
(12) United States Patent
DePauw et al.

US008954859B2

US 8,954,859 B2
Feb. 10, 2015

(10) Patent No.:
(45) Date of Patent:

(54) VISUALLY ANALYZING, CLUSTERING,
TRANSFORMING AND CONSOLIDATING
REAL AND VIRTUAL MACHINE IMAGES IN
A COMPUTING ENVIRONMENT

(75) Inventors: Wim DePauw, Scarborough, NY (US);
Glenn Ammons, Dobbs Ferry, NY (US)

(73) Assignee: International Business Machines
Corporation, Armonk, NY (US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 522 days.

(21) Appl. No.: 13/289,176

(22) Filed: Nov. 4, 2011

(65) Prior Publication Data

US 2013/O 117676A1 May 9, 2013

(51) Int. Cl.
G06F 3/00 (2006.01)
G06F 7/30 (2006.01)
G06F 9/445 (2006.01)
G06F 9/455 (2006.01)

(52) U.S. Cl.
CPC G06F 3/00 (2013.01); G06F 17/30713

(2013.01); G06F 8/63 (2013.01); G06F
17/30705 (2013.01); G06F 8/65 (2013.01);
G06F 17/30572 (2013.01); G06F 9/45558

(2013.01); G06F 2009/45562 (2013.01); G06F
2009/4557 (2013.01); G06F2009/45575
(2013.01); G06F 2009/45591 (2013.01)

USPC .. T15/738

(58) Field of Classification Search
CPC G06F 8/60 8/68: G06F 8/70–8/71
USPC .. 71.5/738
See application file for complete search history.

350

(56) References Cited

U.S. PATENT DOCUMENTS

6.424,971 B1*
6,934,636 B1

7/2002 Kreulen et al. 707f737
8/2005 Skierczynski et al.
(Continued)

OTHER PUBLICATIONS

Jin Chen; MacEachren, A.M.; Peuquet, D.J., “Constructing Over
view + Detail Dendrogram—Matrix Views.” Visualization and Com
puter Graphics, IEEE Transactions on, vol. 15, No. 6, pp. 889,896,
Nov.-Dec. 2009 doi:10.1109 TVCG.2009.130.
Internet article “MG-RAST analysis tools' published on or before
Apr. 5, 2011 per Internet Archive Wayback Machine capture. URL:
http://blog.metagenomics.anl.gov/howto/mg-rast-analysis-tools/.

(Continued)

Primary Examiner — Tuyetlien Tran
Assistant Examiner — Patrick Ramsey
(74) Attorney, Agent, or Firm — Scully, Scott, Murphy &
Presser, P.C.; Preston Young, Esq.

(57) ABSTRACT
System, method and computer program product for generat
ing a GUI that facilitates the management of real and/or
virtual images on computing machines in a computing envi
ronment. The system and method provides for an interactive
visualization of virtual images (machines) and the software
components included in each virtual image or real image.
According to a consolidating and clustering processes, the
images are bundled and displayed in a dendogram to show a
hierarchy of the similarity between images. Further, software
components are represented by Small coded cells and orga
nized into logical groupings. The system and method pro
vides for user interactive functionality that facilitates the
gathering of details on certain aspects of the images and/or
components. The end result is a software program that facili
tates users ability to consolidate and manage real and virtual
images.

23 Claims, 14 Drawing Sheets

o

302 <

US 8,954,859 B2
Page 2

(56)

7,203,864
8,046,692
8,352,930
8,364,651

2004/O167906
2005/0262.194
2008/0307414
2009.0113327
2011/004.7133
2011/0055310
2011/O1970.53
2011/0225506
2011/0225574
2012,0081395
2013/0106860
2013/0106896
2013,0246422

References Cited

U.S. PATENT DOCUMENTS

4, 2007
10, 2011

1, 2013
1, 2013
8, 2004
11/2005
12, 2008
4, 2009
2, 2011
3, 2011
8, 2011
9, 2011
9, 2011
4, 2012
5, 2013
5, 2013
9, 2013

Goin et al. T14/26
Pogrebinsky et al. 715/735
Sebes et al. 717,168
Howey 707,692
Smith et al. . 707/100
Mamou et al. TO9,203
Alpern et al.
Pogrebinsky et al. 71.5/765
Alpern et al.
Shavlik et al. TO9,202
Yan et al.
Casalaina et al.
Khalidi et al.
Adi et al. 345,634
DePauw et al. 345,440
DePauw et al. ... 345,589
Bhargava et al. 707f737

OTHER PUBLICATIONS

The History of the Cluster HeatMap, Leland Wilkinson and Michael
Friendly, The American Statistician, 2009, vol. 63, issue 2, pp. 179
184.
Mietzner et al. “A Method and Implementation to Define and Provi
sion Variable composite Applications, and its Usage in Cloud Com
puting.” Institut fur Architektur von Anwendungssystemen der
Universitat Stuttgart, Jul. 13, 2010, pp. 1-369.
Sun et al., “Simplifying Service Deployment with Virtual Appli
ances.” 2008 IEEE International Conference on Services Computing,
pp. 265-272.
Konstantinou et al., “An Architecture for Virtual Solution Composi
tion and Deployment in Infrastructure Clouds.” VTDC'09KJun. 15,
2009, Barcelona, Spain, pp. 9-17.
Sethi et al., “Rapid Deployment of SOA Solutions via Automated
Image Replication and Reconfiguration.” 2008 IEEE International
Conference on Services Computing, pp. 155-162.

* cited by examiner

U.S. Patent Feb. 10, 2015 Sheet 1 of 14 US 8,954,859 B2

RGME H
2

Z
O
r
ce
2

D
O
-
Cld

G

U.S. Patent Feb. 10, 2015 Sheet 2 of 14 US 8,954,859 B2

GATHER SOFTWARE INFORMATION FROM CLOUD OR DATA CENTER 102

108 CREATE PRESENCE MATRIX DATASTRUCTURE 105

LOSSLESS COMPRESSION OF ROWS (IMAGES) AND COLUMNS (SOFTWARE COMPONENTS

PERFORMHERARCHICALAGGLOMERATIVE CLUSTERING
ONROWS (IMAGES) AND COLUMNS (SOFTWARE COMPS):

FIND TWO MOST SIMLAR ROWS OR COLUMNS

SIMILARITY > THRESHOLD 2

YES

REPLACE THESE 2 WITH A NEWVIRTUAL'IMAGE OR
SOFTWARE COMPONENT BUNDLE:

REPRESENTREPLACEMENT BY BRIDGE INDENDOGRAM;

125 RANK CLUSTERS ACCORDING TO DIFFERENT CRITERA

RANKROWS OR COLUMNS INSIDE EACH CLUSTERACCORDING TO DIFFERENT CRITERA

VISUALIZE THE MATRIX:
COMPONENT BUNDLES ARE COLUMNS (DENDOGRAMS SHOWSIMILARITIES)

IMAGE BUNDLES ARE ROWS (DENDOGRAMS SHOWSIMILARITIES)
PRESENCE OF ACOMPONENT BUNDLE IN ANIMAGE BUNDLES ASQUARE IN THE MATRIX

USER INTERACTION
-LOSSY COMPRESSION (SEE FIG, 3)
- MERGING OF SOFTWARE COMPONENT BUNDLES
- SUBSTITUTION OF SOFTWARE COMPONENT BUNDLES
- ADJUST SIMILARITY FUNCTIONS

150

EED MORE CHANGE

NO

FIG. 2 PRODUCE LIST OF "SYNTHESIZED"IMAGES 160

U.S. Patent Feb. 10, 2015 Sheet 3 of 14 US 8,954,859 B2

170

172 START FROM LOSSLESS COMPRESSION OF MATRIX

175 FIND ALL ROWS OR COLUMNS THAT ARE MORE
SIMILARTHAN A CHOSEN VALUETHRESHOLD LOSSY

COLLAPSE THESE ROWS AND COLUMNS:

180
NEED MORE

COMPRESSION ?

NO

SHOWMATRIXELEMENTS THAT WERE COLLAPSED WITHOUT
190 LOSS OF INFORMATIONAS SOLID SQUARES; SHOWMATRIX

ELEMENTS THAT WERE COLLAPSED WITH LOSS (DIFFERENT
CONSTITUENTELEMENTS) AS HOLLOWSQUARE

FIG. 3

US 8,954,859 B2 Sheet 4 of 14 Feb. 10, 2015 U.S. Patent

E.

SS

E

E.
E.
s

a a

EEE
s

8

EEE E

22, 222

O.

III619
E

Z08

ESSESS
is S. E.

c
O
cro

III

E

r
v
cy

1 J

E

E

EEE
E. EEEEEEEE

cN
r

SP o
N
d

i? a

co
w
Y

SSISS SS

00$

AyeguScuoo
8

c
c
cy

U.S. Patent Feb. 10, 2015 Sheet 5 of 14 US 8,954,859 B2

350
-- 351

Images Similarity / Images (944)
84% 92% 100%

3 images 2 images
SES 1519 Images
pokimg2569
poktimg 2196
pOklimg 2376
poklimg2570
99.9 235 Images

ES 253 Images
2 images.
poktimg 1995

FIG. 4A
380

390

Component Bundles (128)

Sš FIG. 4B
& S
es S S. S S S.S. & SoS govSg d & Sis

&S& SS2 &Siš. 8 V8 Yes Ya Ya Yad

S SSSSSSSSSSSSSSSS
&/. - vs. Šs

s

US 8,954,859 B2

EFEEEErra EEE

SEEE

EEEEE
ass

Sheet 6 of 14

EEE

U.S. Patent

Eas

US 8,954,859 B2 Sheet 7 of 14 Feb. 10, 2015 U.S. Patent

22

E

EE

III

E

EEEE

EE

§§§

US 8,954,859 B2 Sheet 9 of 14 Feb. 10, 2015 U.S. Patent

977

US 8,954,859 B2 Sheet 10 of 14 Feb. 10, 2015 U.S. Patent

N

szzzzzzzzzzzz--86Z Z£
| %78

AqueuS duoo

US 8,954,859 B2 Sheet 11 of 14 Feb. 10, 2015 U.S. Patent

U.S. Patent

92%

Images (944)
100%

375 VSimages Z.
3images

7 images Z.
poking 2533
5images
2 images
pokling 1995
pokling 1765

92% 100%

201
E298 imagesZZZZZZZZZZZZZZZN

Feb. 10, 2015

Images (944)
201

pok1.img21.96
poklimg2376
pok1.img2570
pokling 235
7 images
pok1.img2533
5images
2 images
pok1.img 1995
pok1.img 1765
pokling 2050
poklimg 1889

aaaaaaaa

NEEDS TO BE ADDED: IBM DEVELOPER
KIT JAVATM STANDARDEDITION 6.3

260

Sheet 12 of 14

anaNNZa

NZZZZZZZZZZZZZZZZZZZ

V25 (FROM img-1020 AND pok1.img-1800; 99.3% SIMILAR)--CONTAINS:
--COMPWEIGHT:617OS:RHEL x645.3OS: RHEL x64 OS: RHELx64 (RED HAT
ENTERPRISE LINUXSERVERRELEASE 5.3 (tkanga))5.3 (2.6.18-128)128)IBM
DEVELOPERKIT JAVATM STANDARD

250

ZANZ images
NNNN

NN

NN

US 8,954,859 B2

FIG. 6F

FIG. 6G

US 8,954,859 B2

NIN NIN NIN

U.S. Patent

US 8,954,859 B2
1.

VISUALLY ANALYZING, CLUSTERING,
TRANSFORMING AND CONSOLIDATING
REAL AND VIRTUAL MACHINE IMAGES IN

A COMPUTING ENVIRONMENT

FIELD

The present application generally relates to computer sys
tems and more particularly to a system and method for visu
ally analyzing, clustering, transforming and consolidating
images on physical computing machines or virtual (e.g., file
system, disk) images in cloud image repositories of a cloud
computing environment.

BACKGROUND

A cloud computing environment provides computation,
Software, data access, and storage services. Cloud computing
describes a new Supplement, consumption, and delivery
model for Information Technology (IT) services based on
Internet protocols, and it typically involves provisioning of
dynamically scalable and often virtualized resources.

Cloud computing providers deliver applications via the
internet, which are accessed from web browsers, desktop and
mobile apps. All Software, e.g., business Software, applica
tions and data are stored on servers at a remote location (e.g.,
a computing data center).
As known, “virtual and "cloud computing concepts

includes the utilization of a set of shared computing resources
(e.g., servers) which are typically consolidated in one or more
data center locations. For example, cloud computing systems
may be implemented as a web service that enables a user to
launch and manage computing resources (e.g., virtual server
instances) in third party data centers.

Different computing resources may be created within a
cloud computing infrastructure or data center. For example, a
resource may include all the components necessary to run
application Software, and may include, e.g., UNIX, Linux, or
Windows operating systems (O/S), middleware, and specific
application software or data, as desired by a user. The infor
mation for configuring the resource to be created is referred to
as an image. After an image has been created (instantiated),
the resource becomes an instance (a server instance).

It is the case that migrating software stacks from a “physi
cal to a “virtual environment provides an opportunity to
standardize the Software components that are used. As data
centers may host hundreds or thousands of hosts, e.g., servers
(HTTP/Web-servers, database servers, developer servers,
etc) containing OS, middleware and other software compo
nents, making an inventory and understanding how all these
Software components are used is a challenge. For example, in
large data centers there may multiple servers having images
including different versions and/or customizations of the
same software application/package.

It becomes a further challenge to partition hosts (or their
virtual images) into groups with a similar set of software Such
that each of those groups can then be transformed into a more
standardized set of software.
To perform this kind of analysis for a data center or current

cloud computing infrastructure is very labor intensive and
error prone, especially since the number of hosts (or virtual
“images') and the Software components they contain can be
large.

Further, analysis problems may occur after migration, in
normal operation or during 'steady state'. In steady state, the
operators need to find groups of images that share vulnerabil

10

15

25

30

35

40

45

50

55

60

65

2
ity to a virus, share some bug, etc., Such that they must all be
upgraded with a new feature, or could be aggregated or oth
erwise simplified.

While tools exist that make an inventory of the software in
an environment: e.g. Tivoli Application Dependency Discov
ery Manager (TADDM) or MirageTM (both systems available
from current Assignee International Business Machines Cor
poration), these inventories and the user interfaces to them
focus on individual machines or images. It is not easy for
users to find similarities between environments.

In the area of data mining in particular, matrix visualiza
tions and clusters do not provide the operations specific for
image transformations.

BRIEF SUMMARY

There is provided a system, method and computer program
product that provides a graphical tool to facilitate a user's
understanding, transforming, and Standardizing Software
stacks. The graphical tool helps the user by showing the
results of an automatic clustering analysis, suggesting how to
transform the discovered software.
The graphical tool provides a graphical representation that

generates and shows proposed clusters that indicates user
selectable candidates for "golden masters' (i.e., standard
images from which specialized images that consolidate the
functionality of existing machines or virtual images), i.e., the
user (e.g., an IT specialist) can interact with the tool to modify
the clustering, facilitated by “software compatibility and
merging heuristics.

Thus, in one aspect there is provided a method, system and
computer program product for visualizing data associated
with a cloud environment that comprises: receiving data
about images on computing machines or virtual images in
cloud image repositories; receiving data about Software com
ponents configured on the images; forming, from received
data, a data structure that maps all images and configured
Software components on each image; generating, using a
processor unit, a visualization interface of the data mapping
on a display device in which images are represented visually
along a first dimension of a matrix and software components
are represented visually along a second dimension of the
matrix; interacting, via a displayed visualization interface, to
display information from the visualization data used for con
Solidating Software components and images in the cloud envi
rOnment.

Further to this aspect, the method further comprises: deter
mining similarities between images on a first axis and simi
larities between Software components on a second axis; and
modifying visualizing of images in a first dimension and
modifying visualization of software components in a second
dimension based on said determined similarities.
The method further comprises: forming, for said visualiza

tion, one or more dendograms in each dimension of said
interface including one or more dendograms indicating a
degree of similarity between images in said first dimension,
and one or more dendograms indicating a similarity between
Software components in said second dimension.

In a further aspect, there is provided a system for visualiz
ing data associated with a cloud environment comprising: a
memory storage device; a processor unit in communication
with the memory storage device configured to perform a
method to: receive data about images on computing machines
or virtual images in cloud image repositories; receive data
about Software components configured on the images; form,
from received data, a data structure that maps all images and
configured Software components on each image; generating a

US 8,954,859 B2
3

visualization interface of the data mapping on a display
device in which images are represented visually along a first
dimension of a matrix and software components are repre
sented visually along a second dimension of the matrix:
receive user commands via interactions with the displayed 5
visualization interface, to extract information from the visu
alization data for use in further consolidating Software com
ponents and images in the cloud environment.

In another aspect, there is further provided a data visual
ization tool comprising: a memory storage device for storing 10
first data representing images on computing machines or
virtual images in cloud image repositories and storing second
data about software components configured on the images; a
processor device in communication with the memory storage
device for forming, from the stored data, a data structure that 15
maps all images and configured software components on each
image, the processor device generating, from the stored data,
a visualization interface for mapping the stored data on a
display device in which images are represented visually along
a first dimension of a matrix and software components are 20
represented visually along a second dimension of the matrix:
the visualization interface including cell components located
at intersections that map a particular image configured with a
particular Software component; and the visualization inter
face further including one or more dendograms indicating a 25
degree of similarity between images in the first dimension,
and one or more dendograms indicating a similarity between
Software components in the second dimension; a device for
initiating, via the interface, user interactions with displayed
cell components or visual components of the one or more 30
dendograms, the processor device causing display of detailed
information useful for consolidating software components
and images in the cloud environment responsive to the user
interactions, and, the processor device further effecting a
compression of images along the first dimension and Software 35
components along the second dimension responsive to the
user interactions.

Further to the data visualization tool the compression of
images along the first dimension and Software components
along the second dimension includes a lossy compression or 40
lossless compression.
A computer readable storage medium storing a program of

instructions executable by a machine to perform one or more
methods described herein also may be provided.

Further features as well as the structure and operation of 45
various embodiments are described in detail below with ref
erence to the accompanying drawings. In the drawings, like
reference numbers indicate identical or functionally similar
elements.

50

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates an example cloud environment 10 in
which the present system and method, embodied as a graphic
user interface tool, is deployed, in one embodiment; 55

FIG.2a illustrates control flow or logic for visualizing data
associated with a cloud environment in one embodiment;

FIG. 3 depicts the process flow for further consolidating
the visualization matrix 300 of FIG. 4 by compressing, on
user demand, rows or columns in response to user interaction 60
and manipulation;

FIG. 4 depicts a resulting visualization 300 of the presence
matrix data structure after performing a lossless compression
of the images/components;

FIG. 4A shows similar (not identical) image bundles indi- 65
cated by a bridge 375 in a formed dendogram 380 of FIG. 4 in
one embodiment;

4
FIG. 4B shows similar (not identical) component bundles

by a bridge of dendogram 385 in one embodiment;
FIG. 5 depicts a resulting compressed visualization inter

face 500 of the visualization matrix data (of FIG. 4) after
processing by the tool and performing a lossy compression of
the images/components;

FIGS. 6A-6H illustrate various user interactions with the
visualization interface to initiate display of further actionable
detailed information from displayed elements in the visual
ization;

FIG. 7 illustrates an example of a computer system, in
which the systems and methodologies of the present disclo
Sure may be carried out or executed.

DETAILED DESCRIPTION

FIG. 1 depicts an example data center or cloud computing
environment 10 in which the present system and method,
embodied as a graphic user interface tool, enabling a user,
e.g., a cloud administrator or like system administrator, for
visually analyzing, clustering, transforming and consolidat
ing the host machine images that are present in a cloud com
puting environment 10, is deployed. As referred to herein, an
“image' includes: virtual-machine images; “real images, or
content from physical machines obtained when the machines
are non-active, e.g., from a back-up image; 'Snapshots” of
running machines (physical or virtual), e.g., a copy of the
contents of a machine while it is running; and, live data from
running machines (physical or virtual).

Typically, a cloud 10 comprises a cloud manager or con
troller device 15 (e.g., a computer Such as a server), a group of
servers 16, and one or more storage device(s) 17 hosting
application data, Support data and other data Such as Software
inventory results data 19 acquired, such as by prior invoking
the aforementioned Tivoli (TADDM), CTI or MirageTM soft
ware discovery processes for visualization and analysis as
conducted by the system described herein. Although not
shown, the cloud 10 may comprise additional servers and/or
additional storage devices. The cloud controller 15 typically
receives a job(s) from client(s) 12a, 12b, . . . , 12m. For
example, as shown in FIG. 1, example clients (computing/
mobile devices) 12a, 12b Submit processing tasks or jobs
directly to the cloud controller device 15, while example
client devices 12, 12n Submit processing tasks or jobs via a
network environment 99, e.g., Internet or Intranet through a
web services interface of the cloud 10.

Items, operations, and procedures involved in the cloud
controller device 15 are described below.

FIG. 2 depicts a method 100 operated on cloud 10. First, as
indicated at 102, the tool gathers the acquired software dis
covery results from the cloud or data center, e.g., using the
aforementioned software discovery tools. The software
inventory results are provided typically as a list of software
components (e.g., OS, middleware (e.g., Webshpere or DB2),
Red Hat(R) Package 1 or RPM entries (Red Hat a trademark of
Red Hat, Inc. Corporation of North Carolina, USA), files, or
other Software components, etc.) discovered on a set of
machines or virtual images in Cloud 10.

Then, at 105, FIG. 2, the tool creates a presence matrix data
structure and not yet in a form to be visualized. The presence
matrix data structure stores information that will be later
processed by the tool and includes a matrix that maps the
cloud's hosts/images, and individual Software components
available in each host machines/virtual image.
More particularly, as will be described in greater detail

herein below, the tool performs a consolidation analysis (e.g.,
a compression and clustering analysis) of the data structure

US 8,954,859 B2
5

and presents the analysis in a form for display to the user as a
visualization matrix 300 of the cloud repository in the manner
as shown in FIG. 4. That is, FIG. 4 depicts a resulting visu
alization 300 of the presence matrix data structure after pro
cessing by the tool. This visualization 300 is generated for
display in a manner Such that users can interact with to per
form analyzing and/or transforming and consolidating (or
standardizing) of the host device images that are present in a
cloud computing environment 10. As shown in FIG. 4, the
displayed presence matrix visualization 300 includes Rows
302 indicating the cloud's hosts/images (e.g., Virtual images
or machine IDs of physical machines) 305, and Columns 304
as indicating individual software component 310 which can
be: files, RPM entries, software packages, O/S components,
files, etc., or as will be explained, bundled software compo
nents 320. The intersection of a particular image, e.g., com
puting machine 305, and a particular software component
310, e.g., a Software package, is indicated on the matrix by a
block 308, describing that the particular image includes the
particular software component. A presence vector 309 is indi
cated as a column in the matrix indicating in which images (if
any) the Software component is present or absent.

Thus the entries in the visualization matrix.300 indicate the
presence of one or more components, as given by the X-coor
dinate, from the top row of Software components, on a given
host or virtual image, as given by the y-coordinate of the
virtual image list on the left. If two or more virtual images
contain the same set of software components, i.e., if two rows
in the original presence matrix are identical, these will be
visualized by a single row, instead of their respective rows.
Similarly, if two columns in the original presence matrix are
identical, these will be visualized as a single column, instead
of their respective columns.

That is, returning to FIG. 2, at 108, the tool performs a
lossless compression of the presence matrix data structure—a
compression of rows (i.e., images) and columns (i.e., soft
ware components). This step includes the transforming the
Software components of the matrix columns into component
bundles 320 with each component bundle 320 representing a
set of components, for which all its constituent components
are either present (appear together) or absent in any of the
images. For example, a Java developer (having a JDK) may
require several files that always appear together, e.g., a same
group of installation files. Particularly, the tool compares each
column in the matrix data structure to another column (in
cluding use of optimization techniques) to find exact matches
and these are combined into a component bundle.

In view of FIG. 4, those software components 310 in col
umns 304, including but not limited to: O/S, middleware,
RPM components, files, (or other software components are
displayed on a horizontal axis) that always appear together
across the set of machines or virtual images under study are
grouped together. In one embodiment, the grouped software
components, i.e. component bundles 320, may be represented
by a geometric shape Such as a rectangle 312 at the horizontal
axis. In one embodiment, attributes of the rectangle can be
modified to indicate detailed aspects of the grouped software
bundle. For example, the taller a rectangle 312 in this line, the
more components it contains, which always appear together
in the discovered images. In one embodiment, the rectangle's
color attribute can reflect the kind of software component. For
example, a company's brand color may be used for the most
prominent software component if applicable, black for OS
components, gray for non-company or outside vended soft
Ware, etc. . . .).

This lossless compression step further includes transform
ing the matrix rows into image bundles 325 with each image

5

10

15

25

30

35

40

45

50

55

60

65

6
bundle 325 representing a set of images (e.g., computing
machines) that have exactly the same software components,
taken into account during the discovery. Particularly, the tool
compares each row in the matrix data structure to another row
(including use of optimization techniques) to find exact
matches, i.e., machines having the same exact software con
tent—components or bundles 310) and these are combined
into a single image bundle 325. An example of this can be
seen for the top four entries of the virtual images 305 in the
FIG. 4. The first row 321 represents abundle having a set of
298 images found to have an identical set of software com
ponents or bundles, the second row represents 7 images, the
third one 3, and the fourth one 2 images, etc. In one embodi
ment, the grouped images, i.e. image bundles 325, may be
represented by a colored rectangle 321 at the vertical axis.
When an image has a unique set of software components (i.e.
when no other image has the same content), it will be repre
sented as a bundle with just one image, labeled with the ID of
the image, for example shown by 305.

It is understood that after collapsing the matrix in compo
nent bundles 320 and image bundles 325, no two columns or
no two rows in the matrix will be the same.
The tool further sorts the rows (images) so that similar

images (or image sets) are clustered into groups of images,
e.g., demarcated by thin horizontal lines 311 across the
matrix. For example, in FIG. 4, the first 19 rows are clustered
into one group of images with a similar composition of Soft
ware components.

Returning to step 110, FIG. 2, in one embodiment, the tool
performs a hierarchical agglomerative clustering on the rows
(images) and the columns (components) of the visualization
matrix using an adjustable similarity function. That is, after
lossless compression 108, at 112, the tool identifies most
similar rows (or columns) and determines at 115 whether a
similarity between the identified rows (or columns) exceeds a
predetermined threshold. For example, two machines may
have the same content but only differing in a minor respect,
e.g., a machine having software component WebSphere 5.4
versus a machine having a Websphere 5.5. These are very
similar contents that could be clustered together, i.e., within a
threshold. If the determined similarity between the identified
rows (or columns) does exceed a predetermined threshold,
then, at 118, a “bridge' in a dendogram is generated that
“connects the two related images (e.g., first two rows) with a
Vertical segment. The horizontal position of this vertical seg
ment indicates a degree of similarity against a similarity scale
350 as described in greater detail with respect to FIG. 4A.
More particularly, the vertical bridge part 375 represents the
consolidation or combination of the respective images it con
nects. In one embodiment, the bridge may be color coded to
indicate the most predominant Software in the Software com
ponents of the consolidated images. Likewise, leg compo
nents 376 of the dendogram 380 may be colored in the den
dogram to indicate which Software component is required to
combine or consolidate the images (i.e. which components
need to be added, removed or modified for the consolidation).
Thus, as shown in FIG. 2, as this is a hierarchical agglomera
tive clustering, a recursive process, steps 112-118 are
repeated as indicated by the return 119 such that each row (or
column) of the matrix is traversed and compared to all
remaining rows (or columns). That is, in the next iteration, a
next two similar images are found based on similarity thresh
old and a synthesized image will be generated by the bridge
378 representation indicated. As described in greater detail
herein below, this result will further minimize the number of
elements that are different in the visualization matrix when
the user decides to collapse rows connected in a dendogram.

US 8,954,859 B2
7

In one embodiment, at 112, FIG. 2, the tool compares each
matrix line against the other remaining line(s), and the two
lines that are most similar are placed together in the visual
ization matrix representation. In the example matrix depicted
in FIG. 4, it is determined that two compared rows are within 5
a threshold determination. For example, in view of the visu
alization matrix of FIG. 4, the first two rows having a first
bundle 321 of 298 images and a second bundle of 7 images,
respectively, are nearly identical save for the presence of an
additional component 328 in the second image bundle (and 10
corresponding absence of that same particular software com
ponent in the first image bundle 321). Having determined that
the compared two rows are within the threshold determina
tion, the process proceeds to 118 where these two image
bundles are “replaced with a new virtual image. For 15
example, as indicated in FIG. 4 and in the detailed view of
FIG. 4A, the replacement is represented by a bridge 375 in a
dendogram 380.

This replacement represents a “synthesized image' that is
the consolidation of the top two image bundles. Such a syn- 20
thesized image provides all the functionality of its consoli
dated images. Since the consolidated images were similar to
each other, one can expect that the resulting synthesized
image will contain fewer Software components than the Sum
of the software components found in each of the consolidated 25
images. This is because Some of the Software components
may occur duplicated, or may occur with slight differences
(e.g. versions) across the consolidated images.

Thus, for example, within a cluster, e.g., cluster 330a, the
tool shows image similarity with a dendogram 380 (the rec- 30
tilinear connections between images). Such a dendogram
reflects the results of a hierarchical clustering of the group of
images. Highly similar images are connected by a bridge 375.
such as a vertical line segment, that is closer to the 100% point
351 on the scale 350 at the top: less similar images (or groups 35
of images) are connected by a bridge with a vertical line
segment that is more to the left of the scale 350 indicating a
lesser degree of similarity of the bridged images or compo
nents. Thus there is provided a synthesized image and the two
images are collapsed and a synthesized image generated indi- 40
cating a degree of similarity.

FIG. 4A in greater detail that portion of the dendogram 380
shown in FIG.4 for the first cluster 330a. The dendogram 380
shows a replacement of similar (not identical) image bundles
by a bridge component 375 of the dendogram 380 connecting 45
legs 376 indicating the respective two bundled images with
each bridge 375 positioned against the scale 350 presented
above the dendogram to that indicate the degree of similarity
between the bridged images. For example, for the example
visualization matrix of FIG. 4A, the first two rows have a first 50
grouped bundle of 298 images indicated by rectangle 321 and
a second grouped bundle of 7 images indicated by rectangle
322, respectively, that are nearly identical (e.g., -99%) and in
FIG.4A the bridge 375 will be positioned close to 100% label
in scale 350. It is noted that the bridged images of the den- 55
dogram 380 are color coded such that the horizontal lines legs
376 may indicate which components of the color coded visu
alization interface 300 would have to be added (or removed,
or modified) if their root images were to be consolidated. For
example, in the example dendogram 380 shown in FIG. 4A, a 60
bridge 375 appears color coded to indicate the predominant
similar software components in those connected images,
while bridge 375 of dendogram 380 may be color coded
differently to indicate the further prominent software compo
nent, e.g., IBM Webshpere, for its respective attached images. 65
As further shown in the example dendogram portion shown in
FIG. 4A, to consolidate images from one level of the hierar

8
chy indicated at bridge 375 to the next higher level indicated
as images connected by bridge 375", the horizontal leg 377
connecting the two levels is color coded to indicate the par
ticular software component that would be needed to consoli
date the images.
As mentioned, dendograms are generated similarly for

software components in the visualization matrix 400. FIG. 4B
shows in greater detail that portion of the dendogram 385
shown in FIG. 4 where the first two columns are highly
similar. This means that the presence of the first component
bundle across all images, as indicated by the first column in
the matrix in FIG. 4, is very similar (i.e. meets the similarity
threshold) to the presence of the second adjacent component
bundle. Consequently a bridge of a dendogram is generated
that is positioned against a scale 390. The horizontal segment
of this bridge indicates the degree of similarity between the
bridged (similar) component bundles. In the example of FIG.
4B, the similarity scale 390 indicates about a 90% similarity
between the first two bridged component bundles of the
example depicted. As can be seen in FIG. 4, almost all of the
images of four of the five clusters 330a, 330b, 330c, 330e
have the Software components indicated by the dendogram
385; however, the cluster 330d shows images wherein one of
the Software components is missing as indicated at 319, mak
ing the first two columns still similar but not identical

Bottom-up clustering stops for similarities lower than a
given threshold. The result are a number of clusters in each
dimension including image bundles 325 having same or very
similar contents component bundles with minor differences,
e.g., version differences. Image clusters are shown in the
example visualized presence matrix 300 of FIG. 4 indicated
as image groups (clusters) 330a, 330b, ..., 330e. As will be
described, each formed cluster 330a, 330b, . . . , 330e will
have an associated "golden master image of components that
can be used to replace or consolidated images in the visual
ization matrix having components as shown in the dendogram
at each respective cluster.

With respect to the similarity threshold determination at
FIG. 2, step 115, the similarity function can be the Jaccard
index (http://en.wikipedia.org/wiki/Jaccard index. Other
similarity functions that can be applied may include, but are
not limited to, the Cosine similarity (http://en.wikipedia.org/
wiki/Cosine similarity), or the Hamming distance (http://
en.wikipedia.org/wiki/Hamming distance). The similarity
function can further take into account heuristics for software
compatibility. Thus, for example, minor versions are easy to
merge, thus yielding a high similarity; some Software com
ponents are incompatible (i.e. cannot be placed together on
the same image), yielding very low similarity.

Returning to FIG. 2, step 115, if no remaining two rows or
columns can be found anymore that have a similarity higher
than the predetermined threshold, the process proceeds to
step 120 where clusters may be ranked according to different
criteria.

In one embodiment, ranking of clusters at 125, FIG.2 may
include sorting the clusters in each direction according to a
predefined weight function. For example, in the vertical
dimension, the image clusters that have the highest number of
images could be ranked higher and placed (more visibly)
higher up to present the most important clusters (in terms of
images that can be consolidated) to the user, e.g. the cloud
administrator, most visibly, at the top. Alternatively, the clus
ters with the highest similarity could be ranked higher. Such
a ranking would present the image bundle clusters that are
“lowest hanging fruit (easiest to consolidate, since most
similar) at the top. Further, for example, in the horizontal
dimension, the component clusters with a presence in the

US 8,954,859 B2

highest number of images could be ranked higher and placed
(more visibly) towards the left of the interface 300. In a
further example, in each dimension, the ranking could also
take into account the frequency of the Software as it is
deployed. In one embodiment, the same sorting could be
applied to the elements within a cluster (in each dimension).
Other embodiments can be implemented to reflect the priority
that is considered important to the administrator.

Proceeding to FIG. 2, step 125, the tool may further rank
rows or columns inside each cluster according to different
criteria. In one embodiment, the same criteria may be applied
for the intra-cluster ranking as for the inter-cluster ranking,
e.g., placing more important rows at the top or more important
columns to the left of the interface 300. Both for intra-cluster
and inter-cluster ranking, other criteria may be applied. In
addition to the ones already mentioned, popularity of images,
frequency of use in the cloud, or user-defined criteria can be
applied.

Finally, once the clustering and ranking processes are per
formed, the method proceeds to FIG. 2, step 130, where the
tool performs steps to generate the visualization matrix Such
as the example visualization matrix 300 shown in FIG. 4.
including a visualization of dendograms in each dimension.
The visualization of the matrix data structure comprises com
puting the dendograms that show similarities between images
in a cluster on a first axis (e.g., rows) of the example shown in
FIG. 4A, and computing dendograms that show similarities
between Software components on a second axis (e.g. col
umns) of the example shown in FIG. 4B. As shown in FIG. 4,
the visualization matrix 300 is generated to represent: each of
the synthesized component bundles 320, e.g., along matrix
columns; each of the synthesized Image bundles 325, e.g.,
along matrix rows, with the presence of a software component
or software component bundle j in an image bundle i being
represented by a cell (i,j) 308 in the visualized matrix 300. In
one embodiment, the color or shape (e.g., a square), or other
property/attribute of the cell (i,j), in the matrix could repre
sent the “software category or brand family”.

In FIG. 4A showing the example visualization of the den
dograms. In the visualization of the dendograms, the bridges
of the dendograms for the images can represent “synthesized
images'. These are imaginary images that combine the func
tionality of the constituent images as shown in the legs 376 of
the dendogram bridge 375, which can be synthesized ele
ments (images) or real images. The degree of similarity is
indicated by the alignment of the bridge 375 against the scale
350. In a hierarchical clustering technique, the most similar
images may be found first and these may be combined by the
bridge to form a synthesized image (e.g., a union of the legs).
The next most similar images may be found next, and the
recursive process repeats for all images and software compo
nents. Thus, the graphical structure of the dendogram bridges
show the most similar bridges aligned with the 100% on the
Scale 350.
The visualization matrix operates in conjunction with a

visualization tool for user interaction with the matrix. For
example, tooltips and colors on the dendogram parts may
show to the user: the components of the combined images;
what needs to be added to transition to a synthesized image:
and dendogram bridges for the components (columns) indi
cate closely related component bundles.

Thus, in view of FIG. 2, once the visualization matrix is
generated at 130, the user may directly interact with the
visualized matrix in a more meaningful way as indicated at
140. In addition to revealing more information with tooltips
or colors on demand (e.g., by hovering with a mouse over a
part of the visualization), the user may interact in other ways.

10

15

25

30

35

40

45

50

55

60

65

10
For example, user interaction may include performing one or
more of: a lossy compression (see method depicted in FIG.3)
described in greater detail below; a merging of software com
ponent bundles; a Substitution of Software component
bundles; and/or adjusting similarity functions. Besides these
interactions, other ones are possible.

FIG. 3 depicts the process flow for further consolidating
the visualization matrix 300 of FIG. 4. The visualized matrix
may be further compressed, on user demand, by collapsing
similar rows or columns in response to user interaction and
manipulation. This is represented as performing a “lossy
compression as performed at 170, FIG. 2. As shown in FIG.3,
at 172, there is provided/displayed the lossless compression
version of visualization matrix 300. Then, at 175, function
ality is invoked to determine all rows (or columns) that are
more similar than a chosen threshold value"THRESHOLD
LOSSY”. This value THRESHOLD LOSSY in 175 may or
may not be the same as the value THRESHOLD in 115 (FIG.
2). Typically, similar rows (or columns) will belong to the
same virtual image cluster (or Software component cluster,
respectively). As shown in FIG. 3, the method then performs
at 178, collapsing the determined rows (or columns). Then, at
180, a determination is made as to whether there is a need for
further compression as determined by the needs of the user if
the number of rows or columns is still deemed to high to easily
provide insight as to where to consolidate image bundles or
software components. If there is a need for further compres
sion, the process proceeds back to 175 to change the chosen
THRESHOLD LOSSY value and invoke functionality to
determine all rows (or columns) that are more similar than the
new chosen threshold value. These process steps are repeated.
If at 180, it is determined that there is no need for further
compression, the process proceeds to step 190 where a visu
alization of the matrix elements that were collapsed are ren
dered.

Further, in view of FIG. 2, once the visualization matrix is
generated at 130, and the user has attempted to or has directly
interacted with the visualized matrix as indicated at 140, FIG.
2, the process proceeds to 150 where a determination is made
as to whether there are any further changes that need to be
made to the visualized data matrix.

Regardless of when or if a user performs a lossy compres
Sion, a user may also choose to collapse two (or more) specific
image bundles (rows), or similarly, two or more software
component bundles (columns). No similarity threshold is
needed for this operation, since it is driven by the choice of the
USC.

If there are further changes desired, the process proceeds
back to 110 to again perform hierarchical agglomerative clus
tering on rows (images) and columns (software components)
and the process repeats produce a further visual representa
tion for user interaction. If at 150, it is determined that there
are no further changes that need to be made to the visualized
data matrix, the process continues to produce a list of “syn
thesized' images at 160 which a user may use to facilitate
evaluation of the cloud resources and perform further con
Solidation and/or management of cloud resources. Each Syn
thesized image describes a software configuration that covers
a cluster, an engineer uses this configuration, and optionally
together with image construction tools, to produce a 'golden
master image. In one embodiment, constructing a golden
master is performed by presenting a consolidated list of pack
ages and configurations to a package installer, which may
require a human to resolve conflicts. Alternate embodiments,
may be to generate a consolidated list of Software compo

US 8,954,859 B2
11

nents, collect installation CDs for the items on the list, and
then install and configure from the CDS while addressing any
conflicts.

Whether during performing a lossy compression, or at any
time, a user may first be informed of candidates for synthe
sizing or combining images by hovering a mouse device
pointer/cursor over a displayed element of the visualization
interface, e.g., a horizontal line of a row, a vertical line, cell,
or image or software component label, etc. In response to
hovering, the system responsively displays more detailed
information about content of that pointed to element. For
example, to combine (consolidate) an image, it can be deter
mined what needs to be added or changed in order to form the
synthesized image or software component.

For example, as shown in FIGS. 6A-6H, the user can hover
a pointer over the following displayed elements in the visu
alization to get further actionable detailed information
including, but not limited to: the label of an image bundle; the
bar 321 (if present, to the right of the image bundle labels); the
label of a component bundle; the colored rectangles below the
component bundle label; the cells of the matrix; and, the
vertical lines and horizontal lines of the dendograms for the
image bundles 325 and software components bundles 320.

For example, in view of FIG. 6A, by hovering a cursor or
pointer 201 over an intersecting cell 308 of the visualization
matrix display of FIG. 4, e.g., the system generates a tooltip
display 210 indicating details such as the Software compo
nents and the image ID(s) that they occur in. In the case of a
lossy compression, the tooltip may also inform which com
ponents are unexpectedly absent or present for the image
bundle
As a further example, in view of FIG. 6B, by hovering a

display cursor or pointer 201 over the label of an software
component bundle 320 on the visualization matrix display of
FIG. 4, the system generates a tooltip display 220 indicating
details such as the constituent Software components of the
bundle. It can also display properties of the component
bundle. It can also indicate the size of the software compo
nents, as well as in how many images this component bundle
is present. In the case of a lossy compression, the tooltip will
also mention which components are absent (or present) injust
a few images, unlike the majority, which is useful to find
abnormal removals of Software components from certain
images.
As a further example, in view of FIG. 6C, by hovering a

display cursor or pointer 201 over the label of an image
bundle 325 on the visualization interface display of FIG. 4,
the system generates a tooltip display 225 indicating details
Such as the number of grouped images in the pointed to
bundle and all the components in this image bundle. It also
indicates how often this component bundle occurs across all
images
As a further example, in view of FIG. 6D, by hovering a

display cursor or pointer 201 over the corresponding image
bundle rectangle 321 indicating grouped images of an image
bundle 325 on the visualization interface display of FIG.4, as
there is more than one image in the image bundle, the system
generates a tooltip display 230 indicating details of the con
stituent image (identifiers or IDs) of the bundle. It also dis
plays the Software components that are contained in the image
bundle. It can also display properties of the image bundle like
size, number of times this image was deployed, popularity,
etc.

In a further example, in view of FIG. 6E, by hovering a
cursor or pointer 201 over the displayed geometric shape 312
indicating grouping of software components into a compo
nent bundle at the horizontal axis of the visualization inter

10

15

25

30

35

40

45

50

55

60

65

12
face display of FIG.4, the system generates a tooltip display
240 indicating details such as the number of grouped software
components in this bundle including details of the bundled
Software in addition to the constituent number of images in
the pointed to bundle.
As a further example, in view of FIG. 6F, by hovering a

displayed cursor or pointer 201 over a vertical segment 375 of
the dendogram bridge displayed on the visualization matrix
display of FIG. 4 connecting two image bundles, the system
generates a displayed tooltip 250 that describes the degree of
similarity between the two (possibly synthesized) constituent
images that this vertical line connects (e.g., 99.3% similar for
the example depicted). In other words, it shows the exact
percentage of similarity in a textual form that was already
given graphically by the horizontal position of this vertical
line with respect to the Image Similarity scale. The displayed
tooltip 250 also reveals the list of software components that
this synthesized image contains as a result of the consolida
tion. It can be accompanied by their respective sizes and the
total cumulative size. This detailed content of a hypothetical
synthesized image including the Software component(s) may
be a good Substitute for the components found on the con
stituent images below the dendogram.

In a further embodiment, in view of FIG. 6G, by hovering
a displayed cursor or pointer 201 over a horizontal segment
376 of the dendogram bridge displayed of the visualization
matrix display of FIG. 4, the system generates a displayed
tooltip 260 that includes details revealing the difference
between an image (on the right of a horizontal line) and the
synthesized image that it should be transformed in. Thus
display 260 includes details such as a list of software compo
nents that need to be added (or subtracted, or changed) in
order to transform an image to its “target' synthesized image.

Likewise, in view of FIG. 6H, by hovering a displayed
cursor or pointer 201 over a horizontal segment 386 of the
dendogram for the software component bundles 320 of the
visualization matrix display of FIG.4, the system generates a
displayed tooltip 270 that includes details revealing the simi
larity between the component bundle on the left and on the
right vertical lines 387 connecting horizontal segment 386.
The display 270 also indicates the cumulative list of software
components found in the component bundles indicated by
lines 387.

FIG. 5 depicts the resulting visualization matrix 500 after
performing lossy compression of the visualized interface 300
of FIG. 4. In lossy compression, a user interacts with the
visualization tool to further consolidate the images/software
components via the visualized interface of FIG. 4. In the
direct interaction with the visualized interface of FIG. 4, the
user may initiate collapsing of rows of the matrix, collapsing
of columns, (both by either an automatic algorithm 170 col
lapsing of rows or columns that are more similar that a value
THESHOLD LOSSY, or by hand-picking rows or columns
that should be collapsed and merged), a Substituting of com
ponents, and/or adapting the similarity functions used in the
similarity comparison.

In one embodiment, for the user initiated collapsing of
rows of the matrix/collapsing of columns, a context menu
may be provided such that, via the visualization interface, a
user may point or hover at a dendogram bridge, and 1.) after
a right-click over a dendogram bridge, generate for display
user-selectable functions in a context menu to: select these
image bundles or collapse these image bundles. Likewise,
a user may initially select animage bundle for collapsing, etc.,
by 2.) after a right-click over an image bundle, generate for
display a user-selectable function to: select these image
bundles

US 8,954,859 B2
13

The result of a select... is that, for (1.) the set of image
bundles contained by the selected dendogram bridge
becomes highlighted (e.g. with a colored (e.g., yellow) or
highlighted halo), or for (2.) the selected image bundle
becomes highlighted. The user can continue adding sets of
bundles (1.) or bundles (2.) to the highlighted set. Then, a user
can select from a (top) menu: "collapse highlighted bundles'.
The same mechanism may be similarly used for collapsing
Software component bundles.

For the Software component Substitution, thus, in one
embodiment, via the visualization interface, a user may right
click on a component bundle, and the system may respon
sively generate for display a user-selectable function in a
context menu for which one of the entries is: "substitute
components'. This would invoke functionality to bring up a
list with all the components in a bundle, saying “Select a
component to substitute'. The user could then select a com
ponent and replace it with a new component name.

Thus, for example, responsive to the information displayed
by user interaction with the visualization interface shown of
FIG. 4, a user can perform a lossy compression by initiating
combining of similar (i.e., non-identical) images together on
the vertical axis, or combining of similar (i.e., non-identical)
software components on the horizontal axis. With respect to
the provision of a collapsing rows function, a user initiates a
collapse of rows that are deemed similar enough so they can
be treated as one image bundle. In various embodiments, the
user can collapse two or more rows in the visualization in the
following ways: For example, the user can right-click on a
horizontal line in the image bundle dendogram and select
from a displayed menu choice a function to “Collapse image
bundles” that unites all image bundles in the (sub)tree given
by the dendogram connector into one row. This can poten
tially be the whole cluster. The user further can manually pick
two or more image bundles (rows) and then issue the com
mand “Collapse these image bundles” to unite the select
image bundles into one row.

With respect to the provision of a collapsing column func
tion, a user may initiate collapse of two software component
bundles (columns) together, when these bundles are Supposed
to be installed together. In various embodiments, the user can
collapse two or more rows in the visualization in the follow
ing ways: For example, the user can right-click on a horizon
tal line in the image bundle dendogram and select "Collapse
image bundles' to unite all image bundles in the Subtree given
by the dendogram connector into one row. The user further
can manually pick two or more image bundles (rows) and then
issue the command “Collapse image bundles' to unite the
select image bundles into one row.

With respect to the provision of a substituting components
function, a user may initiate functionality to Substitute certain
components with other components. For example, if multiple
minor versions of a Software package (e.g., version 4.2, 4.3,
4.4) are present, the user may decide to upgrade all installa
tions to the latest minor version (in this example—version
4.4). The user can achieve this by selecting one or more
(outdated) software components 320 (e.g., in the list at the top
of the visualization) and indicate the target Software compo
nent. Doing so will trigger a re-clustering of the visualiza
tion—and as it will now have fewer components, it can be
expected to have fewer columns. It is also expected to have
fewer image bundles (rows), since images that before were
different e.g., because of minor versions in their components
will now be identical.

With respect to the provision of adapting the similarity
functions, as mentioned, the similarity function between
image bundle rows and software component bundle columns

5

10

15

25

30

35

40

45

50

55

60

65

14
is used to determine the similarity between 2 rows or columns
during the clustering algorithm. It can also be informative to
the user to know how difficult it would be to consolidate
different images. A simple similarity can be defined by using
the Jaccard index distance between 2 vectors. However, in a
further embodiment, other metrics or heuristics can be
applied. For example, one heuristic may take into account the
difficulty of replacing one component with another when
comparing two component bundles: typically, upgrading
minor versions of software components is easy, and should be
assigned a high similarity. Upgrading to a new major version
is more difficult, and has a lower similarity.
As additionally shown in FIG. 5, in the resulting consoli

dated visualization interface 500 corresponding to the visu
alization interface 300 of FIG. 4, the displayed elements are
shown further collapsed (e.g., combined) are rendered with
out loss of information, e.g., as Solid cells, e.g., squares 508.
Thus, for example, lossless compression may result in con
solidated column vectors 509 showing a resulting combina
tion of respective very similar software component bundles
indicated by dendogram 385 of FIG. 4 for example clusters
330a, 330b, 330c, and 330e. Further, matrix elements that
were collapsed with loss (different constituent elements) are
rendered to appear as hollowed elements, e.g., hollowed cells
510 indicating lossy compression. Thus, for example, lossy
compression may result in a consolidated column 520 show
ing a resulting lossy combination of respective software com
ponent bundles for example cluster 330d of FIG. 4. A tooltip
can reveal the exceptions which can be used to detect outliers
or anomalies and/or to generalize fuZZy patterns in the data.

With respect to the provision of generalizing fuZZy pat
terns, hollow cells 510 in the visualization points to similar
patterns of software components installed on different
images, however, being these patterns do not represent iden
tical installation. For example when a program file X was
removed by accident from a larger installation on an image,
this program file X will manifest itself as a hollow cell in the
visualization after lossy compression. Hovering over this hol
low cell will inform the user that the majority of the image
bundles has this program file X, but that X is absent in one
specific image. This hollow cell 510 can now be selected and
a command issued to “make the presence (or absence) of X
uniform across the relevant images'. This will cause X to be
added to the image where it was missing. The user may then
re-run the clustering and hopefully will see fewer columns
and rows, making consolidation easier.

It is understood that the user can interact with the visual
ization interface in order to reduce the number of software
components in a number of ways. Furthermore, fuzzy pat
terns can be generalized; components can be replaced or
merged; and, similarity functions/heuristics can be adjusted.
The steps of visualizing the clustering, visualizing the den
dogram and performing lossy compression may be iterated
until a satisfactory consolidation is obtained.

After interactive consolidation and clustering, the bundles
represent potential new 'golden master images. That is, the
consolidated groups that are similar are considered candi
dates as golden masters, i.e., a template that can be deployed
to all of the machines to provide a single version of all the
bundled software components. For example, machines that
have the same software save for minor version differences
(e.g., Websphere 5.4 versus a machine having a Websphere
5.5), a “golden master” (e.g., Websphere 5.5) may replace
both applications in the cloud.
As mentioned, the data visualization method and tool is

employed in a cloud computing environment 10 Such as
shown in view of FIG.1. The cloud 10 represents infrastruc

US 8,954,859 B2
15

ture that can efficiently provide services, e.g., by taking
advantage of virtualization and distributed computing. The
cloud environment may be private computing cloud that is
contained within the enterprise, but not limited to only a
private cloud. The cloud environment may include enterprise
level applications that provide the infrastructure enabling
cloud computing services built by, for example, integrating
multiple interrelated software component. The method and
system described herein may be utilized when deploying a
cloud computing management infrastructure.
The cloud environment may include components of a com

puter system that may include any computing node that is able
to load and execute programmatic code, for instance, running
the operating system and server application Suite. The system
logic may be embodied as computer executable code that is
loaded from a remote source (e.g., from a network file sys
tem), local permanent optical (CD-ROM), magnetic storage
(such as disk), or storage into memory for execution by a
central processing unit, a processor and/or cores. A network
interface may be used for communicating to other network
accessible services. Such an interface may include, but is not
limited to a hardwired device, e.g., Ethernet over coax cable,
wireless IP and telephone to IP (VoIP), or others. The
memory may include computer readable instructions, data
structures, program modules and application interfaces pro
viding logic or functional components.

It should be understood, however, that the system and
method of the present disclosure is not limited to only that
configuration. Thus, the components may be distributed over
a network on different platforms in a distributed environment,
and/or configured in a cloud computing environment. The
system may include multiple processors and/or cores.

MirageTM provides a set of APIs that enable sophisticated
operations directly on dormant images within an image
repository, without having to first retrieve the image or instan
tiate and run it. It builds on semantic information about the
disk image. Mirage searchability enables disk comparisons at
file-level granularity.

Referring now to FIG.7, the systems and methodologies of
the present disclosure may be carried out or executed in a
computer system 400 that includes at least one processor or
central processing unit (CPU) and/or cores 411. The CPUs
411 are interconnected via a system bus 412 to a random
access memory (RAM) 414, read-only memory (ROM) 416,
input/output (I/O) adapter 418 (for connecting peripheral
devices such as disk units 421 and tape drives 440 to the bus
412), user interface adapter 422 (for connecting a keyboard
424, mouse device 426, speaker 428, microphone 432, and/or
other user interface device to the bus 412), a communication
adapter 434 for connecting the system 400 to a data process
ing network, the Internet, an Intranet, or a local area network
(LAN), etc., and a display adapter 436 for connecting the bus
412 to a display device 438 and/or printer 439 (e.g., a digital
printer of the like).
As will be appreciated by one skilled in the art, aspects of

the present invention may be embodied as a system, method
or computer program product. Accordingly, aspects of the
present invention may take the form of an entirely hardware
embodiment, an entirely software embodiment (including
firmware, resident software, micro-code, etc.) or an embodi
ment combining software and hardware aspects that may all
generally be referred to herein as a “circuit,” “module' or
“system.” Furthermore, aspects of the present invention may
take the form of a computer program product embodied in one
or more computer readable medium(s) having computer read
able program code embodied thereon.

10

15

25

30

35

40

45

50

55

60

65

16
Any combination of one or more computer readable medi

um(s) may be utilized. The computer readable medium may
be a computer readable signal medium or a computer read
able storage medium. A computer readable storage medium
may be, for example, but not limited to, an electronic, mag
netic, optical, electromagnetic, infrared, or semiconductor
system, apparatus, or device, or any Suitable combination of
the foregoing. More specific examples (a non-exhaustive list)
of the computer readable storage medium would include the
following: an electrical connection having one or more wires,
a portable computer diskette, a hard disk, a random access
memory (RAM), a read-only memory (ROM), an erasable
programmable read-only memory (EPROM or Flash
memory), an optical fiber, a portable compact disc read-only
memory (CD-ROM), an optical storage device, a magnetic
storage device, or any suitable combination of the foregoing.
In the context of this document, a computer readable storage
medium may be any tangible medium that can contain, or
store a program for use by or in connection with a system,
apparatus, or device running an instruction. The containment
(or storage) of the program may be non-transitory.
A computer readable signal medium may include a propa

gated data signal with computer readable program code
embodied therein, for example, in baseband or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electro-mag
netic, optical, or any Suitable combination thereof. A com
puter readable signal medium may be any computer readable
medium that is not a computer readable storage medium and
that can communicate, propagate, or transport a program for
use by or in connection with a system, apparatus, or device
running an instruction.

Program code embodied on a computer readable medium
may be transmitted using any appropriate medium, including
but not limited to wireless, wireline, optical fiber cable, RF,
etc., or any suitable combination of the foregoing.
Computer program code for carrying out operations for

aspects of the present invention may be written in any com
bination of one or more programming languages, including
an object oriented programming language such as Java,
Smalltalk, C++ or the like and conventional procedural pro
gramming languages, such as the “C” programming language
or similar programming languages. The program code may
run entirely on the user's computer, partly on the user's com
puter, as a stand-alone software package, partly on the user's
computer and partly on a remote computer or entirely on the
remote computer or server. In the latter scenario, the remote
computer may be connected to the user's computer through
any type of network, including a local area network (LAN) or
a wide area network (WAN), or the connection may be made
to an external computer (for example, through the Internet
using an Internet Service Provider).

Aspects of the present invention are described below with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems) and computer program prod
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations and/
or block diagrams, and combinations of blocks in the flow
chart illustrations and/or block diagrams, can be imple
mented by computer program instructions. These computer
program instructions may be provided to a processor of a
general purpose computer, special purpose computer, or other
programmable data processing apparatus to produce a
machine, such that the instructions, which run via the proces
sor of the computer or other programmable data processing
apparatus, create means for implementing the functions/acts
specified in the flowchart and/or block diagram block or

US 8,954,859 B2
17

blocks. These computer program instructions may also be
stored in a computer readable medium that can direct a com
puter, other programmable data processing apparatus, or
other devices to function in a particular manner, Such that the
instructions stored in the computer readable medium produce
an article of manufacture including instructions which imple
ment the function/act specified in the flowchart and/or block
diagram block or blocks.
The computer program instructions may also be loaded

onto a computer, other programmable data processing appa
ratus, or other devices to cause a series of operational steps to
be performed on the computer, other programmable appara
tus or other devices to produce a computer implemented
process Such that the instructions which run on the computer
or other programmable apparatus provide processes for
implementing the functions/acts specified in the flowchart
and/or block diagram block or blocks.
The flowchart and block diagrams in the Figures illustrate

the architecture, functionality, and operation of possible
implementations of systems, methods and computer program
products according to various embodiments of the present
invention. In this regard, each block in the flowchart or block
diagrams may represent a module, segment, or portion of
code, which comprises one or more operable instructions for
implementing the specified logical function(s). It should also
be noted that, in some alternative implementations, the func
tions noted in the block may occur out of the order noted in the
figures. For example, two blocks shown in Succession may, in
fact, be run Substantially concurrently, or the blocks may
Sometimes be run in the reverse order, depending upon the
functionality involved. It will also be noted that each block of
the block diagrams and/or flowchart illustration, and combi
nations of blocks in the block diagrams and/or flowchart
illustration, can be implemented by special purpose hard
ware-based systems that perform the specified functions or
acts, or combinations of special purpose hardware and com
puter instructions.
The embodiments described above are illustrative

examples and it should not be construed that the present
invention is limited to these particular embodiments. Thus,
various changes and modifications may be effected by one
skilled in the art without departing from the spirit or scope of
the invention as defined in the appended claims.
What is claimed is:
1. A method for visualizing data associated with a cloud

environment comprising:
receiving data about images on computing machines or

virtual images in cloud image repositories;
receiving data about Software components configured on

said images:
forming, from received data, a data structure that maps all

images and configured software components on each
image;

generating, using a processor unit, a visualization interface
of said data mapping on a display device in which
images are represented visually along a first dimension
of a matrix and Software components are represented
visually along a second dimension of said matrix, said
generating including performing a hierarchical agglom
erative clustering on said matrix, said performed hierar
chical agglomerative clustering including:
finding two most similar rows or columns in said matrix
by running a lossless compression over said first
dimension and over said second dimension, said loss
less compression transforming said first dimension
into image bundles, each of which represents a set of
images that have identical software components;

10

15

25

30

35

40

45

50

55

60

65

18
comparing a similarity value of the two most similar

rows or columns against a threshold;
if the similarity value is larger than the threshold, replac

ing the found two most similar rows or columns with
a virtual image or a virtual software component
bundle, and representing the replacement by a bridge
in a dendrogram that shows a hierarchy of similarity
between said images; and

if the similarity value is smaller than or equal to the
threshold, clustering similar images as groups and
ranking the groups according to criteria;

interacting, via a displayed visualization interface, to dis
play information from said visualization data used for
consolidating Software components and images in said
cloud environment.

2. The method as claimed in claim 1, further comprising:
determining similarities between images on a first axis and

similarities between software components on a second
axis; and

modifying visualizing of images in a first dimension and
modifying visualization of Software components in a
second dimension based on said determined similarities.

3. The method as claimed in claim 2, further comprising:
forming, for said visualization, one or more dendrograms

in each dimension of said interface including one or
more dendrograms indicating a degree of similarity
between images in said first dimension, and one or more
dendrograms indicating a similarity between Software
components in said second dimension.

4. The method as claimed in claim 1, wherein said lossless
compression includes

transforming two or more identical images in said first
dimension of said interface into a single image bundle;
and

transforming two or more identical Software components
in said second dimension into a single software compo
nent bundle.

5. The method as claimed in claim 3, wherein said deter
mining similarities between images in said first dimension
and Software components in said second dimension com
prises performing a lossy compression, wherein, responsive
to received user manipulation of said visualized data, said
lossy compression comprising:

synthesizing further image bundles along said first dimen
sion by combining one or more non-identical images
along said first dimension; and

synthesizing further non-identical Software component
bundles by combining non-identical software compo
nents along said second dimension.

6. The method of claim 2, wherein said determining simi
larities between images in said first dimension and Software
components in said second dimension comprises:

performing a clustering of images in a first dimension and
a clustering of Software components along said second
dimension.

7. The method of claim 6, wherein said clustering of the
Software components includes performing said hierarchical
agglomerative clustering using an adjustable similarity func
tion.

8. The method of claim 5, wherein said formed dendrogram
along a first dimension includes a bridge having a first com
ponent representing a synthesized image indicating com
bined functionality of the constituent images represented as a
second visual components of the bridge.

9. The method of claim 8, further comprising:
displaying, responsive to user interactions with displayed

elements of said visualization interface, information

US 8,954,859 B2
19

useful for determining potential one or more non-iden
tical images along said first dimension and potential
non-identical Software components along said second
dimension for combining during said lossy compres
sion.

10. A system for visualizing data associated with a cloud
environment comprising:

a memory storage device;
a processor unit in communication with said memory stor

age device configured to perform a method to:
receive data about images on computing machines or

virtual images in cloud image repositories;
receive data about software components configured on

said images:
form, from received data, a data structure that maps all

images and configured software components on each
image:

generating a visualization interface of said data mapping
on a display device in which images are represented
visually along a first dimension of a matrix and Soft
ware components are represented visually along a
second dimension of said matrix, said generating
including performing a hierarchical agglomerative
clustering on said matrix, said performed hierarchical
agglomerative clustering including:
finding two most similar rows or columns in said

matrix by running a lossless compression over said
first dimension and over said second dimension,
said lossless compression transforming said first
dimension into image bundles, each of which rep
resents a set of images that have identical Software
components;

comparing a similarity value of the two most similar
rows or columns against a threshold;

if the similarity value is larger than the threshold,
replacing the found two most similar rows or col
umns with a virtual image or a virtual Software
component bundle, and representing the replace
ment by a bridge in a dendrogram that shows a
hierarchy of similarity between said images; and

if the similarity value is smaller than or equal to the
threshold, clustering similar images as groups and
ranking the groups according to criteria;

receive user commands via interactions with said dis
played visualization interface, to extract information
from said visualization data for use in further consoli
dating software components and images in said cloud
environment.

11. The system as claimed in claim 10, wherein said pro
cessor unit is further configured to:

determine similarities between images on a first axis and
similarities between Software components on a second
axis; and

modify visualizing of images in a first dimension and
modifying visualization of Software components in a
second dimension based on said determined similarities.

12. The system as claimed in claim 11, wherein said pro
cessor unit is further configured to:

form, for said visualization, one or more dendrograms in
each dimension of said interface, including one or more
dendrograms indicating a degree of similarity between
images in said first dimension, and one or more dendro
grams indicating a similarity between software compo
nents in said second dimension.

13. The system as claimed in claim 11, wherein said deter
mining similarities between images in said first dimension
and Software components in said second dimension com

10

15

25

30

35

40

45

50

55

60

65

20
prises performing the lossless compression wherein said pro
cessor unit is further configured to:

transform two or more identical images in said first dimen
sion of said interface into a single image bundle; and

transform two or more identical Software components in
said second dimension into a software component
bundle.

14. The system as claimed in claim 12, wherein said deter
mining similarities between images in said first dimension
and Software components in said second dimension com
prises performing a lossy compression, wherein, responsive
to received user manipulation of said visualized data, said
processor unit further configured to:

synthesize further single image bundles along said first
dimension by combining one or more non-identical
images along said first dimension; and

synthesize further non-identical Software component
bundles by combining non-identical software compo
nents along said second dimension.

15. The system as claimed in claim 11, wherein said deter
mining similarities between images in said first dimension
and Software components in said second dimension com
prises configuring a processor to: cluster the images in the
first dimension and cluster the Software components along
said second dimension by performing the hierarchical
agglomerative clustering using an adjustable similarity func
tion.

16. The system as claimed in claim 14, wherein said
formed dendrogram along a first dimension includes a bridge
having a first component representing a synthesized image
indicating combined functionality of the constituent images
represented as a second visual components of the bridge.

17. The system as claimed in claim 16, wherein said pro
cessor unit is further configured to:

display, responsive to user interaction with displayed ele
ments of said visualization interface, information useful
for determining potential one or more non-identical
images to combine along said first dimension and poten
tial non-identical software components to combine
along said second dimension during said lossy compres
sion.

18. An article of manufacture comprising:
a tangible, non-transitory computerusable medium having

computer readable program code embodied therein to
execute machine instructions in a processing unit for
visualizing data associated with a cloud environment the
computer readable program code in said article of manu
facture comprising computer readable program code for
causing a computer to effect the steps of

receiving data about images on computing machines or
virtual images in cloud image repositories;

receiving data about software components configured on
said images;

forming, from received data, a data structure that maps all
images and configured software components on each
image;

generating a visualization interface of said data mapping
on a display device in which images are represented
visually along a first dimension of a matrix and Software
components are represented visually along a second
dimension of said matrix, said generating including per
forming a hierarchical agglomerative clustering on said
matrix, said performed hierarchical agglomerative clus
tering including:

finding two most similar rows or columns in said matrix by
running a lossless compression over said first dimension
and over said second dimension, said lossless compres

US 8,954,859 B2
21

Sion transforming said first dimension into image
bundles, each of which represents a set of images that
have identical software components:

comparing a similarity value of the two most similar rows
or columns against a threshold;

if the similarity value is larger than the threshold, replacing
the found two most similar rows with a virtual image or
a virtual software component bundle, and representing
the replacement by a bridge in a dendrogram that shows
a hierarchy of similarity between said images; and

if the similarity value is smaller than or equal to the thresh
old, clustering similar images as groups and ranking the
groups according to criteria;

interacting, via a displayed visualization interface, to
extract information from said visualization data used for
consolidating software components and machine
images in said cloud environment.

19. The article of manufacture as claimed in claim 18,
further comprising computer readable program code for caus
ing the computer to effect the step of:

determining similarities between images on a first axis and
similarities between software components on a second
axis; and

modifying visualizing of images in a first dimension and
modifying visualization of software components in a
Second dimension based on said determined similarities.

20. The article of manufacture as claimed in claim 19,
further comprising computer readable program code for caus
ing the computer to effect the step of:

forming, for said visualization, one or more dendrograms
in each dimension of said interface including one or
more dendrograms indicating a degree of similarity
between images in said first dimension, and one or more
dendrograms indicating a similarity between software
components in said second dimension.

21. The article of manufacture as claimed in claim 19,
wherein said determining similarities between images in said
first dimension and software components in said second
dimension comprises performing the lossless compression,
said computer readable program code causing the computer
to effect the steps of:

transforming two or more identical images in said first
dimension of said interface into a single image bundle:
and

transforming two or more identical software components
in said second dimension into a single software compo
nent bundle.

22. The article of manufacture as claimed in claim 19,
wherein said determining similarities between images in said
first dimension and software components in said second
dimension comprises performing a lossy compression,
wherein, responsive to received user manipulation of said
Visualized data, said computer readable program code caus
ing the computer to effect the steps of:

Synthesizing further image bundles along said first dimen
sion by combining one or more non-identical images
along said first dimension; and

10

15

25

30

35

40

45

50

55

22
Synthesizing further non-identical software component

bundles by combining non-identical software compo
nents along said second dimension.

23. A data visualization tool comprising:
a memory storage device for storing first data representing

images on computing machines or virtual images in
cloud image repositories and storing second data about
Software components configured on each said image:

a processor device in communication with said memory
storage device for forming, from said stored data, a data
structure that maps all images and configured software
components on each image, said processor device gen
erating, from said stored data, a visualization interface
for mapping said stored data on a display device in
which images are represented visually along a first
dimension of a matrix and software components are
represented visually along a second dimension of said
matrix, said generating including performing a hierar
chical agglomerative clustering on said matrix, said per
formed hierarchical agglomerative clustering including:
finding two most similar rows or columns in said matrix
by running a lossless compression over said first
dimension and over said second dimension, said loss
less compression transforming said first dimension
into image bundles, each of which represents a set of
images that have identical software components:

comparing a similarity value of the two most similar
rows or columns against a threshold;

if the similarity value is larger than the threshold, replac
ing the found two most similar rows with a virtual
image or a virtual software component bundle, and
representing the replacement by a bridge in a dendro
gram that shows a hierarchy of similarity between
said images; and

if the similarity value is smaller than or equal to the
threshold, clustering similar images as groups and
ranking the groups according to criteria;

said visualization interface including cell components
located at intersections that map a particular image con
figured with a particular software component; and

said visualization interface further including one or more
dendrograms indicating a degree of similarity between
images in said first dimension, and one or more dendro
grams indicating a similarity between software compo
nents in said second dimension;

a device for initiating, via said interface, user interactions
with displayed cell components or visual components of
said one or more dendrograms, said processor device
causing display of detailed information useful for con
Solidating software components and images in said
cloud environment responsive to said user interactions,
and,

said processor device further effecting a compression of
images along said first dimension and software compo
nents along said second dimension responsive to said
user interactions.

