(10) International Publication Number
WO 2005/095207 A1

(21) International Application Number:
PCT/GB2005/001245

(22) International Filing Date: 30 March 2005 (30.03.2005)

(24) International Classification:
B64C 25/36

(30) Priority Data:
0407470.4 1 April 2004 (01.04.2004) GB

(71) Applicant (for all designated States except US):
DUNLOP AEROSPACE LIMITED [GB/GB]; Holbrook Lane, Coventry, West Midlands CV6 4AA (GB).

(72) Inventor:
FISHER, Martin, James [GB/GB]; Dunlop Aerospace Limited, Holbrook Lane, Coventry, West Midlands CV6 4AA (GB).

(74) Agent: HLBBSHAW: 1 Hagley Road, 10th Floor, Edgbaston, Birmingham B16 8TG (GB).

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM.

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:
-- with international search report
-- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(51) International Patent Classification: B64C 25/36

(54) Title: AIRCRAFT WHEEL ASSEMBLY

(57) Abstract: An aircraft wheel assembly including an axle housing means for sensing wheel speed, one end of the axle being covered by a cap member (10), the cap member (10) comprising a generally cuplike body (16) having an end wall (14) towards the free end of the axle, the cap including means for driving the wheel speed sensing means, the side wall of the body having at least one stiffening deformation.
AIRCRAFT WHEEL ASSEMBLY

The invention relates to an aircraft wheel assembly and in particular, to one in which the assembly incorporates an axle housing sensing means, typically tyre pressure sensing means such as a tyre pressure indicating system (TPIS). Such a wheel would be a nose wheel. In the case of a main wheel assembly where an antiskid brake control is present, wheel speed sensing means, usually a wheel speed transducer (WST) will also be incorporated.

Two major areas of concern to the aircraft industry are aircraft weight and noise. Reducing aircraft weight gives benefits in performance and cost of operation. This is especially true in the case of wheel and brake components that are only used during ground based manoeuvres during the take-off and landing cycles but are carried with the aircraft throughout the flight. Such wheel and brake components have to be lifted into a storage bay during flight.

Aircraft noise is an area of increasing concern as the pressure for more flights out of busy airports in close proximity to residential housing increases. A significant source of aircraft noise during aircraft landing is created by the flow of air over undercarriage components when the landing gear is lowered from the storage bay when the aircraft is at low altitude during final approach to the runway.

All components of the landing gear, including the wheels, can contribute to the generation of noise when exposed to the air stream during landing so any reduction in the noise generation by any component will contribute to a quieter aircraft.

Attempts have been made to reduce noise from aircraft wheels during landing by using shields to smooth airflow over the wheel, however, such shields can reduce the flow of air required for cooling brakes, leading to thermal management problems and longer turn around times for
aircraft. Where the axle protrudes beyond the wheel rim position it is found that the axle end and any fixing mechanism on the axle are a major source of the wheel noise and are not affected by such shields. Nose wheels are typically configured with an axle extending beyond the wheel rim.

Aircraft wheel and brake assemblies are typically mounted on a hollow axle, within which are mounted other components such as, for example, wheel speed transducers and the tyre pressure indicating system. To prevent the ingress of dirt and moisture to mechanical and electronic components around and within the axle it is common practice to fit a cover known as a “hubcap” over the end of the axle.

It is one object of this invention to provide an aircraft wheel assembly incorporating an improved cover known as a hubcap.

It is another object of this invention to reduce the weight of a wheel assembly. It is a further object of this invention to reduce noise associated with airflow over a wheel assembly.

In one aspect the invention provides an aircraft wheel assembly including an axle housing means for sensing wheel speed one end of the axle being covered by a cap member, the cap member comprising a generally cup-like body having an end wall towards the free end of the axle, the cap including means for driving the wheel speed sensing means, the side wall of the body having at least one stiffening deformation.

Preferably the deformation comprises a rib or fin on the side wall of the cup-like body. Preferably a number of deformations is present, spaced about the exterior of the body. Preferably the deformations are shaped to influence the flow of air around the exposed assembly in flight whereby to reduce the level of noise generated.
Preferably the deformation extends from the end wall towards the open end of the cup-like body and increases in thickness towards the open end.

In the case of a main wheel, the aircraft wheel assembly will incorporate means for sensing tyre pressure and the cap member will incorporate means for mounting the tyre pressure sensing means.

The hubcap may be made of a metal or alloy or plastics or composite using suitable manufacturing techniques. Examples include aluminium alloy; steel, titanium, magnesium; polymer matrix composites and metal matrix composites.

In another aspect the invention extends to the hubcap itself. More particularly, the invention extends to a hubcap for an aircraft wheel assembly which has an axle housing means for sensing wheel speed and means for sensing type pressure, the hub cap comprising a generally cup-like body having an end wall, the body having a flange at its mouth for engagement with clamping means by which the hub cap is fixed on to the free end of the axle, a slot extending from the flange into the side wall of the body to receive components of the tyre pressure sensing means, the inner surface of the end wall having deformations for engagement with the wheel speed sensing means, the body flaring outwardly from the end wall to the flange and hollow ribs being spaced about the exterior of the side wall of the body.

A hub cap of the invention is useful in the case of a nose wheel axle when it will reduce the noise caused by airflow over the tyre, nose wheel and axle assembly. It is also useful in the case of a main wheel axle when the airflow is over the tyre, main wheel brake and axle assembly.
The invention extends to a method of flying an aircraft in relatively noise reduced manner using an aircraft incorporating wheel assemblies having a hubcap of the invention.

In order that the invention may be well understood, it will now be described by way of illustration only with reference to the accompanying diagrammatic drawings, in which:

Figure 1(a) is a perspective view from one end of the exterior of a known hubcap;

Figure 1(b) is a perspective view from the open end of the cap of Figure 1(a) showing the inside;

Figure 2(a) is a view showing the interior of a hubcap of the invention for a main wheel, and

Figure 2(b) is an end view showing the exterior of the hubcap of figure 2(a).

The known hubcap 10 of Figures 1(a) and 1(b) comprises a cup-like body 16 having a flange 11 at the mouth onto which a "V" clamp (not shown) is affixed to hold the hubcap to the wheel (not shown). The body is parallel sided. A slot 12 extends from the open end of the cap in a side wall for location of TPIS components (not shown). A number of locations 13 are present in the end wall 14 of the hubcap equally spaced around the centre point for driving the WST (not shown).

The hubcap 10 fits over the end of the wheel axle (not shown) with clearance between the axle outer diameter and the inner surface 15 and end wall 14 of the hubcap. The axle is hollow and houses wheel speed transducers and the TPIS. The free end of the axle protrudes beyond the wheel rim.
It is an essential feature of the hubcap that it should have sufficient strength and stiffness to mount the TPIS and drive the WST during service. The wall thickness of such a known hubcap with an overall length of 137 mm is 3 mm.

A hubcap of the invention is shown in Figures 2(a) and 2(b). The hubcap comprises a cup-like body 28 having an end wall 25 and is made of aluminium alloy. The body flares outwardly from the end wall 25 to a lip flange 21 at the open mouth of the body, as can clearly be seen in Figure 2(b). The flange 21 is considerably wider in diameter than the end wall 25 except for a portion of the body 28 shaped to accommodate a slot 22 which receives part of the TPIS. As a result, a ledge 29 is formed. Drive locations 24 are present on the inner surface of the end wall 25 for the WST. The hubcap 20 is fitted on to the end of the axle (not shown) in the usual way by means of a V-clamp, also not shown. The cup-like body 28 is dimensioned so that a clearance is provided between the outer diameter of the wheel axle (not shown) and the inner surface 26 and end wall 25 of the hubcap.

Ribs or fins 27 are equally spaced about the exterior of the body 28 on each side of the slot 22. The ribs 27 are hollow. The ribs 27 have a tapered height profile with a minimum height of 12.5 mm at the closed end of the hubcap increasing to a maximum height of 26.7 mm towards the ledge 29 adjacent the open end of the hubcap. The dimension across the width of the ribs 27 is 16 mm and the overall length of the ribs is 97.3 mm. The number of fins will be between 2 and 10, preferably between 4 and 8. The presence of the ribs 27 provides an improved stiffness, thereby allowing a reduction in the wall thickness to 2 mm for a component of equivalent length to that described in Figure 1 with a reduction in weight in the order of 1 kg. Such a weight reduction for each wheel assembly is significant because between 4 and 20 main wheels and 2 or 4 nose wheels might be fitted to an aircraft.
The hubcap shown is for the main wheel axle of a large civil airliner fitted with 20 main wheels and 4 nose wheels. The total weight saving for such aircraft by the use of hubcaps of the invention is in the order of 20 kg.

It has been found that the reduction in weight is not the only benefit of a hubcap of the invention. Computational Fluid Dynamics (CFD) analysis of airflow around the complete tyre, wheel, brake and axle has shown that the ribs 27 smooth the airflow around the hubcap. In flight and with the landing gear down, noise is generated by pressure fluctuations resulting from complex flow patterns and separating flow regions. The reduction in noise level by use of a hubcap of the invention is a result of reducing such pressure fluctuations. The noise reduction benefit of the hubcap is particularly pronounced where the hubcap protrudes outside the wheel rim and has found to reduce noise levels at each wheel by up to 3dB.

It has been found in CFD analysis that a single or double curvature to the rib or fin profile has additional benefits in noise reduction over the straight section shown in the embodiment of Figure 2(a) and (b). However, this increases design, manufacturing and logistics complexity as the curvature is required to be left and right handed for fitment to wheels on each side of the landing gear.

It is also preferred that the fins should be of a tapered form with the lowest part of the taper being at the closed end of the hubcap furthest from the wheel and the tallest part of the taper being at the open end of the hubcap closest to the wheel. The height dimension of the tapered fin should be in the range 0 mm to 25 mm, preferably 5 mm to 20 mm at the lowest part and 5 mm to 50 mm, preferably 15 mm to 35 mm at the tallest part.
The invention is not limited to the embodiment shown. Not all the ribs need be the same. Depending on the material used and its shape or size the ribs may be solid. The wall of the cap may or may not be parallel sided.
CLAIMS

1. An aircraft wheel assembly including an axle housing means for sensing wheel speed, one end of the axle being covered by a cap member, the cap member comprising a generally cup-like body having an end wall towards the free end of the axle, the cap including means for driving the wheel speed sensing means, the side wall of the body having at least one stiffening deformation.

2. An assembly according to Claim 1, wherein the deformation comprises a rib or fin on the side wall of the cup-like body.

3. An assembly according to Claim 1 or 2, wherein the deformation is shaped to influence the flow of air around the exposed assembly in flight whereby to reduce the level of noise generated.

4. An assembly according to Claim 1, 2 or 3, wherein the deformation extends from the end wall to the open end of the cup-like body and increase in thickness towards the open end.

5. An assembly according to any preceding Claim, wherein the deformation is hollow.

6. An assembly according to any preceding Claim, wherein a plurality of deformations is present and are spaced substantially evenly about the cap.

7. An assembly according to any preceding Claim, wherein the cap tapers outwardly and upwardly away from the end wall thereof.
8. An assembly according to any preceding Claim, wherein the axle protrudes beyond the wheel rim.

9. An assembly according to any preceding Claim, wherein the assembly is a main wheel assembly incorporating tyre pressure sensing means and the cap member includes means for mounting that tyre pressure sensing means.

10. An aircraft incorporating at least one wheel assembly according to any preceding Claim.

11. A hubcap for an aircraft wheel assembly which has an axle housing means for sensing wheel speed and means for sensing type pressure, the hub cap comprising a generally cup-like body having an end wall, the body having a flange at its mouth for engagement with clamping means by which the hub cap is fixed on to the free end of the axle, a slot extending from the flange into the side wall of the body to receive components of the tyre pressure sensing means, the inner surface of the end wall having deformations for engagement with the wheel speed sensing means, the body flaring outwardly from the end wall to the flange and hollow ribs being spaced about the exterior of the side wall of the body.
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

<table>
<thead>
<tr>
<th>IPC</th>
<th>Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>B64C25/36</td>
</tr>
</tbody>
</table>

According to International Patent Classification (IPC) or to both national classification and IPC.

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

| IPC | B64C | B64D | B60B |

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched.

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>EP 0 445 851 A (THE BOEING COMPANY) 11 September 1991 (1991-09-11) column 3, line 26 - column 5, line 34; figures 4-10</td>
<td>1,2,6,7</td>
</tr>
<tr>
<td>Y</td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>Y</td>
<td>US 5 471 361 A (WOOTTON ET AL) 28 November 1995 (1995-11-28) column 1, line 8 - column 3, line 57; figures</td>
<td>11</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of box C. Patent family members are listed in annex.

- **X** Special categories of cited documents:
 - "X" document defining the general state of the art which is not considered to be of particular relevance
 - "E" earlier document published on or after the international filing date
 - "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 - "O" document referring to an oral disclosure, use, exhibition or other means
 - "P" document published prior to the international filing date but later than the priority date claimed

- **Y** later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

- **X** document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

- **Y** document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

- **X** document member of the same patent family

Date of the actual completion of the international search

| 19 July 2005 |

Date of mailing of the international search report

| 08/08/2005 |

Name and mailing address of the ISA

European Patent Office, P.O. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl
Fax. (+31-70) 340-3016

Authorized officer

Monica S. O. Navarro
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
</table>
| A | US 3 915 266 A (LANTZ ET AL)
28 October 1975 (1975-10-28)
column 1, line 57 - column 4, line 31; figures | 1-11 |
| A | US 6 538 426 B1 (ENRIETTO JOHN ET AL)
25 March 2003 (2003-03-25)
column 1, line 9 - column 3, line 60; figures | 1-11 |
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>GB 2258049 A, B</td>
<td>27-01-1993</td>
</tr>
<tr>
<td>US 3915266 A</td>
<td>28-10-1975</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td>US 6538426 B1</td>
<td>25-03-2003</td>
<td>AU 8073401 A</td>
<td>13-03-2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 0218878 A2</td>
<td>07-03-2002</td>
</tr>
</tbody>
</table>