイル内のハッシュと一致しないことをソフトウェアが検
出するので、エラーが発生することになる。或いは、ＣＥＲＴ．ＳＦファイル内の暗号ハ
ッシュ値を変更することは、（既に述べたチェックサム方式の検証に対する攻撃の場合と
同様に）署名の検証中のエラーにつながることになる。
【０００９】
　ＤＥＸファイルヘッダは、ＤＥＸファイルの内容のグローバルチェックサムも含む。ア
プリケーションの最初の実行時に、Androidシステムはオプティマイザを使用する。オプ
ティマイザは、実行の直前に、ＤＥＸインタプリタ型バイトコードを、ＯＤＥＸ（最適化
ＤＥＸ）と呼ばれる最適化機械語命令シーケンスに変更する。オプティマイザはチェック
サムの更新も行う。その後、ＯＤＥＸファイルは、後の使用のためにAndroidファイルシ
ステム内の特定のリポジトリに格納される。その後、ＯＤＥＸファイルは、アプリケーシ
ョンソフトウェアにとっての基準になり、これが存在する場合、元のＤＥＸファイルはも
はや使用されない。
【００１０】
　実行時、本システムは、ＯＤＥＸチェックサムを使用して、アプリケーションの整合性
を検証することができる。しかしながら、この選択肢は、Androidオペレーティングシス
テムではデフォルトで設定されておらず、Dalvikマシンは、ＯＤＥＸコードを実行するた
めに使用されているが、常にＯＤＥＸチェックサムを確認するわけではなく、これは、チ
ェックサムの検証が実行のパフォーマンスに無視できない影響を有するためである。
【００１１】
　Androidバージョン５．０以上では、Dalvikマシンに取って代わるAndroidランタイム（
ＡＲＴ）が導入されている。アプリケーションは引き続きＤＥＸコードで配備されるが、
ＤＥＸコードは、インストール時に事前（ＡＯＴ）コンパイル機能によりネイティブコー
ドにコンパイルされる。ＤＥＸファイルに対するＡＯＴコンパイルの結果として、バイナ
リのExecutable Linkable Format（ＥＬＦ）のファイルが得られる。アプリケーションの
ＤＥＸコードは、その後、いったんコンパイルされ、後にアプリケーションが実行される
たびにＥＬＦコードが起動される。ＡＲＴは、ネイティブコード（ＥＬＦコード）を直接
実行するので、アプリケーションの実行を高速化し、全体の電力消費を改善する。
【００１２】
　従って、Androidシステムでは、ＡＰＫ署名が検証されるのはインストール時のみであ
ることがわかる。更に、信頼されないソースからのアプリケーションのインストールをユ
ーザが許可すれば、中央機関の署名がないＡＰＫでもAndroidデバイスにインストールす
ることができる。従って、アプリケーション開発者は、いずれの信頼されている機関にも
リンクしていない独自の自己署名証明書を使用する。その場合、Androidデバイスの所有
者が知らないうちに、そのデバイス上で、改ざんされたアプリケーションの再署名及び再
インストールが何らかのハッカーによって行われる可能性がある。
【００１３】
　既に述べたように、Androidアプリケーションではインタプリタポータブルフォーマッ
ト（ＤＥＸ）を使用する。このポータブルフォーマットは、ＡＲＭ、ｘ８６、ＭＩＰＳ、
リトル／ビッグエンディアンなどの様々なアーキテクチャ及び特性を有する大規模デバイ
ス群において実行することができる。性能を向上させるために、ＤＥＸコードはインスト
ール時又はアプリケーションの最初の使用時に変更されて、ターゲットデバイスに合わせ
て最適化されたＯＤＥＸ又はＥＬＦバイナリが生成される。最適化又はＯＡＴコンパイル

(6) JP 2017-538217 A 2017.12.21

10

20

30

40

50

中、コード内の様々なものが変更され得る。即ち、命令を他の命令で置き換えることがで
き、命令の並びを変更することができ、バイト順を入れ替えることができるなどである。
【００１４】
　従って、最適化及びＯＡＴコンパイルは、セキュリティの問題を提起する。ＤＥＸファ
イルの署名は、依然としてＣＥＲＴ．ＳＦ及びＣＥＲＴ．ＲＳＡにより検証され得るが、
これはＯＤＥＸファイル及びＥＬＦファイルに当てはまらず、なぜなら、これらが変更さ
れており、その整合性がもはや元のＤＥＸ署名にリンクしていないためである。換言する
と、整合性及び信憑性はインストール時にのみ検証することができ、実行時には不可能で
ある。これは、攻撃者がＯＤＥＸ及びＥＬＦのコードを変更し、これに応じてヘッダ内の
最終的なチェックサムを更新することが可能なためである。
【００１５】
　従って、このシステムは少なくとも２種類の攻撃、即ち、リモート攻撃及びルート攻撃
に対して脆弱である。リモート攻撃では、ダウンロードされた悪意のあるアプリケーショ
ンがその特権を高め、システムパーミッションを入手する。その後、その悪意のあるアプ
リケーションは、内部記憶装置のキャッシュリポジトリに格納されているＯＤＥＸファイ
ル及びＥＬＦファイルを改ざんする可能性がある。ルート攻撃では、攻撃者はAndroidデ
バイスを手に入れる。これは、例えば、デバイスを盗むか、又は所有者がデバイスのセッ
ションをロックせずにいなくなった時点でデバイスにアクセスすることによって行われる
。攻撃者は、ＵＳＢリンクを介してデバイスの内部記憶装置からインストール済みアプリ
ケーションを取り出し、そのアプリケーションを変更し、その後、変更したアプリケーシ
ョンをプッシュして内部記憶装置に戻すことができる。ルート攻撃が成功するには、デバ
イスを「ルート化」しなければならない（即ち、デバイスのAndroidシステムを制御する
ために「ルートアクセス権」が必要である）。
【００１６】
　従って、Androidアプリケーションのライフサイクル中、アプリケーション整合性の信
頼が失われる可能性がある。Androidシステムにインストールされているアプリケーショ
ンを信頼することはできるが、実行中のアプリケーションを信頼することは必ずしもでき
ない。
【００１７】
　当然のことながら、インタプリタ型コードアプリケーションの整合性及び信憑性に関連
する問題の少なくとも一部を克服するソリューションを有することが望ましい。本開示は
、そのようなソリューションを提供する。
【発明の概要】
【００１８】
　第１の態様では、本開示は、未変更アプリケーションを変更することによって取得され
た変更済みアプリケーションの整合性を判定するデバイスを提供する。本デバイスは、変
更済みアプリケーションと、未変更アプリケーションの記憶されているチェックサムとを
記憶するように構成されたメモリと、変更済みアプリケーションの実行中に、未変更アプ
リケーションに対応するコードが変更済みアプリケーションにも対応していると判定する
ことと、未変更アプリケーションに対応するコードに関するチェックサムを生成すること
と、未変更アプリケーションに対応するコードに関するチェックサムと、未変更アプリケ
ーションの記憶されているチェックサムとを比較して、これらが一致するかどうかを判定
することと、変更済みアプリケーションが未変更アプリケーションに対応するコードに対
応している場合、及び未変更アプリケーションに対応するコードに関するチェックサムが
未変更アプリケーションの記憶されているチェックサムと一致する場合、変更済みアプリ
ケーションの整合性の検証に成功したものとして判定することとを行うように構成された
処理装置とを含む。
【００１９】
　第１の態様の様々な実施形態は、以下を包含する。
【００２０】

(7) JP 2017-538217 A 2017.12.21

10

20

30

40

50

　メモリは、未変更アプリケーションの記憶されているチェックサムの署名と、署名証明
書とを記憶するように構成されており、処理装置は、署名証明書を使用して署名の妥当性
を検証することと、署名の検証に成功する場合にも、変更済みアプリケーションの整合性
の検証に成功したものとして判定することとを行うように構成されている。
【００２１】
　プロセッサは、変更済みコードに対して逆変更を実施して未変更アプリケーションに対
応するコードを取得して、未変更アプリケーションに対応するコードが変更済みアプリケ
ーションにも対応していると判定するように構成されている。
【００２２】
　未変更アプリケーションに対応するコードは、未変更アプリケーションであり、メモリ
は、未変更アプリケーションを記憶するように更に構成されている。有利には、プロセッ
サは、変更済みコードと、未変更アプリケーションに対応するコードとの間の何らかの差
が変更中に取得された正当な変換に対応しているかどうかを判定して、未変更アプリケー
ションに対応するコードが変更済みアプリケーションにも対応していると判定するように
構成されている。或いは、有利には、プロセッサは、未変更アプリケーションに対応する
コードに対して変更を実施して、第２の変更済みコードを取得し、変更済みコードと第２
の変更済みコードとを比較して、未変更アプリケーションに対応するコードが変更済みア
プリケーションにも対応していると判定するように構成されている。
【００２３】
　未変更アプリケーションは、インタプリタ型コードとして実装され、及び変更済みアプ
リケーションは、最適化されたインタプリタ型コードとして又はネイティブコードとして
実装される。
【００２４】
　本デバイスは、スマートフォン又はタブレットである。
【００２５】
　第２の態様では、本開示は、未変更アプリケーションを変更することによって取得され
た変更済みアプリケーションの整合性を判定する方法を提供する。変更済みアプリケーシ
ョンの実行中、デバイスが、未変更アプリケーションに対応するコードが変更済みアプリ
ケーションにも対応していると判定し、未変更アプリケーションに対応するコードに関す
るチェックサムを生成し、未変更アプリケーションに対応するコードに関するチェックサ
ムと、未変更アプリケーションの記憶されているチェックサムとを比較して、これらが一
致するかどうかを判定し、変更済みアプリケーションが未変更アプリケーションに対応す
るコードに対応している場合、及び未変更アプリケーションに対応するコードに関するチ
ェックサムが未変更アプリケーションの記憶されているチェックサムと一致する場合、変
更済みアプリケーションの整合性の検証に成功したものとして判定する。
【００２６】
　第２の態様の様々な実施形態は、以下を包含する。
【００２７】
　本方法は、署名証明書を使用して署名の妥当性を検証することと、署名の検証に成功す
る場合にも、変更済みアプリケーションの整合性の検証に成功したものとして判定するこ
ととを更に含む。
【００２８】
　未変更アプリケーションに対応するコードが変更済みアプリケーションにも対応してい
ると判定することは、変更済みコードに対して逆変更を実施して、未変更アプリケーショ
ンに対応するコードを取得することを含む。
【００２９】
　未変更アプリケーションに対応するコードが変更済みアプリケーションにも対応してい
ると判定することは、変更済みコードと、未変更アプリケーションに対応するコードとの
間の何らかの差が変更中に取得された正当な変換に対応しているかどうかを判定すること
を含む。

(8) JP 2017-538217 A 2017.12.21

10

20

30

40

50

【００３０】
　未変更アプリケーションに対応するコードが変更済みアプリケーションにも対応してい
ると判定することは、未変更アプリケーションに対応するコードに対して変更を実施して
、第２の変更済みコードを取得することと、変更済みコードと第２の変更済みコードとを
比較することとを含む。
【００３１】
　第３の態様では、本開示は、プロセッサによって実行されると、第２の態様の方法をプ
ロセッサに実施させる命令を含む、コンピュータで実行可能なプログラムを提供する。
【図面の簡単な説明】
【００３２】
　以下では、次に示す添付図面を参照しながら、本開示の好ましい特徴を非限定的な実施
例として説明する。
【００３３】
【図１】本開示が実施される一例示的システムを示す。
【図２】本例示的システムの機能的態様を示す。
【図３】本開示の好ましい一実施形態による方法の好ましい一実施形態を示す。
【発明を実施するための形態】
【００３４】
　本開示によれば、ＯＤＥＸファイル又はＥＬＦファイルの整合性の検証は、対応するＤ
ＥＸの署名を検証することにより、ＯＤＥＸファイル又はＥＬＦファイルがＤＥＸと対応
することを検証することにより行われる。
【００３５】
　図１は、本開示が実施される一例示的システムを示す。本システムは、デバイス１１０
と、アプリケーションプロバイダ（アプリケーションストア）１２０とを含む。デバイス
１１０は、Android OSが動作する任意の種類の適切なデバイス、例えば、スマートフォン
又はタブレットであってよく、これは、少なくとも１つのハードウェア処理装置（「プロ
セッサ」）１１１と、メモリ１１２と、ユーザと対話するユーザインタフェース１１３と
、インターネットなどの接続１４０を介してアプリケーションプロバイダ１２０と通信す
る通信インタフェース１１４とを含む。当業者であれば理解されるように、図示されてい
るデバイスは明確さのために非常に簡略化されており、実際のデバイスは、電源及び永続
記憶装置などの機能を更に含むであろう。アプリケーションプロバイダ１２０は、デバイ
ス１１０がダウンロードできる少なくとも１つのアプリケーションＡＰＫファイル１２２
を記憶しており、このＡＰＫファイルは、署名エンティティによって署名されたＡＰＫ証
明書を含む。
【００３６】
　図２は、本例示的システムの機能的態様を示す。アプリケーション２２０は、署名エン
ティティによって署名されたＡＰＫ証明書２２２と、アプリケーションコード２２４（イ
ンストール前のＤＥＸと、インストール後のＯＤＥＸファイル又はＥＬＦファイル）と、
少なくとも１つの署名済みＤＥＸチェックサム（ＣＳ）２２６（場合によってはリスト形
式）、並びに少なくともＡＰＫ証明書の署名に使用された鍵と異なる鍵を使用して署名さ
れた場合、署名検証鍵２２８を含む署名証明書と、ソース取得モジュール２３２及び整合
性検証モジュール２３４を含むライブラリ２３０とを含む。
【００３７】
　ＤＥＸチェックサムは、有利には、ＤＥＸの一部分のチェックサムであり、ＤＥＸ全体
のチェックサムに対する追加として与えられてよい。ＤＥＸチェックサムは、ＡＰＫ証明
書に署名した署名鍵で署名されてよいが、別の鍵で署名されてもよい。
【００３８】
　アプリケーションは、署名済みチェックサムが計算されたＤＥＸのコピーを含んでもよ
いが、ＯＤＥＸファイル又はＥＬＦファイルを生成するために、又はアプリケーションの
インストール後にＡＰＫファイルの少なくとも一部分をＤＥＸコードとともに保持するた

(9) JP 2017-538217 A 2017.12.21

10

20

30

40

50

めにこのＤＥＸのコピーが最適化されている場合、ＯＳがこのＤＥＸのコピーを保持する
ことも可能である。
【００３９】
　ソース取得モジュール２３２及び整合性検証モジュール２３４は、ＡＰＫのネイティブ
ライブラリに含まれており、ネイティブライブラリにより、アプリケーションとともにパ
ッケージされ、特に署名検証を可能にする拡張ＪＮＩライブラリにアクセスすることが可
能である。
【００４０】
　ソース取得モジュール２３２は、ＯＤＥＸファイル又はＥＬＦファイルの少なくとも一
部分と、これに対応するＤＥＸとを取得して、これらを比較するように構成されている。
これは、様々な方法で行うことが可能である。
【００４１】
　第１の方法では、ソース取得モジュール２３２は、ＯＤＥＸファイルに逆最適化機能を
適用するか、ＥＬＦファイルに逆コンパイル機能を適用して、相当するＤＥＸコードを取
得する。ＤＥＸ命令のタイプによっては、ほとんどのＯＤＥＸ及びＥＬＦのファイルコー
ドが可逆である。典型的には、オペコードを置換するのみのＤＥＸ最適化であれば、ＤＥ
ＸからＯＤＥＸに及びＯＤＥＸからＤＥＸに容易に実施可能である。
【００４２】
　第２の方法では、ソース取得モジュール２３２は、元のＤＥＸコードを（例えば、ＡＰ
Ｋファイルから）取り出し、これをＯＤＥＸ又はＥＬＦのファイルコードと比較して、こ
れら２つの間の差が最適化による正当な変換に対応するかどうかを判定する。正当な変換
に対応すると判定されれば、ＯＤＥＸファイル又はＥＬＦファイルは元のＤＥＸに対応し
ていると判定される。
【００４３】
　第３の方法では、ソース取得モジュール２３２は、元のＤＥＸコードを（例えば、ＡＰ
Ｋファイルから）取り出し、最適化を実施して生成されたＯＤＥＸを取得するか、ＯＡＴ
コンパイルを実施してＥＬＦファイルを取得し、これらを記憶されているＯＤＥＸファイ
ル又はＥＬＦファイルと比較して、これらが同じかどうかを判定する。ＤＥＸチェックサ
ムは、元のＤＥＸコードから生成される。
【００４４】
　従って、これら３つの方法では、ＯＤＥＸファイル又はＥＬＦファイルは、記憶されて
いるＤＥＸ又は生成されたＤＥＸに対応していると判定される。このように、これらのＤ
ＥＸのそれぞれは、ＯＤＥＸファイル又はＥＬＦファイルに対応し、ＯＤＥＸファイル又
はＥＬＦファイルを生成するために使用されたＤＥＸに対応している。
【００４５】
　ソース取得モジュール２３２が、現在のＯＤＥＸファイル又はＥＬＦファイルが署名済
みＤＥＸに対応するＤＥＸから生成されていると判定すると、整合性検証モジュール２３
４は、現在のＤＥＸチェックサム及び署名を検証することが可能である。
【００４６】
　第１の方法の場合、ソース取得モジュール２３２は、生成されたＤＥＸから現在のＤＥ
Ｘチェックサムを計算し、これを署名済みＤＥＸチェックサム２２６と比較する。一致す
れば、ＯＤＥＸファイル又はＥＬＦファイルが、取得されたＤＥＸから取得されたことに
なる。第２及び第３の方法の場合、ソース取得モジュール２３２は、現在のＤＥＸチェッ
クサムを元のＤＥＸから計算する。第４の方法の場合、現在のＤＥＸチェックサムは、元
の最適化されていないＤＥＸコードから計算される。
【００４７】
　整合性検証モジュール２３４は、ＡＰＫ内の署名証明書（又は同じ鍵が使用された場合
にはＡＰＫ証明書）から公開検証鍵２２８を取り出すように構成されている。整合性検証
モジュール２３４は、また、検証鍵２２８が取り出された証明書の妥当性を検証すること
と、ＤＥＸの署名を検証することとを行うように構成されている。

(10) JP 2017-538217 A 2017.12.21

10

20

30

40

50

【００４８】
　全ての検証が成功する場合、ＯＤＥＸファイル又はＥＬＦファイルは妥当性が確認され
たと見なされる。当然のことながら、他の場合には適切な処置が行われてよい。
【００４９】
　図３は、好ましい一実施形態による方法のフローチャートを示す。
【００５０】
　ステップＳ３０２において、デバイス１１０は、署名が使用可能なＤＥＸ（即ち、未変
更コード）を変更することによって取得されたＯＤＥＸファイル又はＥＬＦファイル（即
ち、変更済みコード）を実行する。
【００５１】
　ステップＳ３０４において、デバイス１１０は、ＯＤＥＸファイル又はＥＬＦファイル
の少なくとも一部分がＤＥＸに対応していると判定する。ＤＥＸに対応するコードは、Ｄ
ＥＸ自体であってよいが、ＯＤＥＸファイル又はＥＬＦファイルの取得に使用されたＤＥ
Ｘのコピーであってもよい。この判定は、本明細書に記載のいずれかの方法で実施されて
よい。
【００５２】
　デバイス１１０が、ＯＤＥＸファイル又はＥＬＦファイルがＤＥＸに対応していると判
定する場合、ステップＳ３０６においてＤＥＸチェックサムが検証される。
【００５３】
　ＤＥＸチェックサムの検証に成功する場合、デバイス１１０は、ステップＳ３０８にお
いてＤＥＸチェックサムの署名を検証する。
【００５４】
　署名の検証結果に問題がない場合、ステップＳ３１０において、ＯＤＥＸファイル又は
ＥＬＦファイルの整合性が検証済みであると判定される。これは、ＯＤＥＸファイル又は
ＥＬＦファイルがＤＥＸに対応しており、ＤＥＸのチェックサムが検証された場合にその
ように判定されるからである。
【００５５】
　なお、ステップ３０４、３０６、及び３０８は、いかなる順序で実施されてもよい。例
えば、最初にＤＥＸチェックサムの署名が検証され（ステップ３０８）、次にＤＥＸチェ
ックサムが検証され（ステップ３０６）、最後にＯＤＥＸファイル又はＥＬＦファイルと
ＤＥＸとが一致するかどうかが判定される（ステップ３０４）。これらのステップの少な
くとも幾つかが並行して実施されてもよい。
【００５６】
　整合性の確認は、アプリケーションの実行中に複数回行われてよい。
【００５７】
　なお、本ソリューションは、現在配備されているAndroidシステムを全く変更しなくて
よい。
【００５８】
　本明細書では、「チェックサム」という用語は、チェックサムが生成されたデータがチ
ェックサムの生成後に変更されたかどうかの検証を可能にする値を包含することを意図さ
れている。従って、チェックサムは、例えば、ハッシュ値、巡回冗長検査（ＣＲＣ）値、
又は他の種類のダイジェストであってもよく、チェックサムからコードを取り出すことが
計算では不可能であることが好ましい。更に、明確さのために単一のチェックサムを使用
したが、複数のチェックサムを使用してもよく、コードの別個の部分についてチェックサ
ムを生成してよく（これらの別個の部分は一部が重なり合ってよい）、コードの複数の別
個の部分についての複数のチェックサムを使用して、比較用の単一のグローバルチェック
サムが生成される。署名は、任意の適切な暗号署名であってよく、例えば、ＨＭＡＣ（ハ
ッシュ方式のメッセージ認証コード）であってよく、又は例えば、ＲＳＡ、ＤＳＡ（デジ
タル署名アルゴリズム）、若しくはＥＣＤＳＡ（楕円曲線デジタル署名アルゴリズム）に
基づく署名であってよい。

(11) JP 2017-538217 A 2017.12.21

10

【００５９】
　当然のことながら、本ソリューションは、ルート攻撃及びリモート攻撃の両方に問題な
く対処することが可能である。
【００６０】
　ここまで本ソリューションをAndroid環境に関して説明してきたが、本ソリューション
は、インストール時にコードを変更し、インストールされたアプリケーションの安全な整
合性検証を実行時に可能にしない他のオペレーティングシステムにも適応され得る。
【００６１】
　従って、当然のことながら、本開示は、Androidデバイス上でのアプリケーションの実
行時整合性を有効にすることができるソリューションを提供する。
【００６２】
　本明細書並びに（該当する場合には）特許請求の範囲及び図面に開示される各特徴は、
単独で又は何らかの適切な組み合わせで提供されてよい。ハードウェアで実施されるよう
に説明された特徴がソフトウェアで実施されてもよく、その逆であってもよい。請求項中
に記載される参照符号は例示に過ぎず、請求項の範囲を限定する効果を有するものではな
い。

【図１】

【図２】

【図３】

(12) JP 2017-538217 A 2017.12.21

10

20

30

40

【国際調査報告】

(13) JP 2017-538217 A 2017.12.21

10

20

30

40

(14) JP 2017-538217 A 2017.12.21

10

20

フロントページの続き

(81)指定国　　　　 AP(BW,GH,GM,KE,LR,LS,MW,MZ,NA,RW,SD,SL,ST,SZ,TZ,UG,ZM,ZW),EA(AM,AZ,BY,KG,KZ,RU,T
J,TM),EP(AL,AT,BE,BG,CH,CY,CZ,DE,DK,EE,ES,FI,FR,GB,GR,HR,HU,IE,IS,IT,LT,LU,LV,MC,MK,MT,NL,NO,PL,PT,R
O,RS,SE,SI,SK,SM,TR),OA(BF,BJ,CF,CG,CI,CM,GA,GN,GQ,GW,KM,ML,MR,NE,SN,TD,TG),AE,AG,AL,AM,AO,AT,AU,AZ,
BA,BB,BG,BH,BN,BR,BW,BY,BZ,CA,CH,CL,CN,CO,CR,CU,CZ,DE,DK,DM,DO,DZ,EC,EE,EG,ES,FI,GB,GD,GE,GH,GM,GT,H
N,HR,HU,ID,IL,IN,IR,IS,JP,KE,KG,KN,KP,KR,KZ,LA,LC,LK,LR,LS,LU,LY,MA,MD,ME,MG,MK,MN,MW,MX,MY,MZ,NA,NG
,NI,NO,NZ,OM,PA,PE,PG,PH,PL,PT,QA,RO,RS,RU,RW,SA,SC,SD,SE,SG,SK,SL,SM,ST,SV,SY,TH,TJ,TM,TN,TR,TT,TZ,
UA,UG,US

(74)代理人 100134120
 弁理士　内藤　和彦
(74)代理人 100108213
 弁理士　阿部　豊隆
(72)発明者 サーモン－ルガネール，チャールズ
 フランス国，３５５７６　セソン－セビニエ，セーエス１７６　１６，ザック　デ　シャン　ブラ
 ン，アベニュー　デ　シャン　ブラン　９７５，テクニカラー・アール・アンド・ディー　フラン
 ス
(72)発明者 カロウミ，モハメド
 フランス国，３５５７６　セソン－セビニエ，セーエス１７６　１６，ザック　デ　シャン　ブラ
 ン，アベニュー　デ　シャン　ブラン　９７５，テクニカラー・アール・アンド・ディー　フラン
 ス
Ｆターム(参考) 5J104 AA09 LA03 PA02

	biblio-graphic-data
	abstract
	claims
	description
	drawings
	search-report
	overflow

