A drinking cup is provided comprising a housing formed of an external shell defined by a base and side walls upwardly extending therefrom and terminating at a sipping edge. The cup further comprises an inside liner received within the external shell and spaced therefrom so as to form a reservoir therebetween. The inside liner defines a drinking well fitted at a bottom portion thereof with a port, wherein the port is in fluid communication with the reservoir and is configured to allow liquid bleeding from the reservoir to the drinking well.

Related U.S. Application Data

Provisional application No. 61/181,341, filed on May 27, 2009, provisional application No. 61/258,349, filed on Nov. 5, 2009.

Publication Classification

Int. Cl. A47G 19/22 (2006.01)

U.S. Cl. .. 220/500

ABSTRACT
CHILD'S CUP

FIELD OF THE DISCLOSED SUBJECT MATTER

[0001] The subject matter disclosed hereinafter relates to a drinking cup and in particular, to a child's drinking cup suited for teaching a child how to drink from a cup.

BACKGROUND OF THE DISCLOSED SUBJECT MATTER

[0002] Sucking is an instinct toddlers are born with and after weaning from breast feeding, the next step in teaching a toddler to drink will typically be exercising sucking from a nursing bottle and thereafter sucking from suitable cup of the type fitted with a cup and provided with a dispensing sucking spout. Thereafter, the cap may be removed and the cup may be used for training regular use thereof.

[0003] Several training cups have been proposed and described, which are concerned with child drinking training whilst preventing spillage of the contents thereof. One such example is disclosed in U.S. Pat. No. 7,210,556 directed to a drinking cup that teaches a child how to drink from a cup while minimizing spills includes an elongated, generally cylindrical housing for holding a liquid, the housing has an inside surface, an outside surface, and a bottom; an elongated, generally cylindrical insert with an inner surface and an outer surface where the insert fits within the housing; and a cap removably mounted to the housing. The insert includes a plurality of tabs located on the outer surface of the insert and a plurality of feet extending downwardly from the bottom of the insert that create a space between the insert and the housing. The space receives any liquid flowing between the inner surface of the insert and the outer surface of the insert. The cap has a plurality of openings formed therein and the openings are in fluid communication with the space formed between the insert and the housing.

[0004] Additional example is disclosed in WO09039632 directed to spill resistant container for dispensing liquid doses. The container includes a body of generally hollow form about a centre vertical axis with open ends and comprises a liquid deposit chamber having an open first end and an opposing closed second end, a liquid withdrawal chamber having an open first end and an opposing closed second end, one or more apertures between said deposit and withdrawal chambers adapted to selectively permit liquid communication in controlled doses from the liquid deposit chamber to the liquid withdrawal chamber. The container body further comprises a detachable base cap having a cavity in liquid communication with the liquid deposit and withdrawal chambers.

SUMMARY OF THE DISCLOSED SUBJECT MATTER

[0005] A drinking cup comprising housing formed of an external shell defined by a base and side walls upwardly extending therefrom and terminating at a sipping edge; an inside liner received within the external shell and spaced therefrom so as to form a reservoir therebetween, said inside liner defining a drinking well fitted at a bottom portion thereof with a port, wherein the port is in fluid communication with the reservoir and is configured to allow liquid bleeding from said reservoir to the drinking well.

[0006] The arrangement is such that liquid flow from the reservoir into the drinking well is restricted to a predetermined level, so that only a small amount of liquid will accumulate within the drinking well, to be consumed by the child. Accordingly, when the child learns how to drink from a cup, there is no risk of a whole cup spilling over the child when he grasps the cup or as he tilts it to drink. Even more so, even at the inadvertent case of turning over the cup, only a very small amount of liquid is spilled.

[0007] It should be appreciated that although the presently disclosed subject matter is exemplified for use as a child's cup, the cup in accordance with the presently disclosed subject matter may be utilized as a travel cup, a dosing cup, e.g., for dosing an amount of liquid ready for consumption, etc. In the event that the cup is used as a dosing cup, the position of the port defines the amount of liquid per dose.

[0008] Whilst a port extends between the reservoir and the drinking well, the space of the reservoir is sealed in an airtight fashion, whereby the rule of combined vessels does not apply and liquid level within the drinking well is restricted to a low level to thus hold only a significantly small amount of liquid. However, said low level is maintained owing to the flow path extending between the reservoir and the drinking well.

[0009] The cup in accordance with the presently disclosed subject matter may comprise one or more of the following features:

[0010] the inside liner may be configured with one or more ports having a controllable opening size;

[0011] the inside liner may be fitted with a restricting wall configured to cover at least a portion of the port opening;

[0012] the restricting wall may be fitted on the base and the restricting wall may be configured to be moved with respect to the port such as to cover and seal at least a portion of the port opening;

[0013] the base may be movably attached to the side walls of the cup and may be configured to be moved with respect thereto such as to controllably position the restricting wall over at least a portion of the port opening;

[0014] the inside liner may be provided with two ports, each having a different size of the opening and wherein the base is fitted with a restricting wall adapted to coextend and sealably cover one opening at a time;

[0015] the opening of the port may have a polygonal shape, and the shape is such that at least two of the edges of the opening are not parallel;

[0016] the opening of the port may have an oval shape;

[0017] the base may be configured with a central well which coextends with the drinking well defined by the inside liner and serves for holding liquid for consuming from the drinking well;

[0018] the external shell and the inside liner may be integrated;

[0019] the external shell and the inside liner may be sealingly articulated to one another;

[0020] the base may be integrated with the external shell;

[0021] a gripping arrangement may be provided;

[0022] the base is sealingly attachable to the external shell; and

[0023] the gripping arrangement may be integral with the base.

BRIEF DESCRIPTION OF THE DRAWINGS

[0024] In order to understand the disclosed subject matter and to see how it may be carried out in practice, embodiments
will now be described, by way of non-limiting examples only, with reference to the accompanying drawings, in which:

0025 FIG. 1A is a top isometric view of a cup in accordance with one design of the present disclosed subject matter;

0026 FIG. 1B is a front elevation of the cup of FIG. 1A;

0027 FIG. 1C is a top view of the cup seen in FIGS. 1A and 1B;

0028 FIG. 1D is a section taken along line I-I in FIG. 1C;

0029 FIG. 1E is a sectioned exploded view of the cup seen in the trival drawings, however in an upright position;

0030 FIG. 2A is a top view of a cup in accordance with another example of the present disclosed subject matter;

0031 FIG. 2B is a section along II-II in FIG. 2A;

0032 FIG. 3A is a top view another example of a cup according to the present disclosed subject matter;

0033 FIG. 3B is a cross section along lines in FIG. 3A;

0034 FIG. 4A is a slide elevation of a cup in accordance with yet a further example of the present disclosed subject matter;

0035 FIG. 4B is a top elevation of the cup of FIG. 4A;

0036 FIG. 4C is a section along IV-IV in FIG. 4B;

0037 FIG. 5A is a side elevation of a cup in accordance with another modification of the present disclosed subject matter;

0038 FIG. 5B is a top elevation of FIG. 5A;

0039 FIG. 5C is a sectioned view line V-V in FIG. 5B;

0040 FIGS. 6A and 6B are longitudinal sections of a cup according to another example, wherein the amount of liquid entering the drinking well is controllable between a large amount and a small amount, respectively;

0041 FIG. 6C is a perspective view of a cup base used in conjunction with the cup of FIGS. 6A and 6B;

0042 FIGS. 7A and 7B are a sectioned longitudinal elevation and a sectioned perspective exploded view, respectively, of a cup according to another example, wherein amount of liquid entering the drinking well is adjustable;

0043 FIGS. 8A and 8B are a sectioned longitudinal elevation and a sectioned perspective view, respectively, of a cup according to yet another example, wherein amount of liquid entering the drinking well is adjustable;

0044 FIGS. 9A and 9B are longitudinal sectioned views of a cup according to yet an example of the present disclosed subject matter, at an assembled and an exploded position, respectively;

0045 FIGS. 9C to 9E are directed to yet another example of a cup according to the present disclosed subject matter, wherein:

0046 FIG. 9C is a sectioned view of the cup at a first position;

0047 FIG. 9D is sectioned view of the cup at a second position;

0048 FIG. 9E is an isometric view of the cup at the first position; and

0049 FIGS. 10A and 10B illustrate cups according to the disclosed subject matter, fitted with liquid window.

DETAILED DESCRIPTION OF EMBODIMENTS

0050 Attention is first directed to FIGS. 1A to 1E of the drawings illustrating a cup in accordance with an example of the present disclosed subject matter, generally designated 10.

0051 As can best be seen in FIG. 1D, the cup 10 is formed with a housing 12 composed of an external shell 14, which in the present example resembles a portion of a dome, said external sheet 14 being a peripheral side wall extending from a bottom edge 16 upwards towards a sipping edge 18 and being integrally formed with an inside liner 22. The external shell 14 and the inside liner 22 are spaced apart, defining between them an annular reservoir 26 with a drinking well 28 defined within the boundaries of the inside liner 22.

0052 As can be seen, the inside liner 22 has a bottom wall 30 extending almost towards the bottom edge 16 of the external shell 14 and fitted with a port 34 sized so as to facilitate liquid bleeding from the reservoir 26 into the drinking well 28.

0053 A base 40 is screw coupled at 42 over the bottom edge 16 of the external shell in a sealing manner, wherein said base 40 is integrally formed with a pair of gripping handles 46 sized and shaped to facilitate gripping by toddlers and children.

0054 In use, the base 40 is unscrewed from the housing and is removed therefrom whereby a drinking liquid is introduced into the reservoir 26 while held in an upright position (as illustrated in FIG. 1E). It is noticed however that the liquid level is filled so as not to occupy the entire reservoir 26, but rather leave an air gap designated at G. Then the base 40 is sealingly tightened over the housing and the cup is then turned back into its regular position as in FIGS. 1A to 1D. In this position, the law of connected vessels does not apply since the reservoir 26 is sealed to the atmosphere and air is not allowed to enter therein. However, upon inverting the cup into its upright position (FIG. 1D) a small amount of liquid will bleed through port 34 so as to occupy the bottom of the drinking well 28. This amount of liquid designated at L may then be consumed by the child. At the inadvertent event of turning over of the cup 10 only a small amount of liquid L will spill whilst the major amount is safely contained within the reservoir 26.

0055 Refilling of the liquid within the drinking well 28 will take place in a bleeding process through port 34 only upon tilting of the cup where a small amount of air is allowed to enter through port 34, said air designated at G' in FIG. 1D.

0056 It is appreciated that the distance D between the bottom edge of the drinking well and the base 40 and likewise the elevation H of the bleeding port 34 from the base 40 determine the amount of liquid to be consumed from the drinking well 28. Likewise, the size of the aperture of the port 34 controls the bleeding rate into the drinking well 28.

0057 The embodiment of FIGS. 2A and 2B discloses a cup in accordance with a variation of the present disclosed subject matter generally designated 101 and wherein like elements are designated with like reference numbers, however shifted by 100 for sake of convenience.

0058 In the example of FIGS. 2A and 2B the reservoir 126 terminate at a lower level thus giving rise to a shaped sipping edge 118 which may assume different shapes. Further, the base 140 is integrated with the gripping handles 146, the latter however extending from an upwardly extending skirt 145 whereby the gripping handles 146 extend in the shape of two downwardly ear-like gripping arms.

0059 Even more so it is noticed that the lower most wall 130 of the drinking well 128 extends almost towards the bottom most edge 116 of the external shell 114 whereby the liquid contents within the reservoir 126 may be more efficiently consumed. Likewise, it is possible to form one or more ports 135 at or adjacent the lower most wall 130 of the inside liner 122 whereby almost all the liquid within the reservoir 126 may be consumed as it will eventually occupy the bottom of the drinking well 128, ready for consuming by a child.
It is apparent as in the previous example, that the housing is sealingly engaged with the base 140, e.g. by threaded coupling at 142.

Turning now to the embodiment illustrated in FIGS. 3A and 3B, there is illustrated still an example of a cup in accordance with the present disclosed subject matter gener-ally designated 200 and wherein elements which resemble those elements of the example of FIGS. 1A to 1E are designated with like reference numbers however shifted by 200.

The cup 200 of FIGS. 3A and 3B follows the same principles as the previous examples illustrated in FIGS. 1 and 2 however, being differently designed. The housing of the cup 200 is formed with an external shell 214 extending from an integral base 240 upwards towards a peripheral edge 215. Received within the external shell 214 there is the inside liner 222 formed with a peripheral shoulder 223 resting over edge 215 of the external shell 214 and being sealingly received therein by means of a sealing ring 227. The inside liner 222 may be screw coupled to the external 214 or may be press-fit however in a sealing fashion giving rise to creation of a reservoir 226 between the external shell 214 and the inside liner 222.

A bottom wall of the inside liner 222 is fitted with an upward tubular projection 229 formed at its upper end with a bleeding port 234 and a liquid flow control cap 237. A gap formed between cap 237 and the tubular projection 229 governs the liquid flow rate into the lower space of the drinking well 228.

As opposed to the previous examples, filling of the cup does not require holding it at an upright position but rather detaching the inside liner 222 from the cup 200, filling the desired liquid into the reservoir 226 of the external shell to a level not exceeding a predetermined level marked at 247 and then sealing engagement of the inside liner 222 into the position illustrated in FIG. 3B whereby the liquid will then bleed through port 234 and through the gap between cup 237 and tubular portion 229 into the lowermost portion of the drinking well 228 ready to be consumed.

Though handles are not illustrated, any gripping aids may be attached, in an integrated manner or detachable therefrom.

The example of FIGS. 4A to 4C illustrates a cup in accordance with yet another example of the present disclosed subject matter generally designated 300 and wherein elements similar to those illustrated in connection with the embodiment of FIG. 1 are designated with like reference numbers however shifted by 300.

The cup designated 300 follows the same principles as the cups illustrated in the previous examples wherein an external shell 314 is integrated with the inside liner 322 giving rise to a reservoir 326 extending between a top, sipping edge 318 and a lower most edge 316 of the external shell 314. In this example, the lowermost wall 330 extends downwards almost towards the base 340, however leaving a small gap therebetween, with a tubular portion 329 extending upwards therefrom and an inlet port 234 formed at the uppermost portion thereof for liquid flow from the reservoir 326 into the drinking well 328.

In this example, the base 340 is sealingly articulat-able to the bottom edge of the external shell 314 (e.g. by press-fit) and a pair of gripping handles 346 are detachably attachable at an uppermost portion of the cup, by means of a removable coupling ring 347.

FIGS. 5A to 5C are directed to a cup in accordance with a modification of the example illustrated in FIGS. 3A and 3B, the difference residing in the provision of a diaphragm element 417 at the port 434 formed at the bottom portion of the inside liner 422. Upwardly projecting from the base 440 (which is an integral component with the external shell 414) there is a diaphragm restricting plunger 419 extending towards the diaphragm 417 to thus restrict its deflection and govern the interstice therebetween. The provision of a diaphragm 417 will thus control the amount of liquid flowing from the reservoir 426 into the bottom part of the drinking well 428.

Further attention is now directed to FIGS. 6, 7 and 8 illustrating different examples in accordance with the disclosed subject matter, wherein the amount of liquid allowed into the drinking well is controllable.

In the example of FIGS. 6A to 6C, a cup in accordance with such an example is illustrated, generally designated 500, wherein elements similar to those disclosed in connection with the embodiment of FIG. 1 are designated with like reference numbers, however shifted by 500.

In accordance with this example, the external shell 514 is integrated with the inside liner 522, with the sipping edge 518 extending between said walls and defining between them an annular reservoir 526. The inside liner 522 defines the centrally extending drinking well 528, similar to the arrangement disclosed in the previous embodiments.

A bottom cup, namely base 540 is sealingly fitted at the downwardly extending locking wall portion 541 of wall 514, said sealing articulation being by a snap-type fit.

The inside liner 522 extends downwardly to a level at which it engages a top surface 543 of base 540 however with two ports 534A (FIG. 6A) and 534B (FIG. 6B) the former being larger than the latter, thereby defining a different aperture for liquid to enter the drinking well 528.

It is noticed that the base 540 is fitted at its upper surface 543 with a port restricting gate in the form of upwardly extending wall portion 559 rotatable between two distinct positions namely a first position as illustrated in FIG. 6A wherein the small port 534B is sealed by said wall 559 thereby admitting liquid flow through the large aperture port 534A into the drinking well 528, and a second position as illustrated in FIG. 6B wherein said wall 559 blocks liquid flow through the large aperture port 534A but rather admits liquid flow only through port 534B, allowing a lower level of liquid into the drinking well 528.

Furthermore, base 540 is fitted with an indicia 579 in the form of a linear projection and likewise, the bottom skirt portion 541 of the external shell 514 comprises two indications, one associated with the position of FIG. 6A and the other associated with the position seen in FIG. 6B, thereby indicating in which of the two distinct positions the liquid barrier extends, wherein at the position of FIG. 6A the mark 579 coexists with a first indication sign 581 and in the position of FIG. 6B the indication sign 579 coexists with a second indication 583.

It is appreciated that the base 540 may be readily removed from the cup however is easily snapped into its rotatable though sealing position as illustrated in the drawings.

It is noticed that the base 540 is configured with a central well 563 which coexists with the drinking well 528 at the operative position of the cup and serves for holding liquid for consuming from the drinking well.
Further attention is now directed to FIGS. 7A and 7B disclosing a cap in accordance with yet another example wherein the amount of liquid admitted into the drinking well is controllable, said cap generally designated 600 and wherein like elements are designated with like reference numbers as in FIG. 1, however shifted by 600, for sake of convenience.

The cap illustrated in FIGS. 7A and 7B is principally similar to the concept disclosed in connection with the example of FIGS. 6A-6C however, differs in that rather than providing two distinct inlets liquid ports (namely 134A and 134B) there is provided a single aperture 634 and a single barrier wall 659 extending upwardly from the top surface 643 of the base 640.

Whilst the barrier wall 659 as a rectangle-like elevation (though extending about an arc, the aperture of port 634 progressively elevates from the bottom edge 635, wherein the height of barrier wall 659 exceeds the height of the aperture 634, for ensuring its sealing at the closed position. Furthermore, the arrangement is such that the barrier wall 659 extends flush against the external surface 661 of the liner 618, to thereby ensure effective sealing.

The arrangement is such that base 640 is sealingly though rotatably secured at the bottom of the cap (snap fitting to a lowermost position of the external shell 614) and is rotatable about a common central axis such that rotation of base 640 gradually exposes a larger portion of aperture 634, namely an aperture extending higher over the surface 643 of base 640, thus facilitating entrance of a larger amount of liquid into the drinking well 528.

It is noticed that the base 640 is configured with a central well 663 which coextends with the drinking well 628 at the operative position of the cup and serves for holding liquid for consuming from the drinking well.

In operation of the embodiments exemplified in FIGS. 6 and 7, in order to fill the reservoir with liquid, base 540, 640 is disengaged from the external shell 514, 614 and the shell 514, 614 is rotated 180 degrees from a drinking position illustrated in FIGS. 6 and 7, to an inverted position so that open end of the external shell 514, 614 allows access to the inner space of the reservoir 526, 626. Liquid is poured into the reservoir 526 to any desired level up to the predefined maximal level and base 540 is realigned to shell 514. The base is rotated such as to receive a desired size of the port 534A/534B, 634 by determining the position of the barrier wall 559, 659 with respect to the respective port. In the operation of the embodiment exemplified in FIG. 6, the amount of liquid can be controlled by choosing the port 534A or 534B used for the liquid entry into the well 528. In accordance with an embodiment exemplified in FIG. 7, the actual size of the port 634, is determined by the position of the barrier wall 659 with respect to the port 634.

The cup 500 is then rotated 180 degrees to return to the drinking position. As the cup 500, 600 rotates, liquid fills the well 563, 663 and air from the drinking well 528 enters into the reservoir 526, 626 through the port 534A/534B, 634. The entering air causes liquid in reservoir 526, 626 to simultaneously flow through the port into the drinking well 528, 628 until the level of liquid in the well 528, 628 substantially covers the port 534A/534B, 634. Once the port 534A/534B, 634 is substantially covered by the liquid in the well 528, 628, no further air can enter the reservoir 526, 626 and thus no further liquid flows into the well 528, 628. The amount of liquid in cup 500, 600 represents a controlled amount of liquid that the user may drink from the drinking well 528, 628 by tilting the cup 500, 600.

Additional controlled amounts of liquid equal to the first amount are obtainable by withdrawing liquid from the reservoir by tilting the cup 500, 600 and drinking from the well to the amount substantially uncovering the port. As the liquid uncovers the port, volume of air is allowed to enter the reservoir and additional volume of liquid, equal to the volume of air entered into reservoir is released into the drinking well. Such process results in another small amount of liquid for further consumption by the user. These steps are repeatable until no liquid remains in the reservoir 526, 626.

The embodiment illustrated in FIGS. 8A and 83 illustrates cap in accordance with yet an example of the present disclosed subject matter, generally designated 700, and wherein elements similar to those illustrated in connection with the embodiment of FIG. 1 are designated with like reference numbers however shifted by 700.

The example of FIGS. 8A and 83 resemble in a way that shown in connection with FIGS. 3A and 3B wherein the external shell 714 is in the form of a cup and accommodates a coaxial internal liner 722 defining said inside liner and the drinking well 728, with an annular reservoir 726 extending therebetween, and wherein the inside liner 722 is snap fitted over the external wall 714 with a sipping edge 718 at an uppermost top edge.

The inside liner 722 is formed at its lower portion with a tubular extension designated 731 formed with a plurality of axial ports 734 there being a sliding barrier ring 777 mounted over said tubular extension 731 whereby axial displacement of said ring 777 in direction of arrow 779 exposes the aperture port 734 at different levels, thereby determining the level of liquid flowing into the drinking well 728, as a result of level of liquid entering from the reservoir 726 through the exposed aperture 734.

FIGS. 9A and 9B illustrate still another example of a cup in accordance with the present disclosed subject matter generally designated 800 and wherein elements which resemble those elements in the example of FIG. 1 are designated with like reference numbers, however shifted by 800.

In this example, the external shell 814 is integral with the base 840 defining together a cup-like shape. An inside surface 815 of the external shell 814 is provided with an annular rim 817 constituting a maximum liquid level indication.

A top edge 819 of the external shell 814 is formed with an annular infral rim inwardly projection fitted for snap arrestment of an appropriate annular recess 821 of the inside liner 822.

The inside liner 822 defines a drinking well 828 and when assembled within the external shell 814 defines together an annular liquid reservoir 826.

Liner 822 is fitted with a bottom base 841 with one or more apertures 834 formed in the inside liner 822, thereby defining the liquid level admitted to enter into the drinking well 828.

FIGS. 9C to 9E are directed to a modification of the presently disclosed subject matter, wherein the cup assembly designated 851 is composed of any standard cup e.g. plastic cup 853 constituting the external shell, formed with an integral base 855 and having a top rim 857. A resilient liner 861 is dome-shaped and is provided with several apertures 865 (two in the present example). The liner is made for example of
silicone rubber and is sealingly engageable over the rim 857 of the cup 853 (FIGS. 9C and 9D). In this position the cup may be used by inserting a drinking straw (not shown) through one of the apertures 865, for consuming of the beverage contained therein.

[0096] Once the cup 853 is filled with a liquid the resilient liner 861 is inverted into the position of FIG. 9D, now constituting an internal liner as in the previous examples. In this position, the liner gives rise to forming a reservoir 877 and a drinking well 879, with the apertures 865 serving for restricted filling of the drinking well 879 similar to the arrangements disclosed in the previous examples.

[0097] The embodiments of FIGS. 10A and 10B represents any of the hereinbefore disclosed examples wherein in FIG. 10A the cup 920 is configured with an external sheet 914 fitted with a longitudinal transparent or translucent window portion 919 to facilitate visibility of liquid level within the liquid reservoir 926. In FIG. 10B there is a cup generally designated 940 wherein the external sheet 947 is made of a translucent material to facilitate visualizing the extent of liquid level within the liquid reservoir.

[0098] Those skilled in the art to which this disclosed subject matter pertains will readily appreciate that numerous changes, variations, and modifications can be made without departing from the scope of the disclosed subject matter, mutatis mutandis.

1. A drinking cup, comprising:
a housing formed of an external shell defined by a base and side walls upwardly extending therefrom and terminating at a sipping edge; and
an inside liner received within the external shell and spaced therefrom so as to form a reservoir between the external shell and the inside liner, said inside liner defining a drinking well fitted at a bottom portion thereof with a port, wherein the port is in fluid communication with the reservoir and is configured to allow liquid bleeding from said reservoir to the drinking well.
2. The drinking cup in accordance with claim 1, wherein the inside liner is configured with one or more ports having a controllable opening size.

3. The drinking cup in accordance with claim 2, wherein the inside liner is fitted with a restricting wall configured to cover at least a portion of the port opening.
4. The drinking cup in accordance with claim 3, wherein the restricting wall is fitted on the base and the restricting wall is configured to be moveable with respect to the port such as to cover and seal at least a portion of the port opening.
5. The drinking cup in accordance with claim 4, wherein the base is movably attached to the side walls of the cup and is configured to be moved with respect thereto such as to controllably position the restricting wall over at least a portion of the port opening.
6. The drinking cup in accordance with claim 4, wherein the inside liner is provided with two ports, each having a different size of the opening and wherein the base is fitted with a restricting wall adapted to coextend and sealably cover one opening at a time.
7. The drinking cup in accordance with claim 4, wherein the opening of the port has a polygonal shape, and the shape is such that at least two of the edges of the opening are not parallel.
8. The drinking cup in accordance with claim 4, wherein the opening of the port has an oval shape.
9. The drinking cup in accordance with claim 1, wherein the base is configured with a central well which coextends with the drinking well defined by the inside liner and serves for holding liquid for consuming from the drinking well.
10. The drinking cup according to claim 1, wherein the external shell and the inside liner are integrally.
11. The drinking cup according to claim 1, wherein the external shell and the inside liner are sealingly articulated to one another.
12. The drinking cup according to claim 1, wherein the base is integrated with the external shell.
13. The drinking cup according to claim 1, wherein a gripping arrangement is provided.
14. The drinking cup according to claim 1, wherein the base is sealingly attachable to the external shell.
15. The drinking cup according to claim 1, wherein the gripping arrangement is integral with the base.

* * * * *