US 20120210139A2

a9 United States

12y Patent Application Publication () Pub. Date:
Taskaya et al.

10) Pub. No.: US 2012/0210139 A2

Aug. 16,2012
REPUBLICATION

(54)

(735)

(73)

@
(22)

(65)

(63)

SEGMENTED MAPPING

Inventors: Ilker Taskaya, Natick, MA (US); Alex

Nauda, Melrose, MA (US)

Assignee: Axis Technology Software, LL.C, Bos-

ton, MA (US)
Appl. No.: 13/178,150
Filed: Jul. 7, 2011
Prior Publication Data
US 2011/0314300 A1 Dec. 22, 2011
Related U.S. Application Data

Continuation of application No. 12/818808, filed on
Jun. 18, 2010.

e .

Masking |
Tooll
Process

PROD.

Publication Classification

(51) Int.CL
GO6F
(52) US.CL

2124 (2006.01)
.. 713/189

(57) ABSTRACT

Described are methods and apparatus, including computer
program products for masking data. The inventions involves
receiving a mapping scheme with a number of segments and
adifferent cryptographic algorithm for each segment and then
receiving a target value to be masked. The target value is then
split into a number of segments based on the number of
segments of the mapping scheme and the cryptographic algo-
rithm is applied for each segment in the mapping scheme to
each segment of the target value to generate an encrypted
segment for each segment in the target value. Then, the
encrypted segments are concatenated to create a masked
value.

 Example
Approac;h

. Central |

Masklhg
o Tooll
| Process

US 2012/0210139 A2

Patent Application Publication Aug. 16,2012 Sheet 1 of 8

V1 'S4

O T

eCl
ueW el
uononpoig

BCTI
aseqereq
uononpoIJ

BCll
W2ISAS 1]
uononpoId

Y
_

joysdeug

g

BOI1
IOATOS

uvoneorddy
uono/npoid

T
(_

001 JUSWUOIIAUT] UOIONPOIJ

-
|

0

q0¢1
RN BIR(
LVl

qeci
aseqereq
LV

Q¢TI
waIsAS 1

LVl

TN
()

T
_

qorl
JOAIOS

uoneorddy
1V

SO JuauwuolIAuy SuIde)s
/3unsa [, ooueydadoy 19sn)

011
RV NN
uoneonddy

US 2012/0210139 A2

el
J8e101§

LT
nup) 3urssanoid
[enua))

\ __ Sdl
T & 0ST ol
Smmwg Aroway MMMM a
d ATuQ-pey v
sorydern WOopUeY

q1 31

Patent Application Publication Aug. 16,2012 Sheet 2 of 8

Patent Application Publication Aug. 16,2012 Sheet 3 of 8

(T

he name “Michael”
needs to be masked

4

Encrypl “Michael”
using AES 256 to yicld
“1Ggl1597aX2C3bBVMI3ulg="

200

y

Hash encrypted
value using
MDS to yield
“428618117”
205

N

Hashed value
modulo 100
yields “17”
210

US 2012/0210139 A2

Fig. 2

A4

’ Index

Use “17”
as an index to
a lookup table

215

4

Masked Value
16 Royen
17 Damien
18 Gawain

Return
masked value
of “Damien”

220

Patent Application Publication Aug. 16,2012 Sheet4 of 8 US 2012/0210139 A2

| Three digits Flg 3A
Define segment
map to be three segments Two digits
300 .
.| Four digits

Row NMumber Real Yalue

1 F
A . Z2 Dot
Generate table with 7 2 002
index and real values i Ej{]‘."i
for first segment . = Qﬂd'
305 & De
o N 7 6
g Q07
9 hos
A0 ooe
Fevw P ashond
Mumber Walue Slrong Handom
A i ang 01274
Generale second table . : o1 0.4737
o 3 002 0.6545
with index, masked 4 Bl el
values, and random] A 06645
values between O and 1 | -_ & aes 3.3431
310 7 one 0,5545
_ ~] a7 1333
Q ooe .087%6
10 ons 1.3434

Row Number Strong Randarn Masked Value

) 1 00875 Qos

F) 01274 DO

Sort second table 3 0,133 007
based on random values 4 @‘Wﬁ DM
315 \ 5 03431 alaln

315 6 0.3434 009

Y 7 10,5545 0oa

& 06545 002

o/ 06645 on4

10 R oo3

Patent Application Publication Aug. 16,2012 Sheet 5 of 8

Join tables based
on row number
320

Encrypt real and
masked values until
masking is performed
325

US 2012/0210139 A2

Fig. 3B

Row Number Real Value Masked Value

1 000 008
2 001 000
3 002 007
4 003 001
5 004 005
6 005 009
7 006 006
8 007 002
9 008 004
10 009 003
Row
Number Real Value

1 qVwxO5bIAHBzP4leNfgIGA==

2 XLfEgFZwGxItGIPG5aHQCw==

3 UdxujnjWx+5vMTKh8fYIgA==

4 weMbCdMmiL+shaGXsSVoEw==

5 yiBkSWrlcCYFOf8bOE/4IA==

6 4x0wFctmwwitQqgiQdyIDYLw==

7 9QdGEBUdo0r6xgQ60ZRZdg==

8 AFpbubEbzpYilykV7i6FBw ===

9 SUB8X1712k9xvo/MyXbXIQ==

Masked Value
kCjcTwGXoatUcz8V0I20AA
Df/VPBUO61GKF3ru/PWENA
H8Svga+Un73Z3gXjfpgecqQ
omvlyPEh9vdhjRLwejUXKg
OPqdXVINIRIYZ4Cu7FHvV/Q:
ORhja/mFOmKFDbPuqTjgL2¢
gbhj6RnmRBC3a0nXtyBu4A
OGpMk3ALAsSOZhIR/QMLIQv
b5BI4u4BWcBIG69DUI=:

US 2012/0210139 A2

Patent Application Publication Aug. 16,2012 Sheet 6 of 8

¥ 814

m” | Moyisoday

| e |

. yoeouddy
. oidwexg

wﬂn_moga 4
Jloop |
mc_v_mﬂz %

/l.

ejeq
WWMWM = = mﬁ /

i
¥

L Q
: %»KN%

vn et

_ m.wmmot_n_ ”
/o0l
mc_v_nwm_z_

N _
i

| Yoeouddy

 8jdwex3

Patent Application Publication Aug. 16,2012 Sheet 7 of 8 US 2012/0210139 A2

el

Fig. 5

520

515

500

FTAIL

COMPANY INED
- EMPLOYVEE. ROV

SOLETE
EOUTCE

{0 SERVE
SVER:

T

FEARGETION ZERVER
PRODUCTION SERVER

PROGERCT
PRODUCTIONSE

505

Patent Application Publication Aug. 16,2012 Sheet 8 of 8 US 2012/0210139 A2

Fig. 6

630

625

620

600
615

610

sie ok v want e seerch.

605

US 2012/0210139 A2

SEGMENTED MAPPING

RELATED APPLICATIONS

[0001] The present application is a continuation of prior
co-pending U.S. application Ser. No. 12/818,808, filed on
Jun. 18, 2010, the entire disclosure of which is incorporated
by reference herein.

FIELD OF THE INVENTION

[0002] The present invention relates generally to migrating
data from a production environment to a non-production envi-
ronment and, more specifically, to obfuscating live data to
protect the privacy of individuals that use the system.

BACKGROUND

[0003] Many industries are required to keep their users’
data private. Banks and healthcare providers—to name just a
few—face embarrassment, decreased customer confidence,
not to mention lawsuits, if they inadvertently release cus-
tomer or patient data. Furthermore, many governments are
passing legislation that requires the protection of personal
data, e.g., “Mass 201" which sets out guidelines and obliga-
tions for anyone that receives personal information from resi-
dents of Massachusetts. But the very systems that house this
data need to be tested before deployment using data sets and
test cases that come as close as possible to real-world condi-
tions. But migrating real world data to testing and develop-
ment environments—where dozens or hundreds of employ-
ees may access the environment—can lead to the very privacy
leaks that companies fear.

SUMMARY OF THE INVENTION

[0004] The present invention provides means—in various
embodiments—for securing data from a production environ-
ment before it is transmitted to a non-production environ-
ment.

[0005] Inone aspect, there is a method for securing data of
the production server that is executed on a computer proces-
sor. The method includes reading a data value on the produc-
tion server and obfuscating the data value in the memory of
the server to create a masked value. Then the masked value is
transmitted to a non-production server, and stored on the
non-production server.

[0006] Inanotheraspect, there is a computer program prod-
uct, tangibly embodied in a computer-readable storage
medium, for securing data of a production server. The com-
puter program product is typically software, but may be a
combination of hardware and software or even a specific
hardware implementation of the software. The computer pro-
gram product includes instructions operable to cause a data
processing apparatus, such as a computer, to read a data value
on the production server and obfuscate the data value in the
memory of the server to create a masked value. The masked
value is then transmitted to a non-production server and
stored on the non-production server.

[0007] Inanotheraspect,thereis a system for securing data.
The system includes a target non-production server and a
production server. The production server is configured to read
a data value on the production server, obfuscate the data value
in the memory of the server to create a masked value, transmit

Aug. 16,2012

the masked value to the non-production server, and cause the
masked value to be stored on the non-production server.

[0008] Any of the above aspects—the method, computer
program product, or system—may enjoy one or more of the
following benefits. In some implementations, the obfuscating
step involves masking the data value using a segmented map-
ping technique. Alternatively or additionally, the obfuscating
step includes masking the data value using a secure lookup
technique with the lookup table being stored on the non-
production server. And in some implementations, the user is
presented with a plurality of obfuscation techniques and the
user can select which obfuscation technique to apply. Advan-
tageously, a report can be generated for the obfuscation pro-
cedure. Also, the status of the obfuscation can be emailed to a
user.

[0009] In another aspect, there is a method, executed on a
computer processor, for secure data transformation and
lookup. The secure lookup begins by encrypting a data value
to create an encrypted value. A hash value is then generated
based on the encrypted value and a modulo operation is
performed on the hash value to create a modulo value. A
transformed value is then retrieved from a lookup table by
using the modulo value as an index for the look up table.

[0010] Thereisalso asystem for secure data transformation
and lookup. The system includes a look up table with trans-
formed values, each value with a corresponding index, and
there is a processor. The processor is configured to receive a
data value to be transformed, encrypt the data value to create
an encrypted value, generate a hash value based on the
encrypted value and perform a modulo operation on the hash
value to create a modulo value. Finally, the processor
retrieves, from the lookup table, a transformed value, using
the modulo value as the index.

[0011] There is also a computer program product, tangibly
embodied in a computer-readable storage medium, for secure
data transformation and lookup. The computer program prod-
uct is typically software, but may be a combination of hard-
ware and software or even a specific hardware implementa-
tion of the software. The computer program product includes
instructions operable to cause a data processing apparatus,
such as a computer, to encrypt a data value to create an
encrypted value. A hash value is then generated based on the
encrypted value and the data processing apparatus then per-
forms a modulo operation on the hash value to create a
modulo value. Finally, the data processing apparatus retrieves
a transformed value from a lookup table by using the modulo
value as an index for the look up table.

[0012] In another aspect there is a method, executed on a
computer processor, for masking data. The method involves
receiving a mapping scheme with a number of segments and
receiving a different cryptographic algorithm for each seg-
ment. A target value to be masked is also received and then
split into a number of segments based on the number of
segments of the mapping scheme. A cryptographic algorithm
is then applied to each segment of the target value for each
segment in the mapping scheme to generate an encrypted
segment for each segment in the target value. Lastly, the
encrypted segments are concatenated to create a masked
value. There is also a computer program product with instruc-
tions operable to cause a data processing apparatus to perform
the steps of the method.

[0013] The cryptographic algorithm in the method and
computer program product typically takes one of two forms.

US 2012/0210139 A2

One option is to start by creating a table with rows of mask
values. The number of rows of the table corresponds to the
length of each segment, e.g., if there are two digits in the
segment, there are 10 rows in the table, i.e., 0 through 9. Then
a random number is created for each row in the table. The
rows are sorted based on the random number associated with
each row, and a lookup function is performed using the seg-
ment value as an index for the table to retrieve a mask value of
a particular row.

[0014] The other option is similar, but slightly different. In
it, a first table is created with all possible values for a variable
of'length equal to the length of the current segment (same as
above, all value 0-9 for a two digit segment). Then, a second
table is created with rows of mask values. Similar to the first
table, the number of rows of the second table corresponds to
the length of each segment. Then a random number is created
for each row in the second table and the rows of the second
table are sorted based on the random number associated with
each row. Then, the first table and the second table are joined
such that each possible value is paired with a mask value and
a lookup function is performed using the segment value as an
index for the table to retrieve a mask value of a particular row.

[0015] Other aspects and advantages of the present inven-
tion will become apparent from the following detailed
description, taken in conjunction with the accompanying
drawings, illustrating the principles of the invention by way
of example only.

BRIEF DESCRIPTION OF THE DRAWINGS

[0016] The foregoing and other objects, features, and
advantages of the present invention, as well as the invention
itself, will be more fully understood from the following
description of various embodiments, when read together with
the accompanying drawings, in which:

[0017] FIG. 1A depicts an architecture in which the present
invention operates;

[0018] FIG. 1B shows the components of a typical server
upon which the present invention operates;

[0019] FIG. 2 shows an example of secure lookup;

[0020] FIGS. 3A and 3B show an example of how a real
value can be masked to a target value; and

[0021] FIG. 4 shows two potential use cases of the inven-
tion;

[0022] FIG. 5 shows a screen shot of a web interface to the
masking tool; and

[0023] FIG. 6 shows a report of scheduled masking jobs.

DETAILED DESCRIPTION

[0024] FIG. 1A depicts an architecture that the present
invention operates in. There are typically two environments,
“production”100 and “user acceptance testing’105 or “UAT.”
The production environment 100 is the live data in which an
external website user interacts. The UAT environment 105 is
a testing ground for new code and bug fixes so that any
changes can be vetted before they are pushed to the live
system. If changes are not tested before being deployed to the
production environment 100, users’ service may be inter-
rupted if the code causes a malfunction, or worse, the changes
allow unauthorized access to the data that drives the website.

Aug. 16,2012

Therefore it is important that UAT 105 match the production
environment 100 as closely as possible. It is not uncommon,
in some embodiments, for UAT 105 to execute the exact same
software and on a computer that is a duplicate of the produc-
tion environment 100.

[0025] A typical environment, whether production or UAT,
often has an Application Server 110q, 1105, a file system
115a, 1155 that is accessed by the application server 110, a
Data Mart 1204, 1205, and a Database 1254, 1255 for storing
user information. The computers that serve as the Application
Servers 110a, 1105 (collectively 110) typically include sev-
eral components, as shown in FIG. 1B. An Application Server
110 typically includes a graphics processor 130, storage com-
ponent 135, such as a hard drive, Read Only Memory (ROM)
140, Random Access Memory (RAM) 145, and a Central
Processing Unit (CPU) 147, all in signal communication via
a bus 150. The bus 150 also connects to a network input/out
for communication with networked storage and databases,
e.g., the Database 125 associated with the respective environ-
ments.

[0026] In some embodiments, execution of the software
used for masking limits the Application Server 110a it is
operating on to a particular purpose, e.g., masking the data as
it moves from production to user acceptance testing. In these
scenarios, the Application Server 110a combined with the
software, in effect, becomes a particular machine while the
software is executing. In some embodiments, though other
tasks may be performed while the software is running, execu-
tion of the software still limits the computer and may nega-
tively impact performance of the other tasks. In some embodi-
ments, while the software is executing, the computer directs
output related to the execution of the software to the display,
thereby controlling the operation of the display. The Appli-
cation Server 110a can also receive inputs provided by one or
more users, perform operations and calculations on those
inputs, and direct the display to depict a representation of the
inputs received and other data such as results from the opera-
tions and calculations, thereby transforming the input
received from the Production Database 1254 into another
form such as a masked value. Beneficially, a visual represen-
tation of the masked value can be displayed on the display.

[0027] Referring back to FIG. 1A, generally the informa-
tion and configuration of the production environment 100 is
captured via a full snapshot and imported into the UAT envi-
ronment 105. Personal data, however, cannot just be whole-
sale copied from a live system 100 to a test system 105 due to
the privacy concerns raised earlier. In the present invention,
the personal data from the production environment 100 is
masked on-the-fly as it is copied to the UAT environment 105,
substituting masked values on the UAT environment for the
source value on the production environment. In one embodi-
ment, the invention, coded in Java programming language,
uses connectors to access data stores, e.g., Oracle, SQL
Server, DB2 and other databases, as well as data integration
products such as Ab Initio, Informatica, DataStage and oth-
ers.

[0028] Data can also be masked on-the-fly to other devel-
opment environments such as Quality Assurance environ-
ments and Development environments. Advantageously, only
certain tables can be masked or only certain views into the
data need to be masked. This can be selected by a system
administrator or based on a company’s security policy.

US 2012/0210139 A2

[0029] One implementation of the invention uses a secure
lookup to obfuscate the production data. Secure lookup
begins by encrypting the production data to be transformed to
create an encrypted value. In a preferred embodiment,
Advanced Encryption Standard (“AES”) is used for encryp-
tion, but other encryption schemes such as Triple DES, Blow-
fish, etc. are also usable.

[0030] After encrypting the data, a hash value is generated
based on the encrypted value. Typical hash values are created
using the MD5 algorithm. After creating the hash value, a
modulo operation, e.g., modulo one hundred (100), is per-
formed on the hash value to create a modulo value. The
modulo value is then used as an index for a lookup table—
which contains a series of safe values—and the safe value is
retrieved from the lookup table. The look up table may be
pre-populated with valid values, or the user may select the
safe values, e.g., famous actors for names, famous addresses
for addresses, etc. The safe value is retrieved and used in place
of the production value and used as the masked value.

[0031] FIG. 2 shows an example of secure lookup. In FIG.
2, the name “Michael” can be masked to “Damien” by the
processor 147 of the Production Application Server 110a.
The process begins by encrypting (step 200) “Michael” using
AES 256. The output of the AES encryption is
“1Gql1597aX2C3bBVMI3ulg==". That value is then hashed
(step 205) using MD5 and becomes “428618117”. The hash
value is modded (step 210), e.g., by mod 100, to yield “17”.
That value is then used (step 215) as the index to a name table
and the 17th entry is “Damien”. The value of “Damien” is
returned (step 220) as the masked value. Now, no one reading
the non-production data of “Damien” will know the original
value on the production server is “Michael.”

[0032] Beneficially, the process is irreversible, so the end
value cannot be used to recreate the original value. Also, in
some implementations, a user of the system can populate the
lookup table with their own values, e.g., fictional characters,
famous people from world history, and others. Keys for
encryption can also be rotated to provide additional security
so that a value that is masked one day, after key rotation,
would yield a different masked value another day. Similar
rotation of hashing algorithms or modulo operations are also
possible.

[0033] In some embodiments, mask values are created
using a technique called “segmented mapping”. In segmented
mapping, a mapping scheme is used that has a number of
segments with each segment associated with a different cryp-
tographic algorithm. Then, the target value to be masked is
split into a number of segments based on the number of
segments of the mapping scheme. The cryptographic algo-
rithm for each segment in the mapping scheme is then used to
encrypt each segment of the target value to generate an
encrypted segment for each segment in the target value. Then
the encrypted segments are all concatenated together to create
a masked value.

[0034] Insomeimplementations ofthe segmented mapping
approach, the cryptographic algorithm for a segment involves
creating a table with rows of mask values, with the number of
rows of the table corresponding to the length of each segment.
Then a random number is created for each row in the table.
The rows of the table are then sorted based on the random
number associated with each row and a lookup function is
performed using the segment value as an index for the table to
retrieve a mask value of a particular row.

Aug. 16,2012

[0035] FIGS. 3A and 3B show an example of how
“AA3588456000” becomes “AA2458456123” First, a seg-
ment map is defined 300 as being a segment map of three
segments, with the following lengths: the first segment is
three digits long, the second is two digits long, and the third is
four digits long. The total map size in this example is based on
the digits portion of the value to be masked, and the breaks
can be decided by the system administrator, or they can be
programmatically chosen by the invention by splitting the
length of the value to be masked at random points. In this
example, the first two letters (“AA”) are kept and will not be
transformed. It is understood though that alphanumeric char-
acters can also be mapped, and the segments can be of any
size.

[0036] The processor generates 305 the first segment with
real values from 000 to 999 (the table will have rows num-
bered to 998). Then the processor generates another table 310
with masked values from 000 to 999, and each row is assigned
a random number between 0 and 1, generated using a strong
random number generator. Beneficially, a cryptographic
alphanumeric string is also usable, generated using an
encryption algorithm, e.g., AES 256.

[0037] The second table is then sorted 315. In a preferred
embodiment, the sorting occurs in an ascending manner
based on the strong random number, from lowest to highest.
This will cause the masked values to no longer be in order,
e.g., the mask value of 000 will no longer be in the first row,
the masked value of 008 will be (because its strong random
number is 0.0876, which is less than masked value 000’s
strong random number of 0.1274). The table can also be
sorted in a descending manner.

[0038] Referring to FIG. 3B, the second table and the first
table are then joined 320 on row number to create a real and
masked value pair. As shown in FIG. 3B, real value 000 is
joined with masked value 008. Real number 001 is joined
with masked value 000. Real number 002 is joined with
masked value 007, and so forth. Alternatively, the real value
and masked value do not need to be paired, but rather the real
value serves as an index for performing a lookup function to
retrieve a mask value of a particular row.

[0039] Then, the real and the masked values are encrypted
325. As before, the encryption can be performed using any
strong cipher, e.g., AES 256. This is then repeated for each
segment that is to be masked, which allows a real value to
have different mask values depending on which segment it is
in.

[0040] When the masking operation is called for, the real
and masked values are then decrypted and any real values in
the database to be masked are substituted in the target storage
using the masked value instead. Because the user can specify
the segmenting of the value and which values will be pre-
served, i.e., left unmasked, and which will not, this allows a
user to generate their own segmented mappings to mask with
unique values consistently, and define values which need to
be preserved, such as dashes, or semantically rich values.

[0041] FIG. 4 shows two potential use cases of the inven-
tion. In FIG. 4, a data value is read from the PROD database
by the application server (110a of FIG. 1A). The data value is
obfuscated in the memory of the application server using one
of the techniques described above to create a masked value.
The masked value is then transmitted to the non-production

US 2012/0210139 A2

server (UAT, SIT, and DEV) databases. Then the masked
value is stored in the non-production server databases. Alter-
natively, the PROD database is masked into a central reposi-
tory that UAT, SIT, and DEV all can read from. In either case,
the data masking process can occur on the production appli-
cation server 110 or a masking server may be used that does
not store the masked values in a permanent storage, and in
both cases the UAT, SIT, and DEV servers are never able to
access the real data on the PROD database. When masking
data, advantageously the techniques described herein do not
involve analyzing relationships between data or reading a
database catalog. Instead, analysis is isolated to the field itself
and therefore can operate over distributed systems, where
relationship information may not be available.

[0042] FIG. 5 shows a screen shot 500 of a web interface to
the masking tool. The web interface may reside on the Appli-
cation Server 110 or it may be on a separate server that
accesses the masking tool executing on the Application
Server 110. Each masking operation has a connector 505
which indicates where the source data is coming from (and
hence, where the masking tool needs to connect to). The
interface also specifies what tables 510 will be masked, and
gives the option for further specifying only certain columns
515. In the embodiment pictured, the user may also input 520
specific Structured Query Language (SQL) commands to
retrieve data for masking. These masking operations are then
used for masking jobs that can be scheduled.

[0043] FIG. 6 shows a report 600 of scheduled masking
jobs. The jobs specify an environment 605 they were executed
in, e.g., Production, UAT, etc, but here listed as “Environment
1” and “Environment 2.” The report also shows the rule set
610 used to mask the data, what type of job 615 the job was,
e.g., mask job, provision job, etc., and a job status 620, i.e.,
whether the job succeeded or failed. The user may also take an
action 625 on the job such as re-running it or the user may edit
630 ajob to modify it orto fix it if the job failed. When editing,
the user may alter the rule set 610, or the environment 605, or
any other parameter. Beneficially, the report can be emailed—
using techniques known to those in the art—to a user, system
administrator, masking consultant, or the like either automati-
cally or upon request by that person.

[0044] The above-described techniques can be imple-
mented in digital electronic circuitry, or in computer hard-
ware, firmware, software, or in combinations of them. The
implementation can be as a computer program product, i.e., a
computer program tangibly embodied in an computer-read-
able storage medium, for execution by, or to control the
operation of, data processing apparatus, e.g., a programmable
processor, a computer, or multiple computers. A computer
program can be written in any form of programming lan-
guage, including compiled or interpreted languages, and it
can be deployed in any form, including as a stand-alone
program or as a module, component, subroutine, or other unit
suitable for use in a computing environment. A computer
program can be deployed to be executed on one computer or
on multiple computers at one site or distributed across mul-
tiple sites and interconnected by a communication network.

[0045] Method steps can be performed by one or more
programmable processors executing a computer program to
perform functions of the invention by operating on input data
and generating output. Method steps can also be performed
by, and apparatus can be implemented as, special purpose

Aug. 16,2012

logic circuitry, e.g., an FPGA (field programmable gate array)
or an ASIC (application-specific integrated circuit). Modules
can refer to portions of the computer program and/or the
processor/special circuitry that implements that functionality.

[0046] Processors suitable for the execution of a computer
programinclude, by way of example, both general and special
purpose microprocessors, and any one or more processors of
any kind of digital computer. Generally, a processor receives
instructions and data from a read-only memory or a random
access memory or both. The essential elements of a computer
are a processor for executing instructions and one or more
memory devices for storing instructions and data. Generally,
acomputer also includes, or be operatively coupled to receive
data from or transfer data to, or both, one or more mass
storage devices for storing data, e.g., magnetic, magneto-
optical disks, or optical disks. Data transmission and instruc-
tions can also occur over a communications network. Infor-
mation carriers suitable for embodying computer program
instructions and data include all forms of non-volatile
memory, including by way of example semiconductor
memory devices, e.g., EPROM, EEPROM, and flash memory
devices; magnetic disks, e.g., internal hard disks or remov-
able disks; magneto-optical disks; and CD-ROM and DVD-
ROM disks. The processor and the memory can be supple-
mented by, or incorporated in special purpose logic circuitry.

[0047] To provide for interaction with a user, the above
described techniques can be implemented on a computer
having a display device, e.g., a CRT (cathode ray tube) or
LCD (liquid crystal display) monitor, for displaying informa-
tion to the user and a keyboard and a pointing device, e.g., a
mouse or a trackball, by which the user can provide input to
the computer (e.g., interact with a user interface element).
Other kinds of devices can be used to provide for interaction
with a user as well; for example, feedback provided to the user
can be any form of sensory feedback, e.g., visual feedback,
auditory feedback, or tactile feedback; and input from the
user can be received in any form, including acoustic, speech,
or tactile input.

[0048] The above described techniques can be imple-
mented in a distributed computing system and the compo-
nents of the system can be interconnected by any form or
medium of digital data communication, e.g., a communica-
tion network. Examples of communication networks include
a local area network (“LAN”) and a wide area network
(“WAN), e.g., the Internet, and include both wired and wire-
less networks.

[0049] The invention has been described in terms of par-
ticular embodiments. The alternatives described herein are
examples for illustration only and not to limit the alternatives
in any way. The steps of the invention can be performed in a
different order and still achieve desirable results. Other
embodiments are within the scope of the following claims.

What is claimed is:
1. A method, executed on a computer processor, for mask-
ing data comprising:

receiving a mapping scheme comprising a number of seg-
ments and a different cryptographic algorithm for each
segment;

receiving a target value to be masked;

US 2012/0210139 A2

splitting the target value into a number of segments based
on the number of segments of the mapping scheme;

applying the cryptographic algorithm for each segment in
the mapping scheme to each segment of the target value
to generate an encrypted segment for each segment in
the target value; and

concatenating the encrypted segments to create a masked
value.
2. The method of claim 1 wherein the cryptographic algo-
rithm for a segment comprises:

creating a table comprising rows of mask values, wherein
the number of rows of the table corresponds to the length
of'each segment;

creating a random number for each row in the table;

sorting the rows of the table based on the random number
associated with each row; and

performing a lookup function using the segment value as
an index for the table to retrieve a mask value of a
particular row.
3. The method of claim 1 wherein the cryptographic algo-
rithm for a segment comprises:

creating a first table comprising all possible values for a
variable of length equal to the length of the current
segment;

creating a second table comprising rows of mask values,
wherein the number of rows of the second table corre-
sponds to the length of each segment;

creating a random number for each row in the second table;

sorting the rows of the second table based on the random
number associated with each row;

joining the first table and the second table such that each
possible value is paired with a mask value; and

performing a lookup function using the segment value as
an index for the table to retrieve a mask value of a
particular row.

4. A computer program product, tangibly embodied in a
computer-readable storage medium, for masking data, the
computer program product including instructions operable to
cause a data processing apparatus to:

receive a mapping scheme comprising a number of seg-
ments and a different cryptographic algorithm for each
segment;

Aug. 16,2012

receive a target value to be masked;

split the target value into a number of segments based on
the number of segments of the mapping scheme;

apply the cryptographic algorithm for each segment in the
mapping scheme to each segment of the target value to
generate an encrypted segment for each segment in the
target value; and

concatenate the encrypted segments to create a masked
value.
5. The computer program product of claim 4, wherein the
cryptographic algorithm instructions are operable to cause
the data processing apparatus to:

create a table comprising rows of mask values, wherein the
number of rows of the table corresponds to the length of
each segment;

create a random number for each row in the table;

sort the rows of the table based on the random number
associated with each row; and

perform a lookup function using the segment value as an
index for the table to retrieve a mask value of a particular
row.
6. The computer program product of claim 4, wherein the
cryptographic algorithm instructions are operable to cause
the data processing apparatus to:

create a first table comprising all possible values for a
variable of length equal to the length of the current
segment;

create a second table comprising rows of mask values,
wherein the number of rows of the second table corre-
sponds to the length of each segment;

create a random number for each row in the second table;

sort the rows of the second table based on the random
number associated with each row;

join the first table and the second table such that each
possible value is paired with a mask value; and

perform a lookup function using the segment value as an
index for the table to retrieve a mask value of a particular
row.

