woO 2007/008880 A2 |00 0 00T O

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization Vd”Ij

) IO O 0 OO O

International Bureau

(43) International Publication Date
18 January 2007 (18.01.2007)

(10) International Publication Number

WO 2007/008880 A2

(51) International Patent Classification:
GOG6F 3/00 (2006.01)

(21) International Application Number:
PCT/US2006/026860

(22) International Filing Date: 10 July 2006 (10.07.2006)

(25) Filing Language: English

(26) Publication Language: English
(30) Priority Data:
11/177,079 8 July 2005 (08.07.2005) US
(71) Applicant (for all designated States except US): MI-
CROSOFT CORPORATION [US/US]; One Microsoft

Way, Redmond, Washington 98052-6399 (US).

(72) Inventor: BEN-ZVI, Nir; One Microsoft Way, Redmond,
Washington 98052-6399 (US).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,

AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HN, HR, HU, ID, IL,, IN, IS, JP,
KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT,
LU, LV, LY, MA, MD, MG, MK, MN, MW, MX, MZ, NA,
NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RS, RU, SC,
SD, SE, SG, SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ,
UA, UG, US, UZ, VC, VN, ZA, 7ZM, ZW.
(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT,
RO, SE, S, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA,
GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:
without international search report and to be republished
upon receipt of that report

Fortwo-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gagzette.

(54) Title: CHANGING CODE EXECUTION PATH USING KERNEL MODE REDIRECTION

Process 200

Foct
it

| Bar(szName)

\
char szSir[20);

203 .s.{rcpy(szstr, szName);
[

b

FixedBar(char *szName} +~— 206
Redirection/ | char szSti[20];

if (strlen(szName) >=20 return -1; |

strepy(szStr, szName;

User Mode

Kernel Mode

interrupt handler

204

(57) Abstract: A mechanism for redirecting a code execution path in a running process. A one-byte interrupt instruction (e.g., INT
3) is inserted into the code path. The interrupt instruction passes control to a kernel handler, which after executing a replacement
function, returns to continue executing the process. The replacement function resides in a memory space that is accessible to the
kernel handler. The redirection mechanism may be applied without requiring a reboot of the computing device on which the running
process is executing. In addition, the redirection mechanism may be applied without overwriting more than one byte in the original

code.

WO 2007/008880 PCT/US2006/026860

CHANGING CODE EXECUTION PATH USING KERNEL MODE REDIRECTION

FIELD OF THE INVENTION
[0001] This invention relafes in general to the field of computer software. More

particularly, this invention relates to a method of updating a process running in memory.

BACKGROUND OF THE INVENTION

[0002] It is often desirable to change a code execution path in a running process
without changing the original on-disk image of the executing modulés or without requiring a
restart of the computer. Oné way to accémplish this is via a “Hotpatching” mechanism.
Hotpatching is in-memory patching mechanism that enables the installation of software
updates without requiring users to restart their computers by automatically inserting code
from a software update into a running process. This means that system files can be updated
while they are in use. .

[00063] For example,_'Hot.patdhing may. bypass a vulnerable function in a running
process by injecting a JI\/IP instruction at the beginning of the vulnerable function. When the
function is called, it jumps to a new function that is also loaded into the process space by the
Hotpatching mechanism. The problem with this approach is that an injected JMP instruction
may overwrite multiple instructions in a way that leads to unexpected behavior. In the
Hotpatching case, if the beginning of the vulnerable function includes 3 assembly opcodes in
the first 5 bytes (1 byte opcbde, 2 bytes opcode, 2 bytes opcode), the JIMP injection will
replace all five bytes. If the processor is executing the first byte opcode, and the injection has

changed the next two opcodes, unexpected processor behavior may result.

SUMMARY OF THE INVENTION

[0004] . A mechanism for redirecting a code execution path in a running process. A
one-byte ihterrupt instruction (e.g., INT 3) is inserted into the code path.” The interrupt
instruction passes control to a kernel handler, which after executing a replacement function,
returns to continue executing the process. The replacement function resides in a memory
space that is accessible to the kernel handler. The redirection mechanism may be applied
without requiring a reboot of the computing devfce on which the running process is
executing. In addition, the redirection mechanism may be aﬁpliéd without overwriting more

than one byte‘ in the olri'f;rinal“ code.

WO 2007/008880 PCT/US2006/026860

[0005] Additional features and advantages of the invention will be made apparent
from the followmg detalled descrxptlon of illustrative embodiments that proceeds with

reference to the accompanymg drawmgs

BRIEF DESCRIPTION OF THE DRAWINGS

[0006] The foregoing summary, as well aslthe following detailed description of
preferred embodiments, is better understood when read in conjunction with the appended
drawings. For the purpose of 111ustrat1ng the 1nvent1on there is shown in the drawings
exemplary constructions of the 1nvent10n however the invention is not limited to the specific
methods and instrumentalities disclosed. In the drawings:

[0007] Fig. 1 is ablock diégram showing an exemplary computing environment in
which aspects of the invention may be implemented; and

[0008] Fig. 2 illustrates an exemplary process performed in accordance with the

present invention.

DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

[0009] Exemplary Computing Environment

[0010] Fig. 1 illustrates an example of a suitable computing system environment
100 in which the invention may be implemented. The computing system environment 100 is
only one example of a suitable computing environment and is not intended to suggest any
limitation as to the scope of use of functionality of the invention. Neither should the
computing environment 100 be interpreted as having any dependency or requirement relating
to any one or combination of components illustrated in the exemplary operating environment
100. | |

[0011] - The invention is operational with numerous other general purpose or special
purpose computing system environments or configurations. - Examples of well known
computing systems, environments, and/or configurations that may be suitable for use with the
invention include, but are not limited to, personal computers, server computers, hand-held or
laptop devices, multiprocessor syétems, microproceesor-based systems, set top boxes,
programmable-consumer electronics, netWork PCs, minicomputers, mainframe computers,
distributed computing eovi'ronments that include any of the above systems or devices, and the
like. a o

[0012] The invention may be described in the generai context of computer-

executable instructions, such as program modules, being executed by a computer. Generally,

5 B3

WO 2007/008880 PCT/US2006/026860

program moduies iﬁclude rou‘fines, prégrarhs; objects, componénts, ciata structures, etc. that
perform particular tasks or implement particular abstract data types. The invention may also
be practiced in distributed computing environments where tasks are performed by remote
processing devices that are linked through a communications network or other data
transmission medium. In a distributed computing environment, program modules and other
data may be located in both local and remote computer. storage media including memory
storage devices. |

[0013] With reference to Fig. 1, an exemplary system for implementing the
invention includes a general purpose computing device in the form of a computer 110.
Components of computer 110 may include, but are not limited to, a processing unit 120, a
system memory 130, and a system bus 121 that couples various sj}stem components including
the system memory to the pfbceésing unit 120. The system bus 121 may be any of several
types of bus structures including a memory bus or memory controller, a peripheral bus, and a
local bus using any of a variety of bus architectures. By way of example, and not limitation,
such architectures include Industry Standard Architecture (ISA)-bus, Micro Channel
Architecture (MCA) bus, Enhanced ISA (EISA) bus, Video Electronics Standards’
Associatioﬁ (VESA) local bus, Peripheral Component Interconnect (PCI) bus (also known as
Mezzanine bus), Peripheral Component interconnect Express (PCI-Express), and Systems
Management Bus (SMBus).

[0014] Computer 110 typically includes a variety of computer readable media.
Computer readable media can be any available media that can be accessed by computer 110
and includes both volatile and non-volatile media, removable and non-removable media. By
way of example, and not limitation, computer readable media may comprise computer
storage media and communication media. Computer storage media includes both volatile and
non-volatile, removable and non-removable media implemented in any method or technology
for storage of information such as computer readable instructions, data structures, program
modules or other data. Computer storage media includes, but is not limited to, RAM, ROM,
EEPROM, flash memory or other memory technology, CD-R'OM; digital versatile disks
(DVD) or other optical disk storage; magnetic dassettes; magnetic tape, maghetic disk storage
or other magnetic storage devices, or any other medium which can be used to store the
desired information and which can accessed by computer 110. Communication media
typically embodies computer readable instructions, data structures, program modules or other
data in a modulated data signal such as a carrier wave or other transport mechanism and

includes any information delivery media. The term “modulated data signal” means a signal

.3-

WO 2007/008880 PCT/US2006/026860

that has one or more of its characteristics set or changed in such a manner as to encode
information in the signal. By way of example, and not limitation, communication media
includes wired media such as a wired network or direct-wired connection, and wireless media
such as acoustic, RF, infrgred and other wireless media. Coinbinatioils of any of the above
should also be included within the scope of computer readable media.

[0015] The system memory 130 includes computer storage media in the form of
volatile and/or non-volatile memory such as ROM 131 and RAM 132. A basic input/output
system 133 (BIOS), containing the basic routines that help to transfer information between
elements within computer 110, such as during start-up, is typically stored in ROM 131. RAM
132 typically contains data and/or ‘program modules that are 1mmcd1ately accessible to and/or
presently being operated on by proccssmg unit 120. By way of example and not limitation,
Fig. 1 illustrates operating system 134, application programs 135, other program modules
136, and program data 137.

[0016] The computer 110 may also include other removable/non-removable,
volatile/non-volatile computer storage media. By way of example only, Fig. 1 illustrates a
hard disk drive 141 that reads from or writes to non-removable, non-volatile magnetic media,
a magnetic disk drive 151 that reads from or writes to a removable, non-volatile magnetic
disk 152, and an optical disk drive 155 that reads from or writes to a removable, non-volatile
optical disk 156, such as a CD-ROM or other optical media. Other removable/non-
removable, volatile/non-volatile computer storage mediar that can be used in the exemplary
operatlng environment 1nclude but are not limited to, magnetlc tape cassettes, flash memory
cards, digital versatile disks, digital video tape, solid state RAM, solid state ROM, and the
like. The hard disk drive 141 is typically connected to the system bus 121 through a non-
removable memory interface such as interface 140, and magnetic disk drive 151 and optical
disk drive 155 are typically connected to the system bus 121 by a removable memory
interface, such as interface 150. ‘ o

. [0017] The dr;nves and thclr assoclatcd computcr storage media, discussed above and
illustrated in Fig. 1, provide storage of computer readable instructions, data structures,
program modules and other data for the computer 110.. In Fig. 1, for example, hard disk drive
141 is illustrated as storing operating system 144, application programs 145, other program
modules 146, and program data 147. Note that these components can either be the same as or
different from operating system 134, application programs 135, other program modules 136,
and program data 137. Opcratin'g. system 144, application programs 145, other program

modules 146, and program data 147 are given different numbers here to illustrate that, at a

WO 2007/008880 PCT/US2006/026860

minimum, they are different copies. A user may enter commands and information into the
computer 110 through input devices such as a keyboard 162 and pdinting device 161,
commonly referred to as a mouse, trackball or touch péd. Other input devices (not shown)
may include a microphone, joystick, game pad, satellite dish, scanner, or the like. These and
other input devices are often connected to the processing unit 120 through a user input
interface 160 that is coupled to the system bus, but may be connected by other interface and
bus structures, such as a parallel port, game port or a universal serial bus (USB). A monitor
191 or other type of display device is also connected to the system bus 121 via an interface,
such as a video interfacé 190. In addition to the monitor, computers may also include other
peripheral output devices such as speakers 197 and printer 196, which may be connected
through an output peripheral interface 193.

[0018] The computer 110 may operate in a networked environment using logical
connections to one or more remote computers, such as ‘a remote computer 180. The remote
computer 180 may be a‘peréonal computer, d server, a fouter, a network PC, a peer device or
other common network node, and typically includes many or all of the elements described
above relative to the computer 110, although only a memory storage device 181 has been
illustrated in Fig. 1. The logical connections depicted include a local area network (LAN) 171
and a wide area network (WAN) 173, but may also include other networks. Such networking
environments are commonplace in offices, enterprise-wide computer networks, intranets and
the Internet. | ‘ ' | | '

[0019] When used in a LAN networking environment, the computer 110 is
connected to the LAN 171 through a network interface or adapter 170. When used ina WAN
networking environment, the computer 110 typically includes a modem 172 or other means
for establishing éommunicatigné over the WAN 173, such as the Internet. The modem 172,
which may be internal or, ,ex’clerrial34may e connected to the system bus 121 via the user input
interface 160, or other abﬁropriate mechanism. In a networked environment, program
modules depicted relative to the computer 110, or portions thereof, may be stored in the
remote memory storage device. By way of example, and not limitation, Fig. 1 illustrates
remote application programs 185 as residing on memory device 181. It will be appreciated
that the network connections shown are exemplary and other means of establishing a
communiéations link between the computers may Be used.

[0020] Exemplary Embodiments

[0021] The present invention is directed to a mechanism for redirecting a code

execution path in a running process in memory that does not lead to unexpected behavior by

WO 2007/008880 PCT/US2006/026860

advantageously using a one-byte interrupt instruction (&.g., INT 3) that is inserted into the
code path. The interrupt insfruction passes control to a kernel handler, which after executing
a replacement function, returns to continue executing the process.

[0022] With reference to Fig. 2, there is illustrated an exemplary process 200
running in memory. In accordance with the present invention, an execution path 201 (e.g.,
the beginning of a vulnerable function to be replaced) of the procéss 200 running in memory
may be changed by overwriting an existing instruction 202 with a one byte interrupt
instruction (e.g., INT 3), where the remainder of the original code 203 remains unaltered.
INT 3 is typically used as a trap to a debugger to break out of execution in order for other
code to be executed.

[0023] The interrupt instruction will cause a kerﬁe1 handler 204 to be called. The
kernel handler 204 for tﬁat interrupt inclydes a mechanism that will cause a return from the
interrupt to continue into a new instruction 206 (e.g., the replacement funcﬁén) instead of
returning to the original function. The new instruction 206 is placed in a memory space
known to the kernel handler 204. Because the interrupt instruction is a one byte instruction,
the present invention advantageously provides a mechanism for code diversion that does not
overwrite more than one byte in the original code 203..

[0024]. While the present invéntion ‘has been described in connection with the
preferred embodiments of the various Figs., it is to be understood that other similar
embodiments may be used or modifications and additions may be made to the described
embodiment for performing the same function of the preseht invention without deviating
therefrom. For example, one skilled in the art will recognize that the present invention as
described in the present application may apply to any computing device or environment,
whether wired or wireles‘s; and may be applied to any number of such computing devices
connected via a communications network, and interacting across the network. Furthermore,
it should be emphasized that a variety of computer platforms, including handheld device
operating systems and other application specific operating systems are contemplated,
especially as the number of wireless networked devices continues to proliferate. Still further,
the present invention may be implemented in or across a plurality of processing chips or
devices, and storage ma}:/ similarly be effected across a pluralify of devices. Therefore, the
present invention should not be limited to any single embodiment, but rather should be

construed in breadth and scope in accordance with the appended claims.

WO 2007/008880 PCT/US2006/026860

WHAT IS CLAIMED IS:
1. A method of redirecting a code execution path in a running process, comprising:
injecting an instruction into said code execution path;
passing control to a kernel handler;
executing a replacerhent function called by said kernel handler;-and.

returning to said code execution path.
2. The method of claim 1, wherein said instruction is an interrupt.

3. The method of claim 2, wherein said interrupt is an INT 3 interrupt instruction and

wherein said interrupt instruction is one-byte in length.

4. The method of claim 2, wherein said kernel handler includes a mechanism to cause

a return from said interrupt instruction to continue into said replacement function.

5. The method of claim 1, further comprising inserting said instruction such that no

more than one byte of the original code in said code path is overwritten.

6. The method of claim 1, further comprising loading said replacement function into

a memory space accessible by said kernel function.

7. The method of claim 1, further comprising performing said method without

requiring a reboot of a computing device on which said running process is executing.

8. A method of changing a code execution path by using an interrupt to replace an
existing function, comprising: |

injecting said interrupt into said existing function;

passing control to a kernel handler; |

executing a replacement function called by said kernel handler; and

returning to said code execution path.

9. The method of claim 8, wherein said interrupt is an INT 3 interrupt instruction and

wherein said interrupt instruction is one-byte in length.

WO 2007/008880 PCT/US2006/026860

10. The method of claim 9, wherein said kernel handler includes a mechanism to

cause a return from said interrupt instruction to continue into said replacement function.

11. The method of claim 8, further comprising inserting said interrupt such that no

more than one byte in the original code in said code path is overwritten.

12. The method of claim 8, further comprising loading said replacement function into

a memory space accessible by said kernel function, -

13. The method of claim 8, further comprising performing said method without
requiring a reboot of a computing device on which a process executing said existing function

said is running.

14." A computer readable mediuth having computer executable instructions thereon
for redirecting a code execu’cion path in a running procéss, said computer executable
instructions performing a method, comprising:

injecting an instruction into said code execution path

passing control to a kernel handler;

executing a replacement function called by said kernel handler; and

returning to said code path.

15. The computer readable medium of claim 14, wherein said instruction is an

interrupt.

16. The computer readable medium of claim 15, wherein said interrupt is an INT 3

interrupt instruction and wherein said- interrupt instruction is.one-byte in length.

17. The computer readable medium of claim 15, wherein said kernel handler includes
a mechanism to cause a return from said interrupt instruction to continue into said

replacement function.

18. The computer readable medium of claim 14, further comprising instructions for
inserting said instruction such that no more than one byte in the original code in said code

path is overwritten.

WO 2007/008880 PCT/US2006/026860

19. The computer readable medium of claim 14, furfher comprising instructions for

loading said replacement function into a memory space accessible by said kernel function.

20. The computer readable medium of claim 14, further comprising instructions for
performing said method without requiring a reboot of a computing device on which said

running process.is executing.

PCT/US2006/026860

WO 2007/008880

1/2

S8 SIIVYD0Ud

oo loooccoflolle 5™ NOWLYOMddY . m | m
H J1ONW3d =
08t Lol i ol (7 2
Z9L preoaksd asnopy viva SAOW SWVHNOOYNd | WILSAS
d3.LNdINOD NWVHOOHd
JLONIY = Y, CI\ NYdO0dd H3HLO NOLLVOITddY | ONiLYH3dO
Z [vewsoom[owwn]y [4°1" .
) L 5 w S
SIOMGSN Baly P L oPON
“ nmm“ = al ﬁwl_for|o_ 000000 h
. _ A —
L _ £ £ eeqg
- — Y — __ 4 welibold
" JA 0oL . 05l soepopuy Ol soepsu|
NIOMBN " soeps| aoepau| Mowspy - Aowapy ocr
BalyY [B00] | SNlomeN ndug Jssn S[E|OA-UON SI1EIOA-UON Em_mwn_v_umn“_m‘cﬁo
_ A ajgesoway S|qEAOLUSY-UON
“ , X x . —
, | ~ | |5€1 swesBoig
L6} gjoeadg _ 12| sng walsAg g uopeoyddy
“ N h 4 I) — A
I 6l soepey) o6t ¢l Tl WeisAs
%l 1aund T » [essyduad mwwm _m\“/c_ “n Buesadg
| Indino Buisseoold =T ()
a7 L) | bussedolg |) TEL (AVY]
R { .
6L oo /) [Eer soia _
1 T — PR
- " \J €L (Wou)
< n ocl " R IOWBN WISIS, Iy
! Aiowspy weisAg
e e T~ __—-_
00l

JUSWUOIIAUS bunpnduwion

PCT/US2006/026860

WO 2007/008880

2/2

V0T

ls|puey 1dnusiuj

SPO [ouIay
SPOW 49sN
ﬁm INI , L
{ ‘(sweNzs ..;wNm;Q&_wm c0Z
{(oweNzs ‘ngzs)Adosys loclagzs seyo 1
'}~ UInjdl 0Z=< (BLUBNZS)USLIS) I 202 ~—»- (swenzs, hmcov_wm
‘[ozluszs Jeyo v uoipaspay i) oz
907 —» (eweNzs, teyo)iegpax (sweNzs)eq 5
. 3
A:.voo ..|._

00Z sse20id

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - claims
	Page 9 - claims
	Page 10 - claims
	Page 11 - drawings
	Page 12 - drawings

