Office de la Proprieté Canadian CA 2642158 C 2015/01/27

Intellectuelle Intellectual Property
du Canada Office (11)(21) 2 642 158
Un organisme An agency of 12y BREVET CANADIEN
'Industrie Canada ndustry Canada
CANADIAN PATENT
13) C
(86) Date de dépét PCT/PCT Filing Date: 2007/02/13 (51) Cl.Int./Int.Cl. GO6F 15/716 (2006.01),
(87) Date publication PCT/PCT Publication Date: 2007/09/07 GO6F 17/00(2000.01), GO6F 1/740(2006.01)
(45) Date de délivrance/lssue Date: 2015/01/27 (72) 'L'?"jlrl‘\feg'é'“ve"m"
(85) Entree phase nationale/National Entry: 2008/08/12 | |

(73) Proprietaire/Owner:
(86) N demande PCT/PCT Application No.: US 2007/004048 MICROSOFT CORPORATION, US

(87) N® publication PCT/PCT Publication No.: 200//100509 (74) Agent: SMART & BIGGAR
(30) Priorité/Priority: 2006/02/22 (US11/359,2/6)

54) Titre : SYSTEME DE STOCKAGE D'EGAL A EGAL EFFICACE ET FIABLE
(54) Title: RELIABLE, EFFICIENT PEER-TO-PEER STORAGE

START .

CALCULATE THE OPTIMAL 002
FILE SIZE RANGES FOR
DIFFERENT ERASURE
RESILIENT CODING (ERC)
FRAGMENT SIZES.

908
906
004
FILE SIZE NO
INPUT FILE . ENCODE THE FILE
CORRESPONDS TO
OF A GIVEN WITHOUT USING
A ERC FILE SIZE ey

RANGE?

ENCCODE THE FILE

USING ERC WITH
THE ERC

FRAGMENT SIZE

CORRESPONDING
TO THE INPUT FILE

SIZE RANGE.

END

(57) Abrégée/Abstract:

An adaptive coding storage system that uses adaptive erasure resilient code (ERC) which changes the number of fragments used
for encoding according to the size of the file distributed. Adaptive ERC may greatly improve the efficiency and reliability of P2P

SR SR VENEN

S TR

TR RN/
4

I*I - - o, B e
C an ad a http:/opic.ge.ca + Ottawa-Hull K1A 0C9 - atip.://eipo.ge.ca oric B w omE
OPIC - CIPO 191

CA 2642158 C 2015/01/27

aneny 2 642 158
13) C

(57) Abrege(suite)/Abstract(continued):

storage. A number of procedures for P2P storage applications may also be implemented. In one embodiment small, dynamic data
fles are diverted to the more reliable peers or even a server, while large and static files are stored utilizing the storage capacity of
the unreliable peers. Also, for balanced contribution and benefit, a peer should host the same amount of content as It stored in the
P2P network. As a result, unreliable peers are allowed to distribute less data, and more reliable peers are allowed to distribute
more. Also, smaller files are assigned a higher distribution cost, and the larger files are assigned a lower distribution cost.

w0 2007/100509 A1 I DA O0 DA Y O D 0 O 0

CA 02642158 2008-08-12

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization f#
International Bureau "

(43) International Publication Date
7 September 2007 (07.09.2007)

(51) International Patent Classification:
GOG6F 15/16 (2006.01) GO6F 17/00 (2006.01)
GO6F 17/40 (2006.01)

(21) International Application Number:
PCT/US2007/004048

(22) International Filing Date:
13 February 2007 (13.02.2007)

English
English

(25) Filing Language:
(26) Publication Language:

(30) Priority Data:
11/359,276 22 February 2006 (22.02.2006) US

(71) Applicant (for all designated States except US): MI-
CROSOFT CORPORATION [US/US]; One Microsoft
Way, Redmond, Washington 98052-6399 (US).

(72) Inventor: LI, Jin; One Microsoft Way, Redmond, Wash-
ington 98052-6399 (US).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,

(10) International Publication Number

WO 2007/100509 Al

Al, AU, AZ,BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS,
JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS,
LT, LU, LV, LY, MA, MD, MG, MK, MN, MW, MX, MY,
MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RS,
RU, SC, SD, SE, SG, SK, SL, SM, SV, SY, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,

GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
/W), Burasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT,
RO, SE, SI, SK, TR), OAPI (BEF, BJ, CF, CG, CI, CM, GA,
GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

as to applicant’s entitlement to apply for and be granted a
patent (Rule 4.17(ii))

as to the applicant’s entitlement to claim the priority of the
earlier application (Rule 4.17(iii))

(84)

[Continued on next page]

(54) Title: RELIABLE, EFFICIENT PEER-TO-PEER STORAGE

START

CALCULATE THE OPTIMAL
FILE SIZE RANGES FOR

902

DIFFERENT ERASURE
RESILIENT CODING (ERC)
FRAGMENT SIZES.

908
904
FILE SIZE
INPUT FILE ENCODE THE FILE
OF A GIVEN CORRESPONDS 1O WITHOUT USING

ERC FILE SI£E

RANGE? ERC.

SIZE.

ENCODE THE FILE
USING ERC WITH
THE ERC
FRAGMENT SIZE
CORRESPONDING
TO THE INPUT FILE
SIZE RANGE.

END

(57) Abstract: An adaptive coding storage system
that uses adaptive erasure resilient code (ERC)
which changes the number of fragments used for
encoding according to the size of the file distributed.
Adaptive ERC may greatly improve the efficiency
and reliability of P2P storage. @ A number of
procedures for P2P storage applications may also be
implemented. In one embodiment small, dynamic
data files are diverted to the more reliable peers or
even a server, while large and static files are stored
utilizing the storage capacity of the unreliable peers.
Also, for balanced contribution and benefit, a peer
should host the same amount of content as it stored
in the P2P network. As a result, unreliable peers
are allowed to distribute less data, and more reliable
peers are allowed to distribute more. Also, smaller
files are assigned a higher distribution cost, and the
larger files are assigned a lower distribution cost.

CA 02642158 2008-08-12

WO 2007/100509 A1 JHINHVA!R AR TN 101 10 AN A0 AR

Published: For two-letter codes and other abbreviations, refer to the "Guid-
— with international search report ance Notes on Codes and Abbreviations" appearing at the begin-
— before the expiration of the time limit for amending the ning of each regular issue of the PCT Gagzette.

claims and to be republished in the event of receipt of

amendments

10

15

20

25

30

CA 02642158 2008-08-12

WO 2007/100509 PCT/US2007/004048

RELIABLE, EFFICIENT PEER-TO-PEER STORAGE
BACKGROUND

In a Peer-to-Peer (P2P) application, peers bring with them network
bandwidth and/or hard drive storage resourcés when they join the P2P service.
As the demand on a P2P system grows, the capacity of the system grows as
well. This is in sharp contrast to a client-server, system, where the server's
capacity is fixed and paid for by the provider of the client-server system. As a
result, a P2P system is more economical to run than a client-server system and
IS superior because if IS scalable.

' in a P2P system, the peer contributes not only the bandwidth but also to
the storage space to serve the other peers. The collective storage space
contributed by the peers forms a distributed storage cloud. Data may be stored
into, and be retrieved from, the cloud. P2P storage can be used for a number
of applications. One is distributed backup. The peer may backub its own data
into the P2P cloud. When the peer fails, the data may be restored from the
cloud. Another P2P application is distributed data access. Because the client
may retrieve data simulitaneously from multiple data holding peers, the P2P
retrieval can have higher throughput compared with retrieving data from a
single source. Another application is on-demand movie viewing. A media
server may seed the P2P cloud with movie files preemptively. When a client is
viewing the movie, it may stream the movie from both the P2P cloud and the
server, thus reducing the server load, reducing traffic on the network backbone
and improving the streaming movie quality.

Though the peers in the P2P network may act like servers, they differ
from commercial web/database servers in one important aspect: reliability.
Because a peer is usually an ordinary computer that supports the P2P
application with its spare hard drive space and idle bandwidth, it is far less
reliable than the typical server. The user may choose to turn off the peer
computer or the P2P application from time to-time. Compulsory need, for

example, large file upload/download, may starve the peer from the necessary

10

15

20

25

30

CA 02642158 2008-08-12

WO 2007/100509 PCT/US2007/004048

bandwidth for P2P activity. The peer computer may be offline due to the need
to upgrade or patch software/hardware, or due to a virus attack. The computer.
hardware and the network link of the peer are also inherently much more |
unreliable than a typical server computer and its commercial network links,
which are designed for reliability. While commercial server/server clusters are
designed for “six nine” reliability (with a failure rate 10, at that rate, about 30
seconds of downtime is allowed each year), a good consumer peer may have
only “two nine” reliébility (a failure rate 10 or about 15 minutes of downtime
every day), and it is not uncommon for peers to have only 50% (down half the
time) or even 10% reliability (down 90% of the time). |

Most P2P applications, for example P2P backup and data retrieval,
want 1o maintain the same level of reliability for P2P storage as that of the
server (“six nine” reliability). The challenge lies in how to build a reliable,
efficient P2P store using minimum bandwidth and storage resources of the
peers.

SUMMARY

An adaptive coding storage system and method for storing data
efficiently and reliably in a Peer- to-Peer (P2P) network is presented. The
adaptive coding storage system and method adjusts a number of fragments for
erasure resilient coding (ERC), the ERC number of fragments, based on the
file size stored and distributed.

A number of embodiments of the adaptive coding storage system
employ procedures to improve the efficiency and reliability of a P2P network.
For example, in one embodiment small, dynamic data is diverted to more
reliable peers or even a server, if server component support is available. Also,
In another embodiment, for a balanced P2P network, peers that are unreliable
and are distributing smaller files are allowed to distribute less data.

It is noted that while the faoregoing limitations in existing peer-to-peer
storage and distribution systems described in the Background section can be
resolved by a particular implementation of the adaptive coding storage system

2

10

15

20

25

CA 02642158 2014-04-10

51373-6

according to the present invention, this system and process is in no way limited to
Implementations that just soive any or all of the noted disadvantages. Rather, the
present system and process has a much wider application as will become evident

from the descriptions to follow.

According to an aspect of the present invention, there is provided a
computer-implemented process for encoding files to be stored in a distributed
network, comprising the process actions of:. calculating optimal file size ranges
corresponding to different erasure resilient coding (ERC) number of fragments,
wherein each number of fragments is the optimal number of fragments for a
corresponding range of file sizes; inputting a file of a given file size; if the file size is
smaller than the range of the file sizes for the smallest ERC number of fragments of
two, encoding the file without using erasure resilient coding; if the file size of the input
file corresponds to a range of file sizes, encoding the file using erasure resilient
coding and the optimal number of fragments corresponding to the file size range of

the Input file.

According to another aspect of the present invention, there is provided
a computer-readable medium having computer-executable instructions stored
thereon that when executed by a computer perform a process recited above or
below.

According to another aspect of the present invention, there is provided
a system for improving the storage reliability and efficiency of a peer-to-peer network,
comprising: a general purpose computing device; a computer program comprising
program modules executable by the general purpose computing device, wherein the
computing device is directed by the program modules of the computer program to,
determine the optimum number of fragments to encode a file of given size with
erasure resilient coding; if the optimum number of fragments to encode the file with
erasure resilient encoding is one, do not encode the file with erasure resilient coding;

and if the optimum number of fragments is larger than one, encode the file by

10

15

20

25

CA 02642158 2014-04-10

51373-6

breaking the file into the optimum number of fragments and encoding the file with

erasure resilient coding.

According to a further aspect of the present invention, there is provided
a computer-implemented process for decoding an encoded file stored in a distributed
network, comprising: using a computing device to perform the process actions of:
retrieving a set of fragments of an encoded file equal to or greater than a number of
fragments that were used to encode the file, wherein the file was erasure resilient
encoded with an optimum number of fragments for a given file size and stored at a
number of peers that was determined according to peer reliability and desired
reliability of file content; and decoding the encoded fragments with erasure resilient
decoding to obtain a decoded version of the encoded file.

It should also be noted that this Summary is provided to introduce a
selection of concepts, In a simplified form, that are further described below in the
Detailled Description. This Summary is not intended to identify key features or
essential features of the claimed subject matter, nor is it intended to be used as an

aid in determining the scope of the claimed subject matter.
DESCRIPTION OF THE DRAWINGS

The specific features, aspects, and advantages of the adaptive coding
storage system will become better understood with regard to the following
description, appended claims, and accompanying drawings where:

FIG. 1 is a general system diagram depicting a general-purpose
computing device constituting an exemplary system implementing an adaptive coding

storage system and method as described herein.

FIG. 2 illustrates an exemplary peer-to-peer (P2P) network that can be

used with the adaptive coding storage system and method, as described herein.

FIG. 3 provides a graph showing the number of information storing

peers to achieve a desired reliability of 107®.
3a

CA 02642158 2014-04-10

51373-6

FIG. 4 provides a graph showing peer reliability and desired replication

ratio.

FIG. 5 provides a graph showing the number of information storing

peers necessary to achieve desired reliability of 107 using erasure resilient coding.

FIG. 6 provides a graph of the ERC number of fragments and the

associated suited file size for information storage in a P2P network.

FIG. 7 provides a graph depicting bandwidth usage between peers in a

P2P configuration with adaptive ERC and fixed ERC (at a peer reliability=50%).

3b

20

25

30

CA 02642158 2008-08-12
WO 2007/100509 PCT/US2007/004048

FIG. 8 provides a graph depicting bandwidth usage between peers in a
P2P configuration with adaptive ERC and fixed ERC (at a peer reliability=99%).

FIG. 9 depicts one embodiment of the adaptive coding storage process.
FIG. 10 depicts an exemplary operational flow diagram showing how the
adaptive coding storage technique is employed-in a P2P network.

FIG. 11 depicts an embodiment of the adaptive coding storage system

and process that implements a procedure to optimize the storage efficiency of
a P2P network.

FIG. 12 depicts another embodiment of the adaptive coding storage
system and method that implements procedures to optimize the storage
efficiency of a P2P system.

FIG. 13 depicts an embodiment of the adaptive coding storage system
and method that employs P2P backup with server support.

DETAILED DESCRIPTION

In the following description of the preferred embodiments of the present
adaptive coding storage system, reference is made to the accompanying
drawings that form a part hereof, and in which is shown by way of illustration
specific embodiments in which the adaptive coding storage system may be
practiced. It is understood that other embodiments may be utilized and

structural changes may be made without departing from the scope of the
present adaptive coding storage system.

1.0 Exemplary Operating Environment:

FIG. 1 illustrates an example of a suitable computing system
environment 100 on which the invention may be implemented. The computing
system environment 100 is only one example of a suitable computing
environment and is not intended to suggest any limitation as to the scope of
use or functionality of the invention. Neither should the computing environment
100 be interpreted as having any dependency or requirement relating to any

4

10

15

20

25

30

CA 02642158 2008-08-12

WO 2007/100509 PCT/US2007/004048

one or combination of components illustrated in the exemplary operating -
environment 100.

The invention is operational with numerous other general purpose or
special purpose computing system environments or configurations. Examples
of well known computing systems, environments, and/or configurations that
may be suitable for use with the invention include, but are not limited to.
personal computers, server computers, hand-held, laptop or mobile computer
or communications devices such as cell phones and PDA’s, multiprocessor
systems, microprocessor-based systems, set top boxes, programmable
consumer electronics, network PCs, minicomputers, mainframe computers,
distributed computing environments that include any of the above systems or
devices, and the like.

The invention may be described in the general context of computer-
executable instructions, such as program modules, being executed by a
computer in combination with hardware modules, including components of a
microphone array 198. Generally, program modules include routines,
programs, objects, components, data structuyes, etc., that perform particular
tasks or implement particular abstract data types. The invention may also be
practiced in distributed computing environments where tasks are performed by
remote processing devices that are linked through a communications network.
In a distributed computing environment, program modules may be located in
both local and remote computer storage media including memory storage
devices. With reference to FIG. 1, an exemplary system for implementing the
invention includes a general-purpose computing device in the form of a
computer 110.

Components of computer 110 may include, but are not limited to, a
processing unit 120, a system memory 130, and a system bus 121 that couples
various system components including the system memory to the processing
unit 120. The system bus 121 may be any of several types of bus structures
including a memory bus or memory controller, a peripheral bus, and a local bus
using any of a variety of bus architectures. By way of example, and not
limitation, such architectures include Industry Standard Architecture (ISA) bus,

10

15

20

25

30

CA 02642158 2008-08-12

WO 2007/100509 PCT/US2007/004048

Micro Channel Architecture (MCA) bus, Enhanced ISA (EISA) bus, Video
Electronics Standards Association (VESA) local bus, and Peripheral
Component interconnect (PCI) bus also knoWn as Mezzanine bus.

Computer 110 typically includes a variety of computer readable media.
Computer readable media can be any available media that can be accessed by.
computer 110 and includes both volatile and nonvolatile media, removable and
non-removable media. By way of example, and not limitation, computer
readable media may comprise computer storage media and communication
media. Computer storage media includes volatile and nonvolatile removable
and non-removable media implemented in any method or technology for
storage of information such as computer readable instructions, data structures,
program modules, or other data.

Computer storage media includes, but is not limited to, RAM, ROM,
PROM, EPROM, EEPROM, flash memory, or other memory technology; CD-
ROM, digital versatile disks (DVD), or other optical disk storage; magnetic
casseties, magnetic tape, magnetic disk storage, or other magnetic storage
devices,; or any other medium which can be used to store the desired
information and which can be accessed by computer 110. Communication
media typically embodies computer readable instructions, data structures,
program modules or other data in a modulated data signal such as a carrier
wave or other transport mechanism and includes any information delivery
media. The term “modulated data signal” means a signal that has one or more
of its characteristics set or changed in such a manner as to encode information
in the signal. By way of example, and not limitation, communication media
includes wired media such as a wired network or direct-wired connection, and
wireless media such as acoustic, RF, infrared, and other wireless media.
Combinations of any of the above should also be included within the scope of
computer readable media.

The system memory 130 includes computer storage media in the form
of volatile and/or nonvolatile memory such as read only memory (ROM) 131
and random access memory (RAM) 132. A basic input/output system 133
(BIEL)S), containing the basic routines that help to transfer information between

6

10

15

20

25

30

CA 02642158 2008-08-12

WO 2007/100509 PCT/US2007/004048

elements within computer 110, such as during start-up, is typically stored in
ROM 131. RAM 132 typically contains data and/or program modules that are
immediately accessible to and/or presently being operated on by processing

unit 120. By way of example, and not limitation, FIG. 1 illustrates operating
system 134, application programs 135, other program modules 136, and -
program data 137.

The computer 110 may also include other removable/non-removable,
volatile/nonvolatile computer storage media. By way of example only, FIG. 1
illustrates a hard disk drive 141 that reads from or writes to non-removable,
nonvolatile magnetic media, a magnetic disk drive 151 that reads from or writes
to a removable, nonvolatile magnetic disk 152, and an optical disk drive 155
that reads from or writes to a removable, nonvolatile optical disk 156 such as a
CD ROM or other optical media. Other removable/non-removable,
volatile/nonvolatile computer storage media that can be used in the exemplary
operating environment include, but are not limited to, magnetic tape cassettes,
flash memory cards, digital versatile disks, digital video tape, solid state RAM,
solid state ROM, and the like. The hard disk drive 141 is typically connected to
the system bus 121 through a non-removable memory interface such as
interface 140, and magnetic disk drive 151 and optical disk drive 155 are
typically connected to the system bus 121 by a removable memory interface,
such as interface 1560.

The drives and their associated computer storage media discussed
above and illustrated in Figure 1, provide storage of computer readable
instructions, data structures, program modules and other data for the computer
110. In Figure 1, for example, hard disk drive 141 is illustrated as storing
operating system 144, application programs 145, other program modules 146,
and program data 147. Note that these components can either be the same as
or different from operating system 134, application programs 135, other |
program modules 136, and program data 137. Operating system 144,
application programs 145, other program modules 146, and program data 147
are given different numbers here to illustrate that, at a minimum, they are
different copies. A user may enter commands and information into the

CA 02642158 2008-08-12

WO 2007/100509 PCT/US2007/004048

................

computer 110 through input devices such as a keyboard 162 and pointing
device 161, commonly referred to as a mouse, trackball, or touch pad.

Other input devices (not shown) may include a joystick, game pad,
satellite dish, scanner, radio receiver, and a television or broadcast video

5 | receiver, or the like. These and other input devices are often connected to the
processing unit 120 through a wired or wireless user input interface 160 that is
coupled to the system bus 121, but may be connected by other conventional
interface and bus structures, such as, for example, a parallel port, a game port,
a universal serial bus (USB), an IEEE 1394 interface, a Bluetooth™ wireless

10 interface, an IEEE 802.11 wireless interface, etc. Further, the computer 110
may also include a speech or audio input device, such as a microphone or a
microphone array 198, as well as a loudspeaker 197 or other sound output
device connected via an audio interface 199, again including conventionali
wired or wireless interfaces, such as, for example, parallel, serial, USB, IEEE
15 1394, Bluetooth™, etc.

A monitor 191 or other type of display device is also connected to the
system bus 121 via an interface, such as a video interface 190. in addition to
the monitor, computers may also include other peripheral output devices such
as a printer 196, which may be connected through an output peripheral

20 interface 195.

The computer 110 may operate in a networked environment using
logical connections to one or more remote computers, such as a remote
computer 180. The remote computer 180 may be a personal computer, a
server, a ro'uter, a network PC, a peer device, or other common network hode,

25 and typically includes many or all of the elements described above relative to
the computer 110, although only a memory storage device 181 has been
illustrated in FIG. 1. The logical connections depicted in FIG. 1 include a local
area network (LAN) 171 and a wide area network (WAN) 173, but may also
include other networks. Such networking environments are commonplace in

30 offices, enterprise-wide computer networks, intranets, and the Internet.

" When used in a LAN networking environment, the computer 110 Is
connected to the LAN 171 through a network interface or adapter 170. When

10

15

20

25

30

CA 02642158 2008-08-12

WO 2007/100509 PCT/US2007/004048

used in a WAN networking environment, the computer 110 typically includes a
modem 172 or other means for establishing communications over the WAN
173, such as the Internet. The modem 172, which may be internal or external,
may be connected to the system bus 121 via the user input interface 160, or
other appropriate mechanism. In a networked environment, program modules
depicted relative to the computer 110, or portions thereof, may be stored in the
remote memory storage device. By way of example, and not limitation, FIG. 1
illustrates remote application programs 185 as residing on memory device 181.
It will be appreciated that the network connections shown are exemplary and
other means of establishing a communications link between the computers
may be used. |

In general, the adaptive coding storage system operates in a P2P
network such as the network illustrated by FIG. 2. For a particular data
streaming session, a “server’ 200 is defined as a nodé in the P2P network that
initially originates the data or streaming media; a “client” (or receiver) 210 is
defined as a node that currently requests the data; and a “serving peer” 220 is
defined as a node that serves the client with a complete or partial copy of the
data.

In general, the server 200, the client 210 and the serving peers 220 are
all end-user nodes connected to a network such as the Internet. Because the
server 200 is always capable of serving the data, the server node also acts as

a serving peer 220. The server node 200 can also perform administrative

functionalities that cannot be performed by a serving peer 220,~ e.g.,
maintaining a list of available serving peers, performing digital rights
management (DRM) functionality, and so on. In addition, as with conventional
P2P schemes, the adaptive coding storage system described herein benefits
from Iincreased efficiency as more and more peer nodes 220 are deployed. In
particular, as the number of peer nodes 220 inc}eases, the load on the data
server 200 will decrease, thereby becoming less costly to run, while each client
node 210 will be able to receive much better data quality during a particular
data transfer session.

10

15

20

25

30

CA 02642158 2008-08-12

WO 2007/100509 PCT/US2007/004048

In addition, it should be clear that the role of particular nodes may
change. For example, a particular node may act as the client 210 in one
particular data transfer, while acting as a serving peer 220 in another session.
Further, particular nodes can simultaneously act as both client nodes 210 and
servers 200 or serving peers 220 to simﬁltaneously send one or more data
files, or portions of these files, while receiving other data from one or more
other serving peers.

During a data transmission, the client 200 first locates a number of
close-by peers 220 that hold some or all of the desired data, and then receives
the data from the multipie peers (which may include the server 200).
Consequently, each serving peer 220 acts to assist the server 200 by reducing
the overall upload burden by servicing a portion of the download request of the
client 210. As a result, the client 210, especially in the case where there are
many clients, can often receive much better data quality, as there is a
significantly higher serving bandwidth available when there are many serving
peers 220 to assist the server 200.

The exemplary operating environment having now been discussed, the

remaining parts of this description section will be devoted to a description of
the program modules embodying the adaptive coding storage system and

Process.

2.0 RELIABLE, EFFICIENT PEER-TO-PEER STORAGE.

The adaptive coding storage system provides an adaptive erasure
resilient coding (ERC) scheme that adaptively determines whether or not to
use ERC coding and employs the optimum number of fragments to be used for
ERC coding for a given file size for optimal reliability and efficiency. The
number of fragments used for ERC coding of a file will be termed the “ERC
number of fragments” for purposes of this discussion. The following
paragraphs provide a discussion of peer-to-peer (P2P) storage efficiency and
reliability and the use of ERC in P2P networks, as well as a discussion of the

10

10

15

20

25

30

CA 02642158 2008-08-12

WO 2007/100509 PCT/US2007/004048

ERC number of fragments used. Then various embodiments of the adaptive
coding storage system and process are discussed.

2.1 Reliability in P2P Storage: Data Redundancy

The adhoc solution to bring reliability to a system with unreliable parts Is
to use redundancy. If each individual peer on the network has a reliability of p,
to achieve a desired reliability of py, one may simply replicate the information to
1 peers,.

n =log(l - p,)/log(l - p), (1)

where »n is the number of peers holding the information. At the time of retrieval,
the client may contact the information storing peers one-by-one. As long as
one of the information storing peers is online, the information can be reliably
retrieved.

Though achieving reliability, the simple replicatiorj strategy is not
efficient. FIG. 3 plots the number of information storing peers needed to
achieve “six nine” reliability. With peer reliability of 50%, one needs to replicate
and store the information to 20 peers. This leads to 20 times more bandwidth

and storage space to distribute and store the information. Obviously, efficiency
has been sacrificed in exchange of information reliability.

2.2 Erasure Resilient Coding in P2P

To improve efficiency while still maintaining the same reliability, ERC
can be a useful tool. ERC splits the original file into & original fragments {x,},
i=0,".k-1, each of which is a vector over the Galois Field GF(g), where q is the
o}der of the field. Say one is encading a file that is 64 KB long, it one uses
g=2"® and k=16, each fragment will be 4 KB, and will consist of a 2 K word, with
each word being an element of GF(2'°). ERC then generates coded fragments
from the original fragments. An ERC coded fragment is formed by operation:

11

10

15

20

25

CA 02642158 2008-08-12

WO 2007/100509 PCT/US2007/004048

C; = G‘.\:[xo X, e ‘xk—l]! , .. (2)

where ¢; is a coded fragment, G; is a k-dimensional generator vector, and
equation (2) is a matrix multiplication, all on GF(q). At the time of decoding, the
peer collects m coded fragments, where m is a number equal to or slightly
larger than £, and attempts to decode the % original fragments. This is

equivalent to solve the equation:

Cy | G, X0
C G b
1) |
- [T . P (3)
C ol CAN | B

If the matrix formed by the generator vectors has a full rank %, the
original messages can be recovered.

There are many available ERCs. A particularly interesting one is the
Reed-Solomon (RS) code. RS code uses structured generator vectors, and is
maximum distance separable (MDS). As a result, any % distinctive coded
fragments will be able to decode the originél fragments. Another advantage of
the RS code is that the coded fragment can be easily identified and manéged
by the index / of the generator vector, thus easing the detection of duplicate RS
codes. In the following discussion of ERC, it is assumed that RS code is used.
However, the adaptive coding storage system can be implemented with any
number of conventional ERCs.

2.3 ERC: Number of fragments.

By using ERC in P2P storage, a data file is distributed to more peers,
but each peer only needs to store one coded fragment that is 1/k size of the
original file, leading to aﬁ overall reduction in the bandwidth and storage space
required to achieve the same level of reliability, and thus an improvement of
efficiency. Let », be the number of peers that the coded fragments needs to be

12

10

15

20

25

30

CA 02642158 2008-08-12

WO 2007/100509 PCT/US2007/004048

distributed to achieve a certain desired reliability level. Since RS code is MDS
code, k peers holding & distinctive coded fragments will be sufficient to recover
the original file. The probability that there are exactly m peers available can be

calculated via binomial distribution:

H,
m

p(m, n))= ()Pm (1 = p)n‘_m . (4)

One may thus calculate », from p, pp and k as:

n, = arg l‘l"f)itl {Z[:ﬂ) p" (1 _ p)o-m <1— po}. (5)

The replication ratio » is defined as:

r=m !k (6)

The replication ratio » is a good indicator of efficiency, as » copies of files
needs to be distributed and stored into the P2P cloud.

It is shown in FIG. 4, the desired replication ratio to achieve “six nine”
reliability for different ERC number of fragments k. One observes that the use
of ERC greatly reduces the required replication ratio. Comparing non ERC
(k=1) and ERC of number of fragments £=256, the desired replication ratio
decreases from =132 to »=13.1 for peer reliability of 10%, from r=20 to r=2.5
for peer reliability of 50%, and frorﬁ r=3 to r=1.05 for peer reliability of 99%.
ERC may improve the efficiency without sacrificing reliability.

One also observes that a larger ERC humber of fragments further
reduces the replication ratio. With a peer reliability of 50%, going from 4=8 to
16, 32, 64, 128 and 256 leads to a reduction of the replication ratio from »=5.75
to 4.375, 3.53, 3.02, 2.68 and 2.48. The corresponding efficiency improvement
is 24%, 19%, 15%, 11% and 8%, respectively. This seems to suggest that one
should use large ERC number of fragments for more efficiency.

13

10

15

20

25

30

CA 02642158 2008-08-12

WO 2007/100509 PCT/US2007/004048

However, a larger ERC number of fragments implies that more peers
are needed to store and to retrieve the coded fragments. As shown in FIG. 5,
the number of peers that need to hold the coded fragments to achieve the "six
nine” reliability are plotted. Again with 50% peer reliability, going from =8 to
16, 32, 64, 128 and 256 increases the number of information storing peers
from »7;=46 to 70, 113, 193, 343 and 630. Each doubling of k results in 52%,
61%, 71%, 78%, 84% more peers needed to store the information. The
doubling of k also requires at least double the number of peers to be contacted
during information retrievai.

In most practical P2P networks, establishing a connection between the
peers requires a non-trivial amount of overhead. One part of the overhead can
be attributed to the retrieval of proper peer identity ana finding the proper
routing path (e.q., via a Distributed Hash Table (DHT)). Another part of the
overhead is due to the need to invoke certain network address translation
(NAT) algorithms, e.g., STUN (simple traversal of UDP through NAT) if one or
both peers are behind the NAT. Assuming that the average overhead to
establish connection between two peers is overhead (set to 16KB in this
example), one may calculate the overall network bandwidth needed to store a
file of size s to be:

store bandwidth =s * r + m™ overhead. (7)

With equation (7), one recognizes that a larger ERC number of
fragments does not always lead to the best efficiency. Instead, for a small file,
a small ERC number of fragments or even non-ERC should be used. One
computes the overall bandwidth required in equation (7) for different file sizes
and ERC number of fragments, and plots the curves shown in Fig. 6. The
boundary between different ERC number of fragments is the optimal file size
range suited for a particular ERC number of fragments. For example, the
bottom curve of FIG. 6 shows the file size boundary below which non-ERC
should be used, and above which ERC with number of fragments /=2 should

be used. An interesting observation is that the file size boundary is relatively

14

10

15

20

25

30

CA 02642158 2008-08-12

WO 2007/100509 PCT/US2007/004048

insensitive to peer availability, which greatly simplifies the choipe of the
optimum ERC fragment parameter. In general, for a file smaller than
approximately 10KB, ERC should not be used. For ERC with a number of
fragments k=2, 4, 8, 16, 32, 128 and 256 the most suited file size range is

approximately 10-33KB, 33-100KB, 100-310KB, 310-950KB, 950KB-2.9MB,
2.9MB-8.9MB, 8.9-26MB, >26MB, respectively.

2.4 Adaptive ERC scheme

The adabtive coding storage system and method adaptively chooses the
appropriate ERC number of fragments to efficiently store content in a P2P
network reliably. Using the file boundary curve established in FIG. 6, one
embodiment of the system adaptively chooses to use nqn-ERC, and ERC with
a humber of fragments of k=2, 4, 8, 16, 32, 64, 128, 256 for different file sizes.
The adaptive ERC approach is compared with fixed parameter ERC, and the
difference in network bandwidth usage is shown in FIG. 7 and FIG. 8, where
peer reliability is 50% and 99%, respectively. Compared with using a fixed
ERC number of fragments of #=1 (non ERC), 8, 32 and 256, the adaptive ERC
method may improve the efficiency by an average of 61%, 26%, 25% and 50%
for peer reliability of 50%, and 50%, 18%, 29% and 57% for peer reliability of
99%. The improvement in efficiency is significant.

In the most general sense, one embodiment of the adaptive coding
storage process iIs shown in FIG. 9, As shown In process action 902, the
adaptive coding storage system calculates optimal file size boundaries for a
different number of fragments. A file of a given file size 10 be encoded is input
(process action 904). A check is made as to whether the input file size
corresponds toc non-erasure coding (k=1), as shown in process action 906. if
the input file size does not correspond to ERC, the file is encoded without using
ERC (process action 908). If the file size corresponds to an ERC file size
range, the file is encoded using ERC coding and the nhumber of fragments
corresponding to the file size of the input file, which is the optimum number of
fragments for that size file (process action 910).

15

10

15

20

25

30

CA 02642158 2008-08-12

WO 2007/100509 PCT/US2007/004048

A major application of the adaptive ERC process described herein is in
P2P back up or restore. A peer may back up files to other peers in a network
and then restore these files by retrieving them from peers in the network in
case they are lost (for example, in case they are lost in'a computer crash). In
general, FIG. 10 illustrates an exemplary operational flow diagram showing

how the adaptive coding storage technique can be employed in a P2P system.

It should be noted that any boxes and interconnections between boxes that are
represented by broken or dashed lines in FIG. 10 represent alternate
embodiments of the adaptive coding storage system described herein, and that
any or all of these alternate embodiments, as described below, may be used in
combination with other alternate embodiments that are described throughout

“this document.

In particular, as illustrated by FIG. 10, prior to data transfer operations,
such as when it is desired to back up data to peers in a network, the server 200
or peer 220 encodes 1000 the data to be transferred to the other peers for
storage. The adaptive coding storage system is capable of operating with any
of a number of conventional codecs, such as, for example, MPEG 1/2/4, WMA,
WMV, etc. In addition, during the encoding process 1000, the server 200 or
peer 220 also generates both a data header, and a companion file containing
the data structure.

As described above, in one embodiment, once the data is encoded
1000, the encoded data packets are split 1005 into a number of data units of a
fixed size. Further, as with the encoded data, the data header and the data
structure are also split'1005 into a number of data units of the same fixed size
as used to split the encoded data packets. Splitting 1005 this information into
fixed length data units allows for the peers to pre-allocate memory blocks prior
to data transfer operations, thereby avoiding computationally expensive
memory allocation operations during the data transfer process. Further, the
use of smaller data units allows for finer control by the client or peer storing the
data over the exact amount of bandwidth expended by each peer {o meet client
data unit requests during data transfer operations.

16

10

15

20

25

30

CA 02642158 2008-08-12

WO 2007/100509 PCT/US2007/004048

In addition to splitting 1005 the encoded data, the data header, and the
data structure into smaller data units, if erasure resilient coding is employed, an
additional layer of coding is used to provide increased redundancy in a typical
P2P environment where serving peers are inherently unreliable. In particular,
as described above, in one embodiment, if erasure resilient coding Is
determined to be appropriate for the data file, the data units are further divided
into a number of data blocks and an erasure resilient coding process 1010 is
used to encode the file.

The use of such coding 1010 ensures that one or more of the peers will
have the data blocks necessary to reconstruct particular data units while
simplifying the demand on the client to identify which of the peers contains the
necessary data. Further, in one embodiment, the erasure resilient coding keys
used by each serving peer 220 are automatically assigned to each peer by the
server 200. However, in another embodiment, each serving peer 220 simply
chooses an erasure resilient coding key at random. These keys are then
retrieved by the client 210 when each peer 220 is initially contacted by the
client.

Once the data file has been initially encoded 1000, split into data units
1005, and possibly further erasure coded 1010, the resulting data units or data
blocks are then distributed 1015 to the various peers 220. This distribution
1015 can be deliberate in the sense that the blocks or packets of the encoded
data are simply provided in whole or in part o a number of peers where it is

then cached or stored for future data transfer when called by a client who

wishes to retrieve the data.

Once the data has been distributed 1015 to the serving peers 220, the
client 210 then is ready to begin data requests to those peers in the case that
the client wishes to retrieve this data from storage. Further, as noted above,
the server 200 can also act as a peer 220 for the purposes of transferring data
to the client 210.

At this point, the client 210 begins a data transfer session by first
retrieving a list of available serving peers 220. This list is retrieved directly from

the server 200, from one of the peers 220, or by using a conventional

17

CA 02642158 2008-08-12
WO 2
007/100509 PCT/US2007/004048

l

distributed hash table (DHT) method for identifying po’cential serving peers.

Once the client 1010 has retrieved the list of peers, the client then connects to

each serving peer 220 and retrieves 1025 a list of available files from each

peer. Once the client 210 has retrieved the list of available files of each peer
5 220, the client then retrieves 1035 the data header and data structure of the

data to be transferred from one or more of the peers by requesting data units

corresponding to that information from one or more of the peers via a network

connection between the client and those peers.
The data header generally contains giobal information describing the

10 data, e.g., the number of channels in the data, the properties and
characteristics (audio sampling rate, video resolution/frame rate) of each

channel codecs used, author/copyright holder of the media, and so on.
Consequently, retrieval of the data header at the start of the data transfer
sessmn allows the client 220 to set up or initialize 1040 the necessary tools to

15 decode 1065 the subsequently received packets prior to receipt of those

packets during the data transfer session.
Further, after retrieving 1035 the data structure of the particular data, the

client analyzes that data structure and calculates data unit IDs 1045 of data
units of the transferred data that will need to be requested during the data

20 transfer process. The client 210 then requests those data units 1050, one by

one, from one or more of the peers 220.
Finally, once all of the data units constituting a particular data packet

have been retrieved in accordance with the client 210 request 1050, those data

packets are reassembled 1055 into the original data packet. Reassembled
25 data packets are then decoded 1060 and ¢an be restored 1065 on the client

210.

3.0 P2P Storage: Policies and Design Strategies

30 In addition to adjusting the ERC number of fragments based on the file
size to be stored in a P2P network, efficiency can also be improved. Various

embodiments of the adaptive coding storage system described herein are

18

10

15

20

25

CA 02642158 2008-08-12
WO 2007/100509 PCT/US2007/004048

designed to improve storage efficiency by employing certain strategies as are

described below. These strategies can be employed in conjunction with the
adaptive coding storage system or be employed In any P2P network.

3.1 P2P Storage Cost.

In this section, storing a file in a P2P network is compared to storing the
file directly in a “six nine” reliable server. One observes that the P2P solution
reduces the server bandwidth and cost, but requires the peer to Spehd more

bandwidth to distribute the file into the P2P storage. The overall use of
network bandwidth increases in P2P solution. The increase in the upload
bandwidth of the client can be considered a cost of the P2P storage system.
This cost for different peer reliabilities and file sizes is tabulated in Table 1.

Table 1 Cost of increased bandwidth usage in P2P.

Reliability | 10KB| 1 100M |
N

WW N B
|
—wow [w 17 [uss 022 o)

' i

One observes that the cost of using P2P storage is small if the peer

reliability is high and the file size is large. For example, storing 100MB of file to
peers with reliability of 99% only incurs 9% cost. However, when the peer
reliability is low and the file size is small, the cost can be significant.

3.2 P2P Storage Policies.

From Table 1, one may derive the following policy of using the P2P
storage cloud:.

a) One should use unreliable peers for storing large files, and use

reliable peers for storing small files. The cost to the P2P system will be smaller

19

10

15

20

25

30

CA 02642158 2008-08-12

WO 2007/100509 PCT/US2007/004048

if one allocates large files to unreliable peers, and assigns smaller files to
reliable peers.

b) One should use unreliable peers for storing static files, and use
reliable peers for storing dynamic files. One calls those files that do not
change as static, and calls those files that change constantly as dynamic.
Multiple small static files can be bundled into a large static file and stored in the
P2P storage cloud. The same strategy is not effective for dynamic files, as the
change of a single file requires that the entire combined file to be updated.

A corollary of this policy is that if one uses the P2P network to store the
state of an application, peér status information, and so on, one should divert
the information to the most reliable peers of the network. If one restricts that
the file that contains the state of the application only be placed in high reliable
peers (in essence, the high reliable peers will form a sub-network that
constitute the cores of the extended P2P network), one may greatly reduce this
replication ratio and the cost of updating the status file, and improve the
efficiency.

c) Unreliable peers should be allowed to distribute less, and reliable
peers should be allowed to distribute more.

d) Smaller files should be assigned a higher distribution cost, and larger
ﬁles should be assigned with a lower distribution cost.

Policies c) and d) are for P2P backup and retrieval applications, where a
peer may distribute content into the P2P storage cloud, and store content for
other peers. A balanced P2P storage network should let each peer balance its
contribution and benefit. In previous works it has been pointed out that
bandwidth is the primary resource Iin the P2P storage application. Let the
contribution of the peer be the amount of coded fragments that it receives and
stores for the other peers. Let the benefit of the peer be the amount of content
that it distributes into the P2P cloud. Taking into consideration that low
reliability leads to more redundant data storage, one should punish unreliable
peers so that they will be allowed to distribute less, and reward reliable peers
so that they will be allowed to distribute more. Such policy may have a positive
benefit in P2P economy, as it may encourage the user to keep the P2P

20

10

15

20

25

30

CA 02642158 2008-08-12

WO 2007/100509 PCT/US2007/004048

application online, thus improving the overall reliabilify of the P2P network and
reducing the replication ratio required.

One may also punish the distribution of a small file by assigning it with a
high distribution cost, requiring the peer to proportionally contribute more; and
reward the distribution of large file by assigning it with a low distribution cost,
letting the peer contribute proportionally less. As a corollary, P2P backup
applications should be designed to minimize backup frequency. Instead of
immediately updating the file right after its change, one may consider bundling
multiple changes into a large file, and updating it only once, say every
midnight, into the P2P storage cloud.

One embodiment of the adaptive coding storage system and method
that is designed around the above policies is shown in FIG. 11. As shown in
process action 1102, the reliability of each peer in the distributed or P2P
network is determined. A file to be distributed or stored is input (process action
1104). The size of the file is evaluated (process action 1106), and a
distribution cost is assigned to the file based on the expected storage
bandwidth in equation (7) (process action 1108). If the file is a large file, a
higher distribution cost can be assigned. If the file is small, the file can be
assigned a lower distribution cost. Based on the size of the file, the adaptive
coding storage system will choose peers with proper reliability to store the file
(process action 1110). That is, the peers whose reliability is below a given
threshold are used to store and distribute the large file, and peers whose
reliability is above a given threshold are used to store and distribute the small
file.

Another embodiment of the adaptive coding storage system and method
that is designed around the above policies is shown in FIG. 12. As shown in
process action 1202, the reliability of each peer in the distributed or P2P
network is determined. A file to be distributed or stored is input (process action
1204). The file is compared to the same file that was previously stored to
determin¢ if the file is static or dynamic (process action 1206). The first time
that the file is déposited, it is assumed that the file is dynamic. If frequent
changes to the file are observed, the file remains designated as dynamic. If it is

21

10

15

20

25

30

CA 02642158 2008-08-12

WO 2007/100509 PCT/US2007/004048

obser\red that the file does not change for a prolonged period of time, the file is
designated as static. The dynamic files are stored in highly reliable peers
(process action 1210). (Thus, at first, files will be stored in servers or highly -
reliable peers.) Once it is observed that the files do not change, and they
become static, these static files will be redistributed, and stored in lower
reliability peers.

It should be noted that the embodiments shown in FIGs. 11 and 12 can
be used alone or in combination in order to increase the overall efficiency and

reliability of a distributed or peer-to-peer network.

3.3 P2P Storage with Server Component Support.

If a server component is used in complement of the P2P network, one
may use P2P storage for large and static files, and use the server for smail,
dynamic files. Since it is the large files that consume most of the server
resource, P2P storage complements the server well.

As shown in FIG. 13, one embodiment of the adaptive coding storage
system and process employs P2P backup with server support. As shown in
FIG. 13, the dynamic files in the network are backed up to the server (process
action 1302). The client and/or the server may then automatically detect those
dynamic files that are not changed any more and are turning into static files
(process action 1304, 1306). These detected static files may then be bundled
together into a large file, as shown in process action 1308, and be distributed
with ERC into the P2P storage cloud (process action 1310). This effectively
increases the size of the file stored in the P2P cloud. Combined with ERC of a
large number of fragments, this may improve the efficiency.

The embodiment shown in FIG. 13 can be used alone or in combination
with the embodiments shown in FIGs. 11 and 12 to increase the overall
efficiency and reliability of a distributed or’peer-to-peer network. It should also
be noted that this embodiment can be used both with erasure resilient coding
and without it.

It should be noted that any or all of the aforementionead alternate

embodiments may be used in any combination desired to form additional

22

CA 02642158 2008-08-12
WO 2007/100509 PCT/US2007/004048

hybrid embodiments. Although the subject matier has been described in
language specific to structural features and/or methodological acts, it is to be
understood that the subject matter defined in the appended claims is not
necessarily limited to the specific features or acts described above. Rather, the
specific features and acts described above are disclosed as example forms of

implementing the claims.

23

10

15

20

25

CA 02642158 2014-04-10

51373-6

CLAIMS:

1. A computer-implemented process for encoding files to be stored in a
distributed network, comprising the process actions of:

calculating optimal file size ranges corresponding to different erasure
resilient coding (ERC) number of fragments, wherein each number of fragments is

the optimal number of fragments for a corresponding range of file sizes;
inputting a file of a given file size;

if the file size is smaller than the range of the file sizes for the smallest
ERC number of fragments of two, encoding the file without using erasure resilient

coding;

if the file size of the input file corresponds to a range of file sizes,
encoding the file using erasure resilient coding and the optimal number of fragments
corresponding to the file size range of the input file.

2. The computer-implemented process of Claim 1 further comprising the
process action of sending the encoded file to one or more peers in a distributed
network.

3. The computer-implemented process of Claim 1 further comprising
computing the humber of peers that the encoded file will be stored to according to

peer reliability and desired reliability of file content.

4. The computer-implemented process of Claim 1 wherein calculating
optimal file size ranges corresponding to different erasure resilient coding (ERC)

number of fragments, comprises the process actions of:

determining a boundary between different numbers of fragments as the

optimal file size suited for a particular ERC number of fragments.

24

10

15

20

CA 02642158 2014-04-10

51373-6

S. The computer-implemented process of Claim 1, further comprising the

process actions of:

obtaining a set of file fragments of the encoded file equal to or greater

than a number of fragments that the file is split into for encoding; and

decoding the encoded file fragments with erasure resilient decoding if

the file was erasure resilient coded to obtain a decoded version of the encoded file:

and

decoding the encoded fragments without erasure resilient decoding if

the file was not erasure resilient coded to obtain a decoded version of the encoded
file.

6. The computer-implemented process of Claim 1 wherein the erasure

resilient coding used in encoding the file is Reed Solomon coding.
7. The computer-implemented process of Claim 6 wherein:

If the file size less than approximately 10KB, erasure resilient coding is

not used:

If the file size is approximately 10KB to 33KB, the optimum number of
fragments Is two;

if the file size is approximately 33KB to 100KB, the optimum number of
fragments is four;

If the file size is approximately 100 KB to 310KB, the optimum number
of fragments is eight;

if the file size is approximately 310KB to 950KB, the optimum number of

fragments Is sixteen;

25

10

15

20

CA 02642158 2014-04-10

51373-6

if the file size is approximately 950KB to 2.9MB, the optimum number of
fragments is thirty two;

if the file size is approximately 2.9MB to 8.9 MB, the optimum number of

fragments is sixty four;

if the file size is approximately 8.9 MB to 26 MB, the optimum number of |

fragments is one hundred and twenty eight; and

if the file size is greater than approximately 26 MB, the optimum number
of fragments is two hundred and fifty six.

8. A computer-readable medium having computer-executable instructions
for performing the process recited in Claim 1.

0. A system for improving the storage reliability and efficiency of a peer-to-

peer network, comprising:
a general purpose computing device;

a computer program comprising program modules executable by the
general purpose computing device, wherein the computing device is directed by the

program modules of the computer program to,

determine the optimum number of fragments to encode a file of given
size with erasure resilient coding;

_if the optimum number of fragments to encode the file with erasure

resilient encoding is one, do not encode the file with erasure resilient coding; and

if the optimum number of fragments is larger than one, encode the file
by breaking the file into the optimum number of fragments and encoding the file with

erasure resilient coding.

26

10

15

20

CA 02642158 2014-04-10

51373-6

10. The system of Claim 9 further comprising a program moduie to compute
the number of peers that the encoded file fragments will be stored to according to

peer reliability and desired reliability of file content.

11. The system of Claim 10 further comprising a program module to
distribute the file encoded with erasure resilient coding to one or more peers on a
network.

12. The system of Claim 11 wherein the program module to distribute the

file comprises sub-modules to:

determine the reliability of each peer in the distributed network;
determine the size of the file;

and use one or more peers with proper reliability as determined by file

size to distribute the file.

13. The system of Claim 12 wherein the program module to distribute the

file comprises sub-modules to:

if the file is large, use peers whose reliability is below a given threshold

to distribute the large file; and

if the file is not large, use peers whose reliability is above a given
threshold to distribute the file.

14. The system of Claim 11 wherein the program module to distribute the

file comprises sub-modules to:
determine the reliability of each peer in the distributed network;
determine if the file is static:

if the file is static, use peers whose reliability is below a given threshold
to distribute the file: and

27

CA 02642158 2014-04-10

51373-6

if the file is not static, use peers whose reliability is above a given
threshold to distribute the file.

15. The system of Claim 11 wherein the program module to distribute the
file comprises sub-modules to:

S determine the reliability of each peer in the distributed network;
monitor changes of the file;

first distribute the file to more reliable peers;

If the file is observed not to change, redistribute the file to less reliable
peers.

10 186. The system of Claim 9 further comprising a program module to improve

efficiency of the distributed network using a server, further comprising sub-modules
to:

back up all dynamic files in the distributed network to the server;

periodically have peers and the server in the distributed network check
15 to see if the dynamic files backed up to the server have changed;

if the dynamic files have not changed, designate these files as static
and bundle them together into a large file; and

distribute the large file with erasure resilient coding to the distributed
hetwork.

20 17. The system of Claim 9 wherein the program module to determine the

optimum number of fragments to encode a file of a given size with erasure resilient
coding comprises sub-modules to.

28

CA 02642158 2014-04-10

51373-6

determine an optimum file size range for each possible erasure resilient
coding number of fragments, wherein each number of fragments is the optimum

number of fragments for the corresponding range;
determine into which file size range the size of an input file falls; and

5 use as the optimum number of fragments corresponding to the optimum

file size range into which the size of the input file falls.

18. A computer-implemented process for decoding an encoded file stored

in a distributed network, comprising:
using a computing device to perform the process actions of:

10 retrieving a set of fragments of an encoded file equal to or greater than

a number of fragments that were used to encode the file, wherein the file was erasure
resilient encoded with an optimum number of fragments for a given file size and
stored at a number of peers that was determined according to peer reliability and

desired reliability of file content; and

15 decoding the encoded fragments with erasure resilient decoding to

obtain a decoded version of the encoded file.

19. The computer-implemented process of Claim 18 wherein at least some

of the encoded fragments are retrieved from a storage medium of one or more peers
in the distributed network.

20 20. The computer-implemented process of Claim 18 wherein at least some
of the encoded fragments are retrieved from a storage medium of a server on the
distributed network.

21. The computer-implemented process of any one of Claims 1 to 7,
wherein inputting the file of the given size comprises inputting the file of the given

25 size from a set of files of different sizes.

29

10

15

CA 02642158 2014-04-10

51373-6

22. The computer-implemented process of any one of Claims 1 to 7 or 21
wherein the erasure resilient coding splits the input file into k original fragments, each
of which is a vector over a Galois Field GF(q), where q is the order of the field, and

where ERC encoded fragments are generated from the k original fragments.

23. The computer-readable medium of Claim 8 wherein inputting the file of
the given size comprises inputting the file of the given size from a set of files of

different sizes.

24 . The computer-readable medium of Claim 8 or Claim 23 wherein the
erasure resilient coding splits the input file into k original fragments, each of which is
a vector over a Galois Field GF(qg), where g Is the order of the field, and where ERC

encoded fragments are generated from the k original fragments.

25. The system of any one of Claims 9 to 17 wherein determining the
optimum number of fragments to encode the file of the given size comprises
determining the optimum number of fragments to encode the file of the given size

from a set of files of different sizes.

26. The system of any one of Claims 9 to 17 or 25 wherein the erasure
resilient coding splits the file of the given size into k original fragments, each of which
is a vector over a Galois Field GF(q), where g is the order of the field, and where

erasure resilient encoded fragments are generated from the k original fragments.

30

CA 02642158 2008-08-12

PCT/US2007/004048

WO 2007/100509

1/9

G8l SNVHOOUd
NOILVOIddV
310N

L Ol

vl
WILSAS

Syl
SWYHO0¥d

LSl

e

d31NdNOO e
S LONEN FiisSiiiissaian: P P
vl o -
MHOMLIN VIV IAIM P \

!

1 |

“ et =] |== o

¢ 0/ | 051 g "
SHOMLIN VHOOHd
vadY WO01 =EVANE T | It 30VAY3IN

AJOWNIN

JOV4d3LNI

LNdNI AJOWIN TOA-NON

MHOMLIN JOA-NON - ST1NAON
" 43SN s || 18VAONZY-NON oINAON
091 AR V15T snvuooud
i NOLLYO[MddV

|
|
:
’
¢
|
|
|
§
181 s 061
: Pl INTLSAS
“ ONILYHIdO
|
//// v | 3ovayan || FOVAEELN JOV4YILINI =T (VYY)
“ O3AIA Ivaddhdiddd olany (S)LINM — i o— — — —
HOLINOW : 1NdLNO ONISSIOONd —
€Cl
m soi
HILNHd : 071 -
. toescseosssoneneEceeTew TseeoveeeReeew l.l'l.ll" Pﬂ—‘ Asomv
061 Qg1 ' 0¢L e e m— —
/6l<d SHINVYACS (S)ANOHJOHDIN m AHOWIW NILSAS
’

X R X ¥ X X F X X N REFE XX N P N EE RN RSN YT Y I I I I IXIYYYYTY ™ Yy

WO 2007/100509

220

CA 02642158 2008-08-12

2/9

220

PCT/US2007/004048

WO 2007/100509

of peers replicated

Replication rati

pe) @ - - - e Ey— d----:----ﬂ‘~¢h.ﬂﬂﬂﬂﬁ- —0--".'-.-.---0‘.'--------I‘-..o.n-bojb-.---w-ta
» ¢

: , ; : ' :

¥))) ']

' /) ' l_L_: ! '

») L])) 3
1 l ' ’ ' 1 ' : ‘
10 —d-ﬂ'--‘J-.ﬂnﬂ-Hﬂtﬂﬂdﬁﬂﬂﬁ.t---ﬂn..)--uauﬂﬁﬁ‘-.-p-..-a.l.--p J--n.q.n.l.--.ﬁﬂ—-

CA 02642158 2008-08-12

3/9

. ¢ ’ [} ’ ’ » 4
) ¥ » b) ¥ ¢]
] b ¢ ' (]]] *
3 ; ') $ » 1 ? :
2 : . ¢]]] ' ’
10 L --ﬂ’--'ﬂ-‘vhﬂﬂb L B N N N W W ..--..-ﬁ“ﬂ..----*..-‘----' ---.-¢0-“-----t-*--ﬂﬁ--“
- - “""-.-ﬂ""---ﬂ' .------.r----ﬁh--‘-.--..-.t-----OQC‘vd-w--ﬂﬂw;-u-.----’--n---cul
adbadindia atndubafadeialadiadiedh Aol diadiadi i dill b oAb Al R e e L s T EI T S

[]
..'-----’---"----h'---‘-'d.-‘---hiln---ncuvk..non.Qﬂ-----pnn‘.-.--.w

[¥ ’ ’) ’ (]

ﬁb.-'-------.”--n-.. --’--'-----’-—v'--nl—"--w—.- MM DS DS M gy aa s

—:“00"---{'--0-----‘----0----’----.---‘ - eoa --..L#--Q “d.)ﬂ.---ﬂ--lﬁ&----'
» [»] »
e ww e w e n

-------4-—----.

-.------L..'-.--J'----"--*--Q.-..‘Lﬂﬁ‘-dd‘J-----*ﬂ‘ld-.-ﬁﬁ-q

? L] i ¢ I L i 3

I--‘---'-.--------;.ﬂﬂ"

. ’ ' ’ »
» ’ ’ ’
) | ¥]

- -w--‘--- - -

ww‘v."-l}‘---nwc-q

--.ﬂ‘-ﬂ-ﬁ-.-‘.‘ﬁﬂﬁ'.-—-"-ﬂ‘--—-----ﬁﬂﬁ-.-ﬂﬂ -‘---.na ﬂ-r.----- -l‘- l-n'---‘Qh-

-----v-o-u:---uu-u-o WA Ao asraaas s e e sd aawvovansieonas o oulwme e o - W w e
¥ | [4 [}
bl-..---v'--w---cﬁ'onhnhh..‘-p.--.--h"O-Q--..;nwanu..-.'a-aﬁut--c:-wwbhb--

’ ' 1 t) L ’ 1

h.-.-----’-bi -O.&U'---Qﬂ---r ----.Q-q------.~,~..~~.~-r.....'.q-p--a---'--

]] »])) ¢ I

[. ------- -la-.q.cp..--u-tn-p-.-nu-u-:-.-------:-.0.----J-.uo.---l.---.-..Juﬂnnu-—-I-----
| ¢ ’ 4
t ’) ' | | | | 1

[-- ----nu’uwdwdﬂﬂ w‘ ..Q----.‘.-Q.q--.-{----*.--‘-.----.-L-----.-J---.----] A d W gy W = wy -

’
3

-QQ'N--”Y..Q.---.r---“-—-'- ------- ‘*Q---‘--

L
L
- e
- an oy
- wwve

pre e Re- e w -v#-wﬁ-ﬁﬂﬁﬂ.-d--'----Qﬂb-

_-----Jl‘-ﬂ

anniinads A K K J ﬁ-- L A
L J

popmpr 4 4 v oy B

e K L K N J

b o u= W W

iy W _ - . W
_

, |
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
peer reliability

FIG. 3

T LS] L R e [

$ 1 ’) } ¥]

‘}.00-—)--------'-tiﬂﬂ-tctﬁHLQOOHD--J---......\.-----‘-&--g----q‘ S k—

}

2
10

i ’) |) ’ ’

‘_‘____1.___-_";\.! t t ’ {1y k=64
h..----s....-._:;h.\.}--------:--------:--------:------- — - — k=128}.
s E N ' ' le=256

- . - --Qooo-w’vﬁﬁﬂ---- & I S b b i e .---.----' ‘-..‘-“'----. ! :
% v & & - J'------.ﬁ:‘d---“ﬁkﬁh-ﬂ—--J-.-.’O--L----‘--J-----‘U%—: o e ki 16
----.-h. -w--w-w:—---uuh-:n..-----:----..--G.-------‘.....-.p—l lt-. }
“ Ll
.-.----'"\"ﬂ-‘dﬂﬂbﬂﬂﬁ*&—---OD‘J‘-------b-------:---.'--J ‘. '{" k=32 5

§
'
’
1
B
1
)
q
)
1
I
1
'
1
)
o
)
q
i
1
'
@
'
'
\
]
L
[
)
]
L
L]
-y
?
'
L)
$
¢
|
|
4

-
-

- .-
=

-

-ty mw

."-"’.L--).- -

?
1
"y » i W ')
0,-\3‘:-2\{- -----n--‘-\o'-dﬁﬂﬂ}-’.-1--:‘.-\.{.....}v-------%...*‘-w dﬁ.b--u-}nn;--n.-

:ll. . “p\ ‘ . L "\0 3 i ‘
ity tal D) n ' N : .
NP 1443) ; ’ £, ' ¢
e TR SRR > V- : : : : :
b 2 '] ' ' ¢

-
L)
oo "‘]':}.i
li.u‘..:.-'}'-j'..'-b.nwn ‘q}.‘:,c-toau-&-Q&‘---J---.----‘---—---.1000 JQH....&-.L«.«-----
- - OQ.Ea;’.&.r.E hﬁ*:-ﬂ”*.\}?O‘Cﬂblﬂbbiﬁﬁﬁﬂb---bﬂh-b.'-*‘-----
- -Qﬂﬁ‘.‘-- \’ .--¢-.u u-n--.-‘r---.--otcng---.p..- - o b b ak b ad
Lewm o o op @ a0 of

- e e Em P “n.i-" .*;‘_ b--ﬂ'ﬁhhﬁ zz-‘-‘pr-o-.--:-..-----:-.-t-—--:wwpwncw-

' { ARl T : AN, o b b b
d--&n-n‘n-.\ ‘ l:ulriu' nn n.nﬁdw-;"#} -2:---—--5--&:‘-------q--—-wq-o:onﬂ\—\u-

'{- ! \ 1 4
--------1’..---*_\‘."\ "‘qz;—?"igh --\-‘-‘.—---rﬂ)’xc &,--.lﬁ--"‘-----“ﬁ}vhw-dd -y

} iu 4
P ooy m-mm .-.u-u---. ..-*--::'k."“ 3 144‘ ‘ _-- -n= .Et..’,kz 4

) ¥
1 '

- Ay a ﬁ-—r-d-

ey v W B e e

L

ek AF ab O 4 4 A

©
b
o
A
o
w

04 05 08 0.7 0.8 0.9
Peer Reliability

D e Y B S e S s

’ b

-‘--\uwn'bn-th—dw.JA.------‘QQQQ.‘.”“‘.&*-. ..-J-.-.—.--‘------ -

4
¥
S S : : : : :
|

[| ’

L) ' i ¢ [}

™~ . v ""-.\l ')) b
10 1“.0.---\9' - - JM'“I-“..-.D-H-L ..Q...Jq.--qu.»«.l-...--u.
Mi' ---“'“.U-- - L N S e AR W EE maeaE R ke w ajerw == - R R E E LT
-:_r:wb-- H.---Q‘Qr-nwbnw Y oweasmam e aepFPFiroqUTeoaTaersjgaAe e asweaa
”.00"‘ clh—.‘....‘q‘dc‘nvﬂﬁwﬁdhr.—.\-‘&- -.---.-‘--ﬂ--.--‘itqbbvw.
4.-Q-Vg'u“..-----.ﬂ'.‘q--ﬂ—dw'-ﬁ.uuﬁﬂ ol -.-,-.-.-.;.,-----.-:
iﬂ.-.h‘tt.?‘r---.--‘-lll-ww.q'I.Q:QQQQ.--LI‘.-....-_n-h“.‘--'..‘--.-u.ﬂo

--a-f';..--- - 11.’1'0#.0.-0b,n-n‘_ﬂnh.‘-------cqnt-‘-..- h
. - . . e
y (12 W lt.t.::: oy

hl ‘~‘- : z!-.}‘f.v M.!"!}:"h’ Y . = e - —
- ".'.7‘:-*‘-7-."---'!-5-’3'-5%1*. ----;-" & ..%rg------- '--------:}---‘--“'--

e ! '~~....“_: I‘*'*‘H-}«I.H,.H R u’“'! E..l,.!m.a
Reys. PR WL CET
sssatkslofpd it &;,;3:::::.:--?Hr;..ﬂai;::::: PO P I::.qu“""““

---"’---.--Ai - — v

--.‘.- -nl—--..-.. _-u-h-'——---"" ““ ‘ '-‘“’-V

e o g by - - ‘--32 Bt e ee aaa "Twewe - Q-----. -t
-.-----&v:d-dza-d-vg;}.. :‘fziaunn“:.-’-‘.‘.::.----:-:---- 3—; L .::DQOOH-O:-‘:I

-.-----.:.-p‘\h-‘h.u{-.-&ﬁ----t-- “alfr-"--‘.5“”“":*'-----"r"-‘-ﬁ'{“‘r{--“"

|
|
{
1
‘ >
[
)

n--------roqo--u - nhnunuctncna-nnuu:-- ;“t}:f:‘-q----.-‘ 2::--.===::.~--.-1-.--t’}:_f .
---------:—-0--ﬂﬂd-:uﬂ-bv:ﬁw‘:_br:‘::#---'rq-----.-l-u- nx -r' ---n--h--:-:-\&«- r»::onnun
b-b.-..---:--------0:“&“'.-»ﬂ:ﬁww?:m:‘l:‘:“.-c---;ﬂnﬂﬂ-dq LXK “.--’.r‘?:(.k.l’} f",} .--u‘:.-‘-:-
3 . : : N— : ‘ TRy
]) 3 ' H ’ 0
"0 a—----wu--:-.-»-d-----:------o.:-----Qnﬁ:---oo---c:-----oﬁo’--_«-\-u-u-q-:-q»::::: ::::::é

..-.“.-......-‘---)-‘------I.---u._. - e wvTe wvEwes LB B B B) - e & - s -
Gy v oS - W W a®ma®s N - w w ey e -*..¢--D-.----‘.I----”--. -

wcow'---...w.w-b-- -.-..-.y‘..u.w.-p P YT EEER P -.---.-.k.-.p.
-.-.G.--"ww--ﬁ--..:w.--u..-. -.--...w. FY N N N .d.-----‘.l----‘p--‘.--nup..

H--.-...r.--.ﬂﬂﬂi‘ﬁh-DIQCQ'CQQO-.--"d.---lbaa‘-.--o-q-..‘--...---.r.nppuuuu-‘-..

hQ--D--.:Q---.-.-'{HOWD--.O}.0-.-.--L““J'ﬂﬂﬂ.....*.".---Qt*.dpﬂ'ﬂ‘]-.--*‘m

-.-.ﬂwhh.ﬂ*...---*---.----*-.---- --L - & e -..t{nnnuhnpulu.u.t.w- - - .“Qb‘ﬂ“ﬁ.ﬂnd o

" 4 t) ' [i ¥
......--‘---*.~..'{--l’.‘. - - .‘ ..-.nunnb-----l-J-----d---' S N N g N app——
¥ ’

L] L)
| [|

—r N

ST EEX
d‘*‘

10, — 1 i
0.1 0.2 0.3 0.4 0. 5 0.6 0.7 0.8 0.9
Peer Reliability

FIG. 5

PCT/US2007/004048

WO 2007/100509

CA 02642158 2008-08-12

PCT/US2007/004048

k=256

P Y AN A A X0 O

4
10 k=128

i T WUy ——

k=64 . e
5 [T LT T o erspil Lpih 4 Vg T
X k=32 e oty erg) AL Tpai S TRREH GERIEE AE
o B S s cuxme el s (AR A £ R AL ELL AL DaskTygh T
o k=16 Aebotes el ek -{:}"F}ft‘.i*.iizl’jﬁ'}:lﬁ31.}:*‘1}{' i N
ArHAPE | FR phr i R ' LS
- ™ . 4 W o=
s =8 . P P "\-'“,u"’ \.0 “ ‘t"' - o8
5 10 PR TR L Ll AR o - ¢ rs :m

(al} .
k= PO 4 r\ t:} * g 9:0 ‘.: .:r.l) (‘.
bt et ‘' - 'Y eyl . . ':v. o ‘}:q(i a . : f';:p * ‘J‘.\ {‘xo' :,n:’
(b T KN Ry Ut fen s TS S M gy & 0 i R
ko

101 WA I P NP i A Y "\/\A"”'" \AA/\ _,,..../'V-\j d \JV ‘

k=1

100 1 o — e 1 —
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Peer Reliability

FIG. 6

Sener
Q P2P, non ERC
“““““ P2P, ERC k=8

3
rye8
+ P2P, ERC k=32 _o0°
P2P, ERC k=256 et

* 1 -.f-f. ’ _,v"' et ':
& 10° I_ ___P2P, adaptive ERC PR U Sk
S e Lokl
i ‘r‘f} - ‘..o"' 15_:"- ¢
& Rl »*I}.i“*"-l' -~
] . 1."‘7{:0 I & —~

L AT Ll ‘.-". T Oh 2l
g 10 $ Teaaq B eers ¥ “‘:’ ‘:.io.:}"" “:"5‘-1..i"
£ i1 2 e ok
R ar csc*r'y th_+-54"1
& AR -
O B A S M -~
& 03 }Q‘;}{B‘{": NS S /
@ 10 F-crmonst -
_
-~
2 e
10 P
~ //
1 -~
10 : NP R Y ad

1 3 4
10 10 10 10
File size (KB)

FIG. 7

10

Server
Y P2P, non ERC
""""""" P2P, ERC k=8
+ P2P, ERC k=32
- e PP, ERC k=256
' P2P, adaptive ERC

3
10

Bandwidth usage (KB)

10 10 10° 10" 10
File size (KB)

FIG. 8

CA 02642158 2008-08-12
WO 2007/100509 PCT/US2007/004048

5/9

START ,

CALCULATE THE OPTIMAL
FILE SIZE RANGES FOR
DIFFERENT ERASURE
RESILIENT CODING (ERC)
FRAGMENT SIZES.

002

208

~ 904

y FILE SIZE
Y CORRESPONDS TO
ERC FILE SIZE
RANGE?

NO ENCODE THE FILE

WITHOUT USING
ERC.

INPUT FILE

OF A GIVEN
SIZE.

910

ENCODE THE FILE
USING ERC WITH
THE ERC
FRAGMENT SIZE
CORRESPONDING
TO THE INPUT FILE
SIZE RANGE.

EEND

CA 02642158 2008-08-12

WO 2007/100509

DATA STORAGE TO NETWORK
| SERVER 200 OR PEER 220

ENCODE MEDIA

1000 005
SPLIT PACKETS
INTO DATA UNITS

DETERMINE
OPTIMUM ERC
FRAGMENT SIZE FOR
FILE SIZE AND
ENCODE FILE VIA
ERC IF FILE SIZE

CORRESPONDS TO

ERC CODING
Y10~ 1015

DISTRIBUTE
CODED DATA

R . .
(s g
L &

SERVING PEERS

FIG. 10

PCT/US2007/004048

6/9

DATA RETRIEVAL FROM NETWORK

CSTART)

I RETRIEVE LIST OF

PEERS
1025

CONNECT TO EACH
PEER, RETRIEVE

DATA AVAILABILITY
FROM EACH PEER

~—— 1035 1040

RETRIEVE DATA
HEADER AND DATA

INITIALIZE

STRUCTURE FROM DECODER PER
ONE OR MORE DATA HEADER
PEERS

104

ANALYZE
DATA STRUCTURE TO
COMPUTE
DATA UNIT IDs

REQUEST
DATA UNITS FROM

SPECIFIC PEERS

o

ASSEMBLE

DATA UNITS INTO
'DATA PACKETS

DECODE DATA
PACKETS

1060

STORE
DECODED
DATA PACKETS

CLIENT PEER 210 1065

WO 2007/100509

FIG. 11

CA 02642158 2008-08-12
PCT/US2007/004048

7/9

DETERMINE THE
RELIABILITY OF EACH
PEER IN THE
DISTRIBUTED NETWORK.

INPUT FILE TO BE
DISTRIBUTED.
| 1106

FILE SIZE CALCULATION.

",___Vﬁos

¢ CALCULATEA |
s DISTRIBUTION COST. 8

‘---.--

USE PEERS WITH

PROPER RELIABILITY |-1110
BASED ON FILE SIZE
TO STORE THE FILE.

CA 02642158 2008-08-12
WO 2007/100509 PCT/US2007/004048

8/9

DETERMINE THE
RELIABILITY OF EACH
PEER IN THE
DISTRIBUTED NETWORK.

INPUT FILE TO BE ‘
DISTRIBUTED.

FIG. 12

1204

1206

MONITOR FREQUENCY OF
CHANGE OF THE FILE, THE
FILE IS STATIC IF REMAINS
UNCHANGED FOR A LONG
TIME, THE FILE IS DYNAMIC

1210 IF FREQUENTLY CHANGED.

1208

BUNDLE STATIC
FILES, AND USE
PEERS WITH LOWER
RELIABILITY IS TO
STORE THE
BUNDLED STATIC
FILES.

YES

STORE FILES IN HIGH
RELIABLE PEERS

END

CA 02642158 2008-08-12
WO 2007/100509 PCT/US2007/004048

9/9

START
1302
BACK UP DYNAMIC FILES IN
NETWORK TO SERVER.

1304

PEERS AND SERVER CHECK TO
SEE IF THE DYNAMIC FILES IN
SERVER STORAGE HAVE CHANGED
RECENTLY.

1306

DYNAMIC
FILES HAVE NOT
CHANGED
RECENTLY?

YES 1308

DESIGNATE NON-CHANGED
DYNAMIC FILES AS STATIC AND
BUNDLE TOGETHER INTO A LARGE
FILE.

DISTRIBUTE LARGE FILE WITH ERC
CODING INTO THE DISTRIBUTED
NETWORK.

FIG. 13

START ‘

CALCULATE THE OPTIMAL 902
FILE SIZE RANGES FOR
DIFFERENT ERASURE

RESILIENT CODING (ERC)
FRAGMENT SIZES.

2908

004

FILE SIZE
'CORRESPONDS TO
ERC FILE SIZE
RANGE?

ENCODE THE FILE
WITHOUT USING
ERC.

INPUT FILE
OF A GIVEN

SIZE.

ENCODE THE FILE
USING ERC WITH
THE ERC
FRAGMENT SIZE
CORRESPONDING
TO THE INPUT FILE
SIZE RANGE.

	Page 1 - abstract
	Page 2 - abstract
	Page 3 - abstract
	Page 4 - abstract
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - claims
	Page 31 - claims
	Page 32 - claims
	Page 33 - claims
	Page 34 - claims
	Page 35 - claims
	Page 36 - claims
	Page 37 - drawings
	Page 38 - drawings
	Page 39 - drawings
	Page 40 - drawings
	Page 41 - drawings
	Page 42 - drawings
	Page 43 - drawings
	Page 44 - drawings
	Page 45 - drawings
	Page 46 - abstract drawing

