PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6.

GOG6F 9/44 A2

(11) International Publication Number:

(43) International Publication Date:

WO 99/46675

16 September 1999 (16.09.99)

(21) International Application Number: PCT/EP99/01587

(22) International Filing Date: 11 March 1999 (11.03.99)

(30) Priority Data:

198 10 814.1 DE

12 March 1998 (12.03.98)

(71) Applicant (for all designated States except US): TELEFON-
AKTIEBOLAGET LM ERICSSON (publ) [SE/SE]; S-126
25 Stockholm (SE).

(72) Inventors; and

(75) Inventors/Applicants (for US only): GARD, Bengt, Erik,
Ingemar [SE/SE]; Aftonvégen 129, S-146 31 Tullinge (SE).
KLING, Lars-Orjan [SE/SE]; Kummelvigen 17, S-152
57 Sodertilje (SE). JOHNSSON, Sten, Edvard [SE/SE];
Lysviksgatan 3, S—123 42 Farsta (SE).

(74) Agents: VON FISCHERN, Bernhard et al.; Hoffmann . Eitle,
Arabellastrasse 4, D-81925 Munich (DE).

(81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG,
BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, |
GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG,
KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK,
MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI,
SK, SL, TJ, T™M, TR, TT, UA, UG, US, UZ, VN, YU, ZW,
ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, UG,
ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ,
TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI,
FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent
(BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE,
SN, TD, TG).

Published
Without international search report and to be republished
upon receipt of that report.

(54) Title: STATE COPYING METHOD FOR SOFTWARE UPDATE

(57) Abstract

deemed suitable.

4

SOEA (2 soes (14

PROCESSORUNT lg———r Wﬁuw PROCESSOR UNIT

. h
26
(10 '1& 6 L (20j23) S“
(o] (e e Je—{[on] [e

I SB I S“

TAKE OVER UNIT TAKE OVER UNIT

To provide an approach to software update with scaleable disturbance there is proposed a state copying method for a computation
system with at least two logic partitions wherein a state of new software in a standby partition (6, 16) is updated to the state of old software
in an executing partition (16, 6) while continuing execution of the old software. Data is transferred from the executing partition to the
standby partition in a scaleable way and as soon as the same state is achieved for the standby partition (6, 16) and the executing partition
(16, 6) the execution is switched to the new software. This allows to scale the degree of disturbance due to the software update to what is

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania
Armenia
Austria
Australia
Azerbaijan
Bosnia and Herzegovina
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus

Canada

Central African Republic
Congo
Switzerland
Cote d’Ivoire
Cameroon
China

Cuba

Czech Republic
Germany
Denmark
Estonia

ES
FI
FR
GA
GB
GE
GH
GN
GR
HU
IE
IL
IS
IT
JP
KE
KG
KP

KR
KZ
LC
LI

LK
LR

Spain

Finland

France

Gabon

United Kingdom
Georgia

Ghana

Guinea

Greece

Hungary

Treland

Israel

Tceland

Ttaly

Japan

Kenya

Kyrgyzstan
Democratic People’s
Republic of Korea
Republic of Korea
Kazakstan

Saint Lucia
Liechtenstein

Sri Lanka

Liberia

LS
LT
LU
LV
MC
MD
MG
MK

ML
MN
MR
MW
MX
NE
NL
NO
NZ
PL
PT
RO
RU
SD
SE
SG

Lesotho

Lithuania
Luxembourg

Latvia

Monaco

Republic of Moldova
Madagascar

The former Yugoslav
Republic of Macedonia
Mali

Mongolia

Mauritania

Malawi

Mexico

Niger

Netherlands

Norway

New Zealand

Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore

SI
SK
SN
Sz
™
TG
TJ
™
TR
TT
UA
UG
us
uz
VN
YU
W

Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Turkmenistan
Turkey

Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam
Yugoslavia
Zimbabwe

WO 99/46675 PCT/EP99/01587

State Copying Method for Software Update

FIELD OF INVENTION

The present invention relates to the field of software
update, and in particular to the field of function change in
computer based systems with frequent updating due to newly

inserted functionality and/or correction of faults.

BACKGROUND OF INVENTION

The evolution of data processing equipment and software

technology leads to an increasing demand for methodologies to

update installed software.

The usual methodology to achieve this goal is to stop the
execution of the installed software, load the new software
and then start the new software. Using this approach, no
internal data is transferred between the old and the new
software. Also, with this method all the established services
are lost and the service is completely stopped during the
load and start of the new software. Currently, this method is
typically used for, e.g., work stations or personal

computers.

WO 99/46675 PCT/EP99/01587

Another approach to the probiem of software update has
previously been described in EP-A-0 201 281. However, this
solution does not allow any disturbance free data update
function since any necessary data and message conversion is
performed through the newly installed software itself during

startup.

Further, in US-A-5 155 837 it is proposed to switch the input
of data for new services to the new software in a first step.
Further, when the service in progress in the old software 1is
completed, the output of data from the services is switched
from the old version to the new version. However, this
solution may only handle software that handles services with
a very short duration since the software according to the old
version must first be finished before the new software

version is fully operative.

Therefore, in all known approaches there is some kind of
disturbance to the operation of a system in case a software
update is performed. This disturbance can range from a total
system shutdown during hours or possibly days to a short
disruption, possibly only with respect to some limited parts
of the total system functionality during a few seconds.
Conceivably, there may be no disturbance at all, although
this is usually not the case in real existing systems like,

e.g., telecommunication exchanges.

SUMMARY OF INVENTION

In view of the above, an object of the invention is to
provide an approach to software update that may be performed
with minimum disturbance and scaleable down to virtually no

disturbance at all.

WO 99/46675 PCT/EP99/01587

According to the present invention, this object is achieved
through a software processing device of the type with update
functionality, comprising memory means subdivided into an
executing memory partition means storing a first group of
software modules and related data, and a standby memory
partition means storing a second group of software modules
and related data; update control means adapted to update a
state of new software in the standby memory partition means
to the state of old software in the executing memory
partition means during continuation of execution of the old
software; and transfer means for scaleable transfer of data
from the executing memory partition means to the standby

memory partition means.

Therefore, the system to be upgraded is divided into two
logical partitions. These partitions may but must not be
implemented using a processor pair. Here, according to the
invention, one partition referred to as the executive
partition contains the old software that performs ordinary
execution. Further, the new software is loaded into the other
partition referred to as standby partition without disturbing
the execution of the executing software. The software in the
standby partition is updated to the same state as the
software in the executing partition so that the new software
in the standby partition can take over the ordinary program
execution without any disturbance. Here, this is performed by
copying data from the executing partition. Since the old
software and the new software are not identical, data may
have to be converted into a representation suitable for the
new software. According to the present invention, this 1is
performed parallel with and without disturbing the ordinary

software execution continuing in the executing partition.

WO 99/4667
5 PCT/EP99/01587

Also, in case it is impractical to transfer all data of the
old software according to the present invention, it is

possible to partly tranéfer data from the old software. This
allows to scale the degree of disturbance caused through the

software update in the system.

According to a preferred embodiment of the present invention
the update control means further comprises a switching means
and a state comparison means to switch to the execution of
new software as far as the same state is detected for the
standby partition and the executing partition by the state

comparison means.

Thus, according to the present invention, the switch over
from the old software to the new software requires that the
complete state as represented in all data of the old software
is copied and, 1f necessary, simultaneously converted, to the
new software. Thus according to the present invention it is
possible to continue execution of the new software with no
disturbance at all. Further, in case there exist data between
programs in the old software that is not processed at the
time of switch over 1t may be copied and, 1if necessary,

converted before the start of the new software.

According to a preferred embodiment of the present invention
to each memory partition there is assigned at least one take
over means to carry out default actions in case data related
to old software is only partly transferred such that special

take over means is activated immediately after switch over..

Here, the special takeover means are activated immediately

following the switch over and perform default actions which

WO 99/46675 PCT/EP99/01587

do not require a complete input of data. While in this case
there may be some disturbance to the extent how nuch data
from the old software 1is missing according to the present
invention it may be scaled according to what is deemed

suitable through the incorporation of default actions.

According to yet another preferred embodiment of the present
invention the update control means instructs continuation of
the old software in the executing partition in case an error
situation occurs before switch over or performs a switch back
so that the partition with the old software becomes again the
executive partition in case an error during execution of the

new software occurs after switch over.

Here, 1n case an error situation occurs before switch over
the upgrade of the software is terminated and the ordinary
software execution continues with the old software in the
executing partition. To the contrary, in case of an error
during the execution of the new software after switch over a
switch back is performed so that the partition containing the
old software becomes the executive partition again. Here, the
switch back procedure may include data copy, 1f necessary
convert, in the same way as the switch over procedure.
Therefore, the switch back procedure, too, may be performed
with limited or no disturbance. Alternatively, it may be
performed without any data copy and conversion through
running a recovery procedure which typically will lead to

some disturbance.

Further, according to the present invention the object
outlined above is also achieved with a state copying method
for a computation system with at least two logic partitions,

comprising the steps updating a state of new software in a

WO 99/46675 PCT/EP99/01587

standby partition means to the state of old software in an
executing partition means while continuing execution of the
old software, switching to the execution of new software as
far as the same state is achieved for the standby partition

and the executing partition.

Therefore, using the method according to the present
invention, it is possible to achieve a highly efficient and
disturbance free update of software even also if there is old

software that handles services with long duration present.

According to a preferred embodiment of the inventive method
the updating step further comprises an initialization substep
executed parallel to and without disturbance of the old

software running in the executing partition.

Therefore, the updating of the new software is eventually
followed by initialization routines. Although this may be
partly done earlier, €.g., immediately after loading of the
new software, part of this initialization may be dependent on
data from the old software and therefore may not be performed
in advance. The initialization of the new software is
executed in parallel with minimum disturbance of the ordinary
software execution being continued in the executing
partition. As the state of the executing partition is
continuously changed the disturbance free-update process
according to the present invention must be performed also

continuously in parallel with the initialization.

According to yet another preferred embodiment of the
inventive method the updating step is executed repeatedly as
background process until switch over to the new software to

keep track of the changing state in the executing partition.

WO 99/4
6675 PCT/EP99/01587

If the complete state as represented and all data of the old
software is copied, 1if necessary converted, to the new
software, it is possible to continue execution in the new
software with no disturbance at all. In case there are data
exchanges between programs in the old software, which have
not been processed at the time of the switch over, they also

have to be copied and, 1f necessary, converted.

According to yet another preferred embodiment of the
inventive method data related to old software is only partly
transferred and a special take over step is executed
immediately after switch over to perform default actions not
requiring complete input of data. In this case, there may be
some disturbance. The extent of this disturbance 1is dependent
on how much of the data from the old software is missing.
Advantageously, 1t can in principle be scaled according to

what is deemed suitable.

Further, according to the present invention there is provided
a state copying method for a distributed computation
environment comprising one main processor and at least one
remote pProcessor, composing the steps updating new software
into a first/standby memory partition of the remote
processor, updating a state of the new software to achieve a
match with the state of the main processor while continuing
execution of software in the main processor, and switching
the execution of software in the remote processor to the new
software as soon as a match with the state of the main

processor 1is achieved.

This modified method according to the present invention

allows to achieve an update of software modules involving

WO 99/46675 PCT/EP99/01587

other parts than software modules stored in a specific

software processing device.

It also enables the update not only of software but also of
hardware. In particular, one could consider switching over
the execution of software to another software processing

device during the hardware update of a software processing

device.

still further, one could consider a combined update of
software and hardware at different software processing
devices by first changing the hardware parts and then
changing the software parts using the method according to the
present invention. Here, not all the components have to be
changed at the same time and consequently there is no need

for a global restart of the distributed system.

BRIEF DESCRIPTION OF FIGURES

In the following preferred embodiments of the present

invention will be described with respect to the appended

drawing in which

Fig. 1 shows a schematic diagram of the software
processing device according to the present

invention;

Fig. 2 shows a schematic diagram of the update control

unit shown in Fig. 1;

Fig. 3 shows a diagram for the state copying method

according to the present invention;

WO 99/46675

PCT/EP99/01587
9
Fig. 4 shows a flowchart according to the state copying
method shown in Fig. 3;
Fig. 5 shows a state diagram to represent the status of

one partition in the software processing device;

Fig. 6a shows a parallel synchronous nodus for execution of
software in both partitions according to step 1

shown in Fig. 3;

Fig. 6b shows the status in both partitions according to

step 2 shown in Fig. 3;

Fig. 6c¢ shows the status in both partitions according to

step 3 shown in Fig. 3;

Fig. 6d shows the status in both partitions according to

step 4 shown in Fig. 3;

Fig. oe shows the status in both partitions according to

step 5 shown in Fig. 3;

Fig. 7 shows the inventive approach to the update of
software in a distributed environment with a remote

processor having a preloading capability;

Fig. 8 shows the update of software in a distribute
computing environment with a remote processor
without impact on the compatibility of the

interface thereto after the software update;

Fig. 9 shows the update of software in a distributed

computing environment with a remote processor with

WO 99/46675 PCT/EP99/01587

10

an impact on the compatibility of the interface

thereto after the software update;

Fig. 10 shows the inventive approach to the update of
hardware for a main processor in a distributed

computing environment;

Fig. 11 shows the inventive approach to the update of
hardware and software in a remote processor of an
distributing computing environment without impact
on the compatability of the interface thereto after

the update; and

Fig. 12 shows the inventive approach to the update of
hardware and software in a remote processor of an
distributing computing environment with impact on
the compatability of the interface thereto after
the update.

DESCRIPTION OF PREFERRED EMBODIMENTS

Fig. 1 shows a schematic diagram for an embodiment of the
software processing device according to the present
invention. Here, the software processing device according to
the present invention has two partitions A and B,
respectively. For the partition A there 1is provided a first
processor unit 4, a first memory partition 6 and a first
take-over unit 8. The first memory partition is divided into
a first data storage section 10 and a first software storage

section 12.

Further, the same structure is chosen for the B-side

comprising a second processor unit 14, a second memory

wO
99/46675 PCT/EP99/01587

11

partition 16, and a second takeover unit 18, respectively. As
for the A-side, the second memory partition 16 is divided
into a second data storage section 20 and a second software

storage section 22.

As shown in Fig. 1, to coordinate the update of software
between either the side A to the side B or vice versa there
is in addition provided an update control unit 24 controlling
poth processor units 4 and 14 as well as a transfer unit 26
coupling the first memory partition 6 to the second memory

partition 16.

As shown in Fig. 1, the first and second takeover units 8 and
18 are assigned to the first and second memory partition 6
and 16, respectively, to carry out default actions in case
data related to old software is only partly transferred. In
particular, such default actions are related to a new
software not requiring a complete input of data and may
consist of, e.g., initialization of data variables to a

specific value.

As outlined above, this allows that the transfer unit 26
transfers data on a scaleable level since data not
transferred may be initialized through the take over units 8
and 18, respectively. Also, the transfer unit 26 either
copies data unchanged or after conversion into a new
representation for the new software under control of the
update control unit 24. Here, the conversion of data may be
carried out parallel with and without disturbing the section
of old software in the executing partition. Also, the update
control unit 24 and the transfer unit 26 are adapted to

repeat the data transfer in case the executing software

WO 99/46675 PCT/EP99/01587

12

writes data already transferred previously during the further

execution of the old software in the execution partition.

Also, the update control unit 26 is adapted to instruct a
continuation of the old software in the executing partition
in case an error situation occurs before switch over. Another
option would be switch back such that the partition with the
old software becomes again the executed partition in case an
error during execution of the new software occurs after

switch over.

As shown in Fig. 2, the update control unit achieves an
update which may be executed in a bi-directional way where
either the memory partition 6 and 16 serves as executing
partition during the update and the other partition 16, 6
serves as standby partition into which the new software is
joaded. During this update process data is transferred from
the executing partition to the standby partition via the

transfer unit 26 in a scaleable way.

To achieve scalability the update control unit 24 shown in
Fig. 1 is structured as shown in Fig. 2. The update control
unit 24 comprises a state comparison unit 28, a transfer
control unit 30, a switch over unit 32, a memory
administration unit 34, and a software loading unit 36,
respectively. The state comparison unit 28 allows to compare
the state of data and software in the two memory partitions 6
and 16. Further, the transfer control unit 30 is provided to
achieve a scaleable, flexible, transfer of data or software,
respectively, between both memory partitions 6 and 16. The
switch over unit 32 switches the execution of software
between the side A and the side B or vice versa as soon as

the state comparison unit 28 detects the same state for the

WO 99/46675 PCT/EP99/01587

13

execution partition and the standby partition. The memory
administration unit 34 is provided to allocate, deallocate or
compact memory in either of the memory partitions 6 and 16
and also to maintain reference information therein. Finally,
the software loading unit 36 serves to load new software into

the software storage section 12, 22 of each partition 6, 16.

While above the basic structure of the software processing
device according to the present invention has been described
with respect to Fig. 1 and 2, in the following the
functionality of these components as well as their
interrelation will be described with respect to Figs. 3 to 7.
While according to the following description the update of
software for the B-side is described this is not to be
construed as limiting the invention which may be executed

also in the reverse direction to the A-side.

Fig. 3 shows the basic steps underlying the execution of the
state copying method according to the present invention. As

shown in Fig. 3 in a step 1 both partitions are executing a

parallel synchronous modus and execute, e.g., the same

software.

Further, step 2 shown in Fig. 3 relates to the loading of new
software in the standby partition while the execution of old
software in the executing partition is continued. Further,
step 3 performs the copying of data from the executing
partition to the standby partition. As shown on the lower
part being related to this step 3, copy data may also be
converted in the standby partition into a representation
suited for the new software. Here, the copying and conversibn
of data is executed parallel with and without disturbing the

execution of old software in the executing partition. Also,

WO 99/46675 PCT/EP99/01587

14

according to the present invention, the copying and

conversion of data may be executed through dedicated software

or hardware.

As shown in Fig. 3, in step 4 there is carried out an
initialization also executed in parallel to and without
disturbance of the old software running the in executing
partition. Here, the initialization step is either carried
out immediately after loading the new software into the
standby partition in step 2 or as soon as possible in case it

is dependent on data copied from the old software in step 3.

As already outlined above, data being related to old software
may only partly be transferred and special initialization

steps are executed pefore or immediately after switch over to
perform default initialization actions not requiring complete

input of data from the old software.

As shown in Fig. 3, as soon an appropriate state 1s achieved
in the standby partition step 5 switching to the execution of
new software is executed. Here, it should be noted that the
switch over may be executed with respect to single software
modules immediately after the same state is achieved for
related software modules in both memory partitions. In case
there exists data related to old software that is not
transferred at the time of switch over due to only a partial
transfer of data this data may still be transferred, if

necessary, before the start of the new software.

Further, as shown in Fig. 3 with respect to step 3 and step 4
the copying process between the two memory partitions is
continued also during the initialization step for the standby

partition. The reason for this is that the old software

WO 99/46675 PCT/EP99/01587

15

continuously executing during the update process may write to
data already being transferred previously. Thus, the update
process is executed repeatedly as background process until
the switch over to the new software to keep track of the
changing state of the executing partition. This repeated
updating process may be executed parallel to the

initialization step for the standby partition.

Fig. 4 shows a flowchart according to the update process
explained with Fig. 3. In particular, it may be seen that
after a step 1 and 2 for loading new software and
initializing storage being related thereto a background
process 1s continuously repeated until the switch over takes
place. Here, it should be noted that the background process
may alsoc be implemented through splitting it up into a
plurality of background processes. In case the same state is
detected for old and new software an instant switch over
takes place followed by an interrogation to determine whether
data to be transferred remains and thus a loop back to the

execution of old software is necessary.

In the following, a more specific example for the state
copying method according to the present invention will be
described with respect to Fig. 5 and 6. Fig. 5 shows the
representation of the state of a memory partition using a
state graph and Fig. 6a to 6e show the modification of such a

state graph during the state copying method.

As shown in Fig. 5, a state in a memory partition is
represented using a state graph comprising nodes and edges;, .
respectively. Here, typically nodes may represent different
states of data and edges represent a transfer between

different data states through the execution of software

WO 99/46675 PCT/EP99/01587

16

modules being assigned to the edges. One example would be
that the utmost node relates to input data which is
transferred to data suitable for further processing by an
input data processing software module. Also, nodes having two
edges running therebetween represent the interaction of two
software modules where output data of one software module
represents input data to the other software module and vice

versa.

As shown in Fig. 6, this representation is well suited to
represent the different steps shown in Fig. 3. In particular,
Fig. 6a represents the simultaneous parallel synchronous
modus of execution of the same software in the executing and
standby partition before the update process starts. Then, as
shown in Fig. 6b, during the loading of new software in step
2 the interaction of different software modules represented
as edges is interrupted and the loading of new software
begins. As shown in Fig. 6b, data may be subdivided into
different categories as already outlined above. Here, the
black nodes represent data in the new software which should
pe identically copied from the old software. To the contrary,
nodes represented in white are related to data of the new
software which do not depend on the data of the old software
at all. One typical would be data that is newly introduced
due to a modification of data structures. Another category of
nodes represented in hatching relates to data requiring
conversion to be adapted to the new software. A further
differentiation, represented in grey, may be that data is
only partially copied or converted from the old software
using in addition the takeover mechanism to reduce the amount
of data to be transferred to the new partition. Overall, as

shown in Fig. 6c only for the last three categories data is

WO 99/46675 PCT/EP99/01587

17

copied and converted between the executing and the standby

partition.

The outcome of step 4 shown in Fig. 3 is represented through
Fig. 6d. After initialization of the new software
interrelationships of the different data components are again
introduced. As already outlined above with respect to Figs. 3
and 4 the state copying method according to the invention is
iterated in case data is rewritten by the old software during
the update process. Thus, Fig. 6d shows the situation before
the switch over where the copying/conversion is continued
also after the initialization in step 4. After switch over
takes place in step 5 these arcs representing the
copying/conversion of data are no longer present, as shown in
Fig. 6e. After switch over has taken place the status
corresponds again to the parallel synchronous modus described

above.

Therefore, in the state copying method the status copied from
the old software to the new software and eventually the total
state is defined in the new as well as in the old version. In
principle, the execution can continue in any of the software
versions since the state is complete for both versions.
Significant for the state copying method is that there is
never a concurrent execution of software going on in the
executing partition and the standby partition except for the

update function itself.

According to the inventive state copying method it is also
possible to terminate the update process before the switch
over in case an error situation occurs and to continue with
the execution of the old software. Also, it is possible to

further execute a switch back in case an error OCCurs during

w
0 99/46675 PCT/EP99/01587

18

an execution of the new softwére after switch over so that
the old software becomes executed again. This switch back may
include data transfer with data copy and convert of the type

outlined above.

While in the above, the state copying method of the present
invention has been described with respect to a software
processing device in the following the application of the
state copying method to a distributed computing environment

will be described with respect to Fig. 7 to 12.

As shown in Fig. 7, the distributed computing environment
comprises a main processor 38 and a remote processor 40.
Typically, the main processor 38 has the structure shown in
Fig. 1 only partially shown in Fig. 7. Further, there is
provided a remote processor 40 that at least must have the
option to preload software into a memory partition 46 of the
remote processor 40. Alternatively, also the remote processor
40 may have the structure of the inventive software
processing device, as shown in Fig. 9. The main processor 38
and the remote processor 40 are linked through a connection
line 42. Each remote processor is provided with at least one
update means 44 coordinating the update in the remote

processor 40 and the interaction with the main processor 38.

Fig. 7 now shows the first case to use the inventive state
copying method within a distributed computing environment.
Here, only software of the remote processor 40 is updated
such that the new software is initially preloaded to a memory
partition 46 of the remote processor 40. To make the state
copying method work two requisites are that the remote |
processor 40 allows preloading so that service is possible

during loading of the new software and that after loading

WO 99/46675 PCT/EP99/01587

19

data may be updated from the main processor 38. If this is
the case, software may be updated in the remote processor 40
without a global restart of the distributed computing
environment. To this end, once the new software is installed
in the remote processor 40, the state of the memory partition
46 in the remote processor 40 is updated to the state of the
memory partition in the main processor 38 while continuing
execution of the software in the main processor 38. Finally,
the execution of software in the remote processor 40 switch
to the new software as soon as a match with the state of the

main processor 38 1is achieved.

Further, for the state copying method fast updating of the
remote processor 40 may be necessary depending on what type
and how much software is updated. Here, 1in case only non-
critical and/or a limited amount of software is updated high
updating speed requirements do not prevail. Thus, it may be
possible to get updating times consistent with the
interruption time for the updating process even when updating

a plurality of remote processors.

Fig. 8 shows a further case where software is updated not
only in the remote processor 40 but also in the main
processor 38 and where the update process has no impact on
the interface compatability. Here, the software update is
performed in two steps by first updating the software in the
remote processor 40 as outlined above and then updating the
software in the main processor 38 using the state copying
method described above. In case not all remote processors in
the distributed computation environment are updated at the
same time there is no need for a global restart in the

systemn.

WO 99/46675 PCT/EP99/01587

20

Fig. 9 relates to the same case as shown in Fig. 8 with the
difference that after the update of software in the main
processor 38 and the remote processor 40 the interface

therebetween is incompatible.

In this case, the remote processor 40, too, should have the
same structure as outlined above with respect to Fig. 1 so
that a simultaneous update of software in the remote
processor 40 and the main processor 38 with a modification of
the interface therebetween is achieved through simultaneously
executing the inventive state copying method in the main

processor 38 and the remote processor 40, respectively.

Here, in case uncritical parts of the distributed computing
environment are involved, the state copying method should be
used by blocking out the part in the system to be changed,
then updating the software simultaneously, and finally
deblocking the changed parts in the distributed computation
environment again. In case data must be transferred from the
old software to new software, the copying/conversion should
be done before the start and deblocking of the new software.
To the contrary, in case critical parts are involved during
the update of software, the remote processor 40 should be
preloaded with the new software in order to avoid a too long
down time of the distributed computation environment during

the update process.

Further options are that the new software in the remote
processor 40 1is updated with data from the main processor 38.
Also, functions to support the transfer of data from old to

new software could be introduced for the remote processor 40.

WO 99/46675 PCT/EP99/01587

21

While in the above the update of software in different system
configurations has been considered using the inventive state
copying method, in the following a combined upgrade of
hardware and software will be explained with respect to Fig.
10 to 12.

Fig. 10 relates to the update of hardware in the main
processor 38. Typically, hardware components are exchanged by
blocking out the hardware components to be exchanged, then

replacing them and finally deblocking them again.

Fig. 11 shows the next case where software is updated both in
the remote processor 40 and the main processor 38 without any
impact on the compatability of the interface. Further, in the
case shown in Fig. 11 also hardware being assigned to the
remote processor 40 should be exchanged. Heretofore, other
components assigned to the remote processor 40 are first
exchanged using the approach described to Fig. 10. Then, the
exchange of software both in the remote processor 40 and the
main processor 38 is realized using the approach described

with respect to Fig. 8.

Fig. 12 shows a further case for the application of the state
copying method where hardware components assigned to the
remote processor 40 are exchanged simultaneously with the
update of software in the remote processor 40 and the main
processor 38 leading to an incompatability for the software
after the update. Here, in case the hardware and software
change with respect to the remote processor 40 does not lead
to an incompatability within the remote processor 40 and with
respect to the new hardware and software components, the

hardware at the remote processor 40 is first changed and then

WO 99/46675 PCT/EP99/01587

22

the software update 1is execﬁted as outlined above with

respect to Fig. 9.

To the contrary, the situation is more complicated if the
exchange of hardware components in the remote processor 40
does also lead to an incompatability with respect to the
updated software in the remote processor. Here, in case the
change of hardware and software is uncritical with respect to
the performance in the distributed computation environment

the same approach as described with respect to Fig. 11 could

be used.

However, in case this hardware change is critical the
respective hardware components should be provided in
duplicate at the remote processor 40 and also the software
should either be preloaded into the remote processor 40
according to Fig. 7 and 8 or the remote processbr 40 should
be partitioned in two sides. Bnother prerequisite for this
case is that the processing speed of the remote processor 40
is fast enough. If these conditions are fulfilled, it is
possible to perform the combined update without excessive

system downtime.

WO 99/46675

23

List of Reference Numerals

= o oy N

14
16
18
20
22

24
26
28
30
32
34
36
38
40
42
44
46

software Processing Device
A-Side Processor Unit
A-Side Memory Partition
A-Side Takeover Unit

PCT/EP99/01587

A-Side Data Storage Section and A-Side Memory Partition

A-Side Software Storage Section and A Side Memory

Partition

B-Side Processor Unit
B-Side Memory Partition
B-Side Take Over Unit

B-Side Data Storage Section and B-Side Memory Partition

B-Side Software Storage Section and B-Side Memory

Partition

Update Control Unit
Transfer Unit

State Comparison Unit
Transfer Control Unit
Switch Over Unit

Memory Administration Unit
Software Loading Unit
Main Processor

Remote Processor
Connection Line

Update Means 1in Remote Processor

Memory Partition of Remote Processor

WO 99/46675

PCT/EP99/01587
24
Claims
1. Software processing device of the type with update

functionality, comprising:

a) memory means (6,16) subdivided into

al) an executing memory partition means (6)

storing a first group of software modules and

related data, and

a?) a standby memory partition means (16) storing

a second group of software modules and related
data,

b) update control means (24) adapted to update a state
of new software in the standby memory partition
means (16) to the state of old software in the
executing memory partition means (6) during

continuation of execution of the old software, and

c) transfer means (26) for scaleable transfer of data
from the executing memory partition means (6) to

the standby memory partition means (16) .

2. Software processing device according to claim 1,
characterized in that the update control means (24)

comprises:

d) a memory administration means (34) to allocate and

deallocate memory sections for the new and old

WO 99/46675 PCT/EP99/01587

25

software and data and to maintain reference

information therefore, and

e) a transfer control unit (30) to control the
transfer means (26) according to instructions for

the scaleable transfer of data.

3. Software processing device according to claim 1 or 2,
characterized in that the update control means (24)
further comprises a switching means (32) and a state
comparison means (28) to instantly switch to the
execution of new software as soon as the same state is
detected for the standby memory partition means (16) and
the executing memory partition means (6) by the state

comparison means (28) .

4. Software processing device according to one of the
claims 1 to 3, characterized in that to each memory
partition means (6,16) there is assigned at least one
take over means (8,18) to carry out default actions in
case data related to old software is only partly
transferred such that the take over means (8,18) 1is

activated immediately after switch over.

5. Software processing device according to one of the
claims 1 to 4, characterized in that the transfer means
(26) either copies data unchanged or after conversion

into a new representation for the new software.

6. Software processing device according to claim 5,
characterized in that the transfer means (26) carries

out the conversion of data parallel with and without

WO 99/46675

10.

11.

PCT/EP99/01587

26

disturbing the execution.of old software in the

executing memory partition means (6).

Software processing device according to claim 5 or 6,
characterized in that the transfer means (26) comprises

a dedicated conversion means.

Software processing device according to one of the
claims 1 to 7, characterized in that the update control
means (24) repeatedly executes the update process until
the switching means (32) switches to the execution of
the new software to keep track of the changing state in

the executing memory partition means (6).

Software processing device according to one of the
claims 1 to 8, characterized in that in case there
exists data related to the old software that is not
transferred at the time of switch over the transfer
means (26) transfers, if necessary, this data before the

start of the new software.

Software processing device according to one of the
claims 1 to 9, characterized in that the update control
means (24) instructs continuation of the old software in
the executing memory partition means in case an error

situation occurs before switch over.

Software processing device according to one of the
claims 1 to 10, characterized in that the switch over
means (32) is adapted to perform a switch back such that
the partition with the old software becomes again the

executive memory partition means (6) in case an error

WO 99/46675

12.

13.

PCT/EP99/01587

27

during execution of the new software occurs after switch

over.

Distributed computing environment of the type with

update functionality, comprising:

a) at least one main processor means (38) selected
from a plurality of processors in the distributed
computing environment to handle the distribution of
processing tasks in the distributed computing
environment and the interactions of the processors

comprised therein,

b) at least one remote processor means (40) with an
update means (44) to update new software into a
memory partition (46) of the remote processor means
(40) such that, a state of the new software matches
a state of the main processor means (38) and the
execution of software in the remote processor means
(40) is switched to the new software as soon as the

match is achieved.

Distributed computing environment according to claim 12,
characterized in that in case the interface between the
remote processor means (40) and the main processor means
(48) remains compatible after updating the new software
into the remote processor means (40) the main processor
means (38) is implemented according to one of the claims
1 to 11 to achieve a combined upgrade of software in the
remote processor means (38) and the main processor means
(40) .

WO 99/46675

14.

15.

le.

PCT/EP99/01587

28

Distributed computing environment according to claim 12,
characterized in that in case the interface between the
remote processor means (40) and the main processor means
(38) is incompatible after software update the main
processor means (38) and the remote processor means (40)
are implemented according to one of the claims 1 to 11
and concurrently execute the software update necessary

to adapt to the modified interface.

State copying method for a computation system with at

least two logic partitions, comprising the steps:

a) updating a state of new software in a standby
partition means (16) to the state of old software
in an executing partition means while continuing

execution of the old software,

b) switching to the execution of new software as far
as the same state is achieved for the standby
partition means (16) and the executing partition

means (6).

State copying method according to claim 15,
characterized in that the updating step a) subdivides

into:

c) loading the new software into the standby partition

means (16), and

d) scaleable transfer of data from the executing
partition means (6) to the standby partition means
(16) .

WO 99/46675

17.

18.

19.

20.

21.

PCT/EP99/01587

29

State copying method according to claim 15 or 16,
characterized in that the transfer of data from the

executive partition means (6) to the standby partition

means (16) subdivides into:

e) copying of data transferred unchanged, and

f) conversion of data to be converted into a new

representation for the new software.

State copying method according to claim 17,
characterized in that the conversion of data is done

parallel with and without disturbing the execution of

old software in the executing partition means (6).

State copying method according to claim 17 or 18,
characterized in that the conversion of data is executed

through a dedicated conversion step.

State copying method according to one of the claims 1 to
19, characterized in that the updating step a) also
comprises an initialization substep executed in parallel
and without disturbance of the old software running in

the executing partition means (6) .

State copying method according to claim 20,
characterized in that the initialization substep 1is
either carried out immediately after loading the new
software into the standby partition means (16) or as
soon as possible in case it is dependent on data from

old software.

WO 99/46675

22.

23.

24.

25.

26.

27.

PCT/EP99/01587

30

State copying method accdrding to one of the claims 15
to 21, characterized in that the updating step a) is
executed repeatedly as background process until the
switching to the new software to keep track of the

changing state in the executing partition means (6).

State copying method according to claim 20 or 21,
characterized in that the updating step a) is repeatedly

executed parallel to the initialization step.

State copying method according to one of the claims 15
to 23, characterized in that in case there exists data
related to the old software that is not transferred at
the time of switch over this data is transferred, if

necessary, before the start of the new software.

State copying method according to one of the claims 16
to 24, characterized in that in substep d) data related
to old software is only partly transferred and that a
special take over step is executed immediately after
switch over to perform default actions not requiring

complete input of data.

State copying method according to one of the claims 15

to 25, characterized in that in case an error situation
occurs before switch over the update is terminated and

the execution of the old software in the execution

partition means (6) is continued.

State copying method according to one of the claims 15
to 26, characterized in that a switch back step is
performed such that the executing partition means (6)

with the old software becomes again the executive

WO 99/46675

28.

29.

30.

31.

PCT/EP99/01587

31

partition means (6) in case an error during execution of

the new software occurs after switch over.

State copying method according to claim 27,
characterized in that the switch back includes a data
transfer with data copy and convert, if necessary,

performed with limited or no disturbance.

State copying method according to claim 27 or 28,
characterized in that the switch back step includes a

recovery step executed before the restart of the old

software.

State copying method for a distributed computation
environment comprising one main processor means (38) and
at least one remote processor means (40), comprising the

steps:

a) updating new software into a first memory partition

means (46) of the remote processor means (40),

b) updating a state of the new software to achieve a
match with the state of the main processor means
(38) while continuing execution of software in the

main processor means (38), and

c) switching the execution of software in the remote
processor means (40) to the new software as soon as
a match with the state of the main processor means

(38) is achieved.

State copying method according to claim 30,

characterized in that in case the interface between the

WO 99/46675

32.

33.

PCT/EP99/01587

32

remote processor means (40) and the main processor means
(38) remains compatible after updating the new software
into the remote processor means (40) a combined upgrade
of software in the remote processor means (40) and the
main processor means (38) is achieved through additional
execution of the state copying method according to one

of the claims 15 to 29 in the main processor means (38) .

State copying method according to claim 30,
characterized in that a simultaneous update of software
in the remote processor means (40) and the main
processor means (38) with modified interface is achieved
through simultaneous execution of the state copying
method according to one of the claims 15 to 29 in the
main processor means (38) and the remote processor means

(40), respectively.

State copying method according to one of the claims 30
to 32, characterized in that further hardware components
connected to the remote processor means (40) are
exchanged by blocking out the hardware components to be
exchanged, then replacing them and finally deblocking
them.

PCT/EP99/01587

WO 99/46675

1110

1IN HIAQ VL
8l H
{3 | [|

w_‘w NNN H oNJ

1INN HOSS3J0kd

14

B

NIW\

g 30IS

<> JINN HI4SNVHL

¢ ™| “140S

RE

1NN
J04INOD 31VadN

)

ve

['OI1

ﬂ 1INN 43N0 DAVL
w H

JHVM ’ vIva

g8
9 dN_‘ch

———»{ 1INN H0SS3004d

Vv 30iS

SUBSTITUTE SHEET (RULE 26)

WO 99/46675 PCT/EP99/01587

2/10
FIG.2
S 24
STATE CS'I\\I/;]F_’ARISON _—~28

TRANSFER CONTROL | _—~30
UNIT

SWITCHOVERUNIT | _~32

MEMORY
ADMINISTRATION UNIT = 34

SOFTWARE LOADING 16
UNIT —

SUBSTITUTE SHEET (RULE 26)

PCT/EP99/01587

WO 99/46675

3/10

MS MIN

XdO ANGO ANOD
X3 Xd . mbm m)w as s
Ad0D Ad0D
/ Xd0 Xd0 Xd0 9
asS as Xd X3 X3 Xd
9dilS Gdd1S ¥ dd1S € dilS ¢ d11S | d31S

EOIHL

SUBSTITUTE SHEET (RULE 26)

WO 99/46675 A PCT/EP99/01587

4/10

FIG.4 &«

PREPARATION AND LOADING

:l, fSTEP 1TO4

EXECUTE OLD SOFTWARE

STEP 1,2

f

l ySTEP 3TO 4

UPDATE NEW SOFTWARE AND DATA
OF THE NEW SOFTWARE FROM DATA
OF CORRESPONDING OLD SOFTWARE

STEP 5

SAME STATE FOR
DATA OF OLD AND NEW
SOFTWARE?ACHIEVED

STEP 5
[

INSTANTLY SWITCH DATA TO NEW
SOFTWARE AS FAR AS THE SAME
STATE IS ACHIEVED

STEP S

REMAINING DATA TO BE
TRANS‘EERRED

SUBSTITUTE SHEET (RULE 26)

WO 99/46675 PCT/EP99/01587

5110

FIG.5

SUBSTITUTE SHEET (RULE 26)

WO 99/46675 PCT/EP99/01587

6/10

FIG.6(n)

FIG.6()

O® 00

SUBSTITUTE SHEET (RULE 26)

WO 99
/46675 . PCT/EP99/01587

7110

FIG.6(c)

FIG.6(d)

SUBSTITUTE SHEET (RULE 26)

WO 99/46675 PCT/EP99/01587

8/10

FIG.6(¢)

SUBSTITUTE SHEET (RULE 26)

WO 99/46675 PCT/EP99/01587
9/10
FIG.7
38 / 40
SIDEB
................. ~ 44
$ ¢ 842
. o p <> < > —~—46
3
FIG.8
38 40
N e e
~— 44
¢ % (42
< L >
/
$
38 40
SIDEB SIDE A
) 3 42 3
o < S /4 > <+—> Righed
)

SUBSTITUTE SHEET (RULE 26)

WO 99/46675 PCT/EP99/01587

10/10
FIG.10
38
\ SIDE B
§)
$
FIG.11
38 40
\ SIDE B /
44
$ % (42 %
Rie < / >
/
v 3
38 40
\ FIG.12 A
SIDE B SIDE A
44 ~_
3 3 42 3 3
o S A "
))

SUBSTITUTE SHEET (RULE 26)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

