

PATENT SPECIFICATION

(11)

1 589 378

1 589 378

- (21) Application No. 45292/77 (22) Filed 31 Oct. 1977
 (31) Convention Application Nos.
 7 612 079 (32) Filed 1 Nov. 1976
 7 701 012 1 Feb. 1977
 7 701 013 1 Feb. 1977 in
 (33) Netherlands (NL)
 (44) Complete Specification published 13 May 1981
 (51) INT. CL.³ F16D 9/00
 (52) Index at acceptance
 F2X 2

(54) IMPROVEMENTS IN OR RELATING TO OVERLOAD COUPLINGS

(71) We, C. VAN DER LELY N.V., of 10, Weverskade, Maasland, The Netherlands, a Dutch Limited Liability Company, do hereby declare the invention, for which we pray that a patent may be granted to us, and the method by which it is to be performed, to be particularly described in and by the following statement:—

This invention relates to overload couplings.

According to present invention there is provided an overload coupling comprising two members which are rotatable about a common axis and at least one frangible element which in normal operation interconnects the two members for rotation together in at least one direction, fracture of the frangible element permitting relative rotation between the members, advancement means being provided for advancing the remaining part of the frangible element, after such fracture, to re-interconnect the members, the construction of the coupling being such that re-interconnection of the coupling members can take place during relative rotation of the coupling members only when the relative speed of rotation of the coupling members is below a predetermined value.

Embodiments of the present invention provide overload couplings which match the desired efficiency of the use of modern machines and are particularly suitable for use in machine locations to which access is difficult for replacing a fractured frangible element, for example in large agricultural machines.

For a better understanding of the present invention and to show how it may be carried into effect, reference will now be made, by way of example only, to the accompanying drawings, in which:

Figure 1 is an elevational view partly in cross-section of a first embodiment of an overload coupling;

Figure 2 is an elevational view taken in the direction of the arrow II in Figure 1;

Figure 3 is an elevational view of part 50 of a second embodiment of an overload

coupling;

Figure 4 is a sectional view taken on the line IV-IV in Figure 3;

Figure 5 is a sectional view taken on the line V-V in Figure 3;

Figure 6 is an elevational view partly in cross-section of a third embodiment of an overload coupling;

Figure 7 is an elevational view taken in the direction of the arrow VII in Figure 6;

Figure 8 shows an alternative construction for part of the coupling of Figure 6;

Figure 9 is a sectional view taken on the line IX-IX in Figure 8;

Figure 10 is an elevational view of a fourth embodiment of an overload coupling;

Figure 11 is an elevational view taken in the direction of the arrow XI in Figure 10;

Figure 12 is a sectional view taken on the line XII-XII in Figure 11;

Figure 13 is a sectional view of a fifth embodiment of an overload coupling;

Figure 14 is an elevational view taken in the direction of the arrow XIV in Figure 13;

Figure 15 is a sectional view taken on the line XV-XV in Figure 14;

Figure 16 is an elevational view taken on the line XVI-XVI in Figure 13;

Figure 17 shows separately a component suitable for use in the coupling of Figures 13 to 16;

Figure 18 shows an alternative construction for part of the overload coupling of Figure 13;

Figure 19 is a sectional view of a sixth embodiment of an overload coupling;

Figure 20 is a sectional view taken on the line XX-XX in Figure 19;

Figure 21 is an elevational view of part of the coupling of Figure 19;

Figure 22 is a sectional view taken on the line XXII-XXII in Figure 21;

Figure 23 is a sectional view of part of a seventh embodiment of an overload coupling;

Figure 24 is a sectional view taken on 100

55

65

75

80

85

90

95

- the line XXIV-XXIV in Figure 23;
- Figure 25 is a sectional view of an eighth embodiment of an overload coupling;
- 5 Figure 26 is an elevational view taken in the direction of the arrow XXVI in Figure 25;
- Figure 27 is a sectional view of a ninth embodiment of an overload coupling;
- 10 Figure 28 is an elevational view taken in the direction of the arrow XXVIII in Figure 27;
- Figure 29 is a sectional view of part of a tenth embodiment of an overload coupling;
- 15 Figure 30 is a sectional view taken on the line XXX-XXX in Figure 29; and
- Figure 31 is a sectional view of part of an eleventh embodiment of an overload coupling.
- The overload coupling shown in Figure 1 comprises a coupling member 1, which is connected in this embodiment in a manner not shown with a universal shaft.
- 20 25 The coupling member 1 comprises a hollow shaft 2 which is rigidly connected near one end to a coupling plate 3 extending for some distance in a radial direction. The plate 3 extends outwardly in the shape 30 of a tag, as shown in the elevational view of Figure 2, and near its end remote from the shaft 2 it has a width substantially corresponding to one third of the diameter of the shaft 2. To the end of the coupling 35 plate 3 remote from the shaft 2 is welded a ring 4 extending axially of the shaft 2 away from the plate 3. The shaft 2 is rotatable about a rotary axis 2A. The face of the ring 4 remote from the rotary 40 axis is provided with a connecting arrangement comprising a holder 5 containing a frangible connecting element 7. The holder 5 extends away from the ring 4 in a radial direction to the side away from the axis 2A. The holder 5 comprises a cylindrical sleeve. The frangible element 7 comprises a shear pin having a plurality of weakened, breakable zones. The outermost end of the shear pin 7 is received in an annular 45 50 seat 8 having, at the side remote from the shear pin, an abutment surface for a helical compression spring 9 extending from the seat 8 to near the outermost end of the holder 5. The outermost end of the spring 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150 155 160 165 170 175 180 185 190 195 200 205 210 215 220 225 230 235 240 245 250 255 260 265 270 275 280 285 290 295 300 305 310 315 320 325 330 335 340 345 350 355 360 365 370 375 380 385 390 395 400 405 410 415 420 425 430 435 440 445 450 455 460 465 470 475 480 485 490 495 500 505 510 515 520 525 530 535 540 545 550 555 560 565 570 575 580 585 590 595 600 605 610 615 620 625 630 635 640 645 650 655 660 665 670 675 680 685 690 695 700 705 710 715 720 725 730 735 740 745 750 755 760 765 770 775 780 785 790 795 800 805 810 815 820 825 830 835 840 845 850 855 860 865 870 875 880 885 890 895 900 905 910 915 920 925 930 935 940 945 950 955 960 965 970 975 980 985 990 995 1000 1005 1010 1015 1020 1025 1030 1035 1040 1045 1050 1055 1060 1065 1070 1075 1080 1085 1090 1095 1100 1105 1110 1115 1120 1125 1130 1135 1140 1145 1150 1155 1160 1165 1170 1175 1180 1185 1190 1195 1200 1205 1210 1215 1220 1225 1230 1235 1240 1245 1250 1255 1260 1265 1270 1275 1280 1285 1290 1295 1300 1305 1310 1315 1320 1325 1330 1335 1340 1345 1350 1355 1360 1365 1370 1375 1380 1385 1390 1395 1400 1405 1410 1415 1420 1425 1430 1435 1440 1445 1450 1455 1460 1465 1470 1475 1480 1485 1490 1495 1500 1505 1510 1515 1520 1525 1530 1535 1540 1545 1550 1555 1560 1565 1570 1575 1580 1585 1590 1595 1600 1605 1610 1615 1620 1625 1630 1635 1640 1645 1650 1655 1660 1665 1670 1675 1680 1685 1690 1695 1700 1705 1710 1715 1720 1725 1730 1735 1740 1745 1750 1755 1760 1765 1770 1775 1780 1785 1790 1795 1800 1805 1810 1815 1820 1825 1830 1835 1840 1845 1850 1855 1860 1865 1870 1875 1880 1885 1890 1895 1900 1905 1910 1915 1920 1925 1930 1935 1940 1945 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020 2025 2030 2035 2040 2045 2050 2055 2060 2065 2070 2075 2080 2085 2090 2095 2100 2105 2110 2115 2120 2125 2130 2135 2140 2145 2150 2155 2160 2165 2170 2175 2180 2185 2190 2195 2200 2205 2210 2215 2220 2225 2230 2235 2240 2245 2250 2255 2260 2265 2270 2275 2280 2285 2290 2295 2300 2305 2310 2315 2320 2325 2330 2335 2340 2345 2350 2355 2360 2365 2370 2375 2380 2385 2390 2395 2400 2405 2410 2415 2420 2425 2430 2435 2440 2445 2450 2455 2460 2465 2470 2475 2480 2485 2490 2495 2500 2505 2510 2515 2520 2525 2530 2535 2540 2545 2550 2555 2560 2565 2570 2575 2580 2585 2590 2595 2600 2605 2610 2615 2620 2625 2630 2635 2640 2645 2650 2655 2660 2665 2670 2675 2680 2685 2690 2695 2700 2705 2710 2715 2720 2725 2730 2735 2740 2745 2750 2755 2760 2765 2770 2775 2780 2785 2790 2795 2800 2805 2810 2815 2820 2825 2830 2835 2840 2845 2850 2855 2860 2865 2870 2875 2880 2885 2890 2895 2900 2905 2910 2915 2920 2925 2930 2935 2940 2945 2950 2955 2960 2965 2970 2975 2980 2985 2990 2995 3000 3005 3010 3015 3020 3025 3030 3035 3040 3045 3050 3055 3060 3065 3070 3075 3080 3085 3090 3095 3100 3105 3110 3115 3120 3125 3130 3135 3140 3145 3150 3155 3160 3165 3170 3175 3180 3185 3190 3195 3200 3205 3210 3215 3220 3225 3230 3235 3240 3245 3250 3255 3260 3265 3270 3275 3280 3285 3290 3295 3300 3305 3310 3315 3320 3325 3330 3335 3340 3345 3350 3355 3360 3365 3370 3375 3380 3385 3390 3395 3400 3405 3410 3415 3420 3425 3430 3435 3440 3445 3450 3455 3460 3465 3470 3475 3480 3485 3490 3495 3500 3505 3510 3515 3520 3525 3530 3535 3540 3545 3550 3555 3560 3565 3570 3575 3580 3585 3590 3595 3600 3605 3610 3615 3620 3625 3630 3635 3640 3645 3650 3655 3660 3665 3670 3675 3680 3685 3690 3695 3700 3705 3710 3715 3720 3725 3730 3735 3740 3745 3750 3755 3760 3765 3770 3775 3780 3785 3790 3795 3800 3805 3810 3815 3820 3825 3830 3835 3840 3845 3850 3855 3860 3865 3870 3875 3880 3885 3890 3895 3900 3905 3910 3915 3920 3925 3930 3935 3940 3945 3950 3955 3960 3965 3970 3975 3980 3985 3990 3995 4000 4005 4010 4015 4020 4025 4030 4035 4040 4045 4050 4055 4060 4065 4070 4075 4080 4085 4090 4095 4100 4105 4110 4115 4120 4125 4130 4135 4140 4145 4150 4155 4160 4165 4170 4175 4180 4185 4190 4195 4200 4205 4210 4215 4220 4225 4230 4235 4240 4245 4250 4255 4260 4265 4270 4275 4280 4285 4290 4295 4300 4305 4310 4315 4320 4325 4330 4335 4340 4345 4350 4355 4360 4365 4370 4375 4380 4385 4390 4395 4400 4405 4410 4415 4420 4425 4430 4435 4440 4445 4450 4455 4460 4465 4470 4475 4480 4485 4490 4495 4500 4505 4510 4515 4520 4525 4530 4535 4540 4545 4550 4555 4560 4565 4570 4575 4580 4585 4590 4595 4600 4605 4610 4615 4620 4625 4630 4635 4640 4645 4650 4655 4660 4665 4670 4675 4680 4685 4690 4695 4700 4705 4710 4715 4720 4725 4730 4735 4740 4745 4750 4755 4760 4765 4770 4775 4780 4785 4790 4795 4800 4805 4810 4815 4820 4825 4830 4835 4840 4845 4850 4855 4860 4865 4870 4875 4880 4885 4890 4895 4900 4905 4910 4915 4920 4925 4930 4935 4940 4945 4950 4955 4960 4965 4970 4975 4980 4985 4990 4995 5000 5005 5010 5015 5020 5025 5030 5035 5040 5045 5050 5055 5060 5065 5070 5075 5080 5085 5090 5095 5100 5105 5110 5115 5120 5125 5130 5135 5140 5145 5150 5155 5160 5165 5170 5175 5180 5185 5190 5195 5200 5205 5210 5215 5220 5225 5230 5235 5240 5245 5250 5255 5260 5265 5270 5275 5280 5285 5290 5295 5300 5305 5310 5315 5320 5325 5330 5335 5340 5345 5350 5355 5360 5365 5370 5375 5380 5385 5390 5395 5400 5405 5410 5415 5420 5425 5430 5435 5440 5445 5450 5455 5460 5465 5470 5475 5480 5485 5490 5495 5500 5505 5510 5515 5520 5525 5530 5535 5540 5545 5550 5555 5560 5565 5570 5575 5580 5585 5590 5595 5600 5605 5610 5615 5620 5625 5630 5635 5640 5645 5650 5655 5660 5665 5670 5675 5680 5685 5690 5695 5700 5705 5710 5715 5720 5725 5730 5735 5740 5745 5750 5755 5760 5765 5770 5775 5780 5785 5790 5795 5800 5805 5810 5815 5820 5825 5830 5835 5840 5845 5850 5855 5860 5865 5870 5875 5880 5885 5890 5895 5900 5905 5910 5915 5920 5925 5930 5935 5940 5945 5950 5955 5960 5965 5970 5975 5980 5985 5990 5995 6000 6005 6010 6015 6020 6025 6030 6035 6040 6045 6050 6055 6060 6065 6070 6075 6080 6085 6090 6095 6100 6105 6110 6115 6120 6125 6130 6135 6140 6145 6150 6155 6160 6165 6170 6175 6180 6185 6190 6195 6200 6205 6210 6215 6220 6225 6230 6235 6240 6245 6250 6255 6260 6265 6270 6275 6280 6285 6290 6295 6300 6305 6310 6315 6320 6325 6330 6335 6340 6345 6350 6355 6360 6365 6370 6375 6380 6385 6390 6395 6400 6405 6410 6415 6420 6425 6430 6435 6440 6445 6450 6455 6460 6465 6470 6475 6480 6485 6490 6495 6500 6505 6510 6515 6520 6525 6530 6535 6540 6545 6550 6555 6560 6565 6570 6575 6580 6585 6590 6595 6600 6605 6610 6615 6620 6625 6630 6635 6640 6645 6650 6655 6660 6665 6670 6675 6680 6685 6690 6695 6700 6705 6710 6715 6720 6725 6730 6735 6740 6745 6750 6755 6760 6765 6770 6775 6780 6785 6790 6795 6800 6805 6810 6815 6820 6825 6830 6835 6840 6845 6850 6855 6860 6865 6870 6875 6880 6885 6890 6895 6900 6905 6910 6915 6920 6925 6930 6935 6940 6945 6950 6955 6960 6965 6970 6975 6980 6985 6990 6995 7000 7005 7010 7015 7020 7025 7030 7035 7040 7045 7050 7055 7060 7065 7070 7075 7080 7085 7090 7095 7100 7105 7110 7115 7120 7125 7130 7135 7140 7145 7150 7155 7160 7165 7170 7175 7180 7185 7190 7195 7200 7205 7210 7215 7220 7225 7230 7235 7240 7245 7250 7255 7260 7265 7270 7275 7280 7285 7290 7295 7300 7305 7310 7315 7320 7325 7330 7335 7340 7345 7350 7355 7360 7365 7370 7375 7380 7385 7390 7395 7400 7405 7410 7415 7420 7425 7430 7435 7440 7445 7450 7455 7460 7465 7470 7475 7480 7485 7490 7495 7500 7505 7510 7515 7520 7525 7530 7535 7540 7545 7550 7555 7560 7565 7570 7575 7580 7585 7590 7595 7600 7605 7610 7615 7620 7625 7630 7635 7640 7645 7650 7655 7660 7665 7670 7675 7680 7685 7690 7695 7700 7705 7710 7715 7720 7725 7730 7735 7740 7745 7750 7755 7760 7765 7770 7775 7780 7785 7790 7795 7800 7805 7810 7815 7820 7825 7830 7835 7840 7845 7850 7855 7860 7865 7870 7875 7880 7885 7890 7895 7900 7905 7910 7915 7920 7925 7930 7935 7940 7945 7950 7955 7960 7965 7970 7975 7980 7985 7990 7995 8000 8005 8010 8015 8020 8025 8030 8035 8040 8045 8050 8055 8060 8065 8070 8075 8080 8085 8090 8095 8100 8105 8110 8115 8120 8125 8130 8135 8140 8145 8150 8155 8160 8165 8170 8175 8180 8185 8190 8195 8200 8205 8210 8215 8220 8225 8230 8235 8240 8245 8250 8255 8260 8265 8270 8275 8280 8285 8290 8295 8300 8305 8310 8315 8320 8325 8330 8335 8340 8345 8350 8355 8360 8365 8370 8375 8380 8385 8390 8395 8400 8405 8410 8415 8420 8425 8430 8435 8440 8445 8450 8455 8460 8465 8470 8475 8480 8485 8490 8495 8500 8505 8510 8515 8520 8525 8530 8535 8540 8545 8550 8555 8560 8565 8570 8575 8580 8585 8590 8595 8600 8605 8610 8615 8620 8625 8630 8635 8640 8645 8650 8655 8660 8665 8670 8675 8680 8685 8690 8695 8700 8705 8710 8715 8720 8725 8730 8735 8740 8745 8750 8755 8760 8765 8770 8775 8780 8785 8790 8795 8800 8805 8810 8815 8820 8825 8830 8835 8840 8845 8850 8855 8860 8865 8870 8875 8880 8885 8890 8895 8900 8905 8910 8915 8920 8925 8930 8935 8940 8945 8950 8955 8960 8965 8970 8975 8980 8985 8990 8995 9000 9005 9010 9015 9020 9025 9030 9035 9040 9045 9050 9055 9060 9065 9070 9075 9080 9085 9090 9095 9100 9105 9110 9115 9120 9125 9130 9135 9140 9145 9150 9155 9160 9165 9170 9175 9180 9185 9190 9195 9200 9205 9210 9215 9220 9225 9230 9235 9240 9245 9250 9255 9260 9265 9270 9275 9280 9285 9290 9295 9300 9305 9310 9315 9320 9325 9330 9335 9340 9345 9350 9355 9360 9365 9370 9375 9380 9385 9390 9395 9400 9405 9410 9415 9420 9425 9430 9435 9440 9445 9450 9455 9460 9465 9470 9475 9480 9485 9490 9495 9500 9505 9510 9515 9520 9525 9530 9535 9540 9545 9550 9555 9560 9565 9570 9575 9580 9585 9590 9595 9600 9605 9610 9615 9620 9625 9630 9635 9640 9645 9650 9655 9660 9665 9670 9675 9680 9685 9690 9695 9700 9705 9710 9715 9720 9725 9730 9735 9740 9745 9750 9755 9760 9765 9770 9775 9780 9785 9790 9795 9800 9805 9810 9815 9820 9825 9830 9835 9840 9845 9850 9855 9860 9865 9870 9875 9880 9885 9890 9895 9900 9905 9910 9915 9920 9925 9930 9935 9940 9945 9950 9955 9960 9965 9970 9975 9980 9985 9990 9995 9999 10000 10005 10010 10015 10020 10025 10030 10035 10040 10045 10050 10055 10060 10065 10070 10075 10080 10085 10090 10095 10099 10100 10101 10102 10103 10104 10105 10106 10107 10108 10109 10110 10111 10112 10113 10114 10115 10116 10117 10118 10119 10120 10121 10122 10123 10124 10125 10126 10127 10128 10129 10130 10131 10132 10133 10134 10135 10136 10137 10138 10139 10140 10141 10142 10143 10144 10145 10146 10147 10148 10149 10150 10151 10152 10153 10154 10155 10156 10157 10158 10159 10160 10161 10162 10163 10164 10165 10166 10167 10168 10169 10170 10171 10172 10173 10174 10175 10176 10177 10178 10179 10180 10181 10182 10183 10184 10185 10186 10187 10188 10189 10190 10191 10192 10193 10194 10195 10196 10197 10198 10199 10200 10201 10202 10203 10204 10205 10206 10207 10208 10209 10210 10211 10212 10213 10214 10215 10216 10217 10218 10219 10220 10221 10222 10223 10224 10225 10226 10227 10228 10229 10230 10231 10232 10233 10234 10235 10236 10237 10238 10239 102

wall of the opening 17, which acts as an abutment, will break off. After this portion has broken off, the coupling members rotate about the rotary axis 2A relatively to each other although they are still axially fixed together by the bolts 21. When the connection between the two coupling members is broken, the driving coupling member will continue to rotate, but the driven coupling member will very soon or after a short time come to a standstill in dependence upon the magnitude of the overload. Since the coupling member 1 continues to rotate, the holder 5 and the associated shear pin 7 also continue to rotate. As a result, centrifugal force will bias the shear pin outwardly against the pressure of the spring 9. The characteristic of the spring 9 is preferably adapted to the inertia of the shear pin. Owing to the balance between the centrifugal force acting on the mass of the shear pin 7 and the force of the spring 9, the shear pin 7 will be urged with only very slight pressure against the supporting surface formed by the radially outer wall of the plate 15 and towards the opening 17 during the continued rotation of the coupling member 1. Thus under these conditions the shear pin 7 is not capable of re-establishing the connection between the coupling members. The connection between the two coupling members will not be established until the speed of rotation of the coupling member 1 has been appreciably reduced by uncoupling the drive, when the spring 9 will act as advancement means for advancing the pin 7 into re-engagement with the opening 17. This can be achieved by matching the circumferential extent of the opening 17 to the diameter of the pin 7, the inertia force of the pin, and the characteristics of the spring 9. The circumferential extent of the opening 17 is a function of the factor T in the formula $S = \frac{1}{2} A T^2$, in which S is the distance to be covered by the pin towards the bottom of the opening 17 in order to re-establish a connection between the two coupling members. The factor A is a function of the force of the spring 9 and the mass of the pin 7.

In order to keep the factor A constant however many times the pin 7 has been fractured, the reduction of the spring force due to the radial inward shift of the pin 7 after fracture should be proportional to the reduced mass of the pin.

The circumferential extent of the opening 17 is preferably about twice the diameter of the shear pin. The speed at which the pin 7 re-establishes the connection is preferably chosen to be lower than the minimum possible self-sustaining speed of the driving engine. In this way the pin 65 cannot prematurely re-establish the con-

nection while the engine is still running at a speed reduced by the overload and while the drive is still in engagement.

It should be noted that since the opening 17 extends radially, the broken-off fragment of the shear pin 7 is automatically thrown out of the opening 17, and a further portion of the shear pin 7 automatically re-establishes the connection once the speed is reduced. The opening 17 thus acts as release means or as an ejector for the broken-off fragment. Since, after overload, the operator can re-establish the connection between the two coupling members only when he has intentionally reduced the driving speed by an appreciable amount, inadvertent continuous repeated fracture of the pin will be avoided.

Such a shear pin coupling is particularly advantageous in agricultural machines, especially between parts to which access is difficult or inconvenient or to which access is not possible at all during operation. When the shear pin, which preferably has at least five breakable portions and may advantageously comprise ten portions, has been completely used up by repeated overloads, it can be removed in a very simple manner. It is only necessary to remove the guard pin 11 and to slip a new shear pin 7 into the holder 5. The shear pin can have so many breakable portions that it may be necessary to replace it only at normal periodical inspection or servicing of the machine.

Figures 3, 4 and 5 show a second embodiment of an overload coupling comprising a coupling member 23 formed by a hollow shaft portion 24 rotatable about a rotary axis 24A and having key ways 25 on its inner side for receiving a driving stub shaft (not shown). The shaft portion 24 is provided near one end with a coupling flange or plate 26 which is coaxial with the shaft portion 24. The edge of the plate 26 remote from the shaft portion is provided near the circumference with an annular supporting member 27, comprising a fastening portion 28 extending inwardly from the outer circumference of the coupling plate 26. The fastening portion 28 is fixed in place by means of equispaced bolts 29 near the circumference of the coupling plate 26. The fastening portion 28 has tapped holes for receiving the bolts 29. The free end of each bolt is not screw-threaded and forms a stub shaft 30 so that the bolts can each serve in addition as a pivot pin for a torsion spring 31 looped over the stub shaft 30. The action of this spring 31 is comparable with that of the spring 9 of the preceding embodiment. The supporting member 27 furthermore comprises a supporting part 32 which is perpendicular to the portion 28 130

and which is coaxial with the rotary axis 24A. The supporting part 32 has radial recesses 33 for supporting and guiding shear pins 34 each having, 5 in this embodiment, seven portions 35. The longitudinal centre lines of the pins 35 extend substantially radially. The shear pin portions 35 are separated one from another by locally weakened transitional 10 zones 36. The thickness of the supporting part 32, in a radial direction, is preferably such that approximately two shear pin portions 35 are accommodated in the recess 33 at any one time. The diameter of 15 the recess 33 is such that it closely surrounds the shear pin 34, but allows movement in a radial direction. Each torsion spring 31 has a free end which bears on the outermost end 35 of the respective shear pin 20 34. One limb of the spring bears on the shear pin 34, whereas the other limb, which is inclined to the first limb, passes through an opening 37 in the fastening portion 28. A bent over part of this limb is received 25 in an annular groove 38 in the side of the outer edge of the coupling flange 26 facing the supporting member 27 (Figure 4). The spring 31, using the bolt end 30 as a fulcrum pushes the shear pin 34 towards 30 the rotary axis 24A. The supporting member 27 is provided at equal intervals with eight similarly arranged shear pins 34. Seven of these pins are spare and only one is operative at any one time. The 35 operative pin 34 connects the coupling member 23 with an associated coupling member 39. The coupling member 39 comprises a flange or coupling plate 40 and a shaft portion 41, whose centre line coincides with the rotary axis 24A. The shaft portion 41 has internal key ways 25 for receiving a driven shaft (not shown).

It should be noted that the two coupling members 23 and 39 are restrained against 45 relative axial displacement by guard means (not shown), as in the preceding embodiment. In order to allow thermal expansion, it is desirable to use guard means which allow a small axial displacement of the 50 members.

The flange 40 has an opening 42 for receiving an end of the shear pin 34 interconnecting the coupling members. The opening 42 is bounded partly by supporting 55 member constituted by a hard metal insert or disc 43 extending radially inwardly away from the circumference of the flange 40. The centre line of the insert 43 is preferably parallel to the centre line of the 60 respective shear pin. The insert 43 has an abutment for the shear pin 34, constituted by a recess surrounding the opening 42 over an arc of about 100°. The opening 42, whose depth approximately corresponds 65 to the height of one shear pin portion 35

and whose radially inner end is blind has furthermore an ejecting or release means formed by a channel 44 for thrusting the broken fragment of the shear pin from the opening. The channel 44 has a wall 70 45, which is curved. The wall subtends an angle of about 90° and extends, near the insert, parallel to the centre line of the pin 34, whereas, away from the insert, it is at an angle to the centre line. The 75 wall extends to the side of the coupling member 39 remote from the coupling member 23.

During operation the coupling shown in Figures 3 to 5 establishes the connection 80 between a driving part and a driven part of a shaft and/or machine part and it rotates in the direction of the arrow A (Figure 3). The operative shear pin 34 co-operating with the opening 42 is supported in the supporting member 27, which is made of hardened material either wholly or only partly in the region of the supporting part 32. The wall of the opening 42 is furthermore protected by 90 the insert 43 of hard material against undesired deformation. In the event of overload the portion 35 located in the opening 42 will break off and this portion will snap from the opening into the channel 95 44 to be ejected in an axial direction owing to the specific shape of the wall 45. This direction of ejection may be advantageous when the coupling is used with its axis 24A extending upwards. As 100 in the first embodiment, upon fracture of the portion 35 in the opening 42, the two coupling members will rotate relatively to one another, and, due to the overload, the coupling member 39 will come to a 105 standstill either immediately or very quickly, whereas the coupling member 23 maintains the operational speed. The torsion spring 31 acting on the shear pins 34 have the same effect as described for 110 the compression spring 9 of the first embodiment. In this embodiment, owing to the use of a plurality of equi-spaced shear pins 34, the coupling as a whole is balanced. The coupling can 115 be employed for a very long time without the need to replace the shear pins. The construction and disposition of the springs 31 means that the coupling can have a relatively small diameter. Once the speed 120 of rotation of the coupling member 23 has been reduced, as in the first embodiment, the next-following portion, or a portion of one of the other pins, will re-establish the connection between the coupling members. Owing to the great number of shear pins the pins will be used at random, and the tendency will be for all the shear pins to be gradually consumed 125 uniformly, without any one pin being used 130

significantly more often than others. It should be noted that the locally weakened transitional zones in the shear pins 34 may also be used in the shear pin 7 of 5 the first embodiment.

In the embodiment shown in Figures 6 and 7, a coupling member 46 is connected, in normal operation, by means of a shear pin arrangement 47 with a coupling member 48. The coupling member 46 comprises a shaft portion 49 connected with a radially extending coupling flange or plate 50. The axial end surface of the plate 50 remote from the shaft portion 49 engages a flange or plate 51 of the coupling member 48. The plate 51 is provided in the manner described with reference to Figures 1 and 2 with an inner shaft portion 52 intended to receive non-rotatably a shaft by means of axial key ways 53, whilst a key member is provided to prevent an axial movement of the two members, this key member being located in an annular opening in the shaft portion 25 52 and a surrounding sleeve 54, and being constituted by a bolt 55.

The shear pin arrangement 47 extends parallel to the rotary axis 49A of the coupling. The shear pin arrangement 47 30 is located in an axially extending holder 56 which is similar to the holder 5 of the Figure 1 embodiment so as to form a housing for a retaining pin 57, a compression spring 58 and a shear pin 59. The shear pin 59 comprises locally weakened zones and is guided in a recess 60 35 in the plate 51, this recess being preferably provided in a sleeve 61 of hard material. The operative portion of the shear pin 59 is located in a blind opening 62 to limit the travel of the shear pin. This opening has ejecting or releasing means constituted by a channel 63 extending radially outwardly from the opening. The 40 channel 63 may have a cylindrical or parallel-sided cross-section, but it may advantageously flare outwardly as illustrated. The opening 62 may be bounded at least partly by an insert of hardened material 45 in a manner not shown. Figure 7 shows that four equispaced shear pin arrangements 47 are provided. Three shear pins 59 are spare and only one is operative at any one time. However, perhaps when a 50 higher torque is to be transmitted, it may be advantageous to have more shear pins in the operative state simultaneously.

In operation the coupling shown in Figures 6 and 7 constitutes an overload safety device as in the preceding embodiment. In the event of overload the portion of shear pin located in the opening 62 will break off and it will be effectively and reliably ejected immediately in a radial direction. 65 After fracture one of the shear pins 59

can independently restore the connection between the two coupling members. Also this coupling can be used for a very long time without needing to fit new shear pins. With the axial disposition of the pins 59 70 the coupling has only a small diameter.

Figures 8 and 9 show an alternative form of opening and the associated ejecting means suitable for use in the construction shown in Figure 6. An abutment member 75 formed by a rotatable circular disc 64 is received in the coupling plate 50 and can be set in any one of a plurality of positions with the aid of a bolt 65 having a countersunk head, a nut 66 and a dished plate spring 67. The periphery of the disc 64 has semi-circular recesses 68 opening out on the outer side of the disc. Four recesses 68 are provided in the disc although other number of recesses could be provided. Depending on the diameter of the disc and the size of the recesses 68 more recesses, for example, six may be provided. One of the recesses 68 opens into an ejecting channel 69 extending rearwardly 80 and outwardly away from the disc 64 with respect to the direction of rotation A of the coupling. The longitudinal centre line of this channel 69 is at an angle of about 50° to a radial line going through 95 the recess 68. By turning of the disc, another recess 68 can be positioned to open into the channel 69. In this way the coupling member 46 is safeguarded against damage in the region near the opening 100 62 in the event of overload. The direction of the channel 69 with respect to the direction of rotation of the coupling is such that the release and ejection of the broken-off fragment of the shear pin 59 105 is satisfactorily carried out. In the event of damage of recess 68 a new recess 68 can be set and fixed by means of the nut 66 and bolt 65.

Figures 10 to 12 show a fourth embodiment of an overload coupling. This coupling comprises, as in the preceding embodiments, a coupling member 70 (Figure 10) formed by a hollow shaft portion 71 and a coupling plate or flange 72. The coupling furthermore comprises a coupling member 73 having a coupling plate 74. The coupling plate 74 extends radially of the rotary axis 71A of the coupling and is provided near part of its outer edge with a fastening part 75 extending axially for some distance away from the coupling member 70. Viewed in a direction parallel to the rotary axis 71A, this part 75 coincides at its outer circumference with part of the 110 circumference of the coupling plate 74. In the embodiment shown the ends of the fastening part 75 subtend an angle of about 80° at the centre of the plate 74. The fastening part 75 comprises further- 115 120 125 130

more two supporting parts 76 extending radially inwardly towards the rotary axis 71A. In the niche bounded by the supporting parts 76 and the fastening part 5 75 is secured a shear pin unit 77, which comprises an arcuate holder or cassette 78, which can be fastened to the fastening part 75 by means of a quick-release connector 79. The quick-release connector 79 10 comprises a torsion spring 80 operating to depress a retaining member. The holder 78 accommodates in the embodiment shown five shear pins 81 each extending parallel to the axis 71A. Each shear pin 81 is 15 received in a hole of the holder and this hole has a narrow portion 82 adjacent the coupling member 73. This portion 82 serves as a stop for a shoulder 83 at the end of the shear pin 81 remote from the 20 coupling member 73. The top side of the shoulder 83 is engaged by one end of a helical compression spring 84, the other end of which engages a ring 85 and a retaining pin 86. Each of the shear pins 25 81 passes into a respective aperture 87 serving as a passage. Near the lower end remote from the shoulder 83 one of the shear pins is located in an opening 88 similar to the opening 62 in Figure 6. This 30 opening 88 has an ejecting channel 89 extending radially outwardly from the opening 88. The coupling plate 74 has furthermore two tapped holes 90 for receiving means of a balancing unit (not 35 shown) for balancing the mass of the holder 78.

In operation the coupling shown in Figures 10 to 12 constitute an overload safety unit as in the preceding embodiments. The 40 shear pins are independently displaceable in the holder 78, whilst the holder with the springs 84 operates as advancement means or pressure means for the pins 81. The pins may each be composed of several 45 breakable portions, but the breaking pins 81 may, as an alternative, each have only one breakable portion so that they can be fractured only once. In this case the pins 81 together form the breaking pin 50 unit 77 which can re-establish the connection between the coupling members 70 and 73 several times. The construction in this embodiment has a great advantage in that the shear pins are located in a holder 55 or cassette 78, which can be readily replaced after fracture of the pins by a fresh holder, with new pins. In a preferred embodiment the coupling plate 74 is provided with two diametrically opposite cas- 60 settes so that the coupling is balanced. As an alternative, only one cassette may be used, in which case separate balancing weights may be provided. The cassette 78 may be used with great advantage in cases 65 where it may be desirable to exchange the

shear pins for ones of a different type to suit a different application.

It should be noted that structural details of the various described embodiments of the couplings may be combined; for example, the opening 42 and the associated 70 ejecting channel 44 of Figure 3 may be employed in the construction illustrated in Figures 10 to 12. This also applies to the use of hardened material around the 75 whole or part of the opening with which the breaking pin portions are co-operating. It is furthermore possible to use balancing means of the kind used in the embodiment of Figures 10 to 12 also in the preceding 80 embodiments.

It should be noted that the positions of the coupling members in these embodiments with respect to the driving shaft and the driven shaft may be inverted, i.e. 85 drive may be transmitted in the opposite direction to that described.

In the embodiment shown in Figures 13 to 17 the overload coupling is substantially symmetrical to a plane of symmetry 90 going through the centre line 90 of the coupling. The coupling comprises a coupling member 92 connected with fork parts 91 of a universal coupling and a coupling member 93 co-operating with the member 92 and being connectable with the stub shaft 18. The coupling member 93 comprises a hub 94 having a radial bore 95 holding a ball 96, which, in normal operation, lies in an annular groove of 100 the stub shaft 18 and is fixed in place in a radial direction with the aid of a retaining bolt 96A. The coupling member 93 comprises furthermore a radially extending flange 98, which is rigidly secured to the 105 hub 94. The coupling member 92 comprises a carrier 99, which is substantially concentric with the hub 94, on which it is journaled by means of a needle bearing 100. The carrier 99 is locked in place axially 110 with respect to the hub 94 by a pressure ring 101 and a retaining ring 102. Four bolts 103 establish a connection between the fork parts 91, the carrier 99 and a circular cutting ring 104, which is at least 115 partly in contact with the flange 98. The cutting ring 104 has a centering plate 105 having a portion 106 bent over at right angles and extending towards the coupling member 93. The bolts 103 secure to the 120 carrier 99 a second centering plate 107 with a portion 108 bent over at right angles extending towards the coupling member 93. The bent-over portions 106 and 108 125 form rims which retain in place two holders 109, each of which accommodates a plurality of shear pins 110. On the side of the universal coupling, the holders 109 have an edge 11, which can be clamped beneath the portion 108. The shear pins 130

110 are each urged by a respective compression spring 112 towards the flange 98. In order to guide the shear pins 110 the holder is provided with sleeves 113, whilst 5 the cutting ring 104 and the centering plate 105 have recesses closely fitting around the shear pins 110. Each spring 112 has, where it engages its pin 110 a number of turns of smaller diameter than 10 the rest of the spring. The shear pins 110 and the springs 112 constitute together coupling means with an axial dimension corresponding substantially to the fastening portion of the stub shaft 18.

15 The flange 98 has an opening 114 having a substantially radially extending channel 115 opening at the outer circumference of the flange 98. The circumferential width of the opening 114 is about 10 to 20mm depending upon the diameter of the shear pin. With respect to the possibility of establishing the connection of the two coupling portions only at a reduced speed, the distance between the shear pin 20 110 in the opening 114 and the wall of the opening 114 opposite the pin in this embodiment is about 50 to 70% of the diameter of the shear pin. The pin is supported in an axial direction by a bottom part 116. At the side of the opening 114 there is provided a substantially circular cutting plate 117 of hardened material like the ring 104 having a diameter of about 20 to 30mms. The function of 25 this cutting plate is comparable with that of the cutting plate 64 in Figure 8. It has three openings 118 at its circumference and by means of a locating pin 119 the cutting plate can be fixed in place. The shear pins can be fixed in the manner 30 shown in Figure 17 in the holder 109 by means of a locking member formed by a common retaining pin 120. When the holder is put in place, the retaining pin 40 120 can be removed from the holder, after which the pins move into their positions. Owing to the provision of the centering plate 105 the pins slide, after the removal of the guard pin 120, without further manipulation, into the recesses in the cutting ring 104. By the quick-release connectors formed by the retaining rims 106 and 108 the holders are simply locked in place 45 and the sleeves 113 prevent the shear pins 50 from tipping over. If during operation by overload a portion of the connecting shear pin 110 breaks off, the fragment is rapidly conducted away through the channel 115. Since the opening 114, as in the preceding 55 60 embodiments, has a critical width, shear pin 110 can slip into the opening 114 only after a reduction of the speed of the power take-off shaft 20. As in the embodiment shown in Figures 8 and 9, the cutting plate 65 can be set in a different position,

should an opening 118 be damaged. The coupling can be adjusted in a simple manner to transmit higher or lower powers by providing the holders 109 with matching breaking pins of different strength and by 70 replacing the cutting ring 104 and the centering plate 105 by other ones having matching apertures. It should be noted that, as in the case of the holder 78 of Figure 12, the holders 109 can also operate 75 primarily as a pressure unit for the pins 110.

The variant shown in Figure 18 comprises a holder differing from the foregoing structure. This holder 121 is closed 80 on top by means of a cap 122. The holder 121 is preferably made from synthetic resin. The cap 122 has a cavity for accommodating the end portion of a compression spring 123, the other end of which is 85 located in a cavity in a pressure pin 124. The pressure pin 124 presses the shear pin 110 home. The pressure pin 124 has a shoulder 125 in sliding engagement with the inner wall of the holder 121. The pressure pin 90 124 may also be made from synthetic resin. The holder can thus be manufactured at low cost without detracting from its effectiveness.

In the embodiment shown in Figures 95 19 to 22 the coupling is constructed differently from that of Figure 13. The coupling member 93 is substantially identical to that shown in Figure 13 but it is connected by a shear pin 110 with a coupling member 126 differing from the coupling member 92. The coupling member 126 is fastened by means of a plurality of bolts 127 to a fastening portion 128 having a substantially circular circumference and serving to receive the fork parts 91. To the fastening part 128 is secured 100 a carrier 129, the function of which is comparable with that of the carrier 99 and which is located between the fastening 105 part 128 and the cutting ring 104. The carrier 129 has two cavities or recesses 131 disposed diametrically opposite each other about a centre line 130. These cavities 131 receive a plurality of shear 110 pin holders. Each cavity receives, for example, five cylindrical holders 132 each containing a shear pin 110. Each holder 132 comprises a sleeve of synthetic resin, for example, a plastic tube. The holder 115 covers the whole space between the fastening part 128 and the cutting ring 104. Near the cutting ring 104 the holder is provided on its inside with a tapering inner ring 133 constituting both a guide for 120 the shear pin 110 and a stop for a widened part of a pressure pin 134 largely corresponding with the pressure pin 124. The closure of the holder on the side of the end portion of the spring 123 is similar 125 130

to that of Figure 18. The cap is fixed in holders 132 are enclosed in the cavity 131 place by means of retaining pin. The cavity by means of a cover 136, which is concentric with the centre line 130 and the axial sides of which are bent over to form lugs 137. The lugs 137 co-operate with clamping springs 138, having a number of turns which surround the bolt 127 and 10 press the cover 136 towards the centre line 130. In order to limit movement of the cover with respect to the spring 138 each lug 137 has ridges 139.

In this embodiment the pin 110 is in its connecting position located in an opening 114 such as is referred to in the preceding embodiment, this opening being bounded at one end, with respect to the direction of rotation B, by the cutting plate or disc 20 64 of Figures 8 and 9 (see Figure 21). At the end of the opening 114 remote from the cutting plate 70 a filling plate 140 is connected with the coupling member 93 by nut and bolt connection. The dimension 25 141 of Figure 21 is preferably 16 mms, and on this basis the filling plate 140 has the following dimensions 141a and 141b:

Shear pin diameter	141a	141b
7 mms	20.0 mms	28.0 mms
8 mms	18.5 mms	26.5 mms
10 mms	15.5 mms	23.5 mms

The operation of the coupling shown 35 in Figures 19 to 22 largely corresponds with that of the preceding embodiments. The coupling can be readily filled with shear pin holders 132, which can be easily fixed in place by the cover 136 and the 40 springs 138. With different pin diameters the factor T in the formula $S=1/2AT^2$ (the factor T being essentially determined by the pin diameter and the associated circumferential width 141 of the opening 45 114) can be kept constant in this embodiment since the filling plate 140 can be exchanged.

Figures 23 and 24 show an alternative embodiment of a breaking coupling, in 50 which a shear pin 142 largely similar to the shear pin 110 is provided with a groove 143 extending parallel to its longitudinal centre line throughout or substantially throughout the length. This groove 55 operates with a corresponding key 144 provided on the pin guide means, for example, the sleeve 113, the centering plate 105 and the cutting ring 104 of Figure 13. The key 144 prevents the breaking 60 pin from turning with respect to the rest of the coupling.

The overload coupling shown in Figures 25 and 26 comprises a coupling member 145, which is connected with fork parts 65 146 of a universal coupling and a coup-

ling portion 147, which is connected with the stub shaft 18 as in the embodiment of Figure 13. The coupling member 147 comprises a hub 148 and a flange 150 extending radially outwardly of a centre 70 line 149. The hub 148 extends axially to each side of the flange 150 and the side of the flange 150 remote from the coupling member 145 is provided with pressure means preferably formed by a spiral blade 75 spring 151, surrounding the hub with, for example, five turns. The format ratio of the blade spring 151 is at least 1:10. The inner end of the spring 151 is rigidly secured to the hub, whereas the outer end 80 of the spring is connected with a cover plate 152 by a rivet or bolt joint. The plate 152 is rigidly connected near the circumference of the breaking coupling by a plurality of bolts 153 with an annular wall 85 154 having a substantially cylindrical shape and being provided on its outside with unevenesses in the form of knurls 155. On the inside, the wall 154 is provided with at least one spring pawl 156 (Figure 90 26), but preferably with three. The spring pawls extend generally in a direction indicated by the arrow B in Figure 26 but are inclined inwardly and are intended to co-operate with the outer periphery of a 95 ring or ratchet drum 157 having, viewed along the centre line 149, a sawtooth shape for unidirectionally locking against the spring pawls 156. The spring 151, the wall 154 and the ratchet drum 157 together 100 constitute advancement means for a frangible element constituted by a length of steel band 159. The ratchet drum 157 and the steel band 159 have a width, measured axially of the centre line 149, which corresponds to the axial dimension of the wall 154. The steel band 159 may have about ten coils and be accommodated in the space bounded by the inner wall of the ratchet drum 157. The steel band preferably has a thickness of about 1 mm and a width of 4 to 7 cms, and in this embodiment about 6 cms. The end portion 163 of the steel band 159 remote from the ratchet drum 157 is bent over from a substantially 110 circumferential alignment towards the centre line 149. The end portion 163 passes between two cutting blocks 161 and 162, which are bolted to the flange 150. Between the blocks 161 and 162 is a gap 164 constituting a guide passage. The gap 164 guides the end portion 163 so that this end portion has locally a sharper curvature than the rest of the steel band 159. The 115 length of the gap 164 is preferably about 2 cms. The free end of the end portion 163 lies in an opening 165 in a cylindrical carrier 166, which is axially fixed in place 120 in a manner similar to the carrier 99 in Figure 13 with respect to the hub 148, 125 130

and is journaled on the hub by means of a needle bearing 167. The carrier 166 is bolted to the fork parts 146, and constitutes the main part of the coupling member 145. The carrier 166 has an axial dimension which substantially corresponds with that of the band 159. The space bounded by the band 159 and the carrier 166 can collect broken-off fragments from the band. The opening 165 is bounded in operation in the direction of the arrow B corresponding with the direction of rotation by a cutting plate 168, which engages the end portion 163 by a slanting side joining the gap 164. As in the preceding embodiments and particularly in Figure 21 the circumferential width of the opening 165 may be varied by using cutting plates 168 of different circumferential dimensions. In this embodiment the circumferential dimension of the opening 165 is preferably about three times the thickness of the steel band 159.

The embodiment of the coupling shown in Figures 25 and 26 operates as follows:

The band 159 is delivered to the user in the form of a reel. The diameter of the reel may be chosen in accordance with the outer diameter of the rest of the auxiliary shaft so that the reel can be slipped into the coupling without the need for removing the auxiliary shaft, and the free end portion 163 is inserted into the gap 164. The other end portion 160 will engage one of the internal saw-tooth unevenesses on the inner side of the ratchet drum 157. Then the feeder spring 151 is wound up by rotating the drum formed by the wall 154 in the direction opposite the arrow B in Figure 26. The spring pawl 156 prevents an undesirable reverse rotation of the wall 154. After the spring 151 is fully wound, it urges the steel band 159 towards the carrier 166. After relative rotation between the two coupling members, the end portion 163 will be pressed into the opening 165 so that the band 159 is in a position in which it interconnects the two coupling members. In operation, the band 159 shown transfers power of up to about 100 HP with a speed of the power take-off shaft of about 540 rev/min. In the event of overload, as in the preceding embodiments, the portion of the steel band 159 located in the opening 165 will break off. The width of the opening 165 is again chosen so that only after an intentional reduction of the speed of the drive can the coupling be restored. Owing to the great length of the steel band a single reel is capable of re-establishing the coupling for about one thousand overloads. The feeder member formed by the spring 151, the wall 154 and the ratchet drum 157 is preferably constructed so that when

wound up once it is capable of displacing the whole length of steel band up to the opening 165. It may, however, also be advantageous to construct the spring 151 so that it has to be wound during periodic inspection or servicing of the machine, which necessity is, therefore, a reminder for the user that the machine is due for inspection. Various thicknesses of steel band may be used in dependence on the maximum torque to be transferred, the cutting blocks 161 and 162 and the circumferential width of the opening 165 being chosen accordingly. Under certain conditions it may be advantageous to make the steel band 159 of spring steel, in which case the spiral spring 151 may be dispensed with. It may furthermore be effective to incorporate in the coupling a counter for recording the number of overloads. It should furthermore be noted that the coupling shown in Figures 25 and 26 may also be used with other curved material, for example, shear pin material.

Figures 27 and 28 show a further variant of overload coupling comprising a feeder device and further parts which largely correspond with those of Figures 25 and 26. The pawl springs 156 co-operate with a drum 169, which is adapted to co-operate with a large number of radially disposed shear pins 170, arranged in a pin ring 171. The pin ring 171 is connected by fitting pins with the flange 150. The pins 170 are clamped slightly in hardened sleeves 172, which are pressed into the pin ring 171. The radially inner side of the pin ring 171 is adjacent a cutting ring 173, which forms part of the second coupling member of the breaking coupling and has a radial opening 174 for receiving one of the shear pins to interconnect the two coupling members. The circumferential dimension of the opening, as in the preceding embodiments, is critical. The cutting ring 173 is rigidly fastened by two bolts 175 to its coupling member. The drum 169 has an inner profile for supporting the shear pins 170. This profile comprises a first supporting surface 176, which lightly supports the shear pins 170 not yet moved into a first connecting position. Viewed in a direction opposite the arrow B, the first supporting surface 176 extends to a first lug 177 having an obliquely ascending connecting ramp surface which is at an angle of about 20° to 50°, preferably 30°, to a tangent passing through it and which leads on to a second supporting surface 178, which is nearer the centre line 149 than the first supporting surface 176. The pins are provided with rounded end portions to enable them to slide up the lug 177. As is shown in Figure 28 the lug 177 exerts pressure on a shear pin 179 by the action of the

spring 151, which pin is not yet in a connection position. At the same time, a shear pin 180 lies at least partly in the opening 174 and establishes a connection between 5 the two coupling members. The end portion of the shear pin 180 engages part of the second supporting surface 178 adjacent the lug 177. A third breaking pin 181, having broken off already once subsequent 10 to an overload, is located between the second supporting surface 178 and the interface between the pin ring 171 and the cutting ring 173. The second supporting surface 178 is coaxial with the centre line 149 and extends from the lug 177 in a direction opposite the arrow B through an arc of 170°; said second supporting surface 178 then leads on to a second lug 182 having a sloping face corresponding 15 with that of the first lug 177. A third supporting surface 183 extends over a fairly short distance adjacent the lug 182, the circumferential extent of that surface being such that it can just support one shear 20 pin 170. In a direction opposite the arrow B the third supporting surface 183 leads back on to the first supporting surface 176. In operation, the coupling shown in Figures 27 and 28 is provided with a series 25 of breaking pins 170 arranged along an arc of about 160° on the ring 171; in this embodiment eleven pins are shown. The pin 181 of Figure 28 must initially be positioned in front of the lug 177, viewed in 30 the direction of the arrow B. In this state all the pins are located between the first supporting surface 176 and the interface between the pin ring 171 and the cutting ring 173. After the spring 151 has been 35 wound in the manner described with reference to the preceding embodiment, it will cause a radial pressure to be exerted on the pin 180 under the action of the sloping connecting ramp surface on the 40 lug 177. Relative rotation between the two coupling members results in the pin 181 being slipped into the opening 174. At the same time the drum 169 rotates in the direction of the arrow B until the lug 177 45 reaches the next following shear pin 180. The coupling is then ready for normal operation. In the event of overload the portion of the shear pin 181 in its connecting position in the opening 174 will 50 break off so that the coupling member connected with the load (which may, for example, be an implement of a harrow) will come to a standstill. As in the preceding 55 embodiments, owing to the critical choice of the circumferential dimension of the opening 174, it is possible to slip the next-following shear pin into the opening 174 only after an appreciable reduction in 60 the speed of the power take-off shaft. This 65 is achieved by rotation of the drum 169

through a small angle in the direction of the arrow B, thus shifting the shear pin 180 into a connecting position. The drum then occupies a position as shown in Figure 28, in which the lug 177 bears on the 70 shear pin 179. Fracture of a shear pin followed by rotation of the drum 169 and the positioning of a following shear pin are repeated until all the shear pins have broken off once. In this state the shear 75 pin 181 engages the second lug 182, which pushes the pin 181 for the second time in a radial direction into the opening 174. Thus by means of the second lug 182 all the shear pins can again be used. By providing further lugs, further fracture of the pin after leaving the lug 182 may be repeated several times. The resultant breaking coupling has a compact structure, but it can nevertheless transfer a very 80 85 high torque.

Figures 29 and 30 show a variant of the breaking coupling shown in Figures 27 and 28. In this embodiment a wall portion 184 is bolted to an inner part 90 185 and is provided on the inner side with pawl springs 186 co-operating with a drum 187. Apart from the first drum 187 a second drum 188 is provided which is in engagement with the wall 184. Like the 95 drum 169 of the preceding embodiment the drums 187 and 188 co-operate with pin rings 189 and 190 respectively, each pin ring co-operating with an opening in the cutting ring 173. The first drum 187 100 has a groove 191 extending coaxially with the centre line 149 and is provided with a lug or pawl 192. The second drum 188 is provided with a catch 193 which extends axially and is located in the groove 191. 105 In operation the drum 187 co-operates with the wall and the pin ring 189 in the same manner as in the preceding embodiment. After the pins of the first pin ring 189 are consumed, the second pin ring 190 110 is made operative by contact between the catch 193 and the pawl 192. Thus the pins of the second ring 190 are used in order of succession, so that the capacity of the coupling is doubled. In a similar manner 115 several pin rings may be arranged one behind the other.

Figure 31 shows a further embodiment of the coupling shown in Figures 27 and 28, in which the outer wall is formed by 120 a wall 194, which is coaxial with the centre line 149 and extends away from the plate 152 and is provided near the flange 150 with a plurality of pawl springs 195, which can co-operate with a drum 125 196. The drum 196 is provided with a lug 197 which has an upwardly slanting ramp surface 198 and is remote from the flange 150, this surface being at an acute angle to a plane perpendicular to the centre 130

- line 149, this angle preferably being about 30°. Through the lug 197, the drum 196 co-operates with a pin ring 199 having a plurality of breaking pins 200 extending 5 parallel to the centre line 149. The other coupling member comprises a disc 201 which extends transversely of the centre line 149 and is connected with the fork parts 146. The coupling shown in Figure 10 31 operates basically in substantially the same way as those shown in any one of the Figures 27 to 30, the pins 200 being, however, orientated axially, whilst the lug 197 moves the respective pins 200 into 15 a connecting position. In this way one lug will suffice and the possibility, which may be advantageous, is available of disposing the pins very near the circumference of the coupling, so that the coupling is 20 capable of transferring a very high torque. The coupling, as described in any one of the preceding embodiments can be placed in a flywheel very effectively since the shearing pin can be completely disposed 25 within the outer periphery of the flywheel and may even be arranged inside the flywheel.
- It should be noted that the positions of the coupling members in these embodiments with respect to the driving shaft 30 and the driven shaft may be inverted.
- WHAT WE CLAIM IS:—**
1. An overload coupling comprising two members which are rotatable about 35 a common axis and at least one frangible element which in normal operation interconnects the two members for rotation together in at least one direction, fracture of the frangible element permitting relative rotation between the members, advancement means being provided for advancing the remaining part of the frangible element, after such fracture, to re-interconnect the members, the construction 40 of the coupling being such that re-interconnection of the coupling members can take place during relative rotation of the coupling members only when the relative speed of rotation of the coupling members 45 is below a predetermined value.
 2. An overload coupling as claimed in claim 1, in which the coupling comprises at least two frangible elements, each of the elements being capable of being advanced at least twice by the advancement 55 means to re-interconnect the members.
 3. An overload coupling as claimed in claim 1 or 2, wherein the frangible element is connected with one of the members for movement in at least one direction 60 relative to that member and is disposed for engagement with at least one abutment of the other member, the advancement means advancing the remaining part of the frangible element into re-engagement with the 65 abutment or one of the abutments.
 4. An overload coupling as claimed in claim 3, wherein the abutment is constituted by an arcuate wall portion of an opening in the said other member. 70
 5. An overload coupling as claimed in claim 4, wherein the opening is blind, the bottom of the opening affording a limit for the advancement of the frangible element after each fracture. 75
 6. An overload coupling as claimed in 4 or 5, wherein the wall portion is constituted by part of the surface of an abutment member hardened material.
 7. An overload coupling as claimed in 80 claim 6, wherein the abutment member comprises a disc which adjustable between a plurality of positions with respect to the opening and in each position a respective recess in the disc partly surrounds 85 the opening.
 8. An overload coupling as claimed in claim 7, wherein the disc is rotatably connected to the said other member.
 9. An overload coupling as claimed in 90 any one of the preceding claims, wherein the said other member is provided with release means for releasing a broken-off fragment of the frangible element.
 10. An overload coupling as claimed in 95 claim 9 when appendant to any one of claims 3 to 8, wherein the release means comprises a channel extending from the abutment to the exterior of the coupling.
 11. An overload coupling as claimed in 100 claim 10, wherein the channel has at least partly a substantially circular cross-section.
 12. An overload coupling as claimed in claim 10 or 11, wherein the channel 105 extends at least partly in a radial direction.
 13. An overload coupling as claimed in claim 10 or 11, wherein the longitudinal centre line of the channel is at an angle of about 50° to the radial line passing 110 through the abutment.
 14. An overload coupling as claimed in any one of claims 10 to 13, wherein at least part of the channel is curved.
 15. An overload coupling as claimed 115 in any one of claims 10 to 14, wherein a wall of the channel extends, at a region adjacent the abutment, substantially parallel to the longitudinal centre line of the frangible element and extends, at a region 120 of the channel remote from the abutment, at an acute angle to the longitudinal centre line of the frangible element.
 16. An overload coupling as claimed in any one of claims 10 to 15, wherein a 125 wall of the channel is arcuate and subtends an angle of about 90° between the abutment and the outer side.
 17. An overload coupling as claimed in any one of the preceding claims, where- 130

in the frangible element is located at least partly in a holder which is mounted on the said one member, at least part of the holder being releasable from the said 5 one member.

18. An overload coupling as claimed in any one of the preceding claims, where- 10 in the coupling comprises one or more elongate frangible elements the centre lines of which extend substantially radially of the rotary axis.

19. An overload coupling as claimed in any one of claims 1 to 18, wherein the 15 centre line of the frangible element ex- tends substantially parallel to the rotary axis.

20. An overload coupling as claimed in any one of the preceding claims, where- 20 in the or each frangible element comprises a shear pin.

21. An overload coupling as claimed in any one of the preceding claims, where- 25 in the coupling is arranged in a shaft further including at least one universal coupling.

22. An overload coupling substantially as specifically described herein with ref- erence to the accompanying drawings.

HASELTINE LAKE & CO.

Chartered Patent Agents

28 Southampton Buildings

Chancery Lane,
London WC2A 1AT

—and—

Temple Gate House
Temple Gate
Bristol BS1 6PT
9 Park Square
Leeds LS1 2LH

Printed for Her Majesty's Stationery Office by The Tweeddale Press Ltd., Berwick-upon-Tweed, 1981.
Published at the Patent Office, 25 Southampton Buildings, London, WC2A 1AY, from which copies
may be obtained.

1589378 COMPLETE SPECIFICATION
12 SHEETS This drawing is a reproduction of
 the Original on a reduced scale
 Sheet 1

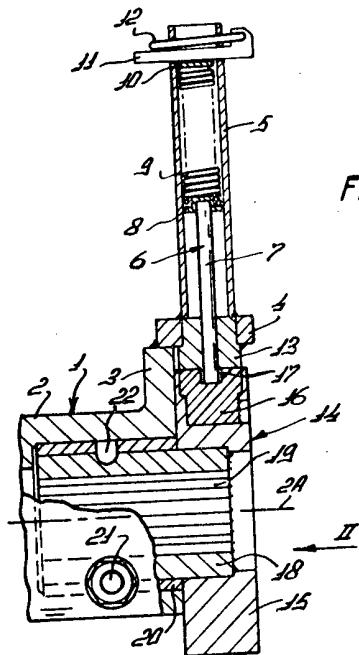


FIG. 1

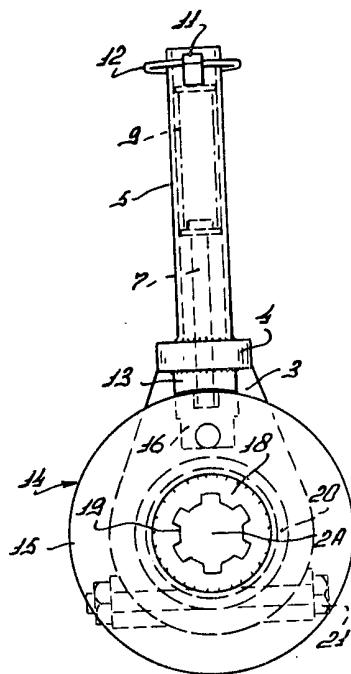
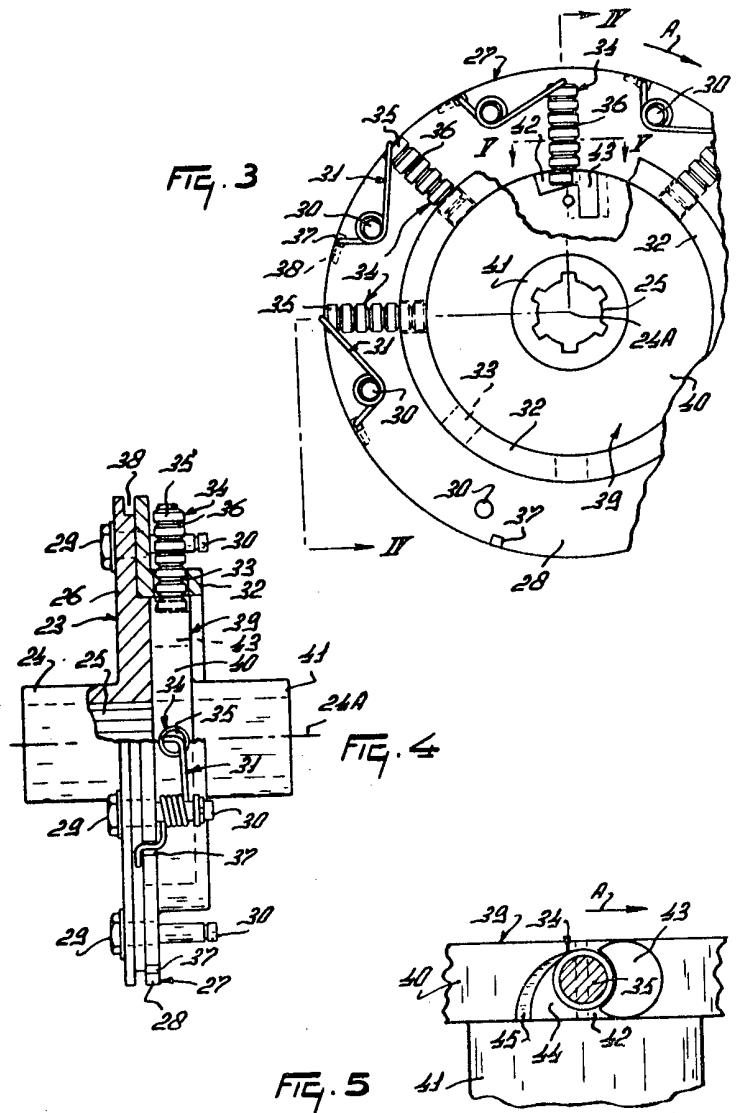
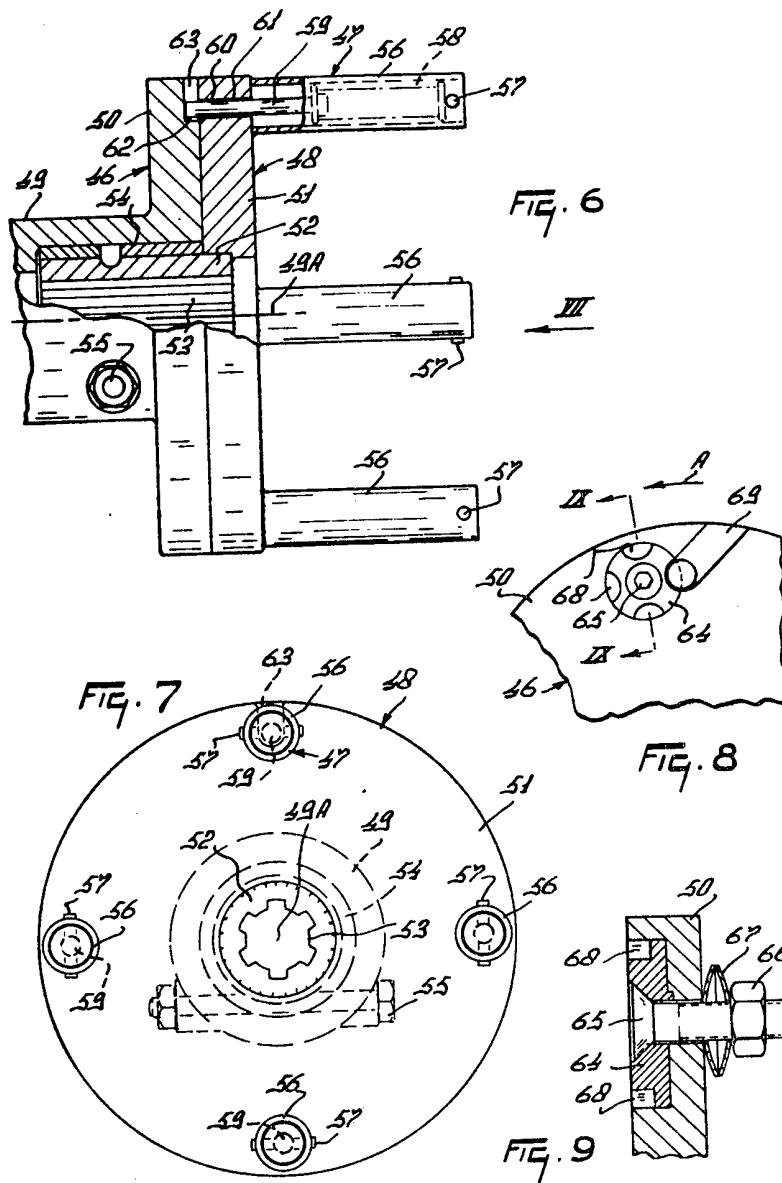



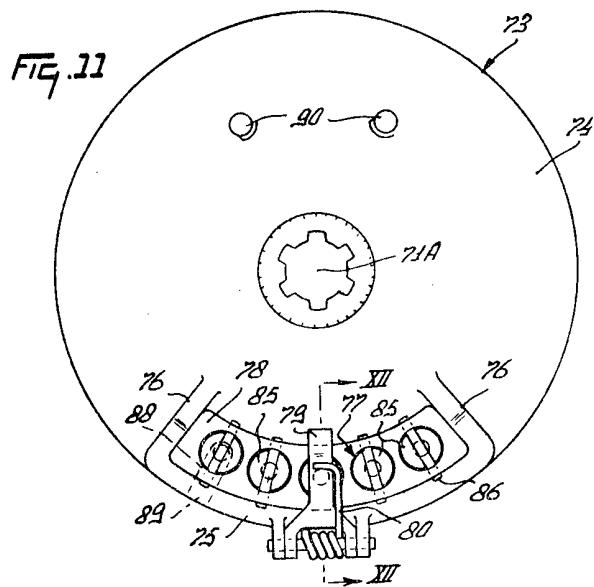
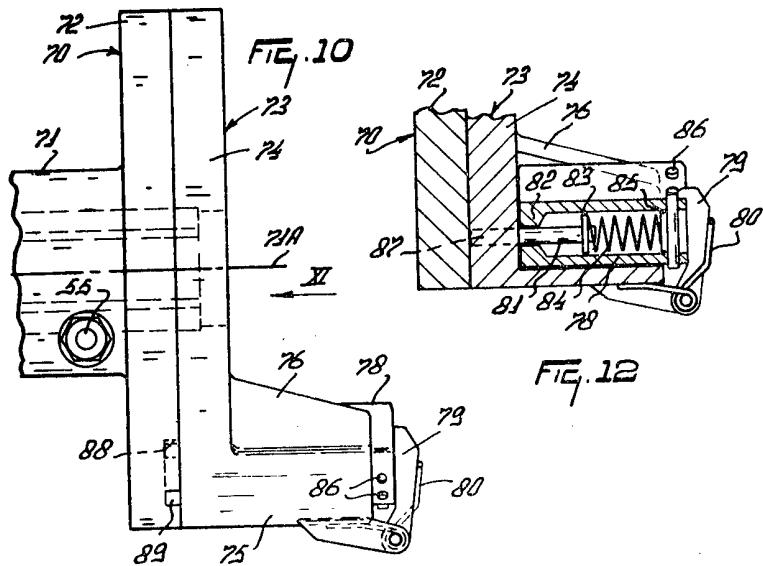
FIG. 2

1589378 COMPLETE SPECIFICATION

12 SHEETS This drawing is a reproduction of
the Original on a reduced scale
Sheet 2

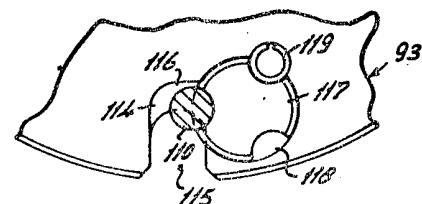
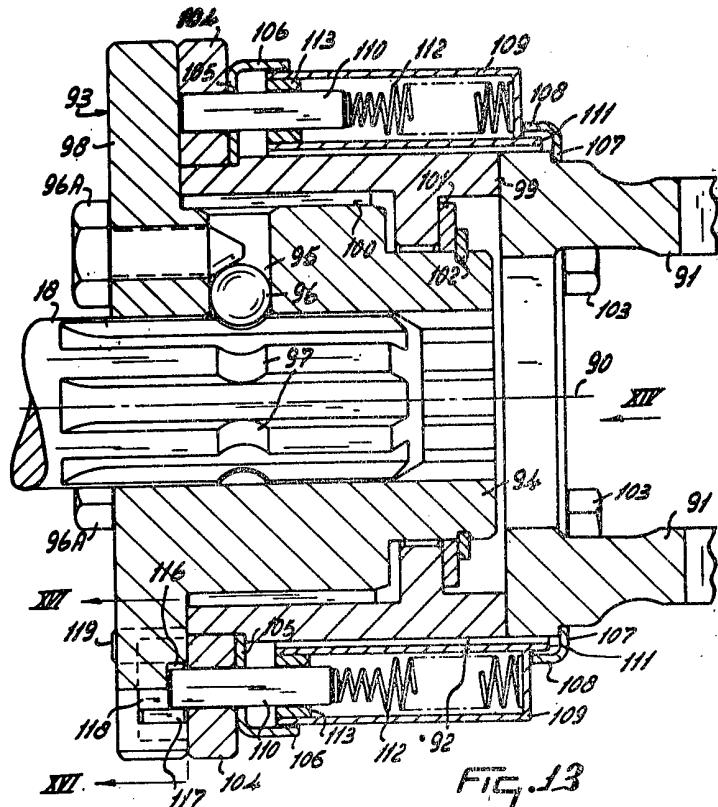


1589378



COMPLETE SPECIFICATION

12 SHEETS

This drawing is a reproduction of
the Original on a reduced scale
Sheet 3

1589378 COMPLETE SPECIFICATION
12 SHEETS This drawing is a reproduction of
the Original on a reduced scale
Sheet 4

1589378 COMPLETE SPECIFICATION

12 SHEETS
*This drawing is a reproduction of
the Original on a reduced scale*
Sheet 5

1589378 COMPLETE SPECIFICATION

12 SHEETS This drawing is a reproduction of
the Original on a reduced scale

Sheet 6

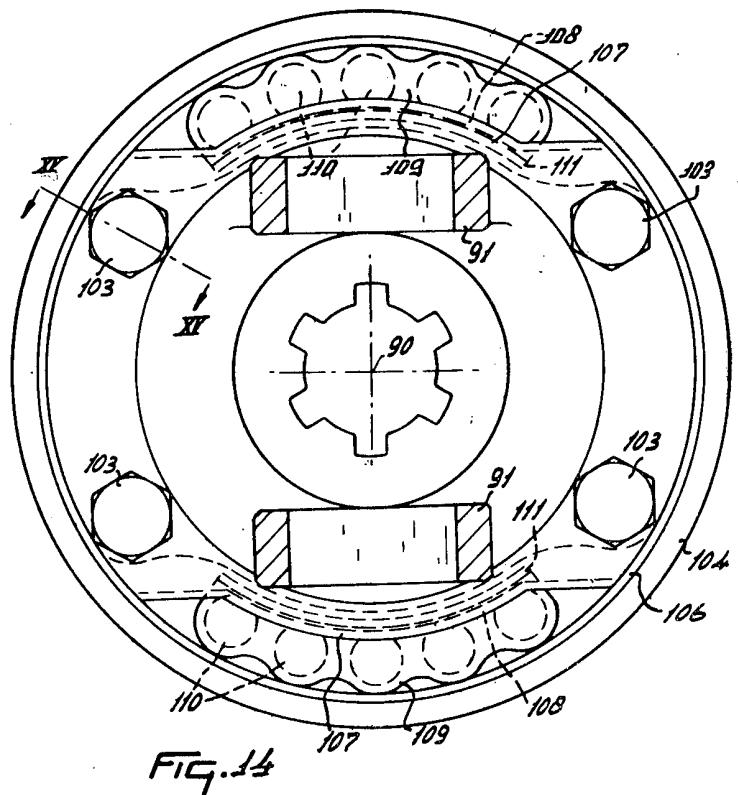


FIG. 14

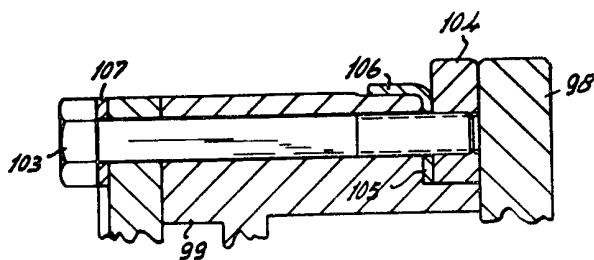
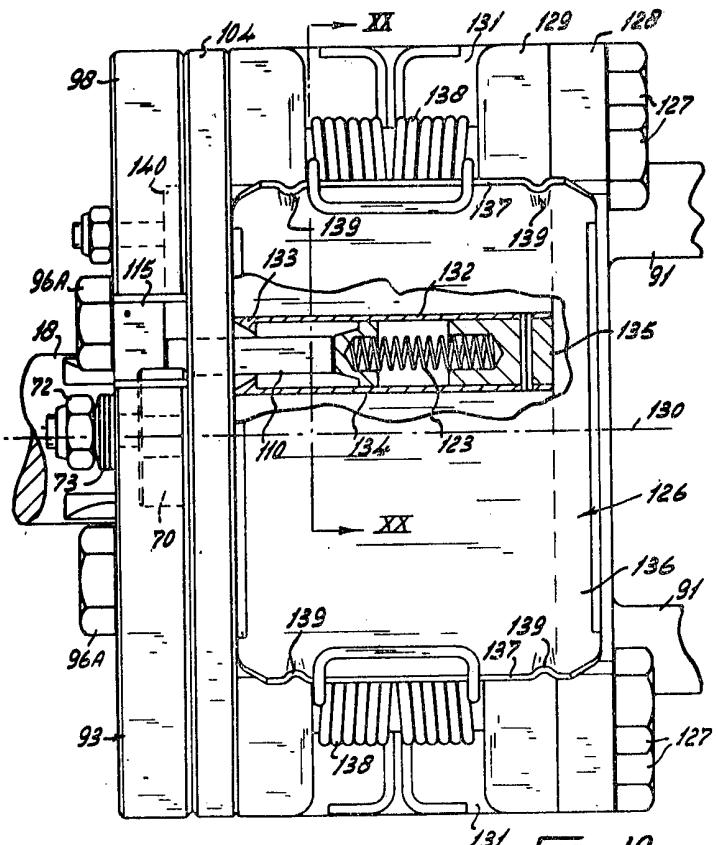
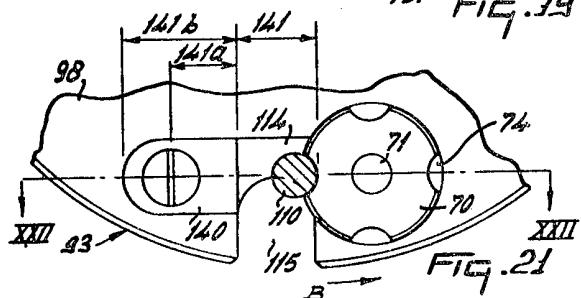
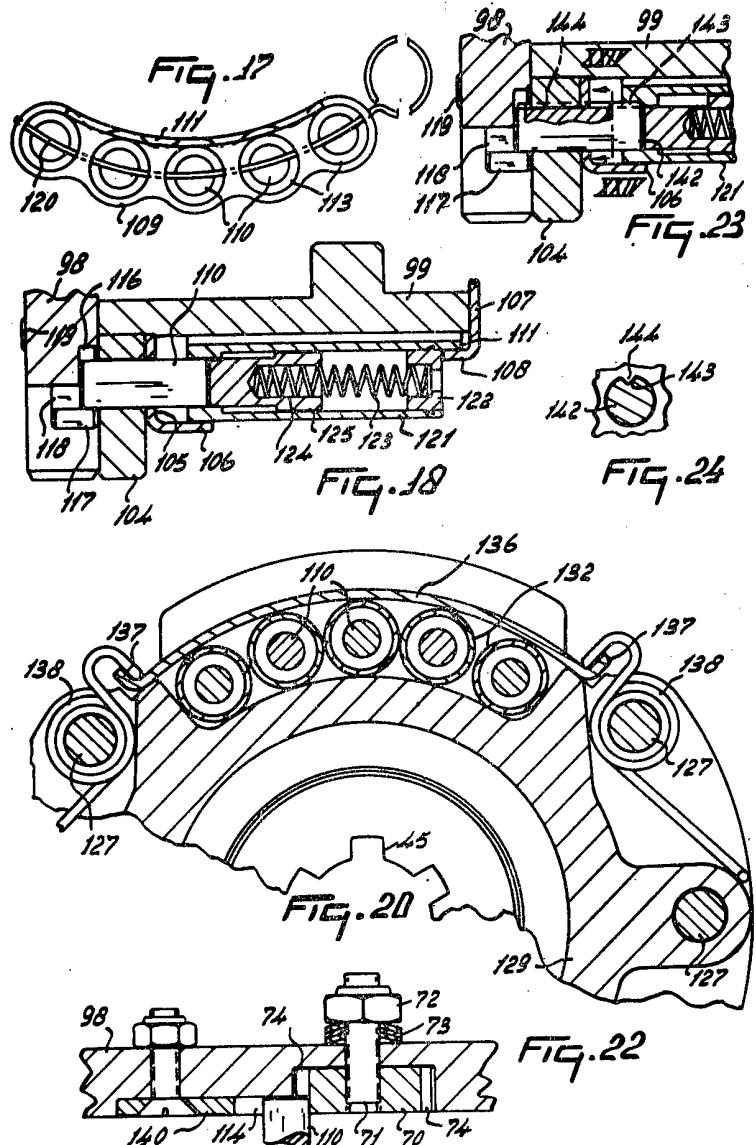



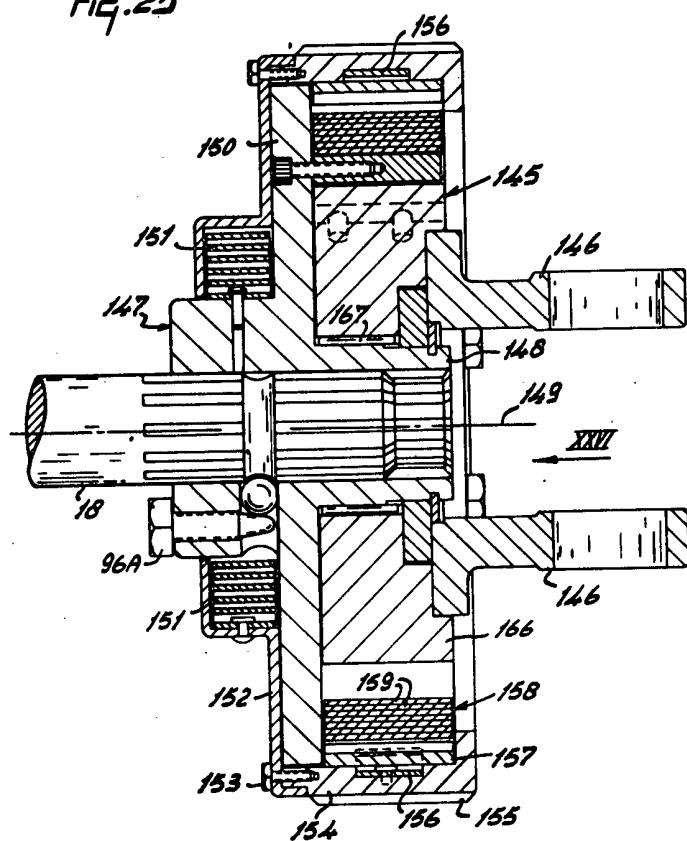
FIG. 15

1589378 COMPLETE SPECIFICATION

12 SHEETS This drawing is a reproduction of
the Original on a reduced scale
Sheet 7

131 FIG. 19

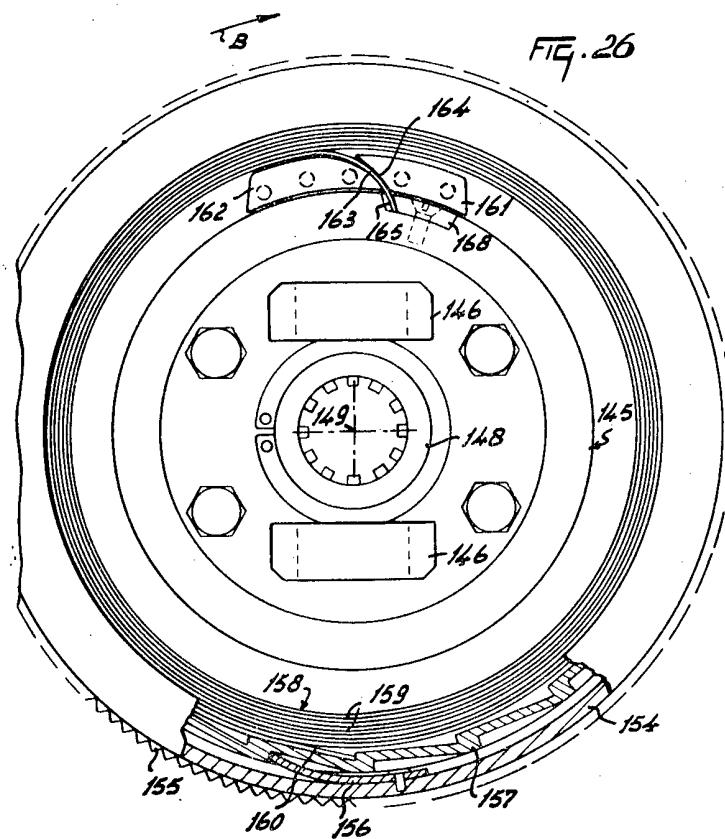




Fig. 21

1589378 COMPLETE SPECIFICATION
12 SHEETS This drawing is a reproduction of
 the Original on a reduced scale
 Sheet 8

1589378 COMPLETE SPECIFICATION
12 SHEETS This drawing is a reproduction of
the Original on a reduced scale
Sheet 9

FIG. 25

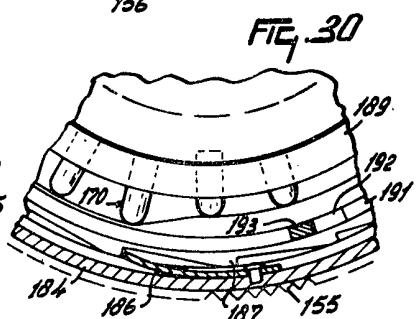
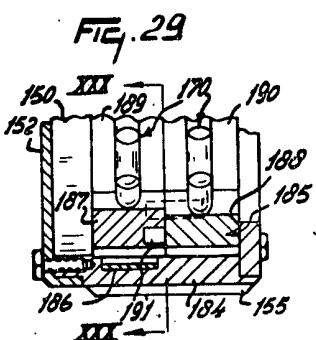
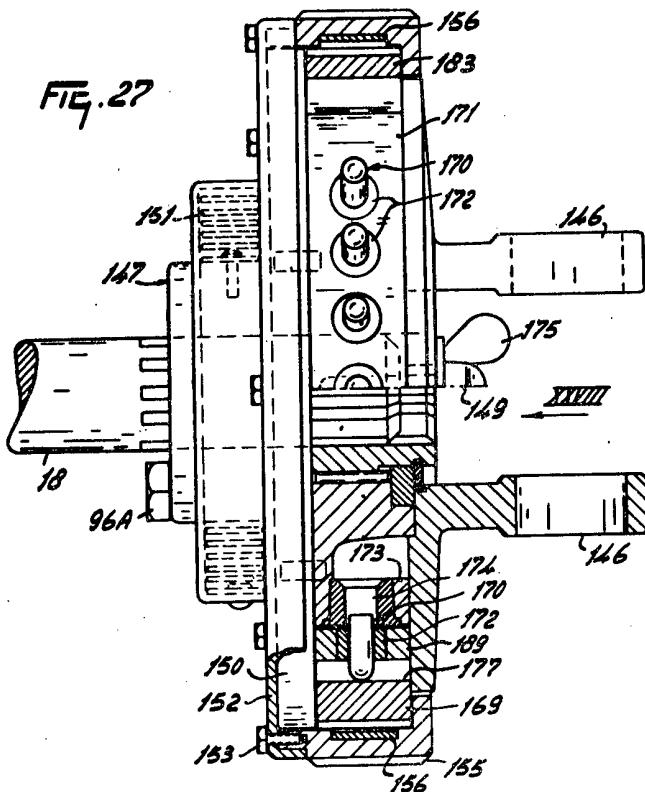

1589378

COMPLETE SPECIFICATION

12 SHEETS

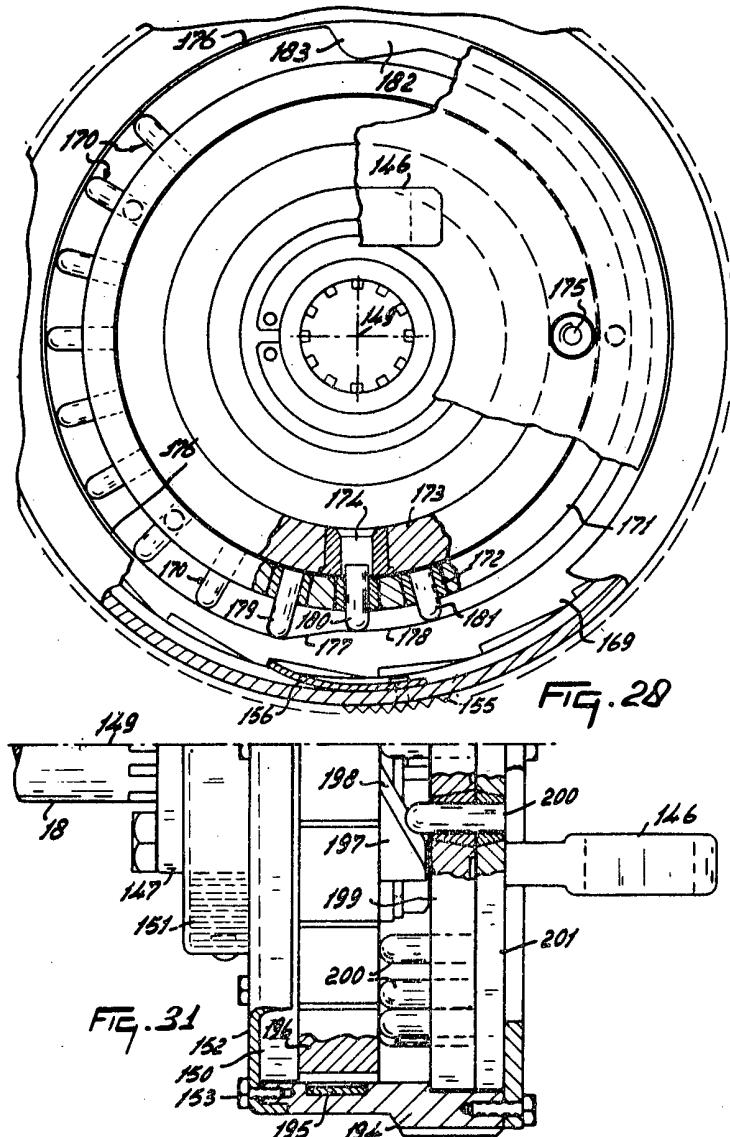
*This drawing is a reproduction of
the Original on a reduced scale*

Sheet 10




1589378

COMPLETE SPECIFICATION

12 SHEETS


This drawing is a reproduction of
the Original on a reduced scale

Sheet 11

1589378 COMPLETE SPECIFICATION

12 SHEETS This drawing is a reproduction of
the Original on a reduced scale
Sheet 12

