The present invention relates to ice disintegrating utensils and more particularly to means for breaking ice cubes into pieces of suitable size for use in a drinking glass.

The more usual way to crack ice for domestic use is to use an ice pick which reduces large blocks of ice into fragmentary form, but fragments so formed are relatively large and unsuitable for use in drinking glasses. It is also the practice to wrap pieces of ice in a cloth and then pound the cloth with a hammer, but this does not result in the production of pieces of substantially uniform size, but to the contrary, gives a large percentage of waste almost powdery in form. Again, mechanical breakers reduce chunks of ice to the size of shavings, plus a large amount of water waste.

Some of the objects of the present invention are: to provide an improved utensil for disintegrating ice cubes into usable pieces; to provide an ice disintegrating utensil operating while vibrating to cause an ice cube to fracture into a plurality of pieces of substantially the same size for insertion in a drinking glass; to provide an ice disintegrating utensil in the use of which waste of ice is reduced to a minimum; to provide an ice disintegrating utensil having a rigid portion carried by a flexible portion, this latter being held in the hand of the user to produce a vibratory movement which is transmitted through the rigid portion to an ice cube to cause the latter to fracture into smaller usable pieces; and to provide other improvements as will hereinafter appear.

In the accompanying drawing, Fig. 1 represents a perspective of an ice disintegrating utensil embodying one form of the present invention; Fig. 2 represents a side elevation of the utensil shown as transmitting a vibration to an ice cube; Fig. 3 represents a side elevation of a modified form of the utensil of the invention; and Fig. 4 represents a plan of the modified form of Fig. 3.

Referring to the drawings, one form of the present invention is shown in Fig. 1 wherein the utensil is in part formed by a spoon having the usual bowl 16 and integral handle 11, and is completed by a flexible hand grip 12 attached to the free end of the handle 11. This grip may be of rubber or any other spring material capable of causing the spoon bowl 16 to vibrate vertically as motion is imparted to the grip 12 by the hand of the user. In use, the flexible grip 12 is grasped by the user and the bowl 16 then located above and in relatively close proximity to the surface of an ice cube 13, which latter is supported upon any suitable surface, though preferably it will be held in the other hand of the user.

When the utensil bowl is thus positioned over, but not in contact with the ice cube, the hand grip 12 is oscillated vertically, as indicated in dotted lines, so that the bowl 16 impacts the ice cube with a succession of relatively light blows. Such blows appear to set up some form of material fatigue in the ice cube which causes the latter to disintegrate along substantially symmetrical lines to thereby produce a plurality of shaped ice bodies of approximately the same size, and an absence of small chips or particles of a shaved nature.

In the modified form of the invention shown in Figs. 3 and 4, a handle 14 of flat spring steel is provided, terminating at one end with an impact head 15 of sufficient solidity to impart an effective blow to a relatively massive spheroidal ice cube, while at the other end there is a hand grip 16. It should be noted that the impact head forms an impact point focus area in aligned relation medially with the handle 14. In operation, the hand of the user grasped the grip 16 and holding the utensil in the position shown in Fig. 3 starts the handle 14 vibrating flatwise and brings the head 15 in such close proximity to the surface of a supported ice cube as to impose a succession of blows at relatively short intervals whereby internal stresses are developed in the ice cube which immediately bring about the desired disintegration into usable pieces of a size to efficiently distribute themselves in a drinking glass to cool liquid contents therein.

It will now be apparent that a complete unitary ice disintegrating utensil has been devised which functions in a novel manner to reduce ice solids to suitable fragmentary shapes and sizes for cooling liquids in glasses or other containers. While reference has been specifically made to ice cubes it is to be understood that the utensil can efficiently function to break up irregularly shaped pieces of ice. It is important also to note that the frequency of the vibrations should be such as to function in relatively quick succession, because a cleavage once started must be caused to continue along the same planes for most satisfactory results. A slow frequency of vibration allows the film of moisture between cleavage planes to freeze and cement the surfaces together again before the delayed impact can cause the required disintegration.

Having thus described my invention, I claim:

1. A hand tool for disintegrating ice cubes into relatively small fragments, comprising a rigid hand grip to be held by the user, a relatively
massive spheroidal impact member forming an impact point focus area, and an elongated handle forming a rigid connection with said grip and with said impact member, and medially aligned with said focus point area, said handle being formed of flat spring metal to vibrate flatwise rapidly in response to oscillation imparted to said handle by the user, whereby a succession of closely spaced taps are produced on an ice cube to cause disintegration thereof.

FRANK W. EARNEST, Jr.

REFERENCES CITED

The following references are of record in the file of this patent: