NOTEBOOK STORAGE DEVICE

Inventor: Lester R. Tobias, Malibu, CA (US)

Correspondence Address:
PAUL, HASTINGS, JANOFSKY & WALKER LLP
P.O. BOX 919092
SAN DIEGO, CA 92191-9092 (US)

Appl. No.: 11/294,281
Filed: Dec. 5, 2005

Related U.S. Application Data
Continuation-in-part of application No. 10/869,830, filed on Jun. 15, 2004, now abandoned.

Publication Classification
Int. Cl.
A47F 5/00 (2006.01)
U.S. Cl. 211/184; 211/42

ABSTRACT
Storage devices allow for the efficient storage of notebooks on a bookshelf. The storage device includes multiple slots set to predetermined widths and a lip for securing the storage device to the edge of a shelf. Each slot of the storage device is formed by a pair of vertical tabs configured to retain the front cover and the back cover of a notebook. A storage device also includes a first retaining member and a second retaining member which can be slidably positioned to accommodate and retain a notebook having a particular width.
NOTEBOOK STORAGE DEVICE

RELATED APPLICATION INFORMATION

[0001] This application claims priority as a continuation-in-part to U.S. Utility application Ser. No. 10/869,830, entitled “Notebook Storage Device” filed on Jun. 15, 2004, which is incorporated herein in its entirety and set forth in full.

BACKGROUND

[0002] 1. Field of the Inventions

[0003] The field of the invention relates generally to storage of notebooks and more particularly to storage devices for retaining three ring-type notebooks on a bookshelf.

[0004] 2. Background Information

[0005] It is a common practice to use notebooks, such as three ring binders, to organize and store documents of virtually every type, size and shape. While such notebooks provide an efficient method for storing documents, the notebooks themselves must be efficiently stored to maximize the benefits of their use.

[0006] One advantage of using a notebook to store documents is the flexibility that the notebook provides. For example, numerous pages can be quickly and efficiently hole-punched and then inserted into a three ring binder, a two ring binder, or another similar type of notebook. As the use of the notebook continues, additional pages can be added as they are developed without the need to create an entirely new volume. This is due to the fact that the pages in the notebook are not secured with a permanent binding. Instead, the rings of a three ring binder, or other similar notebook, can be temporarily opened to add the new pages and then closed to secure the pages in place. Similarly, pages can be quickly and easily removed from the binder simply by opening the clasps and removing the pages. Such benefits are well known and have been implemented for many years.

[0007] The flexibility and benefits that a notebook provides for organizing documents can be contrasted with the difficulties that can result from trying to efficiently store the notebook itself. The spine of a typical notebook is set to a fixed width. For example, the width of the spine of the notebook is typically referred to in terms of “a one inch binder,” “a two inch binder,” etc. In contrast, the spacing between the front cover and the back cover is not set to a fixed width, resulting in an opening between the front cover and the back cover that can vary over a wide range. The spacing between the front cover and the back cover, and therefore the width of the opening between the front cover and the back cover, is directly related to the volume of pages that are contained within the notebook.

[0008] For example, when there are no documents in the notebook, the spacing between the front cover and the back cover will be at its smallest value, with essentially no opening between the front cover and back cover. As more pages are added to the notebook, the spacing between the front cover and the back cover will be slightly increased. Ultimately, when the volume of pages stored in the notebook reaches a width that is substantially equal to the width of the spine of the notebook, the front cover and back cover reach a point where they are substantially parallel to each other, and therefore substantially perpendicular to the spine of the notebook.

[0009] The variable spacing between the front cover and the back cover can lead to difficulties when storing the notebook on a shelf. For example, when there are very few pages in the notebook and the spacing between the front cover and the back cover is at a minimal value, the stability of the notebook is compromised when it is placed in a typical, upright position on a shelf. As more pages are added to the notebook and the spacing between the front cover and the back cover increases, the stability of the notebook improves slightly, but the notebook remains easily vulnerable to toppling to one side or the other. Indeed, even when the opening between the front cover and the back cover substantially matches the width of the spine of the notebook, the notebook often remains unstable due to a number of factors, including the relatively thin edge of the notebook that is in contact with the shelf and the variety of sizes and types of documents stored in the notebook, resulting in an uneven distribution of weight throughout the notebook.

[0010] Everyone who has used three-ring bound notebooks has most likely experienced the frustration of trying to store the notebooks on a shelf.

SUMMARY OF THE INVENTION

[0011] A storage device allows for the storage of notebooks on a bookshelf. In one aspect, the storage device includes multiple slots set to a predetermined width. The storage device also includes a lip for securing the storage device to the edge of a shelf. Each slot of the storage device is formed by a pair of vertical tabs, and the front and back cover of a notebook are retained between the pair of vertical tabs. The vertical tabs function to align the front cover and the back cover of the notebook in substantially parallel configuration, thus maximizing the stability of the notebook in a typical, upright position on a bookshelf. The vertical tabs also serve to apply a resistive force to the front and back cover of the notebook, thus functioning to prevent the notebook from toppling over.

[0012] In another aspect, a storage device includes a first retaining member and a second retaining member. The first retaining member includes a pair of vertical tabs configured to retain the front cover of a notebook. The second retaining member includes a vertical tab configured to retain the back cover of the notebook. Both the first retaining member and the second retaining member include a lip for securing the first retaining member and the second retaining member to the shelf. In yet another aspect, either the first retaining member or the second retaining member is slidably positioned on the shelf, enabling the user to adjust the width of the storage device to accommodate a notebook having a particular width.

BRIEF DESCRIPTION OF THE DRAWINGS

[0013] Features, aspects, and embodiments of the inventions are described in conjunction with the attached drawings, in which:

[0014] FIG. 1 is a diagram illustrating a storage device with an example embodiment of the invention;

[0015] FIG. 2 is a diagram illustrating the implementation of example embodiments of the invention;
FIG. 3 is a diagram illustrating another storage device with an example embodiment of the invention;

FIG. 4 is a diagram illustrating another implementation of example embodiments of the invention;

FIG. 5 is a diagram illustrating another storage device with an example embodiment of the invention; and

FIG. 6 is a diagram illustrating another storage device with an example embodiment of the invention.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

The storage devices described below allow for the efficient storage of notebooks on a shelf. Generally, slots which are formed by vertical tabs, are implemented to retain the front cover and the back cover of a notebook in a substantially vertical position. As used herein, the term notebook is intended to include all types of notebooks that are used to store and organize documents. While exemplary notebooks include three ring binders and two ring binders, the notebooks described herein can be used to store any type of notebook which includes a front cover, a back cover, a spine, and the capability to secure pages between the front cover and the back cover.

FIG. 1 illustrates an exemplary embodiment of storage device 100. Storage device 100 is configured to organize and store notebooks, such as exemplary notebook 102, on shelf 110. Notebook 102 includes front cover 104, back cover 106, and spine 108. In one embodiment, notebook 102 also includes a device for securing pages between front cover 106 and back cover 104. Spine 108 typically has a fixed width, while the spacing between front cover 104 and back cover 106 varies depending on the volume of pages within notebook 102.

For example, before a notebook is placed in storage device 100, and when there are no documents in the notebook, the spacing between the front cover and the back cover will be at its smallest value, with essentially no opening between the front cover and back cover at the position where the notebook is intended to be opened. As more pages are added to the notebook, the spacing between the front cover and the back cover will increase. Ultimately, when the volume of pages stored in the notebook reaches a width that is substantially equal to the width of the spine of the notebook, the front cover and the back cover reach a point where they are substantially parallel to each other, and therefore substantially perpendicular to the spine of the notebook. When front cover 104 is substantially parallel to back cover 106, notebook 102 achieves its maximum stability when it is placed in a typical, vertical position on a shelf.

However, notebooks are often not filled to their maximum storage capacity, and the variable spacing between the front cover and the back cover can lead to difficulties when storing the notebook on a shelf. For example, when there are very few pages in the notebook and the spacing between the front cover and the back cover is at a minimal value, the stability of the notebook is compromised when it is placed in a typical, upright position on a shelf. As more pages are added to the notebook and the spacing between the front cover and the back cover increases, the stability of the notebook improves slightly, but the notebook remains easily vulnerable to toppling to one side or the other.

Storage device 100 is therefore configured to retain front cover 104 and back cover 106 in a substantially parallel position. Storage device 100 is capable of producing this result even when the volume of documents in notebook 102 is insufficient to position front cover 104 and back cover 106 in a substantially parallel position. Storage device 100 thereby improves the stability of notebook 102 when it is placed in a typical, vertical position on shelf 110.

Storage device 100 includes lip 112 for securing storage device 100 to shelf 110. Lip 112 includes a vertical portion 114 that is substantially conformed to fit the shape of the edge of shelf 110. Lip 112 also includes horizontal portions 116 and 118 which extend along a portion of the top and bottom of shelf 110. Horizontal portions 116 and 118 of lip 112 should extend to a sufficient depth along the top and bottom of shelf 110 to prevent storage device 100 from disconnecting from shelf 110.

In one embodiment, lip 112 is configured to slip onto the edge of shelf 110, resulting in a simple, efficient installation. The application of a small force, even by hand, to horizontal portion 116 can be sufficient to temporarily increase the separation of lip 112. When the force is removed, lip 112 returns to substantially its original dimension and is configured to secure storage device 100 to shelf 110. In another embodiment, lip 112 is configured to slidably attach storage device 100 to shelf 110, allowing storage device 100 to slide horizontally on shelf 110. This allows the position of storage device 110 to be easily adjusted without requiring the complete removal of storage device 100 from shelf 110.

In one embodiment, storage device 100 includes slots 120, 122, 124, 126, 128 and 130. Slot 120 is formed by vertical tabs 132 and 134 which define the width of slot 120. Slot 120 is configured to have a width that is sufficient to accommodate the type of binders a user wishes to store. Accordingly, storage device 100 can be manufactured in multiple embodiments with a variety of slots that vary in width in order to accommodate the variety of notebooks that a user may have.

In one embodiment, vertical tabs 132 and 134 have a sufficient height to retain front cover 104 and back cover 106 in a substantially vertical position. As previously discussed, the instability of notebook 102 results in a tendency for notebook 102 to topple to one side or the other. Therefore, vertical tabs 132 and 134 provide at least two benefits to prevent such motion. First, vertical tabs 132 and 134 serve to retain front cover 104 and back cover 106 in a substantially parallel position to each other, thus maintaining notebook 102 in its most stable position. Vertical tabs 132 and 134 accomplish this by extending for a sufficient depth to prevent front cover 104 and back cover 106 from tending to slide open. Second, vertical tabs 132 and 134 are capable of providing a resistive force to front cover 104 and back cover 106 to help prevent notebook 102 from toppling over. In order to accomplish this, vertical tabs 132 and 134 should extend for a sufficient height to apply a resistive force to front cover 104 and back cover 106 which is capable of preventing notebook 102 from toppling over. Both the height and depth of vertical tabs 132 and 134 must be...
determined based on the dimensions and style of notebooks that storage device 100 will be retaining.

[0029] Storage device 100 includes slot 122, which is disposed adjacent to slot 120. Slot 120 is formed by vertical tabs 136 and 138. Vertical tab 136 is positioned adjacent to vertical tab 134 which forms a portion of slot 120. The position of vertical tab 136 and vertical tab 134 also produce channel 140. Storage device 100 further includes slot 124 which is formed by vertical tabs 142 and 144. Vertical tabs 138 and 142 also form channel 146.

[0030] In one embodiment, notebook 102 is placed in slot 120. Front cover 104 and back cover 106 are both placed between vertical tabs 132 and 136. In this embodiment, a slight separation is realized between each notebook due to the channel that is formed by the vertical tabs. The separation allows a user to easily grasp the spine of the notebook and remove it from the shelf.

[0031] In another embodiment, which is capable of providing a more secure retention of notebook 102, channels 140 and 146 are implemented to retain notebook 102. Front cover 104 is disposed in channel 146 and back cover 106 is disposed in channel 140. Channels 146 and 140 can be each configured to a width that is cable of retaining two notebook covers. For example, channel 140 is capable of retaining the front cover of a notebook which spans slot 120, and channel 140 is also capable of retaining the back cover of a notebook which spans slot 122. In this manner, each canal serves to retain two notebook covers, thus maximizing the capacity and efficiency of storage device 100.

[0032] As has been previously discussed, vertical tabs 138 and 142 position front cover 104 in a position that is substantially parallel to back cover 106. Vertical tabs 138 and 142 are also capable of providing a resistive force to prevent notebook 102 from toppling over. Similarly, vertical tabs 134 and 136 position back cover 106 in a position that is substantially parallel to front cover 104. Vertical tabs 134 and 136 are also capable of providing a resistive force to prevent notebook 102 from toppling over.

[0033] In one embodiment, storage device 100 is designed in such a way as to be manufactured through a cutting and stamping machine, so that no material is wasted. Further, in one embodiment, no additional manufacturing processes such as welding, drilling, or screwing are required to produce storage device 100. In one embodiment, storage device 100 is made from metal, either in a galvanized form or an any other form of metal. However, storage device 100 can be manufactured from any suitable material, including plastic.

[0034] FIG. 2 illustrates storage device 202 positioned on shelf 204 and storage device 206 positioned on shelf 208. While FIG. 2 only illustrates two storage devices, it can be appreciated that multiple storage devices can be provided on shelves 204 and 208 to expand the storage capability of this system. By adding multiple storage devices, a user can implement a simple, effective system for organizing any volume of notebooks in an efficient manner.

[0035] FIG. 3 illustrates another embodiment of storage device 300. Generally, storage device 300 includes retaining members 302 and 304 which are configured to slidably adjust to any desired width for retaining a notebook on a shelf. Retaining member 304 includes lip 308 for securing retaining member 304 to shelf 306. Lip 308 includes a vertical portion 310 that is substantially conformed to fit the shape of the edge of shelf 306. Lip 308 also includes horizontal portions 312 and 314 which extend along a portion of the top and bottom of shelf 306. Horizontal portions 312 and 314 of lip 308 should extend to a sufficient depth along the top and bottom of shelf 306 to prevent storage device 300 from disconnecting from shelf 306.

[0036] In one embodiment, lip 308 is configured to slip onto the edge of shelf 306, resulting in a simple, efficient installation. The application of a small force, even by hand, to horizontal portion 312 can be sufficient to temporarily increase the separation of lip 308. When the force is removed, lip 308 returns to substantially its original dimension and is configured to secure storage device 300 to shelf 306. In another embodiment, lip 308 is configured to slidably attach retaining member 304 to shelf 306, allowing retaining member 304 to slide horizontally on shelf 306. This allows the position of retaining member 304 to be easily adjusted without requiring the complete removal of retaining member 304 from shelf 306. In another embodiment, retaining member 304 is fixed to shelf 306 by lip 308, such that the tendency of retaining member 304 to move horizontally is minimized or eliminated all together.

[0037] In another embodiment, retaining member 302 also includes lip 318, having horizontal portions 320 and 322 and vertical portion 318. Lip 318 functions similarly to lip 308 described above. In one embodiment, retaining member 302 is configured to be slidably adjustable on shelf 306 while retaining member 304 is configured to be fixed in a constant position. A user then adjusts retaining member 302 to fit the width of a notebook that the user wished to store. In another embodiment, retaining member 304 is configured to be slidably adjusted while retaining member 302 is fixed in a constant position. In yet another embodiment, both retaining members 302 and 304 are configured to be slidably adjusted, while gripping shelf 306 with sufficient force and friction to retain a notebook and prevent it from toppling over. In another embodiment, retaining members 302 and 304 are configured to be set to a fixed, permanent, predetermined width on shelf 306. Thus, storage device 300 can be used in virtually any combination to provide significant flexibility.

[0038] Retaining member 304 includes vertical tabs 323 and 324 which form channel 326. Retaining member 302 includes vertical tab 328. In one embodiment, a cover of the notebook is placed in channel 326, between vertical tabs 322 and 324. Vertical tabs 323 and 324 position one cover of the notebook in a substantially parallel position with the other cover of the notebook, thus retaining the notebook in its most stable position. Vertical tabs 323 and 324 also provide a resistive force to the cover of the notebook, working to prevent the notebook from toppling over. The other cover of the notebook is retained by vertical tab 328 on retaining member 302. Again, in one embodiment, retaining member 302 can be slidably adjusted to ensure that both covers of the notebook are substantially parallel to each other, and that retaining member is properly positioned to apply a resistive force the prevent the notebook from toppling over.

[0039] In another embodiment, both covers of the notebook are placed between vertical tab 324 on retaining member 304 and vertical tab 328 on retaining member 302.
Again, retaining members 302 and 304 can be slidably adjusted, either individually or together, to properly retain the notebook.

[0040] FIG. 4 illustrates one exemplary embodiment of how multiple storage units can be used to create an efficient notebook storage system. Storage device 402, capable of retaining multiple notebooks, is positioned on shelf 404. Storage device 402 contains a series of slots, pre-set to specific notebook widths, depending on the preference of the user. Storage device 406 is positioned on shelf 408. Storage device 406 includes retaining members 410 and 412, which can be slidably adjusted to retain a variety of notebooks having different widths. Storage devices 414 and 416 can be further added on shelves 408 and 418. While FIG. 4 only illustrates four storage devices, it can be appreciated that multiple storage devices can be provided on shelves 404, 408 and 418 to expand the storage capability of this system. By adding multiple storage devices, a user can implement a simple, effective system for organizing any number of notebooks in an efficient manner. The storage devices described herein can be made from metal, either in a galvanized form or an any other form of metal, or from any suitable material, including plastic.

[0041] Turning in detail now to FIGS. 5 and 6, another exemplary embodiment of storage device 500 is illustrated. Storage device 500 comprises retaining member 502 for retaining a cover of a notebook in a substantially vertical position and engagement member 504 configured to connect storage device 500 to a shelf. Although retaining member 502 can take on any number of different configurations, this particular embodiment illustrates retaining member 502 comprising a vertical tab that is defined by a first arc segment 505 and second arc segment 506 that intersect to form tip 508, and a substantially horizontal bottom portion 510. However, a person of ordinary skill in the art can appreciate that a number of different configurations can be implemented to form retaining member 502. For example, tip 508 can be pointed, rounded, or eliminated altogether such that the upper portion of retaining member 502 provides a flat, blunt surface. Similarly, first arc segment 505 and second arc segment 506 can be formed to create any type of upright projection with any amount of curvature or shape, including linear formations that may not include any curvature at all.

[0042] Similarly, while engagement member 504 can also be formed to take on any number of different configurations, this particular embodiment illustrates engagement member 504 comprising a lip that comprises horizontal bottom portion 510 of retaining member 502, lower horizontal portion 512, and vertical portion 514 which is formed to couple horizontal bottom portion 510 of retaining member 502 with lower horizontal portion 512. As illustrated in FIGS. 5 and 6, vertical portion 514 is formed substantially perpendicular to horizontal bottom portion 510 of retaining member 502 and lower horizontal portion 512. Vertical portion 514 is also formed to be substantially coplanar with both vertical tab 502 and lower horizontal portion 512. In addition, vertical portion 514 can be formed to have a rounded corner 516 at its intersection with lower horizontal portion 512. Engagement member 504 can be formed to provide any desired distance between horizontal bottom portion 510 and lower horizontal portion 512, thereby allowing engagement member 504 to accommodate a shelf that has a particular thickness at its edge.

[0043] In another exemplary embodiment, engagement member 504 further comprises upper stabilizer 518 and lower stabilizer 520. Upper stabilizer 518 comprises a substantially flat, planar surface that is positioned substantially perpendicular to retaining member 502 and extends outward from horizontal bottom portion 510 of retaining member 502. The particular embodiment of upper stabilizer 518 that is illustrated is defined by a curved outer segment 522 that is coupled to horizontal bottom portion 510 of retaining member 502 at one end and is positioned distal from horizontal bottom portion 510 of retaining member 502 at another end, thereby defining a first edge 524. As shown in FIG. 5, it can be appreciated that upper stabilizer 518 can comprises a substantially flat, planar surface as described above that extends outward from both sides of vertical tab 502, such that the portions of upper stabilizer 518 that are on opposing sides of vertical tab 502 are essentially mirror images of each other.

[0044] Continuing now with FIGS. 5 and 6, one embodiment of lower stabilizer 520 is illustrated. In this particular embodiment, lower stabilizer 520 comprises a substantially flat, planar surface that is coupled to lower horizontal portion 512. Lower stabilizer 520 is defined by a curved outer segment 526 that terminates to form a second edge 528. Second edge 528 intersects with and is positioned substantially perpendicular to vertical portion 514. Second edge 528 also extends outward from both sides of vertical portion 514. In one embodiment, lower stabilizer 520 can be configured to angle slightly upward towards upper stabilizer 518.

[0045] In actual use, engagement member 504 is configured to slip onto the edge of shelf or other similar surface, for example, resulting in a simple, efficient installation of storage device 500. The application of a small force, even by hand, to lower horizontal portion 514 can be sufficient to temporarily increase the separation of engagement member 504. When the force is removed, engagement member 504 returns to substantially its original dimension and is configured to secure storage device 500 to a shelf. In another embodiment, engagement member 504 is configured to slidably attach storage device 500 to a shelf, allowing storage device 500 to slide horizontally on the shelf. This allows the position of storage device 500 to be easily adjusted without requiring the complete removal of storage device 500 from shelf.

[0046] When storage device 500 is placed on a shelf, first edge 524 of upper stabilizer 518 and second edge 528 of lower stabilizer 520 can be dimensioned to form a substantially flush fit with the outer edge of the shelf when storage device 500 is placed for actual use. This prevents any extra material or sharp edges from protruding beyond the edge of the shelf or other similar surface. Also, in actual use, a first and second storage device 500 can be placed on a shelf. The retaining members 502 from each storage device 500 extend upward and can be spaced to allow a notebook to be placed between the two retaining members 502. Retaining members 502 operate to exert a force on the front cover and the back cover of the notebook near the spine of the notebook to help maintain the stability of the notebook and keep it from toppling over. Similarly, upper stabilizer 518 and lower
stabilizer 520 operate to resist any lateral forces that may be applied to retaining member 502. Upper stabilizer 518 and lower stabilizer 520 provide an increased surface area that allows the stabilizers to provide a greater resistive force. Continuing with this example, a third storage device 500 can also be placed adjacent to the second storage device 500 and spaced to allow a second notebook to be retained between the retaining members 502 of the second and third storage devices 500.

[0047] While not specifically illustrated, a person of ordinary skill in the art would appreciate that engagement member 504 can take on any number of different configurations, including adjustable configurations that allow storage device 500 to be easily and connected to different shelves that have varying thicknesses at their edges. In one embodiment, engagement member 504 comprises a clip mechanism. The clip mechanism comprises a pair of opposing faces that can be biased against each other by a spring or other similar mechanism. In operation, the opposing faces of the clip can be separated by applying force such that one face is positioned on the top edge of the shelf and the other face is positioned on the bottom of the shelf. When the separation force is removed, the bias that is provided by a spring or other similar mechanism causes the opposing faces to clamp down on opposing sides of the shelf. Therefore, the clip mechanism can allow storage device 500 to be easily connected to shelves that have a variety of widths at their edges.

[0048] In another embodiment, engagement member 504 comprises a lip similar to the lip described above and can comprise two horizontal portions joined by a vertical portion. The two horizontal portions can then be positioned on opposing sides of the shelf, and the vertical portion can be positioned proximal to the edge of the shelf. Further, one of the horizontal portions, and preferably the horizontal portion that is positioned beneath the shelf, further comprises an adjustable sliding mechanism at its junction with the vertical member. The adjustable mechanism comprises a series of stops or positions that the horizontal portion can lock into. As the lower horizontal portion of the lip is adjusted further up the vertical member, the distance between the two horizontal portions will be reduced. This procedure can be used to set the distance between the two horizontal portions to the width of the edge of a particular shelf to secure storage device 500 in place.

[0049] In yet another embodiment, engagement member 504 comprises a lip similar to the lip described above and can comprise two horizontal portions joined by a vertical portion that is formed from a resilient material, such as rubber. In operation, the vertical portion can be stretched to increase the distance between the two horizontal portions. The horizontal portions can then be position on opposing sides of the shelf. Once the force is released from the vertical portion, the resilient material is biased back toward its original position or configuration, which draws the horizontal portions of engagement member 504 towards each other and provides a gripping-like effect to secure storage device 500 to the edge of the shelf.

[0050] In another embodiment, engagement member 504 comprises a surface that is coupled to retaining member 502 and can be positioned on the top of the shelf, the edge of the shelf, the bottom of the shelf, or some combination of these locations. The surface or surfaces of engagement member 504 that come into contact with a portion of the shelf further comprise an adhesive that semi-permanently binds the surface to the shelf, and therefore connects storage device 500 to the shelf. While this configuration provides a simple, efficient way to connect storage device 500 to the shelf, it does not provide the simple adjustability of the additional embodiments of engagement member 504 that were discussed above.

[0051] In another exemplary embodiment, storage device 500 further comprises gripping tab 530 that can be formed to extend from a portion of retaining member 502 to a portion of vertical portion 514. Gripping tab 530 also projects outward from retaining members 502 and vertical portion 514, thereby providing additional gripping surface for positioning storage device 500 on a shelf or other similar surface.

[0052] While certain embodiments of the inventions have been described above, it will be understood that the embodiments described are by way of example only. Accordingly, the inventions should not be limited based on the described embodiments. Rather, the scope of the inventions described herein should only be limited in light of the claims that follow when taken in conjunction with the above description and accompanying drawings.

What is claimed:
1. A storage device for storing notebooks on a shelf, each notebook having a front cover and a back cover and the shelf having an edge, the storage device comprising:
 a retaining member; and
 engagement means, coupled to the retaining member, for connecting the storage device to the edge of the shelf.
2. The storage device of claim 1, further comprising an upper stabilizer coupled to the retaining member.
3. The storage device of claim 2, wherein the upper stabilizer comprises a substantially flat surface that extends laterally from the retaining member.
4. The storage device of claim 3, wherein the upper stabilizer is positioned substantially perpendicular to the retaining member.
5. The storage device of claim 4, wherein the upright projection comprises a first arc segment and a second arc segment that intersect to form a tip.
6. The storage device of claim 5, wherein the storage device is configured to be slidably positioned on the shelf.
7. The storage device of claim 5, wherein the storage device is configured to be fixed on the shelf.
8. A storage device for storing notebooks on a shelf, each notebook having a front cover and a back cover and the shelf having an edge, the storage device comprising:
 a retaining member; and
 an engagement member coupled to the retaining member, the engagement member configured to connect the storage device to the edge of the shelf.
9. The storage device of claim 8, wherein the engagement member comprises a lip that is configured to fit over the edge of the shelf.
10. The storage device of claim 9, wherein the lip comprises a first horizontal portion, a second horizontal portion, and a vertical member coupled to the first horizontal portion and the second horizontal portion.
11. The storage device of claim 10, wherein the storage device further comprises an upper stabilizer coupled to the retaining member.

12. The storage device of claim 11, wherein the upper stabilizer forms a portion of the first horizontal portion of the lip.

13. The storage device of claim 12, wherein the upper stabilizer comprises a substantially flat surface that extends laterally from the retaining member.

14. The storage device of claim 13, wherein the upper stabilizer is positioned substantially perpendicular to the retaining member.

15. The storage device of claim 14, wherein the storage device further comprises a lower stabilizer coupled to the second horizontal portion of the lip.

16. The storage device of claim 15, wherein the lower stabilizer comprises a substantially flat surface that extends laterally from the second horizontal portion of the lip.

17. The storage device of claim 16, wherein the lower stabilizer is positioned substantially parallel to the second horizontal portion of the lip.

18. The storage device of claim 8, wherein the engagement member comprises a clip mechanism.

19. The storage device of claim 10, wherein the vertical member comprises a resilient material.

20. The storage device of claim 10, wherein the lip further comprises an adjustable sliding mechanism at the intersection of the first horizontal portion and the vertical member.