

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
13 July 2006 (13.07.2006)

PCT

(10) International Publication Number
WO 2006/073787 A2

(51) International Patent Classification:
CI2N 15/82 (2006.01) *A01H 5/00* (2006.01)
CI2N 9/02 (2006.01)

(74) Agent: MAKOWSKI, Roberte M.D.; CONNOLLY
BOVE LODGE & HUTZ LLP, 1007 North Orange Street,
P.O. Box 2207, Wilmington, Delaware 19899 (US).

(21) International Application Number:
PCT/US2005/046027

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KM, KN, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV,
LY, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NG, NI,
NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG,
SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US,
UZ, VC, VN, YU, ZA, ZM, ZW.

(22) International Filing Date:
19 December 2005 (19.12.2005)

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT,
RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA,
GN, GQ, GW, ML, MR, NE, SN, TD, TG).

(25) Filing Language:
English

(26) Publication Language:
English

Published:

— without international search report and to be republished
upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(71) Applicant (for all designated States except US): **BASF
PLANT SCIENCE GMBH** [DE/DE]; Carl-bosch-str. 38,
67056 Ludwigshafen (DE).

(72) Inventors; and

(75) Inventors/Applicants (for US only): **HAERTEL, Heiko**
[DE/US]; 24 Chestnut Bluffs Lane, Durham, North Carolina 27713 (US). **GIBSON, Jermaine** [US/US]; 5538
Hamstead Crossing Drive, Raleigh, North Carolina 27612 (US). **REN, Peifeng** [CN/US]; 206 Wedgemere Street,
Cary, North Carolina 27519 (US).

(54) Title: NUCLEIC ACID MOLECULES ENCODING FATTY ACID DESATURASE GENES FROM PLANTS AND METHODS OF USE

(57) Abstract: This invention relates generally to nucleic acid sequences encoding proteins that are related to the presence of seed storage compounds in plants. More specifically, the present invention relates to *FAD2*-like nucleic acid sequences encoding lipid metabolism regulator proteins and the use of these sequences in transgenic plants. In particular, the invention is directed to methods for manipulating lipid metabolism related compounds and for increasing oil level and altering the fatty acid composition in plants and seeds. The invention further relates to methods of using these novel plant polypeptides to stimulate plant growth and/or to increase yield and/or composition of seed storage compounds.

WO 2006/073787 A2

NUCLEIC ACID MOLECULES ENCODING FATTY ACID DESATURASE GENES FROM PLANTS AND METHODS OF USE

[0001] This application claims priority to U.S. provisional application 60/637531 filed on December 20, 2004, herein incorporated by reference in its entirety.

FIELD OF THE INVENTION

[0002] Described herein are inventions in the field of genetic engineering of plants, including isolated nucleic acid molecules encoding *Fatty Acid Desaturase2-like (FAD2-like)* polypeptides to improve agronomic, horticultural and quality traits. This invention relates generally to nucleic acid sequences encoding proteins that are related to the presence of seed storage compounds in plants. More specifically, the present invention relates to *FAD2-like* nucleic acid sequences encoding lipid metabolism regulator proteins and the use of these sequences in transgenic plants. In particular, the invention is directed to methods for manipulating lipid metabolism related compounds and for increasing oil level and altering the fatty acid composition in plants and seeds. The invention further relates to methods of using these novel plant polypeptides to stimulate plant growth and/or to increase yield and/or composition of seed storage compounds.

BACKGROUND OF THE INVENTION

[0003] The study and genetic manipulation of plants has a long history that began even before the famed studies of Gregor Mendel. In perfecting this science, scientists have accomplished modification of particular traits in plants ranging from potato tubers having increased starch content to oilseed plants such as canola and sunflower having increased or altered fatty acid content. With the increased consumption and use of plant oils, the modification of seed oil content and seed oil levels has become increasingly widespread (e.g. Töpfer et al. 1995, Science 268:681-686). Manipulation of biosynthetic pathways in transgenic plants provides a number of opportunities for molecular biologists and plant biochemists to affect plant metabolism giving rise to the production of specific higher-value products. The seed oil production or composition has been altered in numerous traditional oilseed plants such as soybean (U.S. Patent No. 5,955,650), canola (U.S. Patent No. 5,955,650), sunflower (U.S. Patent No. 6,084,164) and rapeseed (Töpfer et al. 1995, Science 268:681-686), and non-traditional oil seed plants such as tobacco (Cahoon et al. 1992, Proc. Natl. Acad. Sci. USA 89:11184-11188).

[0004] Plant seed oils comprise both neutral and polar lipids (see Table 1). The neutral lipids contain primarily triacylglycerol, which is the main storage lipid that accumulates in oil bodies in seeds. The polar lipids are mainly found in the various membranes of the seed cells, e.g. the endoplasmic reticulum, microsomal membranes and the cell membrane. The neutral and polar lipids contain several common fatty acids (see Table 2) and a range of less common fatty acids. The fatty acid composition of membrane lipids is highly regulated and only a select number of fatty acids are found in membrane lipids. On the other hand, a large number of unusual fatty acids can be incorporated into the neutral storage lipids in seeds of many plant species (Van de Loo F.J. et al. 1993, Unusual Fatty Acids in Lipid Metabolism in Plants pp. 91-126, editor TS Moore Jr. CRC Press; Millar et al. 2000, Trends Plant Sci. 5:95-101).

[0005] Lipids are synthesized from fatty acids and their synthesis may be divided into two parts: the prokaryotic pathway and the eukaryotic pathway (Browse et al. 1986, *Biochemical J.* 235:25-31; Ohlrogge & Browse 1995, *Plant Cell* 7:957-970). The prokaryotic pathway is located in plastids that are the primary site of fatty acid biosynthesis. Fatty acid synthesis begins with the conversion of acetyl-CoA to malonyl-CoA by acetyl-CoA carboxylase (ACCase). Malonyl-CoA is converted to malonyl-acyl carrier protein (ACP) by the malonyl-CoA:ACP transacylase. The enzyme beta-keto-acyl-ACP-synthase III (KAS III) catalyzes a condensation reaction, in which the acyl group from acetyl-CoA is transferred to malonyl-ACP to form 3-ketobutyryl-ACP. In a subsequent series of condensation, reduction and dehydration reactions the nascent fatty acid chain on the ACP cofactor is elongated by the step-by-step addition (condensation) of two carbon atoms donated by malonyl-ACP until a 16- or 18-carbon saturated fatty acid chain is formed. The plastidial delta-9 acyl-ACP desaturase introduces the first unsaturated double bond into the fatty acid. Thioesterases cleave the fatty acids from the ACP cofactor and free fatty acids are exported to the cytoplasm where they participate as fatty acyl-CoA esters in the eukaryotic pathway. In this pathway the fatty acids are esterified by glycerol-3-phosphate acyltransferase and lysophosphatidic acid acyl-transferase to the sn-1 and sn-2 positions of glycerol-3-phosphate, respectively, to yield phosphatidic acid (PA). The PA is the precursor for other polar and neutral lipids, the latter being formed in the Kennedy pathway (Voelker 1996, *Genetic Engineering* ed.: Setlow 18:111-113; Shanklin & Cahoon 1998, *Annu. Rev. Plant Physiol.* *Plant Mol. Biol.* 49:611-641; Frentzen 1998, *Lipids* 100:161-166; Millar et al. 2000, *Trends Plant Sci.* 5:95-101).

[0006] Storage lipids in seeds are synthesized from carbohydrate-derived precursors. Plants have a complete glycolytic pathway in the cytosol (Plaxton 1996, *Annu. Rev. Plant Physiol. Plant Mol. Biol.* 47:185-214) and it has been shown that a complete pathway also exists in the plastids of rape-seeds (Kang & Rawsthorne 1994, *Plant J.* 6:795-805). Sucrose is the primary source of carbon and energy, transported from the leaves into the developing seeds. During the storage phase of seeds, sucrose is converted in the cytosol to provide the metabolic precursors glucose-6-phosphate and pyruvate. These are transported into the plastids and converted into acetyl-CoA that serves as the primary precursor for the synthesis of fatty acids. Acetyl-CoA in the plastids is the central precursor for lipid biosynthesis. Acetyl-CoA can be formed in the plastids by different reactions and the exact contribution of each reaction is still being debated (Ohlrogge & Browse 1995, *Plant Cell* 7:957-970). It is however accepted that a large part of the acetyl-CoA is derived from glucose-6-phosphate and pyruvate that are imported from the cytoplasm into the plastids. Sucrose is produced in the source organs (leaves, or anywhere that photosynthesis occurs) and is transported to the developing seeds that are also termed sink organs. In the developing seeds, sucrose is the precursor for all the storage compounds, i.e. starch, lipids and partly the seed storage proteins. Therefore, it is clear that carbohydrate metabolism, in which sucrose plays a central role is very important to the accumulation of seed storage compounds.

[0007] Storage compounds such as triacylglycerols (seed oil) serve as carbon and energy reserves, which are used during germination and growth of the young seedling. Seed (vegetable) oil

is also an essential component of the human diet and a valuable commodity providing feed stocks for the chemical industry.

[0008] Although the lipid and fatty acid content and/or composition of seed oil can be modified by the traditional methods of plant breeding, the advent of recombinant DNA technology has allowed for easier manipulation of the seed oil content of a plant, and in some cases, has allowed for the alteration of seed oils in ways that could not be accomplished by breeding alone (see, e.g., Töpfer et al., 1995, *Science* 268:681-686). For example, introduction of a Δ^{12} -hydroxylase nucleic acid sequence into transgenic tobacco resulted in the introduction of a novel fatty acid, ricinoleic acid, into the tobacco seed oil (Van de Loo et al. 1995, *Proc. Natl. Acad. Sci USA* 92:6743-6747). Tobacco plants have also been engineered to produce low levels of petroselinic acid by the introduction and expression of an acyl-ACP desaturase from coriander (Cahoon et al. 1992, *Proc. Natl. Acad. Sci USA* 89:11184-11188).

[0009] The modification of seed oil content in plants has significant medical, nutritional and economic ramifications. With regard to the medical ramifications, the long chain fatty acids (C18 and longer) found in many seed oils have been linked to reductions in hypercholesterolemia and other clinical disorders related to coronary heart disease (Brenner 1976, *Adv. Exp. Med. Biol.* 83:85-101). Therefore, consumption of a plant having increased levels of these types of fatty acids may reduce the risk of heart disease. Enhanced levels of seed oil content also increase large-scale production of seed oils and thereby reduce the cost of these oils.

[0010] In order to increase or alter the levels of compounds such as seed oils in plants, nucleic acid sequences and proteins regulating lipid and fatty acid metabolism must be identified. As mentioned earlier, several desaturase nucleic acids such as the Δ^6 -desaturase nucleic acid, Δ^{12} -desaturase nucleic acid and acyl-ACP desaturase nucleic acid have been cloned and demonstrated to encode enzymes required for fatty acid synthesis in various plant species (Miquel & Browse, in *Seed Development and Germination*, Galili et al. (eds.), Marcel Dekker, New York, pp. 169-193, 1994; Ohlrogge & Browse 1995, *Plant Cell* 7:957-970). Oleosin nucleic acid sequences from such different species as canola, soybean, carrot, pine and *Arabidopsis thaliana* have also been cloned and determined to encode proteins associated with the phospholipid monolayer membrane of oil bodies in those plants.

[0011] Although several compounds are known that generally affect plant and seed development, there is a clear need to specifically identify factors that are more specific for the developmental regulation of storage compound accumulation and to identify genes which have the capacity to confer altered or increased oil production to its host plant and to other plant species.

[0012] Another problem underlying the present invention was to provide a more efficient way of silencing fatty acid desaturases. Another problem underlying the present invention was to specifically modify the fatty acid content of oil seeds. Another problem underlying the present invention was the increase of the oleic acid content of oil seeds. Another problem underlying the present invention was the decrease of the linoleic acid content of oil seeds.

[0013] This invention discloses nucleic acid sequences from *Arabidopsis thaliana*, *Glycine max*, *Oryza sativa*, *Zea mays*, *Linum usitatissimum*, *Hordeum vulgare* or *Triticum aestivum*. These

nucleic acid sequences can be used to alter or increase the levels of seed storage compounds such as proteins, sugars and oils, in plants, including transgenic plants, such as canola, linseed, soybean, sunflower, maize, oat, rye, barley, wheat, rice, pepper, tagetes, cotton, oil palm, coconut palm, flax, castor and peanut, which are oilseed plants containing high amounts of lipid compounds.

BRIEF DESCRIPTION OF THE INVENTION

[0014] The present invention provides novel isolated nucleic acid and amino acid sequences associated with the metabolism of seed storage compounds in plants, in particular with sequences that are *FAD2*-like.

Another subject of the present invention is an isolated polypeptide comprising an amino acid sequence selected from the group consisting of

- a. $X^1X^2X^3X^4X^5X^6X^7LX^8X^9PX^{10}YL$, whereas X^1 is not M and X^3 is not T and X^6X^7 are not FV,
- b. $GX^{11}X^{12}X^{13}X^{14}X^{15}X^{16}X^{17}X^{18}HX^{19}X^{20}PX^{21}X^{22}X^{23}X^{24}X^{25}X^{26}X^{27}X^{28}ER$, whereas X^{15} is not G and whereas X^{20} is not F and whereas $X^{21}X^{22}$ are not NA,
- c. $HX^{29}X^{30}PX^{31}X^{32}X^{33}X^{34}X^{35}X^{36}X^{37}X^{38}ER$, whereas X^{30} is not F and whereas $X^{31}X^{32}$ are not NA,
- d. $LX^{39}X^{40}X^{41}X^{42}X^{43}X^{44}X^{45}GX^{46}X^{47}X^{48}X^{49}X^{50}X^{51}X^{52}YX^{53}X^{54}P$, whereas X^{41} is not Y and X^{45} is not Q and X^{48} is not S and X^{49} is not M and X^{50} is not I,
- e. $TX^{55}X^{56}X^{57}X^{58}HX^{59}X^{60}X^{61}X^{62}X^{63}X^{64}X^{65}X^{66}X^{67}X^{68}X^{69}X^{70}X^{71}T$, whereas X^{67} is not N,
- f. $PX^{72}X^{73}X^{74}X^{75}X^{76}X^{77}X^{78}X^{79}X^{80}X^{81}X^{82}X^{83}X^{84}X^{85}X^{86}$, whereas $X^{84}X^{85}X^{86}$ are not WYV,

and whereas X has the meaning of any amino acid if not defined elsewhere above.

[0014] A sequence alignment for determining the common peptide sequences a to f of claim 1 is preferably generated using Align X (Aug. 22, 2003) of Vector NTI Suite 9.0. The parameters used for the multiple alignment are preferably as follows: Gap opening penalty: 10; Gap extension penalty: 0.05; Gap separation penalty range: 8; % identity for alignment delay: 40.

[0015] In a preferred embodiment the present inventions claims an isolated polypeptide comprising an amino acid sequence selected from the group consisting of

- a. $AWYPYX^{87}YX^{88}NPX^{89}GRLVHIX^{90}VQLTLGWPLYLAX^{91}NX^{92}$
SGRPYPRFACHFDPYGPPIYNDRER,
- b. FISDVGV,
- c. $ALX^{93}KLX^{94}SX^{95}FGFWWWVVRVYGV$,
- d. ILGEYYQFDX⁹⁶TPVAKAT,
- e. and whereas X has the meaning of any amino acid.

A sequence alignment for determining the common peptide sequences a to d of claim 2 is preferably generated using Align X (Aug. 22, 2003) of Vector NTI Suite 9.0. The parameters used for the multiple alignment are preferably as follows: Gap opening penalty: 10; Gap extension penalty: 0.05; Gap separation penalty range: 8; % identity for alignment delay: 40.

[0016] The isolated polypeptide of the present invention can include one, two, three, four, five or six of the amino acid sequences of claim 1. The isolated polypeptide of the present invention can include one, tow, three or four of the amino acid sequences of claim 2. X stands for any amino acid if not defined elsewhere in claim 1, especially G, A, V, L, I, F, Y, W, P, D, E, N, Q, S, T, C, M, K, R, H.

[0017] X^1 is not M. X^1 is in a preferred embodiment an amino acid selected from the group consisting of G, A, V, L, I, F, Y, W, P, D, E, N, Q, S, T, C, K, R and H, in a more preferred embodiment from the group consisting of F, T and H and in an even more preferred embodiment H.

[0018] X^3 is not T. X^3 is in a preferred embodiment an amino acid selected from the group consisting of G, A, V, L, I, F, Y, W, P, D, E, N, Q, S, C, M, K, R and H, in a more preferred embodiment from the group consisting of L, A, V, F and in an even more preferred emobidement V or F.

[0019] X^6 is not F and X^7 is not V. X^6 and X^7 are in a preferred embodiment independently from each other an amino acid selected from the group consisting of G, A, L, I, Y, W, P, D, E, N, Q, S, T, C, M, K, R and H, in a more preferred embodiment from the group consisting of P, L, and T and in an even more preferred embodiment X^6 is P or L and X^7 is L or T and in an further preferred embodiment X^6 is L and X^7 is T.

[0020] X^{15} is not G. X^{15} is in a preferred embodiment a blank or an amino acid selected from the group consisting of A, V, L, I, F, Y, W, P, D, E, N, Q, S, T, C, M, K, R and H, in a more preferred embodiment X^{15} is R or a blank, further preferred X^{15} is R. Blank means there is no amino acid on this position.

[0021] X^{20} is not F. X^{20} is in a preferred embodiment an amino acid selected from the group consisting of G, A, V, L, I, Y, W, P, D, E, N, Q, S, T, C, M, K, R and H, in a more preferred embodiment N or D and in an even more preferred embodiment D.

[0022] X^{21} is not N and X^{22} is not A. X^{21} and X^{22} are in a preferred embodiment independently from each other an amino acid selected from the group consisting of G, V, L, I, F, Y, W, P, D, E, Q, S, T, C, M, K, R and H. In a more preferred embodiment from the group consisting of D, Y, H, S, G, I in an even more preferred embodiment X^{21} is D, Y or H, further preferred Y and X^{22} is S or G, further preferred G.

[0023] X^{30} is not F. X^{30} is in a preferred embodiment an amino acid selected from the group consisting of G, A, V, L, I, Y, W, P, D, E, N, Q, S, T, C, M, K, R and H, in a more preferred embodiment X^{30} is N or D and in an even more preferred embodiment X^{30} is D.

[0024] X^{31} is not N and X^{32} is not A. X^{31} and X^{32} are in a preferred embodiment independently from each other an amino acid selected from the group consisting of G, V, L, I, F, Y, W, P, D, E, Q, S, T, C, M, K, R and H, in a more preferred embodiment from the group consisting of D, Y, H, S, G. In an even more preferred embodiment X^{31} is D, Y or H, further preferred Y and X^{32} is S or G, further preferred G.

[0025] X^{41} is not Y. X^{41} is in a preferred embodiment an amino acid selected from the group consisting of G, A, V, L, I, F, W, P, D, E, N, Q, S, T, C, M, K, R and H, in a more preferred embodiment X^{41} is L.

[0026] X^{45} is not Q. X^{45} is in a preferred embodiment an amino acid selected from the group consisting of G, A, V, L, I, F, Y, W, P, D, E, N, S, T, C, M, K, R and H, in a more preferred embodiment from the group consisting of M, K and F and in an even more preferred embodiment X^{45} is F.

[0027] X^{48} is not S and X^{49} is not M and X^{50} is not I. X^{48} , X^{49} and X^{50} are independently from each other in a preferred embodiment an amino acid selected from the group consisting of G, A, V, L, F, Y, W, P, D, E, N, Q, T, C, K, R and H, in a more preferred embodiment from the group consisting of Q, W, L and V. In an even more preferred embodiment X^{48} is Q or W, further preferred X^{48} is W and X^{49} , X^{50} are independently from each other L or V, further preferred X^{49} , X^{50} are independently from each other V.

[0028] X^{67} is not N. X^{67} is in a preferred embodiment an amino acid selected from the group consisting of G, A, V, L, I, F, Y, W, P, D, E, Q, S, T, C, M, K, R and H, in a more preferred embodiment X^{67} is H or R and in an even more preferred embodiment X^{67} is H.

[0029] X^{84} is not W and X^{85} is not Y and X^{86} is not V. X^{84} , X^{85} and X^{86} are in a preferred embodiment independently from each other an amino acid selected from the group consisting of G, A, L, I, F, P, D, E, N, Q, S, T, C, M, K, R and H. $X^{84}X^{85}X^{86}$ are in a more preferred embodiment independently from each other selected from the group consisting of S, F, V, P, M, A, L, K and G and in an even more preferred embodiment $X^{84}X^{85}X^{86}$ are VAK.

[0030] This invention also provides an isolated nucleic acid sequence encoding a protein containing an amino acid sequence mentioned above as (of claim 1 or of claim 2) and an isolated polypeptide encoded by such a nucleic acid sequence (of claim 3).

[0031] In another embodiment of the present invention the above mentioned isolated polypeptide (of claim 1 or of claim 2) functions as a modulator of a seed storage compound in microorganisms or in plants.

[0032] In another embodiment of the present invention the above mentioned isolated polypeptide (of claim 1 or of claim 2) is used to increase the level of a oleic acid in a transgenic plant as compared to the wild type variety of the plant, by e.g. 1 weight-%, 2,5 weight-%, 5 weight-%, 7,5 weight-%, 10 weight-%, 12,5 weight-%, 15 weight-%, 17,5 weight-%, 20 weight-%, 22,5 weight-%, 25 weight-% or more.

[0033] In a preferred embodiment the above mentioned isolated polypeptide (of claim 1 or of claim 2) has a polypeptide sequence as disclosed in SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO: 30, SEQ ID NO: 32, SEQ ID NO: 34 or SEQ ID NO: 36.

[0034] In a further embodiment the above mentioned isolated polypeptide (of claim 1 or of claim 2) is selected from the group consisting of

a. a polypeptide sequence as disclosed in SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO: 30, SEQ ID NO: 32, SEQ ID NO: 34 or SEQ ID NO: 36

b. a polypeptide sequence encoded by a polynucleotide sequence as

disclosed in SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO:25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO:33 or SEQ ID NO: 35;

c. a polypeptide sequence having at least 70% sequence identity with the polypeptide sequence of a) or b) above.

[0035] The present invention provides moreover an isolated nucleic acid comprising a polynucleotide sequence selected from the group consisting of:

a. a polynucleotide sequence as disclosed in SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO:25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO:33 or SEQ ID NO: 35;

b. a polynucleotide sequence encoding a polypeptide as disclosed in SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO: 30, SEQ ID NO:32, SEQ ID NO: 34 or SEQ ID NO: 36;

c. a polynucleotide sequence having at least 70% sequence identity with the nucleic acid of a) or b) above;

d. a polynucleotide sequence that is complementary to the nucleic acid of a) or b) above; and

e. a polynucleotide sequence that hybridizes under stringent conditions to the nucleic acid of a) or b) above.

[0036] The present invention provides furthermore an isolated polypeptide selected from the group consisting of

a. a polypeptide sequence encoded by a polynucleotide sequence as disclosed in SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO:25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO:33 or SEQ ID NO: 35;

b. a polypeptide sequence as disclosed in SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO: 30, SEQ ID NO:32, SEQ ID NO: 34 or SEQ ID NO: 36;

c. a polypeptide sequence having at least 70% sequence identity with the polypeptide sequence of a) or b) above.

[0037] The present invention also provides an isolated nucleic acid from *Arabidopsis thaliana*, *Glycine max*, *Oryza sativa*, *Zea mays*, *Linum usitatissimum*, *Hordeum vulgare* or *Triticum aestivum* encoding a Lipid Metabolism Protein (LMP), or a portion thereof. These sequences may be used to modify or increase lipids and fatty acids, cofactors and enzymes in microorganisms and plants, e.g. by the increasing of the level of oleic acid by 1 weight-%, 2,5 weight-%, 5 weight-%, 7,5 weight-%, 10 weight-%, 12,5 weight-%, 15 weight-%, 17,5 weight-%, 20 weight-%, 22,5 weight-%, 25 weight-% or more..

[0038] *Arabidopsis* plants are known to produce considerable amounts of fatty acids like linoleic and linolenic acid (see, e.g., Table 2) and for their close similarity in many aspects (gene homology etc.) to the oil crop plant *Brassica*. Therefore, nucleic acid molecules originating from a plant like *Arabidopsis thaliana*, *Brassica napus*, *Glycine max*, *Oryza sativa*, *Zea mays*, *Linum usitatissimum*, *Hordeum vulgare* or *Triticum aestivum* or related organisms are especially suited to modify the lipid and fatty acid metabolism in a host, especially in microorganisms and plants. Furthermore, nucleic acids from the plant *Arabidopsis thaliana*, *Brassica napus*, *Glycine max*, *Oryza sativa*, *Zea mays*, *Linum usitatissimum*, *Hordeum vulgare* or *Triticum aestivum* or related organisms can be used to identify those DNA sequences and enzymes in other species, which are useful to modify the biosynthesis of precursor molecules of fatty acids in the respective organisms.

[0039] The present invention further provides an isolated nucleic acid comprising a fragment of at least 15 nucleotides of a nucleic acid from a plant (*Arabidopsis thaliana*, *Glycine max*, *Oryza sativa*, *Zea mays*, *Linum usitatissimum*, *Hordeum vulgare* or *Triticum aestivum*) encoding a LMP, or a portion thereof.

[0040] Also provided by the present invention are polypeptides encoded by the nucleic acids, and heterologous polypeptides comprising polypeptides encoded by the nucleic acids, and antibodies to those polypeptides.

[0041] Additionally, the present invention relates to and provides the use of LMP nucleic acids in the production of transgenic plants having a modified level or composition of a seed storage compound. In regard to an altered composition, the present invention can be used to, for example, increase the percentage of oleic acid relative to other plant oils, e.g. linolic acid or linoleic acid, by e.g. 1 weight-%, 2,5 weight-%, 5 weight-%, 7,5 weight-%, 10 weight-%, 12,5 weight-%, 15 weight-%, 17,5 weight-%, 20 weight-%, 22,5 weight-%, 25 weight-% or more. A method of producing a transgenic plant with a modified level or composition of a seed storage compound includes the steps of transforming a plant cell with an expression vector comprising a LMP nucleic acid, and generating a plant with a modified level or composition of the seed storage compound from the plant cell. In a preferred embodiment, the plant is an oil producing species selected from the group consisting of canola, linseed, soybean, sunflower, maize, oat, rye, barley, wheat, rice, pepper, tagetes, cotton, oil palm, coconut palm, flax, castor and peanut, for example.

[0042] According to the present invention, the compositions and methods described herein can be used to alter the composition of a LMP in a transgenic plant and to increase or decrease the level of a LMP in a transgenic plant comprising increasing or decreasing the expression of a LMP nucleic acid in the plant. Increased or decreased expression of the LMP nucleic acid can be achieved through transgenic overexpression, cosuppression approaches, antisense approaches and in vivo mutagenesis of the LMP nucleic acid. The present invention can also be used to increase or decrease the level of a lipid in a seed oil, by 1 weight-%, 2,5 weight-%, 5 weight-%, 7,5 weight-%, 10 weight-%, 12,5 weight-%, 15 weight-%, 17,5 weight-%, 20 weight-%, 22,5 weight-%, 25 weight-% or more, to increase or decrease the level of a fatty acid in a seed oil, by e.g. 1 weight-%, 2,5 weight-%, 5 weight-%, 7,5 weight-%, 10 weight-%, 12,5 weight-%, 15 weight-%, 17,5 weight-%, 20 weight-%, 22,5 weight-%, 25 weight-% or more, or to increase or decrease the level of a starch in a seed or

plant, by e.g. 1 weight-%, 2,5 weight-%, 5 weight-%, 7,5 weight-%, 10 weight-%, 12,5 weight-%, 15 weight-%, 17,5 weight-%, 20 weight-%, 22,5 weight-%, 25 weight-% or more..

[0043] MicroRNAs (miRNAs) have emerged as evolutionarily conserved, RNA-based regulators of gene expression in plants and animals. MiRNAs (~ 21 to 25 nt) arise from larger precursors with a stem loop structure that are transcribed from non-protein-coding genes. miRNA targets a specific mRNA to suppress gene expression at post-transcriptional (*i.e.* degrades mRNA) or translational levels (*i.e.* inhibits protein synthesis) (Bartel D 2004, Cell 116, 281-297).

[0044] MiRNA precursor (pre-miRNA) can be engineered in such way that endogenous miRNA encoded by pre-miRNA is replaced by a miRNA to target a gene-of-interest, e.g. dsRed reporter gene.

[0045] The present inventions provides furthermore a method of producing a transgenic plant having an increased level of oleic acid compared to the wildtype comprising,

- a. a first step of transforming a plant cell with an RNA precursor construct, and
- b. a second step of generating from the plant cell the transgenic plant, wherein said construct contains a promoter that drives expression in a plant cell operably linked to a nucleotide sequence encoding a precursor micro RNA sequence, wherein the nucleotide sequence encoding said micro RNA precursor sequence is selected from the group consisting of
 - a. a nucleotide sequence as depicted in SEQ ID NO: 47
 - b. a polynucleotide sequence having at least 70% sequence identity with the nucleic acid of a) above;
 - c. a polynucleotide sequence that is complementary to the nucleic acid of a) above; and
 - d. a polynucleotide sequence that hybridizes under stringent conditions to the nucleic acid of a) above.

[0046] Maize genes coding for fatty acid desaturases, are expressed in many tissues including seeds. A 19 to 21nt (e.g. ACCAGACCCCGAACGCCGC as described in SEQ ID NO: 40) complementary to a maize desaturase coding region or 5' UTR and 3'UTR in mRNA can be used to replace Zm miR166 (5' tcggaccaggcttcattcccc 3') as described in SEQ ID NO: 37 and in SEQ ID NO: 38 in Zm miR166 precursor. The transgene can then be transformed into maize. The expression of the engineered Zm miR166 gene can be controlled by a maize seed-specific promoter (e.g. endosperm specific 10 KD Zein promoter or Glob1 embryo-specific promoter).

[0047] A microRNA (e.g. ACCAGACCCCGAACGCCGC as described in SEQ ID NO: 40) is generally generated in seeds when the engineered Zm miR166 precursor is processed. This miRNA specifically can bind to the region in a maize fatty acid desaturase mRNA complimentary to the miRNA, which can result in a reduction of this targeted maize desaturase expression at transcriptional or translational levels in seeds by gene silencing machinery. As a result, transgenic plant, preferably zea mays could have desirable fatty acid level and composition as for example low linolenic acid and/or medium or high oleic acid weight percentages in seeds.

[0048] The present inventions provides furthermore a method to alter, preferably to reduce the expression of fatty acid desaturase, especially as encoded by FAD2 orthologs, further preferred

as encoded by the nucleic acids as depicted in Appendix A, in a preferred embodiment as depicted in SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33 or SEQ ID NO: 35 by producing a transgenic plant having an increased level of oleic acid compared to the wildtype comprising,

- a. a first step of transforming a plant cell with an RNA precursor construct, and
- b. a second step of generating from the plant cell the transgenic plant, said construct containing a promoter that drives expression in a plant cell operably linked to a nucleotide sequence encoding a precursor micro RNA sequence, wherein the nucleotide sequence encoding said micro RNA precursor sequence is selected from the group consisting of
 - a. a nucleotide sequence as depicted in SEQ ID NO: 47
 - b. a polynucleotide sequence having at least 70% sequence identity with the nucleic acid of a) above;
 - c. a polynucleotide sequence that is complementary to the nucleic acid of a) above; and
 - d. a polynucleotide sequence that hybridizes under stringent conditions to the nucleic acid of a) above.

[0049] In a preferred embodiment the nucleotide sequence encoding a precursor micro RNA sequence has been engineered in a way that the nucleotide sequence encoding for a micro RNA as depicted in SEQ ID NO: 37 is replaced by a nucleotide sequence encoding for a micro RNA as depicted in SEQ ID NO: 40.

[0050] The use of engineered micro RNA precursors and micro-RNA for modulating the expression of a gene is well known and described e.g. in US 2004/0268441, which is incorporated herein in its entirety. Engineered micro RNA precursors can be used to modulate the expression of one or of several target genes, e.g. one, two, three, four or five of the nucleotide sequences as depicted in SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33 or SEQ ID NO: 35. The use of engineered micro-RNA precursors and micro-RNA for modulating the expression of a gene can be combined with other methods of genetic engineering well known to the man skilled in the art.

[0051] The promoter can be ubiquitous or tissue-specific such as seed-specific and endosperm-specific. The promoter is preferably a seed specific promoter. This method can be used to efficiently increase the level of oleic acid in a seed, by e.g. 1 weight-%, 2,5 weight-%, 5 weight-%, 7,5 weight-%, 10 weight-%, 12,5 weight-%, 15 weight-%, 17,5 weight-%, 20 weight-%, 22,5 weight-%, 25 weight-% or more.

[0052] The use of engineered micro-RNA precursors and micro-RNA for modulating the expression of a gene can be applied to every plant, especially to the plants described herein, in a preferred embodiment to monocotyledonous plants and in a more preferred embodiment to zea mays.

[0053] A further object of the present invention is an isolated nucleic acid comprising a polynucleotide sequence selected from the group consisting of:

- a. a nucleotide sequence as depicted in SEQ ID NO: 47
- b. a polynucleotide sequence having at least 70% sequence identity with the nucleic acid of a) above;
- c. a polynucleotide sequence that is complementary to the nucleic acid of a) above; and
- e. a polynucleotide sequence that hybridizes under stringent conditions to the nucleic acid of a) above.

This nucleotide sequence can be used to modulate the expression of a gene of interest, especially to down-regulate the expression of a target gene, especially of the above mentioned nucleotide sequences.

[0054] A further object of the present invention is the micro RNA precursor encoded by a nucleotide sequence selected from the groups consisting of:

- a. a nucleotide sequence as depicted in SEQ ID NO: 47
- b. a polynucleotide sequence having at least 70% sequence identity with the nucleic acid of a) above;
- c. a polynucleotide sequence that is complementary to the nucleic acid of a) above; and
- d. a polynucleotide sequence that hybridizes under stringent conditions to the nucleic acid of a) above.

[0055] A further object of the present invention is the micro RNA as depicted in SEQ ID NO: 40.

[0056] More specifically, the present invention includes and provides a method for increasing total oil content in a seeds comprising: transforming a plant with a nucleic acid construct that comprises as operably linked components, a promoter and nucleic acid sequences capable of modulating the level of *FAD2*-like mRNA or *FAD2*-like protein, and growing the plant. Furthermore, the present invention includes and provides a method for increasing the level of oleic acid in a seed comprising: transforming a plant with a nucleic acid construct that comprises as operably linked components, a promoter, a structural nucleic acid sequence capable of increasing the level of oleic acid, and growing the plant

[0057] Also included herein is a seed produced by a transgenic plant transformed by a LMP DNA sequence, wherein the seed contains the LMP DNA sequence and wherein the plant is true breeding for a modified level of a seed storage compound. The present invention additionally includes a seed oil produced by the aforementioned seed.

[0058] Further provided by the present invention are vectors comprising the nucleic acids, host cells containing the vectors, and descendent plant materials produced by transforming a plant cell with the nucleic acids and/or vectors.

[0059] According to the present invention, the compounds, compositions, and methods described herein can be used to increase or decrease the relative percentages of a lipid in a seed oil,

increase or decrease the level of a lipid in a seed oil, or to increase or decrease the level of a fatty acid in a seed oil, or to increase or decrease the level of a starch or other carbohydrate in a seed or plant, or to increase or decrease the level of proteins in a seed or plant, by e.g. 1 weight-%, 2,5 weight-%, 5 weight-%, 7,5 weight-%, 10 weight-%, 12,5 weight-%, 15 weight-%, 17,5 weight-%, 20 weight-%, 22,5 weight-%, 25 weight-% or more. The manipulations described herein can also be used to improve seed germination and growth of the young seedlings and plants and to enhance plant yield of seed storage compounds.

[0060] It is further provided a method of producing a higher or lower than normal or typical level of storage compound in a transgenic plant expressing a LMP nucleic acid from *Arabidopsis thaliana*, *Brassica napus*, *Glycine max*, *Oryza sativa*, *Zea mays*, *Linum usitatissimum*, *Hordeum vulgare* or *Triticum aestivum* in the transgenic plant, wherein the transgenic plant is *Arabidopsis thaliana*, *Brassica napus*, *Glycine max*, *Oryza sativa*, *Zea mays*, *Linum usitatissimum*, *Hordeum vulgare*, *Triticum aestivum*, *Helianthus annuus* or *Beta vulgaris* or a species different from *Arabidopsis thaliana*, *Brassica napus*, *Glycine max*, *Zea mays*, *Linum usitatissimum*, *Hordeum vulgare*, *Oryza sativa* or *Triticum aestivum*. Also included herein are compositions and methods of the modification of the efficiency of production of a seed storage compound. As used herein, where the phrase *Arabidopsis thaliana*, *Brassica napus*, *Glycine max*, *Oryza sativa*, *Zea mays*, *Linum usitatissimum*, *Hordeum vulgare*, *Triticum aestivum*, *Helianthus annuus* or *Beta vulgaris* is used, this also means *Arabidopsis thaliana* and/or *Brassica napus* and/or *Glycine max* and/or *Oryza sativa* and/or *Zea mays* and/or *Linum usitatissimum* and/or *Hordeum vulgare* and/or *Triticum aestivum* and/or *Helianthus annuus* and/or *Beta vulgaris*.

[0061] Accordingly, it is an object of the present invention to provide novel isolated LMP nucleic acids and isolated LMP amino acid sequences from *Glycine max*, *Oryza sativa*, *Zea mays*, *Linum usitatissimum*, *Hordeum vulgare* or *Triticum aestivum* as well as active fragments, analogs, and orthologs thereof. Those active fragments, analogs, and orthologs can also be from different plant species as one skilled in the art will appreciate that other plant species will also contain those or related nucleic acids.

[0062] It is another object of the present invention to provide transgenic plants having modified levels of seed storage compounds, and in particular, modified levels of a lipid, a fatty acid or a sugar.

[0063] The polynucleotides and polypeptides of the present invention, including agonists and/or fragments thereof, have also uses that include modulating plant growth, and potentially plant yield, preferably increasing plant growth under adverse conditions (drought, cold, light, UV). In addition, antagonists of the present invention may have uses that include modulating plant growth and/or yield, through preferably increasing plant growth and yield. In yet another embodiment, over-expression polypeptides of the present invention using a constitutive promoter may be useful for increasing plant yield under stress conditions (drought, light, cold, UV) by modulating light utilization efficiency. Moreover, polynucleotides and polypeptides of the present invention will improve seed germination and seed dormancy and, hence, will improve plant growth and/or yield of seed storage compounds.

[0064] The isolated nucleic acid molecules of the present invention may further comprise an operably linked promoter or partial promoter region. The promoter can be a constitutive promoter, an inducible promoter or a tissue-specific promoter. The constitutive promoter can be, for example, the superpromoter (Ni et al., *Plant J.* 7:661-676, 1995; US5955646). The tissue-specific promoter can be active in vegetative tissue or reproductive tissue. The tissue-specific promoter active in reproductive tissue can be a seed-specific promoter. The tissue-specific promoter active in vegetative tissue can be a root-specific, shoot-specific, meristem-specific or leaf-specific promoter. The isolated nucleic acid molecule of the present invention can still further comprise a 5' non-translated sequence, 3' non-translated sequence, introns, or the combination thereof.

[0065] The present invention also provides a method for increasing the number and/or size of one or more plant organs of a plant expressing an isolated nucleic acid from *Arabidopsis thaliana*, *Brassica napus*, *Glycine max*, *Oryza sativa*, *Zea mays*, *Linum usitatissimum*, *Hordeum vulgare* or *Triticum aestivum* encoding a LMP, or a portion thereof. More specifically, seed size and/or seed number and/or weight might be manipulated.

[0066] It is a further object of the present invention to provide methods for producing such aforementioned transgenic plants.

[0067] It is another object of the present invention to provide seeds and seed oils from such aforementioned transgenic plants.

[0068] These and other objects, features and advantages of the present invention will become apparent after a review of the following detailed description of the disclosed embodiments and the appended claims.

BRIEF DESCRIPTION OF THE DRAWINGS

[0069] The invention can be more fully understood from the following detailed description and the accompanying drawings and sequence listing which form a part of this application.

[0070] Figures 1A-D. SEQ ID NO: 1-4 - Nucleic acid sequence, open reading frame of the nucleic acid and amino acid sequences of the *Arabidopsis thaliana* gene *AtFAD-01*.

[0071] Figures 2A-C. SEQ ID NO: 5-8 - Nucleic acid sequence, open reading frame of the nucleic acid and amino acid sequences of the *Glycine max* gene *GmFAD-01*.

[0072] Figures 3A-C. SEQ ID NO: 9-12 - Nucleic acid sequence, open reading frame of the nucleic acid and amino acid sequence of the *Glycine max* gene *GmFAD-02*.

[0073] Figures 4A-C. SEQ ID NO: 13-16 - Nucleic acid sequence, open reading frame of the nucleic acid and amino acid sequence of the *Glycine max* gene *GmFAD-03*.

[0074] Figures 5A-C. SEQ ID NO: 17-20 - Nucleic acid sequence, open reading frame of the nucleic acid and amino acid sequence of the *Zea mays* gene *ZmFAD-01*.

[0075] Figures 6A-C. SEQ ID NO: 21-24 - Nucleic acid sequence, open reading frame of the nucleic acid and amino acid sequence of the *Oryza sativa* gene *OsFAD-01*.

[0076] Figures 7A-C. SEQ ID NO: 25-28 - Nucleic acid sequence, open reading frame of the nucleic acid and amino acid sequence of the *Linum usitatissimum* gene *LuFAD-01*.

[0077] Figures 8A-C. SEQ ID NO: 29-32 - Nucleic acid sequence, open reading frame of the nucleic acid and amino acid sequence of the *Hordeum vulgare* gene *HvFAD-01*.

[0078] Figures 9A-C. SEQ ID NO: 33-36 - Nucleic acid sequence, open reading frame of the nucleic acid and amino acid sequence of the *Triticum aestivum* gene *TaFAD-01*.

[0079] Figure 10. T2 seed fatty acid data obtained with OsFAD-01 driven by the USP promoter and transformed into the *fad2* *Arabidopsis* mutant (the genetic background of the transformed lines is Columbia-2, each bar represents the fatty acid data obtained with 5 mg bulked seeds of one individual plant).

[0080] Figure 11. T2 seed fatty acid data obtained with HvFAD-01 driven by the USP promoter and transformed into the *fad2* *Arabidopsis* mutant (the genetic background of the transformed lines is Columbia-2, each bar represents the fatty acid data obtained with 5 mg bulked seeds of one individual plant).

[0081] Figure 12. Diagram illustrating the relative homology among the disclosed AtFAD-01, GmFAD-01, GmFAD-02, GmFAD-03, LuFAD-01, HvFAD-01, TaFAD-01, OsFAD-01 and ZmFAD-01 amino acid sequences. The diagram was generated using Align X (Aug. 22, 2003) of Vector NTI Suite 9.0. The parameters used for the multiple alignment were as follows: Gap opening penalty: 10; Gap extension penalty: 0.05; Gap separation penalty range: 8; % identity for alignment delay: 40

[0082] Figure 13. Table illustrating the similarity among the AtFAD-01, GmFAD-01, GmFAD-02, GmFAD-03, LuFAD-01, HvFAD-01, TaFAD-01, OsFAD-01 and ZmFAD-01 amino acid sequences. The table was generated using Align X (Aug. 22, 2003) of Vector NTI Suite 9.0. For other parameters see legend of Figure 12.

[0083] Figure 14. Diagram illustrating the relative homology among the disclosed AtFAD-01, GmFAD-01, GmFAD-02, GmFAD-03, LuFAD-01, HvFAD-01, TaFAD-01, OsFAD-01 and ZmFAD-01 nucleic acid sequences. The diagram was generated using Align X (Aug. 22, 2003) of Vector NTI Suite 9.0. The parameters used for the multiple alignment were as follows: Gap opening penalty: 15; Gap extension penalty: 6.66; Gap separation penalty range: 8; % identity for alignment delay: 40

[0084] Figure 15. Table illustrating the similarity among the AtFAD-01, GmFAD-01, GmFAD-02, GmFAD-03, LuFAD-01, HvFAD-01, TaFAD-01, OsFAD-01 and ZmFAD-01 nucleic acid sequences. The table was generated using Align X (Aug. 22, 2003) of Vector NTI Suite 9.0. For other parameters see legend of Figure 14.

[0085] Figure 16. Sequence alignment of AtFAD-01, GmFAD-01, GmFAD-02, GmFAD-03, LuFAD-01, HvFAD-01, TaFAD-01, OsFAD-01 and ZmFAD-01 amino acid sequences. The alignment was generated using Align X (Aug. 22, 2003) of Vector NTI Suite 9.0. The parameters used for the multiple alignment were as follows: Gap opening penalty: 15; Gap extension penalty: 6.66; Gap separation penalty range: 8; % identity for alignment delay: 40

GENERAL DEFINITIONS

[0086] It is to be understood that this invention is not limited to the particular methodology, protocols, cell lines, plant species or genera, constructs, and reagents described as such. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to limit the scope of the present invention, which will be limited only by the appended claims. It must be noted that as used herein and in the appended claims, the singular forms "a," "and," and "the" include plural reference unless the context clearly dictates otherwise. Thus,

for example, reference to "a vector" is a reference to one or more vectors and includes equivalents thereof known to those skilled in the art, and so forth.

[0087] The term "about" is used herein to mean approximately, roughly, around, or in the region of. When the term "about" is used in conjunction with a numerical range, it modifies that range by extending the boundaries above and below the numerical values set forth. In general, the term "about" is used herein to modify a numerical value above and below the stated value by a variance of 20 percent, preferably 10 percent, more preferably 5 percent up or down (higher or lower).

[0088] As used herein, the word "or" means any one member of a particular list and also includes any combination of members of that list.

[0089] As used herein, the term "amino acid sequence" refers to a list of abbreviations, letters, characters or words representing amino acid residues. Amino acids may be referred to herein by either their commonly known three letter symbols or by the one-letter symbols recommended by the IUPAC-IUB Biochemical Nomenclature Commission. Nucleotides, likewise, may be referred to by their commonly accepted single-letter codes. The abbreviations used herein are conventional one letter codes for the amino acids: A, alanine; B, asparagine or aspartic acid; C, cysteine; D aspartic acid; E, glutamate, glutamic acid; F, phenylalanine; G, glycine; H histidine; I isoleucine; K, lysine; L, leucine; M, methionine; N, asparagine; P, proline; Q, glutamine; R, arginine; S, serine; T, threonine; V, valine; W, tryptophan; Y, tyrosine; Z, glutamine or glutamic acid (see L. Stryer, Biochemistry, 1988, W. H. Freeman and Company, New York. The letter "x" as used herein within an amino acid sequence can stand for any amino acid residue.

[0090] The term "nucleic acid" refers to deoxyribonucleotides or ribonucleotides and polymers or hybrids thereof in either single-or double-stranded, sense or antisense form.

[0091] The phrase "nucleic acid sequence" as used herein refers to a consecutive list of abbreviations, letters, characters or words, which represent nucleotides. In one embodiment, a nucleic acid can be a "probe" which is a relatively short nucleic acid, usually less than 100 nucleotides in length. Often a nucleic acid probe is from about 50 nucleotides in length to about 10 nucleotides in length. A "target region" of a nucleic acid is a portion of a nucleic acid that is identified to be of interest. A "coding region" of a nucleic acid is the portion of the nucleic acid, which is transcribed and translated in a sequence-specific manner to produce into a particular polypeptide or protein when placed under the control of appropriate regulatory sequences. The coding region is said to encode such a polypeptide or protein. Unless otherwise indicated, a particular nucleic acid sequence also implicitly encompasses conservatively modified variants thereof (e. g., degenerate codon substitutions) and complementary sequences, as well as the sequence explicitly indicated. The term "nucleic acid" is used interchangeably herein with "gene", "cDNA", "mRNA", "oligonucleotide," and "polynucleotide".

[0092] As used herein, the terms "complementary" or "complementarity" are used in reference to nucleotide sequences related by the base-pairing rules. For example, the sequence 5'-AGT-3' is complementary to the sequence 5'-ACT-3'. Complementarity can be "partial" or "total." "Partial" complementarity is where one or more nucleic acid bases is not matched according to the base pairing rules. "Total" or "complete" complementarity between nucleic acids is where each and every nu-

cleic acid base is matched with another base under the base pairing rules. The degree of complementarity between nucleic acid strands has significant effects on the efficiency and strength of hybridization between nucleic acid strands. A "complement" of a nucleic acid sequence as used herein refers to a nucleotide sequence whose nucleic acids show total complementarity to the nucleic acids of the nucleic acid sequence.

[0093] The term "genome" or "genomic DNA" is referring to the heritable genetic information of a host organism. Said genomic DNA comprises the DNA of the nucleus (also referred to as chromosomal DNA) but also the DNA of the plastids (e.g., chloroplasts) and other cellular organelles (e.g., mitochondria). Preferably the terms genome or genomic DNA is referring to the chromosomal DNA of the nucleus.

[0094] The term "chromosomal DNA" or "chromosomal DNA-sequence" is to be understood as the genomic DNA of the cellular nucleus independent from the cell cycle status. Chromosomal DNA might therefore be organized in chromosomes or chromatids, they might be condensed or uncoiled. An insertion into the chromosomal DNA can be demonstrated and analyzed by various methods known in the art like e.g., polymerase chain reaction (PCR) analysis, Southern blot analysis, fluorescence *in situ* hybridization (FISH), and *in situ* PCR.

[0095] The term "wild-type", "natural" or of "natural origin" means with respect to an organism, polypeptide, or nucleic acid sequence, that said organism is naturally occurring or available in at least one naturally occurring organism which is not changed, mutated, or otherwise manipulated by man.

[0096] The terms "heterologous nucleic acid sequence" or "heterologous DNA" are used interchangeably to refer to a nucleotide sequence, which is ligated to, or is manipulated to become ligated to, a nucleic acid sequence to which it is not ligated in nature, or to which it is ligated at a different location in nature. Heterologous DNA is not endogenous to the cell into which it is introduced, but has been obtained from another cell. Generally, although not necessarily, such heterologous DNA encodes RNA and proteins that are not normally produced by the cell into which it is expressed. A promoter, transcription regulating sequence or other genetic element is considered to be "heterologous" in relation to another sequence (e.g., encoding a marker sequence or an agronomically relevant trait) if said two sequences are not combined or differently operably linked in their natural environment. Preferably, said sequences are not operably linked in their natural environment (i.e. come from different genes). Most preferably, said regulatory sequence is covalently joined and adjacent to a nucleic acid to which it is not adjacent in its natural environment.

[0097] The term "transgene" as used herein refers to any nucleic acid sequence, which is introduced into the genome of a cell or which has been manipulated by experimental manipulations by man. Preferably, said sequence is resulting in a genome which is different from a naturally occurring organism (e.g., said sequence, if endogenous to said organism, is introduced into a location different from its natural location, or its copy number is increased or decreased). A transgene may be an "endogenous DNA sequence", "an "exogenous DNA sequence" (e.g., a foreign gene), or a "heterologous DNA sequence". The term "endogenous DNA sequence" refers to a nucleotide sequence, which is naturally found in the cell into which it is introduced so long as it does not contain some modification

(e.g., a point mutation, the presence of a selectable marker gene, etc.) relative to the naturally-occurring sequence.

[0098] The term "transgenic" or "recombinant" when used in reference to a cell or an organism (e.g., with regard to a barley plant or plant cell) refers to a cell or organism which contains a transgene, or whose genome has been altered by the introduction of a transgene. A transgenic organism or tissue may comprise one or more transgenic cells. Preferably, the organism or tissue is substantially consisting of transgenic cells (i.e., more than 80%, preferably 90%, more preferably 95%, most preferably 99% of the cells in said organism or tissue are transgenic).

[0099] A "recombinant polypeptide" is a non-naturally occurring polypeptide that differs in sequence from a naturally occurring polypeptide by at least one amino acid residue. Preferred methods for producing said recombinant polypeptide and/or nucleic acid may comprise directed or non-directed mutagenesis, DNA shuffling or other methods of recursive recombination.

[0100] The term "equivalent" when made in reference to a hybridization condition as it relates to a hybridization condition of interest means that the hybridization condition and the hybridization condition of interest result in hybridization of nucleic acid sequences which have the same range of percent (%) homology. For example, if a hybridization condition of interest results in hybridization of a first nucleic acid sequence with other nucleic acid sequences that have from 80% to 90% homology to the first nucleic acid sequence, then another hybridization condition is said to be equivalent to the hybridization condition of interest if this other hybridization condition also results in hybridization of the first nucleic acid sequence with the other nucleic acid sequences that have from 80% to 90% homology to the first nucleic acid sequence.

[00101] In a preferred embodiment for the purposes of the invention, unless defined elsewhere, the percent sequence identity between two nucleic acid or polypeptide sequences is determined using the Vector NTI 7.0 (PC) software package (InforMax, 7600 Wisconsin Ave., Bethesda, MD 20814). A gap-opening penalty of 15 and a gap extension penalty of 6.66 are preferably used for determining the percent identity of two nucleic acids. A gap-opening penalty of 10 and a gap extension penalty of 0.1 are preferably used for determining the percent identity of two polypeptides. All other parameters are preferably set at the default settings. For purposes of a multiple alignment (Clustal W algorithm), in a preferred embodiment, the gap-opening penalty is 10, and the gap extension penalty is 0.05 with blosum62 matrix. It is to be understood that for the purposes of determining sequence identity when comparing a DNA sequence to an RNA sequence, a thymidine nucleotide sequence is equivalent to an uracil nucleotide.

[00102] When used in reference to nucleic acid hybridization the art knows well that numerous equivalent conditions may be employed to comprise either low or high stringency conditions; factors such as the length and nature (DNA, RNA, base composition) of the probe and nature of the target (DNA, RNA, base composition, present in solution or immobilized, etc.) and the concentration of the salts and other components (e.g., the presence or absence of formamide, dextran sulfate, polyethylene glycol) are considered and the hybridization solution may be varied to generate conditions of either low or high stringency hybridization different from, but equivalent to, the above-listed conditions. Those skilled in the art know that whereas higher stringencies may be preferred to reduce or eliminate

non-specific binding, lower stringencies may be preferred to detect a larger number of nucleic acid sequences having different homologies.

[00103] The term "gene" refers to a coding region operably joined to appropriate regulatory sequences capable of regulating the expression of the polypeptide in some manner. A gene includes untranslated regulatory regions of DNA (e. g., promoters, enhancers, repressors, etc.) preceding (upstream) and following (downstream) the coding region (open reading frame, ORF) as well as, where applicable, intervening sequences (i.e., introns) between individual coding regions (i.e., exons). The term "structural gene" as used herein is intended to mean a DNA sequence that is transcribed into mRNA which is then translated into a sequence of amino acids characteristic of a specific polypeptide.

[00104] As used herein the term "coding region" when used in reference to a structural gene refers to the nucleotide sequences which encode the amino acids found in the nascent polypeptide as a result of translation of a mRNA molecule. The coding region is bounded, in eukaryotes, on the 5'-side by the nucleotide triplet "ATG" which encodes the initiator methionine and on the 3'-side by one of the three triplets which specify stop codons (i.e., TAA, TAG, TGA). In addition to containing introns, genomic forms of a gene may also include sequences located on both the 5'- and 3'-end of the sequences which are present on the RNA transcript. These sequences are referred to as "flanking" sequences or regions (these flanking sequences are located 5' or 3' to the non-translated sequences present on the mRNA transcript). The 5'-flanking region may contain regulatory sequences such as promoters and enhancers which control or influence the transcription of the gene. The 3'-flanking region may contain sequences which direct the termination of transcription, posttranscriptional cleavage and polyadenylation.

[00105] The terms "polypeptide", "peptide", "oligopeptide", "polypeptide", "gene product", "expression product" and "protein" are used interchangeably herein to refer to a polymer or oligomer of consecutive amino acid residues.

[00106] The term "isolated" as used herein means that a material has been removed from its original environment. For example, a naturally-occurring polynucleotide or polypeptide present in a living animal is not isolated, but the same polynucleotide or polypeptide, separated from some or all of the coexisting materials in the natural system, is isolated. Such polynucleotides can be part of a vector and/or such polynucleotides or polypeptides could be part of a composition, and would be isolated in that such a vector or composition is not part of its original environment.

[00107] The term "genetically-modified organism" or "GMO" refers to any organism that comprises transgene DNA. Exemplary organisms include plants, animals and microorganisms.

[00108] The term "cell" or "plant cell" as used herein refers to a single cell. The term "cells" refers to a population of cells. The population may be a pure population comprising one cell type. Likewise, the population may comprise more than one cell type. In the present invention, there is no limit on the number of cell types that a cell population may comprise. The cells may be synchronized or not synchronized. A plant cell within the meaning of this invention may be isolated (e.g., in suspension culture) or comprised in a plant tissue, plant organ or plant at any developmental stage.

[00109] The term "organ" with respect to a plant (or "plant organ") means parts of a plant and may include (but shall not be limited to) for example roots, fruits, shoots, stem, leaves, anthers, sepals, petals, pollen, seeds, etc.

[00110] The term "tissue" with respect to a plant (or "plant tissue") means arrangement of multiple plant cells including differentiated and undifferentiated tissues of plants. Plant tissues may constitute part of a plant organ (e.g., the epidermis of a plant leaf) but may also constitute tumor tissues (e.g., callus tissue) and various types of cells in culture (e.g., single cells, protoplasts, embryos, calli, protocorm-like bodies, etc.). Plant tissue may be *in planta*, in organ culture, tissue culture, or cell culture.

[00111] The term "plant" as used herein refers to a plurality of plant cells which are largely differentiated into a structure that is present at any stage of a plant's development. Such structures include one or more plant organs including, but are not limited to, fruit, shoot, stem, leaf, flower petal, etc.

[00112] The term "chromosomal DNA" or "chromosomal DNA-sequence" is to be understood as the genomic DNA of the cellular nucleus independent from the cell cycle status. Chromosomal DNA might therefore be organized in chromosomes or chromatids, they might be condensed or uncoiled. An insertion into the chromosomal DNA can be demonstrated and analyzed by various methods known in the art like e.g., PCR analysis, Southern blot analysis, fluorescence *in situ* hybridization (FISH), and *in situ* PCR.

[00113] The term "structural gene" as used herein is intended to mean a DNA sequence that is transcribed into mRNA which is then translated into a sequence of amino acids characteristic of a specific polypeptide.

[00114] The term "expression" refers to the biosynthesis of a gene product. For example, in the case of a structural gene, expression involves transcription of the structural gene into mRNA and - optionally - the subsequent translation of mRNA into one or more polypeptides.

[00115] The term "expression cassette" or "expression construct" as used herein is intended to mean the combination of any nucleic acid sequence to be expressed in operable linkage with a promoter sequence and - optionally - additional elements (like e.g., terminator and/or polyadenylation sequences) which facilitate expression of said nucleic acid sequence.

[00116] "Promoter", "promoter element," or "promoter sequence" as used herein, refers to the nucleotide sequences at the 5' end of a nucleotide sequence which direct the initiation of transcription (i.e., is capable of controlling the transcription of the nucleotide sequence into mRNA). A promoter is typically, though not necessarily, located 5' (i.e., upstream) of a nucleotide sequence of interest (e.g., proximal to the transcriptional start site of a structural gene) whose transcription into mRNA it controls, and provides a site for specific binding by RNA polymerase and other transcription factors for initiation of transcription. Promoter sequences are necessary, but not always sufficient, to drive the expression of a downstream gene. In general, eukaryotic promoters include a characteristic DNA sequence homologous to the consensus 5'-TATAAT-3' (TATA) box about 10-30 bp 5' to the transcription start (cap) site, which, by convention, is numbered +1. Bases 3' to the cap site are given positive numbers, whereas bases 5' to the cap site receive negative numbers, reflecting their distance from the cap site.

Another promoter component, the CAAT box, is often found about 30 to 70 bp 5' to the TATA box and has homology to the canonical form 5'-CCAAT-3' (Breathnach 1981). In plants the CAAT box is sometimes replaced by a sequence known as the AGGA box, a region having adenine residues symmetrically flanking the triplet G(orT)NG (Messing 1983). Other sequences conferring regulatory influences on transcription can be found within the promoter region and extending as far as 1000 bp or more 5' from the cap site. The term "constitutive" when made in reference to a promoter means that the promoter is capable of directing transcription of an operably linked nucleic acid sequence in the absence of a stimulus (e.g., heat shock, chemicals, light, etc.). Typically, constitutive promoters are capable of directing expression of a transgene in substantially any cell and any tissue.

[00117] Regulatory Control refers to the modulation of gene expression induced by DNA sequence elements located primarily, but not exclusively, upstream of (5' to) the transcription start site. Regulation may result in an all-or-nothing response to environmental stimuli, or it may result in variations in the level of gene expression. In this invention, the heat shock regulatory elements function to enhance transiently the level of downstream gene expression in response to sudden temperature elevation.

[00118] Polyadenylation signal refers to any nucleic acid sequence capable of effecting mRNA processing, usually characterized by the addition of polyadenylic acid tracts to the 3'-ends of the mRNA precursors. The polyadenylation signal DNA segment may itself be a composite of segments derived from several sources, naturally occurring or synthetic, and may be from a genomic DNA or an RNA-derived cDNA. Polyadenylation signals are commonly recognized by the presence of homology to the canonical form 5'-AATAA-3', although variation of distance, partial "readthrough", and multiple tandem canonical sequences are not uncommon (Messing 1983). It should be recognized that a canonical "polyadenylation signal" may in fact cause transcriptional termination and not polyadenylation per se (Montell 1983).

[00119] Heat shock elements refer to DNA sequences that regulate gene expression in response to the stress of sudden temperature elevations. The response is seen as an immediate albeit transitory enhancement in level of expression of a downstream gene. The original work on heat shock genes was done with *Drosophila* but many other species including plants (Barnett 1980) exhibited analogous responses to stress. The essential primary component of the heat shock element was described in *Drosophila* to have the consensus sequence 5'-CTGGAATNTTCTAGA-3' (where N=A, T, C, or G) and to be located in the region between residues -66 through -47 bp upstream to the transcriptional start site (Pelham 1982). A chemically synthesized oligonucleotide copy of this consensus sequence can replace the natural sequence in conferring heat shock inducibility.

[00120] Leader sequence refers to a DNA sequence comprising about 100 nucleotides located between the transcription start site and the translation start site. Embodied within the leader sequence is a region that specifies the ribosome binding site.

[00121] Introns or intervening sequences refer in this work to those regions of DNA sequence that are transcribed along with the coding sequences (exons) but are then removed in the formation of the mature mRNA. Introns may occur anywhere within a transcribed sequence--between coding sequences of the same or different genes, within the coding sequence of a gene, interrupting and split-

ting its amino acid sequences, and within the promoter region (5' to the translation start site). Introns in the primary transcript are excised and the coding sequences are simultaneously and precisely ligated to form the mature mRNA. The junctions of introns and exons form the splice sites. The base sequence of an intron begins with GU and ends with AG. The same splicing signal is found in many higher eukaryotes.

[00122] The term "operable linkage" or "operably linked" is to be understood as meaning, for example, the sequential arrangement of a regulatory element (e.g. a promoter) with a nucleic acid sequence to be expressed and, if appropriate, further regulatory elements (such as e.g., a terminator) in such a way that each of the regulatory elements can fulfill its intended function to allow, modify, facilitate or otherwise influence expression of said nucleic acid sequence. The expression may result depending on the arrangement of the nucleic acid sequences in relation to sense or antisense RNA. To this end, direct linkage in the chemical sense is not necessarily required. Genetic control sequences such as, for example, enhancer sequences, can also exert their function on the target sequence from positions which are further away, or indeed from other DNA molecules. Preferred arrangements are those in which the nucleic acid sequence to be expressed recombinantly is positioned behind the sequence acting as promoter, so that the two sequences are linked covalently to each other. The distance between the promoter sequence and the nucleic acid sequence to be expressed recombinantly is preferably less than 200 base pairs, especially preferably less than 100 base pairs, very especially preferably less than 50 base pairs. Operable linkage, and an expression cassette, can be generated by means of customary recombination and cloning techniques as described (e.g., in Maniatis 1989; Silhavy 1984; Ausubel 1987; Gelvin 1990). However, further sequences which, for example, act as a linker with specific cleavage sites for restriction enzymes, or as a signal peptide, may also be positioned between the two sequences. The insertion of sequences may also lead to the expression of fusion proteins. Preferably, the expression cassette, consisting of a linkage of promoter and nucleic acid sequence to be expressed, can exist in a vector-integrated form and be inserted into a plant genome, for example by transformation.

[00123] The term "transformation" as used herein refers to the introduction of genetic material (e.g., a transgene) into a cell. Transformation of a cell may be stable or transient. The term "transient transformation" or "transiently transformed" refers to the introduction of one or more transgenes into a cell in the absence of integration of the transgene into the host cell's genome. Transient transformation may be detected by, for example, enzyme-linked immunosorbent assay (ELISA) which detects the presence of a polypeptide encoded by one or more of the transgenes. Alternatively, transient transformation may be detected by detecting the activity of the protein (e.g., β -glucuronidase) encoded by the transgene (e.g., the uid A gene) as demonstrated herein [e.g., histochemical assay of GUS enzyme activity by staining with X-gluc which gives a blue precipitate in the presence of the GUS enzyme; and a chemiluminescent assay of GUS enzyme activity using the GUS-Light kit (Tropix)]. The term "transient transformant" refers to a cell which has transiently incorporated one or more transgenes. In contrast, the term "stable transformation" or "stably transformed" refers to the introduction and integration of one or more transgenes into the genome of a cell, preferably resulting in chromosomal integration and stable heritability through meiosis. Stable transformation of a cell may

be detected by Southern blot hybridization of genomic DNA of the cell with nucleic acid sequences which are capable of binding to one or more of the transgenes. Alternatively, stable transformation of a cell may also be detected by the polymerase chain reaction of genomic DNA of the cell to amplify transgene sequences. The term "stable transformant" refers to a cell which has stably integrated one or more transgenes into the genomic DNA (including the DNA of the plastids and the nucleus), preferably integration into the chromosomal DNA of the nucleus. Thus, a stable transformant is distinguished from a transient transformant in that, whereas genomic DNA from the stable transformant contains one or more transgenes, genomic DNA from the transient transformant does not contain a transgene. Transformation also includes introduction of genetic material into plant cells in the form of plant viral vectors involving epichromosomal replication and gene expression which may exhibit variable properties with respect to meiotic stability. Transformation also includes introduction of genetic material into plant cells in the form of plant viral vectors involving epichromosomal replication and gene expression which may exhibit variable properties with respect to meiotic stability. Preferably, the term "transformation" includes introduction of genetic material into plant cells resulting in chromosomal integration and stable heritability through meiosis.

[00124] The terms "infecting" and "infection" with a bacterium refer to co-incubation of a target biological sample, (e.g., cell, tissue, etc.) with the bacterium under conditions such that nucleic acid sequences contained within the bacterium are introduced into one or more cells of the target biological sample.

[00125] The term "Agrobacterium" refers to a soil-borne, Gram-negative, rod-shaped phytopathogenic bacterium which causes crown gall. The term "Agrobacterium" includes, but is not limited to, the strains *Agrobacterium tumefaciens*, (which typically causes crown gall in infected plants), and *Agrobacterium rhizogenes* (which causes hairy root disease in infected host plants). Infection of a plant cell with *Agrobacterium* generally results in the production of opines (e.g., nopaline, agropine, octopine etc.) by the infected cell. Thus, *Agrobacterium* strains which cause production of nopaline (e.g., strain LBA4301, C58, A208) are referred to as "nopaline-type" *Agrobacteria*; *Agrobacterium* strains which cause production of octopine (e.g., strain LBA4404, Ach5, B6) are referred to as "octopine-type" *Agrobacteria*; and *Agrobacterium* strains which cause production of agropine (e.g., strain EHA105, EHA101, A281) are referred to as "agropine-type"

[00126] The terms "bombarding," "bombardment," and "biolistic bombardment" refer to the process of accelerating particles towards a target biological sample (e.g., cell, tissue, etc.) to effect wounding of the cell membrane of a cell in the target biological sample and/or entry of the particles into the target biological sample. Methods for biolistic bombardment are known in the art (e.g., US 5,584,807, the contents of which are herein incorporated by reference), and are commercially available (e.g., the helium gas-driven microprojectile accelerator (PDS-1000/He) (BioRad)).

[00127] The term "hybridization" as used herein includes "any process by which a strand of nucleic acid joins with a complementary strand through base pairing." (Coombs 1994). Hybridization and the strength of hybridization (i.e., the strength of the association between the nucleic acids) is impacted by such factors as the degree of complementarity between the nucleic acids, stringency of the conditions involved, the Tm of the formed hybrid, and the G:C ratio within the nucleic acids.

[00128] As used herein, the term "Tm" is used in reference to the "melting temperature." The melting temperature is the temperature at which a population of double-stranded nucleic acid molecules becomes half dissociated into single strands. The equation for calculating the Tm of nucleic acids is well known in the art. As indicated by standard references, a simple estimate of the Tm value may be calculated by the equation: $Tm = 81.5 + 0.41(\% G+C)$, when a nucleic acid is in aqueous solution at 1 M NaCl [see e.g., Anderson and Young, Quantitative Filter Hybridization, in Nucleic Acid Hybridization (1985)]. Other references include more sophisticated computations which take structural as well as sequence characteristics into account for the calculation of Tm.

[00129] Low stringency conditions when used in reference to nucleic acid hybridization unless defined elsewhere comprise conditions equivalent to binding or hybridization at 68°C. in a solution consisting of 5x SSPE (43.8 g/L NaCl, 6.9 g/L $Na_2HPO_4 \cdot H_2O$ and 1.85 g/L EDTA, pH adjusted to 7.4 with NaOH), 1% SDS, 5x Denhardt's reagent [50x Denhardt's contains the following per 500 mL: 5 g Ficoll (Type 400, Pharmacia), 5 g BSA (Fraction V; Sigma)] and 100 μ g/mL denatured salmon sperm DNA followed by washing in a solution comprising 0.2x SSPE, and 0.1% SDS at room temperature when a DNA probe of about 100 to about 1000 nucleotides in length is employed.

[00130] High stringency conditions when used in reference to nucleic acid hybridization comprise unless defined elsewhere conditions equivalent to binding or hybridization at 68° C. in a solution consisting of 5x SSPE, 1% SDS, 5x Denhardt's reagent and 100 μ g/mL denatured salmon sperm DNA followed by washing in a solution comprising 0.1x SSPE, and 0.1% SDS at 68° C. when a probe of about 100 to about 1000 nucleotides in length is employed.

[00131] The term "equivalent" when made in reference to a hybridization condition as it relates to a hybridization condition of interest means that the hybridization condition and the hybridization condition of interest result in hybridization of nucleic acid sequences which have the same range of percent (%) homology. For example, if a hybridization condition of interest results in hybridization of a first nucleic acid sequence with other nucleic acid sequences that have from 80% to 90% homology to the first nucleic acid sequence, then another hybridization condition is said to be equivalent to the hybridization condition of interest if this other hybridization condition also results in hybridization of the first nucleic acid sequence with the other nucleic acid sequences that have from 80% to 90% homology to the first nucleic acid sequence.

[00132] When used in reference to nucleic acid hybridization the art knows well that numerous equivalent conditions may be employed to comprise either low or high stringency conditions; factors such as the length and nature (DNA, RNA, base composition) of the probe and nature of the target (DNA, RNA, base composition, present in solution or immobilized, etc.) and the concentration of the salts and other components (e.g., the presence or absence of formamide, dextran sulfate, polyethylene glycol) are considered and the hybridization solution may be varied to generate conditions of either low or high stringency hybridization different from, but equivalent to, the above-listed conditions. Those skilled in the art know that whereas higher stringencies may be preferred to reduce or eliminate non-specific binding, lower stringencies may be preferred to detect a larger number of nucleic acid sequences having different homologies.

DETAILED DESCRIPTION OF THE INVENTION

[00133] The present invention may be understood more readily by reference to the following detailed description of the preferred embodiments of the invention and the Examples included therein.

[00134] Before the present compounds, compositions, and methods are disclosed and described, it is to be understood that this invention is not limited to specific nucleic acids, specific polypeptides, specific cell types, specific host cells, specific conditions, or specific methods, etc., as such may, of course, vary, and the numerous modifications and variations therein will be apparent to those skilled in the art. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting. As used in the specification and in the claims, "a" or "an" can mean one or more, depending upon the context in which it is used. Thus, for example, reference to "a cell" can mean that at least one cell can be utilized.

[00135] The present invention is based, in part, on the isolation and characterization of nucleic acid molecules encoding FAD2-like LMPs from plants including *Arabidopsis thaliana*, soybean (*Glycine max*), rice (*Oryza sativa*), corn (*Zea mays*), linseed (*Linum usitatissimum*), barley (*Hordeum vulgare*) and wheat (*Triticum aestivum*) and other related crop species like maize, barley, linseed, sugar beat or sunflower.

[00136] In accordance with the purpose(s) of this invention, as embodied and broadly described herein, this invention, in one aspect, provides an isolated nucleic acid from a plant (*Arabidopsis thaliana*, *Glycine max*, *Zea mays*, *Oryza sativa*, *Linum usitatissimum*, *Hordeum vulgare* or *Triticum aestivum*) encoding a Lipid Metabolism Protein (LMP), or a portion thereof.

[00137] One aspect of the invention pertains to isolated nucleic acid molecules that encode LMP polypeptides or biologically active portions thereof, as well as nucleic acid fragments sufficient for use as hybridization probes or primers for the identification or amplification of an LMP-encoding nucleic acid (e.g., LMP DNA). As used herein, the term "nucleic acid molecule" is intended to include DNA molecules (e.g., cDNA or genomic DNA) and RNA molecules (e.g., mRNA) and analogs of the DNA or RNA generated using nucleotide analogs. This term also encompasses untranslated sequence located at both the 3' and 5' ends of the coding region of a gene: at least about 1000 nucleotides of sequence upstream from the 5' end of the coding region and at least about 200 nucleotides of sequence downstream from the 3' end of the coding region of the gene. The nucleic acid molecule can be single-stranded or double-stranded, but preferably is double-stranded DNA. An "isolated" nucleic acid molecule is one which is substantially separated from other nucleic acid molecules which are present in the natural source of the nucleic acid. Preferably, an "isolated" nucleic acid is substantially free of sequences that naturally flank the nucleic acid (i.e., sequences located at the 5' and 3' ends of the nucleic acid) in the genomic DNA of the organism, from which the nucleic acid is derived. For example, in various embodiments, the isolated LMP nucleic acid molecule can contain less than about 5 kb, 4kb, 3kb, 2kb, 1 kb, 0.5 kb or 0.1 kb of nucleotide sequences which naturally flank the nucleic acid molecule in genomic DNA of the cell from which the nucleic acid is derived (e.g., a *Arabidopsis thaliana*, *Glycine max*, *Oryza sativa*, *Zea mays*, *Linum usitatissimum*, *Hordeum vulgare* or *Triticum aestivum* cell). Moreover, an "isolated" nucleic acid molecule, such as a cDNA molecule, can

be substantially free of other cellular material, or culture medium when produced by recombinant techniques, or chemical precursors or other chemicals when chemically synthesized.

[00138] A nucleic acid molecule of the present invention, e.g., a nucleic acid molecule having a nucleotide sequence of Appendix A, in a preferred embodiment as disclosed in SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33 or SEQ ID NO: 35, or a portion thereof, can be isolated using standard molecular biology techniques and the sequence information provided herein. For example, an *Arabidopsis thaliana*, *Glycine max*, *Oryza sativa*, *Zea mays*, *Linum usitatissimum*, *Hordeum vulgare* or *Triticum aestivum* LMP cDNA can be isolated from an *Arabidopsis thaliana*, *Glycine max*, *Oryza sativa*, *Zea mays*, *Linum usitatissimum*, *Hordeum vulgare* or *Triticum aestivum* library using all or portion of one of the sequences of Appendix A, in a preferred embodiment as disclosed in SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33 or SEQ ID NO: 35, as a hybridization probe and standard hybridization techniques (e.g., as described in Sambrook et al. 1989, *Molecular Cloning: A Laboratory Manual*. 2nd, ed., Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY). Moreover, a nucleic acid molecule encompassing all or a portion of one of the sequences of Appendix A, in a preferred embodiment as disclosed in SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33 or SEQ ID NO: 35, can be isolated by the polymerase chain reaction using oligonucleotide primers designed based upon this sequence (e.g., a nucleic acid molecule encompassing all or a portion of one of the sequences of Appendix A, in a preferred embodiment as disclosed in SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33 or SEQ ID NO: 35, can be isolated by the polymerase chain reaction using oligonucleotide primers designed based upon this same sequence of Appendix A, in a preferred embodiment as disclosed in SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33 or SEQ ID NO: 35). For example, mRNA can be isolated from plant cells (e.g., by the guanidinium-thiocyanate extraction procedure of Chirgwin et al. 1979, *Biochemistry* 18:5294-5299) and cDNA can be prepared using reverse transcriptase (e.g., Moloney MLV reverse transcriptase, available from Gibco/BRL, Bethesda, MD; or AMV reverse transcriptase, available from Seikagaku America, Inc., St. Petersburg, FL). Synthetic oligonucleotide primers for polymerase chain reaction amplification can be designed based upon one of the nucleotide sequences shown in Appendix A, in a preferred embodiment as disclosed in SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33 or SEQ ID NO: 35. A nucleic acid of the invention can be amplified using cDNA or,

alternatively, genomic DNA, as a template and appropriate oligonucleotide primers according to standard PCR amplification techniques. The nucleic acid so amplified can be cloned into an appropriate vector and characterized by DNA sequence analysis. Furthermore, oligonucleotides corresponding to a LMP nucleotide sequence can be prepared by standard synthetic techniques, e.g., using an automated DNA synthesizer.

[00139] In a preferred embodiment, an isolated nucleic acid of the invention comprises one of the nucleotide sequences shown in Appendix A, in a preferred embodiment as disclosed in SEQ ID NO: 5, SEQ ID NO: 9, SEQ ID NO: 13, SEQ ID NO: 17, SEQ ID NO: 21, SEQ ID NO: 25, SEQ ID NO: 29, or SEQ ID NO: 33. The sequences of Appendix A, in a preferred embodiment as disclosed in SEQ ID NO: 5, SEQ ID NO: 9, SEQ ID NO: 13, SEQ ID NO: 17, SEQ ID NO: 21, SEQ ID NO: 25, SEQ ID NO: 29, or SEQ ID NO: 33 correspond to the *Arabidopsis thaliana*, *Glycine max*, *Oryza sativa*, *Zea mays*, *Linum usitatissimum*, *Hordeum vulgare* or *Triticum aestivum* LMP cDNAs of the invention. These cDNAs comprise sequences encoding LMPs (i.e., the "coding region", indicated in Appendix A), as well as 5' untranslated sequences and 3' untranslated sequences. Alternatively, the nucleic acid molecules can comprise only the coding region of any of the sequences in Appendix A, in a preferred embodiment as disclosed in SEQ ID NO: 7, SEQ ID NO: 11, SEQ ID NO: 15, SEQ ID NO: 19, SEQ ID NO: 23, SEQ ID NO: 27, SEQ ID NO: 31, or SEQ ID NO: 35 or can contain whole genomic fragments isolated from genomic DNA.

[00140] For the purposes of this application, it will be understood that each of the sequences set forth in Appendix A has an identifying entry number (e.g., *TaFAD-01*). Each of these sequences may generally comprise three parts: a 5' upstream region, a coding region, and a downstream region. A coding region of these sequences is indicated as "ORF position" (Table 3).

[00141] In another preferred embodiment, an isolated nucleic acid molecule of the invention comprises a nucleic acid molecule, which is a complement of one of the nucleotide sequences shown in Appendix A, in a preferred embodiment as disclosed in SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33 or SEQ ID NO: 35, or a portion thereof. A nucleic acid molecule which is complementary to one of the nucleotide sequences shown in Appendix A, in a preferred embodiment as disclosed in SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33 or SEQ ID NO: 35, is one which is sufficiently complementary to one of the nucleotide sequences shown in Appendix A such that it can hybridize to one of the nucleotide sequences shown in Appendix A, thereby forming a stable duplex.

[00142] In still another preferred embodiment, an isolated nucleic acid molecule of the invention comprises a nucleotide sequence which is at least about 50-60%, preferably at least about 60-70%, more preferably at least about 70-80%, 80-90%, or 90-95%, also preferable at least about 85%, 86 %, 87 %, 88 %, 89 %, 90 %, 91 %, 92 %, 93 %, or 94 % and even more preferably at least about 95%, 96%, 97%, 98%, 99% or more homologous to a nucleotide sequence shown in Appendix A, in a preferred embodiment as disclosed in SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11,

SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33 or SEQ ID NO: 35, or a portion thereof. The nucleotide sequence homology is preferably determined using Align X (Aug. 22, 2003) of Vector NTI Suite 9.0 with following parameters: Gap opening penalty: 15; Gap extension penalty: 6.66; Gap separation penalty range: 8; % identity for alignment delay: 40.

[00143] In an additional preferred embodiment, an isolated nucleic acid molecule of the invention comprises a nucleotide sequence which hybridizes, e.g., hybridizes under stringent conditions, to one of the nucleotide sequences shown in Appendix A, or a portion thereof. These hybridization conditions include washing with a solution having a salt concentration of about 0.02 molar at pH 7 at about 60°C.

[00144] Moreover, the nucleic acid molecule of the invention can comprise only a portion of the coding region of one of the sequences in Appendix A, in a preferred embodiment as depicted in SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33 or SEQ ID NO: 35, for example a fragment, which can be used as a probe or primer or a fragment encoding a biologically active portion of a LMP. The nucleotide sequences determined from the cloning of the LMP genes from *Arabidopsis thaliana*, *Glycine max*, *Oryza sativa*, *Zea mays*, *Linum usitatissimum*, *Hordeum vulgare* or *Triticum aestivum* allows for the generation of probes and primers designed for use in identifying and/or cloning LMP homologues in other cell types and organisms, as well as LMP homologues from other plants or related species. Therefore this invention also provides compounds comprising the nucleic acids disclosed herein, or fragments thereof. These compounds include the nucleic acids attached to a moiety. These moieties include, but are not limited to, detection moieties, hybridization moieties, purification moieties, delivery moieties, reaction moieties, binding moieties, and the like. The probe/primer typically comprises substantially purified oligonucleotide. The oligonucleotide typically comprises a region of nucleotide sequence that hybridizes under stringent conditions to at least about 12, preferably about 25, more preferably about 40, 50 or 75 consecutive nucleotides of a sense strand of one of the sequences set forth in Appendix A, in a preferred embodiment as depicted in SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33 or SEQ ID NO: 35, an anti-sense sequence of one of the sequences set forth in Appendix A, in a preferred embodiment as depicted in SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33 or SEQ ID NO: 35, or naturally occurring mutants thereof. Primers based on a nucleotide sequence of Appendix A, in a preferred embodiment as depicted in SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33 or SEQ ID NO: 35, can be used in PCR reactions to clone LMP homologues. Probes based on the LMP nucleotide sequences can be used to detect transcripts or genomic sequences encoding the same or homologous

proteins. In preferred embodiments, the probe further comprises a label group attached thereto, e.g. the label group can be a radioisotope, a fluorescent compound, an enzyme, or an enzyme co-factor. Such probes can be used as a part of a genomic marker test kit for identifying cells which express a LMP, such as by measuring a level of a LMP-encoding nucleic acid in a sample of cells, e.g., detecting LMP mRNA levels or determining whether a genomic LMP gene has been mutated or deleted.

[00145] In one embodiment, the nucleic acid molecule of the invention encodes a protein or portion thereof which includes an amino acid sequence which is sufficiently homologous to an amino acid encoded by a sequence of Appendix A, in a preferred embodiment as depicted in SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33 or SEQ ID NO: 35, such that the protein or portion thereof maintains the same or a similar function as the wild-type protein. As used herein, the language "sufficiently homologous" refers to proteins or portions thereof which have amino acid sequences which include a minimum number of identical or equivalent (e.g., an amino acid residue, which has a similar side chain as an amino acid residue in one of the ORFs of a sequence of Appendix A, in a preferred embodiment as depicted in SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33 or SEQ ID NO: 35,) amino acid residues to an amino acid sequence such that the protein or portion thereof is able to participate in the metabolism of compounds necessary for the production of seed storage compounds in plants, construction of cellular membranes in microorganisms or plants, or in the transport of molecules across these membranes. Regulatory proteins, such as DNA binding proteins, transcription factors, kinases, phosphatases, or protein members of metabolic pathways such as the lipid, starch and protein biosynthetic pathways, or membrane transport systems, may play a role in the biosynthesis of seed storage compounds. Examples of such activities are described herein (see putative annotations in Table 3). Examples of LMP-encoding nucleic acid sequences are set forth in Appendix A, in a preferred embodiment as depicted in SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33 or SEQ ID NO: 35,.

[00146] As altered or increased sugar and/or fatty acid production is a general trait wished to be inherited into a wide variety of plants like maize, wheat, rye, oat, triticale, rice, barley, soybean, peanut, cotton, canola, linseed, manihot, pepper, sunflower, sugar beet and tagetes, solanaceous plants like potato, tobacco, eggplant, and tomato, Vicia species, pea, alfalfa, bushy plants (coffee, cacao, tea), Salix species, trees (oil palm, coconut) and perennial grasses and forage crops, these crop plants are also preferred target plants for genetic engineering as one further embodiment of the present invention.

[00147] Portions of proteins encoded by the LMP nucleic acid molecules of the invention are preferably biologically active portions of one of the LMPs. As used herein, the term "biologically active portion of a LMP" is intended to include a portion, e.g., a domain/ motif, of a LMP that participates in the metabolism of compounds necessary for the biosynthesis of seed storage lipids, or the con-

struction of cellular membranes in microorganisms or plants, or in the transport of molecules across these membranes, or has an activity as set forth in Table 3. To determine whether a LMP or a biologically active portion thereof can participate in the metabolism of compounds necessary for the production of seed storage compounds and cellular membranes, an assay of enzymatic activity may be performed. Such assay methods are well known to those skilled in the art, and as described in Example 14 of the Exemplification.

[00148] Biologically active portions of a LMP include peptides comprising amino acid sequences derived from the amino acid sequence of a LMP (e.g., an amino acid sequence encoded by a nucleic acid of Appendix A, in a preferred embodiment as depicted in SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33 or SEQ ID NO: 35, or the amino acid sequence of a protein homologous to a LMP, which include fewer amino acids than a full length LMP or the full length protein which is homologous to a LMP) and exhibit at least one activity of a LMP. Typically, biologically active portions (peptides, e.g., peptides which are, for example, 5, 10, 15, 20, 30, 35, 36, 37, 38, 39, 40, 50, 100 or more amino acids in length) comprise a domain or motif with at least one activity of a LMP. Moreover, other biologically active portions, in which other regions of the protein are deleted, can be prepared by recombinant techniques and evaluated for one or more of the activities described herein. Preferably, the biologically active portions of a LMP include one or more selected domains/motifs or portions thereof having biological activity.

[00149] Additional nucleic acid fragments encoding biologically active portions of a LMP can be prepared by isolating a portion of one of the sequences, expressing the encoded portion of the LMP or peptide (e.g., by recombinant expression *in vitro*) and assessing the activity of the encoded portion of the LMP or peptide.

[00150] The invention further encompasses nucleic acid molecules that differ from one of the nucleotide sequences shown in Appendix A, in a preferred embodiment as depicted in SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33 or SEQ ID NO: 35, (and portions thereof) due to degeneracy of the genetic code and thus encode the same LMP as that encoded by the nucleotide sequences shown in Appendix A, in a preferred embodiment as depicted in SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33 or SEQ ID NO: 35,. In a further embodiment, the nucleic acid molecule of the invention encodes a full length protein which is substantially homologous to an amino acid sequence of a polypeptide encoded by an open reading frame shown in Appendix A. In one embodiment, the full-length nucleic acid or protein or fragment of the nucleic acid or protein is from *Arabidopsis thaliana*, *Glycine max*, *Oryza sativa*, *Zea mays*, *Linum usitatissimum*, *Hordeum vulgare* or *Triticum aestivum*.

[00151] In addition to the *Arabidopsis thaliana*, *Glycine max*, *Oryza sativa*, *Zea mays*, *Linum usitatissimum*, *Hordeum vulgare* or *Triticum aestivum* LMP nucleotide sequences shown in Appendix

A, it will be appreciated by those skilled in the art that DNA sequence polymorphisms that lead to changes in the amino acid sequences of LMPs may exist within a population (e.g., the *Arabidopsis thaliana*, *Brassica napus*, *Glycine max*, *Oryza sativa*, *Zea mays*, *Linum usitatissimum*, *Hordeum vulgare* or *Triticum aestivum* population). Such genetic polymorphism in the LMP gene may exist among individuals within a population due to natural variation. As used herein, the terms "gene" and "recombinant gene" refer to nucleic acid molecules comprising an open reading frame encoding a LMP, preferably a *Arabidopsis thaliana*, *Glycine max*, *Oryza sativa*, *Zea mays*, *Linum usitatissimum*, *Hordeum vulgare* or *Triticum aestivum* LMP. Such natural variations can typically result in 1-40% variance in the nucleotide sequence of the LMP gene. Any and all such nucleotide variations and resulting amino acid polymorphisms in LMP that are the result of natural variation and that do not alter the functional activity of LMPs are intended to be within the scope of the invention.

[00152] Nucleic acid molecules corresponding to natural variants and non-*Arabidopsis thaliana*, *Glycine max*, *Oryza sativa*, *Zea mays*, *Linum usitatissimum*, *Hordeum vulgare* or *Triticum aestivum* orthologs of the *Arabidopsis thaliana*, *Glycine max*, *Oryza sativa*, *Zea mays*, *Linum usitatissimum*, *Hordeum vulgare* or *Triticum aestivum* LMP cDNA of the invention can be isolated based on their homology to *Arabidopsis thaliana*, *Glycine max*, *Oryza sativa*, *Zea mays*, *Linum usitatissimum*, *Hordeum vulgare* or *Triticum aestivum* LMP nucleic acid disclosed herein using the *Arabidopsis thaliana*, *Glycine max*, *Oryza sativa*, *Zea mays*, *Linum usitatissimum*, *Hordeum vulgare* or *Triticum aestivum* cDNA, or a portion thereof, as a hybridization probe according to standard hybridization techniques under stringent hybridization conditions. As used herein, the term "orthologs" refers to two nucleic acids from different species, but that have evolved from a common ancestral gene by speciation. Normally, orthologs encode proteins having the same or similar functions. Accordingly, in another embodiment, an isolated nucleic acid molecule of the invention is at least 15 nucleotides in length and hybridizes under stringent conditions to the nucleic acid molecule comprising a nucleotide sequence of Appendix A, in a preferred embodiment as depicted in SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33 or SEQ ID NO: 35,. In other embodiments, the nucleic acid is at least 30, 50, 100, 250 or more nucleotides in length. As used herein, the term "hybridizes under stringent conditions" is intended to describe conditions for hybridization and washing under which nucleotide sequences at least 60% homologous to each other typically remain hybridized to each other. Preferably, the conditions are such that sequences at least about 65%, more preferably at least about 70%, and even more preferably at least about 75% or more homologous to each other typically remain hybridized to each other. Such stringent conditions are known to those skilled in the art and can be found in *Current Protocols in Molecular Biology*, John Wiley & Sons, N.Y., 1989: 6.3.1-6.3.6. A preferred, non-limiting example of stringent hybridization conditions are hybridization in 6X sodium chloride/sodium citrate (SSC) at about 45°C, followed by one or more washes in 0.2 X SSC, 0.1% SDS at 50-65°C. Preferably, an isolated nucleic acid molecule of the invention that hybridizes under stringent conditions to a sequence of Appendix A, in a preferred embodiment as depicted in SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO:

19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO:25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO:33 or SEQ ID NO: 35, corresponds to a naturally occurring nucleic acid molecule. As used herein, a "naturally-occurring" nucleic acid molecule refers to an RNA or DNA molecule having a nucleotide sequence that occurs in nature (e.g., encodes a natural protein). In one embodiment, the nucleic acid encodes a natural *Arabidopsis thaliana*, *Glycine max*, *Oryza sativa*, *Zea mays*, *Linum usitatissimum*, *Hordeum vulgare* or *Triticum aestivum* LMP.

[00153] In addition to naturally-occurring variants of the LMP sequence that may exist in the population, the skilled artisan will further appreciate that changes can be introduced by mutation into a nucleotide sequence of Appendix A, in a preferred embodiment as depicted in SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO:25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO:33 or SEQ ID NO: 35, thereby leading to changes in the amino acid sequence of the encoded LMP, without altering the functional ability of the LMP. For example, nucleotide substitutions leading to amino acid substitutions at "non-essential" amino acid residues can be made in a sequence of Appendix A, in a preferred embodiment as depicted in SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO:25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO:33 or SEQ ID NO: 35. A "non-essential" amino acid residue is a residue that can be altered from the wild-type sequence of one of the LMPs (Appendix A, in a preferred embodiment as depicted in SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO:25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO:33 or SEQ ID NO: 35) without altering the activity of said LMP, whereas an "essential" amino acid residue is required for LMP activity. Other amino acid residues, however, (e.g., those that are not conserved or only semi-conserved in the domain having LMP activity) may not be essential for activity and thus are likely to be amenable to alteration without altering LMP activity.

[00154] Accordingly, another aspect of the invention pertains to nucleic acid molecules encoding LMPs that contain changes in amino acid residues that are not essential for LMP activity. Such LMPs differ in amino acid sequence from a sequence yet retain at least one of the LMP activities described herein. In one embodiment, the isolated nucleic acid molecule comprises a nucleotide sequence encoding a protein, wherein the protein comprises an amino acid sequence at least about 50% homologous to an amino acid sequence encoded by a nucleic acid of Appendix A, in a preferred embodiment as depicted in SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO:25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO:33 or SEQ ID NO: 35, and is capable of participation in the metabolism of compounds necessary for the production of seed storage compounds in *Arabidopsis thaliana*, *Glycine max*, *Oryza sativa*, *Zea mays*, *Linum usitatissimum*, *Hordeum vulgare* or *Triticum aestivum*, or cellular membranes, or has one or more activities set forth in Table 3. Preferably, the protein encoded by the nucleic acid molecule is at least about 50-60% homologous to one of the sequences encoded by a nucleic acid of Appendix A, in a preferred embodiment

ment as depicted in SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33 or SEQ ID NO: 35, more preferably at least about 60-70% homologous to one of the sequences encoded by a nucleic acid of Appendix A, in a preferred embodiment as depicted in SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33 or SEQ ID NO: 35, even more preferably at least about 70-80%, 80-90%, 90-95%, also preferable at least about 85%, 86 %, 87 %, 88 %, 89 %, 90 %, 91 %, 92 %, 93 %, 94 % or 95 % homologous to one of the sequences encoded by a nucleic acid of Appendix A, in a preferred embodiment as depicted in SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33 or SEQ ID NO: 35, and most preferably at least about 96%, 97%, 98%, or 99% homologous to one of the sequences encoded by a nucleic acid of Appendix A, in a preferred embodiment as depicted in SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33 or SEQ ID NO: 35,. The polypeptide sequence homology is preferably determined using Align X (Aug. 22, 2003) of Vector NTI Suite 9.0 with following parameters: Gap opening penalty: 10; Gap extension penalty: 0.05; Gap separation penalty range: 8; % identity for alignment delay: 40.

[00155] To determine the percent homology of two amino acid sequences (e.g., one of the sequences encoded by a nucleic acid of Appendix A, in a preferred embodiment as depicted in SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33 or SEQ ID NO: 35, and a mutant form thereof) or of two nucleic acids, the sequences are aligned for optimal comparison purposes (e.g., gaps can be introduced in the sequence of one protein or nucleic acid for optimal alignment with the other protein or nucleic acid). The amino acid residues or nucleotides at corresponding amino acid positions or nucleotide positions are then compared. When a position in one sequence (e.g., one of the sequences encoded by a nucleic acid of Appendix A, in a preferred embodiment as depicted in SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33 or SEQ ID NO: 35) is occupied by the same amino acid residue or nucleotide as the corresponding position in the other sequence (e.g., a mutant form of the sequence selected from the polypeptide encoded by a nucleic acid of Appendix A, in a preferred embodiment as depicted in SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33 or SEQ ID NO: 35,), then the molecules are homologous at that position (i.e., as used herein amino acid or nucleic acid "homology" is equivalent to amino acid or nucleic acid "identity"). The percent homology between the two sequences is a function of the num-

ber of identical positions shared by the sequences (i.e., % homology = numbers of identical positions/total numbers of positions x 100).

[00156] An isolated nucleic acid molecule encoding a LMP homologous to a protein sequence encoded by a nucleic acid of Appendix A, in a preferred embodiment as depicted in SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33 or SEQ ID NO: 35, can be created by introducing one or more nucleotide substitutions, additions or deletions into a nucleotide sequence of Appendix A, in a preferred embodiment as depicted in SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33 or SEQ ID NO: 35, such that one or more amino acid substitutions, additions or deletions are introduced into the encoded protein. Mutations can be introduced into one of the sequences of Appendix A, in a preferred embodiment as depicted in SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33 or SEQ ID NO: 35, by standard techniques, such as site-directed mutagenesis and PCR-mediated mutagenesis. Preferably, conservative amino acid substitutions are made at one or more predicted non-essential amino acid residues. A "conservative amino acid substitution" is one in which the amino acid residue is replaced with an amino acid residue having a similar side chain. Families of amino acid residues having similar side chains have been defined in the art. These families include amino acids with basic side chains (e.g., lysine, arginine, histidine), acidic side chains (e.g., aspartic acid, glutamic acid), uncharged polar side chains (e.g., glycine, asparagine, glutamine, serine, threonine, tyrosine, cysteine), nonpolar side chains (e.g., alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan), beta-branched side chains (e.g., threonine, valine, isoleucine) and aromatic side chains (e.g., tyrosine, phenylalanine, tryptophan, histidine). Thus, a predicted non-essential amino acid residue in a LMP is preferably replaced with another amino acid residue from the same side chain family. Alternatively, in another embodiment, mutations can be introduced randomly along all or part of a LMP coding sequence, such as by saturation mutagenesis, and the resultant mutants can be screened for a LMP activity described herein to identify mutants that retain LMP activity. Following mutagenesis of one of the sequences of Appendix A, in a preferred embodiment as depicted in SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33 or SEQ ID NO: 35, the encoded protein can be expressed recombinantly and the activity of the protein can be determined using, for example, assays described herein (see Examples 11-13 of the Exemplification).

[00157] LMPs are preferably produced by recombinant DNA techniques. For example, a nucleic acid molecule encoding the protein is cloned into an expression vector (as described above), the expression vector is introduced into a host cell (as described herein) and the LMP is expressed in the host cell. The LMP can then be isolated from the cells by an appropriate purification scheme us-

ing standard protein purification techniques. Alternative to recombinant expression, a LMP or peptide thereof can be synthesized chemically using standard peptide synthesis techniques. Moreover, native LMP can be isolated from cells, for example using an anti-LMP antibody, which can be produced by standard techniques utilizing a LMP or fragment thereof of this invention.

[00158] The invention also provides LMP chimeric or fusion proteins. As used herein, a LMP "chimeric protein" or "fusion protein" comprises a LMP polypeptide operatively linked to a non-LMP polypeptide. An "LMP polypeptide" refers to a polypeptide having an amino acid sequence corresponding to a LMP, whereas a "non-LMP polypeptide" refers to a polypeptide having an amino acid sequence corresponding to a protein which is not substantially homologous to the LMP, e.g., a protein which is different from the LMP and which is derived from the same or a different organism. Within the fusion protein, the term "operatively linked" is intended to indicate that the LMP polypeptide and the non-LMP polypeptide are fused to each other so that both sequences fulfill the proposed function attributed to the sequence used. The non-LMP polypeptide can be fused to the N-terminus or C-terminus of the LMP polypeptide. For example, in one embodiment, the fusion protein is a GST-LMP (glutathione S-transferase) fusion protein in which the LMP sequences are fused to the C-terminus of the GST sequences. Such fusion proteins can facilitate the purification of recombinant LMPs. In another embodiment, the fusion protein is a LMP containing a heterologous signal sequence at its N-terminus. In certain host cells (e.g., mammalian host cells), expression and/or secretion of a LMP can be increased through use of a heterologous signal sequence.

[00159] Preferably, a LMP chimeric or fusion protein of the invention is produced by standard recombinant DNA techniques. For example, DNA fragments coding for the different polypeptide sequences are ligated together in-frame in accordance with conventional techniques, for example by employing blunt-ended or stagger-ended termini for ligation, restriction enzyme digestion to provide for appropriate termini, filling-in of cohesive ends as appropriate, alkaline phosphatase treatment to avoid undesirable joining, and enzymatic ligation. In another embodiment, the fusion gene can be synthesized by conventional techniques including automated DNA synthesizers. Alternatively, PCR amplification of gene fragments can be carried out using anchor primers that give rise to complementary overhangs between two consecutive gene fragments, which can subsequently be annealed and reamplified to generate a chimeric gene sequence (see, for example, Current Protocols in Molecular Biology, eds. Ausubel et al., John Wiley & Sons: 1992). Moreover, many expression vectors are commercially available that already encode a fusion moiety (e.g., a GST polypeptide). An LMP-encoding nucleic acid can be cloned into such an expression vector such that the fusion moiety is linked in-frame to the LMP.

[00160] In addition to the nucleic acid molecules encoding LMPs described above, another aspect of the invention pertains to isolated nucleic acid molecules that are antisense thereto. An "antisense" nucleic acid comprises a nucleotide sequence that is complementary to a "sense" nucleic acid encoding a protein, e.g., complementary to the coding strand of a double-stranded cDNA molecule or complementary to an mRNA sequence. Accordingly, an antisense nucleic acid can be hydrogen bond to a sense nucleic acid. The antisense nucleic acid can be complementary to an entire LMP coding strand, or to only a portion thereof. In one embodiment, an antisense nucleic acid mole-

cule is antisense to a "coding region" of the coding strand of a nucleotide sequence encoding a LMP. The term "coding region" refers to the region of the nucleotide sequence comprising codons that are translated into amino acid residues (e.g., the entire coding region of *TaFAD-01* comprises nucleotides 165-1325). In another embodiment, the antisense nucleic acid molecule is antisense to a "noncoding region" of the coding strand of a nucleotide sequence encoding LMP. The term "noncoding region" refers to 5' and 3' sequences that flank the coding region that are not translated into amino acids (i.e., also referred to as 5' and 3' untranslated regions).

[00161] Given the coding strand sequences encoding LMP disclosed herein (e.g., the sequences set forth in Appendix A, in a preferred embodiment as depicted in SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33 or SEQ ID NO: 35), antisense nucleic acids of the invention can be designed according to the rules of Watson and Crick base pairing. The antisense nucleic acid molecule can be complementary to the entire coding region of LMP mRNA, but more preferably is an oligonucleotide that is antisense to only a portion of the coding or noncoding region of LMP mRNA. For example, the antisense oligonucleotide can be complementary to the region surrounding the translation start site of LMP mRNA. An antisense oligonucleotide can be, for example, about 5, 10, 15, 20, 25, 30, 35, 40, 45 or 50 nucleotides in length. An antisense or sense nucleic acid of the invention can be constructed using chemical synthesis and enzymatic ligation reactions using procedures known in the art. For example, an antisense nucleic acid (e.g., an antisense oligonucleotide) can be chemically synthesized using naturally occurring nucleotides or variously modified nucleotides designed to increase the biological stability of the molecules or to increase the physical stability of the duplex formed between the antisense and sense nucleic acids, e.g., phosphorothioate derivatives and acridine substituted nucleotides can be used. Examples of modified nucleotides which can be used to generate the antisense nucleic acid include 5-fluorouracil, 5-bromouracil, 5-chlorouracil, 5-iodouracil, hypoxanthine, xanthine, 4-acetylcytosine, 5-(carboxyhydroxymethyl) uracil, 5-carboxymethylamino-methyl-2-thiouridine, 5-carboxymethylaminomethyluracil, dihydro-uracil, beta-D-galactosylqueosine, inosine, N-6-isopentenyladenine, 1-methyl-guanine, 1-methylinosine, 2,2-dimethylguanine, 2-methyladenine, 2-methylguanine, 3-methylcytosine, 5-methyl-cytosine, N-6-adenine, 7-methylguanine, 5-methyl-aminomethyluracil, 5-methoxyamino-methyl-2-thiouracil, beta-D-mannosylqueosine, 5'-methoxycarboxymethyl-uracil, 5-methoxyuracil, 2-methylthio-N-6-isopentenyladenine, uracil-5-oxyacetic acid (v), wybutoxosine, pseudouracil, queosine, 2-thiacytosine, 5-methyl-2-thiouracil, 2-thiouracil, 4-thiouracil, 5-methyluracil, uracil-5-oxyacetic acid methylester, uracil-5-oxyacetic acid (v), 5-methyl-2-thiouracil, 3-(3-amino-3-N-2-carboxypropyl) uracil, (acp3)w, and 2,6-diamino-purine. Alternatively, the antisense nucleic acid can be produced biologically using an expression vector into which a nucleic acid has been subcloned in an antisense orientation (i.e., RNA transcribed from the inserted nucleic acid will be of an antisense orientation to a target nucleic acid of interest, described further in the following subsection).

[00162] In another variation of the antisense technology, a double-strand interfering RNA construct can be used to cause a down-regulation of the LMP mRNA level and LMP activity in trans-

genic plants. This requires transforming the plants with a chimeric construct containing a portion of the LMP sequence in the sense orientation fused to the antisense sequence of the same portion of the LMP sequence. A DNA linker region of variable length can be used to separate the sense and antisense fragments of LMP sequences in the construct.

[00163] The antisense nucleic acid molecules of the invention are typically administered to a cell or generated *in situ* such that they hybridize with or bind to cellular mRNA and/or genomic DNA encoding a LMP to thereby inhibit expression of the protein, e.g., by inhibiting transcription and/or translation. The hybridization can be by conventional nucleotide complementarity to form a stable duplex, or, for example, in the case of an antisense nucleic acid molecule which binds to DNA duplexes, through specific interactions in the major groove of the double helix. The antisense molecule can be modified such that it specifically binds to a receptor or an antigen expressed on a selected cell surface, e.g., by linking the antisense nucleic acid molecule to a peptide or an antibody which binds to a cell surface receptor or antigen. The antisense nucleic acid molecule can also be delivered to cells using the vectors described herein. To achieve sufficient intracellular concentrations of the antisense molecules, vector constructs in which the antisense nucleic acid molecule is placed under the control of a strong prokaryotic, viral, or eukaryotic including plant promoters are preferred.

[00164] In yet another embodiment, the antisense nucleic acid molecule of the invention is an anomeric nucleic acid molecule. An anomeric nucleic acid molecule forms specific double-stranded hybrids with complementary RNA in which, contrary to the usual units, the strands run parallel to each other (Gaultier et al. 1987, Nucleic Acids Res. 15:6625-6641). The antisense nucleic acid molecule can also comprise a 2'-o-methyl-ribonucleotide (Inoue et al. 1987, Nucleic Acids Res. 15:6131-6148) or a chimeric RNA-DNA analogue (Inoue et al. 1987, FEBS Lett. 215:327-330).

[00165] In still another embodiment, an antisense nucleic acid of the invention is a ribozyme. Ribozymes are catalytic RNA molecules with ribonuclease activity, which are capable of cleaving a single-stranded nucleic acid, such as an mRNA, to which they have a complementary region. Thus, ribozymes (e.g., hammerhead ribozymes (described in Haselhoff & Gerlach 1988, Nature 334:585-591)) can be used to catalytically cleave LMP mRNA transcripts to thereby inhibit translation of LMP mRNA. A ribozyme having specificity for a LMP-encoding nucleic acid can be designed based upon the nucleotide sequence of a LMP cDNA disclosed herein (i.e., Bn01 in Appendix A, in a preferred embodiment as depicted in SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33 or SEQ ID NO: 35) or on the basis of a heterologous sequence to be isolated according to methods taught in this invention. For example, a derivative of a *Tetrahymena* L-19 IVS RNA can be constructed in which the nucleotide sequence of the active site is complementary to the nucleotide sequence to be cleaved in a LMP-encoding mRNA (see, e.g., Cech et al., U.S. Patent No. 4,987,071 and Cech et al., U.S. Patent No. 5,116,742). Alternatively, LMP mRNA can be used to select a catalytic RNA having a specific ribonuclease activity from a pool of RNA molecules (see, e.g., Bartel, D. & Szostak J.W. 1993, Science 261:1411-1418).

[00166] Alternatively, LMP gene expression can be inhibited by targeting nucleotide sequences complementary to the regulatory region of a LMP nucleotide sequence (e.g., a LMP promoter and/or enhancers) to form triple helical structures that prevent transcription of a LMP gene in target cells (See generally, Helene C. 1991, Anticancer Drug Des. 6:569-84; Helene C. et al. 1992, Ann. N.Y. Acad. Sci. 660:27-36; and Maher, L.J. 1992, Bioassays 14:807-15).

[00167] In still another embodiment, microRNA technology can be used (Bartel D., Cell, 116:281-297, 2004). A MicroRNA precursor can be engineered to target and down-regulate the expression of a gene-of-interest. The precursor can be predominantly expressed in seeds or in other tissues as well. miRNAs (~ 21 to 25 nt) arise from larger precursors with a stem loop structure that are transcribed from non-protein-coding genes. miRNA targets a specific mRNA to suppress gene expression at post-transcriptional level (*i.e.* degrades mRNA) or at translational level (*i.e.* inhibits protein synthesis).

[00168] Another aspect of the invention pertains to vectors, preferably expression vectors, containing a nucleic acid encoding a LMP (or a portion thereof). As used herein, the term "vector" refers to a nucleic acid molecule capable of transporting another nucleic acid to which it has been linked. One type of vector is a "plasmid", which refers to a circular double stranded DNA loop into which additional DNA segments can be ligated. Another type of vector is a viral vector, wherein additional DNA segments can be ligated into the viral genome. Certain vectors are capable of autonomous replication in a host cell into which they are introduced (e.g., bacterial vectors having a bacterial origin of replication and episomal mammalian vectors). Other vectors (e.g., non-episomal mammalian vectors) are integrated into the genome of a host cell upon introduction into the host cell, and thereby are replicated along with the host genome. Moreover, certain vectors are capable of directing the expression of genes to which they are operatively linked. Such vectors are referred to herein as "expression vectors". In general, expression vectors of utility in recombinant DNA techniques are often in the form of plasmids. In the present specification, "plasmid" and "vector" can be used interchangeably as the plasmid is the most commonly used form of vector. However, the invention is intended to include such other forms of expression vectors, such as viral vectors (e.g., replication defective retroviruses, adenoviruses and adeno-associated viruses), which serve equivalent functions.

[00169] The recombinant expression vectors of the invention comprise a nucleic acid of the invention in a form suitable for expression of the nucleic acid in a host cell, which means that the recombinant expression vectors include one or more regulatory sequences, selected on the basis of the host cells to be used for expression, which is operatively linked to the nucleic acid sequence to be expressed. Within a recombinant expression vector, "operably linked" is intended to mean that the nucleotide sequence of interest is linked to the regulatory sequence(s) in a manner which allows for expression of the nucleotide sequence and both sequences are fused to each other so that each fulfills its proposed function (e.g., in an *in vitro* transcription/translation system or in a host cell when the vector is introduced into the host cell). The term "regulatory sequence" is intended to include promoters, enhancers and other expression control elements (e.g., polyadenylation signals). Such regulatory sequences are described, for example, in Goeddel; Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, CA (1990) or see: Gruber and Crosby, in: Methods in Plant

Molecular Biology and Biotechnology, CRC Press, Boca Raton, Florida, eds.: Glick & Thompson, Chapter 7, 89-108 including the references therein. Regulatory sequences include those that direct constitutive expression of a nucleotide sequence in many types of host cell and those that direct expression of the nucleotide sequence only in certain host cells or under certain conditions. It will be appreciated by those skilled in the art that the design of the expression vector can depend on such factors as the choice of the host cell to be transformed, the level of expression of protein desired, etc. The expression vectors of the invention can be introduced into host cells to thereby produce proteins or peptides, including fusion proteins or peptides, encoded by nucleic acids as described herein (e.g., LMPs, mutant forms of LMPs, fusion proteins, etc.).

[00170] The recombinant expression vectors of the invention can be designed for expression of LMPs in prokaryotic or eukaryotic cells. For example, LMP genes can be expressed in bacterial cells, insect cells (using baculovirus expression vectors), yeast and other fungal cells (see Romanos M.A. et al. 1992, Foreign gene expression in yeast: a review, Yeast 8:423-488; van den Hondel, C.A.M.J.J. et al. 1991, Heterologous gene expression in filamentous fungi, in: More Gene Manipulations in Fungi, Bennet & Lasure, eds., p. 396-428: Academic Press: San Diego; and van den Hondel & Punt 1991, Gene transfer systems and vector development for filamentous fungi, in: Applied Molecular Genetics of Fungi, Peberdy et al., eds., p. 1-28, Cambridge University Press: Cambridge), algae (Falciatore et al. 1999, Marine Biotechnology 1:239-251), ciliates of the types: Holotrichia, Peritrichia, Spirotrichia, Suctoria, Tetrahymena, Paramecium, Colpidium, Glaucoma, Platyophrya, Potomacus, Pseudocohnilembus, Euplotes, Engelmanniella, and Stylonychia, especially of the genus Stylonychia lemniae with vectors following a transformation method as described in WO 98/01572 and multicellular plant cells (see Schmidt & Willmitzer 1988, High efficiency *Agrobacterium tumefaciens*-mediated transformation of *Arabidopsis thaliana* leaf and cotyledon plants, Plant Cell Rep.:583-586); Plant Molecular Biology and Biotechnology, C Press, Boca Raton, Florida, chapter 6/7, S.71-119 (1993); White, Jenes et al., Techniques for Gene Transfer, in: Transgenic Plants, Vol. 1, Engineering and Utilization, eds.: Kung and Wu, Academic Press 1993, 128-43; Potrykus 1991, Annu. Rev. Plant Physiol. Plant Mol. Biol. 42:205-225 (and references cited therein) or mammalian cells. Suitable host cells are discussed further in Goeddel, Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, CA 1990). Alternatively, the recombinant expression vector can be transcribed and translated *in vitro*, for example using T7 promoter regulatory sequences and T7 polymerase.

[00171] Expression of proteins in prokaryotes is most often carried out with vectors containing constitutive or inducible promoters directing the expression of either fusion or non-fusion proteins. Fusion vectors add a number of amino acids to a protein encoded therein, usually to the amino terminus of the recombinant protein but also to the C-terminus or fused within suitable regions in the proteins. Such fusion vectors typically serve one or more of the following purposes: 1) to increase expression of recombinant protein; 2) to increase the solubility of the recombinant protein; and 3) to aid in the purification of the recombinant protein by acting as a ligand in affinity purification. Often, in fusion expression vectors, a proteolytic cleavage site is introduced at the junction of the fusion moiety and the recombinant protein to enable separation of the recombinant protein from the fusion moiety.

subsequent to purification of the fusion protein. Such enzymes, and their cognate recognition sequences, include Factor Xa, thrombin and enterokinase.

[00172] Typical fusion expression vectors include pGEX (Pharmacia Biotech Inc; Smith & Johnson 1988, Gene 67:31-40), pMAL (New England Biolabs, Beverly, MA) and pRIT5 (Pharmacia, Piscataway, NJ) which fuse glutathione S-transferase (GST), maltose E binding protein, or protein A, respectively, to the target recombinant protein. In one embodiment, the coding sequence of the LMP is cloned into a pGEX expression vector to create a vector encoding a fusion protein comprising, from the N-terminus to the C-terminus, GST-thrombin cleavage site-X protein. The fusion protein can be purified by affinity chromatography using glutathione-agarose resin. Recombinant LMP unfused to GST can be recovered by cleavage of the fusion protein with thrombin.

[00173] Examples of suitable inducible non-fusion *E. coli* expression vectors include pTrc (Amann et al. 1988, Gene 69:301-315) and pET 11d (Studier et al. 1990, Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, California 60-89). Target gene expression from the pTrc vector relies on host RNA polymerase transcription from a hybrid trp-lac fusion promoter. Target gene expression from the pET 11d vector relies on transcription from a T7 gn10-lac fusion promoter mediated by a coexpressed viral RNA polymerase (T7 gn1). This viral polymerase is supplied by host strains BL21 (DE3) or HMS174 (DE3) from a resident prophage harboring a T7 gn1 gene under the transcriptional control of the lacUV 5 promoter.

[00174] One strategy to maximize recombinant protein expression is to express the protein in a host bacteria with an impaired capacity to proteolytically cleave the recombinant protein (Gottesman S. 1990, Gene Expression Technology: *Methods in Enzymology* 185:119-128, Academic Press, San Diego, California). Another strategy is to alter the nucleic acid sequence of the nucleic acid to be inserted into an expression vector so that the individual codons for each amino acid are those preferentially utilized in the bacterium chosen for expression (Wada et al. 1992, Nucleic Acids Res. 20:2111-2118). Such alteration of nucleic acid sequences of the invention can be carried out by standard DNA synthesis techniques.

[00175] In another embodiment, the LMP expression vector is a yeast expression vector. Examples of vectors for expression in yeast *S. cerevisiae* include pYEpSec1 (Baldari et al. 1987, Embo J. 6:229-234), pMFa (Kurjan & Herskowitz 1982, Cell 30:933-943), pJRY88 (Schultz et al. 1987, Gene 54:113-123), and pYES2 (Invitrogen Corporation, San Diego, CA). Vectors and methods for the construction of vectors appropriate for use in other fungi, such as the filamentous fungi, include those detailed in: van den Hondel & Punt 1991, "Gene transfer systems and vector development for filamentous fungi, in: Applied Molecular Genetics of Fungi, Peberdy et al., eds., p. 1-28, Cambridge University Press: Cambridge.

[00176] Alternatively, the LMPs of the invention can be expressed in insect cells using baculovirus expression vectors. Baculovirus vectors available for expression of proteins in cultured insect cells (e.g., Sf 9 cells) include the pAc series (Smith et al. 1983, Mol. Cell Biol. 3:2156-2165) and the pVL series (Lucklow & Summers 1989, Virology 170:31-39).

[00177] In yet another embodiment, a nucleic acid of the invention is expressed in mammalian cells using a mammalian expression vector. Examples of mammalian expression vectors include

pCDM8 (Seed 1987, *Nature* 329:840) and pMT2PC (Kaufman et al. 1987, *EMBO J.* 6:187-195). When used in mammalian cells, the expression vector's control functions are often provided by viral regulatory elements. For example, commonly used promoters are derived from polyoma, Adenovirus 2, cytomegalovirus and Simian Virus 40. For other suitable expression systems for both prokaryotic and eukaryotic cells see chapters 16 and 17 of Sambrook, Fritsh and Maniatis, *Molecular Cloning: A Laboratory Manual*. 2nd, ed., *Cold Spring Harbor Laboratory*, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989.

[00178] In another embodiment, the LMPs of the invention may be expressed in uni-cellular plant cells (such as algae, see Falciatore et al. (1999, *Marine Biotechnology* 1:239-251 and references therein) and plant cells from higher plants (e.g., the spermatophytes, such as crop plants). Examples of plant expression vectors include those detailed in: Becker, Kemper, Schell and Masterson (1992, "New plant binary vectors with selectable markers located proximal to the left border", *Plant Mol. Biol.* 20:1195-1197) and Bevan (1984, "Binary *Agrobacterium* vectors for plant transformation, *Nucleic Acids Res.* 12:8711-8721; *Vectors for Gene Transfer in Higher Plants*; in: *Transgenic Plants*, Vol. 1, *Engineering and Utilization*, eds.: Kung und R. Wu, Academic Press, 1993, S. 15-38).

[00179] A plant expression cassette preferably contains regulatory sequences capable to drive gene expression in plant cells and which are operably linked so that each sequence can fulfil its function such as termination of transcription, including polyadenylation signals. Preferred polyadenylation signals are those originating from *Agrobacterium tumefaciens* t-DNA such as the gene 3 known as octopine synthase of the Ti-plasmid pTiACH5 (Gielen et al. 1984, *EMBO J.* 3:835) or functional equivalents thereof but also all other terminators functionally active in plants are suitable.

[00180] As plant gene expression is very often not limited on transcriptional levels a plant expression cassette preferably contains other operably linked sequences like translational enhancers such as the overdrive-sequence containing the 5'-untranslated leader sequence from tobacco mosaic virus enhancing the protein per RNA ratio (Gallie et al. 1987, *Nucleic Acids Res.* 15:8693-8711).

[00181] Plant gene expression has to be operably linked to an appropriate promoter conferring gene expression in a timely, cell or tissue specific manner. Preferred are promoters driving constitutive expression (Benfey et al. 1989, *EMBO J.* 8:2195-2202) like those derived from plant viruses like the 35S CAMV (Franck et al. 1980, *Cell* 21:285-294), the 19S CaMV (see also US 5,352,605 and WO 84/02913) or plant promoters like those from Rubisco small subunit described in US 4,962,028. Even more preferred are seed-specific promoters driving expression of LMP proteins during all or selected stages of seed development. Seed-specific plant promoters are known to those of ordinary skill in the art and are identified and characterized using seed-specific mRNA libraries and expression profiling techniques. Seed-specific promoters include the napin-gene promoter from rapeseed (US 5,608,152), the USP-promoter from *Vicia faba* (Baeumlein et al. 1991, *Mol. Gen. Genetics* 225:459-67), the oleosin-promoter from *Arabidopsis* (WO 98/45461), the phaseolin-promoter from *Phaseolus vulgaris* (US 5,504,200), the Bce4-promoter from *Brassica* (WO9113980) or the legumin B4 promoter (LeB4; Baeumlein et al. 1992, *Plant J.* 2:233-239) as well as promoters conferring seed specific expression in monocot plants like maize, barley, wheat, rye, rice etc. Suitable promoters to note are the Ipt2 or Ipt1-

gene promoter from barley (WO 95/15389 and WO 95/23230) or those described in WO 99/16890 (promoters from the barley hordein-gene, the rice glutelin gene, the rice oryzin gene, the rice prolamin gene, the wheat gliadin gene, wheat glutelin gene, the maize zein gene, the oat glutelin gene, the Sorghum kasirin-gene, and the rye secalin gene).

[00182] Plant gene expression can also be facilitated via an inducible promoter (for a review see Gatz 1997, *Annu. Rev. Plant Physiol. Plant Mol. Biol.* 48:89-108). Chemically inducible promoters are especially suitable if gene expression is desired in a time specific manner. Examples for such promoters are a salicylic acid inducible promoter (WO 95/19443), a tetracycline inducible promoter (Gatz et al. 1992, *Plant J.* 2:397-404) and an ethanol inducible promoter (WO 93/21334).

[00183] Promoters responding to biotic or abiotic stress conditions are also suitable promoters such as the pathogen inducible PRP1-gene promoter (Ward et al., 1993, *Plant. Mol. Biol.* 22:361-366), the heat inducible hsp80-promoter from tomato (US 5,187,267), cold inducible alpha-amylase promoter from potato (WO 96/12814) or the wound-inducible pinII-promoter (EP 375091).

[00184] Other preferred sequences for use in plant gene expression cassettes are targeting-sequences necessary to direct the gene-product in its appropriate cell compartment (for review see Kermode 1996, *Crit. Rev. Plant Sci.* 15:285-423 and references cited therein) such as the vacuole, the nucleus, all types of plastids like amyloplasts, chloroplasts, chromoplasts, the extracellular space, mitochondria, the endoplasmic reticulum, oil bodies, peroxisomes and other compartments of plant cells. Also especially suited are promoters that confer plastid-specific gene expression, as plastids are the compartment where precursors and some end products of lipid biosynthesis are synthesized. Suitable promoters such as the viral RNA-polymerase promoter are described in WO 95/16783 and WO 97/06250 and the clpP-promoter from *Arabidopsis* described in WO 99/46394.

[00185] The invention further provides a recombinant expression vector comprising a DNA molecule of the invention cloned into the expression vector in an antisense orientation. That is, the DNA molecule is operatively linked to a regulatory sequence in a manner that allows for expression (by transcription of the DNA molecule) of an RNA molecule that is antisense to LMP mRNA. Regulatory sequences operatively linked to a nucleic acid cloned in the antisense orientation can be chosen which direct the continuous expression of the antisense RNA molecule in a variety of cell types, for instance viral promoters and/or enhancers, or regulatory sequences can be chosen which direct constitutive, tissue specific or cell type specific expression of antisense RNA. The antisense expression vector can be in the form of a recombinant plasmid, phagemid or attenuated virus in which antisense nucleic acids are produced under the control of a high efficiency regulatory region, the activity of which can be determined by the cell type into which the vector is introduced. For a discussion of the regulation of gene expression using antisense genes see Weintraub et al. (1986, *Antisense RNA as a molecular tool for genetic analysis, Reviews - Trends in Genetics*, Vol. 1) and Mol et al. (1990, *FEBS Lett.* 268:427-430).

[00186] Another aspect of the invention pertains to host cells into which a recombinant expression vector of the invention has been introduced. The terms "host cell" and "recombinant host cell" are used interchangeably herein. It is to be understood that such terms refer not only to the particular subject cell but also to the progeny or potential progeny of such a cell. Because certain modifi-

cations may occur in succeeding generations due to either mutation or environmental influences, such progeny may not, in fact, be identical to the parent cell, but are still included within the scope of the term as used herein. A host cell can be any prokaryotic or eukaryotic cell. For example, a LMP can be expressed in bacterial cells, insect cells, fungal cells, mammalian cells (such as Chinese hamster ovary cells (CHO) or COS cells), algae, ciliates or plant cells. Other suitable host cells are known to those skilled in the art.

[00187] Vector DNA can be introduced into prokaryotic or eukaryotic cells via conventional transformation or transfection techniques. As used herein, the terms "transformation" and "transfection", "conjugation" and "transduction" are intended to refer to a variety of art-recognized techniques for introducing foreign nucleic acid (e.g., DNA) into a host cell, including calcium phosphate or calcium chloride co-precipitation, DEAE-dextran-mediated transfection, lipofection, natural competence, chemical-mediated transfer, or electroporation. Suitable methods for transforming or transfecting host cells including plant cells can be found in Sambrook et al. (1989, *Molecular Cloning: A Laboratory Manual*. 2nd, ed., Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY) and other laboratory manuals such as Methods in Molecular Biology 1995, Vol. 44, Agrobacterium protocols, ed: Gartland and Davey, Humana Press, Totowa, New Jersey.

[00188] For stable transfection of mammalian and plant cells, it is known that, depending upon the expression vector and transfection technique used, only a small fraction of cells may integrate the foreign DNA into their genome. In order to identify and select these integrants, a gene that encodes a selectable marker (e.g., resistance to antibiotics) is generally introduced into the host cells along with the gene of interest. Preferred selectable markers include those that confer resistance to drugs, such as G418, hygromycin, kanamycin and methotrexate or in plants that confer resistance towards an herbicide such as glyphosate or glufosinate. A nucleic acid encoding a selectable marker can be introduced into a host cell on the same vector as that encoding a LMP or can be introduced on a separate vector. Cells stably transfected with the introduced nucleic acid can be identified by, for example, drug selection (e.g., cells that have incorporated the selectable marker gene will survive, while the other cells die).

[00189] To create a homologous recombinant microorganism, a vector is prepared which contains at least a portion of a LMP gene into which a deletion, addition or substitution has been introduced to thereby alter, e.g., functionally disrupt, the LMP gene. Preferably, this LMP gene is an *Arabidopsis thaliana*, *Glycine max*, *Oryza sativa*, *Zea mays*, *Linum usitatissimum*, *Hordeum vulgare* or *Triticum aestivum* LMP gene, but it can be a homologue from a related plant or even from a mammalian, yeast, or insect source. In a preferred embodiment, the vector is designed such that, upon homologous recombination, the endogenous LMP gene is functionally disrupted (i.e., no longer encodes a functional protein; also referred to as a knock-out vector). Alternatively, the vector can be designed such that, upon homologous recombination, the endogenous LMP gene is mutated or otherwise altered but still encodes functional protein (e.g., the upstream regulatory region can be altered to thereby alter the expression of the endogenous LMP). To create a point mutation via homologous recombination, DNA-RNA hybrids can be used in a technique known as chimeroplasty (Cole-Strauss et al. 1999, Nucleic Acids Res. 27:1323-1330 and Kmiec 1999, American Scientist 87:240-247). Ho-

mologous recombination procedures in *Arabidopsis thaliana* or other crops are also well known in the art and are contemplated for use herein.

[00190] In a homologous recombination vector, the altered portion of the LMP gene is flanked at its 5' and 3' ends by additional nucleic acid of the LMP gene to allow for homologous recombination to occur between the exogenous LMP gene carried by the vector and an endogenous LMP gene in a microorganism or plant. The additional flanking LMP nucleic acid is of sufficient length for successful homologous recombination with the endogenous gene. Typically, several hundreds of base pairs up to kilobases of flanking DNA (both at the 5' and 3' ends) are included in the vector (see e.g., Thomas & Capecchi 1987, Cell 51:503, for a description of homologous recombination vectors). The vector is introduced into a microorganism or plant cell (e.g., via polyethyleneglycol mediated DNA). Cells in which the introduced LMP gene has homologously recombined with the endogenous LMP gene are selected using art-known techniques.

[00191] In another embodiment, recombinant microorganisms can be produced which contain selected systems, which allow for regulated expression of the introduced gene. For example, inclusion of a LMP gene on a vector placing it under control of the lac operon permits expression of the LMP gene only in the presence of IPTG. Such regulatory systems are well known in the art.

[00192] A host cell of the invention, such as a prokaryotic or eukaryotic host cell in culture can be used to produce (i.e., express) a LMP. Accordingly, the invention further provides methods for producing LMPs using the host cells of the invention. In one embodiment, the method comprises culturing a host cell of the invention (into which a recombinant expression vector encoding a LMP has been introduced, or which contains a wild-type or altered LMP gene in its genome) in a suitable medium until LMP is produced. In another embodiment, the method further comprises isolating LMPs from the medium or the host cell.

[00193] Another aspect of the invention pertains to isolated LMPs, and biologically active portions thereof. An "isolated" or "purified" protein or biologically active portion thereof is substantially free of cellular material when produced by recombinant DNA techniques, or chemical precursors or other chemicals when chemically synthesized. The language "substantially free of cellular material" includes preparations of LMP in which the protein is separated from cellular components of the cells in which it is naturally or recombinantly produced. In one embodiment, the language "substantially free of cellular material" includes preparations of LMP having less than about 30% (by dry weight) of non-LMP (also referred to herein as a "contaminating protein"), more preferably less than about 20% of non-LMP, still more preferably less than about 10% of non-LMP, and most preferably less than about 5% non-LMP. When the LMP or biologically active portion thereof is recombinantly produced, it is also preferably substantially free of culture medium, i.e., culture medium represents less than about 20%, more preferably less than about 10%, and most preferably less than about 5% of the volume of the protein preparation. The language "substantially free of chemical precursors or other chemicals" includes preparations of LMP in which the protein is separated from chemical precursors or other chemicals that are involved in the synthesis of the protein. In one embodiment, the language "substantially free of chemical precursors or other chemicals" includes preparations of LMP having less than about 30% (by dry weight) of chemical precursors or non-LMP chemicals, more preferably less

than about 20% chemical precursors or non-LMP chemicals, still more preferably less than about 10% chemical precursors or non-LMP chemicals, and most preferably less than about 5% chemical precursors or non-LMP chemicals. In preferred embodiments, isolated proteins or biologically active portions thereof lack contaminating proteins from the same organism from which the LMP is derived. Typically, such proteins are produced by recombinant expression of, for example, an *Arabidopsis thaliana*, *Glycine max*, *Oryza sativa*, *Zea mays*, *Linum usitatissimum*, *Hordeum vulgare* or *Triticum aestivum* LMP in other plants than *Arabidopsis thaliana*, *Glycine max*, *Oryza sativa*, *Zea mays*, *Linum usitatissimum*, *Hordeum vulgare* or *Triticum aestivum* or microorganisms, algae or fungi.

[00194] An isolated LMP or a portion thereof of the invention can participate in the metabolism of compounds necessary for the production of seed storage compounds in *Arabidopsis thaliana*, *Glycine max*, *Oryza sativa*, *Zea mays*, *Linum usitatissimum*, *Hordeum vulgare* or *Triticum aestivum* or of cellular membranes, or has one or more of the activities set forth in Table 3. In preferred embodiments, the protein or portion thereof comprises an amino acid sequence which is sufficiently homologous to an amino acid sequence encoded by a nucleic acid of Appendix A, in a preferred embodiment as depicted in SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33 or SEQ ID NO: 35 such that the protein or portion thereof maintains the ability to participate in the metabolism of compounds necessary for the construction of cellular membranes in *Arabidopsis thaliana*, *Glycine max*, *Oryza sativa*, *Zea mays*, *Linum usitatissimum*, *Hordeum vulgare* or *Triticum aestivum*, or in the transport of molecules across these membranes. The portion of the protein is preferably a biologically active portion as described herein. In another preferred embodiment, a LMP of the invention has an amino acid sequence encoded by a nucleic acid of Appendix A, in a preferred embodiment as depicted in SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33 or SEQ ID NO: 35,. In yet another preferred embodiment, the LMP has an amino acid sequence which is encoded by a nucleotide sequence which hybridizes, e.g., hybridizes under stringent conditions, to a nucleotide sequence of Appendix A, in a preferred embodiment as depicted in SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33 or SEQ ID NO: 35,. In still another preferred embodiment, the LMP has an amino acid sequence which is encoded by a nucleotide sequence that is at least about 50-60%, preferably at least about 60-70%, more preferably at least about 70-80%, 80-90%, 90-95%, also preferable at least about 85%, 86 %, 87 %, 88 %, 89 %, 90 %, 91 %, 92 %, 93 %, 94 %, 95 % homologous to one of the sequences encoded by a nucleic acid of Appendix A, in a preferred embodiment as depicted in SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33 or SEQ ID NO: 35, and most preferably at least about 96%, 97%, 98%, or 99% homologous to one of the sequences encoded by a nucleic acid of Appendix A in a preferred embodiment as depicted in SEQ ID NO: 5,

SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33 or SEQ ID NO: 35. The polypeptide sequence homology is preferably determined using Align X (Aug. 22, 2003) of Vector NTI Suite 9.0 with following parameters: Gap opening penalty: 10; Gap extension penalty: 0.05; Gap separation penalty range: 8; % identity for alignment delay: 40.

[00195] The preferred LMPs of the present invention also preferably possess at least one of the LMP activities described herein. For example, a preferred LMP of the present invention includes an amino acid sequence encoded by a nucleotide sequence which hybridizes, e.g., hybridizes under stringent conditions, to a nucleotide sequence of Appendix A, in a preferred embodiment as depicted in SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33 or SEQ ID NO: 35, and which can participate in the metabolism of compounds necessary for the construction of cellular membranes in *Arabidopsis thaliana*, *Glycine max*, *Oryza sativa*, *Zea mays*, *Linum usitatissimum*, *Hordeum vulgare* or *Triticum aestivum*, or in the transport of molecules across these membranes, or which has one or more of the activities set forth in Table 3.

[00196] In other embodiments, the LMP is substantially homologous to an amino acid sequence encoded by a nucleic acid of Appendix A, in a preferred embodiment as depicted in SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33 or SEQ ID NO: 35, and retains the functional activity of the protein of one of the sequences encoded by a nucleic acid of Appendix A, in a preferred embodiment as depicted in SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33 or SEQ ID NO: 35, yet differs in amino acid sequence due to natural variation or mutagenesis, as described in detail above. Accordingly, in another embodiment, the LMP is a protein which comprises an amino acid sequence which is at least about 50-60%, preferably at least about 60-70%, and more preferably at least about 70-80, 80-90, 90-95%, also preferable at least about 85%, 86 %, 87 %, 88 %, 89 %, 90 %, 91 %, 92 %, 93 %, 94 % or 95 % homologous to one of the sequences encoded by a nucleic acid of Appendix A, in a preferred embodiment as depicted in SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33 or SEQ ID NO: 35, and most preferably at least about 96%, 97%, 98%, or 99% homologous to one of the sequences encoded by a nucleic acid to an entire amino acid sequence and which has at least one of the LMP activities described herein.. The polypeptide sequence homology is preferably determined using Align X (Aug. 22, 2003) of Vector NTI Suite 9.0 with following parameters: Gap opening penalty: 10; Gap extension penalty: 0.05; Gap separation penalty range: 8; % identity for alignment delay: 40. In another embodiment, the invention pertains to a full *Arabidopsis thaliana*, *Glycine max*, *Oryza sativa* or *Triticum aestivum*.

aestivum protein which is substantially homologous to an entire amino acid sequence encoded by a nucleic acid of Appendix A, in a preferred embodiment as depicted in SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33 or SEQ ID NO: 35.

[00197] Dominant negative mutations or trans-dominant suppression can be used to reduce the activity of a LMP in transgenics seeds in order to change the levels of seed storage compounds. To achieve this a mutation that abolishes the activity of the LMP is created and the inactive non-functional LMP gene is overexpressed in the transgenic plant. The inactive trans-dominant LMP protein competes with the active endogenous LMP protein for substrate or interactions with other proteins and dilutes out the activity of the active LMP. In this way the biological activity of the LMP is reduced without actually modifying the expression of the endogenous LMP gene. This strategy was used by Pontier et al to modulate the activity of plant transcription factors (Pontier D, Miao ZH, Lam E, Plant J 2001 Sep. 27(6): 529-38, Trans-dominant suppression of plant TGA factors reveals their negative and positive roles in plant defense responses).

[00198] Homologues of the LMP can be generated by mutagenesis, e.g., discrete point mutation or truncation of the LMP. As used herein, the term "homologue" refers to a variant form of the LMP that acts as an agonist or antagonist of the activity of the LMP. An agonist of the LMP can retain substantially the same, or a subset, of the biological activities of the LMP. An antagonist of the LMP can inhibit one or more of the activities of the naturally occurring form of the LMP, by, for example, competitively binding to a downstream or upstream member of the cell membrane component metabolic cascade which includes the LMP, or by binding to a LMP which mediates transport of compounds across such membranes, thereby preventing translocation from taking place.

[00199] In an alternative embodiment, homologues of the LMP can be identified by screening combinatorial libraries of mutants, e.g., truncation mutants, of the LMP for LMP agonist or antagonist activity. In one embodiment, a variegated library of LMP variants is generated by combinatorial mutagenesis at the nucleic acid level and is encoded by a variegated gene library. A variegated library of LMP variants can be produced by, for example, enzymatically ligating a mixture of synthetic oligonucleotides into gene sequences such that a degenerate set of potential LMP sequences is expressible as individual polypeptides, or alternatively, as a set of larger fusion proteins (e.g., for phage display) containing the set of LMP sequences therein. There are a variety of methods that can be used to produce libraries of potential LMP homologues from a degenerate oligonucleotide sequence. Chemical synthesis of a degenerate gene sequence can be performed in an automatic DNA synthesizer, and the synthetic gene then ligated into an appropriate expression vector. Use of a degenerate set of genes allows for the provision, in one mixture, of all of the sequences encoding the desired set of potential LMP sequences. Methods for synthesizing degenerate oligonucleotides are known in the art (see, e.g., Narang 1983, Tetrahedron 39:3; Itakura et al. 1984, Annu. Rev. Biochem. 53:323; Itakura et al. 1984, Science 198:1056; Ike et al. 1983, Nucleic Acids Res. 11:477).

[00200] In addition, libraries of fragments of the LMP coding sequences can be used to generate a variegated population of LMP fragments for screening and subsequent selection of homo-

logues of a LMP. In one embodiment, a library of coding sequence fragments can be generated by treating a double stranded PCR fragment of a LMP coding sequence with a nuclease under conditions wherein nicking occurs only about once per molecule, denaturing the double stranded DNA, renaturing the DNA to form double stranded DNA which can include sense/antisense pairs from different nicked products, removing single stranded portions from reformed duplexes by treatment with S1 nuclease, and ligating the resulting fragment library into an expression vector. By this method, an expression library can be derived which encodes N-terminal, C-terminal and internal fragments of various sizes of the LMP.

[00201] Several techniques are known in the art for screening gene products of combinatorial libraries made by point mutations or truncation, and for screening cDNA libraries for gene products having a selected property. Such techniques are adaptable for rapid screening of the gene libraries generated by the combinatorial mutagenesis of LMP homologues. The most widely used techniques, which are amenable to high through-put analysis, for screening large gene libraries typically include cloning the gene library into replicable expression vectors, transforming appropriate cells with the resulting library of vectors, and expressing the combinatorial genes under conditions in which detection of a desired activity facilitates isolation of the vector encoding the gene whose product was detected. Recursive ensemble mutagenesis (REM), a new technique that enhances the frequency of functional mutants in the libraries, can be used in combination with the screening assays to identify LMP homologues (Arkin & Yourvan 1992, Proc. Natl. Acad. Sci. USA 89:7811-7815; Delgrave et al. 1993, Protein Engineering 6:327-331).

[00202] In another embodiment, cell based assays can be exploited to analyze a variegated LMP library, using methods well known in the art.

[00203] The nucleic acid molecules, proteins, protein homologues, fusion proteins, primers, vectors, and host cells described herein can be used in one or more of the following methods: identification of *Arabidopsis thaliana*, *Glycine max*, *Oryza sativa*, *Zea mays*, *Linum usitatissimum*, *Hordeum vulgare* or *Triticum aestivum* and related organisms; mapping of genomes of organisms related to *Arabidopsis thaliana*, *Glycine max*, *Oryza sativa*, *Zea mays*, *Linum usitatissimum*, *Hordeum vulgare* or *Triticum aestivum*; identification and localization of *Arabidopsis thaliana*, *Glycine max*, *Oryza sativa*, *Zea mays*, *Linum usitatissimum*, *Hordeum vulgare* or *Triticum aestivum* sequences of interest; evolutionary studies; determination of LMP regions required for function; modulation of a LMP activity; modulation of the metabolism of one or more cell functions; modulation of the transmembrane transport of one or more compounds; and modulation of seed storage compound accumulation.

[00204] The plant *Arabidopsis thaliana* represents one member of higher (or seed) plants. It is related to other plants such as *Brassica napus*, *Glycine max*, *Oryza sativa*, *Zea mays*, *Linum usitatissimum*, *Hordeum vulgare* or *Triticum aestivum* which require light to drive photosynthesis and growth. Plants like *Arabidopsis thaliana*, *Brassica napus*, *Glycine max*, *Oryza sativa*, *Zea mays*, *Linum usitatissimum*, *Hordeum vulgare* or *Triticum aestivum* share a high degree of homology on the DNA sequence and polypeptide level, allowing the use of heterologous screening of DNA molecules with probes evolving from other plants or organisms, thus enabling the derivation of a consensus sequence suitable for heterologous screening or functional annotation and prediction of gene functions

in third species. The ability to identify such functions can therefore have significant relevance, e.g., prediction of substrate specificity of enzymes. Further, these nucleic acid molecules may serve as reference points for the mapping of *Arabidopsis* genomes, or of genomes of related organisms.

[00205] The LMP nucleic acid molecules of the invention have a variety of uses. First, the nucleic acid and protein molecules of the invention may serve as markers for specific regions of the genome. This has utility not only in the mapping of the genome, but also for functional studies of *Arabidopsis thaliana*, *Brassica napus*, *Glycine max*, *Oryza sativa*, *Zea mays*, *Linum usitatissimum*, *Hordeum vulgare* or *Triticum aestivum* proteins. For example, to identify the region of the genome to which a particular *Arabidopsis thaliana*, *Brassica napus*, *Glycine max*, *Oryza sativa*, *Zea mays*, *Linum usitatissimum*, *Hordeum vulgare* or *Triticum aestivum* DNA-binding protein binds, the *Arabidopsis thaliana*, *Brassica napus*, *Glycine max*, *Oryza sativa*, *Zea mays*, *Linum usitatissimum*, *Hordeum vulgare* or *Triticum aestivum* genome could be digested, and the fragments incubated with the DNA-binding protein. Those which bind the protein may be additionally probed with the nucleic acid molecules of the invention, preferably with readily detectable labels; binding of such a nucleic acid molecule to the genome fragment enables the localization of the fragment to the genome map of *Arabidopsis thaliana*, *Brassica napus*, *Glycine max*, *Oryza sativa*, *Zea mays*, *Linum usitatissimum*, *Hordeum vulgare* or *Triticum aestivum*, and, when performed multiple times with different enzymes, facilitates a rapid determination of the nucleic acid sequence to which the protein binds. Further, the nucleic acid molecules of the invention may be sufficiently homologous to the sequences of related species such that these nucleic acid molecules may serve as markers for the construction of a genomic map in related plants.

[00206] The LMP nucleic acid molecules of the invention are also useful for evolutionary and protein structural studies. The metabolic and transport processes in which the molecules of the invention participate are utilized by a wide variety of prokaryotic and eukaryotic cells; by comparing the sequences of the nucleic acid molecules of the present invention to those encoding similar enzymes from other organisms, the evolutionary relatedness of the organisms can be assessed. Similarly, such a comparison permits an assessment of which regions of the sequence are conserved and which are not, which may aid in determining those regions of the protein which are essential for the functioning of the enzyme. This type of determination is of value for protein engineering studies and may give an indication of what the protein can tolerate in terms of mutagenesis without losing function.

[00207] Manipulation of the LMP nucleic acid molecules of the invention may result in the production of LMPs having functional differences from the wild-type LMPs. These proteins may be improved in efficiency or activity, may be present in greater numbers in the cell than is usual, or may be decreased in efficiency or activity.

[00208] There are a number of mechanisms by which the alteration of a LMP of the invention may directly affect the accumulation and/or composition of seed storage compounds. In the case of plants expressing LMPs, increased transport can lead to altered accumulation of compounds and/or solute partitioning within the plant tissue and organs which ultimately could be used to affect the accumulation of one or more seed storage compounds during seed development. An example is pro-

vided by Mitsukawa et al. (1997, Proc. Natl. Acad. Sci. USA 94:7098-7102), where overexpression of an *Arabidopsis* high-affinity phosphate transporter gene in tobacco cultured cells enhanced cell growth under phosphate-limited conditions. Phosphate availability also affects significantly the production of sugars and metabolic intermediates (Hurry et al. 2000, Plant J. 24:383-396) and the lipid composition in leaves and roots (Härtel et al. 2000, Proc. Natl. Acad. Sci. USA 97:10649-10654). Likewise, the activity of the plant ACCase has been demonstrated to be regulated by phosphorylation (Savage & Ohlrogge 1999, Plant J. 18:521-527) and alterations in the activity of the kinases and phosphatases (LMPs) that act on the ACCase could lead to increased or decreased levels of seed lipid accumulation. Moreover, the presence of lipid kinase activities in chloroplast envelope membranes suggests that signal transduction pathways and/or membrane protein regulation occur in envelopes (see, e.g., Müller et al. 2000, J. Biol. Chem. 275:19475-19481 and literature cited therein). The *ABI1* and *ABI2* genes encode two protein serine/threonine phosphatases 2C, which are regulators in abscisic acid signaling pathway, and thereby in early and late seed development (e.g. Merlot et al. 2001, Plant J. 25:295-303). For more examples see also the section 'background of the invention'.

[00209] The present invention also provides antibodies that specifically bind to an LMP-polypeptide, or a portion thereof, as encoded by a nucleic acid disclosed herein or as described herein.

[00210] Antibodies can be made by many well-known methods (see, e.g. Harlow and Lane, "Antibodies; A Laboratory Manual" Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 1988). Briefly, purified antigen can be injected into an animal in an amount and in intervals sufficient to elicit an immune response. Antibodies can either be purified directly, or spleen cells can be obtained from the animal. The cells can then fused with an immortal cell line and screened for antibody secretion. The antibodies can be used to screen nucleic acid clone libraries for cells secreting the antigen. Those positive clones can then be sequenced (see, for example, Kelly et al. 1992, Bio/Technology 10:163-167; Bebbington et al. 1992, Bio/Technology 10:169-175).

[00211] The phrase "selectively binds" with the polypeptide refers to a binding reaction which is determinative of the presence of the protein in a heterogeneous population of proteins and other biologics. Thus, under designated immunoassay conditions, the specified antibodies bound to a particular protein do not bind in a significant amount to other proteins present in the sample. Selective binding to an antibody under such conditions may require an antibody that is selected for its specificity for a particular protein. A variety of immunoassay formats may be used to select antibodies that selectively bind with a particular protein. For example, solid-phase ELISA immuno-assays are routinely used to select antibodies selectively immunoreactive with a protein. See Harlow and Lane "Antibodies, A Laboratory Manual" Cold Spring Harbor Publications, New York (1988), for a description of immunoassay formats and conditions that could be used to determine selective binding.

[00212] In some instances, it is desirable to prepare monoclonal antibodies from various hosts. A description of techniques for preparing such monoclonal antibodies may be found in Stites et al., editors, "Basic and Clinical Immunology," (Lange Medical Publications, Los Altos, Calif., Fourth Edition) and references cited therein, and in Harlow and Lane ("Antibodies, A Laboratory Manual" Cold Spring Harbor Publications, New York, 1988).

[00213] Throughout this application, various publications are referenced. The disclosures of all of these publications and those references cited within those publications in their entireties are hereby incorporated by reference into this application in order to more fully describe the state of the art to which this invention pertains.

[00214] It will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the scope or spirit of the invention. Other embodiments of the invention will be apparent to those skilled in the art from consideration of the specification and practice of the invention disclosed herein. It is intended that the specification and Examples be considered as exemplary only, with a true scope and spirit of the invention being indicated by the claims included herein.

EXAMPLES

Example 1: General Processes

General Cloning Processes:

[00215] Cloning processes such as, for example, restriction cleavages, agarose gel electrophoresis, purification of DNA fragments, transfer of nucleic acids to nitrocellulose and nylon membranes, linkage of DNA fragments, transformation of *Escherichia coli* and yeast cells, growth of bacteria and sequence analysis of recombinant DNA were carried out as described in Sambrook et al. (1989, Cold Spring Harbor Laboratory Press: ISBN 0-87969-309-6) or Kaiser, Michaelis and Mitchell (1994, "Methods in Yeast Genetics", Cold Spring Harbor Laboratory Press: ISBN 0-87969-451-3).

b) Chemicals:

[00216] The chemicals used were obtained, if not mentioned otherwise in the text, in p.a. quality from the companies Fluka (Neu-Ulm), Merck (Darmstadt), Roth (Karlsruhe), Serva (Heidelberg) and Sigma (Deisenhofen). Solutions were prepared using purified, pyrogen-free water, designated as H₂O in the following text, from a Milli-Q water system water purification plant (Millipore, Eschborn). Restriction endonucleases, DNA-modifying enzymes and molecular biology kits were obtained from the companies AGS (Heidelberg), Amersham (Braunschweig), Biometra (Göttingen), Boehringer (Mannheim), Genomed (Bad Oeynhausen), New England Biolabs (Schwalbach/Taunus), Novagen (Madison, Wisconsin, USA), Perkin-Elmer (Weiterstadt), Pharmacia (Freiburg), Qiagen (Hilden) and Stratagene (Amsterdam, Netherlands). They were used, if not mentioned otherwise, according to the manufacturer's instructions.

c) Plant Material and Growth:

Arabidopsis plants

[00217] For this study, root material, leaves, siliques and seeds of wild-type and *fad2* mutant (as described in Miquel & Browse, 1992, *J Biol Chem* 267: 1502-1509) plants of *Arabidopsis thaliana* were used. Wild type and *fad2* mutant *Arabidopsis* seeds were preincubated for three days in the dark at 4°C before placing them into an incubator (AR-75, Percival Scientific, Boone, IA) at a photon flux density of 60-80 $\mu\text{mol m}^{-2} \text{s}^{-1}$ and a light period of 16 hours (22°C), and a dark period of 8 hours (18°C). All plants were started on half-strength MS medium (Murashige & Skoog, 1962, *Physiol. Plant.* 15, 473-497), pH 6.2, 2% sucrose and 1.2% agar. Seeds were sterilized for 20 minutes in 20% bleach 0.5% triton X100 and rinsed 6 times with excess sterile water. Plants were either grown as described

above or on soil under standard conditions as described in Klaus et al. (2002, *Plant Physiol.* 128:885-895).

Glycine max

[00218] *Glycine max* cv. Resnick was used for this study to create cDNA libraries. Seed, seed pod, flower, leaf, stem and root tissues were collected from plants that were in some cases dark-, salt-, heat- and drought-treated. In some cases plants have been nematode infected as well. However, this study focused on the use of seed and seed pod tissues for cDNA libraries. Plants were tagged to harvest seeds at the set days after anthesis: 5-15, 15-25, 25-35, & 33-50.

Oryza sativa

[00219] *Oryza sativa* ssp. Japonica cv. Nippon-barre was used for this study to create cDNA libraries. Seed, seed pod, flower, leaf, stem and root tissues were collected from plants that were in some cases dark-, salt-, heat- and drought-treated. This study focused on the use of seed embryo tissues for cDNA libraries. Embryo and endosperm were collected separately in case endosperm tissue might interfere with RNA extraction. Plants have been grown in the greenhouse on Wisconsin soil (has high organic matter) at 85°F under a 14-h photoperiod. Rice embryos were dissected out of the developing seeds.

Zea mays

[00220] *Zea mays* hybrid B73 x Mo17 and B73 inbred (the female inbred parent of the hybrid B73 x Mo17) were used to generate cDNA libraries. Fruit or Seed (Fertilized ovules/ young kernels at stage 1 and 9 d post pollination; kernels at milk stage [R3, early starch production], 23 d post pollination; kernels at early dough stage (R4), developing starch grains and well-formed embryo present, 30 d post pollination of field-grown plants; very young kernels at blister stage [R2, watery endosperm]; kernels at early dent stage (R5), endosperm becoming firm, 36 d post pollination; B73 inbreds, kernels at 9 and 19 d post pollination), flowers (tassel development: from 6 cm tassel (V10) up to and including anthesis, 44 to 70 dap; ear development: ear shoots from 2 cm (V13) up to and including silking (unpollinated), 51 to 70 dap), leaves/shoot/rosettes (mixed ages, all prior to seed-fill; includes leaves of a) 3-leaf plants(V3), b) 6-leaf plants (V6), and c) an older source leaf (3rd from the ground), just before tassel emergence in the field), stem (located underground of 2 to 5-leaf plants; roots and most leaf tissue removed, 13 to 29 dap of field-grown plants; Stem tissue near the ear at tassel emergence and during seed-fill (milk stage), 56 to 84 dap, field-grown plants) and root tissues (from young to mid-age plants: from seedlings, 6-leaf plants, and 9-leaf plants; 12 to 35 dap) were collected from plants.

Linum usitatissimum

[00221] *Linum usitatissimum* cv 00-44427 and cv 00-44338 (of the Svalöf Weibull collection) was used for this study to create cDNA libraries. Plants have been grown in 2 liter pots with potting soil containing 5 ml Osmocote/liter soil in a cooled greenhouse chamber at 19°C. Material from developing seeds has been collected at 15daa (embryo is in a stage of intensive elongation, filling of about 2/3 of the seed; embryo is green in late torpedo stage), 25 daa (embryo fully elongated and increased in width, whole seed is filled out; embryo is still fully green) and 33 daa (seed is starting to get mature; color of embryo is changing to lighter green and the tip is yellow).

Hordeum vulgare

[00222] *Hordeum vulgare* cv. Morex was used for this study to create cDNA libraries. Plants have been grown in the greenhouse in metromix under a 15-h photoperiod at 23°C during the day period and 18°C during the night period. Grain was at the watery ripe to late milk stage. The mid to upper seedhead primarily was harvested. Seed material was collected 75 days after planting.

Triticum aestivum

[00223] *Triticum aestivum* cv. Galeon was used for this study to create cDNA libraries. Seed, flower, fruits, leaf, stem and root tissues were collected from plants that were in some cases dark-, salt-, heat- and drought-treated. Plants have been grown in the greenhouse in metromix under a 12-h photoperiod at 72°F during the day period and 65°F during the night period.

Example 2: Total DNA Isolation from Plants

[00224] The details for the isolation of total DNA relate to the working up of one gram fresh weight of plant material.

[00225] CTAB buffer: 2% (w/v) N-cetyl-N,N,N-trimethylammonium bromide (CTAB); 100 mM Tris HCl pH 8.0; 1.4 M NaCl; 20 mM EDTA. N-Laurylsarcosine buffer: 10% (w/v) N-laurylsarcosine; 100 mM Tris HCl pH 8.0; 20 mM EDTA.

[00226] The plant material was triturated under liquid nitrogen in a mortar to give a fine powder and transferred to 2 ml Eppendorf vessels. The frozen plant material was then covered with a layer of 1 ml of decomposition buffer (1 ml CTAB buffer, 100 µl of N-laurylsarcosine buffer, 20 µl of β-mercaptoethanol and 10 µl of proteinase K solution, 10 mg/ml) and incubated at 60°C for one hour with continuous shaking. The homogenate obtained was distributed into two Eppendorf vessels (2 ml) and extracted twice by shaking with the same volume of chloroform/isoamyl alcohol (24:1). For phase separation, centrifugation was carried out at 8000g and RT for 15 min in each case. The DNA was then precipitated at -70°C for 30 min using ice-cold isopropanol. The precipitated DNA was sedimented at 4°C and 10,000 g for 30 min and resuspended in 180 µl of TE buffer (Sambrook et al. 1989, Cold Spring Harbor Laboratory Press: ISBN 0-87969-309-6). For further purification, the DNA was treated with NaCl (1.2 M final concentration) and precipitated again at -70°C for 30 min using twice the volume of absolute ethanol. After a washing step with 70% ethanol, the DNA was dried and subsequently taken up in 50 µl of H₂O + RNase (50 mg/ml final concentration). The DNA was dissolved overnight at 4°C and the RNase digestion was subsequently carried out at 37°C for 1 h. Storage of the DNA took place at 4°C.

Example 3: Isolation of Total RNA and poly-(A)+ RNA from Plants***Arabidopsis thaliana***

[00227] For the investigation of transcripts, both total RNA and poly-(A)+ RNA were isolated. RNA is isolated from siliques of *Arabidopsis* plants according to the following procedure:

RNA preparation from *Arabidopsis* seeds - "hot" extraction:**Buffers, enzymes and solution**

[00228] 2M KCl

[00229] Proteinase K

[00230] Phenol (for RNA)

[00231] Chloroform:Isoamylalcohol

[00232] (Phenol:choloroform 1:1; pH adjusted for RNA)

[00233] 4 M LiCl, DEPC-treated

[00234] DEPC-treated water

[00235] 3M NaOAc, pH 5, DEPC-treated

[00236] Isopropanol

[00237] 70% ethanol (made up with DEPC-treated water)

[00238] Resuspension buffer:0.5% SDS, 10 mM Tris pH 7.5, 1 mM EDTA made up with

[00239] DEPC-treated water as this solution can not be DEPC-treated

[00240] Extraction Buffer:

[00241] 0.2M Na Borate

[00242] 30 mM EDTA

[00243] 30 mM EGTA

[00244] 1% SDS (250 μ l of 10% SDS-solution for 2.5ml buffer)

[00245] 1% Deoxycholate (25mg for 2.5ml buffer)

[00246] 2% PVPP (insoluble - 50mg for 2.5ml buffer)

[00247] 2% PVP 40K (50mg for 2.5ml buffer)

[00248] 10 mM DTT

[00249] 100 mM β -Mercaptoethanol (fresh, handle under fume hood - use 35 μ l of 14.3M solution for 5ml buffer)

Extraction

[00250] Heat extraction buffer up to 80°C. Grind tissue in liquid nitrogen-cooled mortar, transfer tissue powder to 1.5ml tube. Tissue should kept frozen until buffer is added so transfer the sample with pre-cooled spatula and keep the tube in liquid nitrogen all time. Add 350 μ l preheated extraction buffer (here for 100mg tissue, buffer volume can be as much as 500 μ l for bigger samples) to tube, vortex and heat tube to 80°C for ~1 min. Keep then on ice. Vortex sample, grind additionally with electric mortar.

Digestion

[00251] Add Proteinase K (0.15mg/100mg tissue), vortex and keep at 37°C for one hour.

First Purification

[00252] Add 27 μ l 2M KCl. Chill on ice for 10 min. Centrifuge at 12.000 rpm for 10 minutes at room temperature. Transfer supernatant to fresh, RNAase-free tube and do one phenol extraction, followed by a chloroform:isoamylalcohol extraction. Add 1 vol. isopropanol to supernatant and chill on ice for 10 min. Pellet RNA by centrifugation (7000 rpm for 10 min at RT). Resolve pellet in 1ml 4M LiCl by 10 to 15min vortexing. Pellet RNA by 5min centrifugation.

Second Purification

[00253] Resuspend pellet in 500 μ l Resuspension buffer. Add 500 μ l phenol and vortex. Add 250 μ l chloroform:isoamylalcohol and vortex. Spin for 5 min. and transfer supernatant to fresh tube. Repeat chloform:isoamylalcohol extraction until interface is clear. Transfer supernatant to fresh tube and add 1/10 vol 3M NaOAc, pH 5 and 600 μ l isopropanol. Keep at -20 for 20 min or longer. Pellet

RNA by 10 min centrifugation. Wash pellet once with 70% ethanol. Remove all remaining alcohol before resolving pellet with 15 to 20 μ l DEPC-water. Determine quantity and quality by measuring the absorbance of a 1:200 dilution at 260 and 280nm. 40 μ g RNA/ml = 1OD260

[00254] RNA from wild-type of *Arabidopsis* is isolated as described (Hosein, 2001, *Plant Mol. Biol. Rep.*, **19**, 65a-65e; Ruuska, S.A., Girke, T., Benning, C., & Ohlrogge, J.B., 2002, *Plant Cell*, **14**, 1191-1206).

[00255] The mRNA is prepared from total RNA, using the Amersham Pharmacia Biotech mRNA purification kit, which utilizes oligo(dT)-cellulose columns.

[00256] Isolation of Poly-(A)+ RNA was isolated using Dyna BeadsR (Dynal, Oslo, Norway) following the instructions of the manufacturer's protocol. After determination of the concentration of the RNA or of the poly(A)+ RNA, the RNA was precipitated by addition of 1/10 volumes of 3 M sodium acetate pH 4.6 and 2 volumes of ethanol and stored at -70°C.

Glycine max, Oryza sativa, Zea mays, Linum usitatissimum, Hordeum vulgare and Triticum aestivum

[00257] *Glycine max* and *Linum usitatissimum* seeds were separated from pods to create homogeneous materials for seed and seed pod cDNA libraries. Tissues were ground into fine powder under liquid N₂ using a mortar and pestle and transferred to a 50 ml tube. Tissue samples were stored at -80 °C until extractions could be performed.

[00258] In the case of *Oryza sativa*, 5K - 10K embryos and endosperm were isolated through dissection. Tissues were placed in small tubes or petri dishes on ice during dissection. Containers were placed on dry ice, then stored at -80°C.

[00259] In the case of *Zea mays*, tissues were ground into fine powder under liquid N₂ using a mortar and pestle and transferred to a 50 ml tube. Tissue samples were stored at -80 °C until extractions could be performed.

[00260] In the case of *Hordeum vulgare* seed heads were cut (arrox 2 inch sections) to have florets at the indicated stage. All of the awns were trimmed away. The stage chosen was early/mid seed fill. Seed tissue cDNA libraries grains were either in watery ripe or in milk stage.

[00261] In the case of *Triticum aestivum*, seed germination samples of Galeon wheat seeds were planted at a depth of 2" in metromix in a 20" x 12" flat. The soil was soaked liberally with water and then watered twice daily. 3-4 days later when the coleopiles were ~1 cm, the seedlings were washed with water and blotted. To create flower cDNA libraries an equal number of heads are collected at 30%, 60% and 100% head emergence from the sheath on each of two days. There were no anthers showing yet. In order to generate seed tissue cDNA libraries grains were either watery ripe or in milk stage depending on the position of grains in the head; for later seed developmental stages only the seed heads were harvested. For the root libraries, only roots were harvested. Plants had one main stem and three strong tillers. Plants were grown in pots, the medium was washed off and the roots were saved for this sample. Plants were untreated.

[00262] Total RNA was extracted from tissues using RNeasy Maxi kit (Qiagen) according to manufacturer's protocol and mRNA was processed from total RNA using Oligotex mRNA Purification System kit (Qiagen), also according to manufacturer's protocol. mRNA was sent to Hyseq Pharmaceu-

ticals Incorporated (Sunnyvale, CA) for further processing of mRNA from each tissue type into cDNA libraries and for use in their proprietary processes in which similar inserts in plasmids are clustered based on hybridization patterns.

Example 4: cDNA Library Construction

[00263] For cDNA library construction, first strand synthesis was achieved using Murine Leukemia Virus reverse transcriptase (Roche, Mannheim, Germany) and oligo-d(T)-primers, second strand synthesis by incubation with DNA polymerase I, Klenow enzyme and RNaseH digestion at 12°C (2 h), 16°C (1 h) and 22°C (1 h). The reaction was stopped by incubation at 65°C (10 min) and subsequently transferred to ice. Double stranded DNA molecules were blunted by T4-DNA-polymerase (Roche, Mannheim) at 37°C (30 min). Nucleotides were removed by phenol/chloroform extraction and Sephadex G50 spin columns. EcoRI adapters (Pharmacia, Freiburg, Germany) were ligated to the cDNA ends by T4-DNA-ligase (Roche, 12°C, overnight) and phosphorylated by incubation with polynucleotide kinase (Roche, 37°C, 30 min). This mixture was subjected to separation on a low melting agarose gel. DNA molecules larger than 300 base pairs were eluted from the gel, phenol extracted, concentrated on Elutip-D-columns (Schleicher and Schuell, Dassel, Germany) and were ligated to vector arms and packed into lambda ZAPII phages or lambda ZAP-Express phages using the Gigapack Gold Kit (Stratagene, Amsterdam, Netherlands) using material and following the instructions of the manufacturer.

[00264] *Glycine max*, *Oryza sativa*, *Zea mays*, *Linum usitatissimum*, *Hordeum vulgare* and *Triticum aestivum* cDNA libraries were generated at Hyseq Pharmaceuticals Incorporated (Sunnyvale, CA) No amplification steps were used in the library production to retain expression information. Hyseq's genomic approach involves grouping the genes into clusters and then sequencing representative members from each cluster. cDNA libraries were generated from oligo dT column purified mRNA. Colonies from transformation of the cDNA library into *E.coli* were randomly picked and the cDNA insert were amplified by PCR and spotted on nylon membranes. A set of ³³P radiolabeled oligonucleotides were hybridized to the clones and the resulting hybridization pattern determined to which cluster a particular clone belonged. cDNA clones and their DNA sequences were obtained for use in overexpression in transgenic plants and in other molecular biology processes described herein.

Example 5: Identification of LMP Genes of Interest that Are *FAD2*-like

Arabidopsis thaliana

[00265] *Arabidopsis* wild type and the *Arabidopsis fad2* mutant were used to identify LMP-encoding genes. The *FAD2* gene has been cloned and described (J Okuley, J Lightner, K Feldmann, N Yadav, E Lark, & J Browse, *Plant Cell* 6:147-158, 1994). *FAD2* encodes the microsomal fatty acid Δ 6-desaturase enzyme that inserts a double bond at the Δ 12 position of oleic acid (C18:1^{10,9}) bound to phosphatidylcholine to produce linoleic acid (C18:2^{10,9,12}) and, for this reason, is also referred to as a 12-desaturase. *FAD2* is present as a single gene in the *Arabidopsis* genome.

Glycine max*, *Oryza sativa*, *Zea mays*, *Linum usitatissimum*, *Hordeum vulgare* and *Triticum aestivum

[00266] This example illustrates how cDNA clones encoding FAD2-like polypeptides of *Glycine max*, *Oryza sativa*, *Zea mays*, *Linum usitatissimum*, *Hordeum vulgare* and *Triticum aestivum* were identified and isolated.

[00267] In order to identify *FAD2*-like genes in propriety databases, a similarity analysis using BLAST software (Basic Local Alignment Search Tool, version 2.2.6, Altschul et al., 1997, Nucleic Acid Res. 25: 3389-3402) was carried out. The default settings were used except for e-value cut-off (1e-10) and all protein searches were done using the BLOSUM62 matrix. The amino acid sequence of the *Arabidopsis* FAD2 polypeptide was used as a query to search and align DNA databases from *Glycine max*, *Oryza sativa*, *Zea mays*, *Linum usitatissimum*, *Hordeum vulgare* and *Triticum aestivum* that were translated in all six reading frames, using the TBLASTN algorithm. Such similarity analysis of the BPS in-house databases resulted in the identification of numerous ESTs and cDNA contigs.

[00268] RNA expression profile data obtained from the Hyseq clustering process were used to determine organ-specificity. Clones showing a greater expression in seed libraries compared to the other tissue libraries were selected as LMP candidate genes. The *Glycine max*, *Oryza sativa*, *Zea mays*, *Linum usitatissimum*, *Hordeum vulgare* and *Triticum aestivum* clones were selected for over-expression in *Arabidopsis* and specific crop plants based on their expression profile.

Example 6: Cloning of full-length cDNAs and orthologs of identified LMP genes

[00269] Clones corresponding to full-length sequences and partial cDNAs from *Arabidopsis thaliana*, *Glycine max*, *Oryza sativa*, *Zea mays*, *Linum usitatissimum*, *Hordeum vulgare* or *Triticum aestivum* had been identified in the in-house proprietary Hyseq databases. The Hyseq clones of *Glycine max*, *Oryza sativa*, *Zea mays*, *Linum usitatissimum*, *Hordeum vulgare* and *Triticum aestivum* genes were sequenced at DNA Landmarks using a ABI 377 slab gel sequencer and BigDye Terminator Ready Reaction kits (PE Biosystems, Foster City, CA). Sequence alignments were done to determine whether the Hyseq clones were full-length or partial clones. In cases where the Hyseq clones were determined to be partial cDNAs the following procedure was used to isolate the full-length sequences. Full-length cDNAs were isolated by RACE PCR using the SMART RACE cDNA amplification kit from Clontech allowing both 5'- and 3' rapid amplification of cDNA ends (RACE). The RACE PCR primers were designed based on the Hyseq clone sequences. The isolation of full-length cDNAs and the RACE PCR protocol used were based on the manufacturer's conditions. The RACE product fragments were extracted from agarose gels with a QIAquick Gel Extraction Kit (Qiagen) and ligated into the TOPO pCR 2.1 vector (Invitrogen) following manufacturer's instructions. Recombinant vectors were transformed into TOP10 cells (Invitrogen) using standard conditions (Sambrook et al. 1989). Transformed cells were grown overnight at 37°C on LB agar containing 50 µg/ml kanamycin and spread with 40 µl of a 40 mg/ml stock solution of X-gal in dimethylformamide for blue-white selection. Single white colonies were selected and used to inoculate 3 ml of liquid LB containing 50 µg/ml kanamycin and grown overnight at 37°C. Plasmid DNA is extracted using the QIAprep Spin Miniprep Kit (Qiagen) following manufacturer's instructions. Subsequent analyses of clones and restriction mapping was performed according to standard molecular biology techniques (Sambrook et al. 1989).

[00270] Full-length cDNAs were isolated and cloned into binary vectors by using the following procedure: Gene specific primers were designed using the full-length sequences obtained from Hyseq

clones or subsequent RACE amplification products. Full-length sequences and genes were amplified utilizing Hyseq clones or cDNA libraries as DNA template using touch-down PCR. In some cases, primers were designed to add an "AACAA" Kozak-like sequence just upstream of the gene start codon and two bases downstream were, in some cases, changed to GC to facilitate increased gene expression levels (Chandrashekhar et al. 1997, Plant Molecular Biology 35:993-1001). PCR reaction cycles were: 94 °C, 5 min; 9 cycles of 94 °C, 1 min, 65 °C, 1 min, 72 °C, 4 min and in which the anneal temperature was lowered by 1 °C each cycle; 20 cycles of 94 °C, 1 min, 55 °C, 1 min, 72 °C, 4 min; and the PCR cycle was ended with 72 °C, 10 min. Amplified PCR products were gel purified from 1% agarose gels using GenElute -EtBr spin columns (Sigma) and after standard enzymatic digestion, were ligated into the plant binary vector pBPS-GB1 for transformation of Arabidopsis. The binary vector was amplified by overnight growth in *E. coli* DH5 in LB media and appropriate antibiotic and plasmid was prepared for downstream steps using Qiagen MiniPrep DNA preparation kit. The insert was verified throughout the various cloning steps by determining its size through restriction digest and inserts were sequenced to ensure the expected gene was used in Arabidopsis transformation.

[00271] Gene sequences can be used to identify homologous or heterologous genes (orthologs, the same LMP gene from another plant) from cDNA or genomic libraries. This can be done by designing PCR primers to conserved sequences identified by multiple sequence alignments. Orthologs are often identified by designing degenerate primers to full-length or partial sequences of genes of interest.

[00272] Gene sequences can be used to identify homologues or orthologs from cDNA or genomic libraries. Homologous genes (e. g. full-length cDNA clones) can be isolated via nucleic acid hybridization using for example cDNA libraries: Depending on the abundance of the gene of interest, 100,000 up to 1,000,000 recombinant bacteriophages are plated and transferred to nylon membranes. After denaturation with alkali, DNA is immobilized on the membrane by e. g. UV cross linking. Hybridization is carried out at high stringency conditions. Aqueous solution hybridization and washing is performed at an ionic strength of 1 M NaCl and a temperature of 68°C. Hybridization probes are generated by e. g. radioactive (³²P) nick transcription labeling (High Prime, Roche, Mannheim, Germany). Signals are detected by autoradiography.

[00273] Partially homologous or heterologous genes that are related but not identical can be identified in a procedure analogous to the above-described procedure using low stringency hybridization and washing conditions. For aqueous hybridization, the ionic strength is normally kept at 1 M NaCl while the temperature is progressively lowered from 68 to 42°C.

[00274] Isolation of gene sequences with homologies (or sequence identity/similarity) only in a distinct domain of (for example 10-20 amino acids) can be carried out by using synthetic radio labeled oligonucleotide probes. Radio labeled oligonucleotides are prepared by phosphorylation of the 5-prime end of two complementary oligonucleotides with T4 polynucleotide kinase. The complementary oligonucleotides are annealed and ligated to form concatemers. The double stranded concatemers are then radiolabeled by for example nick transcription. Hybridization is normally performed at low stringency conditions using high oligonucleotide concentrations.

[00275] *Oligonucleotide hybridization solution:*

[00276] 6 x SSC

[00277] M sodium phosphate

[00278] mM EDTA (pH 8)

[00279] 0.5 % SDS

[00280] 100 µg/ml denatured salmon sperm DNA

[00281] % nonfat dried milk

[00282] During hybridization, temperature is lowered stepwise to 5-10°C below the estimated oligonucleotide Tm or down to room temperature followed by washing steps and autoradiography. Washing is performed with low stringency such as 3 washing steps using 4x SSC. Further details are described by Sambrook et al. (1989, "Molecular Cloning: A Laboratory Manual", Cold Spring Harbor Laboratory Press) or Ausubel et al. (1994, "Current Protocols in Molecular Biology", John Wiley & Sons).

Example 7: Identification of Genes of Interest by Screening Expression Libraries with Antibodies

[00283] c-DNA clones can be used to produce recombinant protein for example in *E. coli* (e.g. Qiagen QIAexpress pQE system). Recombinant proteins are then normally affinity purified via Ni-NTA affinity chromatography (Qiagen). Recombinant proteins can be used to produce specific antibodies for example by using standard techniques for rabbit immunization. Antibodies are affinity purified using a Ni-NTA column saturated with the recombinant antigen as described by Gu et al. (1994, BioTechniques 17:257-262). The antibody can then be used to screen expression cDNA libraries to identify homologous or heterologous genes via an immunological screening (Sambrook et al. 1989, Molecular Cloning: A Laboratory Manual", Cold Spring Harbor Laboratory Press or Ausubel et al. 1994, "Current Protocols in Molecular Biology", John Wiley & Sons).

Example 8: Northern-Hybridization

[00284] For RNA hybridization, 20 µg of total RNA or 1 µg of poly-(A)+ RNA is separated by gel electrophoresis in 1.25% agarose gels using formaldehyde as described in Amasino (1986, Anal. Biochem. 152:304), transferred by capillary attraction using 10 x SSC to positively charged nylon membranes (Hybond N+, Amersham, Braunschweig), immobilized by UV light and pre-hybridized for 3 hours at 68°C using hybridization buffer (10% dextran sulfate w/v, 1 M NaCl, 1% SDS, 100 µg/ml of herring sperm DNA). The labeling of the DNA probe with the Highprime DNA labeling kit (Roche, Mannheim, Germany) is carried out during the pre-hybridization using alpha-32P dCTP (Amersham, Braunschweig, Germany). Hybridization is carried out after addition of the labeled DNA probe in the same buffer at 68°C overnight. The washing steps are carried out twice for 15 min using 2 x SSC and twice for 30 min using 1 x SSC, 1% SDS at 68°C. The exposure of the sealed filters is carried out at -70°C for a period of 1 day to 14 days.

Example 9: DNA Sequencing and Computational Functional Analysis

[00285] cDNA libraries can be used for DNA sequencing according to standard methods, in particular by the chain termination method using the ABI PRISM Big Dye Terminator Cycle Sequencing Ready Reaction Kit (Perkin-Elmer, Weiterstadt, Germany). Random sequencing can be carried out subsequent to preparative plasmid recovery from cDNA libraries via *in vivo* mass excision, re-

transformation, and subsequent plating of DH10B on agar plates (material and protocol details from Stratagene, Amsterdam, Netherlands). Plasmid DNA can be prepared from overnight grown *E. coli* cultures grown in Luria-Broth medium containing ampicillin (see Sambrook et al. (1989, Cold Spring Harbor Laboratory Press: ISBN 0-87969-309-6) on a Qiagene DNA preparation robot (Qiagen, Hilden) according to the manufacturer's protocols). Sequences can be processed and annotated using the software package EST-MAX commercially provided by Bio-Max (Munich, Germany). The program incorporates bioinformatics methods important for functional and structural characterization of protein sequences. For reference see <http://pedant.mips.biochem.mpg.de>.

[00286] The most important algorithms incorporated in EST-MAX are: FASTA: Very sensitive protein sequence database searches with estimates of statistical significance (Pearson W.R. 1990, Rapid and sensitive sequence comparison with FASTP and FASTA. *Methods Enzymol.* 183:63-98). BLAST: Very sensitive protein sequence database searches with estimates of statistical significance (Altschul S.F., Gish W., Miller W., Myers E.W. and Lipman D.J. Basic local alignment search tool. *J. Mol. Biol.* 215:403-410). PREDATOR: High-accuracy secondary structure prediction from single and multiple sequences. (Frishman & Argos 1997, 75% accuracy in protein secondary structure prediction. *Proteins* 27:329-335). CLUSTALW: Multiple sequence alignment (Thompson, J.D., Higgins, D.G. and Gibson, T.J. 1994, CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice, *Nucleic Acids Res.* 22:4673-4680). TMAP: Transmembrane region prediction from multiply aligned sequences (Persson B. & Argos P. 1994, Prediction of transmembrane segments in proteins utilizing multiple sequence alignments, *J. Mol. Biol.* 237:182-192). ALOM2: Transmembrane region prediction from single sequences (Klein P., Kanehisa M., and DeLisi C. 1984, Prediction of protein function from sequence properties: A discriminant analysis of a database. *Biochim. Biophys. Acta* 787:221-226. Version 2 by Dr. K. Nakai). PROSEARCH: Detection of PROSITE protein sequence patterns. Kolakowski L.F. Jr., Leunissen J.A.M. and Smith J.E. 1992, ProSearch: fast searching of protein sequences with regular expression patterns related to protein structure and function. *Biotechniques* 13:919-921). BLIMPS: Similarity searches against a database of ungapped blocks (Wallace & Henikoff 1992, PATMAT: A searching and extraction program for sequence, pattern and block queries and databases, CABIOS 8:249-254. Written by Bill Alford).

Example 10: Plasmids for Plant Transformation

[00287] For plant transformation binary vectors such as pBinAR can be used (Höfgen & Willmitzer 1990, *Plant Sci.* 66:221-230). Construction of the binary vectors can be performed by ligation of the cDNA in sense or antisense orientation into the T-DNA. 5'-prime to the cDNA a plant promoter activates transcription of the cDNA. A polyadenylation sequence is located 3'-prime to the cDNA. Tissue-specific expression can be achieved by using a tissue specific promoter. For example, seed-specific expression can be achieved by cloning the napin or LeB4 or USP promoter 5'-prime to the cDNA. Also any other seed specific promoter element can be used. For constitutive expression within the whole plant the CaMV 35S promoter can be used. The expressed protein can be targeted to a cellular compartment using a signal peptide, for example for plastids, mitochondria or endoplas-

mic reticulum (Kermode 1996, Crit. Rev. Plant Sci. 15:285-423). The signal peptide is cloned 5-prime in frame to the cDNA to achieve subcellular localization of the fusion protein.

[00288] Plant binary vectors used for example are the pBPS-GB007, pSUN2-GW or pBPS-GB047 vectors into which the LMP gene candidates are cloned. These binary vectors contain an antibiotic resistance gene driven under the control of the AtAct2-I promoter and a USP or other seed-specific promoter or a constitutive promoter in front of the candidate gene with the NOSpA terminator or the OCS terminator. Partial or full-length LMP cDNA are cloned into the multiple cloning site of the plant binary vector in sense or antisense orientation behind the USP or seed-specific or other seed-specific or constitutive promoters. Further promoters that can be used for different crop species are also mentioned in example 11.

[00289] The recombinant vector containing the gene of interest is transformed into Top10 cells (Invitrogen) using standard conditions. Transformed cells are selected for on LB agar containing 50 µg/ml kanamycin grown overnight at 37°C. Plasmid DNA is extracted using the QIAprep Spin Mini-prep Kit (Qiagen) following manufacturer's instructions. Analysis of subsequent clones and restriction mapping is performed according to standard molecular biology techniques (Sambrook et al. 1989, Molecular Cloning, A Laboratory Manual. 2nd Edition. Cold Spring Harbor Laboratory Press. Cold Spring Harbor, NY).

Example 11: *Agrobacterium* Mediated Plant Transformation

[00290] *Agrobacterium* mediated plant transformation with the LMP nucleic acids described herein can be performed using standard transformation and regeneration techniques (Gelvin, Stanton B. & Schilperoort R.A, Plant Molecular Biology Manual, 2nd ed. Kluwer Academic Publ., Dordrecht 1995 in Sect., Ringbuc Zentrale Signatur:BT11-P; Glick, Bernard R. and Thompson, John E. Methods in Plant Molecular Biology and Biotechnology, S. 360, CRC Press, Boca Raton 1993). For example, *Agrobacterium* mediated transformation can be performed using the GV3 (pMP90) (Koncz & Schell, 1986, Mol. Gen. Genet. 204:383-396) or LBA4404 (Clontech) *Agrobacterium tumefaciens* strain.

[00291] *Arabidopsis thaliana* can be grown and transformed according to standard conditions (Bechtold 1993, Acad. Sci. Paris. 316:1194-1199; Bent et al. 1994, Science 265:1856-1860). Additionally, rapeseed can be transformed with the LMR nucleic acids of the present invention via cotyledon or hypocotyl transformation (Moloney et al. 1989, Plant Cell Report 8:238-242; De Block et al. 1989, Plant Physiol. 91:694-701). Use of antibiotic for *Agrobacterium* and plant selection depends on the binary vector and the *Agrobacterium* strain used for transformation. Rapeseed selection is normally performed using a selectable plant marker. Additionally, *Agrobacterium* mediated gene transfer to flax can be performed using, for example, a technique described by Mlynarova et al. (1994, Plant Cell Report 13:282-285).

[00292] The *Arabidopsis FAD2* or *FAD2*-like gene may be cloned into a binary vector, transformed and expressed either with a constitutive promoter like the superpromoter (Stanton B. Gelvin, USP# 5,428,147 and USP#5,217,903) or seed-specific promoters like USP (unknown seed protein) from *Vicia faba* (Baeumlein et al. 1991, Mol. Gen. Genetics 225:459-67), or the legumin B4 promoter (LeB4; Baeumlein et al. 1992, Plant J. 2:233-239) as well as promoters conferring seed-specific expression in monocot plants like maize, barley, wheat, rye, rice, etc.

[00293] The *Arabidopsis* AHAS (AtAHAS) gene could be used as a selectable marker in these constructs.

[00294] Transformation of soybean can be performed using for example a technique described in EP 0424 047, U.S. Patent No. 5,322,783 (Pioneer Hi-Bred International) or in EP 0397 687, U.S. Patent No. 5,376,543 or U.S. Patent No. 5,169,770 (University Toledo), or by any of a number of other transformation procedures known in the art. Soybean seeds are surface sterilized with 70% ethanol for 4 minutes at room temperature with continuous shaking, followed by 20% (v/v) Clorox supplemented with 0.05% (v/v) tween for 20 minutes with continuous shaking. Then the seeds are rinsed 4 times with distilled water and placed on moistened sterile filter paper in a Petri dish at room temperature for 6 to 39 hours. The seed coats are peeled off, and cotyledons are detached from the embryo axis. The embryo axis is examined to make sure that the meristematic region is not damaged. The excised embryo axes are collected in a half-open sterile Petri dish and air-dried to a moisture content less than 20% (fresh weight) in a sealed Petri dish until further use.

[00295] The method of plant transformation is also applicable to *Brassica napus*, *Linum usitatissimum* and other crops. In particular, seeds of canola are surface sterilized with 70% ethanol for 4 minutes at room temperature with continuous shaking, followed by 20% (v/v) Clorox supplemented with 0.05 % (v/v) Tween for 20 minutes, at room temperature with continuous shaking. Then, the seeds are rinsed 4 times with distilled water and placed on moistened sterile filter paper in a Petri dish at room temperature for 18 hours. The seed coats are removed and the seeds are air dried overnight in a half-open sterile Petri dish. During this period, the seeds lose approximately 85% of their water content. The seeds are then stored at room temperature in a sealed Petri dish until further

[00296] *Agrobacterium tumefaciens* culture is prepared from a single colony in LB solid medium plus appropriate antibiotics (e.g. 100 mg/l streptomycin, 50 mg/l kanamycin) followed by growth of the single colony in liquid LB medium to an optical density at 600 nm of 0.8. Then, the bacteria culture is pelleted at 7000 rpm for 7 minutes at room temperature, and re-suspended in MS (Murashige & Skoog 1962, *Physiol. Plant.* 15:473-497) medium supplemented with 100 mM acetosyringone. Bacteria cultures are incubated in this pre-induction medium for 2 hours at room temperature before use. The axis of soybean zygotic seed embryos at approximately 44% moisture content are imbibed for 2 h at room temperature with the pre-induced *Agrobacterium* suspension culture. (The imbibition of dry embryos with a culture of *Agrobacterium* is also applicable to maize embryo axes). The embryos are removed from the imbibition culture and are transferred to Petri dishes containing solid MS medium supplemented with 2% sucrose and incubated for 2 days, in the dark at room temperature. Alternatively, the embryos are placed on top of moistened (liquid MS medium) sterile filter paper in a Petri dish and incubated under the same conditions described above. After this period, the embryos are transferred to either solid or liquid MS medium supplemented with 500 mg/l carbenicillin or 300 mg/l cefotaxime to kill the agrobacteria. The liquid medium is used to moisten the sterile filter paper. The embryos are incubated during 4 weeks at 25°C, under 440 $\mu\text{mol m}^{-2}\text{s}^{-1}$ and 12 hours photoperiod. Once the seedlings have produced roots, they are transferred to sterile metromix soil. The medium of the *in vitro* plants is washed off before transferring the plants to soil. The plants are kept under a plastic cover for 1 week to favor the acclimatization process. Then the plants are trans-

ferred to a growth room where they are incubated at 25°C, under 440 $\mu\text{mol m}^{-2}\text{s}^{-1}$ light intensity and 12 h photoperiod for about 80 days.

[00297] Samples of the primary transgenic plants (T_0) are analyzed by PCR to confirm the presence of T-DNA. These results are confirmed by Southern hybridization wherein DNA is electrophoresed on a 1% agarose gel and transferred to a positively charged nylon membrane (Roche Diagnostics). The PCR DIG Probe Synthesis Kit (Roche Diagnostics) is used to prepare a digoxigenin-labeled probe by PCR as recommended by the manufacturer.

[00298] As an example for monocot transformation, a constitutive or seed-specific promoter in combination with maize Ubiquitin intron and *FAD2* or *FAD2*-like nucleic acid molecules may be used. For example, the *PtxA-FAD2* ortholog gene construct in pUC is digested with *PacI* and *XmaI*. pBPSMM348 is digested with *PacI* and *XmaI* to isolate maize Ubiquitin intron (ZmUbi intron) followed by electrophoresis and the QIAEX II Gel Extraction Kit (cat# 20021). The ZmUbi intron is ligated into the *PtxA-FAD2* or *FAD2*-like nucleic acid molecule in pUC to generate pUC based *PtxA-ZmUbi intron-FAD2* or *FAD2*-like nucleic acid molecule construct followed by restriction enzyme digestion with *AfeI* and *PmeI*. *PtxA-ZmUbi* intron *FAD2* or *FAD2*-like gene cassette will be cut out of a Seaplaque low melting temperature agarose gel (SeaPlaque® GTG® Agarose catalog No. 50110) after electrophoresis. A monocotyledonous base vector containing a selectable marker cassette (Monocot base vector) is digested with *PmeI*. The *FAD2* or *FAD2*-like nucleic acid molecule expression cassette containing a seed specific promoter-ZmUbi intron is ligated into the Monocot base vector. Subsequently, the construct is transformed into a recombinant LBA4404 strain containing pSB1 (super *vir* plasmid) using electroporation following a general protocol in the art. *Agrobacterium*-mediated transformation in maize is performed using immature embryo following a protocol described in US 5,591,616. An imidazolinone herbicide selection is applied to obtain transgenic maize lines.

[00299] Examples for promoters used in corn are also the zeins, which are a group of storage proteins found in corn endosperm. Genomic clones for zein genes have been isolated (Pedersen et al., *Cell* 29:1015-1026, 1982) and the promoters from these clones, including the 15 kD, 16 kD, 19 kD, 22 kD, 27 kD genes, could also be used. Other promoters known to function in corn are starch synthases, branching enzymes, debranching enzymes, oleosins, glutelins and sucrose synthases. A particularly preferred promoter for corn endosperm expression is the promoter for the glutelin gene from rice, more particularly the *Osgt-1* promoter (Zheng et al., *Mole. Cell Biol.* 13:5829-5842, 1993).

[00300] Examples of promoters suitable for expression in wheat include those promoters for the ADP glucose pyrosynthase subunits, the granule bound and other starch synthase, the branching and debranching enzymes, the embryogenesis-abundant proteins, the gliadins and the glutenins.

[00301] Examples of promoters suitable for expression in barley include those promoters for the ADP glucose pyrosynthase subunits, the granule bound and other starch synthase, the branching and debranching enzymes, sucrose synthases, the hordeins, the embryo globulins and the aleurone specific proteins.

[00302] Examples of promoters suitable for expression in soybean include promoters already mentioned herein. Yet, other promoters that can be used are a soybean 7S promoter and the soybean 7S \square' beta conglycinin promoter.

[00303] In general, a rice (or other monocot) *FAD2* gene or *FAD2*-like gene under a plant promoter like USP could be transformed into corn, or another crop plant, to generate effects of monocot *FAD2* genes in other monocots, or dicot *FAD2* genes in other dicots, or monocot genes in dicots, or vice versa. The plasmids containing these *FAD2* or *FAD2*-like coding sequences, 5' of a promoter and 3' of a terminator would be constructed in a manner similar to those described for construction of other plasmids herein. Examples of promoters suitable for expression in rice include those promoters for the ADP glucose pyro synthase subunits, the granule bound and other starch synthase, the branching enzymes, the debranching enzymes, sucrose synthases and the glutelins. A particularly preferred promoter is the promoter for rice glutelin, Osgt-1.

Example 12: *In vivo* Mutagenesis

[00304] *In vivo* mutagenesis of microorganisms can be performed by incorporation and passage of the plasmid (or other vector) DNA through *E. coli* or other microorganisms (e.g. *Bacillus* spp. or yeasts such as *Saccharomyces cerevisiae*) that are impaired in their capabilities to maintain the integrity of their genetic information. Typical mutator strains have mutations in the genes for the DNA repair system (e.g., mutHLS, mutD, mutT, etc.; for reference, see Rupp W.D. 1996, DNA repair mechanisms, in: *Escherichia coli* and *Salmonella*, p. 2277-2294; ASM: Washington.) Such strains are well known to those skilled in the art. The use of such strains is illustrated, for example, in Greener and Callahan 1994, Strategies 7:32-34. Transfer of mutated DNA molecules into plants is preferably done after selection and testing in microorganisms. Transgenic plants are generated according to various examples within the exemplification of this document.

Example 13: Assessment of the mRNA Expression and Activity of a Recombinant Gene Product in the Transformed Organism

[00305] The activity of a recombinant gene product in the transformed host organism can be measured on the transcriptional or/and on the translational level. A useful method to ascertain the level of transcription of the gene (an indicator of the amount of mRNA available for translation to the gene product) is to perform a Northern blot (for reference see, for example, Ausubel et al. 1988, Current Protocols in Molecular Biology, Wiley: New York), in which a primer designed to bind to the gene of interest is labeled with a detectable tag (usually radioactive or chemiluminescent), such that when the total RNA of a culture of the organism is extracted, run on gel, transferred to a stable matrix and incubated with this probe, the binding and quantity of binding of the probe indicates the presence and also the quantity of mRNA for this gene. This information at least partially demonstrates the degree of transcription of the transformed gene. Total cellular RNA can be prepared from plant cells, tissues or organs by several methods, all well-known in the art, such as that described in Bormann et al. (1992, Mol. Microbiol. 6:317-326).

[00306] To assess the presence or relative quantity of protein translated from this mRNA, standard techniques, such as a Western blot, may be employed (see, for example, Ausubel et al. 1988, Current Protocols in Molecular Biology, Wiley: New York). In this process, total cellular proteins are extracted, separated by gel electrophoresis, transferred to a matrix such as nitrocellulose, and incubated with a probe, such as an antibody, which specifically binds to the desired protein. This probe is generally tagged with a chemiluminescent or colorimetric label, which may be readily de-

tected. The presence and quantity of label observed indicates the presence and quantity of the desired mutant protein present in the cell.

[00307] The activity of LMPs that bind to DNA can be measured by several well-established methods, such as DNA band-shift assays (also called gel retardation assays). The effect of such LMP on the expression of other molecules can be measured using reporter gene assays (such as that described in Kolmar H. et al. 1995, EMBO J. 14:3895-3904 and references cited therein). Reporter gene test systems are well known and established for applications in both prokaryotic and eukaryotic cells, using enzymes such as beta-galactosidase, green fluorescent protein, and several others.

[00308] The determination of activity of lipid metabolism membrane-transport proteins can be performed according to techniques such as those described in Gennis R.B. (1989 Pores, Channels and Transporters, in Biomembranes, Molecular Structure and Function, Springer: Heidelberg, pp. 85-137, 199-234 and 270-322).

Example 14: *In vitro* Analysis of the Function of *Arabidopsis thaliana*, *Glycine max*, *Oryza sativa*, *Zea mays*, *Linum usitatissimum*, *Hordeum vulgare* or *Triticum aestivum*

FAD2 or FAD2-like Genes in Transgenic Plants

[00309] The determination of activities and kinetic parameters of enzymes is well established in the art. Experiments to determine the activity of any given altered enzyme must be tailored to the specific activity of the wild-type enzyme, which is well within the ability of one skilled in the art. Overviews about enzymes in general, as well as specific details concerning structure, kinetics, principles, methods, applications and examples for the determination of many enzyme activities may be found, for example, in the following references: Dixon, M. & Webb, E.C. 1979, Enzymes. Longmans: London; Fersht, (1985) Enzyme Structure and Mechanism. Freeman: New York; Walsh (1979) Enzymatic Reaction Mechanisms. Freeman: San Francisco; Price, N.C., Stevens, L. (1982) Fundamentals of Enzymology. Oxford Univ. Press: Oxford; Boyer, P.D., ed. (1983) The Enzymes, 3rd ed. Academic Press: New York; Bisswanger, H., (1994) Enzymkinetik, 2nd ed. VCH: Weinheim (ISBN 3527300325); Bergmeyer, H.U., Bergmeyer, J., Graßl, M., eds. (1983-1986) Methods of Enzymatic Analysis, 3rd ed., vol. I-XII, Verlag Chemie: Weinheim; and Ullmann's Encyclopedia of Industrial Chemistry (1987) vol. A9, Enzymes. VCH: Weinheim, p. 352-363.

Example 15: Analysis of the Impact of Recombinant Proteins on the Production of a Desired Seed Storage Compound

[00310] As an example for seed oil changes, seeds from transformed *Arabidopsis thaliana* plants were analyzed by gas chromatography (GC) for fatty acid profiles. Each bar in Figures 10 and 11 represents the value obtained with 5 mg bulked seeds of one plant of wild-type or *fad2* mutant or of one independent transgenic event in a *fad2* mutant background. As illustrated in Figure 10, the *fad2* mutant of *Arabidopsis thaliana* showed an increase in the content of oleic acid (C18:1) from 16% in the wild type to about 60% in the *fad2* mutant. Likewise there is a strong reduction in the proportion of linoleic acid (C18:2) from about 31% in the wild type to 2% in the *fad2* mutant. *Arabidopsis fad2* mutant seeds transformed with the *Oryza sativa* gene OsFAD-01 (Seq ID No. 17) showed a restoration of the fatty acid pattern in several independent transgenic lines in the *fad2* mutant background (see events FAD1172, FAD1214, FAD1246 and FAD1294 in Fig. 10) towards the wild type composition

even in a segregating T2 seed population. A similar response was obtained with the *Hordeum vulgare* gene HvFAD-01 (Seq ID No. 23) as shown in Figure 11 for the events FAD0503, FAD0483, FAD0475 and FAD0465. This result indicates that both the *Oryza sativa* (OsFAD-01) and the *Hordeum vulgare* (HvFAD-01) genes are capable of complementing the *fad2* *Arabidopsis* mutant with regard to the seed fatty acid profile, indicating their function as fatty acid desaturases. All other fatty acid desaturase genes from different crop plants indicated in this application exhibited a similar response in a *fad2* *Arabidopsis* mutant background as well (data not shown).

[00311] The effect of the genetic modification in plants on a desired seed storage compound (such as a sugar, lipid or fatty acid) can be assessed by growing the modified plant under suitable conditions and analyzing the seeds or any other plant organ for increased production of the desired product (i.e., a lipid or a fatty acid). Such analysis techniques are well known to one skilled in the art, and include spectroscopy, thin layer chromatography, staining methods of various kinds, enzymatic and microbiological methods, and analytical chromatography such as high performance liquid chromatography (see, for example, Ullman 1985, Encyclopedia of Industrial Chemistry, vol. A2, pp. 89-90 and 443-613, VCH: Weinheim; Fallon, A. et al. 1987, Applications of HPLC in Biochemistry in: Laboratory Techniques in Biochemistry and Molecular Biology, vol. 17; Rehm et al., 1993 Product recovery and purification, Biotechnology, vol. 3, Chapter III, pp. 469-714, VCH: Weinheim; Belter, P.A. et al., 1988 Bioseparations: downstream processing for biotechnology, John Wiley & Sons; Kennedy J.F. & Cabral J.M.S. 1992, Recovery processes for biological materials, John Wiley and Sons; Shaeiwitz J.A. & Henry J.D. 1988, Biochemical separations in: Ullmann's Encyclopedia of Industrial Chemistry, Separation and purification techniques in biotechnology, vol. B3, Chapter 11, pp. 1-27, VCH: Weinheim; and Dechow F.J. 1989).

[00312] Besides the above-mentioned methods, plant lipids are extracted from plant material as described by Cahoon et al. (1999, Proc. Natl. Acad. Sci. USA 96, 22:12935-12940) and Browse et al. (1986, Anal. Biochemistry 442:141-145). Qualitative and quantitative lipid or fatty acid analysis is described in Christie, William W., Advances in Lipid Methodology. Ayr/Scotland:Oily Press. - (Oily Press Lipid Library; Christie, William W., Gas Chromatography and Lipids. A Practical Guide - Ayr, Scotland:Oily Press, 1989 Repr. 1992. - IX, 307 S. - (Oily Press Lipid Library; and "Progress in Lipid Research, Oxford :Pergamon Press, 1 (1952) – 16 (1977) Progress in the Chemistry of Fats and Other Lipids CODEN.

[00313] Unequivocal proof of the presence of fatty acid products can be obtained by the analysis of transgenic plants following standard analytical procedures: GC, GC-MS or TLC as variously described by Christie and references therein (1997 in: Advances on Lipid Methodology 4th ed.: Christie, Oily Press, Dundee, pp. 119-169; 1998). Detailed methods are described for leaves by Lemieux et al. (1990, Theor. Appl. Genet. 80:234-240) and for seeds by Focks & Benning (1998, Plant Physiol. 118:91-101).

[00314] Positional analysis of the fatty acid composition at the sn-1, sn-2 or sn-3 positions of the glycerol backbone is determined by lipase digestion (see, e.g., Siebertz & Heinz 1977, Z. Naturforsch. 32c:193-205, and Christie 1987, Lipid Analysis 2nd Edition, Pergamon Press, Exeter, ISBN 0-08-023791-6).

[00315] Total seed oil levels can be measured by any appropriate method. Quantitation of seed oil contents is often performed with conventional methods, such as near infrared analysis (NIR) or nuclear magnetic resonance imaging (NMR). NIR spectroscopy has become a standard method for screening seed samples whenever the samples of interest have been amenable to this technique. Samples studied include canola, soybean, maize, wheat, rice, and others. NIR analysis of single seeds can be used (see e.g. Velasco et al., 'Estimation of seed weight, oil content and fatty acid composition in intact single seeds of rapeseed (*Brassica napus* L.) by near-infrared reflectance spectroscopy, 'Euphytica, Vol. 106, 1999, pp. 79-85). NMR has also been used to analyze oil content in seeds (see e.g. Robertson & Morrison, "Analysis of oil content of sunflower seed by wide-line NMR, "Journal of the American Oil Chemists Society, 1979, Vol. 56, 1979, pp. 961-964, which is herein incorporated by reference in its entirety).

[00316] A typical way to gather information regarding the influence of increased or decreased protein activities on lipid and sugar biosynthetic pathways is for example via analyzing the carbon fluxes by labeling studies with leaves or seeds using ¹⁴C-acetate or ¹⁴C-pyruvate (see, e.g. Focks & Benning 1998, Plant Physiol. 118:91-101; Eccleston & Ohlrogge 1998, Plant Cell 10:613-621). The distribution of carbon-14 into lipids and aqueous soluble components can be determined by liquid scintillation counting after the respective separation (for example on TLC plates) including standards like ¹⁴C-sucrose and ¹⁴C-malate (Eccleston & Ohlrogge 1998, Plant Cell 10:613-621).

[00317] Material to be analyzed can be disintegrated via sonification, glass milling, liquid nitrogen and grinding or via other applicable methods. The material has to be centrifuged after disintegration. The sediment is re-suspended in distilled water, heated for 10 minutes at 100°C, cooled on ice and centrifuged again followed by extraction in 0.5 M sulfuric acid in methanol containing 2% dimethoxypropane for 1 hour at 90°C leading to hydrolyzed oil and lipid compounds resulting in transmethylated lipids. These fatty acid methyl esters are extracted in petrolether and finally subjected to GC analysis using a capillary column (Chrompack, WCOT Fused Silica, CP-Wax-52 CB, 25 m, 0.32 mm) at a temperature gradient between 170°C and 240°C for 20 minutes and 5 min. at 240°C. The identity of resulting fatty acid methylesters is defined by the use of standards available from commercial sources (i.e., Sigma).

[00318] In case of fatty acids where standards are not available, molecule identity is shown via derivatization and subsequent GC-MS analysis. For example, the localization of triple bond fatty acids is shown via GC-MS after derivatization via 4,4-Dimethoxy-oxazolin-Derivaten (Christie, Oily Press, Dundee, 1998).

[00319] A common standard method for analyzing sugars, especially starch, is published by Stitt M., Lilley R.Mc.C., Gerhardt R. and Heldt M.W. (1989, "Determination of metabolite levels in specific cells and subcellular compartments of plant leaves" Methods Enzymol. 174:518-552; for other methods see also Härtel et al. 1998, Plant Physiol. Biochem. 36:407-417 and Focks & Benning 1998, Plant Physiol. 118:91-101).

[00320] For the extraction of soluble sugars and starch, 50 seeds are homogenized in 500 µl of 80% (v/v) ethanol in a 1.5-ml polypropylene test tube and incubated at 70°C for 90 min. Following centrifugation at 16,000 g for 5 min, the supernatant is transferred to a new test tube. The pellet is

extracted twice with 500 μ l of 80% ethanol. The solvent of the combined supernatants is evaporated at room temperature under a vacuum. The residue is dissolved in 50 μ l of water, representing the soluble carbohydrate fraction. The pellet left from the ethanol extraction, which contains the insoluble carbohydrates including starch, is homogenized in 200 μ l of 0.2 N KOH, and the suspension is incubated at 95°C for 1 h to dissolve the starch. Following the addition of 35 μ l of 1 N acetic acid and centrifugation for 5 min at 16,000 g, the supernatant is used for starch quantification.

[00321] To quantify soluble sugars, 10 μ l of the sugar extract is added to 990 μ l of reaction buffer containing 100 mM imidazole, pH 6.9, 5 mM MgCl₂, 2 mM NADP, 1 mM ATP, and 2 units 2 ml⁻¹ of Glucose-6-P-dehydrogenase. For enzymatic determination of glucose, fructose and sucrose, 4.5 units of hexokinase, 1 unit of phosphoglucoisomerase, and 2 μ l of a saturated fructosidase solution are added in succession. The production of NADPH is photometrically monitored at a wavelength of 340 nm. Similarly, starch is assayed in 30 μ l of the insoluble carbohydrate fraction with a kit from Boehringer Mannheim.

[00322] An example for analyzing the protein content in leaves and seeds can be found by Bradford M.M. (1976, "A rapid and sensitive method for the quantification of microgram quantities of protein using the principle of protein dye binding" *Anal. Biochem.* 72:248-254). For quantification of total seed protein, 15-20 seeds are homogenized in 250 μ l of acetone in a 1.5-ml polypropylene test tube. Following centrifugation at 16,000 g, the supernatant is discarded and the vacuum-dried pellet is resuspended in 250 μ l of extraction buffer containing 50 mM Tris-HCl, pH 8.0, 250 mM NaCl, 1 mM EDTA, and 1% (w/v) SDS. Following incubation for 2 h at 25°C, the homogenate is centrifuged at 16,000 g for 5 min and 200 ml of the supernatant will be used for protein measurements. In the assay, γ -globulin is used for calibration. For protein measurements, Lowry DC protein assay (Bio-Rad) or Bradford-assay (Bio-Rad) is used.

[00323] Enzymatic assays of hexokinase and fructokinase are performed spectrophotometrically according to Renz et al. (1993, *Planta* 190:156-165), of phosphogluco-isomerase, ATP-dependent 6-phosphofructokinase, pyrophosphate-dependent 6-phospho-fructokinase, Fructose-1,6-bisphosphate aldolase, triose phosphate isomerase, glyceral-3-P dehydrogenase, phosphoglycerate kinase, phosphoglycerate mutase, enolase and pyruvate kinase are performed according to Burrell et al. (1994, *Planta* 194:95-101) and of UDP-Glucose-pyrophosphorylase according to Zrenner et al. (1995, *Plant J.* 7:97-107).

[00324] Intermediates of the carbohydrate metabolism, like Glucose-1-phosphate, Glucose-6-phosphate, Fructose-6-phosphate, Phosphoenolpyruvate, Pyruvate, and ATP are measured as described in Härtel et al. (1998, *Plant Physiol. Biochem.* 36:407-417) and metabolites are measured as described in Jelitto et al. (1992, *Planta* 188:238-244).

[00325] In addition to the measurement of the final seed storage compound (i.e., lipid, starch or storage protein) it is also possible to analyze other components of the metabolic pathways utilized for the production of a desired seed storage compound, such as intermediates and side-products, to determine the overall efficiency of production of the compound (Fiehn et al. 2000, *Nature Biotech.* 18:1447-1161).

[00326] For example, yeast expression vectors comprising the nucleic acids disclosed herein, or fragments thereof, can be constructed and transformed into *Saccharomyces cerevisiae* using standard protocols. The resulting transgenic cells can then be assayed for alterations in sugar, oil, lipid or fatty acid contents.

[00327] Similarly, plant expression vectors comprising the nucleic acids disclosed herein, or fragments thereof, can be constructed and transformed into an appropriate plant cell such as *Arabidopsis*, soybean, rapeseed, rice, maize, wheat, *Medicago truncatula*, etc., using standard protocols. The resulting transgenic cells and/or plants derived there from can then be assayed for alterations in sugar, oil, lipid or fatty acid contents.

[00328] Additionally, the sequences disclosed herein, or fragments thereof, can be used to generate knockout mutations in the genomes of various organisms, such as bacteria, mammalian cells, yeast cells, and plant cells (Girke et al. 1998, *Plant J.* 15:39-48). The resultant knockout cells can then be evaluated for their composition and content in seed storage compounds, and the effect on the phenotype and/or genotype of the mutation. For other methods of gene inactivation include US 6004804 "Non-Chimeric Mutational Vectors" and Puttaraju et al. (1999, "Spliceosome-mediated RNA trans-splicing as a tool for gene therapy" *Nature Biotech.* 17:246-252).

Example 16: Purification of the Desired Product from Transformed Organisms

[00329] An LMP can be recovered from plant material by various methods well known in the art. Organs of plants can be separated mechanically from other tissue or organs prior to isolation of the seed storage compound from the plant organ. Following homogenization of the tissue, cellular debris is removed by centrifugation and the supernatant fraction containing the soluble proteins is retained for further purification of the desired compound. If the product is secreted from cells grown in culture, then the cells are removed from the culture by low-speed centrifugation and the supernate fraction is retained for further purification.

[00330] The supernatant fraction from either purification method is subjected to chromatography with a suitable resin, in which the desired molecule is either retained on a chromatography resin while many of the impurities in the sample are not, or where the impurities are retained by the resin, while the sample is not. Such chromatography steps may be repeated as necessary, using the same or different chromatography resins. One skilled in the art would be well-versed in the selection of appropriate chromatography resins and in their most efficacious application for a particular molecule to be purified. The purified product may be concentrated by filtration or ultrafiltration, and stored at a temperature at which the stability of the product is maximized.

[00331] There is a wide array of purification methods known to the art and the preceding method of purification is not meant to be limiting. Such purification techniques are described, for example, in Bailey J.E. & Ollis D.F. 1986, *Biochemical Engineering Fundamentals*, McGraw-Hill:New York).

[00332] The identity and purity of the isolated compounds may be assessed by techniques standard in the art. These include high-performance liquid chromatography (HPLC), spectroscopic methods, staining methods, thin layer chromatography, analytical chromatography such as high performance liquid chromatography, NIRS, enzymatic assay, or microbiologically. Such analysis meth-

ods are reviewed in: Patek et al. (1994, *Appl. Environ. Microbiol.* 60:133-140), Malakhova et al. (1996, *Biotechnologiya* 11:27-32) and Schmidt et al. (1998, *Bioprocess Engineer* 19:67-70), Ulmann's Encyclopedia of Industrial Chemistry (1996, Vol. A27, VCH: Weinheim, p. 89-90, p. 521-540, p. 540-547, p. 559-566, 575-581 and p. 581-587) and Michal G. (1999, *Biochemical Pathways: An Atlas of Biochemistry and Molecular Biology*, John Wiley and Sons; Fallon, A. et al. 1987, *Applications of HPLC in Biochemistry* in: *Laboratory Techniques in Biochemistry and Molecular Biology*, vol. 17).

Example 17. Down regulation of gene expression by engineering microRNA precursor

[00333] MicroRNAs (miRNAs) have emerged as evolutionarily conserved, RNA-based regulators of gene expression in plants and animals. MiRNAs (~ 21 to 25 nt) arise from larger precursors with a stem loop structure that are transcribed from non-protein-coding genes. miRNA targets a specific mRNA to suppress gene expression at post-transcriptional (*i.e.* degrades mRNA) or translational levels (*i.e.* inhibits protein synthesis) (Bartel D 2004, *Cell* 116, 281-297).

[00334] MiRNA precursor (pre-miRNA) can be engineered in such way that endogenous miRNA encoded by pre-miRNA is replaced by a miRNA to target a gene-of-interest, *e.g.* dsRed reporter gene.

[00335] Maize miR166 precursor was selected for engineering. The nucleotide sequence encoding the miR166 precursor is depicted in SEQ ID NO: 47. Two binary expression constructs were generated through multi-site Gateway cloning approach (Invitrogen, Carlsbad, CA). RLM323 as described in SEQ ID NO: 41 was a control, *i.e.* native maize miR166 expression under the control of ScBV (sugarcane bacilliform badnavirus) promoter and NOS (nopaline synthase) terminator. RLM325 as described by SEQ ID NO: 42 was identical to RLM323 except native miR166 (5' tcggac-caggcttcattcccc 3') as described in SEQ ID NO: 37 and in SEQ ID NO: 38 within the precursor was replaced by a miRNA targeting dsRed (5' ttgttagatgaaggcagccgtcc 3') as described in SEQ ID NO: 39. MiR dsRed is complementary to 3' region of dsRed mRNA.

[00336] RLM323 and RLM325 were transformed via *Agrobacterium* into homozygote maize SDM10828 which already carries a binary vector, RLM185 to express dsRed under control of ScBV promoter and NOS terminator. Leaf samples from 3 independent T0 events carrying RLM323 and 29 independent T0 events carrying RLM325 were collected. The samples were then analyzed using Typhoon 9400 (General Engineering), an image system under settings to detect dsRed fluorescence. Fluorescence intensity from RLM325 events was reduced over 90% comparing to the intensity from the control, RLM323 events.

[00337] The production of miR dsRed in RLM325 events was confirmed in Northern blotting analysis. A specific band of ~21 nt was detected in RLM325, but not RLM323 (control) events using a radioactive labelled probe complementary to miR dsRed. The reduction (nearly 90%) of dsRed mRNA in RLM325 events was confirmed by qRT-PCR comparing to the control RLM323. Taken together, these data demonstrated miRNA precursor can be engineered to target a gene-of-interest.

[00338] Maize genes coding for fatty acid desaturases, are expressed in many tissues including seeds. A 19 to 21nt (*e.g.* ACCAGACCCGAAACGCCGC as described in SEQ ID NO: 40) complementary to a maize desaturase coding region or 5' UTR and 3'UTR in mRNA is used to replace Zm miR166 (5' tcggaccaggcttcattcccc 3') as described in SEQ ID NO: 37 and in SEQ ID NO: 38 in Zm

miR166 precursor. The transgene will then be transformed into maize. The expression of the engineered Zm miR166 gene will be controlled by a maize seed-specific promoter (e.g. endosperm specific 10 KD Zein promoter or Glob1 embryo-specific promoter).

[00339] A microRNA (e.g. ACCAGACCCCGAACGCCGC as described in SEQ ID NO: 40) is generated in seeds when the engineered Zm miR166 precursor is processed. This miRNA specifically binds to the region in a maize fatty acid desaturase mRNA complimentary to the miRNA, which results in a reduction of this targeted maize desaturase expression at transcriptional or translational levels in seeds by gene silencing machinery. As a result, transgenic maize could have desirable fatty acid level and composition as for example low linolenic acid and/or medium or high oleic acid levels in seeds.

Example 18 – Screening for Increased Seed Size

[00340] The conditional expression of *FAD2* and of the crop *FAD2*-like genes can result in an increased seed size. Transgenic *Arabidopsis* or crop plants expressing *FAD2* or *FAD2*-like genes will be produced. Transgenic plants with seeds larger than the wild-type will be identified by using a microscope. In addition, the seed weight will be measured in transgenic lines. For example, *fad2* mutant seeds showed a 20% reduction in seed weight as compared with the wild type. In the segregating T2 seed generation of the independent *Arabidopsis* transgenic lines pFAD2RT-7 and pFAD2RT-5 the weight of 100 seeds was increased by 30 and 40%, respectively. In homozygous T3 seeds the seed weight was increased up to 60% as compared with the empty vector control (data not shown). Increased seed weight was reflected in an increased seed size of *FAD2* gene overexpressors in *Arabidopsis*. Increased seed size leads to greater yield in many economically important crop plants. Therefore, increased seed size is one goal of genetically engineering and selection using *FAD2* or *FAD2*-like nucleic acid molecules as described in this application.

Table 1.
Plant Lipid Classes

Neutral Lipids	Triacylglycerol (TAG)
	Diacylglycerol (DAG)
	Monoacylglycerol (MAG)
Polar Lipids	Monogalactosyldiacylglycerol (MGDG)
	Digalactosyldiacylglycerol (DGDG)
	Phosphatidylglycerol (PG)
	Phosphatidylcholine (PC)
	Phosphatidylethanolamine (PE)
	Phosphatidylinositol (PI)
	Phosphatidylserine (PS)
	Sulfoquinovosyldiacylglycerol

Table 2.
Common Plant Fatty Acids

16:0	Palmitic acid
16:1	Palmitoleic acid
16:3	Palmitolenic acid
18:0	Stearic acid
18:1	Oleic acid
18:2	Linoleic acid
18:3	Linolenic acid
γ -18:3	Gamma-linolenic acid*
20:0	Arachidic acid
20:1	Eicosenoic acid
22:6	Docosahexanoic acid (DHA) *
20:2	Eicosadienoic acid
20:4	Arachidonic acid (AA) *
20:5	Eicosapentaenoic acid (EPA) *
22:1	Erucic acid

[00341] These fatty acids do not normally occur in plant seed oils, but their production in transgenic plant seed oil is of importance in plant biotechnology.

Table 3.

A table of the putative functions of the *FAD2*-like LMPs (the full length nucleic acid sequences can be found in Appendix A using the sequence codes)

SEQ ID NO:	Sequence name	Species	Function	ORF Position
1	<i>AtFAD-01</i>	<i>Arabidopsis thaliana</i>	omega-6 fatty acid desaturase, endoplasmic reticulum (FAD2) / delta-12 desaturase	157-1305
5	<i>GmFAD-01</i>	<i>Glycine max</i>	omega-6 fatty acid desaturase, endoplasmic reticulum (FAD2) / delta-12 desaturase	115-1275
9	<i>GmFAD-02</i>	<i>Glycine max</i>	omega-6 fatty acid desaturase, endoplasmic reticulum (FAD2) / delta-12 desaturase	96-1244
13	<i>GmFAD-03</i>	<i>Glycine max</i>	omega-6 fatty acid desaturase, endoplasmic reticulum (FAD2) / delta-12 desaturase	96-749
17	<i>ZmFAD-01</i>	<i>Zea mays</i>	Corn delta- 12 desaturase fad2-2	176-1351
21	<i>OsFAD-01</i>	<i>Oryza sativa</i>	Putative delta-12 oleate desaturase	150-1313
25	<i>LuFAD-01</i>	<i>Linum usitatissimum</i>	Delta-12 fatty acid desaturase	48-1070
29	<i>HvFAD-01</i>	<i>Hordeum vulgare</i>	Putative delta-12 oleate desaturase	25-1185
33	<i>TaFAD-01</i>	<i>Triticum aestivum</i>	Putative delta-12 oleate desaturase	165-1325

[00342] Those skilled in the art will recognize, or will be able to ascertain using no more than routine experimentation, many equivalents to the specific embodiments of the invention described herein. Such equivalents are intended to be encompassed by the claims to the invention disclosed and claimed herein.

Appendix A

[00343] Figure 1A: SEQ ID NO: 1 - Nucleic acid sequence of AtFAD-01

[00344] Figure 1B: SEQ ID NO: 3 - Nucleic acid sequence of the open reading frame of At-FAD-01

[00345] Figure 1C: SEQ ID NO: 4 - Amino acid sequence of the open reading frame of At-FAD-01

[00346] Figure 2A: SEQ ID NO: 5 – Nucleic acid sequence of GmFAD-01

[00347] Figure 2B: SEQ ID NO: 7 – Nucleic acid sequence of the open reading frame of GmFAD-01

[00348] Figure 2C: SEQ ID NO: 8 - Amino acid sequence of the open reading frame of GmFAD-01

[00349] Figure 3A: SEQ ID NO: 9 - Nucleic acid sequence of GmFAD-02

[00350] Figure 3B: SEQ ID NO: 11 - Nucleic acid sequence of the open reading frame of GmFAD-02

[00351] Figure 3C: SEQ ID NO: 12 - Amino acid sequence of the open reading frame of GmFAD-02

[00352] Figure 4A: SEQ ID NO: 12 - Nucleic acid sequence of GmFAD-03

[00353] Figure 4B: SEQ ID NO: 15 - Nucleic acid sequence of the open reading frame of GmFAD-03

[00354] Figure 4C: SEQ ID NO: 16 - Amino acid sequence of the open reading frame of GmFAD-03

[00355] Figure 5A: SEQ ID NO: 17 – Nucleic acid sequence of ZmFAD-01

[00356] Figure 5B: SEQ ID NO: 19 – Nucleic acid sequence of the open reading frame of ZmFAD-01

[00357] Figure 5C: SEQ ID NO: 20 - Amino acid sequence of the open reading frame of ZmFAD-01

[00358] Figure 6A: SEQ ID NO: 21 – Nucleic acid sequence of OsFAD-01

[00359] Figure 6B: SEQ ID NO: 23 – Nucleic acid sequence of the open reading frame of OsFAD-01

[00360] Figure 6C: SEQ ID NO: 24 - Amino acid sequence of the open reading frame of Os-FAD-01

[00361] Figure 7A: SEQ ID NO: 25 – Nucleic acid sequence of LuFAD-01

[00362] Figure 7B: SEQ ID NO: 27 – Nucleic acid sequence of the open reading frame of LuFAD-01

[00363] Figure 7C: SEQ ID NO: 28 - Amino acid sequence of the open reading frame of Lu-FAD-01

[00364] Figure 8A: SEQ ID NO: 29 – Nucleic acid sequence of HvFAD-01

[00365] Figure 8B: SEQ ID NO: 31 – Nucleic acid sequence of the open reading frame of HvFAD-01

[00366] Figure 8C: SEQ ID NO: 32 - Amino acid sequence of the open reading frame of HvFAD-01

[00367] Figure 9A: SEQ ID NO: 33 – Nucleic acid sequence of TaFAD-01

[00368] Figure 9B: SEQ ID NO: 35 - Nucleic acid sequence of the open reading frame of Ta-FAD-01

[00369] Figure 9C: SEQ ID NO: 36 - Amino acid sequence of the open reading frame of TaFAD-01

We claim:

1. An isolated polypeptide comprising an amino acid sequence selected from the group consisting of

$X^1X^2X^3LX^4X^5X^6X^7LX^8X^9PX^{10}YL$, whereas X^1 is not M and X^3 is not T and X^6 is not F and X^7 is not V,

$GX^{11}X^{12}X^{13}X^{14}X^{15}X^{16}X^{17}X^{18}HX^{19}X^{20}PX^{21}X^{22}X^{23}X^{24}X^{25}X^{26}X^{27}X^{28}ER$, whereas X^{15} is not G and X^{20} is not F and X^{21} is not N and X^{22} is not A,

$HX^{29}X^{30}PX^{31}X^{32}X^{33}X^{34}X^{35}X^{36}X^{37}X^{38}ER$, whereas X^{30} is not F and X^{31} is not N and X^{32} is not A, $LX^{39}X^{40}X^{41}X^{42}X^{43}X^{44}X^{45}GX^{46}X^{47}X^{48}X^{49}X^{50}X^{51}X^{52}YX^{53}X^{54}P$, whereas X^{41} is not Y and X^{45} is not Q and X^{48} is not S and X^{49} is not M and X^{50} is not I,

$TX^{55}X^{56}X^{57}X^{58}HX^{59}X^{60}X^{61}X^{62}X^{63}X^{64}X^{65}X^{66}X^{67}X^{68}X^{69}X^{70}X^{71}T$, whereas X^{67} is not N, and $PX^{72}X^{73}X^{74}X^{75}X^{76}X^{77}X^{78}X^{79}X^{80}X^{81}X^{82}X^{83}X^{84}X^{85}X^{86}$, whereas X^{84} is not W and X^{85} is not Y and X^{86} is not V,

and whereas X has the meaning of any amino acid if not defined elsewhere above.

2. An isolated polypeptide comprising an amino acid sequence selected from the group consisting of

AWYT

$PYX^{87}YNNPX^{88}GRLVHIX^{89}VQLTLGWPLYLAX^{90}NX^{91}SGRPYPRFACHFDPYGYPIYDRER$,

FISDVGV,

$ALX^{92}KLX^{93}SX^{94}FGFWWVVRVYGV$,

ILGEYYQFDX⁹⁵TPVAKAT,

and whereas X has the meaning of any amino acid.

3. An isolated nucleic acid sequence encoding a protein containing an amino acid sequence as claimed in claim 1 or 2.

4. An isolated polypeptide encoded by a nucleic acid sequence according to claim 3.

5. An isolated nucleic acid comprising a polynucleotide sequence selected from the group consisting of:

a polynucleotide sequence as depicted in SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33 or SEQ ID NO: 35;

a polynucleotide sequence encoding a polypeptide as depicted in SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO: 30, SEQ ID NO: 32, SEQ ID NO: 34 or SEQ ID NO: 36;

a polynucleotide sequence having at least 70% sequence identity with the nucleic acid of a) or b) above;

a polynucleotide sequence that is complementary to the nucleic acid of a) or b) above; and

a polynucleotide sequence that hybridizes under stringent conditions to the nucleic acid of a) or b) above.

6. An isolated polypeptide encoded by polynucleotide sequence as claimed in claim 5.
7. The isolated nucleic acid of claim 5, wherein the isolated nucleic acid encodes a polypeptide that functions as a modulator of a seed storage compound in microorganisms or in plants.
8. The isolated polypeptide of claim 6, wherein the isolated LMP polypeptide sequence functions as a modulator of a seed storage compound in microorganisms or plants.
9. An expression vector containing the nucleic acid of Claims 3 or 5, wherein the nucleic acid is operatively linked to a promoter selected from the group consisting of a seed-specific promoter, a root-specific promoter, and a non-tissue-specific promoter.
10. A method of producing a transgenic plant having a modified level of a seed storage compound weight percentage compared to the wildtype comprising,
 - a. a first step of introduction into a plant cell of an expression vector containing a nucleic acid and
 - b. a second step of generating from the plant cell the transgenic plant,
wherein the nucleic acid encodes a polypeptide that functions as a modulator of a seed storage compound in the plant, and wherein the nucleic acid comprises a polynucleotide sequence selected from the group consisting of:
 - a. a polynucleotide sequence as depicted in SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33 or SEQ ID NO: 35;
 - b. a polynucleotide sequence encoding a polypeptide as depicted in SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO: 30, SEQ ID NO: 32, SEQ ID NO: 34 or SEQ ID NO: 36;
 - c. a polynucleotide sequence having at least 70% sequence identity with the nucleic acid of a) or b) above;
 - d. a polynucleotide sequence that is complementary to the nucleic acid of a) or b) above; and
 - e. a polynucleotide sequence that hybridizes under stringent conditions to the nucleic acid of a) or b) above.
11. The method of Claim 10, wherein the nucleic acid comprises a polynucleotide sequence having at least 90% sequence identity with the polynucleotide sequence of a) or b) of Claim 5.

12. The method of Claim 10, wherein the level of a oleic acid is increased in the transgenic plant as compared to an wild type variety of the plant.

13. A method of producing a transgenic plant having an increased level of oleic acid weight percentage compared to the wildtype comprising,

a first step of transforming a plant cell with an RNA precursor construct, and

a second step of generating from the plant cell the transgenic plant,

whereas said construct comprises a promoter that drives expression in a plant cell operably linked to a nucleotide sequence encoding a precursor micro RNA sequence, wherein the nucleotide sequence encoding said micro RNA precursor sequence is selected from the group consisting of:

a. a nucleotide sequence as depicted in SEQ ID NO: 47

b. a polynucleotide sequence having at least 70% sequence identity with the nucleic acid of

a) above;

c. a polynucleotide sequence that is complementary to the nucleic acid of a) above; and

d. a polynucleotide sequence that hybridizes under stringent conditions to the nucleic acid

of a) above.

14. A method of claim 13, wherein the nucleotide sequence encoding a precursor micro RNA sequence has been engineered in a way that the nucleotide sequence encoding for a micro RNA as depicted in SEQ ID NO: 37 is replaced by a nucleotide sequence encoding for a micro RNA as depicted in SEQ ID NO:40.

15. An isolated nucleic acid comprising a polynucleotide sequence selected from the group consisting of:

a nucleotide sequence as depicted in SEQ ID NO: 47

a polynucleotide sequence having at least 70% sequence identity with the nucleic acid of a)

above;

a polynucleotide sequence that is complementary to the nucleic acid of a) above; and

a polynucleotide sequence that hybridizes under stringent conditions to the nucleic acid of a) above.

16. A method of modulating the level of a seed storage compound weight percentage in a plant, comprising

a. a first step of introduction into a plant cell of an expression vector containing a nucleic acid, and

b. a second step of generating from the plant cell the transgenic plant,

wherein the nucleic acid encodes a polypeptide that functions as a modulator of a seed storage compound in the plant wherein the nucleic acid comprises the polynucleotide sequence of claim 5.

17. The method of Claim 16, wherein the level of oleic acid weight percentage is modified.

18. A transgenic plant made by the method of claims 10, 13 or 16.
19. The transgenic plant of Claim 18, wherein the level of oleic acid weight percentage is increased in the transgenic plant as compared to the wild type variety of the plant.
20. The transgenic plant of Claim 18, wherein the plant is selected from the group consisting of rapeseed, canola, linseed, soybean, sunflower, maize, oat, rye, barley, wheat, pepper, tagetes, cotton, oil palm, coconut palm, flax, castor, sugarbeet, rice and peanut.
21. A seed produced by the transgenic plant of Claim 18, wherein the plant expresses the polypeptide that functions as a modulator of a seed storage compound and wherein the plant is true breeding for a modified level of seed storage compound weight percentage as compared to a wild type variety of the plant.

Appendix A**Figure 1A: SEQ ID NO: 1 - Nucleic acid sequence of AtFAD-01**

GACCACCAAGAAGAAGAGCCACACACTCACAAATTAAAAGAGAGAGAGAGAGAGAGAGACAGAG
 AGAGAGAGAGATTCTGCGGAGGAGCTTCTTCTCGTAGGGTGTTCATCGTTAACGTTATCGC
 CCCTACGTCAAGCTCCATCTCCAGAAACATGGGTGCAGGGTGAAGAATGCCGTTCTACTTCTT
 CCAAGAAATCGGAAACCGACACCACAAAGCGTGTGCCGTGCAGAAACCGCCTTCGGTGG
 GAGATCTGAAGAAAGCAATCCGCCGCATTGTTCAAACGCTCAATCCCTCGCTCTTCTCCTAC
 CTTATCAGTGCACATCATTATAGCCTCATGCTTACTACGTCGCCACCAATTACTTCTCTCCTC
 CCTCAGCCTCTCTTACTTGGCTTGCCACTCTATTGGGCTGTCAAGGCTGTGTCCACTAATGG
 TATCTGGGTATAGCCCACGAATCGGGTACCCACGCATTAGCGACTACCAATGGCTGGATGAC
 ACAGTTGGTCTTATCTTCCATTCTCCTCGTCCCTACTTCTCCTGGAAAGTATAGTCATCGC
 CGTCACCATTCAACACTGGATCCCTCGAAAGAGATGAAGTATTGTCCCAAAGCAGAAATCAGC
 ATCAAGTGGTACGGGAAATACCTCAACAAACCTCTTGGACGCATCATGATGTTAACCGTCCAGT
 TTGTCCTCGGGTGGCCCTGTACTTAGCCTAACGTCCTGGCAGACCGTATGACGGGTTCGC
 TTGCCATTCTCCCCAACGCTCCCATCTACAATGACCGAGAACGCCTCCAGATATAACCTCTG
 ATGCGGGTATTCTAGCCGTCGTTGGCTTACCGTACGCTGCTGCACAAGGGATGGCCT
 GATGATCTGCCCTACGGAGTACCGCTCTGATAGTGAATCGTCTCGTCTGATCACTTACT
 TGCAGCACACTCATCCCTCGTTGCCTCACTACGATTACAGAGTGGACTGGCTCAGGGAGC
 TTTGGCTACCGTAGACAGAGACTACGGAATCTGAACAAGGTGTCCACAACATTACAGACACAC
 ACGTGGCTCATCACCTGTTCTGACAATGCCGCATTATAACGCAATGGAAGCTACAAGGCGATA
 AAGCCAATTCTGGGAGACTATTACAGTCGATGGAACACCGTGGTATGTAGCGATGTAGGG
 AGGCAAAGGAGTGTATCTATGTAGAACCGGACAGGGAAAGGTGACAAGAAAGGTGTACTGGTA
 CAACAATAAGTTATGAGGATGATGGTGAAGAAATTGTCGACCTTCTTGTCTGTTGTCTTTG
 TTAAAGAAGCTATGCTCGTTAATAATCTTATTGTCGTTTGTGTTATGACATTGGCTG
 CTCATTATGTTATGGGAAGTTAGTGTCAAATGTTGTGCGTATTGTTCTCATCGCTG
 TTTGTTGGGATCGTAGAAATGTGACCTCGGACAGTAAAACCTGTACTAAAACATCTCCCTA
 TTGGCATTCTAAACTTTAATAGTACGTGCTGAGTGAATCTTGACTTGAGTCA

Figure 1B: SEQ ID NO: 3 - Nucleic acid sequence of the open reading frame of AtFAD-01

ATGGGTGCAGGTGGAAGAATGCCGTTCTACTCTTCCAAGAAATCGGAAACCGACACCAAA
 AGCGTGTGCCGTGCGAGAAACCGCCCTTCTGGTGGAGATCTGAAGAAAGCAATCCGCCGC
 ATTGTTCAAACGCTCAATCCCTCGCTTCTCCCTACCTTACGTCACATCATTAGCCTCAT
 GCTTCTACTACGTCGCCACCAATTACTTCTCTCCCTCAGCCTCTCTTACTTGGCTTGGC
 CACTCTATTGGGCTGTCAAGGCTGTCTTAACGGTATCTGGTATAGCCCACGAATCGGG
 TCACCAACGATTAGCGACTACCAATGGCTGGATGACACAGTTGGCTTATCTCCATTCTCC
 TCCTCGTCCCTTACTTCTCTGGAAAGTATAGTCATGCCGTACCATTCAAACACTGGATCCCTC
 GAAAGAGATGAAGTATTGTCCCAAAGCAGAAATCAGCAATCAAGTGGTACGGAAATACCTCAA
 CAACCCCTTGGACGCATCATGATGTTAACCGTCCAGTTGTCTCGGGTGGCCCTTGTACTTAG
 CCTTTAACGTCTGGCAGACCGTATGACGGGTCGCTGCCATTCTCCCCAACGCTCCCATC
 TACAATGACCGAGAACGCCCTCAGATATACTCTCTGATGCGGGTATTCTAGCCGTCTGTTGG
 TCTTTACCGTTACGCTGCTGACAAGGGATGGCCTCGATGATCTGCTCACGGAGTACCGCTT
 CTGATAGTGAATCGTCTCGTCTGATCACTTACTTGCAAGCACACTCATCCCTCGTCTGCTCA
 CTACGATTACATCAGAGTGGACTGGCTCAGGGAGCTTGGCTACCGTAGACAGAGACTACGGA
 ATCTTGACAACAGGTGTTCCACAAACATTACAGACACACACAGTGGCTCATCACCTGTTCTGACAAT
 GCCGCATTATAACGCAATGGAAGCTACAAGGCGATAAAGCCAATTCTGGGAGACTATTACAGT
 TCGATGGAACACCGTGGTATGTAGCGATGTATAGGGAGGCAAAGGAGTGTATCTATGAGAAC
 GGACAGGGAAAGGTGACAAGAAAGGTGTACTGGTACAACAAATAAGTTA

Figure 1C: SEQ ID NO: 4 - Amino acid sequence of the open reading frame of AtFAD-01

MGAGGRMPVPTSSKKSETDTTKRVPCEKPPFSVGDLLKAIPPHCFKRSIPRSFSYLI
 SDIIASCFYVATNYFSLLPQPLSYLAWPLYWACQGCVLTGIVIAHECGHAFSDYQWLDDT
 VGLIFHSFLVPYFSWKYSHRRHHSNTGSLERDEVFVPKQKSAIKWYGYKLN
 NPLGRIMMLTVQFVLGWPLYAFNVSGRPYDGFACHFFPNAPIYNDRERLQI
 YLSDAGILAVCFGYRYAAAQGMASMICLYGVPLLIVNAFLV
 LITYLQHTHPSLPHYDSSEWDLRLGALATVDRDYGILNKV
 FHNTDTHVAHHLFSTMPHYNAMEATKA
 KPILG
 DYYQFDGTPWVAMYREAKE
 CIYVEPDREGDKKG
 VYWN
 NKL

Figure 2A: SEQ ID NO: 5 – Nucleic acid sequence of GmFAD-01

TAGGCACCTAGCTAGTAGCTACAATATCAGCACCTCTCTATTGATAAACAAATTGGCTGTAATGC
 CGCAGTAGAGGACGATCACAAACATTCTGTGCTGGATACTTTTGTGTTATGGGTCTAGCAAAGGA
 ACAATAATGGGAGGTGGAGGCCGTGGCCAAAGTTGAAATTCAAGCAGAAGAACCCCTCTCA
 AGGGTCCAACACAAAGCCACCATTCACTGTTGCCACTCAAGAAAGCCATTCCACCGCACT
 GCTTCAGCGTCCCTCACTTCATTGTCCTATGTTGTTATGACCTTCATTGGCTTCATT
 CTACATTGCCACCACCTACTTCCACCTCCCTCACCCTTCCCTCATTGCACTGCCAATCTA
 TTGGGTTCTCCAAGGTTGCATTCTACTGGCGTGTGGGTGATTGCTCACGAGTGTGGTCACCAT
 GCCTCAGCAAGTACCCATGGGTTGATGATGTTATGGGTTGACCGTTACTCAGCACTTTAGT
 CCCTTATTCTCATGGAAAATAAGCCATGCCGCCACCCTCAACACGGGTTCCCTGACCGTG
 ATGAAGTGTGTTGTCAAAACCAAAATCCAAAGTGCATGGTACACCAAGTACCTGAACAACCT
 CTAGGAAGGGCTGCTCTCTCATCACACTACAATAGGGTGGCCTATGTTAGCCTTCAA
 TGTCTGGCAGACCCATGATGGTTGCAAGCCACTACCACCTTATGCTCCATATATTCTAA
 CCGTGAGAGGCTCTGATCTATGTCATGTTGCTTGTGACTTACTCTCTACCG
 TGTTGCAACTATGAAAGGGTGGTTGGCTGATGTTATGGGTTGCCATTGCTCATTGTA
 ACGGTTTCTTGTGACTATCACATATTGCAAGCACACACTTGCCTGCTCATTACGATTCA
 CAGAATGGGACTGGCTGAAGGGAGCTTGGCAACTATGGACAGAGATTATGGGATTCTGAACAA
 GGTGTTCATCACATACTGATGACTCATGTCACCACATCTTCTTACAATGCCACATTACCA
 TGCAATGGAGGAACCAATGCAATCAAGCCAATTGGGTGAGTACTACCAATTGATGACACAC
 CATTTACAAGGCACTGTGGAGAGAAGCGAGAGAGTGCCTCTATGTGGAGGCCAGATGAAGGAAC
 ATCCGAGAAGGGCGTGTATTGGTACAGGAACAAGTATTGATGGACCAAGCAATGGGCCATAGTG
 GGAGTTATGGAAGTTTGTCACTTATCACTTAATTAGTAGAATGTTATAAATAAGTGGATTGCCG
 CGTAATGACTTGTGTCATTGAAACAGCTTGTAGCGATCCATGGTTATAATGTAAGGAAACAAGG
 GAAAGGGTCTGGTAAAAAAAAAGCGGCCGTTAAAGGAAACAAGG

Figure 2B: SEQ ID NO: 7 – Nucleic acid sequence of the open reading frame of GmFAD-01

ATGGGTCTAGCAAAGGAAACAATAATGGGAGGTGGAGGCCGTGGCCAAAGTTGAAATTCA
 AGAAGAAGCCTCTCAAGGGTCCAACACAAAGCCACCATTCACTGTTGCCACTCAAGAAA
 GCCATTCCACCGCACTGCTTCAGCGTCCCTCATTGTCCTATGTTGTTATGACCTT
 TCATTGGTTTCTACATTGCAACCCACCTACTTCCACCTCCCTCACCCTTCCCT
 ATTGCATGGCAACTCTATTGGTTCTCAAGGTTGCAATTCTACTGGCGTGTGGGTGATTGCTCA
 CGAGTGTGGTCACCATGCCTTCAGCAAGTACCCATGGGTTGATGATGTTATGGGTTGACCGTTC
 ACTCAGCACTTTAGTCCCTTATTCTCATGGAAAATAAGCCATGCCGCCACCCTCAACACG
 GGTTCCCTGACCGTGATGAAAGTGTGTTGCTCCAAACCAAAATCCAAGTTGATGGTACACCAA
 GTACCTGAACAACCTCTAGGAAGGGCTGCTCTTCTCATCACACTCACAATAGGGTGGCCTA
 TGTATTTAGCCTCAATGTCCTGGCAGACCCATGATGGTTTGCAGGCCACTACCACCTTATG
 CTCCCATATAATTCTAACCGTGAGAGGCTCTGATCTATGTCCTGATGTTGCTTGTGA
 CTTACTCTCTACCGTGTTGCAACTATGAAAGGGTGGTTGGCTGCTATGTGTTATGGGTT
 CCATTGCTCATTGTAACGGTTTCTGTGACTATCACATATTGCAAGCACACACTTGCCTG
 CCTCATTACGATTCACTAGAATGGGACTGGCTGAAGGGAGCTTGGCAACTATGGACAGAGATTA
 TGGGATTCTGAACAAGGTGTTCATCACATACTGATGACTCATGTCCTCACCACATCTCTAC
 AATGCCACATTACCATGCAATGGAGGCAACCAATGCAATCAAGCAATATTGGTGAAGTACTACC
 AATTGATGACACACCAATTACAAGGCACTGTGGAGAGAAGCGAGAGAGTGCCTATGTGGA
 GCCAGATGAAGGAACATCCGAGAAGGGCGTGTATTGGTACAGGAACAAGTAT

Figure 2C: SEQ ID NO: 8 - Amino acid sequence of the open reading frame of GmFAD-01

MGLAKETIMGGGGRVAKVEIQQQKPLSRVPNTKPPFTVGQLKKAIPPHCFQRSLLTSYVVDLSA
 FIFYIATTYFHLLPHPFSLIAWPIYWVLQGCILTGWWVIAHECGHHAFSKYPWVDDVMGLTVHSALLVP
 YFSWKISHRRHHSNTGSLRDEVFPKPKSKVAWYTKYLNPLGRAASLLITLTIGWPMYLA
 RPYDGFASHYHPYAPIYSNRERLLIYVSDVALFSVTYSLYRVATMKGLVWLLCVYGVPLLIVNGFLVTIT
 YLQHTHFALPHYDSSEWDWLKGALATMDRDYGLILNKVFHHITDTHVAHHLFSTMPHYHAMEATNAIK
 PILGEYYQFDDTPFYKALWREARECLYVEPDEGTSEKGVYWYRNKY

Figure 3A: SEQ ID NO: 9 - Nucleic acid sequence of GmFAD-02

CGGTGTCGGTCTCTCTCTCACCCCTCTTACACATTTCTGCGCTCTAACAAACAT
 TCTCGTTACACTTCAGATTGTGAAGATGGGGCGGGTGGCCGAAGTGTGTCCTGC
 CAACAGGAAGTCAGAGGTTGACCCCTTGAAGCAGGGTGCCATTGAAAAACCTCCATTAGTCTCA
 GCCAAATCAAGAAGGTCACTCCACCTCACTGTTCCAGCGTTCTGTTCCGCTCATTCTCCTATG
 TTGTTACGACCTCACCATAGCCTCTGCCTCTATTATGTTGCCACCCATTACTCCACCTCCTTC
 CCAGCCCTCTCTTGGCATGGCAATCTACTGGCTGTCCAAGGTTGCATCCTTACTGGA
 GTTGGGTCAATTGCCATGAGTGTGGCCACCATGCATTAGTCACTGACTACCAAGTTGCTTGATGATA
 TGTTGGCCTGTCTCCACTCCGGTCTCTAGTCCCATACTTTATGGAAATACAGCCATCGCC
 GTCACCACTCCAACACTGGTTCTCTGAGCGGGATGAAGTATTGTGCCAAGCAGAAGTCCTGT
 ATCAAGTGGTACTCTAAATACCTAACATCCTCAGGCAGAGTCCTCACTTTGCTGTACCC
 CACACTGGTTGGCCCTTGTACTGGCTTAAATGTTCTGGAAGGCCTTATGATAGATTGCTT
 CCACATGACCCATATGGTCCCATTACTCTGATCGTAAAGCAGACTCAAATATATATCAGATGC
 AGGAGTACTTGCAGTATGCTATGGCTTTCCGTCTGCCATGGAAAAGGACTTGCTGGGT
 GTGTGTGTTATGGAGTTCCATTGCTAGTGGTCAATGGATTGTTGATTACATTGCAAG
 CATACTCACCTGCATTGCCACATTACACTCCTCTGAGTGGACTGGTGGAGAGGCTTAGC
 AACAGTGGATAGAGATTATGGAATCCTGAACAAGGTCTCCATAATATTACAGACACTCATGTA
 CACATCACTTGTCTCCACATGCCACATTATCATGCAATGGAGGCTACAAAGGCAATAAACCC
 ATTTGGGAGAGTATTATGGTTGATGAGACTCCATTGTCAGGCAATGTGGAGAGGAGGCAAG
 AGAGTGTATTATGGAGCCAGATCAAAGTACCGAGAGCAAAGGTGTATTGGTACAACA
 AGTTGTGATGATGTTGACTGAGCCAGGCTTGTGACTTTCCCTGTGACTGTTAGTATCATGGT
 TGCTTATTGGGATAATTGTTGAAACCTGTGTTGGTAGTAAGTATCTAGACAGTTGCATAGCG
 GTTTGTTACAGAATAAGATATGCCCTCTGAAACAGTTGATTATTGCACCATGGTTGCAATC
 GGTGCATGTCGACCAAGTTCTCAAGACTGTGGAGAAGCTTATTGTTCCAGTTCTGAATCC
 AAGTTGTTACCGTATTCTGTTATTGACTAGAACCTAACCTTCTGCTGTTCTCATGAT
 CGTCACTCGCAAATGAATCACATTCAAACCAAAAAAAAAAAAAAA

Figure 3B: SEQ ID NO: 11 - Nucleic acid sequence of the open reading frame of GmFAD-02

ATGGGGCGGGTGGCCGAAGTGTGTCCTCTGCCAACAGGAAGTCAGAGGTTGACCCCTTG
 AAGCGGGTGCCTTGAACACCTCCATTAGTCTCAGCCAAATCAAGAAGGTCACTCCACCTCA
 CTGTTCCAGCGTTCTGTTCCGCTCATTCTCCTATGTTGTTACGACCTCACCATGCCTCTG
 CCTCTATTATGTTGCCACCCATTACTCCACCTCCCTCCAGCCCTCTCTTGGCATGGCC
 AATCTACTGGCTGTCAAGGTTGCATCCTACTGGAGTTGGTCATTGCCATGAGTGTGGC
 CACCATGCATTCACTGACTACCAAGTTGCTGATGATATTGTTGCCCTGTCTCCACTCCGGTCT
 CCTAGTCCCATACTTTATGGAAATACAGCCATGCCGTACCAACTCCAAACACTGGTCTCTG
 AGCGGGATGAAGTATTGTGCCAAGCAGAAGTCCTGTATCAAGTGGTACTCTAAATACCTTAAC
 AATCCTCAGGCAGAGTCCTCACTTTGCTGTACCCCTCACACTGGTGGCCCTTGACTTGGC
 TTAAATGTTCTGGAAGGCCTTATGATAGATTGCTTGCACATGACCCATATGGTCCATT
 CTCTGATCGTAAAGCAGTCAAATATATATCAGATGCAGGAGTACTGCAAGTATGCTATGCC
 TTTCCGCTTGCCATGGAAAAGGACTTGCCCTGGGTGGTGTGTTATGGAGTTCCATTGCTA
 GTGGTCAATGGATTGGTTGATTACATTGCAAGCATACTCACCCCTGCATTGCCACATTAC
 ACTTCCTCTGAGTGGACTGGTTGAGAGGAGCTTAGCAACAGTGGATAGAGATTGGAATCCT
 GAACAAGGTCTCCATAATATTACAGACACTCATGAGCACATCACCTGTTCTCCACAATGCCACA
 TTATCATGCAATGGAGGCTACAAAGGCAATAAACCCATTGGAGAGTATTATCGTTGATG
 AGACTCCATTGTCAGGCAATGTGGAGAGGAGCAAGAGAGTGTATTGTGGAGCCAGATCA
 AAGTACCGAGAGCAAAGGTGTATTGGTACAACAATAAGTTG

Figure 3C: SEQ ID NO: 12 - Amino acid sequence of the open reading frame GmFAD-02

MGAGGRTDVPPANRKSEVDPLKRPFKEKPPFSLSQIKVIPPFCFQRSVFRSFSYVYDLTIAFCLYY
 VATHYFHLPSPLSFLAWPIYWAQGCILTGWWVIAHECGHIHAFSDYQLLDDIVGLVLHSGLLVPYFS
 WKYSHRRHHSNTGSLERDEVFVPKQKSCIKWYSKYLNNPPGRVLTAVTLGLWPLYLALNVSGRP
 YDRFACHYDPYGPYIYSDRERLQIYISDAGVLAVCYGLFRLAMAKGLAWVVCVYGVPLLVNGFLVLITF
 LQHTHPALPHYTSSEWDLRLGALATVDRDYGILNKVFHNITDTHVAHHLFSTMPHYHAMEATKAICPI
 LGEYYRFDETPFKAMWREARECIYVEPDQSTESKGFWYNNKL

Figure 4A: SEQ ID NO: 13 - Nucleic acid sequence of GmFAD-03

ACTTTCATGGAAATACAGCCATGCCGTACCACTCCAACACAGGTTCTTGAGCGAGATGAA
GTATTTGTGCCAAAGCAGAAGTCCAGTATCATGTGGTACTCTAAATACCTAACAAATCCACCAAGG
CAGAGTCCTCACTCTGCCGTACCCCTCACGCTTGGTGGCCCTTGACTTGGCTTTAATGTTT
CTGGAGGCCTTATGATAGATTGCTGCCACTATGACCCTATGGTCCCATTACTCTGACCGA
GAACGACTCAAATATATATCAGATGCAGGAGTACTTGCAGTATGCTATGGCCTTCTGTCTT
GCCATGGCAAAAGGGCTTGCCTGGGGGTGTGTTATGGAGTCCATTGCTTGTGGTCAATG
GATTTTGGTGTGATTACATTTCAGCACACTCACCCCTGCATTGCCACACTACACTCCCTCTG
AGTGGGACTGGTGGAGAGGAGCTTAGCAACAGTGGATAGAGATTATGGAATCCTGAACAAAGGT
CTTCCATAATATTACAGACACTCATGTAGCTCATCACTTGTCTCCACAATGCCACATTATCATGC
AATGGAGGCACAAAGGCAATAAGCCCCTGGGAGAGTATTATGGGTTGATGGGACTCCA
TTTGTCAAGGCAATGTGGAGAGAGGCAAGAGAGGTGATTATGTGGAGCCAGATCAAAGTACTCA
GAGCAAAGGTGATTTGGTACAACATAAGTTGTGATTATGTAGCCGGGGCTTGTGTC
CGTCAGGTGGGATGGTTGAACTTCCCTGTGACTGTTAGTATCATGCTTGTGTTGGAAAT
ATTTTGTGAACCCCTGATGTGGTAGTAGTATCTAGAAAGTAGCATAGCGTTTGTTGAGAAT
AAGATATAGCATCTGAACAGTTGATTATTGCACCATGTTTGAATCAGTGCATGTCACCGG
GTTCTCAAGATTGTGGGGATGCTTATTCTGTTCCAGTTCTGAATCCAAGTTGTTATCATATTCT
GTTATTGA

Figure 4B: SEQ ID NO: 15 - Nucleic acid sequence of the open reading frame of GmFAD-03

ATGTGGTACTCTAAATACCTAACAAATCCACCAAGGCAGAGTCCTCACTCTGCCGTACCCCTCAC
GCTTGGTGGCCCTTGACTTGGCTTTAATGTTCTGGAAAGGCCTTATGATAGATTGCTTGCCT
CTATGACCCCTTATGGTCCCATTACTCTGACCGAGAACGACTTCAAATATATATCAGATGCAGG
AGTACTTGCAGTATGCTATGGCCTTCTGTGCTTGCCTGGCAAAAGGGCTTGCCTGGTGGTGT
GTGTTTATGGAGTCCATTGCTTGTGTCATGGATTGGTTGGTGTGATTACATTTCAGCACA
CTCACCCCTGCATTGCCACACTACACTTCCCTGAGTGGGACTGGTGGAGAGGAGCTTAGCAAC
AGTGGATAGAGATTATGGAATCCTGAACAAGGTCTCCATAATATTACAGACACTCATGTAGCTCA
TCACTTGTTCTCCACAATGCCACATTATCATGCAATGGAGGGCACAAGGGCAATAAGCCCCT
TGGGAGAGTATTATGGTTGATGGGACTCCATTGTCAAGGCAATGTGGAGAGAGGCAAGAGA
GTGTATTATGTGGAGGCCAGATCAAAGTACTCAGAGCAAAGGTGTATTTGGTACAACAATAAGTT
G

Figure 4C: SEQ ID NO: 16 - Amino acid sequence of the open reading frame of GmFAD-03

MWYSKYLNNPPGRVLTLAVTLLGWPLYLAFNVSGRPYDRFACHYDPYGPPIYSDRERLQIYISDAGVL
AVCYGLFCLAMAKGLAWVVCVYGVPLLVNGFLVLITFLQHHTHPALPHYTSSEWDWLRGALATVDRD
YGILNKVFHNITDTHVAHHLFSTMPHYHAMEATKAIPILGEYYRFDGTPFKAMWREARECIYVEPD
QSTQSKGVFWYNNKL

Figure 5A: SEQ ID NO: 17 – Nucleic acid sequence of ZmFAD-01

CTCCCTCCTCCTCCTCCCTGCAAATCCTGCAGGCACCACCGCTCGTTTCTGTCCGGGG
 GACAGGAGAGAAGGGGAGAGACCGAGAGAGGGTGAGGCGCGCGTCCGCCGATCTGCTCCGC
 CCCCCGAAGCAGCCTGTCACGTCGTCTCACTCTCAGCAACCAGCGAAAATGGGTGCCGGAGG
 CAGGATGACCGAGAAGGAGCGGGAGAAGCATGAGCAGGAGCAGGTGCCCCTGCTACGGCG
 GTGGCGCGGCAGTGCAGCGGTGCGCCGGTGGAGAAGCCGCCGTTACGTTGGGGCAGATCAAG
 AAGGCATCCCGCCGACTGCTCGAGCGCTCCGTGCTGAGGTCTTCTCGTACGTGGCCCAC
 GACCTGTCGCTGCCGCCGCTCCCTACCTCGCGGTGGCCGTGATACCGCGCTACCGTGC
 CCGCTCCGCTACCGGGCCTGGCGCTGTACTGGGTGGCCCAGGGGTGCGTGTGACGGCGT
 GTGGGTGATCGCGCACGAGTGCAGGCCACCACGCCCTCCGACCCACGCGCTCCTGGACGACGC
 CGTCGGCCTGGCGCTGCACCGCGCTGCTGGTGCCTACTTCTCGTGGAAAGTACAGCCACCG
 GCGCCACCACTCCAACACGGGGTCCCTGGAGCGCGACGAGGTGTTCGTGGCGAGGACCAAGG
 AGGCCTGCCGTGGTACGCCCGTACGTGCACGGCAGGCCGCCGGCCGCTGGCGCACGTC
 GCCGTGAGCTACCCCTCGGCTGGCGCTGTACCTGGCCACCAACGCGTGGGGCGCGTA
 CCCGCGCTTCGCCACTTCGACCCCTACGGCCCCATCTACAACGACCGGGAGCGCGCCCA
 GATCTTGTCTCGGACGCCGGCTGTGGCCGTGGCGCTGTACAGCTGGCGCTGTTAGGACG
 CGTTCGGGGTCTGGTGGGTGGCGCTGTACGCCGTGCCGCTGTGATCGTCAACGCGTGGC
 TGGTGTCTACCGTACCTGCAGCACCCACCCGGCGCTGCCACTACGACTCGGGCGAGT
 GGGACTGGCTGCGCGCGCTCGCCACCGTCGACCGAGACTACGGCGTCTCAACCGCGT
 TTCCACCACATCACGGACACGCACGTCGCGCACCACCTTCTCACCAGCCGACTACCA
 CCGTGGAGGCCACCAAGGGCGATCAGGCCGCTCTCGCGAGACTACCAAGTTCGACCCGACCC
 CTGTCGCAAGGCCACCTGGCGCAGGCCAGGGAGTGCATCTACGTCGAGCCTGAGAACCGCA
 ACCGCAAGGCCGTCTTGTACAACAGCAAGTTAGCCGCCGCTTGCTTTTCCCTAGGAAT
 GGGAGGAGAAATCAGGATGAGAAGATGGTAATGTCTGCATCTACCTGTCTAATGGTTAGTCACCA
 GTCTTAGACAGGAAGAGAGCATTGGGCTTCAGAAAAGGAGGCTTACTGCACTACTGCAGTGC
 CATCGCTAGATTTAAGGCAAATTCAAGTGTCTGTGCCATGGCTGTGAGCTTGGGACTCTCA
 AGTAGTCAAGTTCTTGTGTTTTAGTCGTCGCTGTAGGCTTGCCGGCGGTGCT
 TGCGTGGCCGCGCCTGTGCGTGTGCCATCTCGTGTCCCTGTGTTGTTGAA
 ACACATAGTCTGGTGTCTTGGCGGAATAACAGATCGTGAACGACA

Figure 5B: SEQ ID NO: 19 – Nucleic acid sequence of the open reading frame of ZmFAD-01

ATGGGTGCCGGAGGCAGGATGACCGAGAAGGAGCGGGAGAAGCATGAGCAGGAGCAGGTGCG
 CCGTGCCTACCGGGCGGTGGCGCGAGTCAGCGGGTCGCCGGTGGAGAAGCCGCCGTTACGT
 TGGGGCAGATCAAGAAGGCCGATCCGCCGCACTGCTTCGAGCGCTCCGTGCTGAGGTCTTCT
 CGTACGTGGCCCACGACCTGTCGCTGCCGCCGCTCCTCACCTCGCGGTGGCCGTGATAC
 CGGCGCTACCCCTGCCGCTCCGCTACGCCGCTGGCCGCTGTACTGGGTGGCCCAGGGGTG
 GTGTGCACGGCGTGTGGGTGATCGCGCACGAGTGCAGGCCACGCCCTCCGACCACGC
 GCTCCTGGACGACGCCGTGGCCTGGCGCTGCACTCGCGCTGCTGGTGCCTACTCTCGT
 GAAGTACAGCCACCGGCCACCACCTCAACACGGGGTCCCTGGAGCGCGACGAGGTGTTGT
 GCCGAGGACCAAGGAGGCCTGCCGTGGTACGCCCGTACGTGCACGGCAGCCCCCGGGGCC
 GGCTGGCGCACGTCGCCGTGCAGCTACCCCTGGCTGGCCGCTGTACCTGGCCACCAACGCGT
 CGGGGCCGCGTACCCGCCCTGCCACTTCGACCCCTACGGCCCCATCTACAACGACC
 GGGAGCGGCCAGATCTCGTCTCGGACGCCGGCGTCGTGGCGTGGCGTTCGGGCTGTAC
 AAGCTGGCGGGCGCTGGGTGCTCATCACGTACCTGCAGCACCCACCCGGCGCTGCCCT
 CGTCAACGCGTGGCTGGGTGCTCATCACGTACCTGCAGCACCCACCCGGCGCTGCCCT
 CGACTCGGGCGAGTGGACTGGCTGCGCGCGCTGCCACCGTCGACCGAGACTACGGCG
 TCCTCAACCGCGTGTCCACCATCACGGACACGCACGTCGCGCACCACCTTCTCCACCAT
 GCCGCACTACCAACGCCGTGGAGGCCACCAAGGGCGATCAGGCCGCTCGGCGAGTACTACCA
 GTTCGACCCGACCCCTGTGCCAACGCCACCTGGCGCGAGGCCAGGGAGTGCATCTACGTCG
 GCCTGAGAACCGCAACCGCAAGGGCGTCTTGGTACAACAGCAAGTTC

Figure 5C: SEQ ID NO: 20 - Amino acid sequence of the open reading frame of ZmFAD-01

MGAGGRMTEKEREKHEQEVARATGGAAVQRSPVEKPPFTLQIKKAIPPHCFERSVRSFSYVA
 HDLSLAAALLYLAVAVIPALPCPLRYAAWPLYWVAQGCVCTGVWVIAHECGHHAFSDHALDDAVGL
 ALHSALLVVPYFSWKYSHRRHHSNTGSLERDEVFVPRTEALPWYAPYVHGSPAGRLAHVAVQLTLG
 WPLYLATNASGRPYPRFACHFDPYGPYNDRERAQIFVSDAGVVAVAFGLYKAAA
 AVPLLIVNAWLVLITYLQHTHPALPHYDSEWDWLRGALATVDRDYGVLNRFHHITDTHVAHHLFST
 MPHYHAVEATRAIRPVLGEYYQFDPTPVAKATWREARECIYVEPENRNRKGVFWYNSKF

Figure 6A: SEQ ID NO: 21 – Nucleic acid sequence of OsFAD-01

CTCCTCTCCTCCCTCCCTGCACAGACCACTCGTTCTCCACAAAGAGGGAGGGAAACAAGGGAA
 GGGTGTGCCGCCGCCGCCACCCGATCTGCCCTCCGCCGCTCCGCTCCTCGCGCCTCGCAAAT
 CTACCAACGCTAACTCAGCAAGATGGGTGCCGGCGAGGATGACGGAGAAGGAGCGGGAGG
 AGCAGCAGAAGCTGCTGCCGCCGGCAATGGCGGCCGTGCAGCGGTGCGCCACGGAC
 AAGCCGCCGTTACGCTGGGGCAGATCAAGAAGGCCATCCCGCCTCACTGCTTCCAGCGCTCG
 GTGATCAAGTCTTCTCCTACGTGGTCCATGACCTCGTGTACGTCGCCGCTGCTACTTCG
 CGCTGGTCAATGATCCCCGTGCTGCCAGCGGGATGGAGTTGCCGATGGCCGCTACTGCC
 TCGCGAGGGCTGCGTGCACCGGGGTGCGTACCGACATCGTCGCCCTCGTGTGACTCGTGC
 TTCTCGACTACTCGGTGCTCGACGACATCGTCGCCCTCGTGTGACTCGTGCCTGCTCGTCC
 CCTACTTCTCGTGGAAAGTACAGCCACCGGCCACCACTCCAACACCCGGTCGCTGGAGCGCG
 ACGAGGGTGTTCGCCCCGAAAGCAGAAGTCGGCGATGGCGTGGTACACCCCGTACGTGTACCA
 ACCCGATCGGCCGCCGCTGGTGCACATCTCGTGCAGCTCACCGTGGGTGCGCCACCGTACCTGG
 CGTTCAACGTGTCCGGCCGCCGTACCCGCGCTTCGCGTGCACCTCGACCCCTACGGCCCGA
 TCTACAAACGACCAGGGAGCGCGTCCAGATCTTATCTCCGACGTGCCGTCGTGTCCGGGGC
 TCGCCCTGTTCAAGCTGTCGTCGCCGTTGGGTTCTGGTGGGTGGTGCGCCGTACCGCGTGC
 CGCTGCTGATCGTAACCGCGTGGGACTGGCTCCGCCGCGCTGGCCACCGTGGGACCGC
 TGCCGCACTACGACTCGAGCGAGTGGGACTGGCTCCGCCGCGCTGGCCACCGTGGGACCGC
 GACTACGGCATCCTCAACAAGGTGTTCCACAACATCACGGACACGGCACGTGCCGACCCACTCT
 TCTCCACCATGCCGACTACCAACGCCATGGAGGGCACTAACGGGATCGGCCACCGTGGCG
 AGTACTACCGTTCGACCCGACGCCGTCGCCAAGGGACATGGCGAGGGCAAGGAGGTGCA
 TCTACGTGAGCCTGAGGACAACAAGGGCTTCTGGTACAACAACAAGTTCTAAGTGTGCT
 GCTGTGAAATCAGCATCACACATCCATGCCAAGCAGCAAACAAATTGAAAGAAGATTACAA
 GGGAAAGAGAAGATAGTGTCTCGGAAATCGTCGTAGCAAGTATCATCCATCCATCCAACCCATG
 ACAACATCGTCTATCATCCATGCATCTATCTATGGTTAGTCTCTTAGATAGGAGAGGGCACTTGG
 GCACAGAGGAAGGCTATTGCACTGCCATTGCTAGAGTTGCCATCAAGTGCAGGTAAGTAGGCGGATC
 AGGCCTGTCATGCCCTGCTGTTATTCCATCGTTTCCCTCCGCCATTGTTGGTTCTGTCATTGAGTTGGCTC
 CGTCCGTTGCTTGTGTTAAAACGCTTGTGGTGTACGGCGAATAACTAACGTCGAATGG
 AATGACAACCTTTTTCGTA

Figure 6B: SEQ ID NO: 23 – Nucleic acid sequence of the open reading frame of OsFAD-01

ATGGGTGCCGGCGGCAGGATGACGGAGAAGGAGCGGGAGGAGCAGCAGAAGCTGCTGGCCG
 CGCCGGCAATGGCGCGGCCGTGCAGCGGTGCCGACGGACAAGCCGCCCTCACGCTGGG
 AGATCAAGAAGGCCATCCCGCCTACTGCTCCAGCGCTCGGTATCAAGTCTTCTCCTACGT
 GGTCCATGACCTCGTGTACGTCGCCGCTGCTACTTCGCGCTGGTATGATCCCCGTGCTG
 CCGAGCGGGATGGAGTTGCGGCATGGCGCTACTGGATCGCGCAGGGCTGCGTCTCAC
 CGCGTGTGGTCATCGCGCACGAGTGCAGGCCACCATGCCCTCCGACTACTCGGTGCTGA
 CGACATCGTCGCCCTCGTGCCTCGTGCACCGTGCCTGCTCGTCCCGACTTCTCGTGGAAAGTACAGC
 CACCGGCCACCACTCCAACACCGGGTCGCTGGAGCGCGACGAGGTGTTGTCGCCGAAGCA
 GAAGTCGGCGATGGCGTGGTACACCCGTACGTGTACCAACACCGATGGCCGGCTGGTGCA
 CATCTCGTGCAGCTCACCTCGGGTGGCCGCTGTACCTGGCTTAACGTGTCCGGCCGCC
 GTACCCCGCCTCGCGTGCACCTCGACCCCTACGGCCGATCTACAACGACCGGGAGCGCGT
 CCAGATCTTCTCGACGTGGCGTGTGCGCTACGGCGTCCGCTGCTGATCGTAACGCGT
 GGCCTGGGTTCTGGTGGGTGGTGCCTGCGTGTACGGCGTCCGCTGCTGATCGTAACGCGT
 GCTGGTGTGTCATCACCTACCTGCAGCACACCCACCGCGCTGCCGACTACGACTCGAGCGA
 GTGGGACTGGCTCGCGGCCGCTGGCCACCGTGGAGCGCGACTACGGCATCCTCAACAAGG
 TGTTCCACAACATCACGGACACGCACGTGCGCACCACCTCTCCACCATGCCGACTACCA
 CGCCATGGAGGCCACTAAGCGATCCGCCCCATCCTCGCGAGTACTACCAAGTTCGACCCGAC
 GCCCGTCCGCAAGGCGACATGGCGGAGGCCAAGGAGTGCATCTACGTGAGCCTGAGGACAA
 CAAGGGCGTCTTGTGTTACAACAACAAGTT

Figure 6C: SEQ ID NO: 24 - Amino acid sequence of the open reading frame of OsFAD-01

MGAGGRMTEKEREQQKLLGRAGNGAAVQRSPDKPPFTLQKIKKAIPPHCFQRSVIKSFSYVVHDL
 VIVAALLYFALVMIPVLPSPGMFAAWPLYWIAQGCVLTGVWVIAHECGHHAFSDYSVLDIVGLVLHS
 SLLVPYFSWKYSHRRRHSNTGSLERDEVFVPKQKSAMAWYTPVYHNPIGRLVHIFVQLTLGWPLYL
 AFNVSGRPYPRFACHFDPYGPIYNDRERVQIFISDVGVSAGLALFKLSSAFGFWWVVVRYGVPLLIV
 NAWLVLITYLQHTHPALPHYDSEWDLRLGALATVDRDYGILNKVFHNITDTHVAHHLFSTMPHYHA
 MEATKAIRPILGEYYQFDPTPVAKATWREAKECIYVEPEDNKGVFWYNNKF

Figure 7A: SEQ ID NO: 25 – Nucleic acid sequence of LuFAD-01

GCTGTAACAATATACACAGGAAGAAGAAAAATGGGTGCCGGCGCAGAATGTCAGTGCCTCCATC
 ATCCAAACCTATGAAGAGGGTCTCCTTACTCAAAGCCACCATTACGCTCGGTGAGCTCAAGAAGG
 CCATTCCCTCACACTGTTCAAACGCTCAATCCCCGATCGTTCGCCTACGTGGCGTACGACCTC
 ACCATTGCAGCAATCTTCTACTACATGCCACCACCTACTTCCACCTCCTCCCTAGCCCTCTCAA
 CTACCTCGCCTGGCCGGTCACTGGGCCTGCCAGGGCTGCATCCTCACTGGAGTATGGGTGTT
 GGCTCACGAATGCGGTACCATGCCTCAGCAGTACCAAGTGGCTGACCGACATGGTTGGCTTC
 GTCCTCCATTGTCCTCCTGTTCTTACTTCTCCTGGAAAGCACAGCCACCGCCGACCATTC
 CAACACGGGATCGCTTGTGATGAGGTGTTGTCCTCAAGCAGAAGGCGAAATGGGTG
 GTACTCCAAGTACCTTAACAACCCACCTGGCCGTGTGATCACATTGGCGTCACATTAACGCTCG
 GTTGGCCTCTGTACTTGGCATTCAACGTCCTGGGAGACCATATGACCGGTTCGCATGCCATT
 GACCCCTACGGTCCGATTACAATGATCGCAGCGTATGGAGATATACTATCCGACGCAGGGA
 TATTACCGTGTGCTACATCCTATACAGACTCGTCCCTCACGAAAGGACTCGTTGGCTGTG
 ATATACGGAGTCCACTATTGATAGTGAATGGATTCTAGTCCTCATCACTTCTTGAGCACAC
 GCATCCTCTCTCCGCACTACAAAGTCCCTCGAATGGGACTGGGATGCGAGGCGCCCTCTCGA
 CCGTGGATCGAGACTACGGGTTACTCAACACCGTGTCCACAACATCACCGATACACATGTCG
 GCACCATCTCTCCACGATGCCTCATTACACACGCGATGGAGGCTACCAAGGCGATCAAGCCG
 GTTCTCGGGGAGTATTACCAAGTTCGATGGGACTCCCTTGTGAAGGCCATGAGGGAGGCAA
 AGGAGTGCATCTATGTCGAGCCGGATGAAGGCGACCCAGCCAAGGCGTGTCTGGTACAACA
 ACAAGCTGTGAGGGTCTCGAAATTGAGGGTTGTAGTGTGTTCTTAATGGTGTACCAAG
 AAAAATGTTGAAGAAAGAAGCTGCAATAGCTAGTGCAGAACTGGTGTATGTTCTGTAATGTTG
 TTAAGTTATGTCCTAGTGGTCGTTAATGTTACTGTACTCTCTGTTCTCCATCGAGCCAACA
 TACCTTCACTCCTGTTAATGTTACTGAGTTGGTCGAGTTAACTTAACGGACCACCAAGGCTCA
 AATTGAGTCACCGGGTTGCCGAGTTAGACTGCATTGACCACAATGATGCAATCGAAAAGT
 AAGTGAATCGCAAAACTTAATCCCAGTC

Figure 7B: SEQ ID NO: 27 – Nucleic acid sequence of the open reading frame of LuFAD-01

ATGTCAGTGCCTCCATCATCCAAACCTATGAAGAGGGTCTCCTTACTCAAAGCCACCATTACGCT
 CGGTGAGCTAAGAAGGCCATTCCCTCACACTGTTCAAACGCTCAATCCCCGATCGTTCGCC
 TACGTGGCGTACGACCTCACCATTGCACTACGCAATCTTCTACTACATGCCACCACCTACTCCACCT
 CCTCCCTAGCCCTCTCAACTACCTCGCCTGGCCGGTCACTGGGCCTGCCAGGGCTGCATCCTC
 ACTGGAGATGGGTGTTGGCTCACGAATCGGGTCAACCATGCCTCAGCAGTACCAAGTGGCTCG
 ACGACATGGTTGGCTCGTCCATTGTCCTTGTGTTCTACTTCTCTGGAAAGCACAGC
 CACCGCCGCCACCATTCAAACACGGGATCGCTGATCGTGTAGGAGTGTGTTGTCCTCAAGCAGA
 AGGCCGAAATCGGGTGGTACTCCAAGTACCTTAACAACCCACCTGGCCGTGTGATCACATTGGC
 CGTCACATTAACGCTCGGTTGGCCTGTACTGGCATTCAACGTCCTGGGAGACCATATGAC
 CGGTTCGCATGCCATTGACCTCACGGTCCGATTACAATGATCGCAGCGTATGGAGATATA
 CCTATCCGACGAGGGATATTACCGTGTGCTACATCCTATACAGACTCGTCCCTCACGAAAGGA
 CTCGTTGGGTGTCGTCATATACGGAGTCCCACATTGATAGTGAATGGATTCTAGTCCTCAT
 CACTTCTTGAGCACACGATCCTTCTTCCGCACTACAAAGTCCCTCGAATGGGACTGGAT
 GCGAGGGCGCCCTCTGACCGTGGATCGAGACTACGGGTTACTCAACACCGTGTGTTCCACAACATC
 ACCGATACACATGTCGCGCACCATCTTCTCCACGATGCCTCATTACACCGCGATGGAGGCTA
 CCAAGGGCGATCAAGCCGGTCTCGGGGAGTATTACCAAGTTCGATGGGACTCCCTTTG

Figure 7C: SEQ ID NO: 28 - Amino acid sequence of the open reading frame of LuFAD-01

MSVPPSSKPMRSPYSKPPFTLGELEKKAIPPHCFKRSIPRSFAYVAYDLTIAAIFYIATTYFHLPLSPLN
 YLAWPVYWCQGCILTVWVLAHECGHHAFSDYQWLDDMVGFLVHSSLLVPYFSWKHSRRHHSN
 TGSLDRDEVFVPKQKAEIGWYSKYLNNPPGRVITLAVTTLGWPLYAFNVSGRPYDRFACHFDPHG
 PIYNDRERMEIYLS DAGIFTVCYIYRLVTKGLVVVSIYGVPLLIVNGFLVLITFLQHTHPSLPHYKVL
 RMGTGCEAPSRPWIETTGYSTPCSTTSPIHMSRTISSPRCLITTRWRLPSSRFSGSITSSMGLPL

Figure 8A: SEQ ID NO: 29 – Nucleic acid sequence of HvFAD-01

ACCAACCACCCCTACCAGCATATGGGTGCCGGCGGGATGACCGAGAAGGAGCAGGG
 GAAGCAGGAGCAGCTCGGCCGCGCCGGCGCAGCCTCCAGCGCTGCCACGGACA
 AGCCGCCGTTCACGCTCGTCAGATCAAGAAGGCGATCCCGCCTCACTGCTCCAGCGCTCCAT
 CATCAAGTCTTCTCCTACGTGGTCATGACCTGGTCATCATGCCGCCCTGCTGTACGCCGCT
 CTGGTCTGGATCCCCACCCCTCCCTACCGTGGTCAGCTGGCGCTGGCCGCTACTGGATC
 GTTCAGGGCTCGTCATGACCGGCGTCTGGTCATCGCGCACGAGTGCAGGCCACCATGCCCTC
 TCTGACTACTCGCTGCTGACGACACCGTGGCCTGGTCCTCACTCGTGGCTGCTCGTCCCCT
 ACTTCTCGTGGAAAGTACAGCCACCGTCGCCACCACTCCAACACCCGGTCGCTGGAGCGCAG
 AGGTGTTGTCCCCAAGCAGAAGGAGGCGCTGGCATGGTACACTCCCTACATCTACAACAAACCC
 CATCGGCCGCTCTGGTGCACATCGTGGTCAGCTCACCTCGGGTGGCCGCTGTACCTGGCGCT
 CAACGCCCTAGGCCGCTCGTACCCCGCCTGCCACTTCGACCCCTACGGCCCAGCTA
 CAACGACCGGGAGCGAGCCCAGATTTCATCTCGGATGTCGGCGTGTGGCCGCTCCTTGGC
 CCTGCTCAAGCTGTGTCGTTGGTCTGGTGGGTGGTGCAGGCTACGGCGTGGCGCT
 GCTGATCGTGAACCGGTGGCTCTGATCACCTACCTGCAGCACACCCACCCAGCGCTGCC
 GCACTACGACTCGACGGAGTGGACTGGCTGCGGGGGCGCTGCCACCATGGACCGGGACT
 ACGGCATTCTCAACCGCGTGTCCACAACATCACGGACACGCACGTGGCGACCACCTTCTC
 CAACATGCCGCACTACCACGCCATGGAGGCCACCAAGGCGATCAAGCCATCCTCGGCGAGTA
 CTACCATGTTGACGGCACCCGGTCGCAAGGGGACATGGCGCGAGGCCAAGGAGTGCATCTA
 CGTTGAGCCCGAGGACCGCAAGGGGGCTTCTGGTACAGCAACAAGTTCTAGCCGCAAGGATC
 GTCATCAGCCGTGTTCCAGGAAGAACTCAGAGAAGAGGTCTTACAAGTAATCCATCCATCTACC
 TACATATGGTTAGTTTGTAGATAGCAGAGGGCATTGGCACAAACAAGACTACTATTACCGTGC
 CAATGCTAGAAAGAGTTGAGTGGTCAAGGAGGAGTAGCGTGTCCGTGACTTTGTCAAGTCT
 TCTTACTTCTCCTCGCTTACTCGCCGGCGTGTGTCATTGCATTGGCGTATCTCCCCCGTCCGTGTCATGTT
 GTTGTAGACCATTCTCGTGT

Figure 8B: SEQ ID NO: 31 – Nucleic acid sequence of the open reading frame HvFAD-01

ATGGGTGCCGGCGGGATGACCGAGAAGGAGCAGGGAGAAGCAGGAGCAGCTGGCCGCG
 CGGGCGCGCGCAGCCTCCAGCGCTGCCAGGGACAAGCCGCTTCAGCCTCGGTCA
 ATCAAGAAGGCGATCCCGCCTCACTGCTCCAGCGCTCCATCATCAAGTCTTCTCCTACGTGGT
 TCATGACCTGGTCATCATGCCGCCCTGCTGTACGCCGCTCTGGATCCCCACCCCTCCCT
 ACCGTGTTGCAAGCTGGCGCGTGGCGCTACTGGATCGTCAAGGGCTGCGTCATGACCGGC
 GTCTGGGTATCGCGCACGAGTGCAGGCCACCATGCCCTCTGACTACTCGCTGCTCGACGACA
 CCGTCGGCCTGGTCTCCACTCGTGGCTGCTCGTCCATACTTCTCGTGGAGTACAGCCACCG
 TCGCCACCACTCCAACACCCGGTCGCTGGAGCGCGACGAGGTGTTGTCCCCAAGCAGAAGGA
 GGCCTGGCATGGTACACTCCCTACATCTACAACAACCCATGGCGCTGGTGCACATCGT
 GTGCAGCTCACCTCGGGTGGCGCTGTACCTGGCGCTAACGCCCTCAGGCCGTCCGTACCCG
 CGCTTCGCCCTGCCACTTCGACCCCTACGGCCGATCTACAACGACCGGGAGCGAGGCCAGATT
 TTCATCTGGATGTCGGCGTGTGGCCGTCTCTGGCCCTGCTCAAGCTGTGTCGTT
 GGTTCTGGTGGTGGTGCAGGCTACGGCGCTGCTGATCGTAACCGCTGGCTGGTCC
 TGATCACCTACCTGCAGCACCCACCCAGCGCTGCCACTACGACTCGACGGAGTGGGACT
 GGCTGCGGGGGCGCTGCCACCATGGACGGGACTACGGCATTCTCAACCGCGTGTCCACA
 ACATCACGGACACGCACGTTGGCGCACCACCTTCTCAACATGCCGACTACCACGCCATGGA
 GGCCACCAAGGCGATCAAGCCATCCTCGCGAGTACTACCAAGTTGACGGCACCCGGTGC
 CAAGGCCACATGGCGCGAGGCCAAGGAGTGCATCACGTTGAGCCCGAGGACCGCAAGGGGG
 TCTTCTGGTACAGCAACAAGTT

Figure 8C: SEQ ID NO: 32 - Amino acid sequence of the open reading frame HvFAD-01

MGAGGGMTEKEREKQEQLGRAGGGAAFQRSPTDKPPFTLGQIKKAIIPPHCFQRSIIKSFSYVVHDLVI
 IAALLYAALVWIPTLPTVLQLGAWPLYWIVQGCVMTGVWVIAHECGHHAFSDYSLLDDTVGLVLSWLV
 LPVYFSWKYSHRRHHSNTGSLERDEVFVPKQKEALAWYTPYIYNNPIGRLVHIVVQLTLGWPLYLALN
 ASGRPYPRFACHFDPYGPIYNDRERAQIFISDVGVLAVSLALLKLVSSFGFWWWVVRVYGVPLLIVNAW
 LVLITYLQHTHPALPHYDSTEWDWLRGALATMDRDYGILNRFHNTDTHVAHHLFSNMPHYHAMEA
 TKAIPILGEYYQFDGTPVAKATWREAKECIYVEPEDRKGFWYSNKF

Figure 9A: SEQ ID NO: 33 – Nucleic acid sequence of TaFAD-01

CGCGTCCGGCTCCCTCCCCCGCACAAACCACTCGTCGTCCCGTCAACAAGAGGAGCAGA
 GGCAGCCGGAGAGGGAAAGAGGGTGCAGCGCTCGCGTGTGTTGTCGCCGCCGATCTGC
 CCTGCTCCGCCCTCGACCACCACCCCTATCAGCATCATGGGTGCCGCCAGGATGACG
 GAGAAGGAGCAGGGAGAAGCAGGAGCAGCTGGCCGCCAACGGCGCGCAGCCTACCAGC
 GCTGCCGACGGACAAGCCCGTTACGCTGGGTCAAGATCAAGAAGGCAATCCCGCTCACT
 GCTTCCAGCGCTCGATCATCAAGTCCTCTCCTACGTGGTCCATGACCTGGTCATCGCGGC
 CCTGCTGTACCGGGCTGGTTGGATCCCTACCCCTCCCGACCGTGCAGCTGGCGCCTG
 GCCGCTACTGGATCGTCAGGGCTCGTCACTGACCGGCGTCTGGGTCACTGCCAACGAGTG
 CGGCCACACGCCCTCCGACTACTCGCTGCTCGACGACACCGTCGCCCTGGTGCCTCACTC
 GTGGCTGCTCGTCCCTACTTCTCGTGGAACTACAGCCACCGTCGCCACCACTCCAACACCGGG
 TCGCTGGAGCGTGATGAGGTGTTCTGGCCAGCAGAAGGAGGCCCTGGCGTGGTACACCCCT
 TACATCTACAACAACCCGTCGGCGTCTGGTCACATCGTCGTCAGCTCACCCCTGGGTGGC
 CGCTGTACCTGGCGCTCAACGCCCTCAGGCCCGTACCCGCGGTTCGCCTGCCACTTCGACC
 CCTACGGCCGATCTACAACGACCGGGAGCGAGCCCAGATTTATCTCAGACGTGGAGTGCT
 GGCGTGTCTGGCTCTGTAAGCTCGTGTGTTGGGTCTGGTGGGTGGTGGGGT
 CTACGGCGTGTCTGGCTGATCGTAACGCTGGCTGGCTGGCTCTGATCACCTACCTGCAGCACACC
 CACCCGGCGTGGCGACTACGACTCGACGGAGTGGGACTGGCTGCGCGGGCGCTGCCAC
 CATGGACCGCGACTACGGCATCCTCAACCGCGTGGTCCACAACATCACGGACACGCACGTGGC
 GCACCACTCTTCCACCATGCCCACTACCCACCGCATGGAGGCCACCAAGGCGATCAAGCC
 CATCCTGGCGAGTACTACCAAGTTGACCCCCACCCCGTGCACAGGGCCACATGGCGCGAGGC
 CAAGGAGTGCATCTACGTCGAGCCGAGGACCGCAAGGGGGTCTCTGGTACAGCAACAAGTT
 CTAGCCGCCAAGATCCATCAACTGTGCTGGAGAAAGAACTCAGAGAAGAGATCTACCAAGTAA
 TTCCATCCATCTACCTACAGTCATAAGTTAGTCTTAGATAGCAGAGGGCATTTGGGCACAAA
 AGAAGACTACTATTACCGTGCCAATGCTAGAAGAGCTGAGTGGTGCAGGGAGACTAGCGTGTG
 CGTACTTGGTCAGTCCGTCTTACTTTCTCGCCTAGTCGTCGCTTAGTGTGTTGGT
 GGCAGGTGTCATCGTTGGTGTCCGTGGCGTGGACATGGCGCGTGTGTTGTGCGTCTGTC
 TTGCACTGGCGTCATCTCCCCCGTCCGTGTCATGTTGTTAGACCATTCTGTTATGGCGG
 AATAACTGATCGTCGAAGGAAGGGCAACTTTTGAGTA

Figure 9B: SEQ ID NO: 35 - Nucleic acid sequence of the open reading frame of TaFAD-01

ATGGGTGCCGGCGGCAGGATGACGGAGAAGGAGCAGGGAGAAGCAGGAGCAGCTGGCCGCG
 CCAACGGCGCGCAGCCTACAGCGCTCGCCGACGGACAAGCCCGTTACGCTGGTCAG
 ATCAAGAAGGCAATCCCGCTCACTGCTTCCAGCGCTCGATCATCAAGTCCTCTCCTACGTGGT
 CCATGACCTGGTCATCGTCGCGGCCCTGCTGACCGCGCTGGTTGGATCCCTACCCCTCCC
 GACCGTGCAGCTGGCGCTGGCCCTACTGGATCGTGCAGGGCTCGTCACTGCCAC
 CGTCTGGGTCACTGCCACCGAGTGCAGGCCACCGCCTCTCCGACTACTCGCTGCTGACGA
 CACCGTGGCCTGGTGCCTACCGTGGCTGCTCGTCCCTACTTCTCGTGGAAAGTACAGCCAC
 CGTCGCCACCACTCCAACACCGGGTCGCTGGAGCGTGTGAGGTGTTGTCGCCAACAGCAGAAG
 GAGGCAGCTGGCGTGGTACACCCCTACATCTACAACAACCCGTCGCCGTGGTGCACATC
 GTCGTGCAGCTACCCCTGGTGGCGCTGTACCTGGCGCTCAACGCCCTCAGGCCCGGTAC
 CGCGGTTGCCACTCGACCCCTACGGCCGATCTACAACGACCGGGAGCGAGGCCAG
 ATTTCATCTCAGACGTCGGAGTGCTGGCGTGTCTGGCTCTGCTGAAGCTGTCGTCGTT
 CGGGTTCTGGTGGGTGGTGCAGCGACACCCACCGCGCTGCCGACTACGACTCGACGGAGTGG
 CCTGATCACCTACCTGCAGCACACCCACCGCGCTGCCGACTACGACTCGACGGAGTGG
 CTGGCTGCGGGGGCGCTGCCACCATGGACCGCGACTACGGCATCCTCAACCGCGTGTCCA
 CAACATCACGGACACGACCGTGGCGACCCACCTCTCCACCATGCCGACTACCAACGCCATG
 GAGGCCACCAAGGCGATCAAGCCACCTCGCGAGTACTACCAAGTTGACCCCCACCCCGTC
 GCCAAGGCCACATGGCGAGGCCAAGGAGTGCATCTACGTCGAGCCCCAGGGACCGCAAGGG
 GGTCTCTGGTACAGCAACAAGTT

Figure 9C: SEQ ID NO: 36 - Amino acid sequence of the open reading frame of TaFAD-01

MGAGGRMTEKEREKQEQLGRANGGAAYQRSPTDKPPFTLGQIKKAIPPHCFQRSIISFSYVVDLVI
 VAALLYAALVWIPLPTVLQLGAWPLYWIVQGCVMTGVVIAHECGHHAFSDYSLDDTVGLVLHSW
 LLVPYFSWKYSHRRHHSNTGSLERDEVFPKQKEALAWYTPYIYNPNPVGRLVHIVVQLTLGWPLYLA
 LNASGRPYPRFACHFDPYGPIYNDRERAQFISDVGVLAWSALLKLVSSFGFWWWVRVYGVPLLIVN
 AWLVLITYLQHTHPALPHYDSTEWDWLRLGALATMDRDYGLILNRVFHNITDTHVAHHLFSTMPHYHAM
 EATKAIKPILGEYYQFDPTPVAKATWREAKECIYVEPEDRKGFWYSNKF

Figure 10

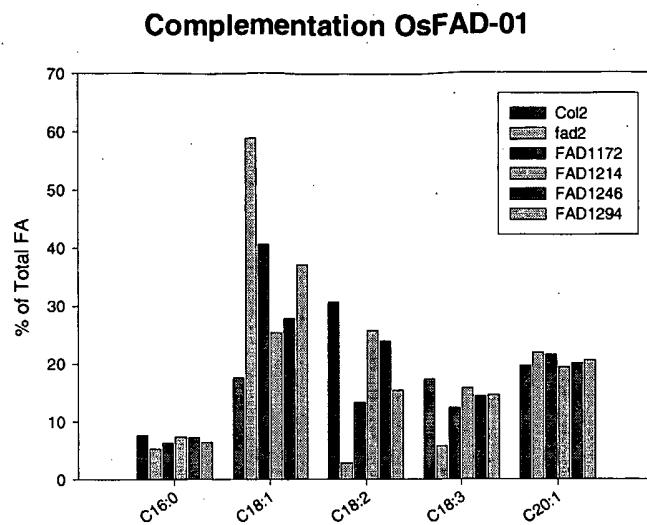


Figure 11

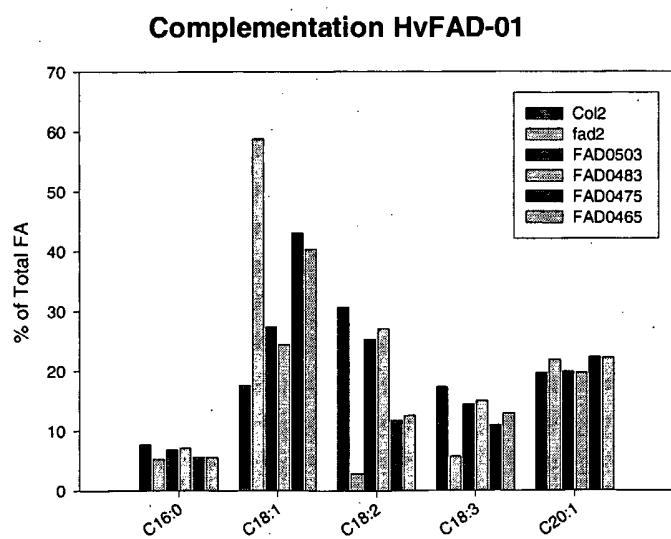


Figure 12

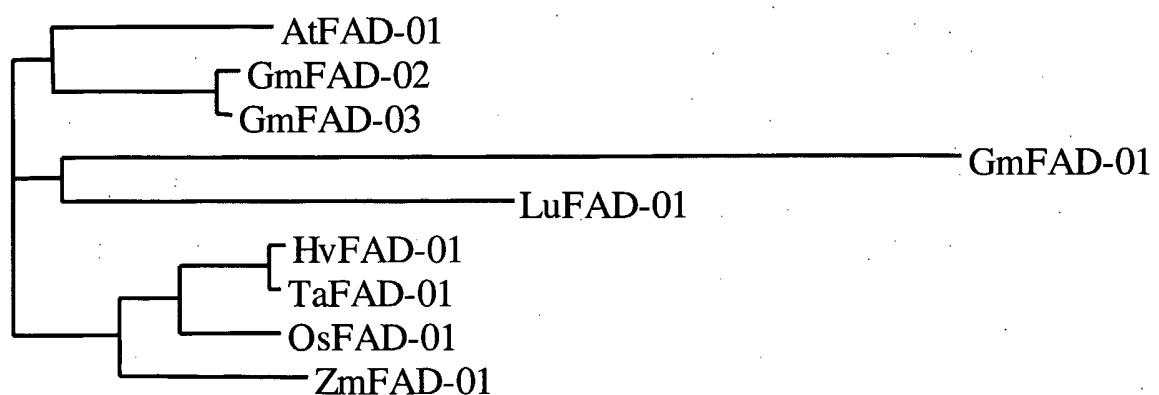


Figure 13

Figure 14

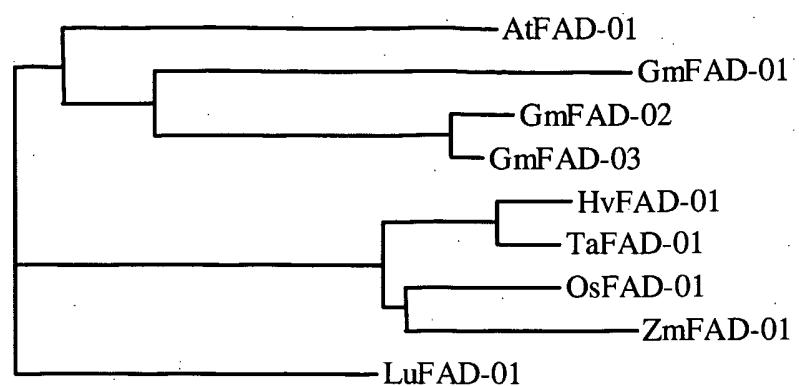


Figure 15

Figure 16

1	50
SEQ ID NO:2 (1) MGAGGRMPVPTSSKKS-----E--TDTTK-RVPCEKPPFSVGDLKKAIP	
SEQ ID NO:6 (1) -----	
SEQ ID NO:10 (1) MGAGGRTDVPPA[RKS]-----E--VDPLK-RVPFEKPPFSE[SQ][KKVIP	
SEQ ID NO:14 (1) -----	
SEQ ID NO:26 (1) -----MSVPPSSKPMK-----RSPYSKPPF[TG][ELKKAIP	
SEQ ID NO:18 (1) MGAGGRMTEKEREKHEQEVARATGGAAVQRSPVEKPPF[TG][Q][KKAI	
SEQ ID NO:30 (1) MGAGGGMTEKEREKQE---QLGRAGGAAFQRSPTDKPPF[TG][Q][KKAI	
SEQ ID NO:34 (1) MGAGGRMTEKEREKQE---QLGRANGGAAYQRSPTDKPPF[TG][Q][KKAI	
SEQ ID NO:22 (1) MGAGGRMTEKEREQQK--LLGRAGNGAAVQRSPTDKPPF[TG][Q][KKAI	
51	100
SEQ ID NO:2 (42) PHCFKRSIIPRSFSYLSIDIIIASCFYYVATNYFSLLPQPLSYLAWPLYWA	
SEQ ID NO:6 (1) -----MSY[V][RD][V][V]VFLAVAAAYLN-----N[V][V]WPLYWA	
SEQ ID NO:10 (42) PHCFQRSVFRSFSY[VYD][TIAFCLYYVATHYFHLLPSPLSFLAWP][YWA	
SEQ ID NO:14 (1) -----	
SEQ ID NO:26 (31) PHCFKRSIIPRSFAY[VAYD][TIAA][FYY][TATTYFHLLPSPLNYLAWP][YWA	
SEQ ID NO:18 (51) PHCFERSVLRFSFSY[VAHDL][SIA][ALLY][AVAVI][PALPCPLRYAAWPLYWV	
SEQ ID NO:30 (48) PHCFQRSIIKSFSY[VHDL][VIA][ALLY][AALV][IPTLPTVLQLGAWPLYWI	
SEQ ID NO:34 (48) PHCFQRSIIKSFSY[VHDL][VIA][ALLY][AALV][IPTLPTVLQLGAWPLYWI	
SEQ ID NO:22 (49) PHCFQRSVIKSFSY[VHDL][VIA][ALLY][FALVMIPVLP][PSGM][EAAWPLYWI	
101	150
SEQ ID NO:2 (92) CQGCVLTGIWVIAHECGHHAFSDYQWLDDTVGLIFHSFLVLPYFSWKYSH	
SEQ ID NO:6 (33) AQGT[MFWAL][EV][GHDCGHGSFSNNPKLNSVAGH][LHSS][LVPYHGWRISH	
SEQ ID NO:10 (92) VQGC[LTG][WVIAHECGHHAFSDYQLLDDIVGL][LHSGLLVLPYFSWKYSH	
SEQ ID NO:14 (1) -----	
SEQ ID NO:26 (81) CQGC[LTG][WVIAHECGHHAFSDYQWLDDMVGF][LHSSLLVLPYFSWKHSH	
SEQ ID NO:18 (101) AQGCVCTG[WVIAHECGHHAFSDH][ALLDDAVGLALHSALLVLPYFSWKYSH	
SEQ ID NO:30 (98) VQGC[VMTG][WVIAHECGHHAFSDYSLLDDTVGL][LHS][WLLVLPYFSWKYSH	
SEQ ID NO:34 (98) VQGC[VMTG][WVIAHECGHHAFSDYSLLDDTVGL][LHS][WLLVLPYFSWKYSH	
SEQ ID NO:22 (99) AQGCVLTG[WVIAHECGHHAFSDYSVLDDIVGL][LHSSLLVLPYFSWKYSH	
151	200
SEQ ID NO:2 (142) RRHHSNTGSLERDEVFVPKQKSAIKWYGYLN-NPLGRIMMLTVQFV[GW	
SEQ ID NO:6 (83) RTHHQNHGHWENDES[WPLPEKIFKSLDNVTR--ILR---FTLPFP][LAY	
SEQ ID NO:10 (142) RRHHSNTGSLERDEVFVPKQKSCIKWYSKYL-NPPGRV[TLAVTLT][GW	
SEQ ID NO:14 (1) -----MWYSKYL-NPPGRV[TLAVTLT][GW	

SEQ ID NO: 18 (151) RRHHSNTGSLEDEVFVPKQKA[EIGWYSKYLN-NPPGRVATLAVTLT]GW
 SEQ ID NO: 30 (148) RRHHSNTGSLERDEVFVPKQKEA[LAWYTPYIYNNP]GRLVH[VVQLT]GW
 SEQ ID NO: 34 (148) RRHHSNTGSLERDEVFVPKQKEA[LAWYTPYIYNNP]GRLVH[VVQLT]GW
 SEQ ID NO: 22 (149) RRHHSNTGSLERDEVFVPKQKSAMAWYTPYVYHNP]GRLVH[FVQLT]GW

201 250

SEQ ID NO: 2 (191) PLYIAFNVS[RPYDGFACHFFF]NAPIYNDRERLQIYLSDAGILAVCFG[Y
 SEQ ID NO: 6 (128) PLYIWSRSPGK----TGSFNPDSDEVP[SERKD]VITSTVCWTAMAALV
 SEQ ID NO: 10 (191) PLYIAFNVS[RPYDGFACHHYD]Y[CP]IYSDRERLQIYLSDAGILAVCYGLE
 SEQ ID NO: 14 (26) PLYIAFNVS[RPYDGFACHHYD]Y[CP]IYSDRERLQIYLSDAGILAVCYGLE
 SEQ ID NO: 26 (180) PLYIAFNVS[RPYDGFACHFD]Y[CP]IYNDRERMEIYLSDAGIFTVCYI[Y
 SEQ ID NO: 18 (201) PLYIAFNVS[RPYDGFACHFD]Y[CP]IYNDRERAQIFVSDAGVVA[AVAFG]Y
 SEQ ID NO: 30 (198) PLYIAFNVS[RPYDGFACHFD]Y[CP]IYNDRERAQIFSDVGVLAVSLAL
 SEQ ID NO: 34 (198) PLYIAFNVS[RPYDGFACHFD]Y[CP]IYNDRERAQIFSDVGVLAVSLAL
 SEQ ID NO: 22 (199) PLYIAFNVS[RPYDGFACHFD]Y[CP]IYNDRERVQI[SDVG]VSAGLA[P]

251

300

SEQ ID NO: 2 (241) RYAAACQGMASMICLGVPLLIVNAF[VLIITY]QHT--HPSLPHYDSSEWD
 SEQ ID NO: 6 (174) GLGFV[MC]PVQLEKLAGP[PYAIFVMW]DEV[VIY]HHHHGEDK[PW]RGEWS
 SEQ ID NO: 10 (241) RLAMAKGEAWVVCVYGVPLLIVNCFLV[VI]T[FL]QHT--HPALPHYTSEWD
 SEQ ID NO: 14 (76) CLAMAKGEAWVVCVYGVPLLIVNCFLV[VI]T[FL]QHT--HPALPHYTSEWD
 SEQ ID NO: 26 (230) RLVLT[K]GVVWV[ST]YGVPLLIVNGFLV[VI]T[FL]QHT--HPSLPHMKVLRMG
 SEQ ID NO: 18 (251) KLAACFGVWWVVRVYAVPLLIVNAW[VLIITY]QHT--HPALPHYDSGEWD
 SEQ ID NO: 30 (248) KLVSSFCFWWVVRVYGVPLLIVNAW[VLIITY]QHT--HPALPHYDSTEW
 SEQ ID NO: 34 (248) KLVSSFCFWWVVRVYGVPLLIVNAW[VLIITY]QHT--HPALPHYDSTEW
 SEQ ID NO: 22 (249) KLSAACFGFWWVVRVYGVPLLIVNAW[VLIITY]QHT--HPALPHYDSSEWD

301

350

SEQ ID NO: 2 (289) WLRGALATVDRDYGILNKVFHNITD[HVAH]LFSTMPHYNAMEATKAIKP
 SEQ ID NO: 6 (224) WLRGGLTT[DRDYGWN]NN[HHDIG-[HVIH]LFPO]PHYHLTEA[EAKB]
 SEQ ID NO: 10 (289) WLRGALATVDRDYGILNKVFHNITD[HVAH]LFSTMPHYHAMEATKAIKP
 SEQ ID NO: 14 (124) WLRGALATVDRDYGILNKVFHNITD[HVAH]LFSTMPHYHAMEATKAIKP
 SEQ ID NO: 26 (278) TGCEAPS[RP---WIETTG]STPCST[SP]I[MSRT]SSPRCLIT[TRWR]P
 SEQ ID NO: 18 (299) WLRGALATVDRDYGVLN[RVFH]ITD[HVAH]LFSTMPHYHAMEATKAIKP
 SEQ ID NO: 30 (296) WLRGALAT[DRDYGILN]RVFH[ITD[HVAH]LFSTMPHYHAMEATKAIKP
 SEQ ID NO: 34 (296) WLRGALAT[DRDYGILN]RVFH[ITD[HVAH]LFSTMPHYHAMEATKAIKP
 SEQ ID NO: 22 (297) WLRGALATVDRDYGILNKVFHNITD[HVAH]LFSTMPHYHAMEATKAIKP

351

400

SEQ ID NO:2 (339) ILGDYYQFDGTPWYVAMYREAKECIYVEPDREGDKKGVYWYNNKL-----
SEQ ID NO:6 (273) VLGQYYREPKKSSPPTYLI~~G~~ELLRS~~M~~KKDHFVSDSGDIVYY~~Q~~TDPTLSS
SEQ ID NO:10 (339) ILG~~E~~YYRFDETP~~E~~VKAM~~W~~RE~~A~~RECIYVEPDQST~~E~~SKGV~~E~~WYNNKL-----
SEQ ID NO:14 (174) ILG~~E~~YYRFDGTP~~E~~VKAM~~W~~RE~~A~~RECIYVEPDQSTQSKGV~~E~~WYNNKL-----
SEQ ID NO:26 (324) RRSSR~~E~~SGSITSSMGLPL-----
SEQ ID NO:18 (349) VLG~~E~~YYQFDPTPVAKAT~~W~~RE~~A~~RECIYVEPENRN-~~R~~KG~~V~~EWYNSKF-----
SEQ ID NO:30 (346) ILG~~E~~YYQFDGTPVAKAT~~W~~RE~~A~~KECIYVEP~~E~~DR---KG~~V~~EWY~~S~~NKF-----
SEQ ID NO:34 (346) ILG~~E~~YYQFDPTPVAKAT~~W~~RE~~A~~KECIYVEP~~E~~DR---KG~~V~~EWY~~S~~NKF-----
SEQ ID NO:22 (347) ILG~~E~~YYQFDPTPVAKAT~~W~~RE~~A~~KECIYVEP~~E~~DN---KG~~V~~EWYNNKF-----

401

SEQ ID NO:2 (384)-----
SEQ ID NO:6 (323) SSTSQ
SEQ ID NO:10 (384)-----
SEQ ID NO:14 (219)-----
SEQ ID NO:26 (342)-----
SEQ ID NO:18 (393)-----
SEQ ID NO:30 (388)-----
SEQ ID NO:34 (388)-----
SEQ ID NO:22 (389)-----

SEQUENCE LISTING

<110> BASF Plant Science GmbH
 Haertel, Heiko
 Gibson, Jermaine
 Ren, Peifeng

<120> Nucleic acid molecules encoding fatty acid desaturase genes from
 plants and methods of use

<130> PF2063015115

<150> US 60/637531

<151> 2004-12-20

<160> 47

<170> PatentIn version 3.3

<210> 1

<211> 1615

<212> DNA

<213> Arabidopsis thaliana

<220>

<221> misc_feature

<222> (1)..(156)

<220>

<221> CDS

<222> (157)..(1305)

<220>

<221> misc_feature

<222> (1306)..(1615)

<400> 1

gaccaccaga agaagagcca cacactcaca aataaaaaag agagagagag agagagagac 60

agagagagag agagattctg cggaggagct tcttcttcgt agggtgttca tcgttattaa 120

cgttatcgcc cctacgtca g ctccatctcc agaaac atg ggt gca ggt gga aga 174
 Met Gly Ala Gly Gly Arg
 1 5

atg ccg gtt cct act tct tcc aag aaa tcg gaa acc gac acc aca aag 222
 Met Pro Val Pro Thr Ser Ser Lys Lys Ser Glu Thr Asp Thr Thr Lys
 10 15 20

cgt gtg ccg tgc gag aaa ccg cct ttc tcg gtg gga gat ctg aag aaa 270
 Arg Val Pro Cys Glu Lys Pro Pro Phe Ser Val Gly Asp Leu Lys Lys
 25 30 35

gca atc ccg ccg cat tgt ttc aaa cgc tca atc cct cgc tct ttc tcc 318
 Ala Ile Pro Pro His Cys Phe Lys Arg Ser Ile Pro Arg Ser Phe Ser
 40 45 50

tac ctt atc agt gac atc att ata gcc tca tgc ttc tac tac gtc gcc 366
 Tyr Leu Ile Ser Asp Ile Ile Ala Ser Cys Phe Tyr Tyr Val Ala
 55 60 65 70

acc aat tac ttc tct ctc ctc cct cag cct ctc tct tac ttg gct tgg	75	80	85	414
Thr Asn Tyr Phe Ser Leu Leu Pro Gln Pro Leu Ser Tyr Leu Ala Trp				
cca ctc tat tgg gcc tgt caa ggc tgt gtc cta act ggt atc tgg gtc	90	95	100	462
Pro Leu Tyr Trp Ala Cys Gln Gly Cys Val Leu Thr Gly Ile Trp Val				
ata gcc cac gaa tgc ggt cac cac gca ttc agc gac tac caa tgg ctg	105	110	115	510
Ile Ala His Glu Cys Gly His His Ala Phe Ser Asp Tyr Gln Trp Leu				
gat gac aca gtt ggt ctt atc ttc cat tcc ttc ctc gtc cct tac	120	125	130	558
Asp Asp Thr Val Gly Leu Ile Phe His Ser Phe Leu Leu Val Pro Tyr				
ttc tcc tgg aag tat agt cat cgc cgt cac cat tcc aac act gga tcc	135	140	145	606
Phe Ser Trp Lys Tyr Ser His Arg Arg His His Ser Asn Thr Gly Ser				
ctc gaa aga gat gaa gta ttt gtc cca aag cag aaa tca gca atc aag	155	160	165	654
Leu Glu Arg Asp Glu Val Phe Val Pro Lys Gln Lys Ser Ala Ile Lys				
tgg tac ggg aaa tac ctc aac aac cct ctt gga cgc atc atg atg tta	170	175	180	702
Trp Tyr Gly Lys Tyr Leu Asn Asn Pro Leu Gly Arg Ile Met Met Leu				
acc gtc cag ttt gtc ctc ggg tgg ccc ttg tac tta gcc ttt aac gtc	185	190	195	750
Thr Val Gln Phe Val Leu Gly Trp Pro Leu Tyr Leu Ala Phe Asn Val				
tct ggc aga ccg tat gac ggg ttc gct tgc cat ttc ttc ccc aac gct	200	205	210	798
Ser Gly Arg Pro Tyr Asp Gly Phe Ala Cys His Phe Phe Pro Asn Ala				
ccc atc tac aat gac cga gaa cgc ctc cag ata tac ctc tct gat gcg	215	220	225	846
Pro Ile Tyr Asn Asp Arg Glu Arg Leu Gln Ile Tyr Leu Ser Asp Ala				
ggt att cta gcc gtc tgt ttt ggt ctt tac cgt tac gct gct gca caa	235	240	245	894
Gly Ile Leu Ala Val Cys Phe Gly Leu Tyr Arg Tyr Ala Ala Gln				
ggg atg gcc tcg atg atc tgc ctc tac gga gta ccg ctt ctg ata gtg	250	255	260	942
Gly Met Ala Ser Met Ile Cys Leu Tyr Gly Val Pro Leu Leu Ile Val				
aat gcg ttc ctc gtc ttg atc act tac ttg cag cac act cat ccc tcg	265	270	275	990
Asn Ala Phe Leu Val Leu Ile Thr Tyr Leu Gln His Thr His Pro Ser				
ttg cct cac tac gat tca tca gag tgg gac tgg ctc agg gga gct ttg	280	285	290	1038
Leu Pro His Tyr Asp Ser Ser Glu Trp Asp Trp Leu Arg Gly Ala Leu				
gct acc gta gac aga gac tac gga atc ttg aac aag gtg ttc cac aac	295	300	305	1086
Ala Thr Val Asp Arg Asp Tyr Gly Ile Leu Asn Lys Val Phe His Asn				
att aca gac aca cac gtg gct cat cac ctg ttc tcg aca atg ccg cat				1134

315	320	325	
tat aac gca atg gaa gct aca aag gcg ata aag cca att ctg gga gac Tyr Asn Ala Met Glu Ala Thr Lys Ala Ile Lys Pro Ile Leu Gly Asp			
330	335	340	1182
tat tac cag ttc gat gga aca ccg tgg tat gta gcg atg tat agg gag Tyr Tyr Gln Phe Asp Gly Thr Pro Trp Tyr Val Ala Met Tyr Arg Glu			
345	350	355	1230
gca aag gag tgt atc tat gta gaa ccg gac agg gaa ggt gac aag aaa Ala Lys Glu Cys Ile Tyr Val Glu Pro Asp Arg Glu Gly Asp Lys Lys			
360	365	370	1278
ggg gtt tac tgg tac aac aat aag tta tgaggatgat ggtgaagaaa Gly Val Tyr Trp Tyr Asn Asn Lys Leu			
375	380		1325
ttgtcgacct ttctcttgtc tgtttgctt ttgttaaaga agctatgctt cgtttaata			
atcttattgt ccattttgtt gtgttatgac atttggctg ctcattatgt tatgtggaa			
gttagtgttc aaatgtttt gtcggatt gttctctca tcgctgttt gttggatcg			
tagaaatgtg acottcggac agtaaaactc ttgtactaaa actatctccc tattggcatt			
tcttaaactt ttaatagtta cgtgctcgta gtgaatcttg acttgagtc			
<210> 2			
<211> 383			
<212> PRT			
<213> Arabidopsis thaliana			
Met Gly Ala Gly Gly Arg Met Pro Val Pro Thr Ser Ser Lys Lys Ser			
1	5	10	15
Glu Thr Asp Thr Thr Lys Arg Val Pro Cys Glu Lys Pro Pro Phe Ser			
20	25	30	
Val Gly Asp Leu Lys Lys Ala Ile Pro Pro His Cys Phe Lys Arg Ser			
35	40	45	
Ile Pro Arg Ser Phe Ser Tyr Leu Ile Ser Asp Ile Ile Ile Ala Ser			
50	55	60	
Cys Phe Tyr Tyr Val Ala Thr Asn Tyr Phe Ser Leu Leu Pro Gln Pro			
65	70	75	80
Leu Ser Tyr Leu Ala Trp Pro Leu Tyr Trp Ala Cys Gln Gly Cys Val			
85	90	95	
Leu Thr Gly Ile Trp Val Ile Ala His Glu Cys Gly His His Ala Phe			

100

105

110

Ser Asp Tyr Gln Trp Leu Asp Asp Thr Val Gly Leu Ile Phe His Ser
 115 120 125

Phe Leu Leu Val Pro Tyr Phe Ser Trp Lys Tyr Ser His Arg Arg His
 130 135 140

His Ser Asn Thr Gly Ser Leu Glu Arg Asp Glu Val Phe Val Pro Lys
 145 150 155 160

Gln Lys Ser Ala Ile Lys Trp Tyr Gly Lys Tyr Leu Asn Asn Pro Leu
 165 170 175

Gly Arg Ile Met Met Leu Thr Val Gln Phe Val Leu Gly Trp Pro Leu
 180 185 190

Tyr Leu Ala Phe Asn Val Ser Gly Arg Pro Tyr Asp Gly Phe Ala Cys
 195 200 205

His Phe Phe Pro Asn Ala Pro Ile Tyr Asn Asp Arg Glu Arg Leu Gln
 210 215 220

Ile Tyr Leu Ser Asp Ala Gly Ile Leu Ala Val Cys Phe Gly Leu Tyr
 225 230 235 240

Arg Tyr Ala Ala Ala Gln Gly Met Ala Ser Met Ile Cys Leu Tyr Gly
 245 250 255

Val Pro Leu Leu Ile Val Asn Ala Phe Leu Val Leu Ile Thr Tyr Leu
 260 265 270

Gln His Thr His Pro Ser Leu Pro His Tyr Asp Ser Ser Glu Trp Asp
 275 280 285

Trp Leu Arg Gly Ala Leu Ala Thr Val Asp Arg Asp Tyr Gly Ile Leu
 290 295 300

Asn Lys Val Phe His Asn Ile Thr Asp Thr His Val Ala His His Leu
 305 310 315 320

Phe Ser Thr Met Pro His Tyr Asn Ala Met Glu Ala Thr Lys Ala Ile
 325 330 335

Lys Pro Ile Leu Gly Asp Tyr Tyr Gln Phe Asp Gly Thr Pro Trp Tyr
 340 345 350

Val Ala Met Tyr Arg Glu Ala Lys Glu Cys Ile Tyr Val Glu Pro Asp
355 360 365

Arg Glu Gly Asp Lys Lys Gly Val Tyr Trp Tyr Asn Asn Lys Leu
 370 375 380

<210> 3
<211> 1149
<212> DNA
<213> *Arabidopsis thaliana*

<220>
<221> CDS
<222> (1)..(1149)

gaa acc gac acc aca aag cgt gtg ccg tgc gag aaa ccg cct ttc tcg 96
 Glu Thr Asp Thr Thr Lys Arg Val Pro Cys Glu Lys Pro Pro Phe Ser
 20 25 30

gtg gga gat ctg aag aaa gca atc ccg ccg cat tgt ttc aaa cgc tca 144
 Val Gly Asp Leu Lys Lys Ala Ile Pro Pro His Cys Phe Lys Arg Ser
 35 40 45

atc cct cgc tct ttc tcc tac ctt atc agt gac atc att ata gcc tca 192
 Ile Pro Arg Ser Phe Ser Tyr Leu Ile Ser Asp Ile Ile Ile Ala Ser
 50 55 60

tgc ttc tac tac gtc gcc acc aat tac ttc tct ctc ctc cct cag cct	240
Cys Phe Tyr Tyr Val Ala Thr Asn Tyr Phe Ser Leu Leu Pro Gln Pro	
65 70 75 80	

ctc tct tac ttg gct tgg cca ctc tat tgg gcc tgt caa ggc tgt gtc 288
 Leu Ser Tyr Leu Ala Trp Pro Leu Tyr Trp Ala Cys Gln Gly Cys Val
 85 90 95

ct a ct ggt atc tgg gtc ata gcc cac gaa tgc ggt cac cac gca ttc 336
 Leu Thr Gly Ile Trp Val Ile Ala His Glu Cys Gly His His Ala Phe
 100 105 110

agc gac tac caa tgg ctg gat gac aca gtt ggt ctt atc ttc cat tcc 384
 Ser Asp Tyr Gln Trp Leu Asp Asp Thr Val Gly Leu Ile Phe His Ser
 115 120 125

ttc ctc ctc gtc cct tac ttc tcc tgg aag tat agt cat cgc cgt cac 432
 Phe Leu Leu Val Pro Tyr Phe Ser Trp Lys Tyr Ser His Arg Arg His
 130 135 140

cat tcc aac act gga tcc ctc gaa aga gat gaa gta ttt gtc cca aag 480
 His Ser Asn Thr Gly Ser Leu Glu Arg Asp Glu Val Phe Val Pro Lys
 145 150 155 160

cag aaa tca gca atc aag tgg tac ggg aaa tac ctc aac aac cct ctt 528
 Gln Lys Ser Ala Ile Lys Trp Tyr Gly Lys Tyr Leu Asn Asn Pro Leu

gga cgc atc atg atg tta acc gtc cag ttt gtc ctc ggg tgg ccc ttg Gly Arg Ile Met Met Leu Thr Val Gln Phe Val Leu Gly Trp Pro Leu 180 185 190	576
tac tta gcc ttt aac gtc tct ggc aga ccg tat gac ggg ttc gct tgc Tyr Leu Ala Phe Asn Val Ser Gly Arg Pro Tyr Asp Gly Phe Ala Cys 195 200 205	624
cat ttc ttc ccc aac gct ccc atc tac aat gac cga gaa cgc ctc cag His Phe Phe Pro Asn Ala Pro Ile Tyr Asn Asp Arg Glu Arg Leu Gln 210 215 220	672
ata tac ctc tct gat gcg ggt att cta gcc gtc tgt ttt ggt ctt tac Ile Tyr Leu Ser Asp Ala Gly Ile Leu Ala Val Cys Phe Gly Leu Tyr 225 230 235 240	720
cgt tac gct gca caa ggg atg gcc tcg atg atc tgc ctc tac gga Arg Tyr Ala Ala Gln Gly Met Ala Ser Met Ile Cys Leu Tyr Gly 245 250 255	768
gta ccg ctt ctg ata gtg aat gcg ttc ctc gtc ttg atc act tac ttg Val Pro Leu Leu Ile Val Asn Ala Phe Leu Val Leu Ile Thr Tyr Leu 260 265 270	816
cag cac act cat ccc tcg ttg cct cac tac gat tca tca gag tgg gac Gln His Thr His Pro Ser Leu Pro His Tyr Asp Ser Ser Glu Trp Asp 275 280 285	864
tgg ctc agg gga gct ttg gct acc gta gac aga gac tac gga atc ttg Trp Leu Arg Gly Ala Leu Ala Thr Val Asp Arg Asp Tyr Gly Ile Leu 290 295 300	912
aac aag gtg ttc cac aac att aca gac aca cac gtg gct cat cac ctg Asn Lys Val Phe His Asn Ile Thr Asp Thr His Val Ala His His Leu 305 310 315 320	960
ttc tcg aca atg ccg cat tat aac gca atg gaa gct aca aag gcg ata Phe Ser Thr Met Pro His Tyr Asn Ala Met Glu Ala Thr Lys Ala Ile 325 330 335	1008
aag cca att ctg gga gac tat tac cag ttc gat gga aca ccg tgg tat Lys Pro Ile Leu Gly Asp Tyr Tyr Gln Phe Asp Gly Thr Pro Trp Tyr 340 345 350	1056
gta gcg atg tat agg gag gca aag gag tgt atc tat gta gaa ccg gac Val Ala Met Tyr Arg Glu Ala Lys Glu Cys Ile Tyr Val Glu Pro Asp 355 360 365	1104
agg gaa ggt gac aag aaa ggt gtg tac tgg tac aac aat aag tta Arg Glu Gly Asp Lys Lys Gly Val Tyr Trp Tyr Asn Asn Lys Leu 370 375 380	1149

<210> 4
 <211> 383
 <212> PRT
 <213> Arabidopsis thaliana

<400> 4

Met Gly Ala Gly Gly Arg Met Pro Val Pro Thr Ser Ser Lys Lys Ser
1 5 10 15

Glu Thr Asp Thr Thr Lys Arg Val Pro Cys Glu Lys Pro Pro Phe Ser
20 25 30

Val Gly Asp Leu Lys Lys Ala Ile Pro Pro His Cys Phe Lys Arg Ser
35 40 45

Ile Pro Arg Ser Phe Ser Tyr Leu Ile Ser Asp Ile Ile Ile Ala Ser
50 55 60

Cys Phe Tyr Tyr Val Ala Thr Asn Tyr Phe Ser Leu Leu Pro Gln Pro
65 70 75 80

Leu Ser Tyr Leu Ala Trp Pro Leu Tyr Trp Ala Cys Gln Gly Cys Val
85 90 95

Leu Thr Gly Ile Trp Val Ile Ala His Glu Cys Gly His His Ala Phe
100 105 110

Ser Asp Tyr Gln Trp Leu Asp Asp Thr Val Gly Leu Ile Phe His Ser
115 120 125

Phe Leu Leu Val Pro Tyr Phe Ser Trp Lys Tyr Ser His Arg Arg His
130 135 140

His Ser Asn Thr Gly Ser Leu Glu Arg Asp Glu Val Phe Val Pro Lys
145 150 155 160

Gln Lys Ser Ala Ile Lys Trp Tyr Gly Lys Tyr Leu Asn Asn Pro Leu
165 170 175

Gly Arg Ile Met Met Leu Thr Val Gln Phe Val Leu Gly Trp Pro Leu
180 185 190

Tyr Leu Ala Phe Asn Val Ser Gly Arg Pro Tyr Asp Gly Phe Ala Cys
195 200 205

His Phe Phe Pro Asn Ala Pro Ile Tyr Asn Asp Arg Glu Arg Leu Gln
210 215 220

Ile Tyr Leu Ser Asp Ala Gly Ile Leu Ala Val Cys Phe Gly Leu Tyr
225 230 235 240

Arg Tyr Ala Ala Ala Gln Gly Met Ala Ser Met Ile Cys Leu Tyr Gly
245 250 255

Val Pro Leu Leu Ile Val Asn Ala Phe Leu Val Leu Ile Thr Tyr Tyr Leu
 260 265 270

Gln His Thr His Pro Ser Leu Pro His Tyr Asp Ser Ser Glu Trp Asp
 275 280 285

Trp Leu Arg Gly Ala Leu Ala Thr Val Asp Arg Asp Tyr Gly Ile Leu
 290 295 300

Asn Lys Val Phe His Asn Ile Thr Asp Thr His Val Ala His His Leu
 305 310 315 320

Phe Ser Thr Met Pro His Tyr Asn Ala Met Glu Ala Thr Lys Ala Ile
 325 330 335

Lys Pro Ile Leu Gly Asp Tyr Tyr Gln Phe Asp Gly Thr Pro Trp Tyr
 340 345 350

Val Ala Met Tyr Arg Glu Ala Lys Glu Cys Ile Tyr Val Glu Pro Asp
 355 360 365

Arg Glu Gly Asp Lys Lys Gly Val Tyr Trp Tyr Asn Asn Lys Leu
 370 375 380

<210> 5
 <211> 1491
 <212> DNA
 <213> Glycine max

<220>
 <221> misc_feature
 <222> (1)..(114)

<220>
 <221> CDS
 <222> (115)..(1275)

<220>
 <221> misc_feature
 <222> (1276)..(1491)

<400> 5
 taggcaccta gctagtagct acaatatcag cacttctctc tattgataaa caattggctg 60

taatgccgca gtagaggacg atcacaacat ttctgtctgg atacttttg tttt atg 117
 Met
 1

ggt cta gca aag gaa aca ata atg gga ggt gga ggc cgt gtg gcc aaa 165
 Gly Leu Ala Lys Glu Thr Ile Met Gly Gly Gly Arg Val Ala Lys
 5 10 15

gtt gaa att cag cag aag aag cct ctc tca agg gtt cca aac aca aag	213
Val Glu Ile Gln Gln Lys Lys Pro Leu Ser Arg Val Pro Asn Thr Lys	
20 25 30	
cca cca ttc act gtt ggc caa ctc aag aaa gcc att cca ccg cac tgc	261
Pro Pro Phe Thr Val Gly Gln Leu Lys Lys Ala Ile Pro Pro His Cys	
35 40 45	
ttt cag cgt tcc ctc ctc act tca ttg tcc tat gtt gtt tat gac ctt	309
Phe Gln Arg Ser Leu Leu Thr Ser Leu Ser Tyr Val Val Tyr Asp Leu	
50 55 60 65	
tca ttg gct ttc att ttc tac att gcc acc acc tac ttc cac ctc ctc	357
Ser Leu Ala Phe Ile Phe Tyr Ile Ala Thr Thr Tyr Phe His Leu Leu	
70 75 80	
cct cac ccc ttt tcc ctc att gca tgg cca atc tat tgg gtt ctc caa	405
Pro His Pro Phe Ser Leu Ile Ala Trp Pro Ile Tyr Trp Val Leu Gln	
85 90 95	
ggt tgc att ctt act ggc gtg tgg gtg att gct cac gag tgt ggt cac	453
Gly Cys Ile Leu Thr Gly Val Trp Val Ile Ala His Glu Cys Gly His	
100 105 110	
cat gcc ttc agc aag tac cca tgg gtt gat gat gtt atg ggt ttg acc	501
His Ala Phe Ser Lys Tyr Pro Trp Val Asp Asp Val Met Gly Leu Thr	
115 120 125	
gtt cac tca gca ctt tta gtc cct tat ttc tca tgg aaa ata agc cat	549
Val His Ser Ala Leu Leu Val Pro Tyr Phe Ser Trp Lys Ile Ser His	
130 135 140 145	
cgc cgc cac cac tcc aac acg ggt tcc ctt gac cgt gat gaa gtg ttt	597
Arg Arg His His Ser Asn Thr Gly Ser Leu Asp Arg Asp Glu Val Phe	
150 155 160	
gtc cca aaa cca aaa tcc aaa gtt gca tgg tac acc aag tac ctg aac	645
Val Pro Lys Pro Lys Ser Lys Val Ala Trp Tyr Thr Lys Tyr Leu Asn	
165 170 175	
aac cct cta gga agg gct gct tct ctt ctc atc aca ctc aca ata ggg	693
Asn Pro Leu Gly Arg Ala Ala Ser Leu Leu Ile Thr Leu Thr Ile Gly	
180 185 190	
tgg cct atg tat tta gcc ttc aat gtc tct ggc aga ccc tat gat ggt	741
Trp Pro Met Tyr Leu Ala Phe Asn Val Ser Gly Arg Pro Tyr Asp Gly	
195 200 205	
ttt gca agc cac tac cac cct tat gct ccc ata tat tct aac cgt gag	789
Phe Ala Ser His Tyr His Pro Tyr Ala Pro Ile Tyr Ser Asn Arg Glu	
210 215 220 225	
agg ctt ctg atc tat gtc tct gat gtt gct ttg ttt tct gtg act tac	837
Arg Leu Leu Ile Tyr Val Ser Asp Val Ala Leu Phe Ser Val Thr Tyr	
230 235 240	
tct ctc tac cgt gtt gca act atg aaa ggg ttg gtt tgg ctg cta tgt	885
Ser Leu Tyr Arg Val Ala Thr Met Lys Gly Leu Val Trp Leu Leu Cys	
245 250 255	
gtt tat ggg gtg cca ttg ctc att gtg aac ggt ttt ctt gtg act atc	933

260	265	270	
aca tat ttg cag cac aca cac ttt gcc ttg cct cat tac gat tca tca			
Thr Tyr Leu Gln His Thr His Phe Ala Leu Pro His Tyr Asp Ser Ser			981
275	280	285	
gaa tgg gac tgg ctg aag gga gct ttg gca act atg gac aga gat tat			
Glu Trp Asp Trp Leu Lys Gly Ala Leu Ala Thr Met Asp Arg Asp Tyr			1029
290	295	300	305
ggg att ctg aac aag gtg ttt cat cac ata act gat act cat gtg gct			
Gly Ile Leu Asn Lys Val Phe His His Ile Thr Asp Thr His Val Ala			1077
310	315	320	
cac cat ctc ttc tct aca atg cca cat tac cat gca atg gag gca acc			
His His Leu Phe Ser Thr Met Pro His Tyr His Ala Met Glu Ala Thr			1125
325	330	335	
aat gca atc aag cca ata ttg ggt gag tac tac caa ttt gat gac aca			
Asn Ala Ile Lys Pro Ile Leu Gly Glu Tyr Tyr Gln Phe Asp Asp Thr			1173
340	345	350	
cca ttt tac aag gca ctg tgg aga gaa gcg aga gag tgc ctc tat gtg			
Pro Phe Tyr Lys Ala Leu Trp Arg Glu Ala Arg Glu Cys Leu Tyr Val			1221
355	360	365	
gag cca gat gaa gga aca tcc gag aag ggc gtg tat tgg tac agg aac			
Glu Pro Asp Glu Gly Thr Ser Glu Lys Gly Val Tyr Trp Tyr Arg Asn			1269
370	375	380	385
aag tat ttagatggacca agcaatgggc catatggga gttatggaaag ttttgtcact			
Lys Tyr			1325
tatcacttaa ttagtagaat gttataaata agtggatttg ccgcgtaatg acttgtgtgc			1385
atttgtaaac agctttagc gatccatgttataatgtaa aaatatgtgg aaagggtct			1445
ggttaaaaaaaaaaaaaaaaa aagcggccgt tttaaaggaa acaagg			1491
<210> 6			
<211> 387			
<212> PRT			
<213> Glycine max			
<400> 6			
Met Gly Leu Ala Lys Glu Thr Ile Met Gly Gly Gly Arg Val Ala			
1 5 10 15			
Lys Val Glu Ile Gln Gln Lys Lys Pro Leu Ser Arg Val Pro Asn Thr			
20 25 30			
Lys Pro Pro Phe Thr Val Gly Gln Leu Lys Lys Ala Ile Pro Pro His			
35 40 45			
Cys Phe Gln Arg Ser Leu Leu Thr Ser Leu Ser Tyr Val Val Tyr Asp			
10			

50

55

60

Leu Ser Leu Ala Phe Ile Phe Tyr Ile Ala Thr Thr Tyr Tyr Phe His Leu
65 70 75 80

Leu Pro His Pro Phe Ser Leu Ile Ala Trp Pro Ile Tyr Trp Val Leu
85 90 95

Gln Gly Cys Ile Leu Thr Gly Val Trp Val Ile Ala His Glu Cys Gly
100 105 110

His His Ala Phe Ser Lys Tyr Pro Trp Val Asp Asp Val Met Gly Leu
115 120 125

Thr Val His Ser Ala Leu Leu Val Pro Tyr Phe Ser Trp Lys Ile Ser
130 135 140

His Arg Arg His His Ser Asn Thr Gly Ser Leu Asp Arg Asp Glu Val
145 150 155 160

Phe Val Pro Lys Pro Lys Ser Lys Val Ala Trp Tyr Thr Lys Tyr Leu
165 170 175

Asn Asn Pro Leu Gly Arg Ala Ala Ser Leu Leu Ile Thr Leu Thr Ile
180 185 190

Gly Trp Pro Met Tyr Leu Ala Phe Asn Val Ser Gly Arg Pro Tyr Asp
195 200 205

Gly Phe Ala Ser His Tyr His Pro Tyr Ala Pro Ile Tyr Ser Asn Arg
210 215 220

Glu Arg Leu Leu Ile Tyr Val Ser Asp Val Ala Leu Phe Ser Val Thr
225 230 235 240

Tyr Ser Leu Tyr Arg Val Ala Thr Met Lys Gly Leu Val Trp Leu Leu
245 250 255

Cys Val Tyr Gly Val Pro Leu Leu Ile Val Asn Gly Phe Leu Val Thr
260 265 270

Ile Thr Tyr Leu Gln His Thr His Phe Ala Leu Pro His Tyr Asp Ser
275 280 285

Ser Glu Trp Asp Trp Leu Lys Gly Ala Leu Ala Thr Met Asp Arg Asp
290 295 300

Tyr Gly Ile Leu Asn Lys Val Phe His His Ile Thr Asp Thr His Val
 305 310 315 320

Ala His His Leu Phe Ser Thr Met Pro His Tyr His Ala Met Glu Ala
 325 330 335

Thr Asn Ala Ile Lys Pro Ile Leu Gly Glu Tyr Tyr Gln Phe Asp Asp
 340 345 350

Thr Pro Phe Tyr Lys Ala Leu Trp Arg Glu Ala Arg Glu Cys Leu Tyr
 355 360 365

Val Glu Pro Asp Glu Gly Thr Ser Glu Lys Gly Val Tyr Trp Tyr Arg
 370 375 380

Asn Lys Tyr
 385

<210> 7
 <211> 1161
 <212> DNA
 <213> Glycine max

<220>
 <221> CDS
 <222> (1)..(1161)

<400> 7
 atg ggt cta gca aag gaa aca ata atg gga ggt gga ggc cgt gtg gcc 48
 Met Gly Leu Ala Lys Glu Thr Ile Met Gly Gly Arg Val Ala
 1 5 10 15

aaa gtt gaa att cag cag aag aag cct ctc tca agg gtt cca aac aca 96
 Lys Val Glu Ile Gln Gln Lys Lys Pro Leu Ser Arg Val Pro Asn Thr
 20 25 30

aag cca cca ttc act gtt ggc caa ctc aag aaa gcc att cca ccg cac 144
 Lys Pro Pro Phe Thr Val Gly Gln Leu Lys Lys Ala Ile Pro Pro His
 35 40 45

tgc ttt cag cgt tcc ctc act tca ttg tcc tat gtt gtt tat gac 192
 Cys Phe Gln Arg Ser Leu Leu Thr Ser Leu Ser Tyr Val Val Tyr Asp
 50 55 60

ctt tca ttg gct ttc att ttc tac att gcc acc acc tac ttc cac ctc 240
 Leu Ser Leu Ala Phe Ile Phe Tyr Ile Ala Thr Thr Tyr Phe His Leu
 65 70 75 80

ctc cct cac ccc ttt tcc ctc att gca tgg cca atc tat tgg gtt ctc 288
 Leu Pro His Pro Phe Ser Leu Ile Ala Trp Pro Ile Tyr Trp Val Leu
 85 90 95

caa ggt tgc att ctt act ggc gtg tgg gtg att gct cac gag tgt ggt 336
 Gln Gly Cys Ile Leu Thr Gly Val Trp Val Ile Ala His Glu Cys Gly

100	105	110	
cac cat gcc ttc agc aag tac cca tgg gtt gat gat gtt atg ggt ttg His His Ala Phe Ser Lys Tyr Pro Trp Val Asp Asp Val Met Gly Leu 115 120 125			384
acc gtt cac tca gca ctt tta gtc cct tat ttc tca tgg aaa ata agc Thr Val His Ser Ala Leu Leu Val Pro Tyr Phe Ser Trp Lys Ile Ser 130 135 140			432
cat cgc cgc cac cac tcc aac acg ggt tcc ctt gac cgt gat gaa gtg His Arg Arg His His Ser Asn Thr Gly Ser Leu Asp Arg Asp Glu Val 145 150 155 160			480
ttt gtc cca aaa cca aaa tcc aaa gtt gca tgg tac acc aag tac ctg Phe Val Pro Lys Pro Lys Ser Val Ala Trp Tyr Thr Lys Tyr Leu 165 170 175			528
aac aac cct cta gga agg gct gct tct ctt atc aca ctc aca ata Asn Asn Pro Leu Gly Arg Ala Ala Ser Leu Leu Ile Thr Leu Thr Ile 180 185 190			576
ggg tgg cct atg tat tta gcc ttc aat gtc tct ggc aga ccc tat gat Gly Trp Pro Met Tyr Leu Ala Phe Asn Val Ser Gly Arg Pro Tyr Asp 195 200 205			624
ggt ttt gca agc cac tac cac cct tat gct ccc ata tat tct aac cgt Gly Phe Ala Ser His Tyr His Pro Tyr Ala Pro Ile Tyr Ser Asn Arg 210 215 220			672
gag agg ctt ctg atc tat gtc tct gat gtt gct ttg ttt tct gtg act Glu Arg Leu Leu Ile Tyr Val Ser Asp Val Ala Leu Phe Ser Val Thr 225 230 235 240			720
tac tct ctc tac cgt gtt gca act atg aaa ggg ttg gtt tgg ctg cta Tyr Ser Leu Tyr Arg Val Ala Thr Met Lys Gly Leu Val Trp Leu Leu 245 250 255			768
tgt gtt tat ggg gtg cca ttg ctc att gtg aac ggt ttt ctt gtg act Cys Val Tyr Gly Val Pro Leu Leu Ile Val Asn Gly Phe Leu Val Thr 260 265 270			816
atc aca tat ttg cag cac aca cac ttt gcc ttg cct cat tac gat tca Ile Thr Tyr Leu Gln His Thr His Phe Ala Leu Pro His Tyr Asp Ser 275 280 285			864
tca gaa tgg gac tgg ctg aag gga gct ttg gca act atg gac aga gat Ser Glu Trp Asp Trp Leu Lys Gly Ala Leu Ala Thr Met Asp Arg Asp 290 295 300			912
tat ggg att ctg aac aag gtg ttt cat cac ata act gat act cat gtg Tyr Gly Ile Leu Asn Lys Val Phe His His Ile Thr Asp Thr His Val 305 310 315 320			960
gct cac cat ctc ttc tct aca atg cca cat tac cat gca atg gag gca Ala His His Leu Phe Ser Thr Met Pro His Tyr His Ala Met Glu Ala 325 330 335			1008
acc aat gca atc aag cca ata ttg ggt gag tac tac caa ttt gat gac Thr Asn Ala Ile Lys Pro Ile Leu Gly Glu Tyr Tyr Gln Phe Asp Asp 340 345 350			1056

aca cca ttt tac aag gca ctg tgg aga gaa gca gca aga gag tgc ctc tat 1104
 Thr Pro Phe Tyr Lys Ala Leu Trp Arg Glu Ala Arg Glu Cys Leu Tyr
 355 360 365

gtg gag cca gat gaa gga aca tcc gag aag ggc gtg tat tgg tac agg 1152
 Val Glu Pro Asp Glu Gly Thr Ser Glu Lys Gly Val Tyr Trp Tyr Arg
 370 375 380

aac aag tat 1161
 Asn Lys Tyr
 385

<210> 8
 <211> 387
 <212> PRT
 <213> Glycine max

<400> 8

Met Gly Leu Ala Lys Glu Thr Ile Met Gly Gly Gly Arg Val Ala
 1 5 10 15

Lys Val Glu Ile Gln Gln Lys Lys Pro Leu Ser Arg Val Pro Asn Thr
 20 25 30

Lys Pro Pro Phe Thr Val Gly Gln Leu Lys Lys Ala Ile Pro Pro His
 35 40 45

Cys Phe Gln Arg Ser Leu Leu Thr Ser Leu Ser Tyr Val Val Tyr Asp
 50 55 60

Leu Ser Leu Ala Phe Ile Phe Tyr Ile Ala Thr Thr Tyr Phe His Leu
 65 70 75 80

Leu Pro His Pro Phe Ser Leu Ile Ala Trp Pro Ile Tyr Trp Val Leu
 85 90 95

Gln Gly Cys Ile Leu Thr Gly Val Trp Val Ile Ala His Glu Cys Gly
 100 105 110

His His Ala Phe Ser Lys Tyr Pro Trp Val Asp Asp Val Met Gly Leu
 115 120 125

Thr Val His Ser Ala Leu Leu Val Pro Tyr Phe Ser Trp Lys Ile Ser
 130 135 140

His Arg Arg His His Ser Asn Thr Gly Ser Leu Asp Arg Asp Glu Val
 145 150 155 160

Phe Val Pro Lys Pro Lys Ser Lys Val Ala Trp Tyr Thr Lys Tyr Leu
 165 170 175

Asn Asn Pro Leu Gly Arg Ala Ala Ser Leu Leu Ile Thr Leu Thr Ile
 180 185 190

Gly Trp Pro Met Tyr Leu Ala Phe Asn Val Ser Gly Arg Pro Tyr Asp
 195 200 205

Gly Phe Ala Ser His Tyr His Pro Tyr Ala Pro Ile Tyr Ser Asn Arg
 210 215 220

Glu Arg Leu Leu Ile Tyr Val Ser Asp Val Ala Leu Phe Ser Val Thr
 225 230 235 240

Tyr Ser Leu Tyr Arg Val Ala Thr Met Lys Gly Leu Val Trp Leu Leu
 245 250 255

Cys Val Tyr Gly Val Pro Leu Leu Ile Val Asn Gly Phe Leu Val Thr
 260 265 270

Ile Thr Tyr Leu Gln His Thr His Phe Ala Leu Pro His Tyr Asp Ser
 275 280 285

Ser Glu Trp Asp Trp Leu Lys Gly Ala Leu Ala Thr Met Asp Arg Asp
 290 295 300

Tyr Gly Ile Leu Asn Lys Val Phe His His Ile Thr Asp Thr His Val
 305 310 315 320

Ala His His Leu Phe Ser Thr Met Pro His Tyr His Ala Met Glu Ala
 325 330 335

Thr Asn Ala Ile Lys Pro Ile Leu Gly Glu Tyr Tyr Gln Phe Asp Asp
 340 345 350

Thr Pro Phe Tyr Lys Ala Leu Trp Arg Glu Ala Arg Glu Cys Leu Tyr
 355 360 365

Val Glu Pro Asp Glu Gly Thr Ser Glu Lys Gly Val Tyr Trp Tyr Arg
 370 375 380

Asn Lys Tyr
 385

<210> 9
 <211> 1616
 <212> DNA
 <213> Glycine max

<220>
 <221> misc_feature
 <222> (1)..(95)

 <220>
 <221> CDS
 <222> (96)..(1244)

 <220>
 <221> misc_feature
 <222> (1245)..(1616)

 <400> 9
 gcgtgtcgt ctctctctct ctctcacccct ccttttcaca cattttctgt gcgtctaaac 60
 aaacattctc gttcacactt tcagattgtg tgaag atg ggg gcg ggt ggc cga 113
 Met Gly Ala Gly Gly Arg
 1 5
 act gat gtt cct cct gcc aac agg aag tca gag gtt gac cct ttg aag 161
 Thr Asp Val Pro Pro Ala Asn Arg Lys Ser Glu Val Asp Pro Leu Lys
 10 15 20
 25 30 35
 cggtgtg cca ttt gaa aaa cct cca ttt agt ctc agc caa atc aag aag 209
 Arg Val Pro Phe Glu Lys Pro Pro Phe Ser Leu Ser Gln Ile Lys Lys
 40 45 50
 gtc att cca cct cac ttt ttc cag cgt tct gtt ttc cgc tca ttc tcc 257
 Val Ile Pro Pro His Cys Phe Gln Arg Ser Val Phe Arg Ser Phe Ser
 55 60 65 70
 tat gtt gtt tac gac ctc acc ata gcc ttc tgc ctc tat tat gtt gcc 305
 Tyr Val Val Tyr Asp Leu Thr Ile Ala Phe Cys Leu Tyr Tyr Val Ala
 75 80 85
 acc cat tac ttc cac ctc ctt ccc agc cct ctc tct ttc ttg gca tgg 353
 Thr His Tyr Phe His Leu Leu Pro Ser Pro Leu Ser Phe Leu Ala Trp
 90 95 100
 cca atc tac tgg gct gtc caa ggt tgc atc ctt act gga gtt tgg gtc 401
 Pro Ile Tyr Trp Ala Val Gln Gly Cys Ile Leu Thr Gly Val Trp Val
 105 110 115
 att gcc cat gag ttt ggc ctt gtc ctc cac tcc ggt ctc cta gtc cca tac 449
 Ile Ala His Glu Cys Gly His His Ala Phe Ser Asp Tyr Gln Leu Leu
 120 125 130
 gat gat att gtt ggc ctt gtc ctc cac tcc ggt ctc cta gtc cca tac 497
 Asp Asp Ile Val Gly Leu Val Leu His Ser Gly Leu Leu Val Pro Tyr
 135 140 145 150
 ttt tca tgg aaa tac agc cat cgc cgt cac cac tcc aac act ggt tct 545
 Phe Ser Trp Lys Tyr Ser His Arg Arg His His Ser Asn Thr Gly Ser
 155 160 165
 ctt gag cgg gat gaa gta ttt gtg cca aag cag aag tcc ttt atc aag 593
 Leu Glu Arg Asp Glu Val Phe Val Pro Lys Gln Lys Ser Cys Ile Lys
 170 175 180
 tgg tac tct aaa tac ctt aac aat cct cca ggc aga gtc ctc act ctt 641

Trp Tyr Ser Lys Tyr Leu Asn Asn Pro Pro Gly Arg Val Leu Thr Leu
 170 175 180

gct gtc acc ctc aca ctt ggt tgg ccc ttg tac ttg gct tta aat gtt 689
 Ala Val Thr Leu Thr Leu Gly Trp Pro Leu Tyr Leu Ala Leu Asn Val
 185 190 195

tct gga agg cct tat gat aga ttt gct tgc cac tat gac cca tat ggt 737
 Ser Gly Arg Pro Tyr Asp Arg Phe Ala Cys His Tyr Asp Pro Tyr Gly
 200 205 210

ccc att tac tct gat cgt gaa cga ctt caa ata tat ata tca gat gca 785
 Pro Ile Tyr Ser Asp Arg Glu Arg Leu Gln Ile Tyr Ile Ser Asp Ala
 215 220 225 230

gga gta ctt gca gta tgc tat ggc ctt ttc cgt ctt gcc atg gca aaa 833
 Gly Val Leu Ala Val Cys Tyr Gly Leu Phe Arg Leu Ala Met Ala Lys
 235 240 245

gga ctt gcc tgg gtg gtg tgt gtt tat gga gtt cca ttg cta gtg gtc 881
 Gly Leu Ala Trp Val Val Cys Val Tyr Gly Val Pro Leu Leu Val Val
 250 255 260

aat gga ttt ttg gtg ttg att aca ttc ttg cag cat act cac cct gca 929
 Asn Gly Phe Leu Val Leu Ile Thr Phe Leu Gln His Thr His Pro Ala
 265 270 275

ttg cca cat tac act tcc tct gag tgg gac tgg ttg aga gga gct tta 977
 Leu Pro His Tyr Thr Ser Ser Glu Trp Asp Trp Leu Arg Gly Ala Leu
 280 285 290

gca aca gtg gat aga gat tat gga atc ctg aac aag gtc ttc cat aat 1025
 Ala Thr Val Asp Arg Asp Tyr Gly Ile Leu Asn Lys Val Phe His Asn
 295 300 305 310

att aca gac act cat gta gca cat cac ttg ttc tcc aca atg cca cat 1073
 Ile Thr Asp Thr His Val Ala His Leu Phe Ser Thr Met Pro His
 315 320 325

tat cat gca atg gag gct aca aag gca ata aaa ccc att ttg gga gag 1121
 Tyr His Ala Met Glu Ala Thr Lys Ala Ile Lys Pro Ile Leu Gly Glu
 330 335 340

tat tat cgg ttt gat gag act cca ttt gtc aag gca atg tgg aga gag 1169
 Tyr Tyr Arg Phe Asp Glu Thr Pro Phe Val Lys Ala Met Trp Arg Glu
 345 350 355

gca aga gag tgt att tat gtg gag cca gat caa agt acc gag agc aaa 1217
 Ala Arg Glu Cys Ile Tyr Val Glu Pro Asp Gln Ser Thr Glu Ser Lys
 360 365 370

ggt gta ttt tgg tac aac aat aag ttg tgatgattaa tggatccgag 1264
 Gly Val Phe Trp Tyr Asn Asn Lys Leu
 375 380

gcttcttga actttccctt gtgactgttt agtatcatgg ttgcttattg ggaataattt 1324

tggtgaaccc tgatgttggt agtaagtatc tagacagttg catagcggtt ttgtttacag 1384

aataagatat agcctctctg aacagttga ttattgcacc atggttgca atcggtgcat 1444

gtcgaccaag tttctcaaga ctgtggagaa gcttattctt gttccagttc ttgaatccaa 1504

gttggttacccg tattctgtta ttattgactt agaattcctta accttttctg ctgtttctc 1564

atgatcgtca ctcgcaaattg aatcacattt caaacccaaaa aaaaaaaaaa aa 1616

<210> 10

<211> 383

<212> PRT

<213> Glycine max

<400> 10

Met Gly Ala Gly Gly Arg Thr Asp Val Pro Pro Ala Asn Arg Lys Ser
1 5 10 15

Glu Val Asp Pro Leu Lys Arg Val Pro Phe Glu Lys Pro Pro Phe Ser
20 25 30

Leu Ser Gln Ile Lys Lys Val Ile Pro Pro His Cys Phe Gln Arg Ser
35 40 45

Val Phe Arg Ser Phe Ser Tyr Val Val Tyr Asp Leu Thr Ile Ala Phe
50 55 60

Cys Leu Tyr Tyr Val Ala Thr His Tyr Phe His Leu Leu Pro Ser Pro
65 70 75 80

Leu Ser Phe Leu Ala Trp Pro Ile Tyr Trp Ala Val Gln Gly Cys Ile
85 90 95

Leu Thr Gly Val Trp Val Ile Ala His Glu Cys Gly His His Ala Phe
100 105 110

Ser Asp Tyr Gln Leu Leu Asp Asp Ile Val Gly Leu Val Leu His Ser
115 120 125

Gly Leu Leu Val Pro Tyr Phe Ser Trp Lys Tyr Ser His Arg Arg His
130 135 140

His Ser Asn Thr Gly Ser Leu Glu Arg Asp Glu Val Phe Val Pro Lys
145 150 155 160

Gln Lys Ser Cys Ile Lys Trp Tyr Ser Lys Tyr Leu Asn Asn Pro Pro
165 170 175

Gly Arg Val Leu Thr Leu Ala Val Thr Leu Thr Leu Gly Trp Pro Leu
180 185 190

Tyr Leu Ala Leu Asn Val Ser Gly Arg Pro Tyr Asp Arg Phe Ala Cys

195

200

205

His Tyr Asp Pro Tyr Gly Pro Ile Tyr Ser Asp Arg Glu Arg Leu Gln
 210 215 220

Ile Tyr Ile Ser Asp Ala Gly Val Leu Ala Val Cys Tyr Gly Leu Phe
 225 230 235 240

Arg Leu Ala Met Ala Lys Gly Leu Ala Trp Val Val Cys Val Tyr Gly
 245 250 255

Val Pro Leu Leu Val Val Asn Gly Phe Leu Val Leu Ile Thr Phe Leu
 260 265 270

Gln His Thr His Pro Ala Leu Pro His Tyr Thr Ser Ser Glu Trp Asp
 275 280 285

Trp Leu Arg Gly Ala Leu Ala Thr Val Asp Arg Asp Tyr Gly Ile Leu
 290 295 300

Asn Lys Val Phe His Asn Ile Thr Asp Thr His Val Ala His His Leu
 305 310 315 320

Phe Ser Thr Met Pro His Tyr His Ala Met Glu Ala Thr Lys Ala Ile
 325 330 335

Lys Pro Ile Leu Gly Glu Tyr Tyr Arg Phe Asp Glu Thr Pro Phe Val
 340 345 350

Lys Ala Met Trp Arg Glu Ala Arg Glu Cys Ile Tyr Val Glu Pro Asp
 355 360 365

Gln Ser Thr Glu Ser Lys Gly Val Phe Trp Tyr Asn Asn Lys Leu
 370 375 380

<210> 11<211> 1149

<212> DNA

<213> Glycine max

<220>

<221> CDS

<222> (1)..(1149)

<400> 11

atg ggg gcg ggt ggc cga act gat gtt cct cct gcc aac agg aag tca
 Met Gly Ala Gly Gly Arg Thr Asp Val Pro Pro Ala Asn Arg Lys Ser
 1 5 10 15

48

gag gtt gac cct ttg aag cgg gtg cca ttt gaa aaa cct cca ttt agt

96

Glu Val Asp Pro Leu Lys Arg Val Pro Phe Glu Lys Pro Pro Phe Ser			
20	25	30	
ctc agc caa atc aag aag gtc att cca cct cac tgt ttc cag cgt tct			144
Leu Ser Gln Ile Lys Lys Val Ile Pro Pro His Cys Phe Gln Arg Ser			
35	40	45	
gtt ttc cgc tca ttc tcc tat gtt gtt tac gac ctc acc ata gcc ttc			192
Val Phe Arg Ser Phe Ser Tyr Val Val Tyr Asp Leu Thr Ile Ala Phe			
50	55	60	
tgc ctc tat tat gtt gcc acc cat tac ttc cac ctc ctt ccc agc cct			240
Cys Leu Tyr Tyr Val Ala Thr His Tyr Phe His Leu Leu Pro Ser Pro			
65	70	75	80
ctc tct ttc ttg gca tgg cca atc tac tgg gct gtc caa ggt tgc atc			288
Leu Ser Phe Leu Ala Trp Pro Ile Tyr Trp Ala Val Gln Gly Cys Ile			
85	90	95	
ctt act gga gtt tgg gtc att gcc cat gag tgt ggc cac cat gca ttc			336
Leu Thr Gly Val Trp Val Ile Ala His Glu Cys Gly His His Ala Phe			
100	105	110	
agt gac tac cag ttg ctt gat att gtt ggc ctt gtc ctc cac tcc			384
Ser Asp Tyr Gln Leu Leu Asp Asp Ile Val Gly Leu Val Leu His Ser			
115	120	125	
ggc ctc cta gtc cca tac ttt tca tgg aaa tac agc cat cgc cgt cac			432
Gly Leu Leu Val Pro Tyr Phe Ser Trp Lys Tyr Ser His Arg Arg His			
130	135	140	
cac tcc aac act ggt tct ctt gag cgg gat gaa gta ttt gtg cca aag			480
His Ser Asn Thr Gly Ser Leu Glu Arg Asp Glu Val Phe Val Pro Lys			
145	150	155	160
cag aag tcc tgt atc aag tgg tac tct aaa tac ctt aac aat cct cca			528
Gln Lys Ser Cys Ile Lys Trp Tyr Ser Lys Tyr Leu Asn Asn Pro Pro			
165	170	175	
ggc aga gtc ctc act ctt gct acc ctc aca ctt ggt tgg ccc ttg			576
Gly Arg Val Leu Thr Leu Ala Val Thr Leu Thr Leu Gly Trp Pro Leu			
180	185	190	
tac ttg gct tta aat gtt tct gga agg cct tat gat aga ttt gct tgc			624
Tyr Leu Ala Leu Asn Val Ser Gly Arg Pro Tyr Asp Arg Phe Ala Cys			
195	200	205	
cac tat gac cca tat ggt ccc att tac tct gat cgt gaa cga ctt caa			672
His Tyr Asp Pro Tyr Gly Pro Ile Tyr Ser Asp Arg Glu Arg Leu Gln			
210	215	220	
ata tat ata tca gat gca gga gta ctt gca gta tgc tat ggc ctt ttc			720
Ile Tyr Ile Ser Asp Ala Gly Val Leu Ala Val Cys Tyr Gly Leu Phe			
225	230	235	240
cgt ctt gcc atg gca aaa gga ctt gcc tgg gtg gtg tgt gtt tat gga			768
Arg Leu Ala Met Ala Lys Gly Leu Ala Trp Val Val Cys Val Tyr Gly			
245	250	255	
gtt cca ttg cta gtg gtc aat gga ttt ttg gtg att aca ttc ttg			816
Val Pro Leu Leu Val Val Asn Gly Phe Leu Val Leu Ile Thr Phe Leu			
260	265	270	

cag cat act cac cct gca ttg cca cat tac act tcc tct gag tgg gac 864
 Gln His Thr His Pro Ala Leu Pro His Tyr Thr Ser Ser Glu Trp Asp
 275 280 285

tgg ttg aga gga gct tta gca aca gtg gat aga gat tat gga atc ctg 912
 Trp Leu Arg Gly Ala Leu Ala Thr Val Asp Arg Asp Tyr Gly Ile Leu
 290 295 300

aac aag gtc ttc cat aat att aca gac act cat gta gca cat cac ttg 960
 Asn Lys Val Phe His Asn Ile Thr Asp Thr His Val Ala His His Leu
 305 310 315 320

ttc tcc aca atg cca cat tat cat gca atg gag gct aca aag gca ata 1008
 Phe Ser Thr Met Pro His Tyr His Ala Met Glu Ala Thr Lys Ala Ile
 325 330 335

aaa ccc att ttg gga gag tat tat cgg ttt gat gag act cca ttt gtc 1056
 Lys Pro Ile Leu Gly Glu Tyr Tyr Arg Phe Asp Glu Thr Pro Phe Val
 340 345 350

aag gca atg tgg aga gag gca aga gag tgt att tat gtg gag cca gat 1104
 Lys Ala Met Trp Arg Glu Ala Arg Glu Cys Ile Tyr Val Glu Pro Asp
 355 360 365

caa agt acc gag agc aaa ggt gta ttt tgg tac aac aat aag ttg 1149
 Gln Ser Thr Glu Ser Lys Gly Val Phe Trp Tyr Asn Asn Lys Leu
 370 375 380

<210> 12

<211> 383

<212> PRT

<213> Glycine max

<400> 12

Met Gly Ala Gly Gly Arg Thr Asp Val Pro Pro Ala Asn Arg Lys Ser 1 5 10 15

Glu Val Asp Pro Leu Lys Arg Val Pro Phe Glu Lys Pro Pro Phe Ser 20 25 30

Leu Ser Gln Ile Lys Lys Val Ile Pro Pro His Cys Phe Gln Arg Ser 35 40 45

Val Phe Arg Ser Phe Ser Tyr Val Val Tyr Asp Leu Thr Ile Ala Phe 50 55 60

Cys Leu Tyr Tyr Val Ala Thr His Tyr Phe His Leu Leu Pro Ser Pro 65 70 75 80

Leu Ser Phe Leu Ala Trp Pro Ile Tyr Trp Ala Val Gln Gly Cys Ile 85 90 95

Leu Thr Gly Val Trp Val Ile Ala His Glu Cys Gly His His Ala Phe

100 105 110

Ser Asp Tyr Gln Leu Leu Asp Asp Ile Val Gly Leu Val Leu His Ser
115 120 125Gly Leu Leu Val Pro Tyr Phe Ser Trp Lys Tyr Ser His Arg Arg His
130 135 140His Ser Asn Thr Gly Ser Leu Glu Arg Asp Glu Val Phe Val Pro Lys
145 150 155 160Gln Lys Ser Cys Ile Lys Trp Tyr Ser Lys Tyr Leu Asn Asn Pro Pro
165 170 175Gly Arg Val Leu Thr Leu Ala Val Thr Leu Thr Leu Gly Trp Pro Leu
180 185 190Tyr Leu Ala Leu Asn Val Ser Gly Arg Pro Tyr Asp Arg Phe Ala Cys
195 200 205His Tyr Asp Pro Tyr Gly Pro Ile Tyr Ser Asp Arg Glu Arg Leu Gln
210 215 220Ile Tyr Ile Ser Asp Ala Gly Val Leu Ala Val Cys Tyr Gly Leu Phe
225 230 235 240Arg Leu Ala Met Ala Lys Gly Leu Ala Trp Val Val Cys Val Tyr Gly
245 250 255Val Pro Leu Leu Val Val Asn Gly Phe Leu Val Leu Ile Thr Phe Leu
260 265 270Gln His Thr His Pro Ala Leu Pro His Tyr Thr Ser Ser Glu Trp Asp
275 280 285Trp Leu Arg Gly Ala Leu Ala Thr Val Asp Arg Asp Tyr Gly Ile Leu
290 295 300Asn Lys Val Phe His Asn Ile Thr Asp Thr His Val Ala His His Leu
305 310 315 320Phe Ser Thr Met Pro His Tyr His Ala Met Glu Ala Thr Lys Ala Ile
325 330 335Lys Pro Ile Leu Gly Glu Tyr Tyr Arg Phe Asp Glu Thr Pro Phe Val
340 345 350

Lys Ala Met Trp Arg Glu Ala Arg Glu Cys Ile Tyr Val Glu Pro Asp
 355 360 365

Gln Ser Thr Glu Ser Lys Gly Val Phe Trp Tyr Asn Asn Lys Leu
 370 375 380

<210> 13
 <211> 1053
 <212> DNA
 <213> Glycine max

<220>
 <221> misc_feature
 <222> (1)..(95)

<220>
 <221> CDS
 <222> (96)..(749)

<220>
 <221> misc_feature
 <222> (750)..(1053)

<400> 13
 acttttcatg gaaatacagc catcgccgtc accactccaa cacaggttct cttgagc gag 60

atgaagtatt tgtgccaaag cagaagtcca gtatc atg tgg tac tct aaa tac 113
 Met Trp Tyr Ser Lys Tyr
 1 5

ctt aac aat cca cca ggc aga gtc ctc act ctt gcc gtc acc ctc acg 161
 Leu Asn Asn Pro Pro Gly Arg Val Leu Thr Leu Ala Val Thr Leu Thr
 10 15 20

ctt ggt tgg ccc ttg tac ttg gct ttt aat gtt tct gga agg cct tat 209
 Leu Gly Trp Pro Leu Tyr Leu Ala Phe Asn Val Ser Gly Arg Pro Tyr
 25 30 35

gat aga ttt gct tgc cac tat gac cct tat ggt ccc att tac tct gac 257
 Asp Arg Phe Ala Cys His Tyr Asp Pro Tyr Gly Pro Ile Tyr Ser Asp
 40 45 50

cga gaa cga ctt caa ata tat ata tca gat gca gga gta ctt gca gta 305
 Arg Glu Arg Leu Gln Ile Tyr Ile Ser Asp Ala Gly Val Leu Ala Val
 55 60 65 70

tgc tat ggc ctt ttc tgt ctt gcc atg gca aaa ggg ctt gcc tgg gtg 353
 Cys Tyr Gly Leu Phe Cys Leu Ala Met Ala Lys Gly Leu Ala Trp Val
 75 80 85

gtg tgt gtt tat gga gtt cca ttg ctt gtg gtc aat gga ttt ttg gtg 401
 Val Cys Val Tyr Gly Val Pro Leu Leu Val Val Asn Gly Phe Leu Val
 90 95 100

ttg att aca ttt ttg cag cac act cac cct gca ttg cca cac tac act 449
 Leu Ile Thr Phe Leu Gln His Thr His Pro Ala Leu Pro His Tyr Thr
 105 110 115

tcc tct gag tgg gac tgg ttg aga gga gct tta gca aca gtc gat aga	497
Ser Ser Glu Trp Asp Trp Leu Arg Gly Ala Leu Ala Thr Val Asp Arg	
120 125 130	
gat tat gga atc ctg aac aag gtc ttc cat aat att aca gac act cat	545
Asp Tyr Gly Ile Leu Asn Lys Val Phe His Asn Ile Thr Asp Thr His	
135 140 145 150	
gta gct cat cac ttg ttc tcc aca atg cca cat tat cat gca atg gag	593
Val Ala His His Leu Phe Ser Thr Met Pro His Tyr His Ala Met Glu	
155 160 165	
gcg aca aag gca ata aag ccc atc ttg gga gag tat tat cgg ttt gat	641
Ala Thr Lys Ala Ile Lys Pro Ile Leu Gly Glu Tyr Tyr Arg Phe Asp	
170 175 180	
ggg act cca ttt gtc aag gca atg tgg aga gag gca aga gag tgt att	689
Gly Thr Pro Phe Val Lys Ala Met Trp Arg Glu Ala Arg Glu Cys Ile	
185 190 195	
tat gtg gag cca gat caa agt act cag agc aaa ggt gta ttt tgg tac	737
Tyr Val Glu Pro Asp Gln Ser Thr Gln Ser Lys Gly Val Phe Trp Tyr	
200 205 210	
aac aat aag ttg tgatgattaa tggatgggg ggctttttt ccgtcagggtg	789
Asn Asn Lys Leu	
215	
ggatggtttg aactttcattt tggactgtt tagtatcatg cttgcttatt gggataatt	849
ttgttgaacc ctgatgttgg tagtagtac tagaaagtag catagcgttt ttgtttgcag	909
aataagatat agcatctctg aacagtttga ttattgcacc atgtttgca atcagtgcac	969
gtcgaccggg ttctcaaga ttgtgggat gcttattttt gttccagttc ttgaatccaa	1029
gttgttatca tattctgtta ttga	1053

<210> 14
 <211> 218
 <212> PRT
 <213> Glycine max

<400> 14

Met Trp Tyr Ser Lys Tyr Leu Asn Asn Pro Pro Gly Arg Val Leu Thr	
1 5 10 15	

Leu Ala Val Thr Leu Thr Leu Gly Trp Pro Leu Tyr Leu Ala Phe Asn	
20 25 30	

Val Ser Gly Arg Pro Tyr Asp Arg Phe Ala Cys His Tyr Asp Pro Tyr	
35 40 45	

Gly Pro Ile Tyr Ser Asp Arg Glu Arg Leu Gln Ile Tyr Ile Ser Asp	
50 55 60	

Ala Gly Val Leu Ala Val Cys Tyr Gly Leu Phe Cys Leu Ala Met Ala
65 70 75 80

Lys Gly Leu Ala Trp Val Val Cys Val Tyr Gly Val Pro Leu Leu Val
85 90 95

Val Asn Gly Phe Leu Val Leu Ile Thr Phe Leu Gln His Thr His Pro
100 105 110

Ala Leu Pro His Tyr Thr Ser Ser Glu Trp Asp Trp Leu Arg Gly Ala
115 120 125

Leu Ala Thr Val Asp Arg Asp Tyr Gly Ile Leu Asn Lys Val Phe His
130 135 140

Asn Ile Thr Asp Thr His Val Ala His His Leu Phe Ser Thr Met Pro
145 150 155 160

His Tyr His Ala Met Glu Ala Thr Lys Ala Ile Lys Pro Ile Leu Gly
165 170 175

Glu Tyr Tyr Arg Phe Asp Gly Thr Pro Phe Val Lys Ala Met Trp Arg
180 185 190

Glu Ala Arg Glu Cys Ile Tyr Val Glu Pro Asp Gln Ser Thr Gln Ser
195 200 205

Lys Gly Val Phe Trp Tyr Asn Asn Lys Leu
210 215

<210> 15
<211> 654
<212> DNA
<213> Glycine max

<220>
<221> CDS
<222> (1)..(654)

<400> 15
atg tgg tac tct aaa tac ctt aac aat cca cca ggc aga gtc ctc act 48
Met Trp Tyr Ser Lys Tyr Leu Asn Asn Pro Pro Gly Arg Val Leu Thr
1 5 10 15

ctt gcc gtc acc ctc acg ctt ggt tgg ccc ttg tac ttg gct ttt aat 96
Leu Ala Val Thr Leu Thr Leu Gly Trp Pro Leu Tyr Leu Ala Phe Asn
20 25 30

gtt tct gga agg cct tat gat aga ttt gct tgc cac tat gac cct tat 144
Val Ser Gly Arg Pro Tyr Asp Arg Phe Ala Cys His Tyr Asp Pro Tyr
35 40 45

ggt ccc att tac tct gac cga gaa cga ctt caa ata tat ata tca gat	50	55	60	192	
Gly Pro Ile Tyr Ser Asp Arg Glu Arg Leu Gln Ile Tyr Ile Ser Asp					
gca gga gta ctt gca gta tgc tat ggc ctt ttc tgt ctt gcc atg gca	65	70	75	240	
Ala Gly Val Leu Ala Val Cys Tyr Gly Leu Phe Cys Leu Ala Met Ala					
aaa ggg ctt gcc tgg gtg tgt gtt tat gga gtt cca ttg ctt gtg	85	90	95	288	
Lys Gly Leu Ala Trp Val Val Cys Val Tyr Gly Val Pro Leu Leu Val					
gtc aat gga ttt ttg gtg ttg att aca ttt ttg cag cac act cac cct	100	105	110	336	
Val Asn Gly Phe Leu Val Leu Ile Thr Phe Leu Gln His Thr His Pro					
gca ttg cca cac tac act tcc tct gag tgg gac tgg ttg aga gga gct	115	120	125	384	
Ala Leu Pro His Tyr Thr Ser Ser Glu Trp Asp Trp Leu Arg Gly Ala					
tta gca aca gtg gat aga gat tat gga atc ctg aac aag gtc ttc cat	130	135	140	432	
Leu Ala Thr Val Asp Arg Asp Tyr Gly Ile Leu Asn Lys Val Phe His					
aat att aca gac act cat gta gct cat cac ttg ttc tcc aca atg cca	145	150	155	480	
Asn Ile Thr Asp Thr His Val Ala His His Leu Phe Ser Thr Met Pro					
cat tat cat gca atg gag gcg aca aag gca ata aag ccc atc ttg gga	165	170	175	528	
His Tyr His Ala Met Glu Ala Thr Lys Ala Ile Lys Pro Ile Leu Gly					
gag tat tat cgg ttt gat ggg act cca ttt gtc aag gca atg tgg aga	180	185	190	576	
Glu Tyr Tyr Arg Phe Asp Gly Thr Pro Phe Val Lys Ala Met Trp Arg					
gag gca aga gag tgt att tat gtg gag cca gat caa agt act cag agc	195	200	205	624	
Glu Ala Arg Glu Cys Ile Tyr Val Glu Pro Asp Gln Ser Thr Gln Ser					
aaa ggt gta ttt tgg tac aac aat aag ttg	210	215		654	
Lys Gly Val Phe Trp Tyr Asn Asn Lys Leu					
<210> 16					
<211> 218					
<212> PRT					
<213> Glycine max					
<400> 16					
Met Trp Tyr Ser Lys Tyr Leu Asn Asn Pro Pro Gly Arg Val Leu Thr	1	5	10	15	
Leu Ala Val Thr Leu Thr Leu Gly Trp Pro Leu Tyr Leu Ala Phe Asn	20	25	30		
Val Ser Gly Arg Pro Tyr Asp Arg Phe Ala Cys His Tyr Asp Pro Tyr					

35

40

45

Gly Pro Ile Tyr Ser Asp Arg Glu Arg Leu Gln Ile Tyr Ile Ser Asp
 50 55 60

Ala Gly Val Leu Ala Val Cys Tyr Gly Leu Phe Cys Leu Ala Met Ala
 65 70 75 80

Lys Gly Leu Ala Trp Val Val Cys Val Tyr Gly Val Pro Leu Leu Val
 85 90 95

Val Asn Gly Phe Leu Val Leu Ile Thr Phe Leu Gln His Thr His Pro
 100 105 110

Ala Leu Pro His Tyr Thr Ser Ser Glu Trp Asp Trp Leu Arg Gly Ala
 115 120 125

Leu Ala Thr Val Asp Arg Asp Tyr Gly Ile Leu Asn Lys Val Phe His
 130 135 140

Asn Ile Thr Asp Thr His Val Ala His His Leu Phe Ser Thr Met Pro
 145 150 155 160

His Tyr His Ala Met Glu Ala Thr Lys Ala Ile Lys Pro Ile Leu Gly
 165 170 175

Glu Tyr Tyr Arg Phe Asp Gly Thr Pro Phe Val Lys Ala Met Trp Arg
 180 185 190

Glu Ala Arg Glu Cys Ile Tyr Val Glu Pro Asp Gln Ser Thr Gln Ser
 195 200 205

Lys Gly Val Phe Trp Tyr Asn Asn Lys Leu
 210 215

<210> 17
 <211> 1750
 <212> DNA
 <213> Zea mays

<220>
 <221> misc_feature
 <222> (1)..(175)

<220>
 <221> CDS
 <222> (176)..(1351)

<220>

<221> misc_feature
 <222> (1352)..(1750)

<400> 17			
ctccctcctc cttcctcctc cctgcaaatac ctgcaggcac caccgctcgt tttcctgtcc	60		
ggggacagg agagaagggg agagaccgag agagggtgag ggcggcgtc cgccgatctg	120		
ctccgcccccc cgaaggcagcc tgtcacgtcg tcctcactct cagcaaccag cgaaa atg	178		
	Met		
	1		
ggt gcc gga ggc agg acc gag aag gag cgg gag aag cat gag cag	226		
Gly Ala Gly Gly Arg Met Thr Glu Lys Glu Arg Glu Lys His Glu Gln			
5 10 15			
gag cag gtc gcc cgt gct acc ggc ggt ggc gcg gca gtg cag cgg tcg	274		
Glu Gln Val Ala Arg Ala Thr Gly Gly Ala Ala Val Gln Arg Ser			
20 25 30			
ccg gtg gag aag ccg ccg ttc acg ttg ggg cag atc aag aag gcg atc	322		
Pro Val Glu Lys Pro Pro Phe Thr Leu Gly Gln Ile Lys Lys Ala Ile			
35 40 45			
ccg ccg cac tgc ttc gag cgc tcc gtg ctg agg tcc ttc tcg tac gtg	370		
Pro Pro His Cys Phe Glu Arg Ser Val Leu Arg Ser Phe Ser Tyr Val			
50 55 60 65			
gcc cac gac ctg tcc gcc gcg ctc ctc tac ctc gcg gtg gcc	418		
Ala His Asp Leu Ser Leu Ala Ala Leu Leu Tyr Leu Ala Val Ala			
70 75 80			
gtg ata ccg gcg cta ccc tgc ccg ctc cgc tac gcg gcc tgg ccg ctg	466		
Val Ile Pro Ala Leu Pro Cys Pro Leu Arg Tyr Ala Ala Trp Pro Leu			
85 90 95			
tac tgg gtg gcc cag ggg tgc gtg tgc acg ggc gtg tgg gtg atc gcg	514		
Tyr Trp Val Ala Gln Gly Cys Val Cys Thr Gly Val Trp Val Ile Ala			
100 105 110			
cac gag tgc ggc cac cac gcc ttc tcc gac cac gcg ctc ctg gac gac	562		
His Glu Cys Gly His His Ala Phe Ser Asp His Ala Leu Leu Asp Asp			
115 120 125			
gcc gtc ggc ctg gcg ctg cac tcc gcg ctg ctg gtg ccc tac ttc tcg	610		
Ala Val Gly Leu Ala Leu His Ser Ala Leu Leu Val Pro Tyr Phe Ser			
130 135 140 145			
tgg aag tac agc cac cgg cgc cac cac tcc aac acg ggg tcc ctg gag	658		
Trp Lys Tyr Ser His Arg Arg His His Ser Asn Thr Gly Ser Leu Glu			
150 155 160			
cgc gac gag gtg ttc gtg ccg agg acc aag gag gcg ctg ccg tgg tac	706		
Arg Asp Glu Val Phe Val Pro Arg Thr Lys Glu Ala Leu Pro Trp Tyr			
165 170 175			
gcc ccg tac gtg cac ggc agc ccc gcg ggc ccg ctg gcg cac gtc gcc	754		
Ala Pro Tyr Val His Gly Ser Pro Ala Gly Arg Leu Ala His Val Ala			
180 185 190			
gtg cag ctc acc ctc ggc tgg ccg ctg tac ctg gcc acc aac gcg tcg	802		
Val Gln Leu Thr Leu Gly Trp Pro Leu Tyr Leu Ala Thr Asn Ala Ser			
195 200 205			

ggg cgg ccg tac ccg cgc ttc gcc tgc cac ttc gac ccc tac ggc ccc Gly Arg Pro Tyr Pro Arg Phe Ala Cys His Phe Asp Pro Tyr Gly Pro 210 215 220 225	850
atc tac aac gac cgg gag cgc gcc cag atc ttc gtc tcg gac gcc ggc Ile Tyr Asn Asp Arg Glu Arg Ala Gln Ile Phe Val Ser Asp Ala Gly 230 235 240	898
gtc gtg gcc gtg gcg ttc ggg ctg tac aag ctg gcg gcg gcg ttc ggg Val Val Ala Val Ala Phe Gly Leu Tyr Lys Leu Ala Ala Ala Phe Gly 245 250 255	946
gtc tgg tgg gtg gtg cgc gtg tac gcc gtg ccg ctg ctg atc gtc aac Val Trp Trp Val Val Arg Val Tyr Ala Val Pro Leu Leu Ile Val Asn 260 265 270	994
gcg tgg ctg gtg ctc atc acg tac ctg cag cac acc cac ccg gcg ctg Ala Trp Leu Val Leu Ile Thr Tyr Leu Gln His Thr His Pro Ala Leu 275 280 285	1042
ccc cac tac gac tcg ggc gag tgg gac tgg ctg cgc ggc gcg ctc gcc Pro His Tyr Asp Ser Gly Glu Trp Asp Trp Leu Arg Gly Ala Leu Ala 290 295 300 305	1090
acc gtc gac cga gac tac ggc gtc ctc aac cgc gtg ttc cac cac atc Thr Val Asp Arg Asp Tyr Gly Val Leu Asn Arg Val Phe His His Ile 310 315 320	1138
acg gac acg cac gtc gcg cac cac ctc ttc tcc acc atg ccg cac tac Thr Asp Thr His Val Ala His His Leu Phe Ser Thr Met Pro His Tyr 325 330 335	1186
cac gcc gtg gag gcc acc agg gcg atc agg ccc gtc ctc ggc gag tac His Ala Val Glu Ala Thr Arg Ala Ile Arg Pro Val Leu Gly Glu Tyr 340 345 350	1234
tac cag ttc gac ccg acc cct gtc gcc aag gcc acc tgg cgc gag ggc Tyr Gln Phe Asp Pro Thr Pro Val Ala Lys Ala Thr Trp Arg Glu Ala 355 360 365	1282
agg gag tgc atc tac gtc gag cct gag aac cgc aac cgc aag ggc gtc Arg Glu Cys Ile Tyr Val Glu Pro Glu Asn Arg Asn Arg Lys Gly Val 370 375 380 385	1330
ttc tgg tac aac agc aag ttc tagccgcccgttgcgtttttc cctaggaatg Phe Trp Tyr Asn Ser Lys Phe 390	1381
ggaggagaaa tcaggatgag aagatggtaa tgtctgcata tacctgtcta atggtagtc 1441	
accagtcttt agacaggaag agagcatttg ggcttcagaa aaggaggctt actgcactac 1501	
tgcagtgcata tcgcttagatt taaggcaat tcagtggtc tgtgcccattg gctgtgagct 1561	
ttgggtactc tcaagtagtc aagttctttt gttttgttt ttagtcgtcg ctgtttagg 1621	
cttgcggcg gcggtcggttgcgtggcccgccgttgcgtgc tgcgtcttgc catctttcg 1681	
tgctcccttc gtgttgtgtt aaaaacttag tctgggtgtt ttggcgaaat aacagatcg 1741	
cgaacgaca 1750	

<210> 18
<211> 392
<212> PRT
<213> Zea mays

<400> 18

Met Gly Ala Gly Gly Arg Met Thr Glu Lys Glu Arg Glu Lys His Glu
1 5 10 15

Gln Glu Gln Val Ala Arg Ala Thr Gly Gly Ala Ala Val Gln Arg
20 25 30

Ser Pro Val Glu Lys Pro Pro Phe Thr Leu Gly Gln Ile Lys Lys Ala
35 40 45

Ile Pro Pro His Cys Phe Glu Arg Ser Val Leu Arg Ser Phe Ser Tyr
50 55 60

Val Ala His Asp Leu Ser Leu Ala Ala Ala Leu Leu Tyr Leu Ala Val
65 70 75 80

Ala Val Ile Pro Ala Leu Pro Cys Pro Leu Arg Tyr Ala Ala Trp Pro
85 90 95

Leu Tyr Trp Val Ala Gln Gly Cys Val Cys Thr Gly Val Trp Val Ile
100 105 110

Ala His Glu Cys Gly His His Ala Phe Ser Asp His Ala Leu Leu Asp
115 120 125

Asp Ala Val Gly Leu Ala Leu His Ser Ala Leu Leu Val Pro Tyr Phe
130 135 140

Ser Trp Lys Tyr Ser His Arg Arg His His Ser Asn Thr Gly Ser Leu
145 150 155 160

Glu Arg Asp Glu Val Phe Val Pro Arg Thr Lys Glu Ala Leu Pro Trp
165 170 175

Tyr Ala Pro Tyr Val His Gly Ser Pro Ala Gly Arg Leu Ala His Val
180 185 190

Ala Val Gln Leu Thr Leu Gly Trp Pro Leu Tyr Leu Ala Thr Asn Ala
195 200 205

Ser Gly Arg Pro Tyr Pro Arg Phe Ala Cys His Phe Asp Pro Tyr Gly
30

210

215

220

Pro Ile Tyr Asn Asp Arg Glu Arg Ala Gln Ile Phe Val Ser Asp Ala
 225 230 235 240

Gly Val Val Ala Val Ala Phe Gly Leu Tyr Lys Leu Ala Ala Ala Phe
 245 250 255

Gly Val Trp Trp Val Val Arg Val Tyr Ala Val Pro Leu Leu Ile Val
 260 265 270

Asn Ala Trp Leu Val Leu Ile Thr Tyr Leu Gln His Thr His Pro Ala
 275 280 285

Leu Pro His Tyr Asp Ser Gly Glu Trp Asp Trp Leu Arg Gly Ala Leu
 290 295 300

Ala Thr Val Asp Arg Asp Tyr Gly Val Leu Asn Arg Val Phe His His
 305 310 315 320

Ile Thr Asp Thr His Val Ala His His Leu Phe Ser Thr Met Pro His
 325 330 335

Tyr His Ala Val Glu Ala Thr Arg Ala Ile Arg Pro Val Leu Gly Glu
 340 345 350

Tyr Tyr Gln Phe Asp Pro Thr Pro Val Ala Lys Ala Thr Trp Arg Glu
 355 360 365

Ala Arg Glu Cys Ile Tyr Val Glu Pro Glu Asn Arg Asn Arg Lys Gly
 370 375 380

Val Phe Trp Tyr Asn Ser Lys Phe
 385 390

<210> 19
 <211> 1176
 <212> DNA
 <213> Zea mays

<220>
 <221> CDS
 <222> (1)..(1176)

<400> 19
 atg ggt gcc gga ggc agg atg acc gag aag gag cgg gag aag cat gag 48
 Met Gly Ala Gly Gly Arg Met Thr Glu Lys Glu Arg Glu Lys His Glu
 1 5 10 15

cag gag cag gcc gcc cgt gct acc ggc ggc ggc gct gct gca gct cag cgg	20	25	30	90
Gln Glu Gln Val Ala Arg Ala Thr Gly Gly Gly Ala Ala Val Gln Arg				
tcg ccg gtg gag aag ccg ccg ttc acg ttg ggg cag atc aag aag gcg	35	40	45	144
Ser Pro Val Glu Lys Pro Pro Phe Thr Leu Gly Gln Ile Lys Lys Ala				
atc ccg ccg cac tgc ttc gag ccg tcc gtg ctg agg tcc ttc tcg tac	50	55	60	192
Ile Pro Pro His Cys Phe Glu Arg Ser Val Leu Arg Ser Phe Ser Tyr				
gtg gcc cac gac ctg tcg ctc gcc gcg ctc ctc tac ctc ctc gct gtg	65	70	75	240
Val Ala His Asp Leu Ser Leu Ala Ala Leu Leu Tyr Leu Ala Val				
gcc gtg ata ccg gcg cta ccc tgc ccg ctc ccg tac gct gct tgg ccg	85	90	95	288
Ala Val Ile Pro Ala Leu Pro Cys Pro Leu Arg Tyr Ala Ala Trp Pro				
ctg tac tgg gtg gcc cag ggg tgc gtg tgc acg ggc gtg tgg gtg atc	100	105	110	336
Leu Tyr Trp Val Ala Gln Gly Cys Val Cys Thr Gly Val Trp Val Ile				
gct cac gag tgc ggc cac cac gcc ttc tcc gac cac gct ctc ctg gac	115	120	125	384
Ala His Glu Cys Gly His His Ala Phe Ser Asp His Ala Leu Leu Asp				
gac gcc gtc ggc ctg gct ctg cac tgc gct ctg gtg ccc tac ttc	130	135	140	432
Asp Ala Val Gly Leu Ala Leu His Ser Ala Leu Leu Val Pro Tyr Phe				
tcg tgg aag tac agc cac ccg ccg cac cac tcc aac acg ggg tcc ctg	145	150	155	480
Ser Trp Lys Tyr Ser His Arg Arg His His Ser Asn Thr Gly Ser Leu				
gag ccg gac gag gtg ttc gtg ccg agg acc aag gag gct ctg ccg tgg	165	170	175	528
Glu Arg Asp Glu Val Phe Val Pro Arg Thr Lys Glu Ala Leu Pro Trp				
tac gcc ccg tac gtg cac ggc agc ccc gct ggc ccg ctg gct cac gtc	180	185	190	576
Tyr Ala Pro Tyr Val His Gly Ser Pro Ala Gly Arg Leu Ala His Val				
gcc gtg cag ctc acc ctc ggc tgg ccg ctg tac ctg gcc acc aac gct	195	200	205	624
Ala Val Gln Leu Thr Leu Gly Trp Pro Leu Tyr Leu Ala Thr Asn Ala				
tcg ggg ccg ccg tac ccg ccg ttc gcc tgc cac ttc gac ccc tac ggc	210	215	220	672
Ser Gly Arg Pro Tyr Pro Arg Phe Ala Cys His Phe Asp Pro Tyr Gly				
ccc atc tac aac gac ccg gag ccg gct cag atc ttc gtc tcg gac gcc	225	230	235	720
Pro Ile Tyr Asn Asp Arg Glu Arg Ala Gln Ile Phe Val Ser Asp Ala				
ggc gtc gtg gcc gtg gct ttc ggg ctg tac aag ctg gct gct gct ttc	245	250	255	768
Gly Val Val Ala Val Ala Phe Gly Leu Tyr Lys Leu Ala Ala Phe				
ggg gtc tgg tgg gtg gtg ccg gtg tac gcc gtg ccg ctg ctg atc gtc	245	250	255	816
Gly Val Trp Trp Val Val Arg Val Tyr Ala Val Pro Leu Leu Ile Val				

260

265

270

aac gcg tgg ctg gtg ctc atc acg tac ctg cag cac acc cac ccg gcg 864
 Asn Ala Trp Leu Val Leu Ile Thr Tyr Leu Gln His Thr His Pro Ala
 275 280 285

ctg ccc cac tac gac tcg ggc gag tgg gac tgg ctg cgc ggc gcg ctc 912
 Leu Pro His Tyr Asp Ser Gly Glu Trp Asp Trp Leu Arg Gly Ala Leu
 290 295 300

gcc acc gtc gac cga gac tac ggc gtc ctc aac cgc gtg ttc cac cac 960
 Ala Thr Val Asp Arg Asp Tyr Gly Val Leu Asn Arg Val Phe His His
 305 310 315 320

atc acg gac acg cac gtc gcg cac cac ctc ttc tcc acc atg ccg cac 1008
 Ile Thr Asp Thr His Val Ala His His Leu Phe Ser Thr Met Pro His
 325 330 335

tac cac gcc gtg gag gcc acc agg gcg atc agg ccc gtc ctc ggc gag 1056
 Tyr His Ala Val Glu Ala Thr Arg Ala Ile Arg Pro Val Leu Gly Glu
 340 345 350

tac tac cag ttc gac ccg acc cct gtc gcc aag gcc acc tgg cgc gag 1104
 Tyr Tyr Gln Phe Asp Pro Thr Pro Val Ala Lys Ala Thr Trp Arg Glu
 355 360 365

gcc agg gag tgc atc tac gtc gag cct gag aac cgc aac cgc aag ggc 1152
 Ala Arg Glu Cys Ile Tyr Val Glu Pro Glu Asn Arg Asn Arg Lys Gly
 370 375 380

gtc ttc tgg tac aac agc aag ttc 1176
 Val Phe Trp Tyr Asn Ser Lys Phe
 385 390

<210> 20
 <211> 392
 <212> PRT
 <213> Zea mays

<400> 20

Met Gly Ala Gly Gly Arg Met Thr Glu Lys Glu Arg Glu Lys His Glu
 1 5 10 15

Gln Glu Gln Val Ala Arg Ala Thr Gly Gly Gly Ala Ala Val Gln Arg
 20 25 30

Ser Pro Val Glu Lys Pro Pro Phe Thr Leu Gly Gln Ile Lys Lys Ala
 35 40 45

Ile Pro Pro His Cys Phe Glu Arg Ser Val Leu Arg Ser Phe Ser Tyr
 50 55 60

Val Ala His Asp Leu Ser Leu Ala Ala Leu Leu Tyr Leu Ala Val
 65 70 75 80

Ala Val Ile Pro Ala Leu Pro Cys Pro Leu Arg Tyr Ala Ala Trp Pro
85 90 95

Leu Tyr Trp Val Ala Gln Gly Cys Val Cys Thr Gly Val Trp Val Ile
100 105 110

Ala His Glu Cys Gly His His Ala Phe Ser Asp His Ala Leu Leu Asp
115 120 125

Asp Ala Val Gly Leu Ala Leu His Ser Ala Leu Leu Val Pro Tyr Phe
130 135 140

Ser Trp Lys Tyr Ser His Arg Arg His His Ser Asn Thr Gly Ser Leu
145 150 155 160

Glu Arg Asp Glu Val Phe Val Pro Arg Thr Lys Glu Ala Leu Pro Trp
165 170 175

Tyr Ala Pro Tyr Val His Gly Ser Pro Ala Gly Arg Leu Ala His Val
180 185 190

Ala Val Gln Leu Thr Leu Gly Trp Pro Leu Tyr Leu Ala Thr Asn Ala
195 200 205

Ser Gly Arg Pro Tyr Pro Arg Phe Ala Cys His Phe Asp Pro Tyr Gly
210 215 220

Pro Ile Tyr Asn Asp Arg Glu Arg Ala Gln Ile Phe Val Ser Asp Ala
225 230 235 240

Gly Val Val Ala Val Ala Phe Gly Leu Tyr Lys Leu Ala Ala Ala Phe
245 250 255

Gly Val Trp Trp Val Val Arg Val Tyr Ala Val Pro Leu Leu Ile Val
260 265 270

Asn Ala Trp Leu Val Leu Ile Thr Tyr Leu Gln His Thr His Pro Ala
275 280 285

Leu Pro His Tyr Asp Ser Gly Glu Trp Asp Trp Leu Arg Gly Ala Leu
290 295 300

Ala Thr Val Asp Arg Asp Tyr Gly Val Leu Asn Arg Val Phe His His
305 310 315 320

Ile Thr Asp Thr His Val Ala His His Leu Phe Ser Thr Met Pro His
325 330 335

Tyr His Ala Val Glu Ala Thr Arg Ala Ile Arg Pro Val Leu Gly Glu
 340 345 350

Tyr Tyr Gln Phe Asp Pro Thr Pro Val Ala Lys Ala Thr Trp Arg Glu
 355 360 365

Ala Arg Glu Cys Ile Tyr Val Glu Pro Glu Asn Arg Asn Arg Lys Gly
 370 375 380

Val Phe Trp Tyr Asn Ser Lys Phe
 385 390

<210> 21
 <211> 1863
 <212> DNA
 <213> Oryza sativa

<220>
 <221> misc_feature
 <222> (1)..(149)

<220>
 <221> CDS
 <222> (150)..(1313)

<220>
 <221> misc_feature
 <222> (1314)..(1863)

<400> 21
 ctccctctcct cctccctgc acagaccact cgtttcctcc acaaagaggg agggacaag 60
 ggaagggtgt cgcccgcccc ccaccccgat ctgcctccgc cgctccgctc ctccgcgcct 120
 gcgaaatcta ccaacgctaa ctcagcaag atg ggt gcc ggc ggc agg atg acg 173
 Met Gly Ala Gly Gly Arg Met Thr
 1 5

gag aag gag cgg gag gag cag cag aag ctg ctc ggc cgc gcc ggc aat 221
 Glu Lys Glu Arg Glu Glu Gln Gln Lys Leu Leu Gly Arg Ala Gly Asn
 10 15 20

ggc gcg gcc gtg cag cgg tcg ccg acg gac aag ccg ccg ttc acg ctg 269
 Gly Ala Ala Val Gln Arg Ser Pro Thr Asp Lys Pro Pro Phe Thr Leu
 25 30 35 40

ggg cag atc aag aag gcc atc ccg cct cac tgc ttc cag cgc tcg gtg 317
 Gly Gln Ile Lys Lys Ala Ile Pro Pro His Cys Phe Gln Arg Ser Val
 45 50 55

atc aag tcc ttc tcc tac gtg gtc cat gac ctc gtg atc gtc gcc gcg 365
 Ile Lys Ser Phe Ser Tyr Val Val His Asp Leu Val Ile Val Ala Ala
 60 65 70

ctg ctc tac ttc gcg ctg gtc atg atc ccc gtg ctg ccg agc ggg atg 413

Met Ile Pro Val Leu Pro Ser Gly Met	85	
75	80	
gag ttc gcg gca tgg ccg ctc tac tgg atc gcg cag ggc tgc gtg ctc	46	
Glu Phe Ala Ala Trp Pro Leu Tyr Trp Ile Ala Gln Gly Cys Val Leu		
90	95	100
acc ggc gtg tgg gtc atc gcg cac gag tgc ggc cac cat gcc ttc tcc	50	
Thr Gly Val Trp Val Ile Ala His Glu Cys Gly His His Ala Phe Ser		
105	110	115
120		
gac tac tcg gtg ctc gac gac atc gtc ggc ctc gtg ctg cac tcg tcg	55	
Asp Tyr Ser Val Leu Asp Asp Ile Val Gly Leu Val Leu His Ser Ser		
125	130	135
ctg ctc gtc ccc tac ttc tcg tgg aag tac agc cac cgg cgc cac cac	60!	
Leu Leu Val Pro Tyr Phe Ser Trp Lys Tyr Ser His Arg Arg His His		
140	145	150
tcc aac acc ggg tcg ctg gag cgc gac gag gtg ttc gtc ccg aag cag	65	
Ser Asn Thr Gly Ser Leu Glu Arg Asp Glu Val Phe Val Pro Lys Gln		
155	160	165
aag tcg gcg atg gcg tgg tac acc ccg tac gtg tac cac aac ccg atc	701	
Lys Ser Ala Met Ala Trp Tyr Thr Pro Tyr Val Tyr His Asn Pro Ile		
170	175	180
ggc cgg ctg gtg cac atc ttc gtg cag ctc acc ctc ggg tgg ccg ctg	749	
Gly Arg Leu Val His Ile Phe Val Gln Leu Thr Leu Gly Trp Pro Leu		
185	190	195
200		
tac ctg gcg ttc aac gtg tcc ggc cgc ccg tac ccg cgc ttc gcg tgc	797	
Tyr Leu Ala Phe Asn Val Ser Gly Arg Pro Tyr Pro Arg Phe Ala Cys		
205	210	215
cac ttc gac ccc tac ggc ccg atc tac aac gac ccg gag cgc gtc cag	845	
His Phe Asp Pro Tyr Gly Pro Ile Tyr Asn Asp Arg Glu Arg Val Gln		
220	225	230
atc ttc atc tcc gac gtc ggc gtc gtg tcc gcg ggg ctc gcc ctg ttc	893	
Ile Phe Ile Ser Asp Val Gly Val Val Ser Ala Gly Leu Ala Leu Phe		
235	240	245
aag ctg tcg tcg gcg ttc ggg ttc tgg tgg gtg cgc gtc tac ggc	941	
Lys Leu Ser Ser Ala Phe Gly Phe Trp Trp Val Val Arg Val Tyr Gly		
250	255	260
gtg ccg ctg ctg atc gtg aac gcg tgg ctg gtg ctc atc acc tac ctg	989	
Val Pro Leu Leu Ile Val Asn Ala Trp Leu Val Leu Ile Thr Tyr Leu		
265	270	275
280		
cag cac acc cac ccg gcg ctg ccg cac tac gac tcg agc gag tgg gac	1037	
Gln His Thr His Pro Ala Leu Pro His Tyr Asp Ser Ser Glu Trp Asp		
285	290	295
tgg ctc cgc ggc gcg ctg gcc acc gtg gac cgc gac tac ggc atc ctc	1085	
Trp Leu Arg Gly Ala Leu Ala Thr Val Asp Arg Asp Tyr Gly Ile Leu		
300	305	310
aac aag gtg ttc cac aac atc acg gac acg cac gtc gcg cac cac ctc	1133	
Asn Lys Val Phe His Asn Ile Thr Asp Thr His Val Ala His His Leu		
315	320	325

ttc tcc acc atg ccg cac tac cac gcc atg gag gcc act aag gcg atc	1181
Phe Ser Thr Met Pro His Tyr His Ala Met Glu Ala Thr Lys Ala Ile	
330 335 340	
cgc ccc atc ctc ggc gag tac tac cag ttc gac ccg acg ccc gtc gcc	1229
Arg Pro Ile Leu Gly Glu Tyr Tyr Gln Phe Asp Pro Thr Pro Val Ala	
345 350 355 360	
aag gcg aca tgg cgc gag gcc aag gag tgc atc tac gtc gag cct gag	1277
Lys Ala Thr Trp Arg Glu Ala Lys Glu Cys Ile Tyr Val Glu Pro Glu	
365 370 375	
gac aac aag ggc gtc ttc tgg tac aac aac aag ttc taactgctgc	1323
Asp Asn Lys Gly Val Phe Trp Tyr Asn Asn Lys Phe	
380 385	
tgctgtgaaa tcagcatcac acatccatag ccaagcagca aacaaatttg aagaagaaga	1383
ttacaaggga agagaagata gtgtcttcgg aaatcgctgt agcaagtatc catccatcca	1443
tccaaaccat gaacaatcgt ctatctatcc atgcatctat ctatggtag tctctttaga	1503
taggagaggg cacttggca cagaggaagg ctattgcagt gccattgcta gagttgccat	1563
caagtgc当地 gttagcggat cagggcgtgtc tcatgcctgt ggattttagt tctatgtatg	1623
tgtcagctgc tgagctccgg tgtcgcagcc ttggccctg tcgtgttatt tccatcgaaa	1683
ttttccctcc gccattgttc ggtttaggtg ttgtcatggt cggcgtccgt gtggacgacg	1743
tgtcttgc当地 ggtttgc当地 tcattgagtt ggctccgtcc gttgcttgc当地 gttgtaaaac	1803
gcttgc当地 ttcatggcgg aataactaaa cgtcgaatgg aatgacaact ttttgc当地	1863

<210> 22
 <211> 388
 <212> PRT
 <213> Oryza sativa

 <400> 22

Met Gly Ala Gly Gly Arg Met Thr Glu Lys Glu Arg Glu Glu Gln Gln
 1 5 10 15

Lys Leu Leu Gly Arg Ala Gly Asn Gly Ala Ala Val Gln Arg Ser Pro
 20 25 30

Thr Asp Lys Pro Pro Phe Thr Leu Gly Gln Ile Lys Lys Ala Ile Pro
 35 40 45

Pro His Cys Phe Gln Arg Ser Val Ile Lys Ser Phe Ser Tyr Val Val
 50 55 60

His Asp Leu Val Ile Val Ala Ala Leu Leu Tyr Phe Ala Leu Val Met
 65 70 75 80

Ile Pro Val Leu Pro Ser Gly Met Glu Phe Ala Ala Trp Pro Leu Tyr
85 90 95

Trp Ile Ala Gln Gly Cys Val Leu Thr Gly Val Trp Val Ile Ala His
100 105 110

Glu Cys Gly His His Ala Phe Ser Asp Tyr Ser Val Leu Asp Asp Ile
115 120 125

Val Gly Leu Val Leu His Ser Ser Leu Leu Val Pro Tyr Phe Ser Trp
130 135 140

Lys Tyr Ser His Arg Arg His His Ser Asn Thr Gly Ser Leu Glu Arg
145 150 155 160

Asp Glu Val Phe Val Pro Lys Gln Lys Ser Ala Met Ala Trp Tyr Thr
165 170 175

Pro Tyr Val Tyr His Asn Pro Ile Gly Arg Leu Val His Ile Phe Val
180 185 190

Gln Leu Thr Leu Gly Trp Pro Leu Tyr Leu Ala Phe Asn Val Ser Gly
195 200 205

Arg Pro Tyr Pro Arg Phe Ala Cys His Phe Asp Pro Tyr Gly Pro Ile
210 215 220

Tyr Asn Asp Arg Glu Arg Val Gln Ile Phe Ile Ser Asp Val Gly Val
225 230 235 240

Val Ser Ala Gly Leu Ala Leu Phe Lys Leu Ser Ser Ala Phe Gly Phe
245 250 255

Trp Trp Val Val Arg Val Tyr Gly Val Pro Leu Leu Ile Val Asn Ala
260 265 270

Trp Leu Val Leu Ile Thr Tyr Leu Gln His Thr His Pro Ala Leu Pro
275 280 285

His Tyr Asp Ser Ser Glu Trp Asp Trp Leu Arg Gly Ala Leu Ala Thr
290 295 300

Val Asp Arg Asp Tyr Gly Ile Leu Asn Lys Val Phe His Asn Ile Thr
305 310 315 320

Asp Thr His Val Ala His His Leu Phe Ser Thr Met Pro His Tyr His

325

330

335

Ala Met Glu Ala Thr Lys Ala Ile Arg Pro Ile Leu Gly Glu Tyr Tyr
 340 345 350

Gln Phe Asp Pro Thr Pro Val Ala Lys Ala Thr Trp Arg Glu Ala Lys
 355 360 365

Glu Cys Ile Tyr Val Glu Pro Glu Asp Asn Lys Gly Val Phe Trp Tyr
 370 375 380

Asn Asn Lys Phe
 385

<210> 23
 <211> 1164
 <212> DNA
 <213> Oryza sativa

<220>
 <221> CDS
 <222> (1)..(1164)

<400> 23
 atg ggt gcc ggc ggc agg atg acg gag aag gag cgg gag gag cag cag
 Met Gly Ala Gly Gly Arg Met Thr Glu Lys Glu Arg Glu Glu Gln Gln
 1 5 10 15

aag ctg ctc ggc cgc gcc ggc aat ggc gcg gcc gtg cag cgg tcg ccg
 Lys Leu Leu Gly Arg Ala Gly Asn Gly Ala Ala Val Gln Arg Ser Pro
 20 25 30

acg gac aag ccg ccg ttc acg ctg ggg cag atc aag aag gcc atc ccg
 Thr Asp Lys Pro Pro Phe Thr Leu Gly Gln Ile Lys Lys Ala Ile Pro
 35 40 45

cct cac tgc ttc cag cgc tcg gtg atc aag tcc ttc tcc tac gtg gtc
 Pro His Cys Phe Gln Arg Ser Val Ile Lys Ser Phe Ser Tyr Val Val
 50 55 60

cat gac ctc gtg atc gtc gcc gcg ctg ctc tac ttc gcg ctg gtc atg
 His Asp Leu Val Ile Val Ala Ala Leu Leu Tyr Phe Ala Leu Val Met
 65 70 75 80

atc ccc gtg ctg ccg agc ggg atg gag ttc gcg gca tgg ccg ctc tac
 Ile Pro Val Leu Pro Ser Gly Met Glu Phe Ala Ala Trp Pro Leu Tyr
 85 90 95

tgg atc gcg cag ggc tgc gtg ctc acc ggc gtg tgg gtc atc gcg cac
 Trp Ile Ala Gln Gly Cys Val Leu Thr Gly Val Trp Val Ile Ala His
 100 105 110

gag tgc ggc cac cat gcc ttc tcc gac tac tcg gtg ctc gac gac atc
 Glu Cys Gly His His Ala Phe Ser Asp Tyr Ser Val Leu Asp Asp Ile
 115 120 125

gtc ggc ctc gtg ctg cac tcg tcg ctg ctc gtc ccc tac ttc tgc tgg	432
Val Gly Leu Val Leu His Ser Ser Leu Leu Val Pro Tyr Phe Ser Trp	
130 135 140	
aag tac agc cac cgg cgc cac cac tcc aac acc ggg tcg ctg gag cgc	480
Lys Tyr Ser His Arg Arg His His Ser Asn Thr Gly Ser Leu Glu Arg	
145 150 155 160	
gac gag gtg ttc gtc ccg aag cag aag tcg gcg atg gcg tgg tac acc	528
Asp Glu Val Phe Val Pro Lys Gln Lys Ser Ala Met Ala Trp Tyr Thr	
165 170 175	
ccg tac gtg tac cac aac ccg atc ggc cgg ctg gtg cac atc ttc gtg	576
Pro Tyr Val Tyr His Asn Pro Ile Gly Arg Leu Val His Ile Phe Val	
180 185 190	
cag ctc acc ctc ggg tgg ccg ctg tac ctg gcg ttc aac gtg tcc ggc	624
Gln Leu Thr Leu Gly Trp Pro Leu Tyr Leu Ala Phe Asn Val Ser Gly	
195 200 205	
cgc ccg tac ccg cgc ttc gcg tgc cac ttc gac ccc tac ggc ccg atc	672
Arg Pro Tyr Pro Arg Phe Ala Cys His Phe Asp Pro Tyr Gly Pro Ile	
210 215 220	
tac aac gac cgg gag cgc gtc cag atc ttc atc tcc gac gtc ggc gtc	720
Tyr Asn Asp Arg Glu Arg Val Gln Ile Phe Ile Ser Asp Val Gly Val	
225 230 235 240	
gtg tcc gcg ggg ctc gcc ctg ttc aag ctg tcg tcg gcg ttc ggg ttc	768
Val Ser Ala Gly Leu Ala Leu Phe Lys Leu Ser Ser Ala Phe Gly Phe	
245 250 255	
tgg tgg gtg gtg cgc gtc tac ggc gtg ccg ctg atc gtg aac gcg	816
Trp Trp Val Val Arg Val Tyr Gly Val Pro Leu Leu Ile Val Asn Ala	
260 265 270	
tgg ctg gtg ctc atc acc tac ctg cag cac acc cac ccg gcg ctg ccg	864
Trp Leu Val Leu Ile Thr Tyr Leu Gln His Thr His Pro Ala Leu Pro	
275 280 285	
cac tac gac tcg agc gag tgg gac tgg ctc cgc ggc gcg ctg gcc acc	912
His Tyr Asp Ser Ser Glu Trp Asp Trp Leu Arg Gly Ala Leu Ala Thr	
290 295 300	
gtg gac cgc gac tac ggc atc ctc aac aag gtg ttc cac aac atc acg	960
Val Asp Arg Asp Tyr Gly Ile Leu Asn Lys Val Phe His Asn Ile Thr	
305 310 315 320	
gac acg cac gtc gcg cac cac ctc ttc acc atg ccg cac tac cac	1008
Asp Thr His Val Ala His His Leu Phe Ser Thr Met Pro His Tyr His	
325 330 335	
gcc atg gag gcc act aag gcg atc cgc ccc atc ctc ggc gag tac tac	1056
Ala Met Glu Ala Thr Lys Ala Ile Arg Pro Ile Leu Gly Glu Tyr Tyr	
340 345 350	
cag ttc gac ccg acg ccc gtc gcc aag gcg aca tgg cgc gag gcc aag	1104
Gln Phe Asp Pro Thr Pro Val Ala Lys Ala Thr Trp Arg Glu Ala Lys	
355 360 365	
gag tgc atc tac gtc gag cct gag gac aac aag ggc gtc ttc tgg tac	1152
Glu Cys Ile Tyr Val Glu Pro Glu Asn Lys Gly Val Phe Trp Tyr	

370

375

380

aac aac aag ttc
 Asn Asn Lys Phe
 385

1164

<210> 24
 <211> 388
 <212> PRT
 <213> Oryza sativa

<400> 24

Met Gly Ala Gly Gly Arg Met Thr Glu Lys Glu Arg Glu Glu Gln Gln
 1 5 10 15

Lys Leu Leu Gly Arg Ala Gly Asn Gly Ala Ala Val Gln Arg Ser Pro
 20 25 30

Thr Asp Lys Pro Pro Phe Thr Leu Gly Gln Ile Lys Lys Ala Ile Pro
 35 40 45

Pro His Cys Phe Gln Arg Ser Val Ile Lys Ser Phe Ser Tyr Val Val
 50 55 60

His Asp Leu Val Ile Val Ala Ala Leu Leu Tyr Phe Ala Leu Val Met
 65 70 75 80

Ile Pro Val Leu Pro Ser Gly Met Glu Phe Ala Ala Trp Pro Leu Tyr
 85 90 95

Trp Ile Ala Gln Gly Cys Val Leu Thr Gly Val Trp Val Ile Ala His
 100 105 110

Glu Cys Gly His His Ala Phe Ser Asp Tyr Ser Val Leu Asp Asp Ile
 115 120 125

Val Gly Leu Val Leu His Ser Ser Leu Leu Val Pro Tyr Phe Ser Trp
 130 135 140

Lys Tyr Ser His Arg Arg His His Ser Asn Thr Gly Ser Leu Glu Arg
 145 150 155 160

Asp Glu Val Phe Val Pro Lys Gln Lys Ser Ala Met Ala Trp Tyr Thr
 165 170 175

Pro Tyr Val Tyr His Asn Pro Ile Gly Arg Leu Val His Ile Phe Val
 180 185 190

Gln Leu Thr Leu Gly Trp Pro Leu Tyr Leu Ala Phe Asn Val Ser Gly
 195 200 205

Arg Pro Tyr Pro Arg Phe Ala Cys His Phe Asp Pro Tyr Gly Pro Ile
 210 215 220

Tyr Asn Asp Arg Glu Arg Val Gln Ile Phe Ile Ser Asp Val Gly Val
 225 230 235 240

Val Ser Ala Gly Leu Ala Leu Phe Lys Leu Ser Ser Ala Phe Gly Phe
 245 250 255

Trp Trp Val Val Arg Val Tyr Gly Val Pro Leu Leu Ile Val Asn Ala
 260 265 270

Trp Leu Val Leu Ile Thr Tyr Leu Gln His Thr His Pro Ala Leu Pro
 275 280 285

His Tyr Asp Ser Ser Glu Trp Asp Trp Leu Arg Gly Ala Leu Ala Thr
 290 295 300

Val Asp Arg Asp Tyr Gly Ile Leu Asn Lys Val Phe His Asn Ile Thr
 305 310 315 320

Asp Thr His Val Ala His His Leu Phe Ser Thr Met Pro His Tyr His
 325 330 335

Ala Met Glu Ala Thr Lys Ala Ile Arg Pro Ile Leu Gly Glu Tyr Tyr
 340 345 350

Gln Phe Asp Pro Thr Pro Val Ala Lys Ala Thr Trp Arg Glu Ala Lys
 355 360 365

Glu Cys Ile Tyr Val Glu Pro Glu Asp Asn Lys Gly Val Phe Trp Tyr
 370 375 380

Asn Asn Lys Phe
 385

<210> 25
 <211> 1519
 <212> DNA
 <213> Linum usitatissimum

<220>
 <221> misc_feature
 <222> (1)..(47)

<<<U>>

<221> CDS
<222> (48)..(1070)

<220>
<221> misc_feature
<222> (1071)..(1519)

<400> 25
gctgtacaaa tatacacagg aagaagaaaa atgggtgccg ggcgaga atg tca gtg 56
Met Ser Val
1

cct cca tca tcc aaa cct atg aag agg tct cct tac tca aag cca cca 104
Pro Pro Ser Ser Lys Pro Met Lys Arg Ser Pro Tyr Ser Lys Pro Pro
5 10 15

ttc acg ctc ggt gag ctc aag aag gcc att cct cca cac tgt ttc aaa 152
Phe Thr Leu Gly Glu Leu Lys Lys Ala Ile Pro Pro His Cys Phe Lys
20 25 30 35

cgc tca atc ccc cga tcg ttc gcc tac gtg gcg tac gac ctc acc att 200
Arg Ser Ile Pro Arg Ser Phe Ala Tyr Val Ala Tyr Asp Leu Thr Ile
40 45 50

gca gca atc ttc tac atc gcc acc act tac ttc cac ctc ctc cct 248
Ala Ala Ile Phe Tyr Tyr Ile Ala Thr Thr Tyr Phe His Leu Leu Pro
55 60 65

agc cct ctc aac tac ctc gcc tgg ccg gtc tac tgg gcc tgc cag ggc 296
Ser Pro Leu Asn Tyr Leu Ala Trp Pro Val Tyr Trp Ala Cys Gln Gly
70 75 80

tgc atc ctc act gga gta tgg gtg ttg gct cac gaa tgc ggt cac cat 344
Cys Ile Leu Thr Gly Val Trp Val Leu Ala His Glu Cys Gly His His
85 90 95

gcc ttc agc gac tac cag tgg ctc gac gac atg gtt ggc ttc gtc ctc 392
Ala Phe Ser Asp Tyr Gln Trp Leu Asp Asp Met Val Gly Phe Val Leu
100 105 110 115

cat tcg tcc ctc ctt gtt cct tac ttc tcc tgg aag cac agc cac cgc 440
His Ser Ser Leu Leu Val Pro Tyr Phe Ser Trp Lys His Ser His Arg
120 125 130

cgc cac cat tcc aac acg gga tcg ctt gat cgt gat gag gtg ttt gtc 488
Arg His His Ser Asn Thr Gly Ser Leu Asp Arg Asp Glu Val Phe Val
135 140 145

ccc aag cag aag gcc gaa atc ggg tgg tac tcc aag tac ctt aac aac 536
Pro Lys Gln Lys Ala Glu Ile Gly Trp Tyr Ser Lys Tyr Leu Asn Asn
150 155 160

cca cct ggc cgt gtg atc aca ttg gcc gtc aca tta acg ctc ggt tgg 584
Pro Pro Gly Arg Val Ile Thr Leu Ala Val Thr Leu Thr Leu Gly Trp
165 170 175

cct ctg tac ttg gca ttc aac gtc tcc ggg aga cca tat gac cgg ttc 632
Pro Leu Tyr Leu Ala Phe Asn Val Ser Gly Arg Pro Tyr Asp Arg Phe
180 185 190 195

gca tgc cat ttt gac cct cac ggt ccg att tac aat gat cgc gag cgt 680

Ala Cys His Phe Asp Pro His Gly Pro Ile Tyr Asn Asp Arg Glu Arg			
200	205	210	
atg gag ata tac cta tcc gac gca ggg ata ttc acc gtg tgc tac atc		728	
Met Glu Ile Tyr Leu Ser Asp Ala Gly Ile Phe Thr Val Cys Tyr Ile			
215	220	225	
cta tac aga ctc gtc ctc acg aaa gga otc gtt tgg gtc gtg tcc ata		776	
Leu Tyr Arg Leu Val Leu Thr Lys Gly Leu Val Trp Val Val Ser Ile			
230	235	240	
tac gga gtc cca cta ttg ata gtg aat gga ttc cta gtc ctc atc act		824	
Tyr Gly Val Pro Leu Leu Ile Val Asn Gly Phe Leu Val Leu Ile Thr			
245	250	255	
ttc ttg cag cac acg cat cct tct ctt ccg cac tac aaa gtc ctc cga		872	
Phe Leu Gln His Thr His Pro Ser Leu Pro His Tyr Lys Val Leu Arg			
260	265	270	275
atg ggg act gga tgc gag gcg ccc tct cga ccg tgg atc gag act acg		920	
Met Gly Thr Gly Cys Glu Ala Pro Ser Arg Pro Trp Ile Glu Thr Thr			
280	285	290	
ggt tac tca aca ccg tgt tcc aca aca tca ccg ata cac atg tcg cgc		968	
Gly Tyr Ser Thr Pro Cys Ser Thr Ser Pro Ile His Met Ser Arg			
295	300	305	
acc atc tct tct cca cga tgc ctc att acc acg cga tgg agg cta cca		1016	
Thr Ile Ser Ser Pro Arg Cys Leu Ile Thr Thr Arg Trp Arg Leu Pro			
310	315	320	
agg cga tca agc cgg ttc tcg ggg agt att acc agt tcg atg gga ctc		1064	
Arg Arg Ser Ser Arg Phe Ser Gly Ser Ile Thr Ser Ser Met Gly Leu			
325	330	335	
cct ttg tgaaggccat gtggagggag gcaaaggagt gcatctatgt cgagccggat		1120	
Pro Leu			
340			
gaaggcgacc ccagccaagg cgtgttctgg tacaacaaca agctgtgagg gtcttcgaaa		1180	
tttgcagagg tttgttgtt ttgttcttaa tgggttacc agaaaaatgt ttgaagaaag		1240	
aagctgcaat agctagtgc aactgggtgt atgtttctgt aatgtttgtt aagttatgtc		1300	
cctagtggtc gttaatgtta ctgtacttct ctgttcttct ccatcgagcc aacatacctt		1360	
cactcctctg ttaatgtact gagttggtcg agtttaact taacggacca ccaggctcaa		1420	
attcgagtca ccgggttggc cgagtttaga ctgcattgac cacaatgatg caatcgcaaa		1480	
actgaagtga ctacaatcgc aaaacttaat tcccagtca		1519	

<210> 26
 <211> 341
 <212> PRT
 <213> Linum usitatissimum
 <400> 26

Met Ser Val Pro Pro Ser Ser Lys Pro Met Lys Arg Ser Pro Tyr Ser

1

5

10

15

Lys Pro Pro Phe Thr Leu Gly Glu Leu Lys Lys Ala Ile Pro Pro His
20 25 30

Cys Phe Lys Arg Ser Ile Pro Arg Ser Phe Ala Tyr Val Ala Tyr Asp
35 40 45

Leu Thr Ile Ala Ala Ile Phe Tyr Tyr Ile Ala Thr Thr Tyr Phe His
50 55 60

Leu Leu Pro Ser Pro Leu Asn Tyr Leu Ala Trp Pro Val Tyr Trp Ala
65 70 75 80

Cys Gln Gly Cys Ile Leu Thr Gly Val Trp Val Leu Ala His Glu Cys
85 90 95

Gly His His Ala Phe Ser Asp Tyr Gln Trp Leu Asp Asp Met Val Gly
100 105 110

Phe Val Leu His Ser Ser Leu Leu Val Pro Tyr Phe Ser Trp Lys His
115 120 125

Ser His Arg Arg His His Ser Asn Thr Gly Ser Leu Asp Arg Asp Glu
130 135 140

Val Phe Val Pro Lys Gln Lys Ala Glu Ile Gly Trp Tyr Ser Lys Tyr
145 150 155 160

Leu Asn Asn Pro Pro Gly Arg Val Ile Thr Leu Ala Val Thr Leu Thr
165 170 175

Leu Gly Trp Pro Leu Tyr Leu Ala Phe Asn Val Ser Gly Arg Pro Tyr
180 185 190

Asp Arg Phe Ala Cys His Phe Asp Pro His Gly Pro Ile Tyr Asn Asp
195 200 205

Arg Glu Arg Met Glu Ile Tyr Leu Ser Asp Ala Gly Ile Phe Thr Val
210 215 220

Cys Tyr Ile Leu Tyr Arg Leu Val Leu Thr Lys Gly Leu Val Trp Val
225 230 235 240

Val Ser Ile Tyr Gly Val Pro Leu Leu Ile Val Asn Gly Phe Leu Val
245 250 255

Leu Ile Thr Phe Leu Gln His Thr His Pro Ser Leu Pro His Tyr Lys
 260 265 270

Val Leu Arg Met Gly Thr Gly Cys Glu Ala Pro Ser Arg Pro Trp Ile
 275 280 285

Glu Thr Thr Gly Tyr Ser Thr Pro Cys Ser Thr Thr Ser Pro Ile His
 290 295 300

Met Ser Arg Thr Ile Ser Ser Pro Arg Cys Leu Ile Thr Thr Arg Trp
 305 310 315 320

Arg Leu Pro Arg Arg Ser Ser Arg Phe Ser Gly Ser Ile Thr Ser Ser
 325 330 335

Met Gly Leu Pro Leu
 340

<210> 27
 <211> 1023
 <212> DNA
 <213> Linum usitatissimum

<220>
 <221> CDS
 <222> (1)..(1023)

<400> 27
 atg tca gtg cct cca tca tcc aaa cct atg aag agg tct cct tac tca 48
 Met Ser Val Pro Pro Ser Ser Lys Pro Met Lys Arg Ser Pro Tyr Ser
 1 5 10 15

aag cca cca ttc acg ctc ggt gag ctc aag aag gcc att cct cca cac 96
 Lys Pro Pro Phe Thr Leu Gly Glu Leu Lys Lys Ala Ile Pro Pro His
 20 25 30

tgt ttc aaa cgc tca atc ccc cga tcg ttc gcc tac gtg gcg tac gac 144
 Cys Phe Lys Arg Ser Ile Pro Arg Ser Phe Ala Tyr Val Ala Tyr Asp
 35 40 45

ctc acc att gca gca atc ttc tac tac atc gcc acc act tac ttc cac 192
 Leu Thr Ile Ala Ala Ile Phe Tyr Tyr Ile Ala Thr Thr Tyr Phe His
 50 55 60

ctc ctc cct agc cct ctc aac tac ctc gcc tgg ccg gtc tac tgg gcc 240
 Leu Leu Pro Ser Pro Leu Asn Tyr Leu Ala Trp Pro Val Tyr Trp Ala
 65 70 75 80

tgc cag ggc tgc atc ctc act gga gta tgg gtg ttg gct cac gaa tgc 288
 Cys Gln Gly Cys Ile Leu Thr Gly Val Trp Val Leu Ala His Glu Cys
 85 90 95

ggc cac cat gcc ttc agc gac tac cag tgg ctc gac gac atg gtt ggc 336
 Gly His His Ala Phe Ser Asp Tyr Gln Trp Leu Asp Asp Met Val Gly

100	105	110	
ttc gtc ctc cat tcg tcc ctc ctt gtt cct tac ttc tcc tgg aag cac Phe Val Leu His Ser Ser Leu Leu Val Pro Tyr Phe Ser Trp Lys His			384
115	120	125	
agc cac cgc cgc cac cat tcc aac acg gga tcg ctt gat cgt gat gag Ser His Arg Arg His His Ser Asn Thr Gly Ser Leu Asp Arg Asp Glu			432
130	135	140	
gtg ttt gtc ccc aag cag aag gcc gaa atc ggg tgg tac tcc aag tac Val Phe Val Pro Lys Gln Lys Ala Glu Ile Gly Trp Tyr Ser Lys Tyr			480
145	150	155	160
ctt aac aac cca cct ggc cgt gtg atc aca ttg gcc gtc aca tta acg Leu Asn Asn Pro Pro Gly Arg Val Ile Thr Leu Ala Val Thr Leu Thr			528
165	170	175	
ctc ggt tgg cct ctg tac ttg gca ttc aac gtc tcc ggg aga cca tat Leu Gly Trp Pro Leu Tyr Leu Ala Phe Asn Val Ser Gly Arg Pro Tyr			576
180	185	190	
gac cgg ttc gca tgc cat ttt gac cct cac ggt ccg att tac aat gat Asp Arg Phe Ala Cys His Phe Asp Pro His Gly Pro Ile Tyr Asn Asp			624
195	200	205	
cgc gag cgt atg gag ata tac cta tcc gac gca ggg ata ttc acc gtg Arg Glu Arg Met Glu Ile Tyr Leu Ser Asp Ala Gly Ile Phe Thr Val			672
210	215	220	
tgc tac atc cta tac aga ctc gtc ctc acg aaa gga ctc gtt tgg gtc Cys Tyr Ile Leu Tyr Arg Leu Val Leu Thr Lys Gly Leu Val Trp Val			720
225	230	235	240
gtg tcc ata tac gga gtc cca cta ttg ata gtg aat gga ttc cta gtc Val Ser Ile Tyr Gly Val Pro Leu Leu Ile Val Asn Gly Phe Leu Val			768
245	250	255	
ctc atc act ttc ttg cag cac acg cat cct tct ctt ccg cac tac aaa Leu Ile Thr Phe Leu Gln His Thr His Pro Ser Leu Pro His Tyr Lys			816
260	265	270	
gtc ctc cga atg ggg act gga tgc gag gcg ccc tct cga ccg tgg atc Val Leu Arg Met Gly Thr Gly Cys Glu Ala Pro Ser Arg Pro Trp Ile			864
275	280	285	
gag act acg ggt tac tca aca ccg tgt tcc aca aca tca ccg ata cac Glu Thr Thr Gly Tyr Ser Thr Pro Cys Ser Thr Thr Ser Pro Ile His			912
290	295	300	
atg tcg cgc acc atc tct tct cca cga tgc ctc att acc acg cga tgg Met Ser Arg Thr Ile Ser Ser Pro Arg Cys Leu Ile Thr Thr Arg Trp			960
305	310	315	320
agg cta cca agg cga tca agc ccg ttc tcg ggg agt att acc agt tcg Arg Leu Pro Arg Arg Ser Ser Arg Phe Ser Gly Ser Ile Thr Ser Ser			1008
325	330	335	
atg gga ctc cct ttg Met Gly Leu Pro Leu			1023
340			

<210> 28
 <211> 341
 <212> PRT
 <213> Linum usitatissimum

<400> 28

Met Ser Val Pro Pro Ser Ser Lys Pro Met Lys Arg Ser Pro Tyr Ser
 1 5 10 15

Lys Pro Pro Phe Thr Leu Gly Glu Leu Lys Lys Ala Ile Pro Pro His
 20 25 30

Cys Phe Lys Arg Ser Ile Pro Arg Ser Phe Ala Tyr Val Ala Tyr Asp
 35 40 45

Leu Thr Ile Ala Ala Ile Phe Tyr Tyr Ile Ala Thr Thr Tyr Phe His
 50 55 60

Leu Leu Pro Ser Pro Leu Asn Tyr Leu Ala Trp Pro Val Tyr Trp Ala
 65 70 75 80

Cys Gln Gly Cys Ile Leu Thr Gly Val Trp Val Leu Ala His Glu Cys
 85 90 95

Gly His His Ala Phe Ser Asp Tyr Gln Trp Leu Asp Asp Met Val Gly
 100 105 110

Phe Val Leu His Ser Ser Leu Leu Val Pro Tyr Phe Ser Trp Lys His
 115 120 125

Ser His Arg Arg His His Ser Asn Thr Gly Ser Leu Asp Arg Asp Glu
 130 135 140

Val Phe Val Pro Lys Gln Lys Ala Glu Ile Gly Trp Tyr Ser Lys Tyr
 145 150 155 160

Leu Asn Asn Pro Pro Gly Arg Val Ile Thr Leu Ala Val Thr Leu Thr
 165 170 175

Leu Gly Trp Pro Leu Tyr Leu Ala Phe Asn Val Ser Gly Arg Pro Tyr
 180 185 190

Asp Arg Phe Ala Cys His Phe Asp Pro His Gly Pro Ile Tyr Asn Asp
 195 200 205

Arg Glu Arg Met Glu Ile Tyr Leu Ser Asp Ala Gly Ile Phe Thr Val
 210 215 220

Cys Tyr Ile Leu Tyr Arg Leu Val Leu Thr Lys Gly Leu Val Trp Val
225 230 235 240

Val Ser Ile Tyr Gly Val Pro Leu Leu Ile Val Asn Gly Phe Leu Val
245 250 255

Leu Ile Thr Phe Leu Gln His Thr His Pro Ser Leu Pro His Tyr Lys
260 265 270

Val Leu Arg Met Gly Thr Gly Cys Glu Ala Pro Ser Arg Pro Trp Ile
275 280 285

Glu Thr Thr Gly Tyr Ser Thr Pro Cys Ser Thr Thr Ser Pro Ile His
290 295 300

Met Ser Arg Thr Ile Ser Ser Pro Arg Cys Leu Ile Thr Thr Arg Trp
305 310 315 320

Arg Leu Pro Arg Arg Ser Ser Arg Phe Ser Gly Ser Ile Thr Ser Ser
325 330 335

Met Gly Leu Pro Leu
340

<210> 29
<211> 1545
<212> DNA
<213> Hordeum vulgare

<220>
<221> misc_feature
<222> (1)..(24)

<220>
<221> CDS
<222> (25)..(1185)

<220>
<221> misc_feature
<222> (1186)..(1545)

<400> 29
accaccacca cccctaccag catc atg ggt gcc ggc ggc ggg atg acc gag 51
Met Gly Ala Gly Gly Gly Met Thr Glu
1 5

aag gag cgg gag aag cag gag cag ctc ggc cgc gcc ggc ggc gca 99
Lys Glu Arg Glu Lys Gln Glu Gln Leu Gly Arg Ala Gly Gly Ala
10 15 20 25

gcc ttc cag cgc tcg ccg acg aag ccg ccg ttc acg ctc ggt cag 147

Ala Phe Gln Arg Ser Pro Thr Asp Lys Pro Pro Phe Thr Leu Gly Gln
 30 35 40

atc aag aag gcg atc ccg cct cac tgc ttc cag cgc tcc atc atc aag 195
 Ile Lys Lys Ala Ile Pro Pro His Cys Phe Gln Arg Ser Ile Ile Lys
 45 50 55

tcc ttc tcc tac gtg gtt cat gac ctg gtc atc atc gcc gcc ctg ctg 243
 Ser Phe Ser Tyr Val Val His Asp Leu Val Ile Ala Ala Leu Leu
 60 65 70

tac gcc gct ctg gtc tgg atc ccc acc ctc cct acc gtg ttg cag ctg 291
 Tyr Ala Ala Leu Val Trp Ile Pro Thr Leu Pro Thr Val Leu Gln Leu
 75 80 85

ggc gcg tgg ccg ctc tac tgg atc cag ggc tgc gtc atg acc ggc 339
 Gly Ala Trp Pro Leu Tyr Trp Ile Val Gln Gly Cys Val Met Thr Gly
 90 95 100 105

gtc tgg gtc atc gcg cac gag tgc ggc cac cat gcc ttc tct gac tac 387
 Val Trp Val Ile Ala His Glu Cys Gly His His Ala Phe Ser Asp Tyr
 110 115 120

tcg ctg ctc gac gac acc gtc ggc ctg gtc ctc cac tcg tgg ctg ctc 435
 Ser Leu Leu Asp Asp Thr Val Gly Leu Val Leu His Ser Trp Leu Leu
 125 130 135

gtc cca tac ttc tcg tgg aag tac agc cac cgt cgc cac cac tcc aac 483
 Val Pro Tyr Phe Ser Trp Lys Tyr Ser His Arg Arg His His Ser Asn
 140 145 150

acc ggg tcg ctg gag cgc gac gag gtg ttt gtc ccc aag cag aag gag 531
 Thr Gly Ser Leu Glu Arg Asp Glu Val Phe Val Pro Lys Gln Lys Glu
 155 160 165

gcg ctg gca tgg tac act ccc tac atc tac aac aac ccc atc ggc cgt 579
 Ala Leu Ala Trp Tyr Thr Pro Tyr Ile Tyr Asn Asn Pro Ile Gly Arg
 170 175 180 185

ctg gtg cac atc gtg gtg cag ctc acc ctc ggg tgg cgc ctg tac ctg 627
 Leu Val His Ile Val Val Gln Leu Thr Leu Gly Trp Pro Leu Tyr Leu
 190 195 200

gcg ctc aac gcc tca ggc cgt ccg tac ccg cgc ttc gcc tgc cac ttc 675
 Ala Leu Asn Ala Ser Gly Arg Pro Tyr Pro Arg Phe Ala Cys His Phe
 205 210 215

gac ccc tac ggc ccg atc tac aac gac ccg gag cga gcc cag att ttc 723
 Asp Pro Tyr Gly Pro Ile Tyr Asn Asp Arg Glu Arg Ala Gln Ile Phe
 220 225 230

atc tcg gat gtc ggc gtg ttg gcc gtc tcc ttg gcc ctg ctc aag ctt 771
 Ile Ser Asp Val Gly Val Leu Ala Val Ser Leu Ala Leu Leu Lys Leu
 235 240 245

gtg tcg tcg ttt ggg ttc tgg tgg gtg gtg cgg gtc tac ggc gtg ccg 819
 Val Ser Ser Phe Gly Phe Trp Trp Val Val Arg Val Tyr Gly Val Pro
 250 255 260 265

ctg ctg atc gtg aac gcg tgg ctg gtc ctg atc acc tac ctg cag cac 867
 Leu Leu Ile Val Asn Ala Trp Leu Val Leu Ile Thr Tyr Leu Gln His
 270 275 280

acc cac cca gcg ctg ccg cac tac gac tcg acg gag tgg gac tgg ctg	915
Thr His Pro Ala Leu Pro His Tyr Asp Ser Thr Glu Trp Asp Trp Leu	
285 290 295	
cgg ggg gcg ctc gcc acc atg gac cgg gac tac ggc att ctc aac cgc	963
Arg Gly Ala Leu Ala Thr Met Asp Arg Asp Tyr Gly Ile Leu Asn Arg	
300 305 310	
gtg ttc cac aac atc acg gac acg cac gtg gcg cac cac ctc ttc tcc	1011
Val Phe His Asn Ile Thr Asp Thr His Val Ala His His Leu Phe Ser	
315 320 325	
aac atg ccg cac tac cac gcc atg gag gcc acc aag gcg atc aag ccc	1059
Asn Met Pro His Tyr His Ala Met Glu Ala Thr Lys Ala Ile Lys Pro	
330 335 340 345	
atc ctc ggc gag tac tac cag ttt gac ggc acc ccg gtc gcc aag gcc	1107
Ile Leu Gly Glu Tyr Tyr Gln Phe Asp Gly Thr Pro Val Ala Lys Ala	
350 355 360	
aca tgg cgc gag gcc aag gag tgc atc tac gtt gag ccc gag gac cgc	1155
Thr Trp Arg Glu Ala Lys Glu Cys Ile Tyr Val Glu Pro Glu Asp Arg	
365 370 375	
aag ggg gtc ttc tgg tac agc aac aag ttc tagccgcaag gatcgatc	1205
Lys Gly Val Phe Trp Tyr Ser Asn Lys Phe	
380 385	
agccgtgttc caggaagaac tcagagaaga ggtccttaca agtaatccat ccatctac	1265
acatatggtt agttttaga tagcagaggg catttggca caaacaagac tactattacc	1325
gtgccaatgc tagaaagagt tgagtggtgc aaggaggagt agcgtgtccg tgactttgt	1385
cagttccttc ttactttcc tcctgcgtct tagtcgcccgg cggtcgttgc tgggtccgt	1445
ggccattgac atggccgtgt gtgttgtgtg tgctgtgtc attgcattgg cgtcatctcc	1505
ccccgtccgt gtcatgttgt ttagaccat ttctgtttt	1545

<210> 30
 <211> 387
 <212> PRT
 <213> Hordeum vulgare

<400> 30

Met Gly Ala Gly Gly Met Thr Glu Lys Glu Arg Glu Lys Gln Glu	
1 5 10 15	

Gln Leu Gly Arg Ala Gly Gly Ala Ala Phe Gln Arg Ser Pro Thr	
20 25 30	

Asp Lys Pro Pro Phe Thr Leu Gly Gln Ile Lys Lys Ala Ile Pro Pro	
35 40 45	

His Cys Phe Gln Arg Ser Ile Ile Lys Ser Phe Ser Tyr Val Val His

50

55

60

Asp Leu Val Ile Ile Ala Ala Leu Leu Tyr Ala Ala Leu Val Trp Ile
 65 70 75 80

Pro Thr Leu Pro Thr Val Leu Gln Leu Gly Ala Trp Pro Leu Tyr Trp
 85 90 95

Ile Val Gln Gly Cys Val Met Thr Gly Val Trp Val Ile Ala His Glu
 100 105 110

Cys Gly His His Ala Phe Ser Asp Tyr Ser Leu Leu Asp Asp Thr Val
 115 120 125

Gly Leu Val Leu His Ser Trp Leu Leu Val Pro Tyr Phe Ser Trp Lys
 130 135 140

Tyr Ser His Arg Arg His His Ser Asn Thr Gly Ser Leu Glu Arg Asp
 145 150 155 160

Glu Val Phe Val Pro Lys Gln Lys Glu Ala Leu Ala Trp Tyr Thr Pro
 165 170 175

Tyr Ile Tyr Asn Asn Pro Ile Gly Arg Leu Val His Ile Val Val Gln
 180 185 190

Leu Thr Leu Gly Trp Pro Leu Tyr Leu Ala Leu Asn Ala Ser Gly Arg
 195 200 205

Pro Tyr Pro Arg Phe Ala Cys His Phe Asp Pro Tyr Gly Pro Ile Tyr
 210 215 220

Asn Asp Arg Glu Arg Ala Gln Ile Phe Ile Ser Asp Val Gly Val Leu
 225 230 235 240

Ala Val Ser Leu Ala Leu Leu Lys Leu Val Ser Ser Phe Gly Phe Trp
 245 250 255

Trp Val Val Arg Val Tyr Gly Val Pro Leu Leu Ile Val Asn Ala Trp
 260 265 270

Leu Val Leu Ile Thr Tyr Leu Gln His Thr His Pro Ala Leu Pro His
 275 280 285

Tyr Asp Ser Thr Glu Trp Asp Trp Leu Arg Gly Ala Leu Ala Thr Met
 290 295 300

Asp Arg Asp Tyr Gly Ile Leu Asn Arg Val Phe His Asn Ile Thr Asp
 305 310 315 320

Thr His Val Ala His His Leu Phe Ser Asn Met Pro His Tyr His Ala
 325 330 335

Met Glu Ala Thr Lys Ala Ile Lys Pro Ile Leu Gly Glu Tyr Tyr Gln
 340 345 350

Phe Asp Gly Thr Pro Val Ala Lys Ala Thr Trp Arg Glu Ala Lys Glu
 355 360 365

Cys Ile Tyr Val Glu Pro Glu Asp Arg Lys Gly Val Phe Trp Tyr Ser
 370 375 380

Asn Lys Phe
 385

<210> 31
 <211> 1161
 <212> DNA
 <213> Hordeum vulgare

<220>
 <221> CDS
 <222> (1)...(1161)

<400> 31
 atg ggt gcc ggc ggg atg acc gag aag gag cgg gag aag cag gag 48
 Met Gly Ala Gly Gly Met Thr Glu Lys Glu Arg Glu Lys Gln Glu
 1 5 10 15

cag ctc ggc cgc gcc ggc ggc gca gcc ttc cag cgc tcg ccg acg 96
 Gln Leu Gly Arg Ala Gly Gly Ala Ala Phe Gln Arg Ser Pro Thr
 20 25 30

gac aag ccg ccg ttc acg ctc ggt cag atc aag aag gcg atc ccg cct 144
 Asp Lys Pro Pro Phe Thr Leu Gly Gln Ile Lys Lys Ala Ile Pro Pro
 35 40 45

cac tgc ttc cag cgc tcc atc atc aag tcc ttc tcc tac gtg gtt cat 192
 His Cys Phe Gln Arg Ser Ile Ile Lys Ser Phe Ser Tyr Val Val His
 50 55 60

gac ctg gtc atc atc gcc gcc ctg ctg tac gcc gct ctg gtc tgg atc 240
 Asp Leu Val Ile Ala Ala Leu Leu Tyr Ala Ala Leu Val Trp Ile
 65 70 75 80

ccc acc ctc cct acc gtg ttg cag ctg ggc gcg tgg ccg ctc tac tgg 288
 Pro Thr Leu Pro Thr Val Leu Gln Leu Gly Ala Trp Pro Leu Tyr Trp
 85 90 95

atc gtt cag ggc tgc gtc atg acc ggc gtc tgg gtc atc gcg cac gag 336
 Ile Val Gln Gly Cys Val Met Thr Gly Val Trp Val Ile Ala His Glu

100	105	110	
tgc ggc cac cat gcc ttc tct gac tac tcg ctg ctc gac gac acc gtc			384
Cys	Gly	His	
His	Ala	Phe	Ser
115	120	125	
ggc ctg gtg ctc cac tcg tgg ctg ctc gtc cca tac ttc tcg tgg aag			432
Gly	Leu	Val	Leu
Leu	His	Ser	Trp
130	135	140	
tac agc cac cgt cgc cac cac tcc aac acc ggg tcg ctg gag cgc gac			480
Tyr	Ser	His	Arg
Arg	His	Ser	Asn
145	150	155	160
gag gtg ttt gtc ccc aag cag aag gag gcg ctg gca tgg tac act ccc			528
Glu	Val	Phe	Val
Pro	Lys	Gln	Lys
165	170	175	
tac atc tac aac aac ccc atc ggc cgt ctg gtg cac atc gtg gtg cag			576
Tyr	Ile	Tyr	Asn
Asn	Pro	Ile	Gly
180	185	190	
ctc acc ctc ggg tgg ccg ctg tac ctg gcg ctc aac gcc tca ggc cgt			624
Leu	Thr	Leu	Gly
Trp	Pro	Leu	Tyr
195	200	205	
ccg tac ccg cgc ttc gcc tgc cac ttc gac ccc tac ggc ccg atc tac			672
Pro	Tyr	Pro	Arg
Arg	Phe	Ala	Cys
210	215	220	
aac gac ccg gag cga gcc cag att ttc atc tcg gat gtc ggc gtg ttg			720
Asn	Asp	Arg	Glu
Arg	Ala	Gln	Ile
225	230	235	240
gcc gtc tcc ttg gcc ctg ctc aag ctt gtg tcg tcg ttt ggg ttc tgg			768
Ala	Val	Ser	Leu
Leu	Leu	Lys	Leu
245	250	255	
tgg gtg gtg ccg gtc tac gcc gtg ccg ctg ctg atc gtg aac gcg tgg			816
Trp	Val	Val	Arg
Arg	Val	Tyr	Gly
260	265	270	
ctg gtc ctg atc acc tac ctg cag cac acc cca gcg ctg ccg cac			864
Leu	Val	Leu	Ile
Ile	Thr	Tyr	Leu
275	280	285	
tac gac tcg acg gag tgg gac tgg ctg ccg ggg gcg ctc gcc acc atg			912
Tyr	Asp	Ser	Thr
Glu	Trp	Asp	Trp
290	295	300	
gac ccg gac tac ggc att ctc aac cgc gtg ttc cac aac atc acg gac			960
Asp	Arg	Asp	Tyr
Tyr	Ile	Leu	Asn
305	310	315	320
acg cac gtg gcg cac cac ctc ttc tcc aac atg ccg cac tac cac gcc			1008
Thr	His	Val	Ala
His	His	Leu	Phe
325	330	335	
atg gag gcc acc aag gcg atc aag ccc atc ctc ggc gag tac tac cag			1056
Met	Glu	Ala	Thr
Lys	Ala	Ile	Lys
340	345	350	

ttt gac ggc acc ccg gtc gcc aag gcc aca tgg cgc gag gcc aag gag 1104
 Phe Asp Gly Thr Pro Val Ala Lys Ala Thr Trp Arg Glu Ala Lys Glu
 355 360 365

tgc atc tac gtt gag ccc gag gac cgc aag ggg gtc ttc tgg tac agc 1152
 Cys Ile Tyr Val Glu Pro Glu Asp Arg Lys Gly Val Phe Trp Tyr Ser
 370 375 380

aac aag ttc 1161
 Asn Lys Phe
 385

<210> 32
 <211> 387
 <212> PRT
 <213> Hordeum vulgare

<400> 32

Met Gly Ala Gly Gly Met Thr Glu Lys Glu Arg Glu Lys Gln Glu
 1 5 10 15

Gln Leu Gly Arg Ala Gly Gly Ala Ala Phe Gln Arg Ser Pro Thr
 20 25 30

Asp Lys Pro Pro Phe Thr Leu Gly Gln Ile Lys Lys Ala Ile Pro Pro
 35 40 45

His Cys Phe Gln Arg Ser Ile Ile Lys Ser Phe Ser Tyr Val Val His
 50 55 60

Asp Leu Val Ile Ile Ala Ala Leu Leu Tyr Ala Ala Leu Val Trp Ile
 65 70 75 80

Pro Thr Leu Pro Thr Val Leu Gln Leu Gly Ala Trp Pro Leu Tyr Trp
 85 90 95

Ile Val Gln Gly Cys Val Met Thr Gly Val Trp Val Ile Ala His Glu
 100 105 110

Cys Gly His His Ala Phe Ser Asp Tyr Ser Leu Leu Asp Asp Thr Val
 115 120 125

Gly Leu Val Leu His Ser Trp Leu Leu Val Pro Tyr Phe Ser Trp Lys
 130 135 140

Tyr Ser His Arg Arg His His Ser Asn Thr Gly Ser Leu Glu Arg Asp
 145 150 155 160

Glu Val Phe Val Pro Lys Gln Lys Glu Ala Leu Ala Trp Tyr Thr Pro
 165 170 175

Tyr Ile Tyr Asn Asn Pro Ile Gly Arg Leu Val His Ile Val Val Gln
180 185 190

Leu Thr Leu Gly Trp Pro Leu Tyr Leu Ala Leu Asn Ala Ser Gly Arg
195 200 205

Pro Tyr Pro Arg Phe Ala Cys His Phe Asp Pro Tyr Gly Pro Ile Tyr
210 215 220

Asn Asp Arg Glu Arg Ala Gln Ile Phe Ile Ser Asp Val Gly Val Leu
225 230 235 240

Ala Val Ser Leu Ala Leu Leu Lys Leu Val Ser Ser Phe Gly Phe Trp
245 250 255

Trp Val Val Arg Val Tyr Gly Val Pro Leu Leu Ile Val Asn Ala Trp
260 265 270

Leu Val Leu Ile Thr Tyr Leu Gln His Thr His Pro Ala Leu Pro His
275 280 285

Tyr Asp Ser Thr Glu Trp Asp Trp Leu Arg Gly Ala Leu Ala Thr Met
290 295 300

Asp Arg Asp Tyr Gly Ile Leu Asn Arg Val Phe His Asn Ile Thr Asp
305 310 315 320

Thr His Val Ala His His Leu Phe Ser Asn Met Pro His Tyr His Ala
325 330 335

Met Glu Ala Thr Lys Ala Ile Lys Pro Ile Leu Gly Glu Tyr Tyr Gln
340 345 350

Phe Asp Gly Thr Pro Val Ala Lys Ala Thr Trp Arg Glu Ala Lys Glu
355 360 365

Cys Ile Tyr Val Glu Pro Glu Asp Arg Lys Gly Val Phe Trp Tyr Ser
370 375 380

Asn Lys Phe
385

<210> 33
<211> 1749
<212> DNA
<213> Triticum aestivum

<220>
 <221> misc_feature
 <222> (1)..(164)

 <220>
 <221> CDS
 <222> (165)..(1325)

 <220>
 <221> misc_feature
 <222> (1326)..(1749)

 <400> 33
 cgcgtccgcg gctcctcccc cccgcacaaa ccactcggttc gtcccgtaa caagaggagc 60
 agaggcgcccg gagagggaaag aggggtgcgcg cgctcgcgtg tgtggtgtcc gccggccgca 120
 tctgcctgc tcccgccgccc tcgaccacca cccctatcag catc atg ggt gcc ggc 176
 Met Gly Ala Gly
 1
 ggc agg atg acg gag aag gag cgg gag aag cag gag cag ctc ggc cgc 224
 Gly Arg Met Thr Glu Lys Glu Arg Glu Lys Gln Glu Gln Leu Gly Arg
 5 10 15 20
 gcc aac ggc gca gcc tac cag cgc tcg ccg acg gac aag ccg ccg 272
 Ala Asn Gly Ala Ala Tyr Gln Arg Ser Pro Thr Asp Lys Pro Pro
 25 30 35
 ttc acg ctg ggt cag atc aag aag gca atc ccg cct cac tgc ttc cag 320
 Phe Thr Leu Gly Gln Ile Lys Lys Ala Ile Pro Pro His Cys Phe Gln
 40 45 50
 cgc tcg atc atc aag tcc ttc tac gtg gtc cat gac ctg gtc atc 368
 Arg Ser Ile Ile Lys Ser Phe Ser Tyr Val Val His Asp Leu Val Ile
 55 60 65
 gtc gcg gcc ctg ctg tac gcg gcg ctg gtt tgg atc cct acc ctc ccg 416
 Val Ala Ala Leu Leu Tyr Ala Ala Leu Val Trp Ile Pro Thr Leu Pro
 70 75 80
 acc gtg ctg cag ctg ggc gcc tgg ccg ctc tac tgg atc gtg cag ggc 464
 Thr Val Leu Gln Leu Gly Ala Trp Pro Leu Tyr Trp Ile Val Gln Gly
 85 90 95 100
 tgc gtc atg acc ggc gtc tgg gtc atc gcc cac gag tgc ggc cac cac 512
 Cys Val Met Thr Gly Val Trp Val Ile Ala His Glu Cys Gly His His
 105 110 115
 gcc ttc tcc gac tac tcg ctg ctc gac gac acc gtc ggc ctg gtg ctc 560
 Ala Phe Ser Asp Tyr Ser Leu Leu Asp Asp Thr Val Gly Leu Val Leu
 120 125 130
 cac tcg tgg ctg ctc gtc ccc tac ttc tcg tgg aag tac agc cac cgt 608
 His Ser Trp Leu Leu Val Pro Tyr Phe Ser Trp Lys Tyr Ser His Arg
 135 140 145
 cgc cac cac tcc aac acc ggg tcg ctg gag cgt gat gag gtg ttc gtc 656
 Arg His His Ser Asn Thr Gly Ser Leu Glu Arg Asp Glu Val Phe Val
 150 155 160

ccc aag cag aag gag gcg ctg gcg tgg tac acc cct tac atc tac aac	165	170	175	180	704
Pro Lys Gln Lys Glu Ala Leu Ala Trp Tyr Thr Pro Tyr Ile Tyr Asn					
aac ccc gtc ggc cgt ctg gtg cac atc gtc gtg cag ctc acc ctc ggg	185	190	195		752
Asn Pro Val Gly Arg Leu Val His Ile Val Val Gln Leu Thr Leu Gly					
tgg ccg ctg tac ctg gcg ctc aac gcc tca ggc cgc ccg tac ccc cgg	200	205	210		800
Trp Pro Leu Tyr Leu Ala Leu Asn Ala Ser Gly Arg Pro Tyr Pro Arg					
ttc gcc tgc cac ttc gac ccc tac ggc ccg atc tac aac gac cgg gag	215	220	225		848
Phe Ala Cys His Phe Asp Pro Tyr Gly Pro Ile Tyr Asn Asp Arg Glu					
cga gcc cag att ttc atc tca gac gtc gga gtg ctg gcc gtg tca ttg	230	235	240		896
Arg Ala Gln Ile Phe Ile Ser Asp Val Gly Val Leu Ala Val Ser Leu					
gct ctg ctg aag ctc gtg tcg ttc ggg ttc tgg tgg gtg gtg cgg	245	250	255	260	944
Ala Leu Leu Lys Leu Val Ser Ser Phe Gly Phe Trp Trp Val Val Arg					
gtc tac ggc gtg ccg ctg ctg atc gtg aac gct tgg ctg gtc ctg atc	265	270	275		992
Val Tyr Gly Val Pro Leu Leu Ile Val Asn Ala Trp Leu Val Leu Ile					
acc tac ctg cag cac acc cac ccg gcg ctg ccg cac tac gac tcg acg	280	285	290		1040
Thr Tyr Leu Gln His Thr His Pro Ala Leu Pro His Tyr Asp Ser Thr					
gag tgg gac tgg ctg cgc ggg gcg ctc gcc acc atg gac cgc gac tac	295	300	305		1088
Glu Trp Asp Trp Leu Arg Gly Ala Leu Ala Thr Met Asp Arg Asp Tyr					
ggc atc ctc aac cgc gtg ttc cac aac atc acg gac acg cac gtg gcg	310	315	320		1136
Gly Ile Leu Asn Arg Val Phe His Asn Ile Thr Asp Thr His Val Ala					
cac cac ctc ttc tcc acc atg ccg cac tac cac gcc atg gag gcc acc	325	330	335	340	1184
His His Leu Phe Ser Thr Met Pro His Tyr His Ala Met Glu Ala Thr					
aag gcg atc aag ccc atc ctc ggc gag tac tac cag ttc gac ccc acc	345	350	355		1232
Lys Ala Ile Lys Pro Ile Leu Gly Glu Tyr Tyr Gln Phe Asp Pro Thr					
ccc gtc gcc aag gcc aca tgg cgc gag gcc aag gag tgc atc tac gtc	360	365	370		1280
Pro Val Ala Lys Ala Thr Trp Arg Glu Ala Lys Glu Cys Ile Tyr Val					
gag ccc gag gac cgc aag ggg gtc ttc tgg tac agc aac aag ttc	375	380	385		1325
Glu Pro Glu Asp Arg Lys Gly Val Phe Trp Tyr Ser Asn Lys Phe					
tagccgccaa gatccatcaa ctgtgctgga gaaagaactc agagaagaga tcctaccaag					1385
taattccatc catctaccta cagtccatat ggttagtctt tagatagcag agggcatttg					1445
ggcacaaaag aagactacta ttaccgtgcc aatgctagaa gagctgagtg gtgcaaggaa					1505

gagtagcgtg tccgtgactt tggtcagttc cgtctttact ttttctctgc gttctagtcg 1565
 tcggcttagg tttggccggc ggtcatcggtt ggtgtccgtg gccgtggaca tggccgcgtg 1625
 tgggtgtgtt gcgctgtca ttgcattggc gtcatctccc cccgtccgtg tcgttgcgtt 1685
 gtagaccatt tcgtgtttat ggccgaaataa ctgatcgatcg aaggaagggc aacttttttg 1745
 agta 1749

<210> 34
 <211> 387
 <212> PRT
 <213> *Triticum aestivum*

<400> 34

Met Gly Ala Gly Gly Arg Met Thr Glu Lys Glu Arg Glu Lys Gln Glu
 1 5 10 15

Gln Leu Gly Arg Ala Asn Gly Gly Ala Ala Tyr Gln Arg Ser Pro Thr
 20 25 30

Asp Lys Pro Pro Phe Thr Leu Gly Gln Ile Lys Lys Ala Ile Pro Pro
 35 40 45

His Cys Phe Gln Arg Ser Ile Ile Lys Ser Phe Ser Tyr Val Val His
 50 55 60

Asp Leu Val Ile Val Ala Ala Leu Leu Tyr Ala Ala Leu Val Trp Ile
 65 70 75 80

Pro Thr Leu Pro Thr Val Leu Gln Leu Gly Ala Trp Pro Leu Tyr Trp
 85 90 95

Ile Val Gln Gly Cys Val Met Thr Gly Val Trp Val Ile Ala His Glu
 100 105 110

Cys Gly His His Ala Phe Ser Asp Tyr Ser Leu Leu Asp Asp Thr Val
 115 120 125

Gly Leu Val Leu His Ser Trp Leu Leu Val Pro Tyr Phe Ser Trp Lys
 130 135 140

Tyr Ser His Arg Arg His His Ser Asn Thr Gly Ser Leu Glu Arg Asp
 145 150 155 160

Glu Val Phe Val Pro Lys Gln Lys Glu Ala Leu Ala Trp Tyr Thr Pro
 165 170 175

Tyr Ile Tyr Asn Asn Pro Val Gly Arg Leu Val His Ile Val Val Gln
 180 185 190

Leu Thr Leu Gly Trp Pro Leu Tyr Leu Ala Leu Asn Ala Ser Gly Arg
 195 200 205

Pro Tyr Pro Arg Phe Ala Cys His Phe Asp Pro Tyr Gly Pro Ile Tyr
 210 215 220

Asn Asp Arg Glu Arg Ala Gln Ile Phe Ile Ser Asp Val Gly Val Leu
 225 230 235 240

Ala Val Ser Leu Ala Leu Leu Lys Leu Val Ser Ser Phe Gly Phe Trp
 245 250 255

Trp Val Val Arg Val Tyr Gly Val Pro Leu Leu Ile Val Asn Ala Trp
 260 265 270

Leu Val Leu Ile Thr Tyr Leu Gln His Thr His Pro Ala Leu Pro His
 275 280 285

Tyr Asp Ser Thr Glu Trp Asp Trp Leu Arg Gly Ala Leu Ala Thr Met
 290 295 300

Asp Arg Asp Tyr Gly Ile Leu Asn Arg Val Phe His Asn Ile Thr Asp
 305 310 315 320

Thr His Val Ala His His Leu Phe Ser Thr Met Pro His Tyr His Ala
 325 330 335

Met Glu Ala Thr Lys Ala Ile Lys Pro Ile Leu Gly Glu Tyr Tyr Gln
 340 345 350

Phe Asp Pro Thr Pro Val Ala Lys Ala Thr Trp Arg Glu Ala Lys Glu
 355 360 365

Cys Ile Tyr Val Glu Pro Glu Asp Arg Lys Gly Val Phe Trp Tyr Ser
 370 375 380

Asn Lys Phe
 385

<210> 35
 <211> 1161
 <212> DNA
 <213> Triticum aestivum

<220>

<221> CDS

<222> (1)...(1161)

<400> 35

atg ggt gcc ggc ggc agg atg acg gag aag gag cg_g gag aag cag gag 48
 Met Gly Ala Gly Gly Arg Met Thr Glu Lys Glu Arg Glu Lys Gln Glu
 1 5 10 15

cag ctc ggc cgc gcc aac ggc ggc gca gcc tac cag cgc tcg ccg acg 96
 Gln Leu Gly Arg Ala Asn Gly Gly Ala Ala Tyr Gln Arg Ser Pro Thr
 20 25 30

gac aag ccg ccg ttc acg ctg ggt cag atc aag gca atc ccg cct 144
 Asp Lys Pro Pro Phe Thr Leu Gly Gln Ile Lys Lys Ala Ile Pro Pro
 35 40 45

cac tgc ttc cag cgc tcg atc atc aag tcc ttc tcc tac gtg gtc cat 192
 His Cys Phe Gln Arg Ser Ile Ile Lys Ser Phe Ser Tyr Val Val His
 50 55 60

gac ctg gtc atc gtc ggc ctg ctg tac gcg gcg ctg gtt tgg atc 240
 Asp Leu Val Ile Val Ala Ala Leu Leu Tyr Ala Ala Leu Val Trp Ile
 65 70 75 80

cct acc ctc ccg acc gtg ctg cag ctg ggc gcc tgg ccg ctc tac tgg 288
 Pro Thr Leu Pro Thr Val Leu Gln Leu Gly Ala Trp Pro Leu Tyr Trp
 85 90 95

atc gtg cag ggc tgc gtc atg acc ggc gtc tgg gtc atc gcc cac gag 336
 Ile Val Gln Gly Cys Val Met Thr Gly Val Trp Val Ile Ala His Glu
 100 105 110

tgc ggc cac cac gcc ttc tcc gac tac tcg ctg ctc gac gac acc gtc 384
 Cys Gly His His Ala Phe Ser Asp Tyr Ser Leu Leu Asp Asp Thr Val
 115 120 125

ggc ctg gtg ctc cac tcg tgg ctg ctc gtc ccc tac ttc tcg tgg aag 432
 Gly Leu Val Leu His Ser Trp Leu Leu Val Pro Tyr Phe Ser Trp Lys
 130 135 140

tac agc cac cgt cgc cac cac tcc aac acc ggg tcg ctg gag cgt gat 480
 Tyr Ser His Arg Arg His His Ser Asn Thr Gly Ser Leu Glu Arg Asp
 145 150 155 160

gag gtg ttc gtc ccc aag cag aag gag ggc ctg gcg tgg tac acc cct 528
 Glu Val Phe Val Pro Lys Gln Lys Glu Ala Leu Ala Trp Tyr Thr Pro
 165 170 175

tac atc tac aac aac ccc gtc ggc cgt ctg gtg cac atc gtc gtg cag 576
 Tyr Ile Tyr Asn Asn Pro Val Gly Arg Leu Val His Ile Val Val Gln
 180 185 190

ctc acc ctc ggg tgg ccg ctg tac ctg gcg ctc aac gcc tca ggc cgc 624
 Leu Thr Leu Gly Trp Pro Leu Tyr Leu Ala Leu Asn Ala Ser Gly Arg
 195 200 205

ccg tac ccg cgg ttc gcc tgc cac ttc gac ccc tac ggc ccg atc tac 672
 Pro Tyr Pro Arg Phe Ala Cys His Phe Asp Pro Tyr Gly Pro Ile Tyr
 210 215 220

aac gac cgg gag cga gcc cag att ttc atc tca gac gtc gga gtg ctg 720
 Asn Asp Arg Glu Arg Ala Gln Ile Phe Ile Ser Asp Val Gly Val Leu
 225 230 235 240

gcc gtg tca ttg gct ctg ctg aag ctc gtg tcg ttc ggg ttc tgg 768
 Ala Val Ser Leu Ala Leu Leu Lys Leu Val Ser Ser Phe Gly Phe Trp
 245 250 255

tgg. gtg gtg cgg gtc tac ggc gtg cgg ctg atc gtg aac gct tgg 816
 Trp Val Val Arg Val Tyr Gly Val Pro Leu Leu Ile Val Asn Ala Trp
 260 265 270

ctg gtc ctg atc acc tac ctg cag cac acc ccc cgg ctc ccc cac 864
 Leu Val Leu Ile Thr Tyr Leu Gln His Thr His Pro Ala Leu Pro His
 275 280 285

tac gac tcg acg gag tgg gac tgg ctg cgc ggg gcg ctc gcc acc atg 912
 Tyr Asp Ser Thr Glu Trp Asp Trp Leu Arg Gly Ala Leu Ala Thr Met
 290 295 300

gac cgc gac tac ggc atc ctc aac cgc gtg ttc cac aac atc acc gac 960
 Asp Arg Asp Tyr Gly Ile Leu Asn Arg Val Phe His Asn Ile Thr Asp
 305 310 315 320

acg cac gtg gcg cac cac ctc ttc tcc acc atg ccc cac tac cac gcc 1008
 Thr His Val Ala His Leu Phe Ser Thr Met Pro His Tyr His Ala
 325 330 335

atg gag gcc acc aag gcg atc aag ccc atc ctc ggc gag tac tac cag 1056
 Met Glu Ala Thr Lys Ala Ile Lys Pro Ile Leu Gly Glu Tyr Tyr Gln
 340 345 350

ttc gac ccc acc ccc gtc gcc aag gcc aca tgg cgc gag gcc aag gag 1104
 Phe Asp Pro Thr Pro Val Ala Lys Ala Thr Trp Arg Glu Ala Lys Glu
 355 360 365

tgc atc tac gtc gag ccc gag gac cgc aag ggg gtc ttc tgg tac agc 1152
 Cys Ile Tyr Val Glu Pro Glu Asp Arg Lys Gly Val Phe Trp Tyr Ser
 370 375 380

aac aag ttc 1161
 Asn Lys Phe
 385

<210> 36
 <211> 387
 <212> PRT
 <213> Triticum aestivum

<400> 36

Met Gly Ala Gly Gly Arg Met Thr Glu Lys Glu Arg Glu Lys Gln Glu
 1 5 10 15

Gln Leu Gly Arg Ala Asn Gly Gly Ala Ala Tyr Gln Arg Ser Pro Thr
 20 25 30

Asp Lys Pro Pro Phe Thr Leu Gly Gln Ile Lys Lys Ala Ile Pro Pro
 35 40 45

His Cys Phe Gln Arg Ser Ile Ile Lys Ser Phe Ser Tyr Val Val His
50 55 60

Asp Leu Val Ile Val Ala Ala Leu Leu Tyr Ala Ala Leu Val Trp Ile
65 70 75 80

Pro Thr Leu Pro Thr Val Leu Gln Leu Gly Ala Trp Pro Leu Tyr Trp
85 90 95

Ile Val Gln Gly Cys Val Met Thr Gly Val Trp Val Ile Ala His Glu
100 105 110

Cys Gly His His Ala Phe Ser Asp Tyr Ser Leu Leu Asp Asp Thr Val
115 120 125

Gly Leu Val Leu His Ser Trp Leu Leu Val Pro Tyr Phe Ser Trp Lys
130 135 140

Tyr Ser His Arg Arg His His Ser Asn Thr Gly Ser Leu Glu Arg Asp
145 150 155 160

Glu Val Phe Val Pro Lys Gln Lys Glu Ala Leu Ala Trp Tyr Thr Pro
165 170 175

Tyr Ile Tyr Asn Asn Pro Val Gly Arg Leu Val His Ile Val Val Gln
180 185 190

Leu Thr Leu Gly Trp Pro Leu Tyr Leu Ala Leu Asn Ala Ser Gly Arg
195 200 205

Pro Tyr Pro Arg Phe Ala Cys His Phe Asp Pro Tyr Gly Pro Ile Tyr
210 215 220

Asn Asp Arg Glu Arg Ala Gln Ile Phe Ile Ser Asp Val Gly Val Leu
225 230 235 240

Ala Val Ser Leu Ala Leu Leu Lys Leu Val Ser Ser Phe Gly Phe Trp
245 250 255

Trp Val Val Arg Val Tyr Gly Val Pro Leu Leu Ile Val Asn Ala Trp
260 265 270

Leu Val Leu Ile Thr Tyr Leu Gln His Thr His Pro Ala Leu Pro His
275 280 285

Tyr Asp Ser Thr Glu Trp Asp Trp Leu Arg Gly Ala Leu Ala Thr Met
 290 295 300

Asp Arg Asp Tyr Gly Ile Leu Asn Arg Val Phe His Asn Ile Thr Asp
 305 310 315 320

Thr His Val Ala His His Leu Phe Ser Thr Met Pro His Tyr His Ala
 325 330 335

Met Glu Ala Thr Lys Ala Ile Lys Pro Ile Leu Gly Glu Tyr Tyr Gln
 340 345 350

Phe Asp Pro Thr Pro Val Ala Lys Ala Thr Trp Arg Glu Ala Lys Glu
 355 360 365

Cys Ile Tyr Val Glu Pro Glu Asp Arg Lys Gly Val Phe Trp Tyr Ser
 370 375 380

Asn Lys Phe
 385

<210> 37
 <211> 21
 <212> DNA
 <213> Zea mays

<400> 37
 tcggaccagg cttcattcccc c

21

<210> 38<211> 21
 <212> DNA
 <213> Synthetic

<220>
 <221> misc_feature
 <222> (1)..(21)
 <223> micro RNA

<220>
 <221> misc_feature
 <222> (1)..(21)
 <223> DNA sequence encoding micro RNA

<400> 38
 tcggaccagg cttcattcccc c

21

<210> 39
 <211> 21
 <212> DNA
 <213> Artificial Sequence

<220>

<223> DNA sequence endoding micro RNA

<220>
<221> misc_feature
<222> (1)..(21)
<223> Micro RNA

<220>
<221> misc_feature
<222> (1)..(21)
<223> DNA sequence encoding Micro RNA

<220>
<221> misc_feature
<222> (1)..(21)
<223> DNA sequence ecoding Micro RNA

<400> 39
ttgttagatga agcagccgtc c

21

<210> 40
<211> 19
<212> RNA
<213> Artificial

<220>
<223> microRNA

<220>
<221> misc_feature
<222> (1)..(19)
<223> micro RNA

<400> 40
accagacccc gaacgccc

19

<210> 41
<211> 11722
<212> DNA
<213> Artificial

<220>
<223> A binary vector with maize miR166 precursor

<220>
<221> misc_feature
<222> (171)..(195)
<223> Left T-DNA Border repeat region

<220>
<221> promoter
<222> (286)..(2273)
<223> maize ubiquitin promoter

<220>
<221> CDS
<222> (2316)..(3644)

```

<223> E.coli D-serine dehydratase [asdA] gene

<220>
<221> terminator
<222> (3784)..(4394)
<223> Octapine Synthase 3 terminator

<220>
<221> promoter
<222> (4486)..(5906)
<223> Sugarcane bacilliform virus [ScBV] promoter

<220>
<221> precursor_RNA
<222> (5977)..(6669)
<223> Maize miR166 precursor

<220>
<221> terminator
<222> (6732)..(6984)
<223> 3'UTR of Nopaline Synthase from Agrobacterium tumefaciens T-DNA
      used as terminator

<220>
<221> misc_feature
<222> (7079)..(7102)
<223> Right T-DNA Border repeat region

<220>
<221> promoter
<222> (7695)..(7793)
<223> [bla] beta-lactamase promoter

<220>
<221> rep_origin
<222> (9460)..(10141)
<223> ColE1 ecoli origin of replication for propigation.

<220>
<221> CDS
<222> (10600)..(11415)
<223> Kanamycin Resistance selection gene

<400> 41
ttcaaaccgg gcagcttagt tgccgttctt ccgaatagca tcggtaacat gagcaaagtc 60
tgccgcctta caacggctct cccgctgacg ccgtcccgga ctgatggct gcctgtatcg 120
agtggtgatt ttgtgccgag ctgcccgtcg gggagctgtt ggctggctgg tggcaggata 180
tattgtggtg taaacaaatt gacgcttaga caacttaata acacattgcg gacgttttta 240
atgtactgaa ttggatccgc ccgggcggta ccaagttcc gcggctgcag tgcagcgtga 300
cccggtcgtg cccctctcta gagataatga gcattgcatt tctaaggat aaaaaattac 360
cacatatttt ttttgtcaca cttgttgaa gtgcagttta tctatcttta tacatataatt 420
taaaactttac tctacgaata atataatcta tagtactaca ataatatcag tgtttttagag 480
aatcatataaa atgaacagtt agacatggc taaaggacaa ttgagtattt tgacaacagg 540

```

actctacagt tttatcttt tagtgtcat gtgttcctt tttttttgc aaatagcttc 600
 acctatataa tacttcatcc attttattag tacatccatt tagggtttag ggttaatgg 660
 tttttagac taatttttt agtacatcta ttttattcta ttttagcctc taaaattaaga 720
 aaactaaaac tctattttag ttttttatt taatagttt gatataaaat agaataaaat 780
 aaagtgacta aaaattaaac aaataccctt taagaaatta aaaaaactaa ggaaacattt 840
 ttcttggttc gagtagataa tgccagcctg ttaaacgccc tcgacgagtc taacggacac 900
 caaccagcga accagcagcg tcgcgtcggg ccaagcgaag cagacggcac ggcacatctcg 960
 tcgctgcctc tggacccctc tcgagagttc cgctccaccc ttggacttgc tccgctgtcg 1020
 gcatccagaa attgcgtggc ggagcggcag acgtgagccg gcacggcagg cggcctcctc 1080
 ctcctctcac ggcacccggca gctacggggg attccttcc caccgctcct tcgctttccc 1140
 ttcctcgccc gccgtaataa atagacacacc cctccacacc ctcttcccc aacctcggt 1200
 tggcggagc gcacacacac acaaccagat ctcccccaaa tccacccgtc ggcaccccg 1260
 cttcaaggta cggcgctcgt cctcccccc cccccccctc tctacccctt ctagatcgcc 1320
 gttccggtcc atggtaggg cccggtagtt ctacttctgt tcatgtttgt gtttagatccg 1380
 tggttgggtt agatccgtgc tgctagcggt cgtacacggg tgcgacccgt acgtcagaca 1440
 cggttctgatt gctaacttgc cagtgtttctt cttggggaa tcctggatg gctctagccg 1500
 ttccgcagac gggatcgatt tcatgattt tttgtttcg ttgcataaggg tttgggttgc 1560
 cctttccctt tatttcaata tatgccgtgc acttgggttgc cgggtcatct tttcatgctt 1620
 tttttgtct tgggtgtat gatgtggtct ggttgggcgg tcgttctaga tcggagtaga 1680
 attctgttcc aaactacctg gtggatttat taattttggaa tctgtatgtg tggccatac 1740
 atattcatag ttacgaattt aagatgatgg atggaaatat cgatctagga taggtataca 1800
 tggatgcg ggtttactg atgcatac agagatgctt tttgttcgt tgggtgtat 1860
 gatgtgggtt ggttgggcgg tcgttcatc gttctagatc ggagtagaaat actgtttcaa 1920
 actacccgtt gtatttataa attttggaaac tggatgtgtg tgcatacat cttcatagtt 1980
 acgagttaa gatggatggaa aatatcgatc taggataggt atacatgttgc atgtgggtt 2040
 tactgatgca tatacatgat ggcatacgca gcatctattc atatgctcta accttgagta 2100
 cctatctatt ataataaaaca agtatgtttt ataatttattt cgatcttgc atacttggat 2160
 gatggcatat gcagcagcta tatgtggatt ttttagccc tgccttcata cgctatttat 2220
 ttgcgttggta ctgtttctt tgcgtatgc caccctgttgc tttgggttgc cttctgcagg 2280
 gtacggatcc tcatctaagc gcaaagagac gtact atg gaa aac gct aaa atg 2333
 Met Glu Asn Ala Lys Met
 1 5

Asn Ser Leu Ile Ala Gin Tyr Pro Leu Val Lys Asp Leu Val Ala Leu	10	15	20	
aaa gaa acc acc tgg ttt aat cct ggc acg acc tca ttg gct gaa ggt	25	30	35	2429
Lys Glu Thr Thr Trp Phe Asn Pro Gly Thr Thr Ser Leu Ala Glu Gly				
tta cct tat gtt ggc ctg acc gaa cag gat gtt cag gac gcc cat gcg	40	45	50	2477
Leu Pro Tyr Val Gly Leu Thr Glu Gln Asp Val Gln Asp Ala His Ala				
cgc tta tcc cgt ttt gca ccc tat ctg gca aaa gca ttt cct gaa act	55	60	65	2525
Arg Leu Ser Arg Phe Ala Pro Tyr Leu Ala Lys Ala Phe Pro Glu Thr				
gct gcc act ggg ggg att att gaa tca gaa ctg gtt gcc att cca gct	75	80	85	2573
Ala Ala Thr Gly Gly Ile Ile Glu Ser Glu Leu Val Ala Ile Pro Ala				
atg caa aaa cgg ctg gaa aaa gaa tat cag caa ccg atc agc ggg caa	90	95	100	2621
Met Gln Lys Arg Leu Glu Lys Glu Tyr Gln Gln Pro Ile Ser Gly Gln				
ctg tta ctg aaa aaa gat agc cat ttg ccc att tcc ggc tcc ata aaa	105	110	115	2669
Leu Leu Leu Lys Lys Asp Ser His Leu Pro Ile Ser Gly Ser Ile Lys				
gca cgc ggc ggg att tat gaa gtc ctg gca cac gca gaa aaa ctg gct	120	125	130	2717
Ala Arg Gly Gly Ile Tyr Glu Val Leu Ala His Ala Glu Lys Leu Ala				
ctg gaa gcg ggg ttg ctg acg ctt gat gat gac tac agc aaa ctg ctt	135	140	145	2765
Leu Glu Ala Gly Leu Leu Thr Leu Asp Asp Asp Tyr Ser Lys Leu Leu				
tct ccg gag ttt aaa cag ttc ttt agc caa tac agc att gct gtg ggc	155	160	165	2813
Ser Pro Glu Phe Lys Gln Phe Ser Gln Tyr Ser Ile Ala Val Gly				
tca acc gga aat ctg ggg tta tca atc ggc att atg agc gcc cgc att	170	175	180	2861
Ser Thr Gly Asn Leu Gly Leu Ser Ile Gly Ile Met Ser Ala Arg Ile				
ggc ttt aag gtg aca gtt cat atg tct gct gat gcc cggt gca tgg aaa	185	190	195	2909
Gly Phe Lys Val Thr Val His Met Ser Ala Asp Ala Arg Ala Trp Lys				
aaa gcg aaa ctg cgc agc cat ggc gtt acg gtc gtg gaa tat gag caa	200	205	210	2957
Lys Ala Lys Leu Arg Ser His Gly Val Thr Val Val Glu Tyr Glu Gln				
gat tat ggt gtt gcc gtc gag gaa gga cgt aaa gca gcg cag tct gac	215	220	225	3005
Asp Tyr Gly Val Ala Val Glu Glu Gly Arg Lys Ala Ala Gln Ser Asp				
ccg aac tgt ttc ttt att gat gac gaa aat tcc cgc acg ttg ttc ctt	235	240	245	3053
Pro Asn Cys Phe Phe Ile Asp Asp Glu Asn Ser Arg Thr Leu Phe Leu				
ggg tat tcc gtc gct ggc cag cgt ctt aaa gcg caa ttt gcc cag caa	250	255	260	3101
Gly Tyr Ser Val Ala Gly Gln Arg Leu Lys Ala Gln Phe Ala Gln Gln				

ggc cgt atc gtc gat gct gat aac cct ctg ttt gtc tat ctg ccg tgt	3149
Gly Arg Ile Val Asp Ala Asp Asn Pro Leu Phe Val Tyr Leu Pro Cys	
265 270 275	
ggt gtt ggc ggt ggt cct ggt ggc gtc gca ttc ggg ctt aaa ctg gcg	3197
Gly Val Gly Gly Pro Gly Gly Val Ala Phe Gly Leu Lys Leu Ala	
280 285 290	
ttt ggc gat cat gtt cac tgc ttt ttt gcc gaa cca acg cac tcc cct	3245
Phe Gly Asp His Val His Cys Phe Phe Ala Glu Pro Thr His Ser Pro	
295 300 305 310	
tgt atg ttg tta ggc gtc cat aca gga tta cac gat cag att tct gtt	3293
Cys Met Leu Leu Gly Val His Thr Gly Leu His Asp Gln Ile Ser Val	
315 320 325	
cag gat att ggt atc gac aac ctt acc gca gcg gat ggc ctt gca gtt	3341
Gln Asp Ile Gly Ile Asp Asn Leu Thr Ala Ala Asp Gly Leu Ala Val	
330 335 340	
ggt cgc gca tca ggc ttt gtc ggg cgg gca atg gag cgt ctg ctg gat	3389
Gly Arg Ala Ser Gly Phe Val Gly Arg Ala Met Glu Arg Leu Leu Asp	
345 350 355	
ggc ttc tat acc ctt agc gat caa acc atg tat gac atg ctt ggc tgg	3437
Gly Phe Tyr Thr Leu Ser Asp Gln Thr Met Tyr Asp Met Leu Gly Trp	
360 365 370	
ctg gcg cag gaa gaa ggt att cgt ctt gaa cct tcg gca ctg gcg ggt	3485
Leu Ala Gln Glu Glu Gly Ile Arg Leu Glu Pro Ser Ala Leu Ala Gly	
375 380 385 390	
atg gcc gga cct cag cgc gtg tgt gca tca gta agt tac caa cag atg	3533
Met Ala Gly Pro Gln Arg Val Cys Ala Ser Val Ser Tyr Gln Gln Met	
395 400 405	
cac ggt ttc agc gca gaa caa ctg cgt aat acc act cat ctg gtg tgg	3581
His Gly Phe Ser Ala Glu Gln Leu Arg Asn Thr Thr His Leu Val Trp	
410 415 420	
gcg acg gga ggt gga atg gtg ccg gaa gaa gag atg aat caa tat ctg	3629
Ala Thr Gly Gly Met Val Pro Glu Glu Glu Met Asn Gln Tyr Leu	
425 430 435	
gca aaa ggc cgt taa taacgtttca acgcagcatg gatcgtaccg agctcaatcg	3684
Ala Lys Gly Arg	
440	
atcctgctt aatgagatat gcgagacgcc tatgatcgca tgatattgc tttcaattct	3744
gttgtgcacg ttgtaaaaaa cctgagcatg tgtagctcg atccttaccg ccggtttcgg	3804
ttcattctaa tgaatatatc acccgttact atcgtatccc tatgaataat attctccgtt	3864
caatttactg attgtaccct actactata tgtacaatat taaaatgaaa acaatatatt	3924
gtgctgaata ggtttatagc gacatctatg atagagcgcc acaataacaa acaattgcgt	3984
tttattatca caaatccat tttaaaaaaa gcggcagaac cggtaaacc taaaagactg	4044
attacataaa tcttattcaa atttcaaaag tgccccaggg gcttagtatct acgacacacc	4104

gagcggcgaa ctaataacgc tcactgaagg gaactccggt tccccgcgg cgccatggg	4164
tgagattcct tgaagttgag tattggccgt ccgccttacc gaaaagttacg ggcaccattc	4224
aacccggtcc agcacggcgg ccgggtaacc gacttgctgc cccgagaatt atgcagcatt	4284
tttttggtgt atgtgggccc caaatgaagt gcaggtcaaa ctttgacagt gacgacaaat	4344
cgttggcgg gtccaggcgc aatttgcga caacatgtcg aggctagca ggatgggccc	4404
aggtacagaa ttccggccg tacaacgcgt accggtaat taaattacgc caagctatca	4464
actttgtata gaaaagttga ggaagttgaa gacaaagaag gtcttaatc ctggctagca	4524
acactgaact atgccagaaa ccacatcaa gatatggca agcttcttgg cccattat	4584
ccaaagacct cagagaaagg tgagcgaagg ctcaattcag aagattgaa gctgatcaat	4644
aggatcaaga caatggtgag aacgcttcca aatctcacta ttccaccaga agatgcatac	4704
attatcatg aaacagatgc atgtcaact ggatggggag cagtatgcaa gtggaagaaa	4764
aacaaggcag acccaagaaa tacagagcaa atctgttagt atgccagtgg aaaatttgat	4824
aagccaaaag gaacctgtga tgcagaaatc tatgggtta tgaatggctt agaaaagatg	4884
agattgttct acttggacaa aagagagatc acagtcagaa ctgacagtag tgcaatcgaa	4944
aggttctaca acaagagtgc tgaacacaag cttctgaga tcagatggat caggttcatg	5004
gactacatca ctggcagg accagagata gtcattgaac acataaaagg gaagagcaat	5064
ggtttagctg acatcttgc caggctaaa gccaaattag ctcagaatga accaacggaa	5124
gagatgatcc tgcttacaca agccataagg gaagtaattc cttatccaga tcatccatac	5184
actgagcaac tcagagaatg gggaaacaaa attctggatc cattccac attcaagaag	5244
gacatgttcg aaagaacaga gcaagcttt atgctaacag aggaaccagt tctactctgt	5304
gcatgcagga agcctgcaat tcagtttagt tccagaacat ctgccaaccc aggaaggaaa	5364
ttcttcaagt ggcgaatgaa caaatgcac tgctggact gggcagatct cattgaagaa	5424
cacattcaag acagaattga tgaatttctc aagaatctt aagttctgaa gaccgggtggc	5484
tgcaaaacaa tggaggagga acttatgaag gaagtcacca agctgaagat agaagagcag	5544
gagttcgagg aataccaggc cacaccaagg gctatgtcgc cagtagccgc agaagatgt	5604
ctagatctcc aagacgtaag caatgacgat tgaggaggca ttgacgtcag ggatgaccgc	5664
agcggagagt actggccca ttcaagtggat gctccactga gttgtattat tgtgtgcttt	5724
tcggacaagt gtgcgtcca ctttctttg gcacctgtgc cactttattc cttgtctgcc	5784
acgatgcctt tgcttagctt gtaagcaagg atcgcagtgc gtgtgtgaca ccacccccc	5844
tccgacgctc tgcctatata aggcaccgtc tgtaagctct tacgatcatc ggtagttcac	5904
cacaagttt gacaaaaag caggctccga attgcctt ggaattctt attaactgca	5964

gatatcggtt	ccgcagcg	tcgtgggt	tcatggctgt	cgagggaa	gacgtccgg	6024
ccgaacaagc	cacggctg	gctgcgctac	cgccgcgg	tcggaccagg	cttcattccc	6084
cacgactcac	catggaaacg	gcagcgaggt	gcgagctcc	agtgcgc	gttttgatc	6144
agcaaacacc	tgcgtggcc	aggctgagcc	ttgcaagg	aggcgtccat	gttctcg	6204
gcaagcgt	tcttacatg	tctgagg	tgcattgc	gggtggacat	cgatggatg	6264
gcattgcc	tgcaagg	gatcgcc	ctcacactt	agttggata	ccatgcacta	6324
ctcttgtt	agttagatta	gataccatgc	gcttgaacc	tgcaatag	tagcgagg	6384
gaggaaccc	gagaggactc	agaaagagat	gttgtctatt	tcatccag	tctatctag	6444
catctag	gcctgcgg	gtctgcaat	aacgctgac	ctgctgc	agaccta	6504
tgctactgg	gtggagtgg	caaacagg	ggaaagg	ctgctaga	ctagaagac	6564
gacacagg	ggaccaac	gactaaag	cgtcgta	gttgaagg	aaggactt	6624
ttattacgt	tggcgctt	aattaaag	acgggtt	acggccc	ccggcca	6684
ttggaaagg	cgaattcg	ccagttt	tgtacaa	ggagctcg	cgttcaa	6744
tttggcaata	aagtttctt	agattgaat	ctgttgc	tcttgc	attatcat	6804
aatttctgtt	gaattacgtt	aagcatgt	taattaacat	gtaatgc	acgttattt	6864
tgagatgg	ttttatgatt	agagtccc	aattatacat	ttaatac	atagaaa	6924
aaatatacg	cgc当地act	gataaatt	cgcgcgc	gtcatctat	ttactagat	6984
ggccggcc	ctttattata	catagtt	aattcact	gccggcc	tcttgcatt	7044
cgttccc	cttcagttt	aactatc	gttgcac	atatatt	ggtaaac	7104
aagagaaa	agcgttatt	agaataat	gatattaa	agggcgt	aaaggttat	7164
cgttgc	tttgcattgt	catgcaacc	acagggtt	cctcgg	gcttggcatt	7224
ccgtgc	atgacttct	ttcaacc	caaacgt	aaagcct	gacggagc	7284
cattccaaa	agatccctt	gctcg	gtcggt	aggtcg	ggctgctgt	7344
gcttgc	tcaacgc	cgcggac	gcccgc	aaaaatc	cgatcg	7404
tccgacgc	tgc	tgatctg	gtcgctt	cggcc	cctggcc	7464
catcacgc	caaagtcc	tcacagg	atctggc	agttgc	tctgcctt	7524
aatccgg	tgtgggg	actccac	aatatcc	cgcagca	tcgtcgac	7584
attcttga	acgaaagg	ctcgtgat	gcctat	ataggta	gtcatgata	7644
taatgg	ttagacgt	ggtgg	ttcggg	tgtgcgc	accctat	7704
gtttat	ctaaata	tcaaata	atccgct	gagacaata	ccctgata	7764
tgcttcaata	atattgaaa	aggaagag	ttagtatt	acattcc	gtcgcc	7824

ttcccccccc tgcggcattt tgccttcctg ttttgctca cccagaaacg ctggtaaaag	7884
taaaagatgc tgaagatcag ttgggtgcac gagtgggtta catcgaactg gatctcaaca	7944
gcggtaagat cttgagagt ttgcgcgg aagaacgtt tccaatgatg agcactttt	8004
aagttctgct atgtggcgcg gtattatccc gtgttgacgc cgggcaagag caactcggtc	8064
gccgcataca ctattctcag aatgacttgg ttgagtactc accagtacaca gaaaagcata	8124
ttacggatgg catgacagta agagaattat gcagtgcgtc cataaccatg agtgataaca	8184
ctgcggccaa cttacttctg acaacgatcg gaggaccgaa ggagctaacc gctttttgc	8244
acaacatggg ggatcatgta actcgccctt atcggttggg accggagctg aatgaagcca	8304
taccaaaccg ctagcgtgac accacgatgc cggggggggg ggggggggac atgagggtgc	8364
cccgatttca gtgtcgctga tttgtattgt ctgaagttgt ttttacgtta agttgatgca	8424
gatcaattaa tacgataacct gcgtcataat tgattatttgc acgtggtttgc atggcctcca	8484
cgcacgttgt gatatgtaga tgataatcat tatcacttta cgggtccctt ccgggtatcc	8544
gacagggttac gggcgccga cctcgccgggt tttcgctatt tatgaaaatt ttccggtttta	8604
aggcgtttcc gtttttttc gtcataactt aatgttttta tttaaaatac cctctgaaaa	8664
gaaagggaaac gacaggtgct gaaagcgagc ttttggcct ctgtcggttc ctttctctgt	8724
ttttgtccgt ggaatgaaca atgaaacccc cccccccccc ccctgcagca atggcaacaa	8784
cgttgcgcaa actattaact ggcgaactac ttactctagc ttcccgccaa caatataatag	8844
actggatgga ggcggataaa gttgcaggac cacttctgct ctcggccctt ccggctggct	8904
ggtttattgc tgataaatct ggagccgggt agcgtgggtc tcgcggatc attgcagcac	8964
tggggccaga tggtaagccc tcccgatcg tagttatcta cacgacgggg agtcaggcaa	9024
ctatggatga acgaaataga cagatcgctg agataggtgc ctcactgatt aagcattgg	9084
aactgtcaga ccaagtttac tcataatatac ttttagattga tttaaaactt cattttaat	9144
ttaaaaggat ctaggtgaag atccttttg ataatctcat gaccaaaatc ccttaacgtg	9204
agttttcggtt ccactgagcg tcagaccccg tagaaaagat caaaggatct tcttgagatc	9264
cttttttct gcgcgtatc tgctgcttgc aaacaaaaaa accaccgcta ccagcggtgg	9324
tttggggcc gcatcaagag ctaccaactc ttttccgaa ggttaactggc ttcaaggag	9384
cgcagataacc aaataactgtc cttctagtttgc agccgtatgtt aggccaccac ttcaagaact	9444
ctgttagcacc gcctacatac ctcgtctgc taatcctgtt accagtggct gctgccagt	9504
gcgataagtc gtgtcttacc ggggtggact caagacgata gttaccggat aaggcgcagc	9564
ggtcgggctg aacgggggt tcgtgcacac agcccgatgg ggagcgaacg acctacaccc	9624
aactgagata cctacagcgt gagctatgag aaagcgccac gttcccgaa gggagaaagg	9684

cgacaggta tccggtaa	ggcagggtcg	gaacaggaga	gcccacgagg	gagttccag	9744
gggaaacgc ctggtatctt	tatagtcctg	tcgggttcg	ccacctctga	cttgagcg	9804
gattttgtg atgctcgta	ggggggcgga	gcctatggaa	aaacgccagc	aacgcggcct	9864
tttacggtt cctggcctt	tgctggcctt	ttgctcacat	gttcttcct	gcgttatccc	9924
ctgattctgt ggataaccgt	attaccgcct	ttgagtgagc	tgataaccgt	cgccgcagcc	9984
gaacgaccga ggcgcagcg	tcagtgagc	aggaagcgga	agagcgcctg	atgcggtatt	10044
ttctccttac gcatctgtgc	ggtatttac	accgcata	gtgcactctc	agtacaatct	10104
gctctgatgc cgcatagtt	agccagtata	cactccgcta	tcgctacgtg	actgggtcat	10164
gctgcgc	cgacacccgc	caacacccgc	tgacgcgc	tgacggcctt	10224
ggcatccgct tacagacaag	ctgtgaccgt	ctccgggagc	tgcatgtgtc	agaggtttc	10284
accgtcatca ccgaaacgcg	cgaggcagca	gatccccga	tcaagtagat	acactacata	10344
tatctacaat agacatcgag	ccgaaagg	atgttactt	tcctgaaatc	cccagcaatt	10404
ttaggccagt tttacccaa	gacttcgcct	ctaacataaa	ttatagttac	caaatctggc	10464
aaaagggttg accggggggg	ggggaaagc	cacgttgtgt	ctcaaaatct	ctgatgttac	10524
attgcacaag ataaaaat	atcatcatga	acaataaaac	tgtctgc	tataaacagt	10584
aatacaaggg gtgtt	atg agc	cat att	caa cgg	gaa acg	10635
Met Ser His Ile Gln Arg	Glu Thr Ser Cys	Ser Arg			
445	450				
ccg cga tta aat tcc	aac atg	gat gct	gat tta	tat ggg	10683
Pro Arg Leu Asn Ser	Asn Met	Asp Ala	Asp Leu	Tyr Gly	Tyr Lys Trp
455	460	465	470		
gct cgc gat aat gtc	ggg caa tca	ggt gcg	aca atc	tat cga	10731
Ala Arg Asp Asn Val	Gly Gln Ser	Gly Ala	Thr Ile	Tyr Arg	Leu Tyr
475	480	485			
ggg aag ccc gat gcg	cca gag ttg	ttt ctg	aaa cat ggc	aaa ggt	10779
Gly Lys Pro Asp Ala	Pro Glu Leu	Phe Leu	Lys His	Gly Lys	Gly Ser
490	495	500			
gtt gcc aat gat gtt	aca gat gag	atg gtc	aga cta	aac tgg	10827
Val Ala Asn Asp Val	Thr Asp Glu	Met Val	Arg Leu	Asn Trp	Leu Thr
505	510	515			
gaa ttt atg cct ctt	ccg acc atc	aag cat	ttt atc	cgt act	10875
Glu Phe Met Pro Leu	Pro Thr Ile	Lys His	Phe Ile	Arg Thr	Pro Asp
520	525	530			
gat gca tgg tta ctc	acc act gcg	atc ccc	ggg aaa	aca gca ttc	10923
Asp Ala Trp Leu	Leu Thr Ala	Ile Pro	Gly Lys	Thr Ala Phe	Gln
535	540	545	550		
gta tta gaa gaa	tat cct gat	tca ggt	gaa aat	att gtt gat	10971
Val Leu Glu	Glu Tyr Pro	Asp Ser	Gly Glu	Asn Ile	Val Asp Ala Leu
555	560	565			
gca gtg ttc ctg	cgc cgg	ttg cat	tcg att	cct gtt	11019

Ala Val Phe Leu Arg Arg Leu His Ser Ile Pro Val Cys Asn Cys Pro
 570 575 580

ttt aac agc gac cgc gta ttt cgt ctc gct cag gcg caa tca cga atg 11067
 Phe Asn Ser Asp Arg Val Phe Arg Leu Ala Gln Ala Gln Ser Arg Met
 585 590 595

aat aac ggt ttg gtt gat gcg agt gat ttt gat gac gag cgt aat ggc 11115
 Asn Asn Gly Leu Val Asp Ala Ser Asp Phe Asp Asp Glu Arg Asn Gly
 600 605 610

tgg cct gtt gaa caa gtc tgg aaa gaa atg cat aag ctt ttg cca ttc 11163
 Trp Pro Val Glu Gln Val Trp Lys Glu Met His Lys Leu Leu Pro Phe
 615 620 625 630

tca ccg gat tca gtc gtc act cat ggt gat ttc tca ctt gat aac ctt 11211
 Ser Pro Asp Ser Val Val Thr His Gly Asp Phe Ser Leu Asp Asn Leu
 635 640 645

att ttt gac gag ggg aaa tta ata ggt tgt att gat gtt gga cga gtc 11259
 Ile Phe Asp Glu Gly Lys Leu Ile Gly Cys Ile Asp Val Gly Arg Val
 650 655 660

gga atc gca gac cga tac cag gat ctt gcc atc cta tgg aac tgc ctc 11307
 Gly Ile Ala Asp Arg Tyr Gln Asp Leu Ala Ile Leu Trp Asn Cys Leu
 665 670 675

ggt gag ttt tct cct tca tta cag aaa cgg ctt ttt caa aaa tat ggt 11355
 Gly Glu Phe Ser Pro Ser Leu Gln Lys Arg Leu Phe Gln Lys Tyr Gly
 680 685 690

att gat aat cct gat atg aat aaa ttg cag ttt cat ttg atg ctc gat 11403
 Ile Asp Asn Pro Asp Met Asn Lys Leu Gln Phe His Leu Met Leu Asp
 695 700 705 710

gag ttt ttc taa tcagaattgg ttaattgggtt gtaacactgg cagagcatta 11455
 Glu Phe Phe

cgctgacttg acgggacggc ggctttgttg aataaatcga acttttgctg agttgaagga 11515
 tcagatcactg catcttcccg acaacgcaga ccgttccgtg gcaaagcaaa agttcaaaat 11575
 caccaactgg tccacactaca acaaagctct catcaaccgt ggctccctca ctttctggct 11635
 ggatgatggg gcgattcagg gatcacagggc agcaacgctc tgtcatcggtt acaatcaaca 11695
 tgctaccctc cgcgagatca tccgtgt 11722

<210> 42

<211> 442

<212> PRT

<213> Artificial

<220>

<223> Synthetic Construct

<400> 42

Met Glu Asn Ala Lys Met Asn Ser Leu Ile Ala Gln Tyr Pro Leu Val
 1 5 10 15

Lys Asp Leu Val Ala Leu Lys Glu Thr Thr Trp Phe Asn Pro Gly Thr
20 25 30

Thr Ser Leu Ala Glu Gly Leu Pro Tyr Val Gly Leu Thr Glu Gln Asp
35 40 45

Val Gln Asp Ala His Ala Arg Leu Ser Arg Phe Ala Pro Tyr Leu Ala
50 55 60

Lys Ala Phe Pro Glu Thr Ala Ala Thr Gly Gly Ile Ile Glu Ser Glu
65 70 75 80

Leu Val Ala Ile Pro Ala Met Gln Lys Arg Leu Glu Lys Glu Tyr Gln
85 90 95

Gln Pro Ile Ser Gly Gln Leu Leu Lys Lys Asp Ser His Leu Pro
100 105 110

Ile Ser Gly Ser Ile Lys Ala Arg Gly Gly Ile Tyr Glu Val Leu Ala
115 120 125

His Ala Glu Lys Leu Ala Leu Glu Ala Gly Leu Leu Thr Leu Asp Asp
130 135 140

Asp Tyr Ser Lys Leu Leu Ser Pro Glu Phe Lys Gln Phe Phe Ser Gln
145 150 155 160

Tyr Ser Ile Ala Val Gly Ser Thr Gly Asn Leu Gly Leu Ser Ile Gly
165 170 175

Ile Met Ser Ala Arg Ile Gly Phe Lys Val Thr Val His Met Ser Ala
180 185 190

Asp Ala Arg Ala Trp Lys Lys Ala Lys Leu Arg Ser His Gly Val Thr
195 200 205

Val Val Glu Tyr Glu Gln Asp Tyr Gly Val Ala Val Glu Glu Gly Arg
210 215 220

Lys Ala Ala Gln Ser Asp Pro Asn Cys Phe Phe Ile Asp Asp Glu Asn
225 230 235 240

Ser Arg Thr Leu Phe Leu Gly Tyr Ser Val Ala Gly Gln Arg Leu Lys
245 250 255

Ala Gln Phe Ala Gln Gln Gly Arg Ile Val Asp Ala Asp Asn Pro Leu

Phe Val Tyr Leu Pro Cys Gly Val Gly Gly Pro Gly Gly Val Ala
275 280 285

Phe Gly Leu Lys Leu Ala Phe Gly Asp His Val His Cys Phe Phe Ala
290 295 300

Glu Pro Thr His Ser Pro Cys Met Leu Leu Gly Val His Thr Gly Leu
305 310 315 320

His Asp Gln Ile Ser Val Gln Asp Ile Gly Ile Asp Asn Leu Thr Ala
325 330 335

Ala Asp Gly Leu Ala Val Gly Arg Ala Ser Gly Phe Val Gly Arg Ala
340 345 350

Met Glu Arg Leu Leu Asp Gly Phe Tyr Thr Leu Ser Asp Gln Thr Met
355 360 365

Tyr Asp Met Leu Gly Trp Leu Ala Gln Glu Glu Gly Ile Arg Leu Glu
370 375 380

Pro Ser Ala Leu Ala Gly Met Ala Gly Pro Gln Arg Val Cys Ala Ser
385 390 395 400

Val Ser Tyr Gln Gln Met His Gly Phe Ser Ala Glu Gln Leu Arg Asn
405 410 415

Thr Thr His Leu Val Trp Ala Thr Gly Gly Met Val Pro Glu Glu
420 425 430

Glu Met Asn Gln Tyr Leu Ala Lys Gly Arg
435 440

<210> 43
<211> 271
<212> PRT
<213> Artificial

<220>
<223> Synthetic Construct

<400> 43

Met Ser His Ile Gln Arg Glu Thr Ser Cys Ser Arg Pro Arg Leu Asn
1 5 10 15

Ser Asn Met Asp Ala Asp Leu Tyr Gly Tyr Lys Trp Ala Arg Asp Asn

20

25

30

Val Gly Gln Ser Gly Ala Thr Ile Tyr Arg Leu Tyr Gly Lys Pro Asp
35 40 45

Ala Pro Glu Leu Phe Leu Lys His Gly Lys Gly Ser Val Ala Asn Asp
50 55 60

Val Thr Asp Glu Met Val Arg Leu Asn Trp Leu Thr Glu Phe Met Pro
65 70 75 80

Leu Pro Thr Ile Lys His Phe Ile Arg Thr Pro Asp Asp Ala Trp Leu
85 90 95

Leu Thr Thr Ala Ile Pro Gly Lys Thr Ala Phe Gln Val Leu Glu Glu
100 105 110

Tyr Pro Asp Ser Gly Glu Asn Ile Val Asp Ala Leu Ala Val Phe Leu
115 120 125

Arg Arg Leu His Ser Ile Pro Val Cys Asn Cys Pro Phe Asn Ser Asp
130 135 140

Arg Val Phe Arg Leu Ala Gln Ala Gln Ser Arg Met Asn Asn Gly Leu
145 150 155 160

Val Asp Ala Ser Asp Phe Asp Asp Glu Arg Asn Gly Trp Pro Val Glu
165 170 175

Gln Val Trp Lys Glu Met His Lys Leu Leu Pro Phe Ser Pro Asp Ser
180 185 190

Val Val Thr His Gly Asp Phe Ser Leu Asp Asn Leu Ile Phe Asp Glu
195 200 205

Gly Lys Leu Ile Gly Cys Ile Asp Val Gly Arg Val Gly Ile Ala Asp
210 215 220

Arg Tyr Gln Asp Leu Ala Ile Leu Trp Asn Cys Leu Gly Glu Phe Ser
225 230 235 240

Pro Ser Leu Gln Lys Arg Leu Phe Gln Lys Tyr Gly Ile Asp Asn Pro
245 250 255

Asp Met Asn Lys Leu Gln Phe His Leu Met Leu Asp Glu Phe Phe
260 265 270

<210> 44
<211> 11722
<212> DNA
<213> Artificial

<220>
<223> A binary vector with maize miR166 precursor

<220>
<221> promoter
<222> (325)..(2312)
<223> maize ubiquitin promoter

<220>
<221> CDS
<222> (2355)..(3683)
<223> E.coli D-serine dehydratase [dsdA] gene

<220>
<221> terminator
<222> (3721)..(4433)
<223> Octapine Synthase 3 terminator

<220>
<221> promoter
<222> (3823)..(4433)
<223> Sugarcane bacilliform virus [ScBV] promoter

<220>
<221> precursor_RNA
<222> (6016)..(6708)
<223> Engineered maize miR166 precursor in which 21-nt miR166 sequence has been replaced by 21-nt of dsRed targeting dsRed mRNA

<220>
<221> terminator
<222> (6771)..(7023)
<223> 3'UTR of Nopaline Synthase from Agrobacterium tumefaciens T-DNA used as terminator

<220>
<221> misc_feature
<222> (6771)..(7023)
<223> Right T-DNA Border repeat region

<220>
<221> promoter
<222> (7118)..(7141)
<223> [bla] beta-lactamase promoter

<220>
<221> rep_origin
<222> (9500)..(9700)
<223> ColE1 ecoli origin of replication for propagation

<220>
<221> CDS
<222> (10639)..(11454)
<223> Kanamycin Resistance selection gene

<220>

<221> misc_feature
 <222> (10639)..(11454)
 <223> Left T-DNA Border repeat region

<400> 44

ttacaatcaa	catgtaccc	tccgcgagat	catccgtgtt	tcaaaccgg	cagcttagtt	60
gccgttcttc	cgaatagcat	cggtaacatg	agcaaagtct	gccgccttac	aacggctctc	120
ccgctgacgc	cgtccggac	tgatgggctg	cctgtatcga	gtggtgattt	tgtgccgagc	180
tgccggtcgg	ggagctgttg	gctggctggt	ggcaggatat	attgtggtgt	aaacaaatttg	240
acgcttagac	aacttaataa	cacattgcgg	acgttttaa	tgtactgaat	tggatccgccc	300
cgggcggtagc	caagcttccg	cggctgcagt	gcagcgtgac	ccggcgtgc	ccctctctag	360
agataatgag	cattgcatgt	ctaagttata	aaaaattacc	acatattttt	tttgcacac	420
ttgtttgaag	tgcagtttat	ctatcttat	acatatattt	aaactttact	ctacgaataa	480
tataatctat	agtactacaa	taatatcagt	gttttagaga	atcatataaa	tgaacagtta	540
gacatggct	aaaggacaat	tgagtatttt	gacaacagga	ctctacagtt	ttatctttt	600
agtgtgcatt	tgttctcctt	ttttttgca	aatagcttca	cctatataat	acttcattca	660
ttttattatg	acatccattt	agggttttagg	gttaatggtt	tttataact	aattttttta	720
gtacatctat	tttattctat	tttagcctct	aaattaagaa	aactaaaact	ctattttagt	780
tttttattt	aatagtttag	atataaaata	gaataaaata	aagtgactaa	aaattaaaca	840
aataccctt	aagaaattaa	aaaaactaag	gaaacattt	tcttgtttcg	agtagataat	900
gccagcctgt	taaacgcccgt	cgacgagttc	aacggacacc	aaccagcgaa	ccagcagcgt	960
cgcgctggc	caagcgaagc	agacggcacg	gcatctctgt	cgctgcctct	ggaccctct	1020
cgagagttcc	gtccaccgt	tggacttgct	ccgctgtcg	catccagaaa	ttgcgtggcg	1080
gagcggcaga	cgtgagccgg	cacggcaggc	ggcctcctcc	tcctctcacg	gcaccggcag	1140
ctacggggaa	ttcctttccc	accgctcctt	cgcttccct	tcctcgcccg	ccgtaataaa	1200
tagacacccc	ctccacaccc	tcttcccca	acctcgtgtt	gttcggagcg	cacacacaca	1260
caaccagatc	tcccccaat	ccaccgtcg	gcacccctcg	ttcaaggatc	gccgctcgtc	1320
ctccccccccc	ccccccctct	ctaccttctc	tagatcgccg	ttccggtcca	tggtagggc	1380
ccggtagttc	tacttctgtt	catgtttgtg	ttagatccgt	gtttgtgtta	gatccgtgt	1440
gctagcgttc	gtacacggat	gcaacctgta	cgtcagacac	gttctgattt	ctaacttgcc	1500
agtgtttctc	tttggggat	cctggatgg	ctctagccgt	tccgcagacg	ggatcgattt	1560
catgattttt	tttggggat	tgcataagggt	ttgggttgcc	ctttccctt	atttcaataat	1620
atgccgtgca	cttggggat	gggtcatctt	ttcatgctt	ttttgtctt	ggttgtgatg	1680
atgtggctcg	gttggggat	cgttctagat	cgaggatgaa	ttctgtttca	aactacctgg	1740

tggatttatt aattttggat ctgtatgtgt gtgccataca tattcatatgt tacgaattga	1800
agatgatgga tggaaatatac gatctaggat aggtatacat gttgatgcgg gttttactga	1860
tgcataataca gagatgcttt ttgttcgctt ggttgtgatg atgtgggtgtg gttgggcgg	1920
cgttcattcg ttctagatcg gagtagaata ctgtttcaaa ctacctggtg tatttattaa	1980
ttttggaaact gtatgtgtgt gtcatacatc ttcatagttt cgagtttaag atggatggaa	2040
atatcgatct aggataggta tacatgttga tgtggggtttt actgatgcat atacatgatg	2100
gcatatgcag catctattca tatgctctaa ccttgagttac ctatcttata taataaacaa	2160
gtatgtttta taatttatttc gatcttgata tacttggatg atggcatatg cagcagctat	2220
atgtggattt ttttagccct gccttcatac gctattttt tgcttggatc tgtttctttt	2280
gtcgtatgctc accctgttgt ttgggtttac ttctgcaggg tacggatcct catctaagcg	2340
caaagagacg tact atg gaa aac gct aaa atg aac tcg ctc atc gcc cag	2390
Met Glu Asn Ala Lys Met Asn Ser Leu Ile Ala Gln	
1 5 10	
tat ccg ttg gta aag gat ctg gtt gct ctt aaa gaa acc acc tgg ttt	2438
Tyr Pro Leu Val Lys Asp Leu Val Ala Leu Lys Glu Thr Thr Trp Phe	
15 20 25	
aat cct ggc acg acc tca ttg gct gaa ggt tta cct tat gtt ggc ctg	2486
Ash Pro Gly Thr Thr Ser Leu Ala Glu Gly Leu Pro Tyr Val Gly Leu	
30 35 40	
acc gaa cag gat gtt cag gac gcc cat gcg cgc tta tcc cgt ttt gca	2534
Thr Glu Gln Asp Val Gln Asp Ala His Ala Arg Leu Ser Arg Phe Ala	
45 50 55 60	
ccc tat ctg gca aaa gca ttt cct gaa act gct gcc act ggg ggg att	2582
Pro Tyr Leu Ala Lys Ala Phe Pro Glu Thr Ala Ala Thr Gly Gly Ile	
65 70 75	
att gaa tca gaa ctg gtt gcc att cca gct atg caa aaa cgg ctg gaa	2630
Ile Glu Ser Glu Leu Val Ala Ile Pro Ala Met Gln Lys Arg Leu Glu	
80 85 90	
aaa gaa tat cag caa ccg atc agc ggg caa ctg tta ctg aaa aaa gat	2678
Lys Glu Tyr Gln Gln Pro Ile Ser Gly Gln Leu Leu Lys Lys Asp	
95 100 105	
agc cat ttg ccc att tcc ggc tcc ata aaa gca cgc ggc ggg att tat	2726
Ser His Leu Pro Ile Ser Gly Ser Ile Lys Ala Arg Gly Gly Ile Tyr	
110 115 120	
gaa gtc ctg gca cac gca gaa aaa ctg gct ctg gaa gcg ggg ttg ctg	2774
Glu Val Leu Ala His Ala Glu Lys Leu Ala Leu Glu Ala Gly Leu Leu	
125 130 135 140	
acg ctt gat gat gac tac agc aaa ctg ctt tct ccg gag ttt aaa cag	2822
Thr Leu Asp Asp Asp Tyr Ser Lys Leu Leu Ser Pro Glu Phe Lys Gln	
145 150 155	
ttc ttt agc caa tac agc att gct gtg ggc tca acc gga aat ctg ggg	2870

Phe Phe Ser Gln Tyr Ser Ile Ala Val Gly Ser Thr Gly Asn Leu Gly			
160	165	170	
tta tca atc ggc att atg agc gcc cgc att ggc ttt aag gtc aca gtt			2918
Leu Ser Ile Gly Ile Met Ser Ala Arg Ile Gly Phe Lys Val Thr Val			
175	180	185	
cat atg tct gct gat gcc cggt gca tgg aaa aaa gcg aaa ctg cgc agc			2966
His Met Ser Ala Asp Ala Arg Ala Trp Lys Lys Ala Lys Leu Arg Ser			
190	195	200	
cat ggc gtt acg gtc gtc gaa tat gag caa gat tat ggt gtt gcc gtc			3014
His Gly Val Thr Val Val Glu Tyr Glu Gln Asp Tyr Gly Val Ala Val			
205	210	215	220
gag gaa gga cgt aaa gca gcg cag tct gac ccg aac tgc ttc ttt att			3062
Glu Glu Gly Arg Lys Ala Ala Gln Ser Asp Pro Asn Cys Phe Phe Ile			
225	230	235	
gat gac gaa aat tcc cgc acg ttg ttc ctt ggg tat tcc gtc gct ggc			3110
Asp Asp Glu Asn Ser Arg Thr Leu Phe Leu Gly Tyr Ser Val Ala Gly			
240	245	250	
cag cgt ctt aaa gcg caa ttt gcc cag caa ggc cgt atc gtc gat gct			3158
Gln Arg Leu Lys Ala Gln Phe Ala Gln Gln Gly Arg Ile Val Asp Ala			
255	260	265	
gat aac cct ctg ttt gtc tat ctg ccg tgc ggt gtt ggc ggt ggt cct			3206
Asp Asn Pro Leu Phe Val Tyr Leu Pro Cys Gly Val Gly Gly Pro			
270	275	280	
ggt ggc gtc gca ttc ggg ctt aaa ctg gcg ttt ggc gat cat gtt cac			3254
Gly Gly Val Ala Phe Gly Leu Lys Leu Ala Phe Gly Asp His Val His			
285	290	295	300
tgc ttt ttt gcc gaa cca acg cac tcc cct tgc atg ttg tta ggc gtc			3302
Cys Phe Phe Ala Glu Pro Thr His Ser Pro Cys Met Leu Leu Gly Val			
305	310	315	
cat aca gga tta cac gat cag att tct gtt cag gat att ggt atc gac			3350
His Thr Gly Leu His Asp Gln Ile Ser Val Gln Asp Ile Gly Ile Asp			
320	325	330	
aac ctt acc gca gcg gat ggc ctt gca gtt ggt cgc gca tca ggc ttt			3398
Asn Leu Thr Ala Ala Asp Gly Leu Ala Val Gly Arg Ala Ser Gly Phe			
335	340	345	
gtc ggg cgg gca atg gag cgt ctg ctg gat ggc ttc tat acc ctt agc			3446
Val Gly Arg Ala Met Glu Arg Leu Leu Asp Gly Phe Tyr Thr Leu Ser			
350	355	360	
gat caa acc atg tat gac atg ctt ggc tgg ctg gcg cag gaa gaa ggt			3494
Asp Gln Thr Met Tyr Asp Met Leu Gly Trp Leu Ala Gln Glu Glu Gly			
365	370	375	380
att cgt ctt gaa cct tcg gca ctg gcg ggt atg gcc gga cct cag cgc			3542
Ile Arg Leu Glu Pro Ser Ala Leu Ala Gly Met Ala Gly Pro Gln Arg			
385	390	395	
gtg tgt gca tca gta agt tac caa cag atg cac ggt ttc agc gca gaa			3590
Val Cys Ala Ser Val Ser Tyr Gln Gln Met His Gly Phe Ser Ala Glu			
400	405	410	

caa ctg cgt aat acc act cat ctg gtg tgg gcg acg gga ggt gga atg	3638
Gln Leu Arg Asn Thr Thr His Leu Val Trp Ala Thr Gly Gly Gly Met	
415 420 425	
gtg ccg gaa gaa gag atg aat caa tat ctg gca aaa ggc cgt taa	3683
Val Pro Glu Glu Glu Met Asn Gln Tyr Leu Ala Lys Gly Arg	
430 435 440	
taacgtttca acgcagcatg gatcgtaaccg agctcaatcg atcctgcctt aatgagat	3743
gcgagacgcc tatgatcgca tgatatttgc ttcaattct gttgtgcacg ttgtaaaaaa	3803
cctgagcatg tgttagctcg atccttaccg ccgggttcgg ttcattctaa tgaatata	3863
acccgttact atcgatattt tatgaataat attctccgtt caatttactg attgtaccct	3923
actacttata tgtacaatat taaaatgaaa acaatataatt gtgctgaata ggtttatagc	3983
gacatctatg atagagcgcc acaataacaa acaattgcgt tttattatta caaatccaa	4043
tttaaaaaaa gcggcagaac cggtaaaacc taaaagactg attacataaa tcttattcaa	4103
atttcaaaag tgccccaggg gctagtatct acgacacacc gagcggcgaa ctaataacgc	4163
tcactgaagg gaactccggt tccccgcgg cgccatggg tgagattcct tgaagttgag	4223
tattggccgt ccgccttacc gaaagttacg ggcaccattc aacccggtcc agcacggcg	4283
ccgggttaacc gacttgctgc cccgagaatt atgcagcatt ttttgggtgt atgtggccc	4343
caaataatgtaatgc gcaatgtcaaa ctttgcacgt gacgacaaat ctttggcggt gtccaggcg	4403
aattttgcga caacatgtcg aggctcagca ggatggccc aggtacagaa ttgcggccg	4463
tacaacgcgt accggtaat taaattacgc caagctatca actttgtata gaaaagttga	4523
ggaagttgaa gacaaagaag gtcttaatc ctggcttagca acactgaact atgccagaaa	4583
ccacatcaaa gatatggca agtttttgg cccattat ccaaaagacct cagagaaagg	4643
tgagcgaagg ctcaatttcg aagattggaa gctgatcaat aggtacaga caatggtgag	4703
aacgcttcca aatctcacta ttccaccaga agatgcatac attatcattt aacagatgc	4763
atgtgcaact ggatggggag cagttgcac gtttggaaa aacaaggcag acccaagaaa	4823
tacagagcaa atctgttagt atgcctgtgg aaaatttgc aagccaaatc gaaatgttgc	4883
tgcagaaatc tatgggtta tgaatggctt agaaaatgtt agattgttct acttggacaa	4943
aagagagatc acagtcagaa ctgacagtag tgcaatcgaa aggttctaca acaagagtgc	5003
tgaacacaag ctttctgaga tcagatggat caggttcatg gactacatca ctggcagg	5063
accagagata gtcattgaac acataaaagg gaagagcaat ggttagctg acatcttgc	5123
caggctcaaa gccaaattag ctcagaatga accaacggaa gagatgatcc tgcttacaca	5183
agccataagg gaagtaattc cttatccaga tcatccatac actgagcaac tcagagaatg	5243
ggaaaacaaa attctggatc cattcccac attcaagaag gacatgttgc aaagaacaga	5303

gcaagcttt atgctaacag aggaaccagt tctactctgt gcatgcagga agcctgcaat	5363
tcaagtttagtgc tccagaacat ctgccaaccc aggaaggaaa ttcttcaagt gcgcaatgaa	5423
caaatgcccattg tgctggtaact gggcagatct cattgaagaa cacattcaag acagaattga	5483
tgaatttctcaagaatcttgc aagttctgaa gaccgggtggc gtgcaaacaa tggaggagga	5543
acttatgaag gaagtcacca agctgaagat agaagagcag gagttcgagg aataccaggc	5603
cacaccaagg gctatgtcgc cagtagccgc agaagatgtg cttagatctcc aagacgtaag	5663
caatgacgat tgaggaggca ttgacgtcag ggatgaccgc agcggagagt actggggcca	5723
ttcagtggat gctccactga gttgtattat tttgtgtctt tcggacaagt gtgctgtcca	5783
ctttctttgc acacccgtgc cactttatttc cttgtctgcc acgatgcctt tgcttagctt	5843
gtaagcaagg atcgcagtgc gtgtgtgaca ccacccccc tccgacgctc tgccatatata	5903
aggcaccgtc tgtaagctct tacgatcatc ggtagttcac cacaagtttgc tacaaaaaaag	5963
caggctccga attcccccattt ggaattctta attaactgca gatatcggtt ccgcagcgctc	6023
ggtggttgc tcatggctgt cgaggacggc ggcttcatct acaaacaagc cacggctgct	6083
gctgcgctac cgccgcggct ttgttagatga agcagccgctc cacgactcac catggaaacg	6143
gcagcgaggt gcgagcttcc agtgcgcgca gtgtttgatc agcaaacacc tgcgtggccg	6203
aggctgagcc ttgcaagggc aggctccat gttctgtca gcaagcgtct tcttcacatg	6263
tctgaggtct gagcaattgc ggggtggacat cgatggatga gcattgcccgc tgcaagggaa	6323
gatcgccgg ctcacacttgc agttggata ccatgcacta ctcttggatc agtagat	6383
gataccatgc gcttgcacccg tgcaatagca tagcgagaa gaggaaccca gagaggactc	6443
agaaaagat gttgtctatt tcatccagtg ctcatctgt catctgtct gcctgcgggt	6503
gtctgcaatg aacgctgacg ctgctgcgg agacctactc tgctactgggt gtggagtgaa	6563
caaacagggc gggaaaggcgt ctgctagaac ctgcggacgc gacacagggc ggaccaacacg	6623
gactaaagac cgtcgatgt gttgaagcgg aaggacttc ttattacgtg tggcgcttcg	6683
aattaaagcc agcggttgc acggcccccggg ccggccaagc ttgggaaggg cgaattcgac	6743
ccagctttct tgcataaaatggat ggagctcgat cttcaaaaca ttggcaata aagtttctta	6803
agattgaatc ctgttgccgg tcttgcgtatg attatcatat aatttctgtt gaattacgtt	6863
aagcatgtaa taattaaacat gtaatgcgtt acgttattta tgagatgggt ttttatgtatt	6923
agagtccgc aattatacat ttaatacgat atagaaaaca aaatatacgat cgcaaaactag	6983
gataaaattat cgccgcgggt gtcatctatg ttactagatc ggccggccaa ctttattata	7043
catagttgtat aattcactgg gcccggcaga tcttggatgt ctgttccgc ctgcgttttta	7103
aactatcgt gtttgcacagg atatattggc gggtaaacct aagagaaaag agcgtttattt	7163

agaataatcg gatatttaaa agggcgtgaa aaggtttac cgttcggtcca tttgtatgtg 7223
 catgccaacc acagggttcc cctcgggagt gcttggcatt ccgtgcgata atgacttctg 7283
 ttcaaccacc caaacgtcgg aaagcctgac gacggagcag cattccaaaa agatccctg 7343
 gtcgtctgg gtcggctaga aggtcgagtg ggctgctgtg gcttgcgttcc tcaacgcggt 7403
 cgccgacgta gcgacgccc gaaaaatcct cgatcgcaaa tccgacgctg tcgaaaagc 7463
 tgcgtctt gtcgtcttt cggccgacgt cctggccagt catcacgcgc caaagttccg 7523
 tcacaggatg atctggcgcg agttgctgga tctcgccctt aatccgggtc tggcgggaa 7583
 actccacgaa aatatccgaa cgacgcaaga tcgtcgacca attcttgaag acgaaaggc 7643
 ctcgtgatac gcctatttt ataggtaat gtcgtgataa taatggtttc ttagacgtca 7703
 ggtggcactt ttccgggaaa tgtgcgcgga acccctattt gtttattttt ctaaatacat 7763
 tcaaataatgt atccgctcat gagacaataa ccctgataaa tgcttcaata atattgaaaa 7823
 aggaagagta tgagtattca acatttcgt gtcgccccta ttccctttt tgccgcattt 7883
 tgccttcctg ttttgctca cccagaaacg ctggtaaag taaaagatgc tgaagatcag 7943
 ttgggtgcac gagtgggtta catcgaaactg gatctcaaca gcggtaaat cttgagagt 8003
 ttccgcggc aagaacgtt tccatgatg agcactttt aagttctgatgttggcgcg 8063
 gtattatccc gtgtgacgc cggcaagag caactcggtc gcccatacata ctattctcag 8123
 aatgacttgg ttgagttactc accagtcaca gaaaagcatc ttacggatgg catgacagta 8183
 agagaattat gcagtgcgc cataaccatg agtgataaca ctgcggccaa ctacttctg 8243
 acaacgatcg gaggaccgaa ggagctaacc gctttttgc acaacatggg ggatcatgta 8303
 actcgccctg atcggtggaa accggagctg aatgaagcca taccaaacga cgagcgtgac 8363
 accacgatgc cggggggggg ggggggggac atgaggttgc cccgtattca gtgtcgctga 8423
 tttgtattgt ctgaagttgt ttttacgtta agttgatgca gatcaattaa tacgataacct 8483
 gcgtcataat tgattatgg acgtggtttgc atggcctcca cgcacgttgc gatgttgc 8543
 tgataatcat tatacttta cgggtcctt ccgggtgatcc gacagggttac gggcggcga 8603
 cctcgccgggt ttccgttatt tatgaaaatt ttccggttta aggccgttcc gttttcttc 8663
 gtcataactt aatgtttta tttaaaatac cctctgaaaa gaaaggaaac gacagggttgc 8723
 gaaagcgagc ttttggcct ctgtcggttc ctttctctgt ttttgcgtt ggaatgaaca 8783
 atggaaaccc cccccccccc ccctgcagca atggcaacaa cttgcgcacaa actattaact 8843
 ggcgaactac ttactctagc ttcccgccaa caattaatag actggatgg aacggataaaa 8903
 gttgcaggac cacttctgac ctcggccctt ccggctggct ggtttattgc tgataaatct 8963
 ggagccgggtg agcgtggcgc tcgcggatc attgcagcac tggggccaga tggtaagccc 9023

tcccgatatcg tagttatcta cacgacgggg agtcaggcaa ctatggatga acgaaataga	9083
cagatcgctg agataggtgc ctcactgatt aagcatttgt aactgtcaga ccaagttac	9143
tcatatatac ttttagattga tttaaaactt cattttaat ttaaaaggat ctaggtgaag	9203
atccttttg ataatctcat gaccaaaaatc ccttaacgtg agtttcgtt ccactgagcg	9263
tcagaccccg tagaaaagat caaaggatct tcttgagatc cttttttct ggcgtaatc	9323
tgctgcttgc aaacaaaaaa accaccgcta ccagcggtgg tttgttgcg ggatcaagag	9383
ctaccaaactc ttttccgaa ggttaactggc ttcaagcagag cgccagatacc aaatactgtc	9443
cttctagtgt agccgtagtt aggcaccac ttcaagaact ctgttagcacc gcctacatac	9503
ctcgctctgc taatcctgtt accagtggct gctgccagt ggcataagtc gtgtcttacc	9563
gggttggact caagacgata gttaccggat aaggcgcagc ggtcgggctg aacgggggggt	9623
tcgtgcacac agcccagctt ggagcgaacg acctacacccg aactgagata cctacagcgt	9683
gagctatgag aaagcgccac gttcccgaa gggagaaagg cggacaggta tccggtaagc	9743
ggcagggtcg gaacaggaga gcgcacgagg gagttccag gggaaacgc ctggtatctt	9803
tatagtcctg tcgggttgc ccacctctga cttgagcgtc gatTTTGTG atgctcgta	9863
ggggggcgga gcctatggaa aaacgccagc aacgcggcct ttttacgggtt cctggcctt	9923
tgctggcctt ttgctcacat gttttcttgcgtt gcttatccc ctgattctgt ggataaccgt	9983
attaccgcct ttgagtgagc tgataccgct cgccgcagcc gaacgaccga gcgcagcggag	10043
tcagtgagcg aggaagcgga agagcgcctg atgcggattt ttctccttac gcacatgtgc	10103
gttatttcac accgcataatg gtgcacttc agtacaatct gctctgatgc cgcatagttt	10163
agccagtata cactccgcta tcgctacgtg actgggtcat ggctgcgccc cgacacccgc	10223
caacacccgc tgacgcgccc tgacgggctt gtctgctccc ggcattccgct tacagacaag	10283
ctgtgaccgt ctccgggagc tgcatgtgtc agaggtttc accgtcatca ccgaaacgcg	10343
cgaggcagca gatccccca tcaagtagat acactacata tatctacaat agacatcgag	10403
ccggaagggtg atgttactt tcctgaaatc cccagcaatt ttaggcaagt ttttacccaa	10463
gacttcgcct ctaacataaa ttatagttac caaatctggc aaaagggttg accgggggggg	10523
gggggaaagc cacgttgtgt ctcaaaatct ctgatgttac attgcacaag ataaaaatat	10583
atcatcatga acaataaaac tgtctgctta cataaacagt aatacaaggg gtgtt atg	10641
	Met
agc cat att caa cgg gaa acg tct tgc tcg agg ccg cga tta aat tcc	10689
Ser His Ile Gln Arg Glu Thr Ser Cys Ser Arg Pro Arg Leu Asn Ser	
445 450 455	
aac atg gat gct gat tta tat ggg tat aaa tgg gct cgc gat aat gtc	10737
Asn Met Asp Ala Asp Leu Tyr Tyr Lys Trp Ala Arg Asp Asn Val	

460	465	470	475	
ggg caa tca ggt gcg aca atc tat cga ttg tat ggg aag ccc gat gcg Gly Gln Ser Gly Ala Thr Ile Tyr Arg Leu Tyr Gly Lys Pro Asp Ala				10785
480	485	490		
cca gag ttg ttt ctg aaa cat ggc aaa ggt agc gtt gcc aat gat gtt Pro Glu Leu Phe Leu Lys His Gly Lys Ser Val Ala Asn Asp Val				10833
495	500	505		
aca gat gag atg gtc aga cta aac tgg ctg acg gaa ttt atg cct ctt Thr Asp Glu Met Val Arg Leu Asn Trp Leu Thr Glu Phe Met Pro Leu				10881
510	515	520		
ccg acc atc aag cat ttt atc cgt act cct gat gat gca tgg tta ctc Pro Thr Ile Lys His Phe Ile Arg Thr Pro Asp Asp Ala Trp Leu Leu				10929
525	530	535		
acc act gcg atc ccc ggg aaa aca gca ttc cag gta tta gaa gaa tat Thr Thr Ala Ile Pro Gly Lys Thr Ala Phe Gln Val Leu Glu Glu Tyr				10977
540	545	550	555	
cct gat tca ggt gaa aat att gtt gat gcg ctg gca gtg ttc ctg cgc Pro Asp Ser Gly Glu Asn Ile Val Asp Ala Leu Ala Val Phe Leu Arg				11025
560	565	570		
cggttg cat tcg att cct gtt tgt aat tgt cct ttt aac agc gac cgc Arg Leu His Ser Ile Pro Val Cys Asn Cys Pro Phe Asn Ser Asp Arg				11073
575	580	585		
gtattt cgt ctc gct cag gcg caa tca cga atg aat aac ggt ttg gtt Val Phe Arg Leu Ala Gln Ala Gln Ser Arg Met Asn Asn Gly Leu Val				11121
590	595	600		
gat gcg agt gat ttt gat gac gag cgt aat ggc tgg cct gtt gaa caa Asp Ala Ser Asp Phe Asp Asp Glu Arg Asn Gly Trp Pro Val Glu Gln				11169
605	610	615		
gtctgg aaa gaa atg cat aag ctt ttg cca ttc tca ccg gat tca gtc Val Trp Lys Glu Met His Lys Leu Leu Pro Phe Ser Pro Asp Ser Val				11217
620	625	630	635	
gtc act cat ggt gat ttc tca ctt gat aac ctt att ttt gac gag ggg Val Thr His Gly Asp Phe Ser Leu Asp Asn Leu Ile Phe Asp Glu Gly				11265
640	645	650		
aaa tta ata ggt tgt att gat gtt gga cga gtc gga atc gca gac cga Lys Leu Ile Gly Cys Ile Asp Val Gly Arg Val Gly Ile Ala Asp Arg				11313
655	660	665		
tac cag gat ctt gcc atc cta tgg aac tgc ctc ggt gag ttt tct cct Tyr Gln Asp Leu Ala Ile Leu Trp Asn Cys Leu Gly Glu Phe Ser Pro				11361
670	675	680		
tca tta cag aaa cgg ctt ttt caa aaa tat ggt att gat aat cct gat Ser Leu Gln Lys Arg Leu Phe Gln Lys Tyr Gly Ile Asp Asn Pro Asp				11409
685	690	695		
atg aat aaa ttg cag ttt cat ttg atg ctc gat gag ttt ttc taa Met Asn Lys Leu Gln Phe His Leu Met Leu Asp Glu Phe Phe				11454
700	705	710		

tcagaattgg ttaattggtt gtaacactgg cagagcatta cgctgacttg acgggacggc 11514
 ggctttgtt aataaatcga acttttgctg agttgaagga tcagatcacg catcttcccg 11574
 acaacgcaga ccgttccgtg gcaaagcaa agttcaaaat caccaactgg tccacctaca 11634
 acaaagctct catcaaccgt ggctccctca ctttctggct ggatgatggg gcgattcagg 11694
 gatcacagggc agcaacgctc tgtcatcg 11722

<210> 45

<211> 442

<212> PRT

<213> Artificial

<220>

<223> Synthetic Construct

<400> 45

Met Glu Asn Ala Lys Met Asn Ser Leu Ile Ala Gln Tyr Pro Leu Val
 1 5 10 15

Lys Asp Leu Val Ala Leu Lys Glu Thr Thr Trp Phe Asn Pro Gly Thr
 20 25 30

Thr Ser Leu Ala Glu Gly Leu Pro Tyr Val Gly Leu Thr Glu Gln Asp
 35 40 45

Val Gln Asp Ala His Ala Arg Leu Ser Arg Phe Ala Pro Tyr Leu Ala
 50 55 60

Lys Ala Phe Pro Glu Thr Ala Ala Thr Gly Gly Ile Ile Glu Ser Glu
 65 70 75 80

Leu Val Ala Ile Pro Ala Met Gln Lys Arg Leu Glu Lys Glu Tyr Gln
 85 90 95

Gln Pro Ile Ser Gly Gln Leu Leu Lys Lys Asp Ser His Leu Pro
 100 105 110

Ile Ser Gly Ser Ile Lys Ala Arg Gly Gly Ile Tyr Glu Val Leu Ala
 115 120 125

His Ala Glu Lys Leu Ala Leu Glu Ala Gly Leu Leu Thr Leu Asp Asp
 130 135 140

Asp Tyr Ser Lys Leu Leu Ser Pro Glu Phe Lys Gln Phe Phe Ser Gln
 145 150 155 160

Tyr Ser Ile Ala Val Gly Ser Thr Gly Asn Leu Gly Leu Ser Ile Gly

165

170

175

Ile Met Ser Ala Arg Ile Gly Phe Lys Val Thr Val His Met Ser Ala
 180 185 190

Asp Ala Arg Ala Trp Lys Lys Ala Lys Leu Arg Ser His Gly Val Thr
 195 200 205

Val Val Glu Tyr Glu Gln Asp Tyr Gly Val Ala Val Glu Glu Gly Arg
 210 215 220

Lys Ala Ala Gln Ser Asp Pro Asn Cys Phe Phe Ile Asp Asp Glu Asn
 225 230 235 240

Ser Arg Thr Leu Phe Leu Gly Tyr Ser Val Ala Gly Gln Arg Leu Lys
 245 250 255

Ala Gln Phe Ala Gln Gln Gly Arg Ile Val Asp Ala Asp Asn Pro Leu
 260 265 270

Phe Val Tyr Leu Pro Cys Gly Val Gly Gly Pro Gly Gly Val Ala
 275 280 285

Phe Gly Leu Lys Leu Ala Phe Gly Asp His Val His Cys Phe Phe Ala
 290 295 300

Glu Pro Thr His Ser Pro Cys Met Leu Leu Gly Val His Thr Gly Leu
 305 310 315 320

His Asp Gln Ile Ser Val Gln Asp Ile Gly Ile Asp Asn Leu Thr Ala
 325 330 335

Ala Asp Gly Leu Ala Val Gly Arg Ala Ser Gly Phe Val Gly Arg Ala
 340 345 350

Met Glu Arg Leu Leu Asp Gly Phe Tyr Thr Leu Ser Asp Gln Thr Met
 355 360 365

Tyr Asp Met Leu Gly Trp Leu Ala Gln Glu Glu Gly Ile Arg Leu Glu
 370 375 380

Pro Ser Ala Leu Ala Gly Met Ala Gly Pro Gln Arg Val Cys Ala Ser
 385 390 395 400

Val Ser Tyr Gln Gln Met His Gly Phe Ser Ala Glu Gln Leu Arg Asn
 405 410 415

Thr Thr His Leu Val Trp Ala Thr Gly Gly Gly Met Val Pro Glu Glu
 420 425 430

Glu Met Asn Gln Tyr Leu Ala Lys Gly Arg
 435 440

<210> 46
 <211> 271
 <212> PRT
 <213> Artificial

<220>
 <223> Synthetic Construct

<400> 46

Met Ser His Ile Gln Arg Glu Thr Ser Cys Ser Arg Pro Arg Leu Asn
 1 5 10 15

Ser Asn Met Asp Ala Asp Leu Tyr Gly Tyr Lys Trp Ala Arg Asp Asn
 20 25 30

Val Gly Gln Ser Gly Ala Thr Ile Tyr Arg Leu Tyr Gly Lys Pro Asp
 35 40 45

Ala Pro Glu Leu Phe Leu Lys His Gly Lys Gly Ser Val Ala Asn Asp
 50 55 60

Val Thr Asp Glu Met Val Arg Leu Asn Trp Leu Thr Glu Phe Met Pro
 65 70 75 80

Leu Pro Thr Ile Lys His Phe Ile Arg Thr Pro Asp Asp Ala Trp Leu
 85 90 95

Leu Thr Thr Ala Ile Pro Gly Lys Thr Ala Phe Gln Val Leu Glu Glu
 100 105 110

Tyr Pro Asp Ser Gly Glu Asn Ile Val Asp Ala Leu Ala Val Phe Leu
 115 120 125

Arg Arg Leu His Ser Ile Pro Val Cys Asn Cys Pro Phe Asn Ser Asp
 130 135 140

Arg Val Phe Arg Leu Ala Gln Ala Gln Ser Arg Met Asn Asn Gly Leu
 145 150 155 160

Val Asp Ala Ser Asp Phe Asp Asp Glu Arg Asn Gly Trp Pro Val Glu
 165 170 175

Gin Val Trp Lys Glu Met His Lys Leu Leu Pro Phe Ser Pro Pro Asp Ser
 180 185 190

Val Val Thr His Gly Asp Phe Ser Leu Asp Asn Leu Ile Phe Asp Glu
 195 200 205

Gly Lys Leu Ile Gly Cys Ile Asp Val Gly Arg Val Gly Ile Ala Asp
 210 215 220

Arg Tyr Gln Asp Leu Ala Ile Leu Trp Asn Cys Leu Gly Glu Phe Ser
 225 230 235 240

Pro Ser Leu Gln Lys Arg Leu Phe Gln Lys Tyr Gly Ile Asp Asn Pro
 245 250 255

Asp Met Asn Lys Leu Gln Phe His Leu Met Leu Asp Glu Phe Phe
 260 265 270

<210> 47

<211> 693

<212> DNA

<213> Zea mays

<220>

<221> precursor_RNA

<222> (1)..(693)

<400> 47

gcagcgtcgg tggttgcttc atggctgtcg agggaaatga cgtccggtcc gaacaaggcca 60

cggctgctgc tgcgctaccg ccgcggcttc ggaccaggct tcattcccca cgactcacca 120

tggaaacggc agcgaggtgc gagcttccag tgcgccagt gtttgatcag caaacacactg 180

cgtggccgag gctgagccctt gcaagggcag gcttccatgt tctcgtcagc aagcgtcttc 240

ttcacatgtc tgaggtctga gcaattgcgg gtggacatcg atggatgagc attgcccgtg 300

caagggaaaga tcgtccggct cacacttgag ttgggatacc atgcactact cttgtttag 360

tttagattaga taccatgcgc ttgaaccgtg caatagcata gcgaggaaga ggaacccaga 420

gaggactcag aaagagatgt tgtctatttc atccagtgct catctagtca tctagtctgc 480

ctgcgggtgt ctgcaatgaa cgctgacgct gctgccggag acctactctg ctactgggtgt 540

ggagtggaca aacagggagg gaaggcgtct gctagaacct agaagacgga cacagggagg 600

accaacagga ctaaaagaccg tcgtacgtgt tgaagcggaa ggactttctt attacgtgtg 660

gcgcttcgaa ttaaagccag cggttagaac ggc 693