

EP 3 260 135 A1

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication:
27.12.2017 Bulletin 2017/52

(51) Int Cl.:
A61K 39/02 (2006.01) **A61K 35/74** (2015.01)

(21) Application number: **17167876.6**

(22) Date of filing: **25.02.2011**

(84) Designated Contracting States:
**AL AT BE BG CH CY CZ DE DK EE ES FI FR GB
GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO
PL PT RO RS SE SI SK SM TR**

(30) Priority: **26.02.2010 AU 2010900846**

(62) Document number(s) of the earlier application(s) in accordance with Art. 76 EPC:
11746760.5 / 2 538 970

(71) Applicant: **Oral Health Australia Pty Ltd
Carlton, VIC 3053 (AU)**

(72) Inventor: **REYNOLDS,, Eric Charles
Carlton, Victoria 3053 (AU)**

(74) Representative: **Carpmaels & Ransford LLP
One Southampton Row
London WC1B 5HA (GB)**

Remarks:

- This application was filed on 25-04-2017 as a divisional application to the application mentioned under INID code 62.
- Claims filed after the date of filing of the application / after the date of receipt of the divisional application (Rule 68(4) EPC).

(54) **TREATMENT OR PREVENTION OF INFECTION**

(57) The invention relates to a method of reducing the incidence or severity of a disease or condition in a subject, said disease or condition being one associated with the presence of *P. gingivalis* in an oral tissue of a subject, and including the use of a composition forming an anti-microbial and an immunogen from *P. gingivalis*.

Description**Field of the invention**

5 [0001] The invention relates to the treatment or prevention of diseases or conditions in a subject, said diseases or conditions being associated with the presence of a microbial pathogen in an oral tissue of a subject, and in particular, but not exclusively, to the treatment or prevention of *P. gingivalis*- related diseases or conditions.

Background of the invention

10 [0002] The mouth constitutes one of the major sites of infection. Infection can lead to debilitating disease of oral tissue and a clear association has also been observed between infection of oral tissue and disease or condition in other anatomical compartments.

15 [0003] Chronic periodontitis is one example of a disease of oral tissue. This is an inflammatory disease of the supporting tissues of the teeth leading to resorption of alveolar bone and eventual tooth loss. The disease is a major public health problem in all societies and is estimated to affect up to 15% of the adult population with severe forms affecting 5-6%.

20 [0004] The development and progression of chronic periodontitis has been associated with specific Gram-negative bacteria in subgingival plaque. The presence of *Porphyromonas gingivalis* in subgingival plaque has been strongly associated with disease.

25 [0005] The persistence of *P. gingivalis* in subgingival plaque from periodontitis patients after treatment (scaling and root planing) has been reported to be significantly associated with progressive alveolar bone loss. Furthermore an increase in *P. gingivalis* cell numbers in subgingival plaque has been shown to correlate with disease severity as measured by attachment loss, periodontal pocket depth and bleeding on probing.

Oral infection with *P. gingivalis* has been shown to induce periodontal bone loss in mice, rats and non-human primates.

30 [0006] In addition, there has been increasing linkage of periodontal disease, and of *P. gingivalis* infection, with cardiovascular diseases and certain cancers.

35 [0007] Many other microbial pathogens, including other bacteria, fungi, virus and protozoa have been associated with disease of oral tissue and some of these pathogens also cause disease in other anatomical compartments via infection of oral tissue. Examples of the former include *T. denticola* and *T. forsythia*. Group A *Streptococcus* infection is an aetiological agent of rheumatic fever and rheumatic heart disease.

40 [0008] Reference to any prior art in the specification is not, and should not be taken as, an acknowledgment or any form of suggestion that this prior art forms part of the common general knowledge in Australia or any other jurisdiction or that this prior art could reasonably be expected to be ascertained, understood and regarded as relevant by a person skilled in the art.

Summary of the invention

45 [0009] In certain embodiments there is provided a method of reducing the incidence or severity of a disease or condition in a subject, said disease or condition being one associated with the presence of a microbial pathogen in an oral tissue of a subject, the method including:

- 45 - treating a subject, thereby providing conditions for removal of substantially all micro-organisms or fragments thereof from oral tissue of said subject; thereafter
- providing an antibody in said subject, said antibody for protecting said subject against a microbial pathogen, the presence of which in oral tissue is associated with a disease or condition;

50 thereby reducing the incidence or severity of a disease or condition in a subject.

[0010] In one embodiment, the antibody is provided in said subject by administering an immunogen to said subject, said immunogen for protecting said subject against a microbial pathogen.

55 [0011] In one embodiment there is provided a method of reducing the incidence or severity of a *P. gingivalis* - related disease or condition in a subject, the method including:

- treating a subject, thereby removing substantially all micro-organisms or fragments thereof from oral tissue of said subject; thereafter

- administering a chimeric or fusion protein for inducing an immune response to *P. gingivalis* to the subject, the protein including a first peptide joined directly or through a linker to a second peptide, wherein:

5 (A) said first peptide includes:

(i) part of, or all of a sequence that is the same as, or homologous to the sequence shown in SEQ ID No:1; or

(ii) part of, or all of a sequence that is the same as, or homologous to the sequence shown in SEQ ID No:2; and

10 (B) said second peptide includes:

(i) part of, or all of a sequence that is the same as, or homologous to the sequence of an adhesin domain of the Lys-X-proteinase of *P. gingivalis*; or

15 (ii) part of, or all of a sequence that is the same as, or homologous to the sequence of an adhesin domain of the Arg-X-proteinase of *P. gingivalis*; or

(iii) part of, or all of a sequence that is the same as, or homologous to the sequence of a HagA adhesin domain of *P. gingivalis*.

20 thereby reducing the incidence or severity of a disease or condition in a subject.

[0012] In other embodiments there is provided a composition or kit including:

- 25 - anti -microbial agent for removing substantially all micro -organisms or fragments thereof from oral tissue of said subject;
- an immunogen for immunising said subject against a microbial pathogen, the presence of which in oral tissue is associated with a disease or condition;

30 said composition or kit for use in a method described above.

[0013] In certain embodiments there is provided a method of reducing the incidence or severity of a disease or condition in a subject, said disease or condition being one associated with the presence of a microbial pathogen in an oral tissue of a subject, the method including:

- 35 - performing a surgical procedure on oral tissue of a subject; thereafter
- treating the subject, thereby providing conditions for removal of substantially all micro-organisms or fragments thereof from oral tissue of said subject;
- 40 - providing an antibody in the subject, said antibody for protecting said subject against a microbial pathogen, the presence of which in oral tissue is associated with a disease or condition;

thereby reducing the incidence or severity of a disease or condition in a subject.

[0014] In one embodiment the surgical procedure is a dental procedure. Examples of dental procedures include debridement, scaling and/or root planning.

[0015] In one embodiment, the present invention provides a composition for reducing the incidence or severity of a disease or condition in a subject, said disease or condition being one associated with the presence of a microbial pathogen in an oral tissue of a subject, the composition including an anti -microbial agent as described herein and an immunogen as described herein.

[0016] In another aspect, the invention provides a use of a composition of the invention in the preparation of a medicament for reducing the incidence or severity of a disease or condition in a subject, said disease or condition being one associated with the presence of a microbial pathogen in an oral tissue of a subject. Non-limiting examples of diseases include dental plaque, gingivitis, periodontitis, chronic periodontitis, dental caries, bone loss, alveolar bone loss and coronary artery disease.

[0017] In another embodiment the invention provides a composition for the treatment or prevention of periodontal disease (and/or the other conditions identified herein as suitable for treatment) consisting of an active ingredient of anti -microbial agent as described herein and an immunogen as described herein.

[0018] In another embodiment the invention provides a composition comprising anti -microbial agent as described herein and an immunogen as described herein for use in for reducing the incidence or severity of a disease or condition in a subject, said disease or condition being one associated with the presence of a microbial pathogen in an oral tissue of a subject.

5 [0019] In another embodiment the invention provides a composition as described herein for use as a medicament.

[0020] In another embodiment the invention provides a pharmaceutical composition comprising an effective amount of a composition of the invention as a main ingredient.

[0021] In one embodiment there is provided a method for forming an antibody response or for forming a Th2 response to an oral pathogen in an individual including the steps of:

10

- providing an individual in whom an antibody or Th2 response to an oral pathogen is to be formed;
- assessing the individual to determine whether the individual has inflamed oral tissue;
- 15 - immunising the individual with an oral pathogen in circumstances where the assessment reveals that the individual does not have inflamed oral tissue, thereby forming an antibody response or Th2 response to an oral pathogen in the individual.

20

[0022] In one embodiment there is provided, in an immunisation regime for the formation of an antibody response or the formation of a Th2 response to an oral pathogen in an individual having inflamed oral tissue, the step of administering an anti-inflammatory agent to the individual, thereby minimising inflammation of, or removing inflammation from the oral tissue, prior to an immunisation of the individual for the formation of an antibody response or Th2 response to an oral pathogen.

25

[0023] In another embodiment there is provided a method for conditioning an individual having an inflamed oral tissue to form an antibody response or to form a Th2 response to an oral pathogen upon immunisation with the pathogen, the method including the step of administering an anti-inflammatory agent to the individual, thereby minimising inflammation of, or removing inflammation from the oral tissue, prior to an immunisation of the individual with a pathogen for the formation of an antibody response or the formation of a Th2 response to an oral pathogen.

30

[0024] In a further embodiment there is provided a method of forming an antibody response or forming a Th2 response to an oral pathogen in an individual having inflamed oral tissue including the steps of:

35

- providing an individual having inflamed oral tissue;
- applying a treatment to the individual, thereby removing inflammation from the oral tissue; thereafter;
- immunising the individual with an oral pathogen, thereby forming an antibody response or forming a Th2 response to the pathogen in the individual.

40

[0025] In the above described embodiments, an immunisation is to be provided at a time when oral tissue is not inflamed, or when inflammation is subclinical or asymptomatic.

45

[0026] Typically an immune response formed upon immunisation is predominantly a Th2 response, although it may contain detectable components of a Th1 response.

50

[0027] Typically the relevant inflammation is chronic periodontitis, especially periodontitis associated with *P. gingivalis* infection.

[0028] Where the periodontitis is associated with *P. gingivalis* infection, typically an immunogen for immunisation is a *P. gingivalis* cell, fragment, metabolite, or recombinant product derived therefrom, such as the chimeric peptides (especially KAS1-KsA1, KAS2-KLA1) described herein.

[0029] Typically the anti-inflammatory agent or anti-microbial agent as defined herein includes or consists of one or more of an anti- inflammatory compound, an anti-biotic and an anti-biofilm agent, examples of which are described in more detail herein.

[0030] As used herein, except where the context requires otherwise, the term "comprise" and variations of the term, such as "comprising", "comprises" and "comprised", are not intended to exclude further additives, components, integers or steps.

55

Brief description of the drawings

[0031]

Figure 1 shows a Coomassie blue stain of the SDS-PAGE gel of recombinant Kgp Proteins. Lane 1= KAS2-KLA1, Lane 2=KLA1, Lane 3=KsA1, Lane 4= KAS1-KsA1. Molecular weight markers are indicated as kDa.

5 Figure 2 shows antibody recognition of KAS2 peptide and formalin killed *P. gingivalis* W50 cells. (A) KAS2 peptide was probed with antisera raised to formalin killed *P. gingivalis* W50 cells (FK-W50), recombinant proteins KAS1-KsA1, KAS2-KLA1, and synthetic KAS2-DT conjugate and PBS in an ELISA. (B) formalin killed *P. gingivalis* W50 cells were probed with antisera raised to formalin killed *P. gingivalis* W50 cells (FK-W50), recombinant proteins KAS1-KsA1, KAS2-KLA1, KLA1 and PBS in an ELISA. Antibody responses are expressed as the ELISA titre OD₄₁₅ obtained minus double the background level, with each titre representing the mean \pm standard deviation of three values.

10 Figure 3 shows *P. gingivalis*-induced horizontal bone loss of maxillae molars of mice immunised with the recombinant proteins and recombinant chimera proteins, formalin-killed *P. gingivalis* and adjuvant alone (PBS, IFA) or non-orally infected (non-challenged) mice. In this figure KAS2-KLA1 is shown as AS2-LA1, KLA1 is shown as LA1, KAS1-KsA1 is shown as AS1-sA1, KsA1 is shown as sA1. Measurement of bone loss is the mean of the area measured in millimeters squared (mm²) from the cementoenamel junction (CEJ) to the alveolar bone crest (ABC) of the buccal side of each maxillary molar of both the left and right maxillae. Data was normally distributed as measured by Levene's homogeneity of variance and are presented as mean (n = 12) in mm² and were analyzed using the One-Way analysis of variance and Dunnett's T3 test. *, indicates group has significantly (P<0.001) less bone loss than control (infected) group. †, indicates group has significantly (P<0.001) more bone loss than the AS2-LA1 group.

15 Figure 4 shows serum antibody subclass responses of immunised mice in the periodontitis model. Sera from mice; A (pre-oral inoculation) and B (post-oral inoculation) immunised with recombinant proteins KsA1, KLA1, KAS1-KsA1 and KAS2-KLA1 and formalin killed *P. gingivalis* strain W50 were used in the ELISA with the formalin killed *P. gingivalis* strain W50 as the adsorbed antigen. Antibody responses IgG (black bars), IgG1 (grey bars), IgG2a (white bars), IgG2b (horizontal striped bars), IgG3 (diagonal striped bars), are expressed as the ELISA titre (log 2) obtained minus the background level, with each titre representing the mean \pm standard deviation of three values.

20 Figure 5 shows a PEPSCAN analysis of peptide-specific antibody reactivity to overlapping peptides representing the KAS2 peptide sequence 433-468. (A) KAS2 overlapping peptides (offset 1, overlap 7) probed with KAS1-KsA1 (white bars), KAS2-KLA1 (black bars) antisera. (B) KAS2 overlapping peptides (offset 1, overlap 7) probed with KAS2-DT conjugate antisera. Each bar displays the antibody reactivity (optical density [OD] at 415 nm).

25 Figure 6. Chimera AS2-LA1 induces an antibody response in outbred mice that recognises *P. gingivalis* whole cells and the RgpA-Kgp complex. CD1 outbred mice were immunised with chimera AS2-LA1 (50mg/mouse) and the collected sera used in ELISA with AS2-LA1 (A), formalin killed *P. gingivalis* strain W50 (B) and RgpA-Kgp complex (C) as the absorbed antigens. In this figure KAS2-KLA1 is shown as AS2-LA1. The titre for each immunoglobulin isotype to each antigen was determined and the data expressed as the ELISA titre ('000) obtained minus double the background level, with each titre representing the mean \pm standard deviation of three values.

30 Figure 7. Protein model of the Kgp proteinase. KAS2 [Asn433-Lys468]. (A) KAS4 [Asp388-Val395] (B), KAS5 [Asn510-Asp516] (C) and KAS6 [Ile570-Tyr580] (D).

Detailed description of the embodiments

35 [0032] Reference will now be made in detail to certain embodiments of the invention. While the invention will be described in conjunction with the embodiments, it will be understood that the intention is not to limit the invention to those embodiments. On the contrary, the invention is intended to cover all alternatives, modifications, and equivalents, which may be included within the scope of the present invention as defined by the claims.

40 [0033] One skilled in the art will recognize many methods and materials similar or equivalent to those described herein, which could be used in the practice of the present invention. The present invention is in no way limited to the methods and materials described.

45 [0034] It will be understood that the invention disclosed and defined in this specification extends to all alternative combinations of two or more of the individual features mentioned or evident from the text or drawings. All of these different combinations constitute various alternative aspects of the invention.

50 [0035] As used herein, except where the context requires otherwise, the term "comprise" and variations of the term, such as "comprising", "comprises" and "comprised", are not intended to exclude further additives, components, integers or steps.

[0036] The inventors have found that an improved response to infection, especially, an improved antibody response can be obtained by removing substantially all inflammatory stimuli from oral tissue, prior to, providing adoptive transfer of immunity in the tissue, or at the time of invoking an immune response in the tissue. The finding is particularly useful insofar as it provides for the prevention and/or treatment of disease in oral tissue and by extension, for the prevention and/or treatment of disease that arises in other anatomical compartments as a consequence of infection of oral tissue by a microbial pathogen.

[0037] Thus in certain embodiments there is provided a method of reducing the incidence or severity of a disease or condition in a subject, said disease or condition being one associated with the presence of a microbial pathogen in an oral tissue of a subject, the method including:

- 10 - treating a subject, thereby providing conditions for removal of substantially all micro-organisms and fragments thereof from oral tissue of said subject; thereafter
- 15 - providing an antibody in said subject, said antibody for protecting said subject against a microbial pathogen, the presence of which in oral tissue is associated with a disease or condition;

thereby reducing the incidence or severity of a disease or condition in a subject.

[0038] In one embodiment, the antibody is provided in said subject by administering an immunogen to said subject, said immunogen for protecting said subject against a microbial pathogen.

[0039] In one embodiment, an anti -microbial composition for treating a subject, thereby providing conditions for removal of substantially all micro-organisms and fragments thereof from oral tissue of said subject and immunogen are provided in synergistically effective amounts.

[0040] Typically, the subject referred to herein is an animal, especially a mammal. In one embodiment the mammal is human. In certain embodiments the mammal may be a domesticated or farmed animal. Examples of domesticated or farmed animals include horses, goats, pigs and livestock such as cattle and sheep. In certain embodiments the animal is a companion animal such as a dog, cat, rabbit or guinea pig.

1. Definitions

[0041] The phrase '*removal of substantially all micro-organisms and fragments thereof from oral tissue*' generally refers to providing conditions in which micro-organisms or fragments or metabolites thereof are depleted from the tissue in a quantity sufficient to deplete inflammatory stimuli from the tissue, thereby substantially reducing or minimising one or more symptoms of inflammation in said tissue. This is particularly the case where the relevant subject has chronic inflammation of tissue stemming from chronic infection. Generally the focus is on minimising inflammation of tissue.

35 Accordingly it will be understood that some micro-organisms, fragments and metabolites thereof may remain after the relevant treatment step.

[0042] In other embodiments where the individual does not have inflamed tissue, the phrase '*removal of substantially all micro-organisms and fragments thereof from oral tissue*' refers to providing conditions which substantially prevent the accumulation of micro-organisms, fragments and metabolites thereof to a quantity that would cause inflammation.

40 This is particularly the case where the subject for treatment is normal or otherwise asymptomatic for a disease or condition. The same applies where surgical or dental intervention has removed micro-organisms and the objective is to ensure that conditions are provided which substantially prevent the accumulation of micro-organisms in amounts that would cause inflammation. In these embodiments as the focus is to prevent accumulation of amounts of micro-organisms that might cause inflammation, it will be understood that some micro-organisms, fragments or metabolites therefrom might accumulate after the relevant treatment step.

[0043] The phrase '*reducing the incidence of disease or a condition*' generally refers to minimising the likelihood of a subject - be it a normal or asymptomatic individual, or a subjecting having an early form of a disease or condition - from progressing to a complete active form of the disease or condition. In certain embodiments the phrase refers to preventing a given subject from progressing to a complete active form of a disease or condition.

50 [0044] The phrase '*reducing the severity of disease or a condition*' generally refers to minimising one or more symptoms or manifestations or a disease or condition. In certain embodiments the phrase refers to treating an individual having a disease or condition.

[0045] An '*immunogen*' generally refers to a molecule that is capable of invoking or eliciting an immune response to antigen, preferably a humoral or antibody response, for example, a Th2 response. Examples of immunogens include peptides and related proteins.

[0046] The phrase '*synergistically effective amounts*' generally refers to amounts of an anti-microbial composition and immunogen that provide a treatment or preventive or protective effect that is greater than the effect that can be achieved by the composition or immunogen when each is used alone. In one embodiment, synergistically effective amounts of

the anti-microbial composition and immunogen underpin a novel working interrelationship between said composition and immunogen whereby the protective or therapeutic effective of said immunogen is much greater than can be achieved when the immunogen alone is applied to inflamed tissue. Typically a synergistically effective amounts of microbial composition and immunogen provide for a higher titre and/or higher affinity antibody response to microbial pathogens than can be realised when the immunogen is used alone.

[0047] The phrase '*therapeutically effective amount*' generally refers to an amount of a compound of the present invention that (i) treats the particular disease, condition, or disorder, (ii) attenuates, ameliorates, or eliminates one or more symptoms of the particular disease, condition, or disorder, or (iii) delays the onset of one or more symptoms of the particular disease, condition, or disorder described herein.

[0048] The words '*treat*' or '*treatment*' refer to therapeutic treatment wherein the object is to slow down (lessen) an undesired physiological change or disorder. For purposes of this invention, beneficial or desired clinical results include, but are not limited to, alleviation of symptoms, diminishment of extent of disease, stabilized (i.e., not worsening) state of disease, delay or slowing of disease progression, amelioration or palliation of the disease state, and remission (whether partial or total), whether detectable or undetectable. '*Treatment*' can also mean prolonging survival as compared to expected survival if not receiving treatment. Treatment may not necessarily result in the complete clearance of an infection but may reduce or minimise complications and side effects of infection and the progression of infection. The success or otherwise of treatment may be monitored by physical examination of the individual, cytopathological, serological DNA, or mRNA detection techniques.

[0049] The words '*prevent*' and '*prevention*' generally refer to prophylactic or preventative measures for protecting or precluding an individual not having a given infection related complication from progressing to that complication. Individuals in which prevention is required include those who have an infection.

[0050] The phrase '*pharmaceutically acceptable*' indicates that the substance or composition must be compatible chemically and/or toxicologically, with the other ingredients comprising a formulation, and/or the mammal being treated therewith.

[0051] The term '*package insert*' is used to refer to instructions customarily included in commercial packages of therapeutic products, that contain information about the indications, usage, dosage, administration, contraindications and/or warnings concerning the use of such therapeutic products.

[0052] A Th1 response generally refers to a response involving cytokines such as interferon gamma and TNF.

[0053] A Th2 response generally refers to a response involving cytokines such as interleukin-4, interleukin-5, interleukin-6, interleukin-10, interleukin-13 etc.

2. Methods of treatment

[0054] The methods of the invention are applicable to a wide range of subjects including those who are asymptomatic for said disease or condition. These individuals may have no symptoms of disease in oral or other tissue. Specifically, these individuals may not present with inflammation of mucosal or other oral tissue. In one embodiment, these individuals may have, in the context of a randomly selected cohort of subjects, a normal relative abundance of microbial pathogens in the oral cavity.

[0055] In other embodiments, the subject manifests sub clinical or clinical symptoms of a disease or condition of oral tissue or other anatomical compartment.

[0056] The symptoms of said disease or condition may be manifested in oral tissue of said subject. The hallmarks of acute inflammation may be present including an increased movement of plasma and leukocytes from the blood into the injured tissues. Clinical signs of acute infection of the gingiva may also be present including rubor (redness), calor (increased heat), tumor (swelling), dolor (pain), and functio laesa (loss of function). Chronic inflammation may be characterised by leukocyte cell (monocytes, macrophages, lymphocytes, plasma cells) infiltration. Tissue and bone loss may be observed. Examples of inflammation include cheilitis, gingivitis, glossitis and stomatitis.

[0057] In one embodiment, the subject may have inflamed mucosal or other oral tissue. For example, the subject may present with acute inflammation of oral tissue. Examples of these subjects include those who have been subjected to dental or oral surgery including debridement, scaling and root planing.

[0058] In further embodiments, the subject may present with chronic inflammation of oral tissue. In one example the subject may present with gingivitis, resorption of alveolar bone and eventual tooth loss stemming from progressive loss of collagen attachment of the tooth to alveolar bone. Other lesions of mucosal or related oral tissue are possible.

[0059] In one embodiment, the disease or condition is a disease or condition of oral tissue. Chronic periodontitis is a particularly important example. Others include diseases and conditions characterised by damage to oral mucosa as in Scarlet Fever, Aphthous Stomatitis, Pyogenic Granuloma, Diphtheria, Tuberculosis, Syphilis, Actinomycosis, Candidiasis, Herpetic Stomatitis.

[0060] It will be understood that the disease or condition may be a disease or condition of a tissue other than the oral tissue such as an organ or system, for example, the cardiovascular system. In one embodiment, the disease or condition

is cardiovascular disease.

[0061] The invention is applicable to a range of microbial pathogen, especially those that infect the tissues of the oral cavity. In one embodiment, the pathogen is selected from the group consisting of bacteria, virus and fungi.

[0062] Particularly preferred bacteria are selected from the group consisting of: *Porphyromonas gingivalis*, *Treponema denticola*, *Tannerella forsythia*.

[0063] Other examples of pathogens are shown in Table A below.

Table A

Organism	Exemplary family / genus	Exemplary species
Bacteria	Streptococci	salivarius
		mutans
		sanguis
		pneumoniae
		pyogenes
		mitis
Neisseria		meningitidis
Lactobacilli		plantarum
Proteus		
Bacteroides		
staphylococci		epidermidis
		aureus
Pseudomonas		aeruginosa
Clostridium		perfringens
		tetani
Corynebacteria		
Enterococci		faecalis
Veillonella		
Treponema		denticola
Porphyromonas		gingivalis
Tanneralla		forsythia
Aggregatibacter		actinomycetemcomitans
Actinomycetes		
Spirochetes		
Mycoplasmas		
Fungi	Candida	albicans
		khmerensis
		metapsilosis
		parapsilosis
		tropicalis
Cladosporium		cladosporioides
		sphaerospermum

(continued)

Organism	Exemplary family / genus	Exemplary species
5		herbarum
		tenuissimum
	Aureobasidium	pullulans
10	Saccharomycetales	
	Fusarium	culmorum
		oxysporum
		poae
15	Aspergillus	amstelodami
		caesiellus
		flavus
		oryzae
20		penicillioides
		ruber
	Xylariales	
25	Glomus	fulvum
		mosseae
	Leptosphaeriaceae	
30	Ascomycete	
	Basidiomycete	
	Ophiostoma	floccosum
		pulvinisporum
35	Ectomycorrhiza	
	Penicillium	brevicompactum
		glabrum
		spinulosum
40	Endophytic fungi	
	Glomeromycete.	
	Alternaria	tenuissima
45		triticina
	Cryptococcus	cellulolyticus
		diffluens
50	Phoma	foveata
		plurivora
	Saccharomyces	bayanus
		cerevisiae
55		ellipsoideus
	Schizosaccharomyces	japonicus
		pombe

(continued)

Organism	Exemplary family / genus	Exemplary species
5	Zygosaccharomyces	pseudorouxii
		rouxii
10	Protozoa	Entamoeba
	Trichomonas	Tenax
15	Leishmania	brasiliensis
	Viruses	Herpesvirus
	Papillomavirus	Human papillomavirus (HPV)-1, HPV-3, HPV-27, HPV-29, and HPV-57
	Enteroviruses	Coxsackie virus A16 and enterovirus-71

[0064] In one embodiment, a composition forming an anti-microbial agent is administered to the subject, thereby removing substantially all micro-organisms or fragments thereof from oral tissue of said subject. Examples are discussed further below.

20 **[0065]** In one embodiment, providing in the subject an antibody, for example by administering an immunogen to the subject, occurs one to two weeks after treatment of an infected site by mechanical debridement and/or the application of one or more of the anti-microbial agents as defined herein.

[0066] The level of or presence of micro-organisms, fragments or metabolites thereof can be determined by detecting or measuring a protein or fragment thereof from a microorganism.

25 **[0067]** In another embodiment, the level of or presence of micro-organisms, fragments or metabolites thereof in an oral tissue can be determined by taking a sample from the individual and determining the presence of a given protein, or level of expression of a given protein in the sample. The presence of or level of a protein can be detected by any number of assays. Examples include immunoassays, chromatography and mass spectrometry. One example of an immunoassay that is particular preferred is FACS.

30 **[0068]** Various assays that can be used to detect the presence of a target protein in a sample include:

[0069] Enzyme linked immunosorbent assay (ELISA): This method involves fixation of a sample, for example saliva or oral tissue, containing a target protein, peptide or fragment thereof to a surface such as a well of a microtiter plate. A target protein specific antibody coupled to an enzyme is applied and allowed to bind to the target protein, peptide or fragment thereof. Presence of the antibody is then detected and quantitated by a colorimetric reaction employing the 35 enzyme coupled to the antibody. Enzymes commonly employed in this method include horseradish peroxidase and alkaline phosphatase. If well calibrated and within the linear range of response, the amount of target protein, peptide or fragment thereof present in the sample is proportional to the amount of color produced. A target protein, peptide or fragment thereof standard is generally employed to improve quantitative accuracy.

[0070] Western blot: This method involves separation of a target protein, peptide or fragment thereof from other protein 40 by means of an acrylamide gel followed by transfer of the protein, peptide or fragment thereof to a membrane (e.g., nylon or PVDF). Presence of the target protein, peptide or fragment thereof is then detected by antibodies specific to the target protein, peptide or fragment thereof, which are in turn detected by antibody binding reagents. Antibody binding reagents may be, for example, protein A, or other antibodies. Antibody binding reagents may be radiolabelled or enzyme linked as described hereinabove. Detection may be by autoradiography, colorimetric reaction or chemiluminescence. 45 This method allows both quantitation of an amount of target protein, peptide or fragment thereof and determination of its identity by a relative position on the membrane which is indicative of a migration distance in the acrylamide gel during electrophoresis.

[0071] Radio-immunoassay (RIA): In one version, this method involves precipitation of the desired target protein, peptide or fragment thereof with a specific antibody and radiolabelled antibody binding protein (e.g., protein A labelled 50 with I^{125}) immobilized on a precipitable carrier such as agarose beads. The number of counts in the precipitated pellet is proportional to the amount of target protein, peptide or fragment thereof.

[0072] In an alternate version of the RIA, a labelled target protein, peptide or fragment thereof and an unlabelled antibody binding protein are employed. A sample containing an unknown amount of a target protein, peptide or fragment thereof is added in varying amounts. The decrease in precipitated counts from the labelled target protein, peptide or fragment thereof is proportional to the amount of target protein, peptide or fragment thereof in the added sample.

[0073] Fluorescence activated cell sorting (FACS): This method involves detection of a target protein, peptide or fragment thereof *in situ* in cells by target protein, peptide or fragment thereof specific antibodies. The target protein, peptide or fragment thereof specific antibodies are linked to fluorophores. Detection is by means of a cell sorting machine

which reads the wavelength of light emitted from each cell as it passes through a light beam. This method may employ two or more antibodies simultaneously.

[0074] Immunohistochemical analysis: This method involves detection of a target protein, peptide or fragment thereof *in situ* in fixed cells by target protein, peptide or fragment thereof specific antibodies. The target protein, peptide or fragment thereof specific antibodies may be enzyme linked or linked to fluorophores. Detection is by microscopy and subjective or automatic evaluation. If enzyme linked antibodies are employed, a colorimetric reaction may be required. It will be appreciated that immunohistochemistry is often followed by counterstaining of the cell nuclei using for example Hematoxyline or Giemsa stain.

[0075] *In situ* activity assay: According to this method, a chromogenic substrate is applied on the cells containing an active enzyme and the enzyme catalyzes a reaction in which the substrate is decomposed to produce a chromogenic product visible by a light or a fluorescent microscope.

[0076] *In vitro* activity assays: In these methods the activity of a particular enzyme is measured in a protein mixture extracted from the cells. The activity can be measured in a spectrophotometer well using colorimetric methods or can be measured in a non-denaturing acrylamide gel (i.e., activity gel). Following electrophoresis the gel is soaked in a solution containing a substrate and colorimetric reagents. The resulting stained band corresponds to the enzymatic activity of the protein of interest. If well calibrated and within the linear range of response, the amount of enzyme present in the sample is proportional to the amount of colour produced. An enzyme standard is generally employed to improve quantitative accuracy.

[0077] In addition, the amount of bacterial DNA may be determined by quantitative PCR as an indicator of the presence or level of micro-organisms in an oral tissue.

[0078] The presence of or level of a protein or DNA from *Porphyromonas gingivalis*, *Treponema denticola*, *Tannerella forsythia* may be determined and indicative that substantially all micro-organisms or fragments thereof have been removed from an oral tissue of a subject.

[0079] The anti -microbial agent and/or immunogen may be administered systemically, or directly to oral tissue, especially directly to oral mucosa.

[0080] In one embodiment, the treatment of the subject removes substantially all micro-organisms or fragments thereof from oral tissue of said subject, thereby minimising inflammation in the oral tissue of the subject. In another embodiment, the treatment of the subject removes substantially all micro -organisms or fragments thereof from oral tissue of said subject, thereby minimising immune responses in the oral tissue of the subject.

[0081] The immunogen may be administered to said subject after treatment of said subject to remove substantially all micro-organisms and fragments thereof from oral tissue of said subject.

[0082] Generally, in accordance with the invention, the relevant oral tissue is not inflamed, or inflammation, if present at all is asymptomatic or sub clinical at the time of immunisation.

[0083] After immunisation the subject exhibits a predominance of a Th2 response which is largely a humoral response and the individual has detectable levels of protective antibodies.

3. Compositions

[0084] In certain embodiments there is provided a composition including:

- anti -microbial agent for removing substantially all micro-organisms and fragments thereof from oral tissue of said subject;
- an immunogen for immunising said subject against a microbial pathogen, the presence of which in oral tissue is associated with a disease or condition;

said composition capable of being used in a method described above.

3. (a) Anti-microbial agents

[0085] The anti-microbial agent may be any agent that, the effect of which on administration is to deplete inflammatory stimuli. These agents used alone or in combination have utility in the short term inhibition of inflammation, periodontal pathogen re-emergence, for example biofilm formation, and/or periodontal bone resorption. These agents alone or combination can be applied, for example, topically in a slow-release, periodontal gel formulation at a periodontal site, that may have undergone surgical intervention, to prepare the patient's immune system for vaccination against the periodontal pathogens.

[0086] Without being bound by any theory or mode of action, it is believed that application of an anti-microbial agent as defined herein, for example in a periodontal gel formulation, at the time of mechanical debridement and cleaning of

the infected periodontal site, helps prepare the immune system to allow the development of a Th2-biased response. This Th2-biased response results in the production of protective antibodies and the prevention of the re-emergence of the periodontal pathogens and prevention of disease progression.

[0087] In this context, the following may be anti-microbial agents: an antibiotic, an immunosuppressant and an anti-septic. In certain embodiments the agent may be an anti-inflammatory agent. Anti-inflammatory agents include Nonsteroidal Anti-inflammatory Drugs (NSAIDs). Examples of NSAIDs include compounds that inhibit a cyclooxygenase. Specific examples of NSAIDs include aspirin, ibuprofen and naproxen. Other examples of anti-inflammatory agents include antagonists of PAR-2 which include, but are not limited to, antibodies and antibody fragments that bind PAR-2, other polypeptides that bind to PAR-2 and inhibit its activity, other compounds that inhibit PAR-2 activity or expression including small organic compounds and inhibitory nucleic acids that interact with PAR-2 encoding nucleic acids. Exemplary antagonists that may block or displace an endogenous ligand from binding PAR-2 and/or signalling via PAR-2 include those described in WO 2004/002418 and WO 2006/023844 (e.g. peptides having the amino acid sequence LIGK or LIGKV). Antagonists that bind to PAR-2 and prevent proteolytic cleavage of the region of PAR-2 that acts as a tethered ligand are exemplified in WO 2007/092640.

[0088] Antagonists that inhibit, reduce or block expression of PAR-2 include inhibitory nucleic acids, including, but not limited to, ribozymes, triplex-forming oligonucleotides (TFOs), external guide sequences (EGSs) that promote cleavage by RNase P, peptide nucleic acids, antisense DNA, siRNA, and microRNA specific for nucleic acids encoding PAR-2.

[0089] PAR-2 may be inhibited indirectly by "indirect antagonists" that antagonise the activity of proteases which under normal circumstances cleave PAR-2 resulting in its activation. Proteases which can cleave PAR-2 include gingipains, trypsin, tryptases and neutrophil proteinase-3. Examples of indirect antagonists that are useful in a method of the invention or that can be used in a composition of the invention include trypsin inhibitors disclosed in WO 93/14779 and tryptase inhibitors disclosed in WO 02/47762.

[0090] In one particularly preferred embodiment, the anti-microbial agent is an antibiotic. Examples include antibiotics selected from the group consisting of macrolides, tetracyclines, penicillins, fumarate reductase inhibitors and anti-microbial peptides, as shown in TABLE B below.

Table B

Antiinfective	Drug	Trade name in Australia (Sponsor)
30	Macrolides	Roxithromycin Biaxsig (Sanofi-Aventis) Roxar (Sigma) Roxide (Sandoz) Roximycin (Alphapharm) Roxithromycin-RL (Real-RL) Rulide and Rulie D (Sanofi-Aventis)
35		
40	Metronidazole	Flagyl (Sanofi-Aventis) Flagyl S Suspension (Sanofi-Aventis) Metrogyl (Alphapharm) Metronidazole Gel (Orion) Metronide (Sanofi-Aventis) Rozex (cream and gel forms) (Galderma)
45	Erthromycin	DBL Erythromycin (Hospira) EES (Link) E-Mycin (Alphapharm) Eryc Capsules (Mayne Pharma International)
50	Clindamycin	Cleocin (Pfizer) Dalacin C Capsules (Pfizer) Duac Once Daily Gel (Stiefel) Zindaclin (Genepharm)
55	Spiramycin	Rovamycine

(continued)

Antiinfective	Drug	Trade name in Australia (Sponsor)	
5	Tetracyclines	Minocycline Doxycycline	Akamin (Alphapharm) Doryx (Mayne Pharma International) Doxsig (Sigma) Doxy Tablets (Genepharm) Doxyhexal tablets (Sandoz) Doxylin (Alphapharm) Frakas (Sigma) GenRX Doxycycline Capsules (Apotex) GenRX Doxycycline Tablets (Apotex) Vibramycin (Pfizer)
10	Antiseptic	Chlorhexidine hydrochloride	Savlon Antiseptic (Reckitt Benckiser)
15		Chlorhexidine gluconate	Chlorhexidine and Cetrimide Aqueous Irrigations (Pfizer) Chlorhexidine Irrigation Solution (Pfizer) Difflam-C Anti-inflammatory Antiseptic Solution (iNova) Lignocaine 2% Gel with Chlorhexidine 0.05% (Pfizer) Microshield 2 (J & J Medical) Microshield 4 (J & J Medical) Microshield 5 (J & J Medical)
20			Microshield Tincture (J & J Medical) Plaquadine Mouthrinse (Oral-B)
25	Penicillins	Penicillin G	BenPen (CSL)
30		Penicillin V	Abbocillin V, Abbocillin VK (Sigma) Cilicaine VK, Cilicaine V (Fawns & McAllen) Cilopen VK (Genepharm) LPV (Aspen) Penhexal VK (Hexal)
35		Ampicillin	Administered as an intramuscular or intravenous injection Amoxycillin Sandoz Capsules and Suspension (Sandoz) Amoxycillin Sandoz Tablets (Sandoz) Alphamox (Alphapharm) Amohexal Capsules (Hexal) Amohexal Syrup (Hexal) Amoxil Duo (GlaxoSmithKline) Amoxil Oral (GlaxoSmithKline) Augmentin (GlaxoSmithKline)
40		Amoxycillin	Augmentin Duo, Augmentin Duo Forte Tablets (GlaxoSmithKline) Amoxycillin-DP (Genepharm) APO-Amoxicillin Capsules (Apotex) Bgramin (Genepharm)
45			Chemmart Amoxycillin Capsules (Apotex) Cilamox (Sigma) Clamoxyll 125/31.25 (Alphapharm)
50			
55			

(continued)

Antiinfective	Drug	Trade name in Australia (Sponsor)
5		Clamoxyl Duo 500/125, Clamoxyl Duo Forte 875/125 (Alphapharm) Clavulin 125 Syrup (Menley & James) Clavulin Duo 500/125 and Clavulin Duo Forte Tablets (Menley & James) Curam (Sandoz)
10		GA-Amclav 500/125, GA-Amclav Forte 875/125 Tablets (Genepharm) GenRx Amoxycillin and Clavulanic Acid 875 mg/125 mg (Apotex) Klacid Hp 7 (Abbott) Maxamox (Sandoz)
15		Maxamox Powder for Oral Suspension (Sandoz) Moxacin Oral Preparations (Sandoz) Nexium Hp7 (AstraZeneca) Ranmoxy (Ranbaxy)
20		Terry White Chemists Amoxycillin Capsules (Apotex) Terry White Chemists Amoxycillin Suspension (Apotex)
25	Cephalosporins Cephalexin	Cefalexin Sandoz (Sandoz) Ialex (Lennon) Ibilex (Alphapharm) Keflex (Aspen) Rancef (Ranbaxy) Sporahexal (Sandoz) Terry White Chemists Cephalexin (Apotex)

30 [0091] In one embodiment, the anti-microbial agent is selected from one or more of inhibiting agents of fumarate reductase. Suitable inhibiting agents include natural products, that include but are not limited to decursin, verticipyrone, paecilaminol, 5-alkenyl-3,3(2H)-furanones from *Streptomyces spp.*, nauredin, mesaconic acid, rotenone, and natural, semi-synthetic and synthetic analogues thereof. In another aspect, inhibiting agents may be synthetic compounds that include but are not limited to; 2-substituted 4,6-dinitrophenols; mercaptopyridine N-oxide; L-092,201 (Merck Sharpe and Dohme); nitroimidazoles such as fexindazole megazol benzimidazole, MK-436, L-634,549, misonidazole; or benzimidazoles such as albendazole, cambendazole mebendazole, oxfendazole, parebendazole and thiabendazole; or oxantel or morantel. Preferred inhibiting agents are oxantel, morantel or thiabendazole. A particularly preferred inhibiting agent is oxantel.

35 [0092] It will be recognised by the skilled addressee that the selection of the inhibiting agent will be dependent upon number of clinical factors which determine whether the inhibiting agent is appropriate for use in a clinical setting.

40 [0093] The antibiotic may be directly cytotoxic to the microbial pathogen. In other embodiments, the antibiotic is indirectly cytotoxic, for example, the antibiotic may be an inhibitor of microbial biofilm production or some other metabolism.

45 [0094] In one embodiment, the antibiotic is an anti-microbial peptide. Examples are shown in Table C below.

Table C

Anti-microbial agent	Exemplary reference
50 Peptide including α_{S1} -casein(11-23) (SEQ ID NO: 86)	-
Peptide including β -casein(193-209) (SEQ ID NO: 87)	-
55 Peptide including κ -casein(109-137) (SEQ ID NO: 88)	-
Peptide including β -casein(193-205) (SEQ ID NO: 89)	-

(continued)

Anti-microbial agent	Exemplary reference
5 Peptide including κ -casein(117-137) (SEQ ID NO: 90)	-
10 Non-glycosylated peptides, for example, derived from κ -casein	PCT/AU98/00972 (see, for example, Table 1)
15 Composition, for example, including a peptide derived from κ -casein and a divalent cation	PCT/AU2004/001764
Peptides, for example, derived from κ -casein	Glycosylated versions of peptides in PCT/AU98/00972, including those peptides in a composition with a divalent cation
Agent to inhibit a <i>P. gingivalis</i> polypeptide	PCT/AU2008/001017 (see, for example, an inhibitor of fumarate reductase e.g. oxantel, morantel or thiabendazole)

[0095] In one particularly preferred embodiment, the anti-microbial agent is an inhibitor of microbial biofilm production. Other preferred agents are fumarate reductase inhibitors.

[0096] In certain embodiments, the anti-microbial agent may be an antibody. The antibody may be a polyclonal or monoclonal antibody. Exemplary monoclonal antibodies that may be used are directed to molecules of the periodontal pathogens (e.g. proteases and adhesins) or host to dampen inflammation [e.g. antibodies, singly or in combination, against tumor necrosis factor (TNF α), interleukin-1 (IL-1), urokinase-type plasminogen activator (u-PA), granulocyte macrophage colony stimulating factor (GM-CSF), macrophage colony stimulating factor (M-CSF) and RANK ligand (RANKL)]. Preferably the antibody is a mixture of monoclonal antibodies directed against different pathogen antigens and host inflammatory mediators. The preferred monoclonal antibodies to be used targeting *Porphyromonas gingivalis* are those directed to the active site of the Kgp and RgpA proteinases and those directed to binding motifs in the A1 adhesin of the Kgp and RgpA proteinases.

[0097] In one embodiment, the anti-microbial is an antibody mimetic. The antibody mimetic may or may not have the tertiary structure of an immunoglobulin domain (e.g. Dimitrov, 2009, MAbs 1 26-28). An antibody mimetic may have specificity for binding to a specific molecule. One example of an antibody mimetic is the family of molecules related to human lipocalins, known as anticalins (e.g. Skerra, 2007 Current Opinions in Biotechnology, 18 295-304). Preferably, an anticalin is directed to, or binds specifically to, a protein from *Porphyromonas gingivalis*. In a preferred embodiment, the anticalin is directed to, or binds specifically to, an active site of a Lys-X-proteinase or Arg-X-proteinase, such as Kgp and RgpA proteinases. Anticalins can be used in lieu of monoclonal antibodies, but are about eight times smaller with a size of about 180 amino acids and a mass of about 20 kDa. Anticalins have better tissue penetration than antibodies and are stable at temperatures up to 70 °C. Unlike antibodies, they can be produced in bacterial cells like *E. coli* in large amounts.

[0098] In certain embodiments the anti-microbial agent may also be an anti-biofilm agent that can inhibit, reduce or prevent bacterial biofilm formation or development. An anti-biofilm agent may have biofilm disrupting activity and may cause biofilm dispersion. "Biofilm disrupting activity" is used herein to describe the property of a composition or agent that causes the release of bacteria from the biofilm. The composition or agent may also but not necessarily, reduce the viability of a bacterium in a biofilm. "Release" of bacteria from the biofilm includes increasing the number of bacteria from a biofilm to adopt a planktonic state thereby increasing the susceptibility of a bacterium from a biofilm to bactericidal agents. A bactericidal agent is used herein to describe the property of a composition, agent, compound, peptidomimetic or peptide that directly reduces the viability of a bacterium.

[0099] Accordingly, without being bound by any theory, or mode of action, it is believed that compositions or agents that exhibit biofilm disrupting activity do not necessarily reduce the viability of bacteria in a biofilm but instead cause or induce the bacterial cells to be released from the biofilm. In certain embodiments these compositions or agents may cause or induce more of the bacteria in a biofilm to adopt a planktonic state. In other embodiments, the compositions or agents may inhibit or reduce the formation of a biofilm. In certain embodiments, the compositions or agents may inhibit or reduce biofilm growth. In other embodiments, the anti-microbial agents of the invention may inhibit or reduce any characteristic that a biofilm exhibits which initiates or promotes a disease or condition in a subject. In certain embodiments, the peptides or compositions may inhibit or reduce any characteristic that a biofilm exhibits which initiates or promotes a disease or condition in a subject, without killing the bacteria in the biofilm.

[0100] In certain embodiments, an anti-microbial composition or agent refers to the ability to prevent, inhibit or reduce a measurable parameter of a biofilm. Non-limiting examples of measurable parameters of a biofilm may be total biomass, average thickness, surface to biovolume ratio, roughness coefficient or bacterial composition and their viability of the

biofilm.

3. (b) Immunogens

5 [0101] The immunogen is selected to invoke an immune response, preferably a protective antibody response to the microbial pathogen of concern.

[0102] In one embodiment, the immunogen is provided in the form of a peptide, for example a recombinant peptide.

10 [0103] In one embodiment particularly related to *P. gingivalis* infection and associated disease and conditions, the recombinant peptide may be a chimeric or fusion protein for inducing an immune response to *P. gingivalis*, the protein including a first peptide joined directly or through a linker to a second peptide, wherein:

(A) said first peptide includes:

15 (i) part of, or all of a sequence that is the same as, or homologous to the sequence shown in SEQ ID No:1; or
 (ii) part of, or all of a sequence that is the same as, or homologous to the sequence shown in SEQ ID No:2; and

(B) said second peptide includes:

20 (i) part of, or all of a sequence that is the same as, or homologous to the sequence of an adhesin domain of the Lys-X-proteinase of *P. gingivalis*; or

(ii) part of, or all of a sequence that is the same as, or homologous to the sequence of an adhesin domain of the Arg-X-proteinase of *P. gingivalis*; or

25 (iii) part of, or all of a sequence that is the same as, or homologous to the sequence of a HagA adhesin domain of *P. gingivalis*.

[0104] As used herein, the term "peptide" is used to refer to an amino acid sequence of up to about 40 amino acid residues, preferably from 5 to 40 amino acid residues.

30 [0105] In one embodiment, a polypeptide is used in place of or in other words instead of the "second peptide". The term "polypeptide" is used to refer to an amino acid sequence of at least about 40 amino acid residues.

[0106] Thus, in another aspect there is provided a chimeric or fusion protein for inducing an immune response to *P. gingivalis*, the protein including a peptide joined directly or through a linker to a polypeptide, wherein:

35 (A) said peptide includes:

(i) part of, or all of a sequence that is the same as, or homologous to the sequence shown in SEQ ID No:1; or

40 (ii) part of, or all of a sequence that is the same as, or homologous to the sequence shown in SEQ ID No:2 ; and

(B) said polypeptide includes:

45 (i) part of, or all of a sequence that is the same as, or homologous to the sequence of an adhesin domain of the Lys-X-proteinase of *P. gingivalis*; or

(ii) part of, or all of a sequence that is the same as, or homologous to the sequence of an adhesin domain of the Arg-X-proteinase of *P. gingivalis*; or

50 (iii) part of, or all of a sequence that is the same as, or homologous to the sequence of a HagA adhesin domain of *P. gingivalis*.

[0107] In another aspect, the invention provides a peptide for inducing an immune response to *P. gingivalis* selected from the group consisting of:

55 (i) a sequence that is the same as or homologous to the sequence shown in one of SEQ ID No: 64 to 66; and

(ii) a sequence that is the same as or homologous to the sequence shown in SEQ ID No: 67 or 68.

[0108] In an aspect of the invention, where the peptide has a sequence of SEQ ID No: 64 to 68, the peptide may be provided in the form of a chimeric or fusion protein in which the peptide is joined directly or through a linker to a second peptide. In an embodiment, the second peptide of the chimeric or fusion protein includes:

- 5 (i) part of, or all of a sequence that is the same as, or homologous to the sequence of an adhesin domain of the Lys-X-proteinase of *P. gingivalis*; or
- 10 (ii) part of, or all of a sequence that is the same as, or homologous to the sequence of an adhesin domain of the Arg-X-proteinase of *P. gingivalis*; or
- 15 (iii) part of, or all of a sequence that is the same as, or homologous to the sequence of a HagA adhesin domain of *P. gingivalis*.

[0109] In the above described embodiment a polypeptide is used in place of, or in other words instead of the second peptide. Thus, in another aspect there is provided a chimeric or fusion protein for inducing an immune response to *P. gingivalis*, the protein including a peptide joined directly or through a linker to a polypeptide, wherein:

(A) said peptide includes:

- 20 (i) a sequence that is the same as or homologous to the sequence shown in one of SEQ ID No: 64 to 66; or
- (ii) a sequence that is the same as or homologous to the sequence shown in SEQ ID No: 67 or 68.; and

(B) said polypeptide includes:

- 25 (i) part of, or all of a sequence that is the same as, or homologous to the sequence of an adhesin domain of the Lys-X-proteinase of *P. gingivalis*; or
- 30 (ii) part of, or all of a sequence that is the same as, or homologous to the sequence of an adhesin domain of the Arg-X-proteinase of *P. gingivalis*; or
- (iii) part of, or all of a sequence that is the same as, or homologous to the sequence of a HagA adhesin domain of *P. gingivalis*.

[0110] As used herein, a reference to a "homologue" of a peptide or polypeptide is a reference to a peptide or polypeptide having an amino acid sequence that shares homology or that is homologous to, or that has identity with the amino acid sequence of the first-mentioned peptide or polypeptide, preferably at least 90% sequence identity, more preferably at least 95% and even more preferably at least 98% sequence identity when the comparison is performed by a BLAST algorithm wherein the parameters of the algorithm are selected to give the largest match between the respective sequences over the entire length of the respective reference sequences. Sequence identity refers to exact matches between the amino acids of two sequences which are being compared. Such a homologue may derive from a naturally occurring variant or isolate of the Lys-X-proteinase or Arg-X-proteinase of *P. gingivalis*. Alternatively, it may be a "conservative-substitution" variant of a peptide or polypeptide from the Lys-X-proteinase or Arg-X-proteinase of *P. gingivalis* in which one or more amino acid residues have been changed without altering the overall conformation and function of the peptide or polypeptide; including, but by no means limited to, replacement of an amino acid with one having similar properties. Amino acids with similar properties are well known in the art. For example, polar/hydrophilic amino acids which may be interchangeable include asparagine, glutamine, serine, cysteine, threonine, lysine, arginine, histidine, aspartic acid and glutamic acid; nonpolar/hydrophobic amino acids which may be interchangeable include glycine, alanine, valine, leucine, isoleucine, proline, tyrosine, phenylalanine, tryptophan and methionine; acidic amino acids which may be interchangeable include aspartic acid and glutamic acid and basic amino acids which may be interchangeable include histidine, lysine and arginine. Preferably such conservative-substitution variants have less than 20, more preferably less than 15, more preferably less than 10, and most preferably less than 5 amino acid changes.

[0111] A region of a *P. gingivalis* trypsin-like enzyme - especially a Lys-X-proteinase (Kgp) or Arg-X-proteinase (RgpA) - that defines a site in an enzyme for cleavage of a peptide bond can be determined following the teaching of the specification herein, particularly in relation to Figure 7 and Example 9, which exemplify the process for predicting three-dimensional conformation of the catalytic site as it appears on *P. gingivalis* for Lys-X-proteinase. Example 10 provides methodology for modelling of the Arg-X-proteinase three-dimensional conformation.

[0112] In certain embodiments, the chimeric or fusion protein, or first or second peptide components thereof may be

formed from a peptidomimetic. A peptidomimetic is a molecule that mimics one or more characteristics of a given peptide, for example conformation, and that consists of amino acid residues, some of which may not be naturally occurring.

[0113] Having identified the immunogenic regions of the catalytic site, the inventors have determined the sequence of various peptide immunogens against which a humoral response can be raised. In particular, 'six' regions that flank or otherwise define the catalytic site have been defined as follows: KAS1/RAS1, KAS2/RAS2, KAS3/RAS3, KAS4/RAS4, KAS5/RAS5 and KAS6 (see Table 1). With this information, the inventors have been able to interrogate protein sequence databases to determine peptides that share homology with amino acid sequences that form regions that flank a catalytic site and hence that represent immunogenic epitopes found on *P. gingivalis*. The sequence of these peptides are identified by the following structural formula:

10

Table 1. Sequences that flank the active site of Kgp and RgpA.

Region	Kgp Lys - X (numbering according to SEQ ID No.62)	Kgp Lys - X Consensus	RgpA Arg - X (numbering according to SEQ ID No.61)	RgpA Arg - X Consensus
PAS1K/ PAS1R	PAS1K (432-453)	LNTGVSFANYTAHGS ETAWADP (SEQ ID NO: 30)	PAS1R (426-446)	FNGGISLANYTGHGSET AWGT (SEQ ID NO: 34)
KAS1/ RAS1	KAS1 (432-454)	LNTGV[G/S]FANYTAH GSET[S/A]WADP[S/L] (SEQ ID NO: 27)	RAS1 (426-448)	FNGGISL[V/A]NYTGHG SETAWGTSH (SEQ ID NO: 31)
KAS2/ RAS2	KAS2 (433-468)	NTGV[G/S]FANYTAHG SET[S/A]WADP[S/L][L/ V]T[A/T][T/S]Q[V/L]KAL TNK[D/N]K (SEQ ID NO: 28)	RAS2 (427-462)	NGGISL[V/A]NYTGHGS ETAWGTSHFGTTHVVKQ LTNSNQ (SEQ ID NO: 32)
KAS3/RA S3	KAS3 (436-455)	V[G/S]FANYTAHGSET[S/A]WADP[S/L][L/V] (SEQ ID NO: 29)	RAS3 (430-449)	ISL[V/A]NYTGHGSETA WGTSHF (SEQ ID NO: 33)
KAS4/ RAS4	KAS4 (388-395)	D[S/Y][Y/S]WN[P/S][K/ Q][I/M] (SEQ ID NO: 64)	RAS4 (379-386)	EGGPSADN (SEQ ID NO: 67)
KAS5/ RAS5	KAS5 (510-516)	NSYWGED (SEQ ID NO: 65)	RAS5 (508-514)	[N/D]Q[S/Y]WA[S/P]P (SEQ ID NO: 68)
KAS6	KAS6 (570-580)	IGN[V/I]THIGAHY (SEQ ID NO: 66)		

[0114] The inventors have found that chimeric proteins including these peptides have a number of utilities. For example, as described herein, some produce a humoral response that is highly protective for treatment or prevention of bone loss as observed in chronic periodontitis. The peptides may also be used in a diagnostic assay wherein they can detect or monitor specificities in an individual's serum, thereby indicating whether or not the individual is infected and if so, whether treatments are required or if provided, whether they have been effective.

[0115] It will be understood that the region of a *P. gingivalis* trypsin-like enzyme that defines a site in the enzyme for cleavage of a peptide bond located C - terminal to Lys or Arg, does not comprise a complete sequence of the Lys-X-proteinase or Arg-X-proteinase.

[0116] As used herein, the terms "heterologous protein" or "chimeric or fusion protein" are used to refer to a protein that is composed of functional units, domains, sequences or regions of amino acids derived from different sources or that are derived from the same source and that have been assembled so as to have an organisation that is distinguished from that observed in a molecule from which the unit, domain, sequence or region is derived or related to. A common feature of the chimeric or fusion proteins of the invention is that they contain at least one peptide having an amino acid sequence that is the same as or that shares homology with a sequence of a *P. gingivalis* trypsin-like enzyme that defines

a catalytic site for cleavage of a peptide bond.

[0117] In a preferred embodiment, where the first peptide comprises a peptide from the Kgp[432-468] region, it is preferably (i) a peptide which comprises a sequence selected from VSFANYT and VGFANYT, more preferably a sequence selected from GVSFANYT, GVGFANYT, VSFANYTA and VGFANYTA; or (ii) a peptide which comprises a sequence selected from ETAWAD, ETSWAD, TAWADP and TSWADP, preferably a sequence selected from SETAWAD, SET-SWAD, ETAWADP, ETSWADP, TAWADPL and TSWADPL, more preferably a sequence selected from GSETAWAD, GSETSWAD, SETAWADP, SETSWADP, ETAWADPL, ETSWADPL, TAWADPLL and TSWADPLL. More preferably, this peptide is selected from the KAS1[432-454], KAS2[433-468] and KAS3[436-455] peptides shown in Table 1. Alternatively, the first peptide may be the PAS1K[432-453] peptide, also known as PAS1(K48), disclosed in International Patent Application No. PCT/AU98/00311 (WO 98/049192). The sequence identifiers corresponding to these peptides are shown in Table 3.

[0118] Similarly, in another preferred embodiment, where the first peptide comprises a peptide from the RgpA[426-462] region, this peptide is preferably selected from the RAS1[426-448], RAS2[427-462] and RAS3[430-449] peptides shown in Table 1. Alternatively, the first peptide may be the PAS1 R[426-446] peptide, also known as PAS1 (R45), disclosed in International Patent Application No. PCT/AU98/00311 (WO 98/049192).

[0119] In the chimeric or fusion protein of the invention, the second peptide may be a peptide from an adhesin domain of a *P. gingivalis* trypsin-like enzyme, such as Lys-X-proteinase (Kgp) or Arg-X-proteinase (RgpA) or HagA (see Table 2). These domains are sometimes also known as hemagglutinins. In the Lys-X-proteinase, the preferred domains are KA1, KA2, KA3, KA4, KA5 as identified in Table 2. In the Arg-X-proteinase, the preferred domains are RA1, RA2, RA3 and RA4 as identified in Table 2. In HagA, the preferred domains are HagA1, HagA1* and HagA1**.

25

30

35

40

45

50

55

Table 2. Adhesin domains of the Kgp and RgpA proteinases.

	A1	sA1	LA1	A2	A3	A4	A5
Kgp Lys-X proteinase SEQ ID No. 62	KA1 (738-1099) SEQ ID NO: 35	KsA1 (759-989) SEQ ID NO: 36	KLA1 (751-1056) SEQ ID NO: 37	KA2 (1157-1275) SEQ ID NO: 40	KA3 (1292-1424) SEQ ID NO: 41	KA4 (1427-1546) SEQ ID NO: 42	KA5 (1548-1732) SEQ ID NO: 43
RgpA Arg-X proteinase SEQ ID No. 61	RA1 (720-1081) SEQ ID NO: 38	RsA1 (831-971) SEQ ID NO: 39	-	RA2 (1139-1257) SEQ ID NO: 44	RA3 (1274-1404) SEQ ID NO: 45	RA4 (1432-1706) SEQ ID NO: 46	-
HagA SEQ ID NO. 63	HagA1 (26-351) (SEQ ID NO: 80), HagA1* (366-625) (SEQ ID NO: 81), HagA1* (820-1077) (SEQ ID NO:82) or HagA1** (1272-1529) (SEQ ID NO:82)						

[0120] In addition to improving the humoral response to a peptide of the invention such as KAS1, KAS2, KAS3, KAS4, KAS5 and KAS6 or RAS1, RAS2 and RAS3, RAS4 and RAS5 when included with such a peptide in a chimeric or fusion protein, the adhesin domain also contains immunogenic epitopes, hence leading to the production of multiple specificities to elicit a protective immunogenic response. The finding that the immunogenic epitopes of the adhesin domain are retained in a form approaching that in a *P. gingivalis* trypsin-like enzyme when provided in the chimeric or fusion protein of the invention is unanticipated.

[0121] It will be understood that in these embodiments of the invention the chimeric or fusion protein may contain any one or more of the peptides selected from KAS1/RAS1, KAS2/RAS2, KAS3/RAS3, KAS4/RAS4, KAS5/RAS5 and KAS6/RAS6 together with any one or more adhesin domains of a *P. gingivalis* trypsin-like enzyme, in particular with any one or more of Lys-X-proteinase adhesin domains (KA1, KA2, KA3, KA4 and KA5) or Arg-X-proteinase adhesin domains (RA1, RA2, RA3 and RA4) or HagA domains HagA1, HagA1* and HagA1**.

[0122] It will also be understood that it is not necessary for the adhesin domain to be a complete domain as observed in a *P. gingivalis* trypsin-like enzyme. For example the adhesin domain may be a fragment of such a domain, in particular, preferred fragments are the KsA1 and KLA1 domain fragments of the Lys-X-proteinase A1 domain (see Table 2). Where the domain is a fragment of an adhesin domain it generally contains one or more adhesin domain specific epitopes.

[0123] The sequence identifiers corresponding to the adhesin related peptides are shown in Table 3.

[0124] In one embodiment the second peptide or polypeptide includes a sequence shown in one or more of SEQ ID No: 69 to 79 or one or more of 83 to 85.

[0125] The chimeric or fusion protein of the present invention may also include one or more additional peptides selected from the Kgp[432-468] region of the Lys-X-proteinase and/or one or more additional peptides selected from the Rg-pA[426-462] region of the Arg-X-proteinase.

[0126] In preferred embodiments of the present invention, the chimeric or fusion protein includes one or more of KAS1, KAS2, KAS3, KAS4, KAS5 and KAS6, or one or more of RAS1, RAS2, RAS3, RAS4 and RAS5, together with KsA1 or KLA1.

[0127] Thus in certain embodiments, the chimeric or fusion protein may include at least one further peptide wherein said further peptide includes:

(i) part of, or all of a sequence that is the same as, or homologous to the sequence shown in SEQ ID No:1 ; or

(ii) part of, or all of a sequence that is the same as, or homologous to the sequence shown in SEQ ID No:2; or

(iii) part of, or all of a sequence that is the same as, or homologous to the sequence of an adhesin domain of the Lys-X-proteinase of *P. gingivalis*; or

(iv) part of, or all of a sequence that is the same as, or homologous to the sequence of an adhesin domain of the Arg-X-proteinase of *P. gingivalis*; or

(v) part of, or all of a sequence that is the same as, or homologous to the sequence of a HagA adhesin domain of *P. gingivalis*.

[0128] Other examples of domains, units, sequences or regions that may be included in a chimeric or fusion protein as described herein include domains for binding to receptors or ligands such as Fc binding regions or Fc receptors, domains for improving half-life such as albumin or domains for facilitating expression or purification of the chimeric or fusion protein.

[0129] In yet another aspect, the invention provides a peptide for inducing an immune response to *P. gingivalis* including the sequence shown in one of SEQ ID No: 17, 18, 25 and 26. In one embodiment, the peptide has a sequence that is homologous to one of SEQ ID No: 17, 18, 25 and 26. The peptide may have a length of 5 to 40 amino acids.

[0130] In yet another aspect, the invention provides a nucleic acid encoding a peptide having a sequence shown in one of SEQ ID No: 17, 18, 25 and 26.

[0131] In yet another aspect, the invention provides a use of a peptide having a sequence shown in one of SEQ ID No: 17, 18, 25 and 26, or a nucleic acid encoding a peptide having a sequence shown in one of SEQ ID No: 17, 18, 25 and 26, for the manufacture of a chimeric or fusion protein for inducing an immune response to *P. gingivalis*.

[0132] In yet another aspect, the invention provides a use of a peptide having a sequence shown in one of SEQ ID No: 17, 18, 25 and 26, or a nucleic acid encoding a peptide having a sequence shown in one of SEQ ID No: 17, 18, 25 and 26, for inducing an immune response to *P. gingivalis*. In one embodiment, the peptide is administered simultaneously or sequentially with a second peptide including:

(i) part of, or all of a sequence that is the same as, or homologous to the sequence of an adhesin domain of the

Lys-X-proteinase of *P. gingivalis*; or

(ii) part of, or all of a sequence that is the same as, or homologous to the sequence of an adhesin domain of the Arg-X-proteinase of *P. gingivalis*; or

5

(iii) part of, or all of a sequence that is the same as, or homologous to the sequence of a HagA adhesin domain of *P. gingivalis*.

10

Table 3

SEQ ID NO:	Amino acid sequence	Fragment
15 1	LNTGV[G/S]FANYTAHGSET[S/A]WADP[S/L][L/V]T[A/T][T/ S]Q[V/L]KALTNK[D/N]K	Kgp[432-468]
20 2	FNGGISL[V/A]NYTGHGSETAWGTSFHTHVQQLTNSN Q	RgpA[426 -462]
25 3	VSFANYT	
4 4	VGFANYT	
25 5	GVSFANYT	
6 6	GVGFANYT	
30 7	VSFANYTA	
8 8	VGFANYTA	
9 9	ETAWAD	
10 10	ETSWAD	
11 11	TAWADP	
35 12	TSWADP	
13 13	SETAWAD	
14 14	SETSWAD	
40 15	ETAWADP	
16 16	ETSWADP	
17 17	TAWADPL	
18 18	TSWADPL	
45 19	GSETAWAD	
20 20	GSETSWAD	
21 21	SETAWADP	
50 22	SETSWADP	
23 23	ETAWADPL	
24 24	ETSWADPL	
55 25	TAWADPLL	
26 26	TSWADPLL	
27 27	LNTGV[G/S]FANYTAHGSET[S/A]WADP[S/L]	KAS1

(continued)

SEQ ID NO:	Amino acid sequence	Fragment
5		
28	NTGV[G/S]FANYTAHGSET[S/A]WADP[S/L][L/V]T[A/T][T/S]]Q[V/L]KALTNK[D/N]K	KAS2
10	V[G/S]FANYTAHGSET[S/A]WADP[S/L][L/V]	KAS3
30	LNTGVSFANYTAHGSETAWADP	PAS1K
31	FNGGISL[V/A]NYTGHGSETAWGTSH	RAS1
15	NGGISL[V/A]NYTGHGSETAWGTSHFGTTHVKQLTNSNQ	RAS2
33	ISL[V/A]NYTGHGSETAWGTSHF	RAS3
34	FNGGISLANYTGHGSETAWGT	PAS1R
20	ANEAKVVLADNVWDNTGYQFLLDADHNTFGSVIPATG PLFTGTASSNLYSANFEYLIPANADPVTTQNIIVTGQGEV VIPGGVYDYCITNPEPASGKMWIAGDGGNQPARYDDFTF EAGKKYTFTMRRAGMDGTDMEVEDDSPASYTYTVRD GTKIKEGLTATTFEEDGVAAGNHEYCDEVKYTAGVSPKV	KA1
25		
30	CKDVTVEGSNEFAPVQNLTGSSVGQKVTLKWDAPNGTP NPNPNPNPNGTTLSESFENGIPASWKTIDADGDGHGW KPGNAPGIAGYNSNGCVYSESFGLGGIGVLTPDNYLITPA LDLPNGGKLTFWVCAQDANYASEHYAVYASSTGNDASN FTNALLEETITA	
35		
36	FLLDADHNTFGSVIPATGPLFTGTASSNLYSANFEYLIPAN ADPVTTQNIIVTGQGEVWIPGGVYDYCITNPEPASGKMW IAGDGGNQPARYDDFTFEAGKKYTFTMRRAGMDGTDME VEDDSPASYTYTVRDGTKIKEGLTATTFEEDGVAAGN HEYCDEVKYTAGVSPKVCKDVTVEGSNEFAPVQNLGS SVGQKVTLKWDAPNGTPNPNPNPNPNGTTLSESF	KsA1
40		
45		

(continued)

SEQ ID NO:	Amino acid sequence	Fragment
5		
37	<p>WGDN TGYQFLL DADHNTFGS VIPATGPLFTGTASSNLYS</p> <p>ANFEYLI PANADP VVTQNI IVTGQGEV VPGGVYDYCITN</p> <p>PEPASGKMWIAGDGGNQPARYDDFTFEAGKKYTFTMRR</p> <p>AGMGDGTDMEVEDDSPASYTYTVYRDGT KIKEGLTATT</p> <p>EEDGVAAGNHEYC VEVKYTAGVSPK VCKDVTVEGSNEF</p> <p>APVQNL TGSSVGQKV TLKWDAPNGTPNPNPNPNPNGT</p> <p>TLSE SFENGIPASWKTIDADGDGHG WKGPNAPGIAGYNS</p> <p>NGCVYSESFG LGGIGV LTPDNYLITP ALDLPNGG</p>	KLA1
10		
15		
20	<p>SGQAEIVLEAH DWNDGSGYQILL DADHDQY GQVIPSDT</p> <p>HTLWPNCVPANL FAPFEYTV PENADPSCSPTNMIMDGT</p> <p>ASVNIPAGTYDFAIAAPQANAKIWIAGQGPTKEDDYVFEA</p> <p>GKKYHFLMKKM GS GDGTELTISEGGSDYTYTVYRDGT</p> <p>KIKEGLTATT FEEDGVATGNHEYC VEVKYTAGVSPK VCK</p> <p>DVTVEGSNEFAPVQNL TGSAVGQKV TLKWDAPNGTPNP</p> <p>NPNPNPNPNGT TLSE SFENGIPASWKTIDADGDGHG</p> <p>WKGPNAPGIAGYNSNGCVYSESFG LGGIGV LTPDNYLIT</p> <p>PALDLPNGGKLTFWVCAQDANYASEHYAVYASSTGND</p> <p>SNFTN ALLEETITA</p>	RA1
25		
30		
35		
39	<p>DDYVFEAGKKYHFLMKKM GS GDGTELTISEGGSDYTYT</p> <p>VYRDGT KIKEGLTATT FEEDGVATGNHEYC VEVKYTAGV</p> <p>SPK VCKDVTVEGSNEFAPVQNL TGSAVGQKV TLKWDAP</p> <p>NGTPNPNPNPNPNPNGT TLSE SF</p>	RsA1
40		
45	<p>ADFTETFESSTHGEAPAEWTTIDADGDGQGWLCSSGQ</p> <p>LDWLTAHGGSNVSSFSWNGMALNPDNYLISKDVTGAT</p> <p>KVKYYYAVNDGFPGDHYAVMISKTGTNAGDFTVFEETP</p> <p>NGIN</p>	KA2
50		

(continued)

SEQ ID NO:	Amino acid sequence	Fragment
5		
41	PQS _W WIERTVDLPAGTKYVAFRHYNCSDLNYILLDDIQFT MGGSP _T PTD _T YTVYRDGT _I KEGLTETT _E EDGVATGN HEY _C VEVKYTAGVSPKKCVN _T VNSTQFNPVQNLTAEQ APNSMDAILKWNAPAS	KA3
10		
42	AEVLNEDFENGIPASWKT _I DADGDGN _N WTTPPPGGSSF AGHNSAICVSSASYINFEGPQNPDNYLVTPELSLPGGTL TFWVCAQDANYASEHYAVYASSTGNDASNFANALLEEV _L TA	KA4
15		
43	TVVTAPEAIRGTRAQGTWYQKTVQLPAGTKYVAFRHFGC TDFFWINLDDWITSGNAPS _T YTIYRNNTQIASGV _T ETTY RDPDLATGFYTYGVKVVYPNGESAIETATLNITSADVTA QKPYTLTVGKTITVTCQGEAMIYDMNGRR _L AAGRNTVV YTAQGGHYAVMVVVDGKSYVEKLAVK	KA5
20		
44	ADFTETFESSTHGEAPAEWTT _I DADGDGQGWLC _L SSGQ LDWLTAHGGTNVVSSFSWNGMALNP _D NYLISKDVTGAT KV _K YYYAVNDGFP _G DHYAVMISKTGTNAGDFTVVFEETP NGIN	RA2
25		
45	PQS _W WIERTVDLPAGTKYVAFRHYNCSDLNYILLDDIQFT MGGSP _T PTD _T YTVYRDGT _I KEGLTETT _E EDGVATGN HEY _C VEVKYTAGVSPKKCVN _T VNSTQFNPV _K NLKAQP DGGDVVLKWEAPSA	RA3
30		
46	ANEAKVVL _A ADNVWG _D NTGYQFLLADHNTFG _S VIPATG PLFTGTASSDLYSANFESLIPANADPV _V TTQNI _I VTGQGEV VIPGGVYDYCITNPEPAS _G KM _W IAGDGGNQPARYDDFTF EAGKKYTFTMRRAGMDG _T MEVEDD _S PAS _T YTVYRD G _T KEGLTETTYRDAGMSAQ _S HEY _C VEVKYTAGVSPKV CVDYIPDG _V ADVTAQKPYTLTVGKTITVTCQGEAMIYDM	RA4
35		
55	NGR _R LAAGRNTVVYTAQGGYYAVMVVVDGKSYVEKLAI K	

(continued)

SEQ ID NO:	Nucleotide sequence	
5		
47	GACCATGGCTCATCACCATCACCATCACAAATACCGG AGTCAGCTTGCA	KAS2-FOR
10	GACTCGAGTTATTGTCCTTATTAGTGAGTGCTTTC	KAS2-REV
49	GACCATGGCTGGGGAGACAATACGGGTTAC	KLA1-FOR
50	GACTCGAGACCTCCGTTAGGCAAATCC	KLA1-REV
15	CCGTATTGTCTCCCCATTGTCCTTATTAGTGAGTGC TTTC	KAS2-KLA1-REV
20	CACTAATAAGGACAAATGGGGAGACAATACGGGTTA C	KAS2-KLA1-FOR
53	CATGGATCTGAGACCGCATGGGCTGATCCACTTTTC TTGTTGGATGCCGAT	KAS1-KsA1-FOR1
25	CCATGGCTTGAATACCGGAGTCAGCTTGCAAACT ATACAGCGCATGGATCTGAGACCGCA	KAS1-KsA1-FOR2
30	CTCGAGGAATTCGGAAAGTGTT	KAS1-KsA1-REV
56	CCATGGCTGATTATAGCTGGAATTCCCAGGTAGTCA GCTTTGCAAACATATACA	multi-FOR1
35	CTTGCAAACATACAGCGCATGGATCTGAGACCGC ATGGGCTGATCCACTT	multi-FOR2
58	ATGGGCTGATCCACTTCTGAATTCTTATTGGGGCGA GATCGGCAATTACCC	multi-FOR3
40	GATCGGCAATTACCCATATTGGTGCTCATTACGC TTGGGGAGACAATACG	multi-FOR4
45	CTCGAGACCTCCGTTAGGCAAATCCAATGCCGGTGT TATCAGATAGTTGTCA	Multi-REV
50		

(continued)

SEQ ID NO:	Amino acid sequence	Full length
5 10 15 20 25 30 35 40 45 50 55	<p>61 MKNLNKFVSIACSSLGGMAFAQQTELGRNPNVRLLS TQQSVTKVQFRMDNLKFTEVQTPKGIGQVPTYTEGVNL SEKGMP TL PILS RSLA VSDT REMK VEVSSK FIEK KNVLI APS KGM IMRN EDPK KIP YVY GKT YSQNK FFP GEIATLDD PFI RDV RGQ VVN FAPL QY NP VT KTL RIY TEIT VAV SETSE QG KNI LNK KGT FAG FED TYK RM FM NYE P GRY TP VEE KQ NG RMI VIVAK KYE GDI KDF VDW K NQR GLR TEV KVA E DIA SP VT A NAI QQF V KQ EYE KEG NDL TYV LLI GDH KDI PAK ITP GI KSD QV YG QIV GND HYNE V FIG RFS C E SKED LK T QID RT I HYERN ITTE D KW LG QAL C IAS AEGG P SAD NG ESD IQHE NV IAN L LT QYGY T KI ICY DPG VTP KNI IDA FNGG ISL ANY T GH GSET A WGT SH FG TT HV KQL TNS NQL P FID VAC VNG DF LFS MPC FAE ALM RAQ KDG KPT GTV AII A STIN Q SWAS PM RGQ DEM NE IL CE KHP NN KRT FGG VT MNG M FAM VE K Y KKD GEK MLD TWT VFG DPS LLV R T L VPT K M QV T A PA QI NL TDAS NV SCD YNG A IAT I SANG K MFG SAV VENG TAT I NL TGL TN E STL LT VVG YN KET VIK TINT NGE PNP YQP VS NL TATT QG QK VTL KWD AP STK TN ATT NT AR SVD GIRE LV LL SVSD APE LL RSG QAE I VLE AHD WND GSG YQ ILL DAD HD QY GQ VIPS D THTL WP NC SVP AN LFAP F EY TVP ENAD</p>	RgpA

(continued)

SEQ ID NO: 5	Amino acid sequence	Full length
10 15 20 25 30 35 40 45 50	PSCSPTNMIMDGTASVNIPAGTYDFAIAAPQANAKIWIAG QGPTKEDDYVFEAGKKYHFLMKKMGSQDGTELTISEGG GSDYTYTVYRDGTDIKEGLTATTFEEDGVATGNHEYCVE VKYTAGVSPKVCKDVTVEGSNEFAPVQNLTGSAVGQKV TLKWDAPNGTPNPNPNPNPNPNGTTLSESFENGIPA SWKTIDADGDGHGWKPGNAPGIAGYNSNGCVYSESFG LGGIGVLTPDNYLITPALDLPNGGKLTFWCAQDANYAS EHYAVYASSTGNDASNFTNALLEETITAKGVRSPPEAMRG RIQGTWRQKTVDLPAGTKYVAFRHFQSTD MFYIDLDEVE IKANGKRADFTETFESSTHGEAPAEWTTIDADGDGQGW LCLSSGQLDWLTAHGGTVVSSFSWNGMALNPDNYLIS KDVTGATKVYYYYAVNDGFPGDHYAVMISKTGTNAGDF TVVFEETPNGINKGGARFGLSTEADGAKPQSVWIERTVD LPAGTKYVAFRHYNCSDLNYILLDDIQFTMGGSPTPTDY TYTVYRDGTDIKEGLTETTFEEDGVATGNHEYCVEVKYT AGVSPKKCVNVTVNSTQFNPVKNLKAQPDGGDWLKW EAPSAKKTEGSREVKRIGDGLFTIEPANDVRANEAKW LAADNWGDNTGYQFLLDADHNTFGSVIPATGPLFTGTA SSDLYSANFESLIPANADPVTTQNIIVTGQGEVVIPGGV YDYCITNPEPASGKMWIAGDGGNQPARYDDFTFEAGKK YTFTMRRAGMDGTDMEVEDDSPASYTYTVYRDGTDKIK EGLTETTYRDAGMSAQSHYCVEVKYTAGVSPKVCVDY IPDGVADVTAQKPYTLTVGKTITVTCQGEAMIYDMNGR RLAAGRNTVYTAQGGYYAVMVVVDGKSYVEKLAIK	

(continued)

SEQ ID NO:	Amino acid sequence	Full length
5 10 15 20	62 MRKLLLLIAASLLGVGLYAQSAKIKLDAPTRTTCTNNSF KQFDASFSFNEVELTKVETKGTFASVSIPGAFPTGEVG SPEVPAVRKLIAVPVGATPVVRVKSFTEQVYSLNQYGSE KLMPHQPSMSKSDDPEKVPFVYNAAYARKGFGVQELT QVEMLGTMRGVRIAALTINPVQYDVVANQLKVRNNIEEV SFQGADEVATQRPLYDASFSPYFETAYKQLFNRDVYTDH GDLYNTPVRMLVVAGAKFKEALKPWLTWKAQKGFYLDV HYTDEAEVGTTNASIKAFIHKKYNDGLAASAAPVFLALVG	Kgp

25

30

35

40

45

50

55

(continued)

SEQ ID NO: 5	Amino acid sequence	Full length
10 15 20 25 30 35 40 45 50 55	<p>DTDVISGEKGKTKKVTDLYYSAVDGDYFPEMYTFRMS ASSPEELTNIIDKVLMYEKATMPDKSYLEKVLLIAGADYS WNSQVGQPTIKYGMQYYYNQEHGTYDVNYLKAPYTG CYSHLNNTGVSFANYTAHGSETAWADPLLTTSQLKALTNK DKYFLAIGNCCITAQFDYVQPCFGEVITRVKEKGAYAYIG SSPNSYWGEDYYWSVGANAVFGVQPTFEGTSMGSYDA TFLEDSYNTVNSIMWAGNLAATHAGNIGNITHIGAHYYW EAYHVLGDGSVMPYRAMPKTNTYTLPPASLPQNQASYSI QASAGSYVAISKDGVLYGTGVANASGVATVSMTKQITEN GNYDVVITRSNYLPVIKQIQVGEPSYQPVSNLATTQG QKVTLKWEAPSACKAEGSREVKRIGDGLFVTIEPANDVR ANEAKVVLADNVWGDNTGYQFLLDADHNTFGSVIPAT GPLFTGTASSNLYSANFEYLIPANADPVTTQNIIVTGQQG EVVIPGGVYDYCITNPEPASGKMWIAGDGGNQPARYDD FTFEAGKKYTFTMRRAGMDGTDMEVEDDSPASYTYTV YRDGTDKIKEGLTATTFEEDGVAAGNHEYCVEVKYTAGVS PKVCKDVTVEGSNEFAPVQNLTGSSVGQKVTLWDAPN GTPNPNPNPNPNGPTTLSSESFENGIPASWKTIDADGDG HGWKPGNAPGIAGYNSNGCVYSESFGLGGIGVLTPDNY LITPALDLPNGGKLTFWVCAQDANYASEHYAVYASSTGN DASNFTNALLEETITAKGVRSPKAIRGRIQGTWRQKTVDL PAGTKYVAFRHFQSTDMFYIDLDEVEIKANGKRADFTET FESSTHGEAPAEWTTIDADGDGQGWLCSSGQLDWLT AHGGSNVVSSFSWNGMALNPONYLISKDVTGATKVYYY YAVNDGFPGDHYAVMISKTGTNAGDFTVVFEEPTNGINK GGARFGLSTEANGAKPQSWIERTVDPAGTKYVAFRH YNCSDLNYILLDDIQFTMGGSPTPTDYTYTVYRDGTDKE GLTETTFEEDGVATGNHEYCVEVKYTAGVSPKKCVNVT VNSTQFNPVQNLTAEQAPNSMDAILKWNAPASKRAEVL NEDFENGIPASWKTIDADGDGNNWTTPPPGSSFAGH NSAICVSSASAYINFEGPQNPNDNYLVTPELSLPGGGTLTF WVCAQDANYASEHYAVYASSTGNDASNFANALLEEVLT</p>	

(continued)

SEQ ID NO:	Amino acid sequence	Full length
5		
10	AKTVVTAPEAIRGTRAQGTWYQKTVQLPAGTKYVAFRH FGCTDFFWINLDDVITSGNAPSYTYYTIYRNNTQIASGVT ETTYRDPDLATGFYTYGVKVYPNGESAIETATLNITS LA DVTAQKPYTLTVGKTITVTCQGEAMIYDMNGRRRLAAGR NTVYTAQGGHYAVMVVVDGKSYVEKLAVK	
15		

20

25

30

35

40

45

50

55

(continued)

SEQ ID NO:	Amino acid sequence	Full length
5 10 15 20 25 30 35 40 45 50	<p>63 MRKLNSLFLSLAVLLSLLCWGQTAAQGGPKTAPSVTHQ AVQKGIRTSKAKDLRDPIPAGMARIILEAHDVWEDGTGY QMLWDADHNQYGAASIPEESFWFANGTIPAGLYDPFEYK VPVNADASFSPNFVLDGTASADIPAGTYDYVIINPNPGII YIVGEGVSKGNDYVVEAGKTYHFTVQRQGPGDAASVW TGEGGNEFAPVQNLQWSVSGQTVTLTWQAPASDKRTY VLNESFDTQTLPNGWTMIDADGDGHNWLSTINVYNTAT HTGDGAMFSKSWTASSGAKIDLSPDNYLVTPKFTVPEN GKLSYWVSSQEPWTNEHYGVFLSTTGNEAANFTIKLLEE TLGSGKPAPMNLVKSEGVKAPAPYQERTIDLSAYAGQQ VYLAFRHFGCTGIFRLYLDDVAVGEGSSNDYTYTVYRD NVVIAQNLTATTFNQENVAPGQYNYCDEVKYTAGVSPKV CKDVTVEGSNEFAPVQNLTGSAVGQKVTLKWDAPNGTP NPNGPTTTLSESFENGIPASWKTIDADGDGNNWTTTPPP GGSSFAGHNSAICVSSASYINFEGPQNPNDNYLVTPEL PNGGTLFWVCAQDANYASEHYAVYASSTGNDASNFA NALLEEVLTAKTVVTAPEAIRGTRVQGTWYQKTVQLPAG TKYVAFRHFGCTDFFWINLDDVEIKANGKRADFTETFES STHGEAPAEWTIDADGDGQGWLCSSGQLGWLTAHG GTNVVASFSWNGMALNPNDNYLISKDVTGATKVYYYAV NDGFPGDHYAVMISKGTNAGDFTWFEETPNGINKGG ARFGLSTEANGAKPQSWIERTVDPAGTKYVAFRHYN CSDLNYILLDDIQFTMGGSPPTDYTWTYRDGTKEGL TETTFEEDGVATGNHEYCDEVKYTAGVSPKECVNVTVD PVQFNPVQNLTGSAVGQKVTLKWDAPNGTPNPNPNGT LSESFENGIPASWKTIDADGDGNNWTTTPPPGGTSFAG HNSAICVSSASYINFEGPQNPNDNYLVTPELSPNGGTLF </p>	HagA

(continued)

SEQ ID NO: 5	Amino acid sequence	Full length
10 15 20 25 30 35 40 45 50 55	WVCAQDANYASEHYAVYASSTGNDASNFnANALLEEVL AKTVVTAPEAIRGTRVQGTWYQKTVQLPAGTKYVAFRH FGCTDFFWINLDDVEIKANGKRADFTETFESSTHGEAPA EWTTIDADGDGQGWLCSSGQLDWLTAHGGTNVVASF SWNGMALNPNDNYLISKDVTGATKVYYYYAVNDGFPGDH YAVMISKGTNAGDFTVFEETPNGINKGGARFGLSTEA NGAKPQSVWIERTVDLPAKTYVAFRHYNCSDLNYILL DIQFTMGGSPPTDYTIVYRDGTIKEGLTETTFEEDG VATGNHEYCDEVKYTAGVSPKECVNVTDPVQFNPVQN LTGSAVGQKVTLKWDAPNGTPNPNGTTLSESFENGIP ASWKTIDADGDGNNWTTTPPPGGTSFAGHNSAICVSSA SYINFEGPQNPNDNYLVTPELSPNGGTLFWVCAQDAN YASEHYAVYASSTGNDASNFnANALLEEVLAKTVVTAPE AIRGTRVQGTWYQKTVQLPAGTKYVAFRHFGCTDFFWI NLDDVEIKANGKRADFTETFESSTHGEAPEWTTIDADG DGQGWLCSSGQLGWLTAGGTNVASFSWNGMALN PDNYLISKDVTGATKVYYYYAVNDGFPGDHYAVMISKTG TNAGDFTVFEETPNGINKGGARFGLSTEANGAKPQSV WIERTVDLPAKTYVAFRHYNCSDLNYILLDDIQFTMGG SPTPTDYTIVYRDGTIKEGLTETTFEEDGVATGNHEY CVEVKYTAGVSPKECVNVTINPTQFNPVQNLAEQAPNS MDAILKWNAPASKRAEVLNEDFENGIPASWKTIDADGDG NNWTTTPPPGGSSFAGHNSAICVSSASYINFEGPQNP NYLVTPELSPNGGTLFWVCAQDANYASEHYAVYASS TGNDASNFnANALLEEVLAKTVVTAPEAIRGTRVQGTWY QKTVQLPAGTKYVAFRHFGCTDFFWINLDDVITSGNAP SYTYTIYRNNTQIASGVTETTYRDPDLATGFYTYGVKV PNGESAIETATLNITSADVTAQKPYTLTVGKTITVTCQG EAMIYDMNGRRRLAAGRNTWVYTAQGGHYAVMVVV DGK SYVEKLA V K	

(continued)

SEQ ID NO:	Amino acid sequence	Fragment
5		
64	D[S/Y][Y/S]WN[P/S][K/Q][I/V]	KAS4
65	NSYWGED	KAS5
10		
66	IGN[V/I]THIGAHY	KAS6
67	EGGPSADN	RAS4
15		
68	[N/D]Q[S/Y]WA[S/P]P	RAS5
69	PVSNLTATTQGQKVTLKWDAPST	ABM1 - RgpA _{cat}
70	PVSNLTATTQGQKVTLKWEAPSA	ABM1-Kgpcat
20		
71	PVQNLTGSSVGQKVTLKWDAPST	ABM1-KgpA1
72	PVQNLTGSAVGQKVTLKWDAPNG	ABM1 - RgpA1 & RgpAA3
25		
73	PVKNLKAQPDGGDVVLKWEAPSA	ABM1 - HagAA1*/ **
74	PVQNLTAEQAPNSMDAILKWNAP	ABM1 - KgpA3 & HagAA3
75	PVQNLTQWSVSGQTVTLWQAPAS	ABM2 - HagAA1
76	YTYTVYRDGTDIKEGLTETTFEEDGVA	ABM2 - ABM2 - RgpAA4
30		
77	YTYTVYRDNVVIAQNLTATTFNQENVA	ABM2 - HagA1 *
78	YTYTVYRDGTDIKEGLTA/ETTFEEDGVA	ABM2 All other adhesins
35		
79	PNGTP(NP) ₁₋₆ GTT(T)LSESF	ABM3- All adhesins
80	GGPKTAPSVTHQAVQKGIRTSKAKDLRDPPIPAGMARIILE AHDVWEDGTGYQMLWDADHNQYGA SIPEESFWFANGTI PAGLYDPFEYKVPVNADASF SPTNFVLDGTASADIPAGTY DYVIINPNPGIYIVGEGVSKGNDYV VEAGKTYHFTVQRQ GPGDAASV VVTGEGGNEFAPV QNLQWSVSGQT VTLW QAPASDKRTY VLNESFDT QTL PNGWT MIDADGDGH HNWL STINVYNT ATHT GDGAMFS KS WTASS GAK IDL SPD NYL V T PKFTV PENG KLSY WVSS SQEP WT NEHY GVFL STTG NEAA NFT IKL LEET LGSG	HagA1 [26-351]
40		
45		

(continued)

SEQ ID NO:	Amino acid sequence	Fragment
5		
81	APAPYQERTIDLSAYAGQQVYLA FRHFGCTGIFRLYLD AVSGEGSSNDYTYTVYRDNVVIA QNLTATTFNQENVAPG QNYC VEVKYT AGVSPKVCKDVTVEGSNE FAPVQNLTG SAVGQKVTLKWDAPNGTPNPN PGTTLSESFENGIPASW KTIDADGDGNNWTT TPPGGSSFAGHNSAIC VSSASYIN FEGPQNP DNYLVTPEL SLP NGGTLFW VCAQD ANYASE HYAVYAS STGND ASNF ANAL EEVLTA	HagA1* [366-625]
10		
15		
20	PQS VWIERTV DLPAGTKY VAFRH YNCS DLNY ILL DDIQFT MGG SPT PTD YTY TVY RDGT KIKE GLT ETT FEED GVATGN HEY C VEVKYT AGVSP KECV NVTV DPV QFNP VQNL TGSA VGQKV TLKWD APNG TPN PN PGTT LSES FENG IPAS WKT IDADGD GNNW TT TPPG GTSFAG HNSAIC VSS ASYIN FE GPQNP DNYL VTPEL SLP NGG TLFW VCAQD ANYASE HY AVY ASSTG ND ASNF ANAL EEVLTA	HagA1** [820-1077] or HagA1** [1272-1529]
25		
30		
35		
82	PYQP VSNL TATT TQGQ	ABM1 [436-450]
83	EGLTATT FEEDGVAA	ABM2 [672-686]
84	GTP NP NP NP NP NP PGT	ABM3 [455-471]
85		

[0133] In the chimeric or fusion proteins of the present invention, the C-terminal residue of the first peptide may be covalently linked to the N-terminal residue of an adhesin domain polypeptide, or the N-terminal residue of the first peptide may be covalently linked to the C-terminal residue of an adhesin domain polypeptide. In this arrangement, the first peptide and adhesin domain polypeptide, are said to be "directly linked" or "adjacent".

[0134] In other embodiments, the chimeric or fusion protein includes a linker for linking the first peptide to an adhesin domain polypeptide. The linker may be any linker able to join a peptide to a polypeptide, including both amino acid and non-amino acid linkers. Preferably, the linker is non-immunogenic. Suitable linkers may be up to 15 amino acids in length, although less than five amino acids is preferred. The linker may function to bring the first peptide and adhesin domain polypeptide into a closer spatial arrangement than normally observed in a *P. gingivalis* trypsin-like enzyme.

Alternatively, it may space the first peptide and adhesin domain polypeptide apart.

[0135] The chimeric or fusion proteins of the invention may be produced by recombinant expression systems (such as recombinant DNA technology) or by chemical synthesis (such as solid phase peptide synthesis). These techniques are well known in the art.

[0136] The heterologous or chimeric protein is particularly advantageous because it improves the humoral response obtained over that obtained using the first or second peptide components of the chimeric or fusion protein alone.

[0137] The inventors have found that chimeric proteins including these peptides have a number of utilities. For example, as described herein, some produce a humoral response that is highly protective for treatment or prevention of bone loss as observed in chronic periodontitis. The peptides may also be used in a diagnostic assay wherein they can detect or monitor specificities in an individual's serum, thereby indicating whether or not the individual is infected and if so, whether treatments are required or if provided, whether they have been effective.

[0138] In one embodiment, the chimeric or fusion protein induces a protective immune response, typically a response that at least minimises or limits connective tissue damage otherwise associated with *P. gingivalis* infection. In one

embodiment the protective response at least minimises or limits *P. gingivalis* induced bone loss. A model system for measuring bone loss mediated by *P. gingivalis* infection is discussed herein. Typically the protective immune response is predominantly a humoral response. In certain embodiments the protective immune response also includes a cellular response.

5 [0139] The present invention also provides a composition including a chimeric or fusion protein as broadly described above. Typically the composition is antigenic or immunogenic. More particularly, the invention provides a composition suitable for eliciting a protective or therapeutic immune response against *P. gingivalis* infection, including the chimeric or fusion protein, optionally in association with an adjuvant. Such a composition may also include another component for modulating or potentiating the immune response. One embodiment, the composition takes the form of a vaccine.

10 [0140] A preferred composition includes immunogens that generate an immune response to the periodontal pathogens *Porphyromonas gingivalis*, *Treponema denticola*, and *Tannerella forsythia*. Immunogens may be attenuated whole cell vaccine, or a purified antigen vaccine or more preferably a recombinant antigen vaccine where the composition contains antigens against one or more of the three periodontal pathogens. Other examples of suitable peptides capable of forming immunogens relevant to *P. gingivalis*, *T. denticola* and *T. forsythia* infection are shown in Tables D to F.

15

Table D

Bacteria	Exemplary immunogen(s)	Exemplary reference(s)
<i>Porphyromonas gingivalis</i>	Proteinases or fragments thereof	US 6,017,532 (see, for example, sequence listing)
	Proteinases or fragments thereof specified in the sequence listing	5,475,097 (see, for example, sequence listing)
	PrtK48, PrtR45, PrtR44, PrtK39, PrtK44, PrtR27, PrtR17, PrtK15 and PrtR15 or fragments thereof	PCT/AU96/00673
	Ag1, Ag2, Ag3 and Ag4 or fragments thereof	PCT/AU97/00212 (see, for example, Table on page 3).
	Peptides from cysteine proteases and adhesins	PCT/AU98/00311 (see, for example, Table1)
	Polypeptides and fragments thereof	PCT/AU1998/00311 (see, for example, Table 1, 2 or 3 and sequence listing)
	PrtR-PrtK proteinase-adhesin complex and fragments thereof	US 6,962,706 (see, for example, Table 1 or sequence listing)
	r-RgpA44 and r-Kgp39 and fragments thereof	PCT/AU00/01588 (see, for example, sequence listing)
	PG32 and PG33 and fragments thereof	PCT/AU01/00482 (see, for example, Table 3 or sequence listing)
	Multimeric complex	PCT/AU2005/001463
	Polypeptides and fragments thereof	PCT/AU2007/000890 (see, for example, Table 2)
	Polypeptides and fragments thereof	PCT/AU2008/001018 (see, for example, Table 4)
	Polypeptides and fragments thereof	PCT/US2004/025778 (see, for example, Table 2 or sequence listing)
	Adhesins and fragments thereof	US 2005/0288866 (see, for example, Table 5)
	Isolated, purified or extracted bacterial preparation	
<i>Treponema denticola</i>	Polypeptides and fragments thereof Isolated, purified or extracted bacterial preparation	Disclosed in Veith et al. Biochmica et Biophysica Acta. 2009, vol. 1794: 1421 - 1432 and listed in Table E.
<i>Tannerella forsythia</i>	Polypeptides and fragments thereof	Disclosed in Table 1, 2 and 3 in Veith et al. Journal of Proteome Research (2009) vol. 8: 4279 -4292 and listed in Table F.

(continued)

Bacteria	Exemplary immunogen(s)	Exemplary reference(s)
5	Polypeptides and fragments thereof	Yoo et al. FEMS Microbiol. Lett. (2007) 275: 344-352
	Isolated, purified or extracted bacterial preparation	PCT/IB2004/003310

10

Table E

1Accession**1Protein Definition**

15	TDE0011	alkyl hydroperoxide reductase/peroxiredoxin
	TDE0017	conserved hypothetical protein
	TDE0018	LysM domain protein
	TDE0019	formate--tetrahydrofolate ligase (fhs)
20	TDE0042	phosphate acetyltransferase (pta)
	TDE0046	formiminotransferase-cycloaminase family protein
	TDE0047	imidazolonepropionase (hutl)
	TDE0048	hypothetical protein
25	TDE0051	alcohol dehydrogenase, iron-containing
	TDE0068	peptidase, M20/M25/M40 family
	TDE0102	cyclic nucleotide-binding protein
	TDE0117	lipoprotein, putative
	TDE0139	hypothetical protein
30	TDE0153	coenzyme A disulfide reductase, putative
	TDE0167	ABC transporter, ATP-binding protein
	TDE0182	ABC transporter, ATP-binding protein
	TDE0186	hypothetical protein
35	TDE0231	DNA polymerase III, beta subunit (dnan)
	TDE0240	glycine reductase complex protein GrdC (grdC)
	TDE0249	flavodoxin, putative
	TDE0251	tryptophanase (tnaA)
40	TDE0296	formiminotransferase, putative
	TDE0300	cytosol aminopeptidase family protein
	TDE0311	thymidylate synthase-complementing family protein
	TDE0313	TrkA domain protein
45	TDE0325	hypothetical protein
	TDE0337	glucosamine-6-phosphate isomerase (nagB)
	TDE0340	fructose-bisphosphate aldolase, class-I
50	TDE0351	L-lactate dehydrogenase (ldh)
	TDE0354	general stress protein 14
	TDE0386	ABC transporter, periplasmic substrate-binding protein
	TDE0389	(R)-2-hydroxyglutaryl-CoA dehydratase, beta subunit, putative
55	TDE0398	oligopeptide/dipeptide ABC transporter, periplasmic peptide-binding protein

(continued)

1Accession	1Protein Definition
TDE0405	major outer sheath protein
5 TDE0407	glutamate synthase (NADPH), homotetrameric (gltA)
TDE0434	rubrerythrin
TDE0444	glutamine amidotransferase class-I domain protein
10 TDE0449	ferritin, putative
TDE0451	arginine deiminase (arcA)
TDE0456	pyridoxine biosynthesis protein
TDE0463	purine nucleoside phosphorylase (deoD)
15 TDE0467	hypothetical protein
TDE0525	hypothetical protein
TDE0576	glutamyl-tRNA(Gln) amidotransferase, A subunit (gatA)
20 TDE0585	hypothetical protein
TDE0588	histidine ammonia-lyase (hutH)
TDE0603	conserved hypothetical protein
TDE0610	3-hydroxyacyl-CoA dehydrogenase, putative
25 TDE0628	chaperone protein DnaK (dnaK)
TDE0648	protein-glutamate methyltransferase (cheB)
TDE0664	OmpA family protein
TDE0665	pyruvate ferredoxin/flavodoxin oxidoreductase family protein
30 TDE0677	conserved hypothetical protein
TDE0679	aminotransferase, class V
TDE0704	SPFH domain/Band 7 family protein
TDE0731	hypothetical protein
35 TDE0743	thioredoxin reductase (trxB)
TDE0744	thioredoxin (trxA)
TDE0748	iron compound ABC transporter, periplasmic iron compound-binding protein, putative
40 TDE0754	hypothetical protein
TDE0758	iron compound ABC transporter, periplasmic iron compound-binding protein, putative
TDE0761	protease complex-associated polypeptide (prcA)
45 TDE0765	translation elongation factor Tu (tuf)
TDE0816	peptidase, M20/M25/M40 family
TDE0823	(3R)-hydroxymyristoyl-(acyl-carrier-protein) dehydratase, putative
TDE0829	aspartyl aminopeptidase, putative
50 TDE0842	cytoplasmic filament protein A (cfpA)
TDE0845	conserved hypothetical protein TIGR00266
TDE0855	DNA-binding response regulator
TDE0911	type II restriction endonuclease TdellII (tdellII)
55 TDE0925	peptidase T (pepT)
TDE0929	ornithine carbamoyltransferase (argF)
TDE0939	lipoprotein, putative

(continued)

1Accession	1Protein Definition
TDE0947	translation elongation factor G, putative
5 TDE0949	enolase (eno)
TDE0951	lipoprotein, putative
TDE0985	oligopeptide/dipeptide ABC transporter, periplasmic peptide-binding protein, putative
TDE1000	3-hydroxyacid dehydrogenase family protein
10 TDE1001	orotate phosphoribosyltransferase (pyrE)
TDE1004	flagellar filament core protein
TDE1041	polyribonucleotide nucleotidyltransferase (pnp)
15 TDE1049	translation elongation factor G (fusA-2)
TDE1050	hypothetical protein
TDE1071	peptide ABC transporter, peptide-binding protein OppA (oppA)
20 TDE1072	lipoprotein, putative
TDE1078	metallo-beta-lactamase family protein
TDE1090	threonyl-tRNA synthetase (thrS)
TDE1118	tyrosine phenol-lyase (tpl)
TDE1127	TPR domain protein
25 TDE1149	hypothetical protein
TDE1175	chaperonin, 60 kDa (groEL)
TDE1195	prolyl endopeptidase
TDE1231	hypothetical protein
TDE1236	triosephosphate isomerase (tpiA)
30 TDE1237	hypothetical protein
TDE1246	lipoprotein, putative
TDE1247	hypothetical protein
TDE1252	lipoprotein, putative
35 TDE1273	oligopeptide/dipeptide ABC transporter, peptide-binding protein
TDE1283	extracellular solute-binding lipoprotein, putative
40 TDE1292	TldD/PmbA family protein
TDE1301	DNA repair protein RecN (recN)
TDE1308	transketolase (tkt)
TDE1310	modulator of DNA gyrase family protein
TDE1356	lipoprotein, putative
45 TDE1357	aldose 1-epimerase (galM)
TDE1371	RNB-like family protein
TDE1372	hypothetical protein
TDE1398	conserved hypothetical protein
TDE1408	flagellar filament outer layer protein FlaA, putative
50 TDE1409	flagellar filament outer layer protein FlaA, putative
TDE1413	cytidylyltransferase/phosphoenolpyruvate phosphomutase, putative
55 TDE1415	nucleotidyl transferase/aminotransferase, class V
TDE1426	aminotransferase, DegT/DnrJ/EryC1/StrS family

(continued)

1Accession	1Protein Definition
TDE1440	glucose-1-phosphate thymidylyltransferase (rfbA)
5	
TDE1475	flagellar filament core protein
TDE1477	flagellar filament core protein
TDE1482	peptidase, M24 family protein
TDE1488	glyceraldehyde-3-phosphate dehydrogenase, type I (gap)
10	
TDE1491	chemotaxis protein CheA (cheA)
TDE1492	chemotaxis protein CheW (cheW-1)
TDE1493	chemotaxis protein CheX (cheX)
15	
TDE1494	chemotaxis protein CheY (cheY)
TDE1499	adenylosuccinate lyase, putative
TDE1511	pathogen-specific surface antigen, putative
TDE1520	hydro-lyase, tartrate/fumarate family, alpha subunit
TDE1558	YD repeat protein
20	
TDE1584	lipoprotein, putative
TDE1589	purine-binding chemotaxis protein (cheW-2)
TDE1598	ABC transporter, ATP-binding protein
TDE1624	glycine cleavage system P protein, subunit 2 (gcvP2)
25	
TDE1625	glycine cleavage system P protein, subunit 1 (gcvP1)
TDE1626	glycine cleavage system H protein (gcvH)
TDE1627	glycine cleavage system T protein (gcvT)
30	
TDE1629	dihydrolipoamide dehydrogenase (lpdA)
TDE1631	citrate lyase, alpha subunit (citF)
TDE1632	citrate lyase, beta subunit (citE)
TDE1642	conserved hypothetical protein
35	
TDE1658	basic membrane protein, putative
TDE1663	OmpA family protein
TDE1664	conserved domain protein
TDE1669	hemolysin
TDE1671	trigger factor (tig)
40	
TDE1682	V-type ATPase, B subunit (atpB)
TDE1697	phosphoglycerate mutase (gpm)
TDE1712	flagellar filament outer layer protein (flaA)
TDE1715	phosphoglycerate kinase (pgk)
45	
TDE1717	hypothetical protein
TDE1727	conserved hypothetical protein
TDE1728	hypothetical protein
TDE1754	desulfoferrodoxin/neelaredoxin
TDE1848	hypothetical protein
50	
TDE1857	conserved hypothetical protein
TDE1862	conserved domain protein
TDE1915	alcohol dehydrogenase, iron-containing
TDE1950	membrane lipoprotein TmpC, putative
55	
TDE2028	OmpA family protein
TDE2049	bacterial extracellular solute-binding proteins, family 5
TDE2055	hemin-binding protein B (hbpB)

(continued)

1Accession	1Protein Definition
TDE2056	outer membrane hemin-binding protein A
5 TDE2058	conserved hypothetical protein
TDE2069	endoribonuclease L-PSP, putative
TDE2085	amino acid kinase family protein
TDE2104	hypothetical protein
10 TDE2120	glycine reductase complex proprotein GrdE2 (grdE-2)
TDE2132	cobalt ABC transporter, ATP-binding protein, putative
TDE2140	protease II (ptrB)
TDE2164	hypothetical protein
15 TDE2188	hypothetical protein
TDE2194	8-amino-7-oxononanoate synthase, putative
TDE2200	methionine gamma-lyase (megL)
TDE2211	hypothetical protein
20 TDE2217	galactose/glucose-binding lipoprotein (mglb)
TDE2234	iron compound ABC transporter, periplasmic iron compound-binding protein, putative
TDE2235	methylaspartate ammonia-lyase
25 TDE2236	methylaspartate mutase, E subunit (glmE)
TDE2242	antigen, putative
TDE2257	5-nucleotidase family protein
TDE2290	transcriptional regulator, putative
TDE2300	trypsin domain/PDZ domain protein
30 TDE2315	conserved hypothetical protein TIGR00044
TDE2337	aminopeptidase
TDE2353	flagellar hook-associated protein 3
TDE2369	conserved domain protein
35 TDE2390	hypothetical protein
TDE2391	peptidyl-prolyl cis-trans isomerase
TDE2392	hypothetical protein
TDE2405	conserved hypothetical protein
TDE2406	TIdD/PmbA family protein
40 TDE2422	ribosomal protein L7/L12 (rplL)
TDE2433	treponemal membrane protein, putative
TDE2439	conserved hypothetical protein
TDE2480	chaperone protein HtpG (htpG)
45 TDE2489	peptide chain release factor 1 (prfA)
TDE2508	hypothetical protein
TDE2540	lipoprotein, putative
TDE2567	hypothetical protein
TDE2584	dipeptidase
50 TDE2589	aminopeptidase, putative
TDE2601	surface antigen, putative
TDE2602	outer membrane protein, putative
TDE2606	urocanate hydratase (hutU)
55 TDE2639	oligoendopeptidase F (pepF)
TDE2647	lipoyltransferase and lipoate-protein ligase family protein
TDE2665	inosine-5-monophosphate dehydrogenase (guaB)

(continued)

1Accession**1Protein Definition**

5	TDE2668	serine hydroxymethyltransferase (glyA)
	TDE2693	ankyrin repeat protein
	TDE2699	antigen, putative
	TDE2712	hypothetical protein
	TDE2716	HAD-superfamily hydrolase, subfamily IA
10	TDE2730	hydrolase, TatD family
	TDE2734	hypothetical protein
	TDE2738	oligoendopeptidase F, putative
	TDE2754	ornithine cyclodeaminase (arcB)
15	TDE2776	proline iminopeptidase (pip)
	TDE2779	hypothetical protein

1. Accessions and definitions from TIGR (now JCVI, www.tigr.org). Definitions are from TIGR's automated annotation of the genome.

20

25

30

35

40

45

50

55

Table F

Accession ^a	Protein Description ^a , abbreviated ^b
5 TF0071	HP-C
TF0299	HP
TF0324	HP-C
TF0399	HP
10 TF0436	conserved hypothetical protein
TF0508	HP-C
TF0706	possible OM transport protein
TF0761	HP-C
TF0773	OM efflux protein
TF0810	possible OM efflux protein
15 TF1015	HP-C
TF1038	HP-C
TF1059	possible xanthan lyase
TF1300	HP-C
TF1331	Omp
20 TF1409	Omp, TolC
TF1441	HP-C
TF1443	HP
TF1444	HP-C; possible hemin receptor
TF1476	OmpP49
25 TF1793	polyphosphate-selective porin O
TF1822	OM lipoprotein, silC precursor
TF1959	HP-C
TF2123	HP-C, TPR-repeat protein
TF2450	Omp
30 TF2595	HP-C
TF2613	HP-C
TF2734	HP-C
TF2852	HP-C
TF2901	HP-C
TF3007	HP-C
35 TF3114	HP
TF0041	Omp, TDR
TF0063	HP-C
TF0064	HP-C
TF0301	Omp, TDR
40 TF0318	Omp, TDR
TF0875	OM receptor, TonB-linked
TF0980	OM TDR
TF2096	possible OmpA, OM-related protein
TF2124	HP-C; possible TDR
45 TF2778	Omp, TDR
TF3087	HP-C
TF0045	Omp, TDR
TF0044	HP-C
TF0093	Omp, TDR
TF0092	Omp
50 TF0111	Omp
TF0112	Omp

5	TF0237	Omp, TDR
	TF0238	Omp
	TF0275	Omp
	TF0277	Omp
10	TF0313	Omp, TDR
	TF0312	Omp
	TF0424	OM receptor, TonB-linked
	TF0425	Omp
	TF0482	OM receptor
15	TF0483	OM receptor
	TF0588	Omp
	TF0587	Omp
	TF0640	Omp, TDR
	TF0641	Omp
20	TF0654	OM receptor, TonB-linked
	TF0655	Omp
	TF0682	Omp, TDR
	TF0683	HP-C
	TF0778	Omp, TDR
	TF0779	possible Omp
25	TF0976	OM receptor, Ton-linked
	TF0977	possible Omp
	TF1053	OM receptor, TonB-linked
	TF1052	HP-C
	TF1057	possible OM receptor, TonB-linked
	TF1056	HP-C
30	TF1207	OM receptor, TonB-dependent
	TF1206	HP-C
	TF1318	OM receptor
	TF1319	Omp
35	TF1413	Omp, TDR
	TF1416	Omp
	TF1506-7 ^a	OM receptor, TonB-dependent
	TF1505	HP-C
	TF1535	possible OM receptor protein
	TF1534	HP-C
40	TF1605	Omp, TDR
	TF1606	Omp
	TF1989	Omp, possible TDR
	TF1990	Omp
	TF2032	Omp, TDR
	TF2031	HP-C
45	TF2193	Omp, TDR
	TF2192	possible Omp
	TF2301	Omp, TDR
	TF2302	HP-C, possible Omp
	TF2347-8 ^a	Omp, possibly involved in nutrient binding
	TF2349	HP-C
	TF2403	Omp, TDR
	TF2402	Omp, possibly involved in nutrient binding
50	TF2412	Omp
	TF2411	Omp
	TF2417	Omp, TDR
	TF2416	HP-C
	TF2597	OM receptor protein; possible TDR
	TF2590	HP-C, possible Tp
55	TF2605	Omp, TDR
	TF2606	HP-C

	TF2725	Omp, TDR
5	TF2726-7	Omp, possibly involved in nutrient binding
	TF2728	Omp, TDR
	TF2729	possible Omp
	TF2801	Omp, TDR
	TF2802	possible Omp
10	TF3011	Omp, TDR
	TF3012	possible Omp
	TF3104	Omp, TDR
	TF3103	Omp
	TF extra ^h	Not in LANL
	TF0015	Omp (possible immunogenic lipoprotein)
15	TF0090	HP-C
	TF0091	Omp
	TF0220	HP-C
	TF0304	peptidyl-prolyl cis-trans isomerase
	TF0305	peptidyl-prolyl cis-trans isomerase
	TF0322	possible YngK protein
20	TF0348	HP
	TF0365	HP
	TF0368	HP
	TF0447	HP
	TF0546	HP-C
25	TF0652	HP-C
	TF0661	HP
	TF0749	protease II
	TF0750	HP-C
	TF0765	HP-C
30	TF0945	HP-C; possible surface protein
	TF1033	endothelin converting enzyme; endopeptidase
	TF1055	HP
	TF1158	OM-LP; NlpE involved in copper resistance
	TF1342	possible lipoprotein
	TF1402	HP-C
35	TF1440	HP
	TF1525	HP-C
	TF1565	polysaccharide export protein, BexD/CtrA/VexA family
	TF1733	HP-C
	TF1755	periplasmic protease
	TF1940	TPR-repeat-containing protein
40	TF2016	HP
	TF2035	HP-C
	TF2206	HP-C; possible sugar phosphate isomerase/epimerase
	TF2207	exo-alpha-sialidase (neuraminidase)
	TF2214	peptidyl-prolyl cis-trans isomerase
45	TF2327	HP-C; possible lipoprotein
	TF2414	HP
	TF2415	HP
	TF2447	lipoprotein
	TF2531	possible dipeptidyl-peptidase III
	TF2804	HP-C
50	TF2806	HP-C
	TF2843	HP-C; possible lipoprotein
	TF2925	beta-N-acetylglucosaminidase
	TF3013	HP-C
	TF3024	periplasmic protease
55	TF3165	thiol:disulfide interchange protein
	TF0953	HP-C

5	TF1032	possible internalin-related protein
	TF1259	HP
	TF1741	HP-C
	TF1843	surface antigen BspA**
	TF2116	HP-C; possible hemagglutinin/hemolysin
10	TF2320	HP
	TF2339	HP
	TF2392	HP-C
	TF2646	HP-C
	TF2661 ^a	surface layer protein A
	TF2663	surface layer protein B
	TF2998	surface antigen BspA**
	TF3080	HP-C
15	TF3163	HP-C
	TF1478	membrane fusion efflux protein
	TF0454	xanthine/uracil permease family protein
	TF1351	HP-C
	TF1970	oxaloacetate decarboxylase, beta subunit
20	TF2574	preprotein translocase SecY
	TF0477	dipeptide/tripeptide permease, POT family
	TF0789	preprotein translocase, secDF family
	TF3036	glucose/galactose transporter
	TF0797	HP-C
25	TF0813	glycosyl hydrolase, secreted
	TF1201	possible preprotein translocase
	TF1245	LemA protein
	TF2333	signal peptidase I
	TF2924	DNA-binding response regulator/sensor histidine kinase
	TF3099	HP-C
30	TF0334	HP
	TF0743	HP-C
	TF1039	HP-C
	TF1101	ABC transporter, ATP-binding protein
	TF1964	MotA/TolQ/ExbB proton channel family
	TF0405	HP-C
35	TF2920	HP-C
	TF3137	Na ⁺ -translocating NADH-quinone reductase, subunit E
	TF1413	possible transmembrane protein
	TF0959	periplasmic protease
	TF1775	oxidoreductase, Gfo/Idh/MocA family
	TF2330	HP-C
40	TF1897	HP-C; possible aminopeptidase
	TF0421	alpha-L-fucosidase
	TF2803	possible NADH-dependent dehydrogenase
	TF0183	HP-C
	TF0216	50S ribosomal protein L20
	TF0217	50S ribosomal protein L35
45	TF0439	Na ⁺ -transporting NADH:ubiquinone oxidoreductase, subunit 1
	TF0841	NADH dehydrogenase/NAD(P)H nitroreductase
	TF1123	glycosyltransferase
	TF1150	pyruvate-formate lyase
50	TF1151	HP-C
	TF1193	glycosyl transferase, group 1 family
	TF1325	L-fucose isomerase
	TF1575	DNA-binding response regulator
	TF1595	HP-C
	TF2190	HP-C
55	TF2421	cytotoxic toxin protein
	TF2551	30S ribosomal protein S10

TF2552	50S ribosomal protein L3
TF2560	30S ribosomal protein S3
TF2566	50S ribosomal protein L5
5 TF2569	50S ribosomal protein L6
TF2579	30S ribosomal protein S4
TF2649	succinate dehydrogenase, flavoprotein subunit
TF2650	succinate dehydrogenase, iron-sulfur subunit
TF2838	HP-C
10 TF3006	transcriptional regulator RptY

^a Accession numbers and protein descriptions are from the Oralgen website (www.oralgen.lanl.gov) Hyphenated accession numbers are where two adjacent genes in the database correspond to a single protein as indicated by both proteomics and homology data.

15

[0141] Various adjuvants are known for use in conjunction with vaccine compositions. The adjuvants aid by modulating the immune response and in attaining a more durable and higher level of immunity using smaller amounts of vaccine antigen or fewer doses than if the vaccine antigen were administered alone. Examples of adjuvants include incomplete Freund's adjuvant (IFA), Adjuvant 65 (containing peanut oil, mannide monoleate and aluminium monostearate), oil emulsions, Ribi adjuvant, the pluronic polyols, polyamines, Avridine, Quil A, saponin, MPL, QS-21, mineral gels such as aluminium salts and calcium salts, nanoparticles such as hydroxyapatite, calcium phosphate, aluminium salts, sugar oligomers and polymers such as mannan, chitosan. Other examples include oil in water emulsions such as SAF-1, SAF-0, MF59, Seppic ISA720, and other particulate adjuvants such ISCOMs™ and ISCOM matrix™. An extensive but not exhaustive list of other examples of adjuvants are listed in Cox and Coulter 1992 [In: Wong WK (ed.) Animals parasite control utilising technology. Bocca Raton; CRC press, 1992; 49-112]. In addition to the adjuvant, the vaccine composition may include conventional pharmaceutically acceptable carriers, excipients, fillers, buffers or diluents as appropriate. One or more doses of the vaccine composition containing adjuvant may be administered prophylactically to prevent periodontitis or therapeutically to treat already present periodontitis. In one embodiment, the adjuvant used would be selected to facilitate the production of a Th-2 biased response. An example would be Alum.

30

[0142] In a preferred composition, the chimeric or fusion protein is combined with a mucosal adjuvant and administered via the oral, buccal or nasal route. Examples of mucosal adjuvants are nanoparticles, cholera toxin and heat labile *E. coli* toxin, the non-toxic B subunits of these toxins, genetic mutants of these toxins which have a reduced toxicity.

35

[0143] Other methods which may be utilised to deliver the antigenic protein orally/buccally/nasally include incorporation or absorption of the protein into or onto particles of biodegradable polymer (such as acrylates or polyesters) or nanoparticles (such as hydroxyapatite) by microencapsulation to aid uptake of the microspheres from the gastrointestinal tract or other mucosal surfaces and to protect degradation of the proteins. Liposomes, ISCOMs™, hydrogels are examples of other potential methods which may be further enhanced by the incorporation of targeting molecules such as LTB, CTB or lectins for delivery of the antigenic protein to the mucosal immune system. In addition to the antigenic protein and the mucosal adjuvant or delivery system, the vaccine composition may include conventional pharmaceutically acceptable carriers, excipients, fillers, coatings, dispersion media, antibacterial or antifungal agents, and buffers or diluents as appropriate.

40

[0144] Many methods are known for administration of a vaccine composition to a subject, including but not limited to intradermal, intramuscular, intraperitoneal, intravenous, subcutaneous, intranasal, sub-lingual, buccal and oral administration. These routes of administration are particularly useful for vaccination.

45

[0145] In a further aspect, the present invention provides a nucleic acid molecule including a nucleotide sequence encoding a chimeric or fusion protein as broadly described above, optionally operatively linked to at least one regulatory element. In one embodiment the nucleic acid is provided in isolated or substantially purified form.

50

[0146] The nucleic acid molecule may, for example, be inserted into a suitable expression vector for production of the chimeric protein as a recombinant protein by insertion of the expression vector into a prokaryotic or eukaryotic host cell. Successful expression of the recombinant protein requires that the expression vector contains the necessary regulatory elements for transcription and translation which are compatible with, and recognised by the particular host cell system used for expression. A variety of host cell systems may be utilized to express the recombinant protein, which include, but are not limited to bacteria transformed with a bacteriophage vector, plasmid vector, or cosmid DNA; yeast containing yeast vectors; fungi containing fungal vectors; insect cell lines infected with virus (e.g. baculovirus); and mammalian cell lines transfected with plasmid or viral expression vectors, or infected with recombinant virus (e.g. vaccinia virus, adenovirus, adeno-associated virus, retrovirus, etc.).

55

[0147] Using methods known in the art of molecular biology, various promoters and enhancers can be incorporated into the expression vector, to increase the expression of the recombinant protein, provided that the increased expression

of the amino acid sequences is compatible with (for example, non-toxic to) the particular host cell system used.

[0148] The selection of the promoter will depend on the expression system used. Promoters vary in strength, i.e. ability to facilitate transcription. Generally, it is desirable to use a strong promoter in order to obtain a high level of transcription of the coding nucleotide sequence and expression into recombinant protein. For example, bacterial, phage, or plasmid promoters known in the art from which a high level of transcription have been observed in a host cell system including *E. coli* include the lac promoter, trp promoter, recA promoter, ribosomal RNA promoter, the P_R and P_L promoters, lacUV5, ompF, bla, lpp, and the like, may be used to provide transcription of the inserted nucleotide sequence encoding amino acid sequences.

[0149] Other control elements for efficient transcription or translation include enhancers, and regulatory signals. Enhancer sequences are DNA elements that appear to increase transcriptional efficiency in a manner relatively independent of their position and orientation with respect to a nearby coding nucleotide sequence. Thus, depending on the host cell expression vector system used, an enhancer may be placed either upstream or downstream from the inserted coding sequences to increase transcriptional efficiency. Other regulatory sites, such as transcription or translation initiation signals, can be used to regulate the expression of the coding sequence.

[0150] In another embodiment, the vector may be a viral or bacterial vaccine vector, and used to provide a recombinant viral vaccine, a recombinant bacterial vaccine, a recombinant attenuated bacterial vaccine, or an inactivated recombinant viral vaccine. *Vaccinia* virus is the best known example, in the art, of an infectious virus that is engineered to express vaccine antigens derived from other organisms. The recombinant live *vaccinia* virus, which is attenuated or otherwise treated so that it does not cause disease by itself, is used to immunize the host. Subsequent replication of the recombinant virus within the host provides a continual stimulation of the immune system with the vaccine antigens thereby providing long lasting immunity.

[0151] Other live vaccine vectors include: adenovirus, cytomegalovirus, and preferably the poxviruses such as *vaccinia* [Paoletti and Panicali, U.S. Patent No. 4,603,112] and attenuated *Salmonella* strains [Stocker et al., U.S. Patent No. 5,210,035; 4,837,151; and 4,735,801; and Curtiss et al., 1988, *Vaccine* 6:155-160]. Live vaccines are particularly advantageous because they continually stimulate the immune system which can confer substantially long-lasting immunity. When the immune response is protective against subsequent *P. gingivalis* infection, the live vaccine itself may be used in a preventive vaccine against *P. gingivalis*. In particular, the live vaccine can be based on a bacterium that is a commensal inhabitant of the oral cavity. This bacterium can be transformed with a vector carrying a recombinant chimeric protein and then used to colonise the oral cavity, in particular the oral mucosa. Once colonised in the oral mucosa, the expression of the recombinant protein will stimulate the mucosal associated lymphoid tissue to produce neutralising antibodies. To further illustrate this embodiment, using molecular biological techniques well known in the art, nucleotide sequences encoding the chimeric proteins of this invention may be inserted into the *vaccinia* virus genomic DNA at a site which allows for expression of epitopes but does not negatively affect the growth or replication of the *vaccinia* virus vector. The resultant recombinant virus can be used as the immunogen in a vaccine formulation. The same methods can be used to construct an inactivated recombinant viral vaccine formulation except that the recombinant virus is inactivated, such as by chemical means known in the art, prior to use as an immunogen and without substantially affecting the immunogenicity of the expressed immunogen. The inactivated recombinant-vaccine may be formulated with a suitable adjuvant in order to enhance the immunological response to the vaccine antigens.

[0152] The invention also provides for the use of a nucleic acid molecule including a nucleotide sequence encoding a chimeric or fusion protein of this invention directly as the vaccine formulation. Nucleotide sequences encoding the chimeric proteins, operatively linked to one or more regulatory elements, can be introduced directly to vaccinate an individual ("direct gene transfer") against pathogenic strains of *P. gingivalis*. Direct gene transfer into a vaccinated individual, resulting in expression of the genetic material by the vaccinated individual's cells such as vascular endothelial cells as well as the tissue of the major organs, has been demonstrated by techniques in the art such as by injecting intravenously an expression plasmid:cationic liposome complex [Zhu et al., 1993, *Science* 261:209-211]. Other effective methods for delivering vector DNA into a target cell are known in the art. In one example, purified recombinant plasmid DNA containing viral genes has been used to inoculate (whether parenterally, mucosally, or via gene gun immunization) vaccines to induce a protective immune response [Fynan et al. 1993, *Proc Natl Acad Sci USA* 90:11478-11482]. In another example, cells removed from an individual can be transfected or electroporated by standard procedures known in the art, resulting in the introduction of the recombinant vector DNA into the target cell. Cells containing the recombinant vector DNA may then be selected for using methods known in the art, such as by use of a selection marker expressed in the vector, and the selected cells may then be re-introduced into the individual to express the recombinant protein.

[0153] In other embodiments there is provided a pharmaceutical composition including an anti-microbial agent and immunogen as described above. The composition may further include diluent, excipient, or carrier or chemotherapeutic agent for treatment of a condition or disease associated with oral infection and may be adapted for oral administration. The compositions of this invention may be incorporated in lozenges, or in chewing gum or other products, e.g. by stirring into a warm gum base or coating the outer surface of a gum base, illustrative of which are jelutong, rubber latex, vinylite resins, etc., desirably with conventional plasticizers or softeners, sugar or other sweeteners or such as glucose, sorbitol

and the like.

[0154] An oral composition of this invention which contains the above-mentioned pharmaceutical composition may be prepared and used in various forms applicable to the mouth such as dentifrice including toothpastes, toothpowders and liquid dentifrices, mouthwashes, troches, chewing gums, dental pastes, gingival massage creams, gargle tablets, 5 dairy products and other foodstuffs. An oral composition according to this invention may further include additional well known ingredients depending on the type and form of a particular oral composition.

[0155] In certain preferred forms of the invention the oral composition may be substantially liquid in character, such as a mouthwash or rinse. In such a preparation the vehicle is typically a water-alcohol mixture desirably including a humectant as described below. Generally, the weight ratio of water to alcohol is in the range of from about 1:1 to about 10 20:1. The total amount of water-alcohol mixture in this type of preparation is typically in the range of from about 70 to about 99.9% by weight of the preparation. The alcohol is typically ethanol or isopropanol. Ethanol is preferred.

[0156] The pH of such liquid and other preparations of the invention is generally in the range of from about 5 to about 15 9 and typically from about 5.0 to 7.0. The pH can be controlled with acid (e.g. citric acid or benzoic acid) or base (e.g. sodium hydroxide) or buffered (as with sodium citrate, benzoate, carbonate, or bicarbonate, disodium hydrogen phosphate, sodium dihydrogen phosphate, etc).

[0157] In other desirable forms of this invention, the pharmaceutical composition may be substantially solid or pasty in character, such as toothpowder, a dental tablet or a toothpaste (dental cream) or gel dentifrice. The vehicle of such solid or pasty oral preparations generally contains dentally acceptable polishing material.

[0158] In a toothpaste, the liquid vehicle may comprise water and humectant typically in an amount ranging from about 20 10% to about 80% by weight of the preparation. Glycerine, propylene glycol, sorbitol and polypropylene glycol exemplify suitable humectants/carriers. Also advantageous are liquid mixtures of water, glycerine and sorbitol. In clear gels where the refractive index is an important consideration, about 2.5 - 30% w/w of water, 0 to about 70% w/w of glycerine and about 20-80% w/w of sorbitol are preferably employed.

[0159] Toothpaste, creams and gels typically contain a natural or synthetic thickener or gelling agent in proportions of about 0.1 to about 10, preferably about 0.5 to about 5% w/w. A suitable thickener is synthetic hectorite, a synthetic colloidal magnesium alkali metal silicate complex clay available for example as Laponite (e.g. CP, SP 2002, D) marketed by Laporte Industries Limited. Laponite D is, approximately by weight 58.00% SiO_2 , 25.40% MgO , 3.05% Na_2O , 0.98% Li_2O , and some water and trace metals. Its true specific gravity is 2.53 and it has an apparent bulk density of 1.0 g/ml at 8% moisture. Other suitable thickeners include Irish moss, iota carrageenan, gum tragacanth, starch, polyvinylpyrrolidone, hydroxyethylpropylcellulose, hydroxybutyl methyl cellulose, hydroxypropyl methyl cellulose, hydroxyethyl cellulose (e.g. available as Natrosol), sodium carboxymethyl cellulose, and colloidal silica such as finely ground Syloid (e.g. 244). Solubilizing agents may also be included such as humectant polyols such propylene glycol, dipropylene glycol and hexylene glycol, cellosolves such as methyl cellosolve and ethyl cellosolve, vegetable oils and waxes containing at least about 12 carbons in a straight chain such as olive oil, castor oil and petrolatum and esters such as amyl acetate, 35 ethyl acetate and benzyl benzoate.

[0160] It will be understood that, as is conventional, the oral preparations will usually be sold or otherwise distributed in suitable labelled packages. Thus, a bottle of mouth rinse will have a label describing it, in substance, as a mouth rinse or mouthwash and having directions for its use; and a toothpaste, cream or gel will usually be in a collapsible tube, typically aluminium, lined lead or plastic, or other squeeze, pump or pressurized dispenser for metering out the contents, 40 having a label describing it, in substance, as a toothpaste, gel or dental cream.

[0161] Organic surface-active agents may be used in the compositions of the present invention to achieve increased prophylactic action, assist in achieving thorough and complete dispersion of the active agent throughout the oral cavity, and render the instant compositions more cosmetically acceptable. The organic surface-active material is preferably anionic, non-ionic or ampholytic in nature and preferably does not interact with the active agent. It is preferred to employ 45 as the surface-active agent a detergents material which imparts to the composition detergents and foaming properties. Suitable examples of anionic surfactants are water-soluble salts of higher fatty acid monoglyceride monosulfates, such as the sodium salt of the monosulfated monoglyceride of hydrogenated coconut oil fatty acids, higher alkyl sulfates such as sodium lauryl sulfate, alkyl aryl sulfonates such as sodium dodecyl benzene sulfonate, higher alkylsulfo-acetates, higher fatty acid esters of 1,2-dihydroxy propane sulfonate, and the substantially saturated higher aliphatic acyl amides 50 of lower aliphatic amino carboxylic acid compounds, such as those having 12 to 16 carbons in the fatty acid, alkyl or acyl radicals, and the like. Examples of the last mentioned amides are N-lauroyl sarcosine, and the sodium, potassium, and ethanolamine salts of N-lauroyl, N-myristoyl, or N-palmitoyl sarcosine which should be substantially free from soap or similar higher fatty acid material. Examples of water-soluble non-ionic surfactants suitable for use are condensation products of ethylene oxide with various reactive hydrogen-containing compounds reactive therewith having long hydrophobic chains (e.g. aliphatic chains of about 12 to 20 carbon atoms), which condensation products ("ethoxamers") contain 55 hydrophilic polyoxyethylene moieties, such as condensation products of poly (ethylene oxide) with fatty acids, fatty alcohols, fatty amides, polyhydric alcohols (e.g. sorbitan monostearate) and polypropyleneoxide (e.g. Pluronic materials).

[0162] The surface active agent is typically present in amount of about 0.1-5% by weight. It is noteworthy, that the

surface active agent may assist in the dissolving of the active agent of the invention and thereby diminish the amount of solubilizing humectant needed.

[0163] Various other materials may be incorporated in the oral preparations of this invention such as whitening agents, preservatives, silicones, chlorophyll compounds and/or ammoniated material such as urea, diammonium phosphate, and mixtures thereof. These adjuvants, where present, are incorporated in the preparations in amounts which do not substantially adversely affect the properties and characteristics desired.

[0164] Any suitable flavouring or sweetening material may also be employed. Examples of suitable flavouring constituents are flavouring oils, e.g. oil of spearmint, peppermint, wintergreen, sassafras, clove, sage, eucalyptus, marjoram, cinnamon, lemon, and orange, and methyl salicylate. Suitable sweetening agents include sucrose, lactose, maltose, sorbitol, xylitol, sodium cyclamate, perillartine, AMP (aspartyl phenyl alanine, methyl ester), saccharine, and the like. Suitably, flavour and sweetening agents may each or together comprise from about 0.1 % to 5% more of the preparation.

[0165] Compositions intended for oral use may be prepared according to any method known in the art for the manufacture of pharmaceutical compositions and such compositions may contain one or more agents selected from the group consisting of sweetening agents, flavouring agents, colouring agents and preserving agents in order to provide pharmaceutically elegant and palatable preparations. Tablets contain the active ingredient in admixture with non-toxic pharmaceutically acceptable excipients which are suitable for the manufacture of tablets. These excipients may be for example, inert diluents, such as calcium carbonate, sodium carbonate, lactose, calcium phosphate or sodium phosphate; granulating and disintegrating agents, for example, corn starch, or alginic acid; binding agents, for example starch, gelatin or acacia, and lubricating agents, for example magnesium stearate, stearic acid or talc. The tablets may be uncoated or they may be coated by known techniques to delay disintegration and absorption in the gastrointestinal tract or periodontal pocket and thereby provide a sustained action over a longer period. For example, a time delay material such as glyceryl monostearate or glyceryl distearate may be employed.

[0166] Formulations for oral use may also be presented as hard gelatin capsules wherein the active ingredient is mixed with an inert solid diluent, for example, calcium carbonate, calcium phosphate or kaolin, or as soft gelatin capsules wherein the active ingredient is mixed with water or an oil medium, for example peanut oil, liquid paraffin or olive oil.

[0167] Aqueous suspensions contain the active materials in admixture with excipients suitable for the manufacture of aqueous suspensions. Such excipients are suspending agents, for example sodium carboxymethylcellulose, methylcellulose, hydropropyl methylcellulose, sodium alginate, polyvinylpyrrolidone, gum tragacanth and gum acacia; dispersing or wetting agents may be a naturally-occurring phosphatide, for example, lecithin, or condensation products of an alkylene oxide with fatty acids, for example polyoxyethylene stearate, or condensation products of ethylene oxide with long chain aliphatic alcohols, for example heptadecaethyleneoxycetanol, or condensation products of ethylene oxide with partial esters derived from fatty acids and a hexitol such as polyoxyethylene sorbitol monooleate, or condensation products of ethylene oxide with partial esters derived from fatty acids and hexitol anhydrides, for example polyethylene sorbitan monooleate.

[0168] The aqueous suspensions may also contain one or more preservatives or antimicrobial agents, for example benzoates, such as ethyl, or n-propyl p-hydroxybenzoate another example is chlorhexidine gluconate, one or more colouring agents, one or more flavouring agents, and one or more sweetening agents, such as sucrose or saccharin.

[0169] Oily suspensions may be formulated by suspending the active ingredients in a vegetable oil, for example arachis oil, olive oil, sesame oil or coconut oil, or in a mineral oil such as liquid paraffin. The oily suspensions may contain a thickening agent, for example beeswax, hard paraffin or cetyl alcohol. Sweetening agents such as those set forth above, and flavouring agents may be added to provide palatable oral preparations. These compositions may be preserved by the addition of an anti-oxidant such as ascorbic acid.

4. Kits

[0170] In certain embodiments there is provided a kit including:

- anti -microbial agent for removing substantially all micro-organisms or fragments thereof from oral tissue of said subject;
- an immunogen for immunising said subject against a microbial pathogen, the presence of which in oral tissue is associated with a disease or condition;

said kit being adapted for use in the above described methods.

[0171] The kit may include:

- a container holding a therapeutic composition in the form of one or more of an anti-microbial agent and immunogen;

- a label or package insert with instructions for use.

[0172] In certain embodiments, there is provided a kit when used in a method or use described herein.

[0173] In certain embodiments the kit may contain one or more further active principles or ingredients for treatment of a disease or condition.

[0174] The kit may comprise a container and a label or package insert on or associated with the container. Suitable containers include, for example, bottles, vials, syringes, blister pack, etc. The containers may be formed from a variety of materials such as glass or plastic. The container holds a therapeutic composition which is effective for treating the condition and may have a sterile access port (for example the container may be an intravenous solution bag or a vial having a stopper pierceable by a hypodermic injection needle). The label or package insert indicates that the therapeutic composition is used for treating the condition of choice. In one embodiment, the label or package insert includes instructions for use and indicates that the therapeutic composition can be used for treatment of the given disease or condition.

[0175] The kit may comprise (a) a therapeutic composition; and (b) a second container with a second active principle or ingredient contained therein. The kit in this embodiment of the invention may further comprise a package insert indicating that the and other active principle can be used to treat a disorder or prevent a complication stemming from a given infection. Alternatively, or additionally, the kit may further comprise a second (or third) container comprising a pharmaceutically-acceptable buffer, such as bacteriostatic water for injection (BWFI), phosphate-buffered saline, Ringer's solution and dextrose solution. It may further include other materials desirable from a commercial and user standpoint, including other buffers, diluents, filters, needles, and syringes.

[0176] The invention is further illustrated by the following Examples which are included by way of exemplification and not limitation of the invention.

Example 1

25 Methods and materials.

[0177] **Bacterial strains and growth conditions.** Lyophilised cultures of *Porphyromonas gingivalis* W50 were grown anaerobically at 37°C on lysed horse blood agar plates supplemented with 5 µg/ml haemin, 0.5 µg/ml cysteine (HB agar, < 10 passages). After 3-4 days colonies were used to inoculate brain heart infusion medium containing 5 µg/ml haemin, 0.5 µg/ml cysteine (1). Batch cultures were grown anaerobically in a MK3 Anaerobic Workstation (Don Whitley Scientific Ltd., Adelaide, Australia). Cells were harvested during exponential growth phase by centrifugation (7500 g, 30 min, 4°C) and washed twice with PG buffer (50 mM Tris-HCl, 150 mM NaCl, 5 mM CaCl₂, and 5 mM cysteine-HCl, pH 8.0) in the anaerobic workstation. Growth of batch cultures was monitored at 650 nm using a spectrophotometer (model 295E, Perkin-Elmer). Culture purity was checked routinely by Gram stain, microscopic examination and using a variety of biochemical tests according to Slots (2).

[0178] **Construction of pET28 constructs containing adhesin sequences and adhesin sequences with N-terminal addition of Kgp proteinase sequences.** Kgp residues representing peptides and chimeric peptides of the active site (AS) and KgpA1 adhesin (A1) domains were over-expressed in *E. coli* as recombinant (r) proteins with hexa-His tags using pET expression vectors (Novagen). The r-proteins expressed were rKAS2, and rKLA1 and the r-chimeric proteins were rKAS2-KLA1, rKAS1-KsA1 and rKAS4-KAS3-KAS5-KAS6-KLA1 (also referred to as multiKAS-KLA1). The amino acid sequences representing the various A1 and AS domains are described in Tables 1 and 2.

[0179] The various KAS and KA1 domains of the *kgp* gene were amplified from pNS1 (3.5 kb BamHI /ys fragment in pUC18) or *P. gingivalis* genomic DNA respectively using primers listed in Table 4, Taq DNA polymerase (Invitrogen) and a PC-960 thermal cycler (Corbett Research Technologies). Primer pairs KAS2-FOR and KAS2-REV and KLA1-FOR and KLA1-REV were used to generate PCR fragments encoding KAS2 and KLA1 respectively using the following reaction conditions: 94°C, 3 minutes, followed by 28 cycles of 94°C, 45 sec (denaturing); 62°C, 40 seconds (annealing) and 72°C, 20 seconds (extension) followed by a final cycle of 72°C, 5 min.

[0180] The KAS2-KLA1 chimeric PCR product was produced by gene splicing by overlap extension (SOEing) as follows: PCR products were produced using primer pairs KAS2-FOR and KAS2-KLA1-chimera-REV and KAS2-KLA1-chimera-FOR and KLA1-REV using the conditions described above. The PCR products were then annealed and a final PCR was performed with primers KAS2-FOR and KLA1-REV (94°C, 2 minutes, followed by 28 cycles of 94°C, 30 sec; 50°C, 30 seconds and 72°C, 40 seconds followed by a final cycle of 72°C, 5 min.

[0181] For the preparation of the KAS1-KsA1 PCR product, two successive PCRs were conducted using the KAS1-KsA1-REV primer with each of the KAS1-KsA1-FOR primers 1 and, 2 in succession (reaction conditions 94°C for 2 minutes followed by 35 cycles of 94°C, 15 seconds ; 63°C, 30 seconds and 72°C, 2 minutes) to produce the KAS1-KsA1 PCR product. The KAS1-KsA1-FOR1 and KAS1-KsA1-FOR2 primers contain an 3'extension overlapping the 5' of the previous PCR product.

[0182] For the preparation of the multiKAS-KLA1 PCR fragment, four successive PCR's were conducted using the

multi-REV primer with each of the multi-FOR primers 1, 2, 3 and 4 in succession (reaction conditions were 95°C, 2 minutes followed by 35 cycles of 95°C, 20 seconds; 68°C, 1.5 minutes) to produce the multiKAS-KLA1 PCR product. Each multi-FOR primer contains a 3' extension overlapping the 5' of the previous PCR product.

[0183] All of the PCR fragments encoding KAS2, KLA1, KAS2-KLA1, KAS1-KsA1 and multiKAS-KLA1. were purified using PCR purification columns (Qiagen), ligated into the TA cloning vector, pGem-T Easy (Promega) and transformed into *E. coli* JM109 following the manufacturer's protocol. Purified recombinant pGemT-Easy constructs were digested with Ncol and Xhol and directionally cloned into Ncol/Xhol digested pET28b (Novagen) and transformed into the non-expression host, *E. coli* JM109 [DHS α]. The recombinant pET28 constructs were purified and transformed into the *E. coli* expression host, BL21 (DE3) [HMS174(DE3)] (Novagen) and selected on LB containing 50 μ g kanamycin following the manufacturer's instructions. The integrity of each insert was confirmed by DNA sequence analysis.

[0184] The oligonucleotide primers (Table 4) have been designed to incorporate restriction enzyme sites, stop codons and hexa-His Tags where necessary. The primers used for the rKAS2, rKLA1 and rKAS2-KLA1 were designed to limit the inclusion of extraneous coding sequence to no more than three amino acids plus the hexa-his tag in r-proteins. The rKAS1 and the rKLA1 were designed to contain a hexa-His tag at the N-terminal and C-terminal ends respectively, so that they may be directly compared to the rKAS2-KLA1 which has a hexa-his tag at both N- and C-termini. In rKAS1-KsA1 and rmultiKAS-KLA1 the His Tags are found at the C-termini.

Table 4 Oligonucleotide primers used for the amplification of the nucleotide sequences encoding the various fragments and chimeras of Kgp A1 and AS

Recombinant (r) protein	Oligo	Sequence (5'-3')	Characteristics* (5'-3')
rKAS2	KAS2-FOR	GACCATGGCTCATCACCATCAC ATCACAAATACCGGAGTCAGCTT GCA (SEQ ID NO: 47)	GA buffer-Ncol (including ATG start)-CT-(His) ₆ -AS (nt 1992-2012)
	KAS2-REV	GAATCGAGTTATTTGTCCATT GTGAGTGCTTC (SEQ ID NO: 48)	GA buffer-Xhol-TTA Stop-KAS1 (nt 2099-2075)
rKLA1	KLA1-FOR	GACCATGGCTGGGGAGACAATA CGGGTTAC (SEQ ID NO: 49)	GA buffer-Ncol (including ATG start)-CT-A1 (nt 2946-2966)
	KLA1-REV	GAATCGAGACCTCCGTTAGGCAA ATCC (SEQ ID NO: 50)	GA buffer-Xhol-A1 (nt 3863-3845)
rKAS2-KLA1	KAS2-KLA1-REV	CCGTATTGTCTCCCCATTGTCCT TATTAGTGAGTGCTTC (SEQ ID NO: 51)	A1 (nt 2961-2946)-KAS1 (nt 2099-2075)
	KAS2-KLA1-FOR	CACTAATAAGGACAAATGGGAG ACAATACGGGTTAC (SEQ ID NO: 52)	KAS1 (nt 2084-2099)-A1 (nt 2946-2966)

(continued)

Recombinant (r) protein	Oligo	Sequence (5'-3')	Characteristics* (5'-3')	
5 10 15 20 25 30 35 40 45 50 55	rKAS1-KsA1	KAS1-KsA1-FOR1	CATGGATCTGAGACCGCATGGG CTGATCCACTTTCTTGTGGATG CCGAT (SEQ ID NO: 53)	AS (nt 2025-2057)-A1 (nt 2970-2987)-
		KAS1-KsA1-FOR2	CCATGGCTTGAATACCGGAGTC AGCTTGCAAACATACAGCGCA TGGATCTGAGACCGCA SEQ ID NO: 54)	Ncol-CT-AS (nt 1989-2042)
		KAS1-	CTCGAGGAATGATTGGAAAGTG	Xhol-A1(nt 3663-3644)
		KsA1-REV	TT (SEQ ID NO: 55)	
	rmultiKAS-KLA1	multi-FOR1	CCATGGCTGATTATAGCTGGAAT TCCCAGGTAGTCAGCTTGCAAA CTATACA (SEQ ID NO: 56)	Ncol-CT-KAS4 (nt 1857-1880)-KAS3 (nt 2001-2021)
		multi-FOR2	CTTGCAAACATACAGCGCATG GATCTGAGACCGCATGGCTGAT CCACTT (SEQ ID NO: 57)	KAS3 (nt 2006-2057)
		multi-FOR3	ATGGGCTGATCCACTTCTGAATT CTTATTGGGGCGAGATCGGCAAT ATTACC (SEQ ID NO: 58)	KAS3 (nt 2042-2060)-KAS5 (nt 2223-2240)-KAS6 (nt 2403-2417)
		multi-FOR4	GATCGGCAATATTACCCATATTG GTGCTCATTACGCTTGGGAGAC AATACG (SEQ ID NO: 59)	G-KAS6 (nt 2403-2435)-GCT (Ala spacer)-A1 (nt 2946-2960)
		multi-REV	CTCGAGACCTCCGTTAGGCAAAT CCAATGCCGGTGTATCAGATAG TTGTCA (SEQ ID NO: 60)	Xho-A1 (nt 3863-3818)

* nucleotide (nt) sequence numbers from lysine-specific cysteine proteinase gene sequence accession number U75366

[0185] **Expression and purification of recombinant proteins.** Recombinant proteins were expressed from pET28::KLA1(KAS2, KAS2-LA1, KAS1-SA1, multiKAS-KLA1) constructs by induction with isopropyl β -D-thiogalactoside.

dase (IPTG). All recombinant proteins were produced as 6-His Tag fusion proteins and purified with Ni-NTA purification system (Invitrogen) under denaturing conditions. Briefly, *E. coli* (DE3) single colony transformants were used to inoculate 20 mL of Luria-Bertani (LB) broth containing 50 µg/ml kanamycin at 37°C on an orbital shaker overnight. This inoculum was then used to inoculate 1L of LB containing 50 µg/ml kanamycin. The OD₆₀₀ of this culture was allowed to reach 5 0.5-0.7 (mid-log phase) before inducing protein expression with isopropyl IPTG at 0.1mM for 2 hours at 37°C with shaking of 200 rpm. Cells were harvested (7,500g) and resuspended in a denaturing binding buffer (8M Urea, 20 mM Sodium Phosphate pH 8.0 & 500 mM NaCl) and sonicated on ice for 3 x 15 s bursts at 30 s intervals using a Branson Sonifer 250 Cell disrupter (Branson Ultronics Corporation, Danbury, CT) with the microtip on setting 3, then centrifuged at 39,000 g for 30 min at 4°C. Recombinant proteins were purified from the supernatant by loading onto a pre-equilibrated Ni-NTA 10 Agarose column and then washing with denaturing washing buffer (8M Urea, 20 mM Sodium Phosphate pH 6.0 & 500 mM NaCl) to elute unbound proteins. The column was then washed using 10 volumes of binding buffer B and the recombinant protein was eluted with denaturing elution buffer (8M Urea, 20mM Sodium Phosphate pH 6.0, 500mM NaCl & 0.5 M Imidazole). Purified protein was dialyzed against 2M Urea-PBS and stored at -80°C.

[0186] Recombinant protein samples were analysed by SDS-PAGE and their molecular masses determined using 15 ProtParam on-line (<http://au.expasy.org/tools/protparam.html>). Protein concentration of all samples was determined by the Bio-Rad Protein Assay using BSA as a standard.

[0187] Immunisation and the mouse periodontitis model. The mouse periodontitis experiments were performed as described previously (3) and were approved by the University of Melbourne Ethics Committee for Animal Experimentation. BALB/c mice 6-8 weeks old (12 mice per group) housed in microisolators were immunized subcutaneously (s.c. 20 100 µL) with either 50 µg of one of the recombinant proteins or RgpA-Kgp complex, 2 x 10⁹ formalin killed cells of *P. gingivalis* strain W50 or PBS; each antigen was emulsified in incomplete Freund's adjuvant (IFA). After 30 days the mice were boosted with antigen (s.c. injection, emulsified in IFA) and then bled from the retrobulbar plexus 12 days later. Four days after the second immunisation mice were given kanamycin (Sigma-Aldrich, New South Wales, Australia) at 1 mg/ml in deionized water ad libitum for 7 days. Three days after the antibiotic treatment (2 days after bleeding), mice were 25 orally inoculated four times 2 days apart with 1 x 10¹⁰ viable *P. gingivalis* W50 (25 µl) in PG buffer (50 mM Tris-HCl, 150 mM NaCl, 5 mM CaCl₂, and 5 mM cysteine-HCl, pH 8.0) containing 2% (wt/vol) carboxymethyl cellulose (CMC; Sigma-Aldrich, New South Wales, Australia), and a control group was sham infected with PG buffer containing 2% (wt/vol) CMC alone. The inocula were prepared in the anaerobic chamber and then immediately applied to the gingival margin of the maxillary molar teeth. Two weeks later, mice received another four doses (2 days apart) of 1 x 10¹⁰ cells 30 of viable *P. gingivalis* W50 (25 µl) in PG buffer containing 2% (wt/vol) CMC. The number of viable bacteria in each inoculum was verified by enumeration on blood agar. Mice were fed a soft powdered diet (Barastock, Australia) and housed in cages fitted with a raised wire mesh bottom to prevent access to bedding. Four weeks after the last dose, mice were bled from the retrobulbar plexus and killed, and the maxillae were removed and cut in half with one half (right) used for alveolar bone loss measurement and the other half (left) used for real-time PCR.

[0188] The right half maxillae were boiled (1 min) in deionized water, mechanically defleshed, and immersed in 2% (wt/vol) potassium hydroxide (16 h, 25°C). The half maxillae were then washed (two times with deionized water) and immersed in 3% (wt/vol) hydrogen peroxide (6 h, 25°C). After the half maxillae were washed (two times with deionized water), they were stained with 0.1% (wt/vol) aqueous methylene blue, and a digital image of the buccal aspect of each 35 half maxilla was captured with an Olympus DP12 digital camera mounted on a dissecting microscope, using OLYSIA BioReport software version 3.2 (Olympus Australia Pty Ltd., New South Wales, Australia) to assess horizontal bone loss. Horizontal bone loss is loss occurring in a horizontal plane, perpendicular to the alveolar bone crest (ABC) that results in a reduction of the crest height. Each half maxilla was aligned so that the molar buccal and lingual cusps of each tooth image were superimposed, and the image was captured with a micrometer scale in frame, so that measurements could be standardized for each image. The area from the cementoenamel junction to the ABC for each molar 40 tooth was measured using OLYSIA BioReport software version 3.2 imaging software. Bone loss measurements were determined twice by a single examiner using a randomized and blinded protocol.

[0189] Determination of subclass antibody by an ELISA. To determine the subclass antibody responses of mouse sera, enzyme-linked immunosorbent assays (ELISAs) were performed in triplicate using a 5-µg/ml solution of formalin killed *P. gingivalis* W50 in phosphate-buffered saline (PBS) (0.01 M Na₂HPO₄, 1.5 mM KH₂PO₄, 0.15 M NaCl), pH 7.0, 50 containing 0.1% (vol/vol) Tween 20 (PBST) to coat wells of flat-bottom polyvinyl microtiter plates (Dynatech Laboratories, McLean, VA). After removal of the coating solution, PBST containing 2% (wt/vol) skim milk powder was added to wells to block the uncoated plastic for 1 h at room temperature. After the wells were washed four times with PBST, serial dilutions of mouse sera in PBST containing 0.5% (wt/vol) skim milk (SK-PBST) were added to each well and incubated for 16 h at room temperature. After the wells were washed six times with PBST, a 1/2,000 dilution of goat IgG to mouse IgM, IgA, IgG1, IgG2a, IgG2b, or IgG3 (Sigma, New South Wales, Australia) was added in SK-PBST and allowed to bind for 2 h at room temperature. Plates were washed six times in PBST, and a 1/5,000 dilution of horseradish peroxidase-conjugated rabbit anti-goat immunoglobulin (Sigma, New South Wales, Australia) in SK-PBST was added to each well 55 and incubated for 1 h at room temperature. After the wells were washed six times with PBST, bound antibody was

detected by the addition of 100 μ l of ABTS substrate [0.9 mM 2,2'-azino-bis(3-ethylbenz-thiazoline-6) sulfonic acid in 80 mM citric acid containing 0.005% (vol/vol) hydrogen peroxide, pH 4.0] to each well. The optical density at 415 nm was measured using a microplate reader (Bio-Rad microplate reader, model 450).

[0190] SDS-PAGE gel electrophoresis and Western blotting. Recombinant proteins (10 μ g) were analysed using the XCell surelock Mini-Cell electrophoresis system. Recombinant proteins were mixed in 20 μ l of reducing sample buffer (10% [wt/vol] SDS, 0.05% [wt/vol] bromophenol blue, 25% [vol/vol] glycerol, and 0.05% [vol/vol] 2-mercaptoethanol). The pH was adjusted to pH 8.0 with 1.5 M Tris-HCl, and then the solution was heated for 5 min at 100°C. Recombinant proteins (10 μ g/lane) were loaded onto Novex 12% (wt/vol) Tris-glycine precast mini gels, and electrophoresis was performed using a current of 30 to 50 mA and a potential difference of 125 V using a Novex electrophoresis system (Novex, San Diego, CA). Proteins were visualized using 0.25% w/v Coomassie blue R250.

[0191] Epitope analysis of the Kgp proteinase active site peptide (KAS-2) sequence. The antibody binding sites for the Lys-specific proteinase active site peptide KAS2 (433-468 SEQ ID No: 28) was determined by synthesising N-terminally biotinylated overlapping eight residue peptides (offset by one, overlapping by seven residues) on a multipin peptide synthesis system (Chiron Technologies, Melbourne, Australia) using standard solid-phase peptide synthesis protocols for Fmoc chemistry. Biotinylated peptides (5 μ g/mL) in 0.1 M PBS, pH 7.4 were bound to streptavidin coated plates, overnight at 4°C (Nunc, NSW Australia). After the wells were washed four times with PBST epitope mapping of the plate-bound peptides was carried out by ELISA as per Chiron Technologies instructions using mouse sera at a dilution of 1:1000 in 1% w/v non-fat skim milk powder in 0.1 M PBS, pH 7.4, containing 0.1% v/v Tween 20 (SK-PBST). After the wells were washed six times with PBST, a 1/2,000 dilution of goat IgG to mouse IgG (Sigma, New South Wales, Australia) was added in SK-PBST and allowed to bind for 2 h at room temperature. Plates were washed six times in PBST, and a 1/5,000 dilution of horseradish peroxidase-conjugated rabbit anti-goat immunoglobulin (Sigma, New South Wales, Australia) in SK-PBST was added to each well and incubated for 1 h at room temperature. After the wells were washed six times with PBST, bound antibody was detected by the addition of 100 μ l of ABTS substrate [0.9 mM 2,2'-azino-bis(3-ethylbenz-thiazoline-6) sulfonic acid in 80 mM citric acid containing 0.005% (vol/vol) hydrogen peroxide, pH 4.0] to each well. The optical density at 415 nm was measured using a microplate reader (Bio-Rad microplate reader, model 450).

[0192] Statistical analysis. The bone loss data were statistically analyzed using a one-way analysis of variance (ANOVA) and Dunnett's T3 test (SPSS for Windows, version 12). The IgA, IgM, and IgG subclass antibody titers were statistically analyzed using Student's *t* test using SPSS software (SPSS for Windows, version 12).

Example 2

[0193] Characterisation and purification of the recombinant proteins (KsA1, KLA1, KAS1-KsA1 and KAS2-KLA1). In order to characterise the ability of Kgp adhesin A1 domain fragments and chimera Kgp proteinase and Kgp adhesin A1 domain fragments to protect against *P. gingivalis* infection, we expressed and purified the recombinant proteins:- KsA1, KLA1, KAS1-KsA1 and KAS2-KLA1. Recombinant proteins (KsA1 and KLA1) and recombinant chimera proteins (KAS1-KsA1 and KAS2-KLA1) were purified from inclusion bodies using nickel chelate affinity chromatography and the purified proteins analysed by SDS-PAGE (Fig. 1). Each of the purified recombinant proteins consisted of one major protein band with molecular weights of 40, 36, 31 and 32 kDa corresponding to KAS2-KLA1, KLA1, KsA1 and KAS1-KsA1, and these weights corresponded to the calculated molecular masses of the His-tag recombinant proteins using ProtParam. To characterize the immunogenicity of the recombinant proteins KsA1, KLA1, KAS1-KsA1 and KAS2-KLA1 were used to immunize mice and the sera was used to probe KAS2 peptide coated plates and formalin killed *P. gingivalis* W50 cells coated plates (Fig 2). Recombinant chimera proteins KAS1-KsA1 and KAS2-KLA1 antisera were found to recognize KAS2 peptide (Fig 2A) at a similar level to KAS2 specific antisera (KAS2-diphtheria toxoid conjugate) as well as formalin killed *P. gingivalis* W50 cells (Fig 2B). However, antisera against the recombinant protein KLA1 only recognized killed *P. gingivalis* W50 cells (Fig 2B).

Example 3

[0194] Effect of immunization with the recombinant proteins (KsA1, KLA1, KAS1-KsA1 and KAS2-KLA1) on *P. gingivalis* induced alveolar bone loss in the mouse periodontitis model. The recombinant proteins KsA1, KLA1, KAS1-KsA1 and KAS2-KLA1, formalin killed *P. gingivalis* strain W50 and the RgpA-Kgp complex were used to determine and compare the protection induced against *P. gingivalis* induced alveolar bone loss using a modified mouse model of periodontal bone loss based on that reported by Baker *et al* (4). Mice were immunized (days 0 and 30) with either recombinant proteins KsA1, KLA1, KAS1-KsA1 or KAS2-KLA1, RgpA-Kgp complex or formalin killed *P. gingivalis* strain W50 (FK-W50) cells or PBS adjuvant alone and were then orally challenged with viable *P. gingivalis* W50. Immunization with all of the recombinant antigens, RgpA-Kgp complex and FK-W50 cells protected BALB/c mice against *P. gingivalis*-induced alveolar bone loss as these animals exhibited significantly ($p<0.001$) less bone loss compared to the PBS

immunized group (Figure 3). However the KAS2-KLA1 immunised mice had significantly less bone loss than mice immunised with KLA1 ($p<0.01$); KsA1 ($p<0.001$), RgpA-Kgp complex ($p<0.001$), FK-W50 cells ($p<0.001$) and non-challenged mice ($p<0.001$). There was no significant difference in bone loss between the KAS2-KLA1 and KAS1-KsA1 immunised mice. Furthermore, KAS1-KsA1 immunised mice exhibited significantly less bone loss than non-challenged mice ($p<0.01$) and RgpA-Kgp complex immunised mice ($p<0.05$), but were not significantly different from KsA1, KLA1, and FK-W50 immunised mice. There was no significant difference in bone loss between the KsA1, KLA1, RgpA-Kgp complex and FK-W50 immunised mice.

Example 4

[0195] **Antibody subclass responses induced by immunization with the recombinant proteins (KsA1, KLA1, KAS1-KsA1 and KAS2-KLA1) in the mouse periodontitis models.** Prior and post to oral inoculation challenge with viable *P. gingivalis* cells mice were bled and the sera collected by centrifugation. Fig 4 shows the antibody subclass reactivity to formalin-killed *P. gingivalis* W50 cells for each immunogen (KsA1, KLA1, KAS1-KsA1 or KAS2-KLA1 or formalin killed *P. gingivalis* strain W50 (FK-W50) cells) in the mouse periodontitis model. All of the protective immunogens induced a high IgG antibody titre to FK-W50. Furthermore, the predominant antibody subclass each protective immunogen induced was IgG1 with only weakly immunoreactive IgG2a, IgG2b and IgG3 FK-W50-specific antibodies (Fig 4). The predominant antibody subclass induced by each immunogen both pre (Fig 4A) and post-oral inoculation (Fig 4B) was IgG1.

Example 5

[0196] **Epitope mapping of KAS2 (433-468).** Overlapping biotinylated eight residue peptides (offset by one, overlap by seven) for KAS2 (433-468) were synthesised and used to coat streptavidin coated plates. The antibody binding epitopes were then identified using antisera from mice immunized with KAS1-KsA1, KAS2-KLA1 and KAS2-diphtheria toxoid conjugate (Fig 5). A two fold increase in optical density (415nm) above background was considered as a positive antibody response (threshold OD). The antisera recognised the following peptide sequences derived from SEQ ID No.28 *viz.* KAS1 - KsA1 recognised peptides 435-442, 436-443, 445-452, 446-453 and 447-454 (threshold OD = 0.07, Fig 5A) whereas KAS2 - KLA1 recognised peptides 435-442, 447-454 and 448-455 (threshold ID = 0.07, Fig 5A). This suggests recognition of a number of minimal epitopes *viz.* peptide 436-442 (VSFANYT and its variant VGFANYT), peptide 447-452 (ETAWAD and its variant ETSWAD), and peptide 448-453 (TAWADP and its variant TSWADP). Peptides which include the peptide 436-442 epitope include GVSFANYT, GVGFANYT, VSFANYTA and VGFANYTA. Peptides which include the peptide 447-452 and/or 448-453 epitopes include SETAWAD, SETSWAD, ETAWADP, ETSWADP, TAWADPL and TSWADPL, more particularly GSETAWAD, GSETSWAD, SETAWADP, SETSWADP, ETAWADPL, ETSWADPL, TAWADPL and TSWADPL.

Example 6

Synthesis of KAS and RAS Peptides for conjugation to a protein.

[0197] Peptides were synthesized manually or using a CEM Microwave peptide synthesizer. Standard solid-phase peptide synthesis protocols for Fmoc chemistry were used throughout. Peptides were assembled as the carboxyamide form using Rink-linker derived AM-sure resin (AAPTEC, KY, USA). Coupling was accomplished with HBTU/HOBt activation using 4 equiv of Fmoc-amino acid and 6 equiv of DIPEA. The Fmoc group was removed by 20% piperidine in 1M HOBt/DMF.

[0198] Resins bearing KAS or RAS peptides were swollen in DMF and the N-terminal Fmoc group removed by 2% v/v DBU in DMF containing 2% v/v piperidine. The N-terminal amino group was then derivatised with S-Acetylmercaptoacetic acid (SAMA) group using 5 equiv of SAMA-OPfp and 5 equiv of HOBt. The reaction was monitored by the trinitrobenzene sulphonic acid (TNBSA) test. When a negative TNBSA test was returned the resin was washed (5 x DMF, 3 x DCM and 3 x diethyl ether). The resin was then dried under vacuum. Cleavage of peptides from the resin support was performed using TFA:phenol:TIPS:EDT:water (92:2:2:2:2) cleavage cocktail for 2.5 hours or 4 hours depending on the arginine content of the peptide. After cleavage the resin was removed by filtration and the filtrate concentrated to approximately 1 mL under a stream of nitrogen. After the peptide products were precipitated in cold ether, they were centrifuged and washed three times. The peptide precipitates were dissolved in 5 to 10 mL of water containing 0.1% v/v TFA and insoluble residue removed by centrifugation. Peptides were purified by RP-HPLC.

[0199] A number of different chemical moieties can be used for derivatising peptides for conjugation to proteins, these would introduce reactive groups such as; halides (bromo, chloro and iodo), maleimido, succinimidyl, hydrazinyl, oxime, thiol, which would then be used to conjugate the derivatised peptide to a protein such as KgpA1 through its native cysteine

residues or has been derivatised with the complementary reactive group that allows the chemical ligation to proceed to form a peptide-protein conjugate.

[0200] Conjugation of SAMA-Peptides to KA1. To a solution, containing 10mg/mL of recombinant KA1 or other adhesin domain of the RgpA-Kgp complex in phosphate-buffered saline (0.1 M sodium phosphate, 0.9% NaCl, pH 7.4) was added 0.1mL of a 1% w/v solution of m-maleimido benzoyl-N-hydroxysuccinimide ester (MBS) in DMF. After 30 min unreacted MBS was removed and MBS-modified KA1 collected by gel filtration using a PD10 column (Pharmacia, NSW, Australia) equilibrated in conjugation buffer (0.1 M sodium phosphate, 5mM EDTA; pH 6.0). Purified SAMA-peptide (1.3 μ mole) was dissolved in 200 μ L 6M guanidine HCl containing 0.5 M Tris; 2mM EDTA, pH 6.0 and diluted with 800 μ L MilliQ water and deprotected *in-situ* by addition of 25 μ L of 2M NH₂OH (40 equiv) dissolved in MilliQ water. The collected MBS-KA1 was immediately reacted with deprotected SAMA-peptide and stirred for one hour at room temperature. The peptide-KA1 conjugate was separated from unreacted peptide by gel filtration using a PD10 column equilibrated in PBS pH 7.4 and lyophilized. The reaction was monitored using the Ellmans test.

Example 7

[0201] Preparation of Antibodies. Polyclonal antiserum to recombinant proteins are raised in mice by immunising with the proteins subcutaneously. The mice are immunised at day 0 with 25 μ g of protein in incomplete Freund's adjuvant and day 30 with 25 μ g of protein in incomplete Freund's adjuvant. Immunisations are carried out using standard procedures. Polyclonal antisera having a high titre against the proteins are obtained. If desired monoclonal antibodies directed specifically against recombinant proteins are obtained using standard procedures.

Example 8

[0202] Immunization for the generation of antibodies. BALB/c mice or CD1 (Swiss out bred mice) 6-8 weeks old (10 mice per group) were immunized subcutaneously (s.c. 100 μ L) with either 50 μ g of the KAS2-LA1 chimera and the antigen emulsified in incomplete Freund's adjuvant (IFA). After 30 days the mice were boosted with antigen (s.c. injection, emulsified in IFA) and 12 days later the mice were killed and cardiac bled to collect sera.

[0203] Determination of subclass antibody by an ELISA. To determine the subclass antibody responses of mouse sera, enzyme-linked immunosorbent assays (ELISAs) were performed in triplicate using a 5- μ g/ml solution of KAS2-LA1 chimera or formalin killed *P. gingivalis* W50 or the RgpA-Kgp complex in phosphate-buffered saline (PBS) (0.01 M Na₂HPO₄, 1.5 mM KH₂PO₄, 0.15 M NaCl), pH 7.0, containing 0.1% (vol/vol) Tween 20 (PBST) to coat wells of flat-bottom polyvinyl microtiter plates (Dynatech Laboratories, McLean, VA). After removal of the coating solution, PBST containing 2% (wt/vol) skim milk powder was added to wells to block the uncoated plastic for 1 h at room temperature. After the wells were washed four times with PBST, serial dilutions of mouse sera in PBST containing 0.5% (wt/vol) skim milk (SK-PBST) were added to each well and incubated for 16 h at room temperature. After the wells were washed six times with PBST, a 1/2,000 dilution of goat IgG to mouse IgM, IgA, IgG1, IgG2a, IgG2b, or IgG3 (Sigma, New South Wales, Australia) was added in SK-PBST and allowed to bind for 2 h at room temperature. Plates were washed six times in PBST, and a 1/5,000 dilution of horseradish peroxidase-conjugated rabbit anti-goat immunoglobulin (Sigma, New South Wales, Australia) in SK-PBST was added to each well and incubated for 1 h at room temperature. After the wells were washed six times with PBST, bound antibody was detected by the addition of 100 μ L of ABTS substrate [0.9 mM 2,2'-azino-bis(3-ethylbenz-thiazoline-6) sulfonic acid in 80 mM citric acid containing 0.005% (vol/vol) hydrogen peroxide, pH 4.0] to each well. The optical density at 415 nm was measured using a microplate reader (Bio-Rad microplate reader, model 450).

[0204] Antibody subclass responses induced by immunization with the recombinant protein KAS2-KLA1 in outbred (CD1, Swiss) mice. CD1 (Swiss) mice were immunised with the KAS2-LA1 chimera, bled and the sera collected by centrifugation. Fig 6 shows the antibody subclass reactivity to KAS2-LA1 chimera, formalin-killed *P. gingivalis* W50 cells and the RgpA-Kgp complex. The KAS2-LA1 chimera induced a strong IgG antibody with a predominant IgG1 antibody response that recognised the KAS2-LA1 chimera and cross reacted strongly with FK *P. gingivalis* W50 cells and the RgpA-Kgp complex (Fig. 6). Furthermore, the KAS2-LA1 chimera induced only weak immunoreactive IgG2a, IgG2b and IgG3 antigen-specific antibodies (Fig 6).

Example 9

Development of a Kgp structural model and Identification of Active Site Surface Accessible Sequences.

[0205] Our work has shown that Kgp proteinase active site peptides are highly immunogenic and induce high levels of protection against *P. gingivalis*-induced bone loss. In an attempt to identify further proteinase active site peptides as vaccine candidates a model of the catalytic domain of Kgp was developed using the Orchestrar suite of programs within

Sybyl7.3 (Fig 7). The model is based on PDB structure 1crv of the RgpB protease from *P. gingivalis*, the proteins have a 23.58% pairwise identity and the Z-score is 25.09 (a high-confidence model). The Meta-PPisp protein interaction server predicts two protein-protein interaction surfaces for Kgp: the substrate binding surface (as in RgpB), and a second surface unique to Kgp. The major differences between the RgpB and Kgp models are in the loops that frame the second interaction surface and a 19-residue gap (Val526 to Phe545) that couldn't be modelled in Kgp that falls within the second interaction surface. Figure 7 shows the Kgp model with the thicker ribbons showing surface accessible sequences around the proteinase active site of Kgp, the surface accessible sequences were found to be Asp388-Gln394, Leu421-Ala423, Ala443-Glu447 with Ala451, Asn510-Trp513, and Ile570-Gly577 with Tyr580. From the model (Fig 6) it is evident that along with KAS2 (A) three other sequences KAS4 (Asp388-Val395) (B), KAS5 (Asn510-Asp516) (C) and KAS6 (Ile570-Tyr580) (D) are prominent and of sufficient length to be vaccine targets. Thus a recombinant chimera protein can be produced that has each of these peptides in sequence and joined on to the N-terminus of KLA1 to produce multiKAS-KLA1, that can be used to induce an immune response and hence to protect against *P. gingivalis* related diseases or conditions.

15 **Example 10**

Process for modelling Arg-X- proteinase to identify immunogenic regions flanking the catalytic site.

20 **[0206]** The Arg-X proteinase three dimensional structure was determined according to the methods of Eichinger A, Beisel HG, Jacob U, Huber R, Medrano FJ, Banbula A, Potempa J, Travis J, Bode W. Crystal structure of gingipain R: an Arg-specific bacterial cysteine proteinase with a caspase-like fold. EMBO J. 1999 Oct 15;18(20):5453-62

Example 11

25 **[0207]** The following is an example of a toothpaste formulation containing antibodies.

	Ingredient	% w/w
30	Dicalcium phosphate dihydrate	50.0
	Glycerol	20.0
	Sodium carboxymethyl cellulose	1.0
	Sodium lauryl sulphate	1.5
	Sodium lauroyl sarcosinate	0.5
35	Flavour	1.0
	Sodium saccharin	0.1
	Chlorhexidine gluconate	0.01
	Dextranase	0.01
	Goat serum containing specific antibodies	0.2
40	Water	balance

Example 12

45 **[0208]** The following is an example of a toothpaste formulation.

	Ingredient	% w/w
50	Dicalcium phosphate dihydrate	50.0
	Sorbitol	10.0
	Glycerol	10.0
	Sodium carboxymethyl cellulose	1.0
	Sodium lauryl sulphate	1.5
	Sodium lauroyl sarcosinate	0.5
55	Flavour	1.0
	Sodium saccharin	0.1
	Sodium monofluorophosphate	0.3
	Chlorhexidine gluconate	0.01

(continued)

Ingredient	% w/w
Dextranase	0.01
Bovine serum containing specific antibodies	0.2
Water	balance

Example 13

10 [0209]

The following is an example of a toothpaste formulation.

Ingredient	% w/w
Dicalcium phosphate dihydrate	50.0
Sorbitol	10.0
Glycerol	10.0
Sodium carboxymethyl cellulose	1.0
Lauroyl diethanolamide	1.0
Sucrose monolaurate	2.0
Flavour	1.0
Sodium saccharin	0.1
Sodium monofluorophosphate	0.3
Chlorhexidine gluconate	0.01
Dextranase	0.01
Bovine milk Ig containing specific antibodies	0.1
Water	balance

30 **Example 14**

[0210] The following is an example of a toothpaste formulation.

Ingredient	% w/w
Sorbitol	22.0
Irish moss	1.0
Sodium Hydroxide (50%)	1.0
Gantrez	19.0
Water (deionised)	2.69
Sodium Monofluorophosphate	0.76
Sodium saccharine	0.3
Pyrophosphate	2.0
Hydrated alumina	48.0
Flavour oil	0.95
Mouse monoclonal antibodies	0.3
sodium lauryl sulphate	2.00

50 **Example 15**

[0211] The following is an example of a liquid toothpaste formulation.

Ingredient	% w/w
Sodium polyacrylate	50.0
Sorbitol	10.0
Glycerol	20.0

(continued)

Ingredient	% w/w
Flavour	1.0
Sodium saccharin	0.1
Sodium monofluorophosphate	0.3
Chlorhexidine gluconate	0.01
Ethanol	3.0
Equine Ig containing specific antibodies	0.2
Linolic acid	0.05
Water	balance

Example 16

[0212] The following is an example of a mouthwash formulation.

Ingredient	% w/w
Ethanol	20.0
Flavour	1.0
Sodium saccharin	0.1
Sodium monofluorophosphate	0.3
Chlorhexidine gluconate	0.01
Lauroyl diethanolamide	0.3
Rabbit Ig containing specific antibodies	0.2
Water	balance

Example 17

[0213] The following is an example of a mouthwash formulation.

Ingredient	% w/w
Gantrez S-97	2.5
Glycerine	10.0
Flavour oil	0.4
Sodium monofluorophosphate	0.05
Chlorhexidine gluconate	0.01
Lauroyl diethanolamide	0.2
Mouse monoclonal antibodies	0.3
Water	balance

Example 18

[0214] The following is an example of a lozenge formulation.

Ingredient	% w/w
Sugar	75-80
Corn syrup	1-20
Flavour oil	1-2
NaF	0.01-0.05
Mouse monoclonal antibodies	0.3
Mg stearate	1-5
Water	balance

Example 19

[0215] The following is an example of a gingival massage cream formulation.

	Ingredient	% w/w
5	White petrolatum	8.0
	Propylene glycol	4.0
	Stearyl alcohol	8.0
10	Polyethylene Glycol 4000	25.0
	Polyethylene Glycol 400	37.0
	Sucrose monostearate	0.5
	Chlorhexidine gluconate	0.1
15	Mouse monoclonal antibodies	0.3
	Water	balance

Example 20

20 [0216] The following is an example of a chewing gum formulation.

	Ingredient	% w/w
25	Gum base	30.0
	Calcium carbonate	2.0
	Crystalline sorbitol	53.0
	Glycerine	0.5
	Flavour oil	0.1
30	Mouse monoclonal antibodies	0.3
	Water	balance

Example 21

35 [0217] The following is an example of a pharmaceutical formulation

	Ingredient	% w/w
	Humanised specific monoclonal antibodies	10
	Sterile phosphate buffered saline	90

40

Example 22

[0218] The following is an example of a periodontal gel formulation.

	Ingredient	% w/w
45	Pluronic F127	20.0
	Stearyl alcohol	8.0
	Specific antibodies	3.0
50	Colloidal silicon dioxide (Aerosil 200)	1.0
	Chlorhexidine gluconate	0.1
	Water	balance

55

Example 23

[0219] The following is an example of a periodontal gel formulation.

Ingredient	% w/w
Pluronic F127	20.0
Stearyl alcohol	8.0
Specific antibodies	3.0
Colloidal silicon dioxide (Aerosil 200)	1.0
Oxantel pamoate	0.1
Water	balance

5 [0220] It should be understood that while the invention has been described in details herein, the examples are for illustrative purposes only. Other modifications of the embodiments of the present invention that are obvious to those skilled in the art of molecular biology, dental diagnostics, and related disciplines are intended to be within the scope of the invention.

10 [0221] It will be understood that the invention disclosed and defined in this specification extends to all alternative combinations of two or more of the individual features mentioned or evident from the text or drawings. All of these different combinations constitute various alternative aspects of the invention.

20 **References**

[0222]

25 1. McKee, A. S., A. S. McDermid, A. Baskerville, A. B. Dowsett, D. C. Ellwood, and P. D. Marsh. 1986. Effect of hemin on the physiology and virulence of *Bacteroides gingivalis* W50. *Infect. Immun.* 52:349-355.

30 2. Slots, J. 1982. Importance of black-pigmented *Bacteroides* in human periodontal disease. Host parasite interactions in periodontal diseases. American Society for Microbiology.

35 3. O'Brien-Simpson, N. M., R. Pathirana, R. A. Paolini, Y.-Y. Chen, P. D. Veith, T. V., R. N. Pike, N. Alley, and E. C. Reynolds. 2005. An immune response directed to proteinase and adhesin functional epitopes protects against *Porphyromonas gingivalis*-induced bone loss. *Journal of Immunology* 175:3980-3989.

40 4. Baker, P. J., R. T. Evans, and D. C. Roopenian. 1994. Oral infection with *Porphyromonas gingivalis* and induced alveolar bone loss in immunocompetent and severe combined immunodeficient mice. *Arch Oral Biol* 39:1035-1040.

[0223] It will be understood that the invention disclosed and defined in this specification extends to all alternative combinations of two or more of the individual features mentioned or evident from the text or drawings. All of these different combinations constitute various alternative aspects of the invention.

45 [0224] A non-exhaustive list of aspects of the present disclosure is set out in the following numbered embodiments:

50 1. A method for forming an antibody response to an oral pathogen in an individual including the steps of:

- providing an individual in whom an antibody response to an oral pathogen is to be formed;
- assessing the individual to determine whether the individual has inflamed oral tissue;
- immunising the individual with an oral pathogen in circumstances where the assessment reveals that the individual does not have inflamed oral tissue, thereby forming an antibody response to an oral pathogen in the individual.

55 2. An immunisation regime for the formation of an antibody response to an oral pathogen in an individual having inflamed oral tissue, the step of administering an anti-inflammatory agent to the individual, thereby minimising inflammation of, or removing inflammation from the oral tissue, prior to an immunisation of the individual for the formation of an antibody response to an oral pathogen.

60 3. A method for conditioning an individual having an inflamed oral tissue to form an antibody response to an oral pathogen upon immunisation with the pathogen, the method including the step of administering an anti-inflammatory

agent to the individual, thereby minimising inflammation of, or removing inflammation from the oral tissue, prior to an immunisation of the individual with a pathogen for the formation of an antibody response to an oral pathogen.

5 4. A method of forming an antibody response to an oral pathogen in an individual having inflamed oral tissue including the steps of:

- providing an individual having inflamed oral tissue;
- applying a treatment to the individual, thereby removing inflammation from the oral tissue; thereafter;
- 10 immunising the individual with an oral pathogen, thereby forming an antibody response to the pathogen in the individual.

15 5. A method or immunisation regime according to any one of embodiments 1 to 4, wherein the immunisation or immunising step is to be provided at a time when oral tissue is not inflamed, or when inflammation is subclinical or asymptomatic.

20 6. A method or immunisation regime according to any one of embodiments 1 to 5, wherein the antibody response formed upon immunisation is predominantly a Th2 response, although it may contain detectable components of a Th1 response.

7. A method or immunisation regime according to any one of embodiments 1 to 6, wherein the inflammation is chronic periodontitis.

25 8. A method or immunisation regime according to embodiment 7, wherein the periodontitis is associated with *P. gingivalis* infection.

9. A method or immunisation regime according to any one of embodiments 1 to 8, wherein the immunogen for immunisation is a *P. gingivalis* cell, fragment, metabolite, or recombinant product derived therefrom.

30 10. A method or immunisation regime according to embodiment 9, wherein the recombinant product derived from *P. gingivalis* is a chimeric peptide or fusion protein.

35 11. A method or immunisation regime according to embodiment 10, wherein the chimeric or fusion protein for inducing an immune response to *P. gingivalis* to the subject, the protein including a first peptide joined directly or through a linker to a second peptide, wherein:

(A) said first peptide includes:

40 (i) part of, or all of a sequence that is the same as, or homologous to the sequence shown in SEQ ID No:1; or

(ii) part of, or all of a sequence that is the same as, or homologous to the sequence shown in SEQ ID No:2; and

(B) said second peptide includes:

45 (i) part of, or all of a sequence that is the same as, or homologous to the sequence of an adhesin domain of the Lys-X-proteinase of *P. gingivalis*; or

50 (ii) part of, or all of a sequence that is the same as, or homologous to the sequence of an adhesin domain of the Arg-X-proteinase of *P. gingivalis*; or

(iii) part of, or all of a sequence that is the same as, or homologous to the sequence of a HagA adhesin domain of *P. gingivalis*.

55 12. A method or immunisation regime according to embodiment 11, wherein the chimeric peptide or fusion protein is KAS1-KsA1 or KAS2-KLA1 as described herein.

13. A method or immunisation regime according to embodiments 2 or 3, wherein the inflammatory agent includes

one or more of an anti-inflammatory compound, an antibiotic or an anti-biofilm agent.

5

10

15

20

25

30

35

40

45

50

55

SEQUENCE LISTING

<110> Oral Health Australia Pty Ltd
<120> Treatment or prevention of infection
<130> P060188EP
<140> EP11746760.5
<141> 2011-02-25
<150> AU2010900846
<151> 2010-02-26
<160> 90
<170> PatentIn version 3.5
<210> 1
<211> 37
<212> PRT
<213> Porphyromonas gingivalis

<220>
<221> MISC_FEATURE
<222> (6)..(6)
<223> X can be either G or S

<220>
<221> MISC_FEATURE
<222> (18)..(18)
<223> X can be either S or A

<220>
<221> MISC_FEATURE
<222> (23)..(23)
<223> X can be either S or L

<220>
<221> MISC_FEATURE
<222> (24)..(24)
<223> X can be either L or V

<220>
<221> MISC_FEATURE
<222> (26)..(26)
<223> X can be either A or T

<220>
<221> MISC_FEATURE
<222> (27)..(27)
<223> X can be either T or S

<220>
<221> MISC_FEATURE
<222> (29)..(29)
<223> X can be either V or L

<220>
<221> MISC_FEATURE
<222> (36)..(36)
<223> X can be either D or N

<400> 1

Leu Asn Thr Gly Val Xaa Phe Ala Asn Tyr Thr Ala His Gly Ser Glu
 1 5 10 15

5

Thr Xaa Trp Ala Asp Pro Xaa Xaa Thr Xaa Xaa Gln Xaa Lys Ala Leu
 20 25 30

10

Thr Asn Lys Xaa Lys
 35

<210> 2

<211> 37

<212> PRT

<213> Porphyromonas gingivalis

<220>

<221> MISC_FEATURE

<222> (8)..(8)

<223> X can be either V or A

<400> 2

25

Phe Asn Gly Gly Ile Ser Leu Xaa Asn Tyr Thr Gly His Gly Ser Glu
 1 5 10 15

30

Thr Ala Trp Gly Thr Ser His Phe Gly Thr Thr His Val Lys Gln Leu
 20 25 30

Thr Asn Ser Asn Gln
 35

35

<210> 3

<211> 7

<212> PRT

<213> Porphyromonas gingivalis

40

<400> 3

Val Ser Phe Ala Asn Tyr Thr
 1 5

45

<210> 4

<211> 7

<212> PRT

<213> Porphyromonas gingivalis

50

<400> 4

Val Gly Phe Ala Asn Tyr Thr
 1 5

55

<210> 5

EP 3 260 135 A1

<211> 8
<212> PRT
<213> **Porphyromonas gingivalis**

5 <400> 5

Gly Val Ser Phe Ala Asn Tyr Thr
1 5

10 <210> 6
<211> 8
<212> PRT
<213> **Porphyromonas gingivalis**

15 <400> 6

Gly Val Gly Phe Ala Asn Tyr Thr
1 5

20 <210> 7
<211> 8
<212> PRT
<213> **Porphyromonas gingivalis**

25 <400> 7

Val Ser Phe Ala Asn Tyr Thr Ala
1 5

30 <210> 8
<211> 8
<212> PRT
<213> **Porphyromonas gingivalis**

35 <400> 8

Val Gly Phe Ala Asn Tyr Thr Ala
1 5

40 <210> 9
<211> 6
<212> PRT
<213> **Porphyromonas gingivalis**

45 <400> 9

Glu Thr Ala Trp Ala Asp
1 5

50 <210> 10
<211> 6
<212> PRT
<213> **Porphyromonas gingivalis**

55 <400> 10

Glu Thr Ser Trp Ala Asp
1 5

5
<210> 11
<211> 6
<212> PRT
<213> **Porphyromonas gingivalis**
<400> 11

10
Thr Ala Trp Ala Asp Pro
1 5

15
<210> 12
<211> 6
<212> PRT
<213> **Porphyromonas gingivalis**
<400> 12

20
Thr Ser Trp Ala Asp Pro
1 5

25
<210> 13
<211> 7
<212> PRT
<213> **Porphyromonas gingivalis**
<400> 13

30
Ser Glu Thr Ala Trp Ala Asp
1 5

35
<210> 14
<211> 7
<212> PRT
<213> **Porphyromonas gingivalis**
<400> 14

40
Ser Glu Thr Ser Trp Ala Asp
1 5

45
<210> 15
<211> 7
<212> PRT
<213> **Porphyromonas gingivalis**
<400> 15

50
Glu Thr Ala Trp Ala Asp Pro
1 5

55
<210> 16
<211> 7
<212> PRT
<213> **Porphyromonas gingivalis**
<400> 16

Glu Thr Ser Trp Ala Asp Pro
 1 5

5 <210> 17
 <211> 7
 <212> PRT
 <213> **Porphyromonas gingivalis**

10 <400> 17
 Thr Ala Trp Ala Asp Pro Leu
 1 5

15 <210> 18
 <211> 7
 <212> PRT
 <213> **Porphyromonas gingivalis**

20 <400> 18
 Thr Ser Trp Ala Asp Pro Leu
 1 5

25 <210> 19
 <211> 8
 <212> PRT
 <213> **Porphyromonas gingivalis**

30 <400> 19
 Gly Ser Glu Thr Ala Trp Ala Asp
 1 5

35 <210> 20
 <211> 8
 <212> PRT
 <213> **Porphyromonas gingivalis**

40 <400> 20
 Gly Ser Glu Thr Ser Trp Ala Asp
 1 5

45 <210> 21
 <211> 8
 <212> PRT
 <213> **Porphyromonas gingivalis**

50 <400> 21
 Ser Glu Thr Ala Trp Ala Asp Pro
 1 5

55 <210> 22
 <211> 8
 <212> PRT


```

<220>
<221>  MISC_FEATURE
<222>  (18)..(18)
<223>  X can be either S or A
5
<220>
<221>  MISC_FEATURE
<222>  (23)..(23)
<223>  X can be either S or L
10
<400>  27

Leu Asn Thr Gly Val Xaa Phe Ala Asn Tyr Thr Ala His Gly Ser Glu
1           5           10           15

15
Thr Xaa Trp Ala Asp Pro Xaa
20

20
<210>  28
<211>  36
<212>  PRT
<213>  Porphyromonas gingivalis

25
<220>
<221>  MISC_FEATURE
<222>  (5)..(5)
<223>  X can be either G or S

30
<220>
<221>  MISC_FEATURE
<222>  (17)..(17)
<223>  X can be either S or A

35
<220>
<221>  MISC_FEATURE
<222>  (22)..(22)
<223>  X can be either S or L

40
<220>
<221>  MISC_FEATURE
<222>  (23)..(23)
<223>  X can be either L or V

45
<220>
<221>  MISC_FEATURE
<222>  (25)..(25)
<223>  X can be either A or T

50
<220>
<221>  MISC_FEATURE
<222>  (26)..(26)
<223>  X can be either T or S

55
<220>
<221>  MISC_FEATURE
<222>  (28)..(28)
<223>  X can be either V or L

<220>
<221>  MISC_FEATURE

```

<222> (35)..(35)
<223> X can be either D or N

<400> 28

5

Asn Thr Gly Val Xaa Phe Ala Asn Tyr Thr Ala His Gly Ser Glu Thr
1 5 10 15

10

Xaa Trp Ala Asp Pro Xaa Xaa Thr Xaa Xaa Gln Xaa Lys Ala Leu Thr
20 25 30

Asn Lys Xaa Lys
35

15

<210> 29
<211> 20
<212> PRT
<213> *Porphyromonas gingivalis*
20

<220>
<221> MISC_FEATURE
<222> (2)..(2)
<223> X can be either G or S
25

<220>
<221> MISC_FEATURE
<222> (14)..(14)
<223> X can be either S or A
30

<220>
<221> MISC_FEATURE
<222> (19)..(19)
<223> X can be either S or L
35

<220>
<221> MISC_FEATURE
<222> (20)..(20)
<223> X can be either L or V
40

<400> 29

Val Xaa Phe Ala Asn Tyr Thr Ala His Gly Ser Glu Thr Xaa Trp Ala
1 5 10 15

45

Asp Pro Xaa Xaa
20

50

<210> 30
<211> 22
<212> PRT
<213> *Porphyromonas gingivalis*
55

<400> 30

Leu Asn Thr Gly Val Ser Phe Ala Asn Tyr Thr Ala His Gly Ser Glu
1 5 10 15

Thr Ala Trp Ala Asp Pro
20

5 <210> 31
 <211> 23
 <212> PRT
 <213> *Porphyromonas gingivalis*

10 <220>
 <221> MISC_FEATURE
 <222> (8)..(8)
 <223> X can be either V or A

15 <400> 31

Phe Asn Gly Gly Ile Ser Leu Xaa Asn Tyr Thr Gly His Gly Ser Glu
1 5 10 15

20 Thr Ala Trp Gly Thr Ser His
 20

25 <210> 32
 <211> 36
 <212> PRT
 <213> *Porphyromonas gingivalis*

30 <220>
 <221> MISC_FEATURE
 <222> (7)..(7)
 <223> X can be either V or A

<400> 32

35 Asn Gly Gly Ile Ser Leu Xaa Asn Tyr Thr Gly His Gly Ser Glu Thr
1 5 10 15

40 Ala Trp Gly Thr Ser His Phe Gly Thr Thr His Val Lys Gln Leu Thr
 20 25 30

Asn Ser Asn Gln
 35

45 <210> 33
 <211> 20
 <212> PRT
 <213> *Porphyromonas gingivalis*

50 <220>
 <221> MISC_FEATURE
 <222> (4)..(4)
 <223> X can be either V or A

<400> 33

Ile Ser Leu Xaa Asn Tyr Thr Gly His Gly Ser Glu Thr Ala Trp Gly
 1 5 10 15

5 Thr Ser His Phe
 20

10 <210> 34
 <211> 21
 <212> PRT
 <213> *Porphyromonas gingivalis*

15 <400> 34
 Phe Asn Gly Gly Ile Ser Leu Ala Asn Tyr Thr Gly His Gly Ser Glu
 1 5 10 15

20 Thr Ala Trp Gly Thr
 20

25 <210> 35
 <211> 362
 <212> PRT
 <213> *Porphyromonas gingivalis*

<400> 35

30 Ala Asn Glu Ala Lys Val Val Leu Ala Ala Asp Asn Val Trp Gly Asp
 1 5 10 15

35 Asn Thr Gly Tyr Gln Phe Leu Leu Asp Ala Asp His Asn Thr Phe Gly
 20 25 30

Ser Val Ile Pro Ala Thr Gly Pro Leu Phe Thr Gly Thr Ala Ser Ser
 35 40 45

40 Asn Leu Tyr Ser Ala Asn Phe Glu Tyr Leu Ile Pro Ala Asn Ala Asp
 50 55 60

45 Pro Val Val Thr Thr Gln Asn Ile Ile Val Thr Gly Gln Gly Glu Val
 65 70 75 80

50 Val Ile Pro Gly Gly Val Tyr Asp Tyr Cys Ile Thr Asn Pro Glu Pro
 85 90 95

Ala Ser Gly Lys Met Trp Ile Ala Gly Asp Gly Gly Asn Gln Pro Ala
 100 105 110

55 Arg Tyr Asp Asp Phe Thr Phe Glu Ala Gly Lys Lys Tyr Thr Phe Thr
 115 120 125

EP 3 260 135 A1

Met Arg Arg Ala Gly Met Gly Asp Gly Thr Asp Met Glu Val Glu Asp
130 135 140

5 Asp Ser Pro Ala Ser Tyr Thr Tyr Thr Val Tyr Arg Asp Gly Thr Lys
145 150 155 160

10 Ile Lys Glu Gly Leu Thr Ala Thr Thr Phe Glu Glu Asp Gly Val Ala
165 170 175

Ala Gly Asn His Glu Tyr Cys Val Glu Val Lys Tyr Thr Ala Gly Val
180 185 190

15 Ser Pro Lys Val Cys Lys Asp Val Thr Val Glu Gly Ser Asn Glu Phe
195 200 205

20 Ala Pro Val Gln Asn Leu Thr Gly Ser Ser Val Gly Gln Lys Val Thr
210 215 220

Leu Lys Trp Asp Ala Pro Asn Gly Thr Pro Asn Pro Asn Pro Asn Pro
225 230 235 240

25 Asn Pro Asn Pro Gly Thr Thr Leu Ser Glu Ser Phe Glu Asn Gly Ile
245 250 255

30 Pro Ala Ser Trp Lys Thr Ile Asp Ala Asp Gly Asp Gly His Gly Trp
260 265 270

35 Lys Pro Gly Asn Ala Pro Gly Ile Ala Gly Tyr Asn Ser Asn Gly Cys
275 280 285

Val Tyr Ser Glu Ser Phe Gly Leu Gly Gly Ile Gly Val Leu Thr Pro
290 295 300

40 Asp Asn Tyr Leu Ile Thr Pro Ala Leu Asp Leu Pro Asn Gly Gly Lys
305 310 315 320

45 Leu Thr Phe Trp Val Cys Ala Gln Asp Ala Asn Tyr Ala Ser Glu His
325 330 335

Tyr Ala Val Tyr Ala Ser Ser Thr Gly Asn Asp Ala Ser Asn Phe Thr
340 345 350

50 Asn Ala Leu Leu Glu Glu Thr Ile Thr Ala
355 360

55 <210> 36
<211> 231
<212> PRT

<213> *Porphyromonas gingivalis*

<400> 36

10 Thr Gly Pro Leu Phe Thr Gly Thr Ala Ser Ser Asn Leu Tyr Ser Ala
20 25 30

10

Asn Phe Glu Tyr Leu Ile Pro Ala Asn Ala Asp Pro Val Val Thr Thr
35 40 45

15

Gln Asn Ile Ile Val Thr Gly Gln Gly Glu Val Val Ile Pro Gly Gly
50 55 60

Val Tyr Asp Tyr Cys Ile Thr Asn Pro Glu Pro Ala Ser Gly Lys Met
65 70 75 80

25

Trp Ile Ala Gly Asp Gly Gly Asn Gln Pro Ala Arg Tyr Asp Asp Phe
85 90 95

Met Gly Asp Gly Thr Asp Met Glu Val Glu Asp Asp Ser Pro Ala Ser
115 120 125

Tyr Thr Tyr Thr Val Tyr Arg Asp Gly Thr Lys Ile Lys Glu Gly Leu
 130 135 140

40

Thr Ala Thr Phe Glu Glu Asp Gly Val Ala Ala Gly Asn His Glu
145 150 155 160

40

Tyr Cys Val Glu Val Lys Tyr Thr Ala Gly Val Ser Pro Lys Val Cys
165 170 175

Lys Asp Val Thr Val Glu Gly Ser Asn Glu Phe Ala Pro Val Gln Asn
180 185 190

50

Leu Thr Gly Ser Ser Val Gly Gln Lys Val Thr Leu Lys Trp Asp Ala
195 200 205

50

Pro Asn Gly Thr Pro Asn Pro Asn Pro Asn Pro Asn Pro Asn Pro Gly
210 215 220

55

Thr Thr Leu Ser Glu Ser Phe

<210> 37
 <211> 306
 <212> PRT
 <213> *Porphyromonas gingivalis*

5

<400> 37

Trp Gly Asp Asn Thr Gly Tyr Gln Phe Leu Leu Asp Ala Asp His Asn
 1 5 10 15

10

Thr Phe Gly Ser Val Ile Pro Ala Thr Gly Pro Leu Phe Thr Gly Thr
 20 25 30

15

Ala Ser Ser Asn Leu Tyr Ser Ala Asn Phe Glu Tyr Leu Ile Pro Ala
 35 40 45

20

Asn Ala Asp Pro Val Val Thr Thr Gln Asn Ile Ile Val Thr Gly Gln
 50 55 60

Gly Glu Val Val Ile Pro Gly Gly Val Tyr Asp Tyr Cys Ile Thr Asn
 65 70 75 80

25

Pro Glu Pro Ala Ser Gly Lys Met Trp Ile Ala Gly Asp Gly Asn
 85 90 95

30

Gln Pro Ala Arg Tyr Asp Asp Phe Thr Phe Glu Ala Gly Lys Lys Tyr
 100 105 110

35

Thr Phe Thr Met Arg Arg Ala Gly Met Gly Asp Gly Thr Asp Met Glu
 115 120 125

40

Val Glu Asp Asp Ser Pro Ala Ser Tyr Thr Tyr Thr Val Tyr Arg Asp
 130 135 140

45

Gly Thr Lys Ile Lys Glu Gly Leu Thr Ala Thr Thr Phe Glu Glu Asp
 145 150 155 160

50

Gly Val Ala Ala Gly Asn His Glu Tyr Cys Val Glu Val Lys Tyr Thr
 165 170 175

Ala Gly Val Ser Pro Lys Val Cys Lys Asp Val Thr Val Glu Gly Ser
 180 185 190

Asn Glu Phe Ala Pro Val Gln Asn Leu Thr Gly Ser Ser Val Gly Gln
 195 200 205

55

Lys Val Thr Leu Lys Trp Asp Ala Pro Asn Gly Thr Pro Asn Pro Asn
 210 215 220

EP 3 260 135 A1

Pro Asn Pro Asn Pro Asn Pro Gly Thr Thr Leu Ser Glu Ser Phe Glu
225 230 235 240

5 Asn Gly Ile Pro Ala Ser Trp Lys Thr Ile Asp Ala Asp Gly Asp Gly
245 250 255

10 His Gly Trp Lys Pro Gly Asn Ala Pro Gly Ile Ala Gly Tyr Asn Ser
260 265 270

Asn Gly Cys Val Tyr Ser Glu Ser Phe Gly Leu Gly Gly Ile Gly Val
275 280 285

15 Leu Thr Pro Asp Asn Tyr Leu Ile Thr Pro Ala Leu Asp Leu Pro Asn
290 295 300

20 Gly Gly
305

25 <210> 38
<211> 362
<212> PRT
<213> Porphyromonas gingivalis

<400> 38

30 Ser Gly Gln Ala Glu Ile Val Leu Glu Ala His Asp Val Trp Asn Asp
1 5 10 15

35 Gly Ser Gly Tyr Gln Ile Leu Leu Asp Ala Asp His Asp Gln Tyr Gly
20 25 30

Gln Val Ile Pro Ser Asp Thr His Thr Leu Trp Pro Asn Cys Ser Val
35 40 45

40 Pro Ala Asn Leu Phe Ala Pro Phe Glu Tyr Thr Val Pro Glu Asn Ala
50 55 60

45 Asp Pro Ser Cys Ser Pro Thr Asn Met Ile Met Asp Gly Thr Ala Ser
65 70 75 80

50 Val Asn Ile Pro Ala Gly Thr Tyr Asp Phe Ala Ile Ala Ala Pro Gln
85 90 95

Ala Asn Ala Lys Ile Trp Ile Ala Gly Gln Gly Pro Thr Lys Glu Asp
100 105 110

55 Asp Tyr Val Phe Glu Ala Gly Lys Lys Tyr His Phe Leu Met Lys Lys
115 120 125

EP 3 260 135 A1

Met Gly Ser Gly Asp Gly Thr Glu Leu Thr Ile Ser Glu Gly Gly
130 135 140

5 Ser Asp Tyr Thr Tyr Thr Val Tyr Arg Asp Gly Thr Lys Ile Lys Glu
145 150 155 160

10 Gly Leu Thr Ala Thr Thr Phe Glu Glu Asp Gly Val Ala Thr Gly Asn
165 170 175

His Glu Tyr Cys Val Glu Val Lys Tyr Thr Ala Gly Val Ser Pro Lys
180 185 190

15 Val Cys Lys Asp Val Thr Val Glu Gly Ser Asn Glu Phe Ala Pro Val
195 200 205

20 Gln Asn Leu Thr Gly Ser Ala Val Gly Gln Lys Val Thr Leu Lys Trp
210 215 220

25 Asp Ala Pro Asn Gly Thr Pro Asn Pro Asn Pro Asn Pro Asn
225 230 235 240

Pro Asn Pro Gly Thr Thr Thr Leu Ser Glu Ser Phe Glu Asn Gly Ile
245 250 255

30 Pro Ala Ser Trp Lys Thr Ile Asp Ala Asp Gly Asp Gly His Gly Trp
260 265 270

35 Lys Pro Gly Asn Ala Pro Gly Ile Ala Gly Tyr Asn Ser Asn Gly Cys
275 280 285

Val Tyr Ser Glu Ser Phe Gly Leu Gly Gly Ile Gly Val Leu Thr Pro
290 295 300

40 Asp Asn Tyr Leu Ile Thr Pro Ala Leu Asp Leu Pro Asn Gly Gly Lys
305 310 315 320

45 Leu Thr Phe Trp Val Cys Ala Gln Asp Ala Asn Tyr Ala Ser Glu His
325 330 335

Tyr Ala Val Tyr Ala Ser Ser Thr Gly Asn Asp Ala Ser Asn Phe Thr
340 345 350

50 Asn Ala Leu Leu Glu Glu Thr Ile Thr Ala
355 360

55 <210> 39
<211> 141

<212> PRT

<213> Porphyromonas gingivalis

<400> 39

5

Asp	Asp	Tyr	Val	Phe	Glu	Ala	Gly	Lys	Lys	Tyr	His	Phe	Leu	Met	Lys
1				5				10						15	

10

Lys	Met	Gly	Ser	Gly	Asp	Gly	Thr	Glu	Leu	Thr	Ile	Ser	Glu	Gly	Gly
			20					25				30			

15

Gly	Ser	Asp	Tyr	Thr	Tyr	Thr	Val	Tyr	Arg	Asp	Gly	Thr	Lys	Ile	Lys
			35				40					45			

20

Glu	Gly	Leu	Thr	Ala	Thr	Thr	Phe	Glu	Glu	Asp	Gly	Val	Ala	Thr	Gly
		50					55			60					

25

Asn	His	Glu	Tyr	Cys	Val	Glu	Val	Lys	Tyr	Thr	Ala	Gly	Val	Ser	Pro
		65			70				75				80		

30

Lys	Val	Cys	Lys	Asp	Val	Thr	Val	Glu	Gly	Ser	Asn	Glu	Phe	Ala	Pro
			85				90					95			

35

Val	Gln	Asn	Leu	Thr	Gly	Ser	Ala	Val	Gly	Gln	Lys	Val	Thr	Leu	Lys
			100				105				110				

40

Trp	Asp	Ala	Pro	Asn	Gly	Thr	Pro	Asn	Pro	Asn	Pro	Asn	Pro	Asn	Pro
			115				120				125				

45

Asn	Pro	Asn	Pro	Gly	Thr	Thr	Leu	Ser	Glu	Ser	Phe
			130			135			140		

<210> 40

<211> 119

<212> PRT

<213> Porphyromonas gingivalis

<400> 40

50

Ala	Asp	Phe	Thr	Glu	Thr	Phe	Glu	Ser	Ser	Thr	His	Gly	Glu	Ala	Pro
1				5				10					15		

55

Ala	Glu	Trp	Thr	Thr	Ile	Asp	Ala	Asp	Gly	Asp	Gly	Gln	Gly	Trp	Leu
			20			25						30			

Cys	Leu	Ser	Ser	Gly	Gln	Leu	Asp	Trp	Leu	Thr	Ala	His	Gly	Gly	Ser
			35			40				45					

60

Asn	Val	Val	Ser	Ser	Phe	Ser	Trp	Asn	Gly	Met	Ala	Leu	Asn	Pro	Asp
			50			55			60						

Asn Tyr Leu Ile Ser Lys Asp Val Thr Gly Ala Thr Lys Val Lys Tyr
 65 70 75 80

5 Tyr Tyr Ala Val Asn Asp Gly Phe Pro Gly Asp His Tyr Ala Val Met
 85 90 95

10 Ile Ser Lys Thr Gly Thr Asn Ala Gly Asp Phe Thr Val Val Phe Glu
 100 105 110

Glu Thr Pro Asn Gly Ile Asn
 115

15 <210> 41
 <211> 133
 <212> PRT
 <213> Porphyromonas gingivalis

20 <400> 41

Pro Gln Ser Val Trp Ile Glu Arg Thr Val Asp Leu Pro Ala Gly Thr
 1 5 10 15

25 Lys Tyr Val Ala Phe Arg His Tyr Asn Cys Ser Asp Leu Asn Tyr Ile
 20 25 30

30 Leu Leu Asp Asp Ile Gln Phe Thr Met Gly Gly Ser Pro Thr Pro Thr
 35 40 45

Asp Tyr Thr Tyr Thr Val Tyr Arg Asp Gly Thr Lys Ile Lys Glu Gly
 50 55 60

35 Leu Thr Glu Thr Thr Phe Glu Glu Asp Gly Val Ala Thr Gly Asn His
 65 70 75 80

40 Glu Tyr Cys Val Glu Val Lys Tyr Thr Ala Gly Val Ser Pro Lys Lys
 85 90 95

45 Cys Val Asn Val Thr Val Asn Ser Thr Gln Phe Asn Pro Val Gln Asn
 100 105 110

Leu Thr Ala Glu Gln Ala Pro Asn Ser Met Asp Ala Ile Leu Lys Trp
 115 120 125

50 Asn Ala Pro Ala Ser
 130

55 <210> 42
 <211> 120
 <212> PRT

<213> *Porphyromonas gingivalis*

<400> 42

5 Ala Glu Val Leu Asn Glu Asp Phe Glu Asn Gly Ile Pro Ala Ser Trp
 1 5 10 15

10 Lys Thr Ile Asp Ala Asp Gly Asp Gly Asn Asn Trp Thr Thr Thr Pro
 20 25 30

15 Pro Pro Gly Gly Ser Ser Phe Ala Gly His Asn Ser Ala Ile Cys Val
 35 40 45

Ser Ser Ala Ser Tyr Ile Asn Phe Glu Gly Pro Gln Asn Pro Asp Asn
 50 55 60

20 Tyr Leu Val Thr Pro Glu Leu Ser Leu Pro Gly Gly Thr Leu Thr
 65 70 75 80

25 Phe Trp Val Cys Ala Gln Asp Ala Asn Tyr Ala Ser Glu His Tyr Ala
 85 90 95

Val Tyr Ala Ser Ser Thr Gly Asn Asp Ala Ser Asn Phe Ala Asn Ala
 100 105 110

30 Leu Leu Glu Glu Val Leu Thr Ala
 115 120

<210> 43

<211> 185

<212> PRT

<213> *Porphyromonas gingivalis*

<400> 43

40 Thr Val Val Thr Ala Pro Glu Ala Ile Arg Gly Thr Arg Ala Gln Gly
 1 5 10 15

45 Thr Trp Tyr Gln Lys Thr Val Gln Leu Pro Ala Gly Thr Lys Tyr Val
 20 25 30

50 Ala Phe Arg His Phe Gly Cys Thr Asp Phe Phe Trp Ile Asn Leu Asp
 35 40 45

Asp Val Val Ile Thr Ser Gly Asn Ala Pro Ser Tyr Thr Tyr Thr Ile
 50 55 60

55 Tyr Arg Asn Asn Thr Gln Ile Ala Ser Gly Val Thr Glu Thr Thr Tyr
 65 70 75 80

EP 3 260 135 A1

Arg Asp Pro Asp Leu Ala Thr Gly Phe Tyr Thr Tyr Gly Val Lys Val
85 90 95

5 Val Tyr Pro Asn Gly Glu Ser Ala Ile Glu Thr Ala Thr Leu Asn Ile
100 105 110

10 Thr Ser Leu Ala Asp Val Thr Ala Gln Lys Pro Tyr Thr Leu Thr Val
115 120 125

Val Gly Lys Thr Ile Thr Val Thr Cys Gln Gly Glu Ala Met Ile Tyr
130 135 140

15 Asp Met Asn Gly Arg Arg Leu Ala Ala Gly Arg Asn Thr Val Val Tyr
145 150 155 160

20 Thr Ala Gln Gly Gly His Tyr Ala Val Met Val Val Val Asp Gly Lys
165 170 175

25 Ser Tyr Val Glu Lys Leu Ala Val Lys
180 185

30 <210> 44
<211> 119
<212> PRT
<213> *Porphyromonas gingivalis*

<400> 44

35 Ala Asp Phe Thr Glu Thr Phe Glu Ser Ser Thr His Gly Glu Ala Pro
1 5 10 15

Ala Glu Trp Thr Thr Ile Asp Ala Asp Gly Asp Gly Gln Gly Trp Leu
20 25 30

40 Cys Leu Ser Ser Gly Gln Leu Asp Trp Leu Thr Ala His Gly Gly Thr
35 40 45

45 Asn Val Val Ser Ser Phe Ser Trp Asn Gly Met Ala Leu Asn Pro Asp
50 55 60

50 Asn Tyr Leu Ile Ser Lys Asp Val Thr Gly Ala Thr Lys Val Lys Tyr
65 70 75 80

Tyr Tyr Ala Val Asn Asp Gly Phe Pro Gly Asp His Tyr Ala Val Met
85 90 95

55 Ile Ser Lys Thr Gly Thr Asn Ala Gly Asp Phe Thr Val Val Phe Glu
100 105 110

EP 3 260 135 A1

Glu Thr Pro Asn Gly Ile Asn
115

<210> 45
<211> 131
<212> PRT
<213> *Porphyromonas gingivalis*

<400> 45

Pro Gln Ser Val Trp Ile Glu Arg Thr Val Asp Leu Pro Ala Gly Thr
1 5 10 15

Lys Tyr Val Ala Phe Arg His Tyr Asn Cys Ser Asp Leu Asn Tyr Ile
20 25 30

Leu Leu Asp Asp Ile Gln Phe Thr Met Gly Gly Ser Pro Thr Pro Thr
35 40 45

Asp Tyr Thr Tyr Thr Val Tyr Arg Asp Gly Thr Lys

Leu Thr Glu Thr Thr Phe Glu Glu Asp Gly Val Ala Thr Gly Asn His

Cys Val Asn Val Thr Val Asn Ser Thr Gln Phe Asn Pro Val Lys Asn
 100 105 110

Leu Lys Ala Gln Pro Asp Gly Gly Asp Val Val Leu Lys Trp Glu Ala

Pro Ser Ala

<210> 46
<211> 275
<212> PRT
<213> *Esophumasonia minivalvis*

1400-146

Ala Asn Glu Ala Lys Val Val Leu Ala Ala Asp Asn Val Trp Gly Asp
1 5 10 15

Asn Thr Gly Tyr Gln Phe Leu Leu Asp Ala Asp His Asn Thr Phe Gly
 20 25 30

35

40

45

5	Asp Leu Tyr Ser Ala Asn Phe Glu Ser Leu Ile Pro Ala Asn Ala Asp			
	50	55	60	
10	Pro Val Val Thr Thr Gln Asn Ile Ile Val Thr Gly Gln Gly Glu Val			
	65	70	75	80
15	Val Ile Pro Gly Gly Val Tyr Asp Tyr Cys Ile Thr Asn Pro Glu Pro			
	85	90	95	
20	Ala Ser Gly Lys Met Trp Ile Ala Gly Asp Gly Gly Asn Gln Pro Ala			
	100	105	110	
25	Arg Tyr Asp Asp Phe Thr Phe Glu Ala Gly Lys Lys Tyr Thr Phe Thr			
	115	120	125	
30	Met Arg Arg Ala Gly Met Gly Asp Gly Thr Asp Met Glu Val Glu Asp			
	130	135	140	
35	Asp Ser Pro Ala Ser Tyr Thr Tyr Val Tyr Arg Asp Gly Thr Lys			
	145	150	155	160
40	Ile Lys Glu Gly Leu Thr Glu Thr Thr Tyr Arg Asp Ala Gly Met Ser			
	165	170	175	
45	Ala Gln Ser His Glu Tyr Cys Val Glu Val Lys Tyr Thr Ala Gly Val			
	180	185	190	
50	Ser Pro Lys Val Cys Val Asp Tyr Ile Pro Asp Gly Val Ala Asp Val			
	195	200	205	
55	Thr Ala Gln Lys Pro Tyr Thr Leu Thr Val Val Gly Lys Thr Ile Thr			
	210	215	220	
60	Val Thr Cys Gln Gly Glu Ala Met Ile Tyr Asp Met Asn Gly Arg Arg			
	225	230	235	240
65	Leu Ala Ala Gly Arg Asn Thr Val Val Tyr Thr Ala Gln Gly Gly Tyr			
	245	250	255	
70	Tyr Ala Val Met Val Val Asp Gly Lys Ser Tyr Val Glu Lys Leu			
	260	265	270	
75	Ala Ile Lys			
	275			

<210> 47		
<211> 49		
<212> DNA		
<213> <i>Porphyromonas gingivalis</i>		
5		
<400> 47		
gaccatggct catcaccatc accatcacaa taccggagtc agctttgca		49
10		
<210> 48		
<211> 36		
<212> DNA		
<213> <i>Porphyromonas gingivalis</i>		
15		
<400> 48		
gactcgagtt atttgcctt attagtgagt gcttgc		36
20		
<210> 49		
<211> 31		
<212> DNA		
<213> <i>Porphyromonas gingivalis</i>		
25		
<400> 49		
gaccatggct tggggagaca atacgggtta c		31
30		
<210> 50		
<211> 27		
<212> DNA		
<213> <i>Porphyromonas gingivalis</i>		
35		
<400> 50		
gactcgagac ctccgttagg caaatcc		27
40		
<210> 51		
<211> 41		
<212> DNA		
<213> <i>Porphyromonas gingivalis</i>		
45		
<400> 51		
ccgtattgtc tccccatgg tccttattag tgagtgttt c		41
50		
<210> 52		
<211> 37		
<212> DNA		
<213> <i>Porphyromonas gingivalis</i>		
55		
<400> 52		
cactaataag gacaaatggg gagacaatac gggttac		37
60		
<210> 53		
<211> 51		
<212> DNA		
<213> <i>Porphyromonas gingivalis</i>		
65		
<400> 53		
catggatctg agaccgcattt ggctgtatcca ctttttttgcgt tggatgccga t		51

<210> 54		
<211> 62		
<212> DNA		
<213> <i>Porphyromonas gingivalis</i>		
5		
<400> 54		
ccatggctt gaataccgga gtcagcttg caaactatac agcgcatgga tctgagaccg	60	
ca	62	
10		
<210> 55		
<211> 25		
<212> DNA		
<213> <i>Porphyromonas gingivalis</i>		
15		
<400> 55		
ctcgaggaat gattcggaaa gtgtt	25	
20		
<210> 56		
<211> 53		
<212> DNA		
<213> <i>Porphyromonas gingivalis</i>		
25		
<400> 56		
ccatggctga ttatacgctgg aattcccagg tagtcagctt tgcaaactat aca	53	
30		
<210> 57		
<211> 52		
<212> DNA		
<213> <i>Porphyromonas gingivalis</i>		
35		
<400> 57		
ctttgcaaac tatacagcgc atggatctga gaccgcatgg gctgatccac tt	52	
40		
<210> 58		
<211> 52		
<212> DNA		
<213> <i>Porphyromonas gingivalis</i>		
45		
<400> 58		
atgggctgat ccacttctga attcttattt gggcgagatc ggcaatatta cc	52	
50		
<210> 59		
<211> 52		
<212> DNA		
<213> <i>Porphyromonas gingivalis</i>		
55		
<400> 59		
gatcggaat attacccata ttggtgctca ttacgcttgg ggagacaata cg	52	
60		
<210> 60		
<211> 52		
<212> DNA		
<213> <i>Porphyromonas gingivalis</i>		
65		
<400> 60		
ctcgagacct ccgttaggca aatccaatgc cggtgttatac agatagttgt ca	52	

<210> 61
 <211> 1706
 <212> PRT
 <213> *Porphyromonas gingivalis*

5

<400> 61

Met Lys Asn Leu Asn Lys Phe Val Ser Ile Ala Leu Cys Ser Ser Leu
 1 5 10 15

10

Leu Gly Gly Met Ala Phe Ala Gln Gln Thr Glu Leu Gly Arg Asn Pro
 20 25 30

15

Asn Val Arg Leu Leu Glu Ser Thr Gln Gln Ser Val Thr Lys Val Gln
 35 40 45

20

Phe Arg Met Asp Asn Leu Lys Phe Thr Glu Val Gln Thr Pro Lys Gly
 50 55 60

25

Ile Gly Gln Val Pro Thr Tyr Thr Glu Gly Val Asn Leu Ser Glu Lys
 65 70 75 80

25

Gly Met Pro Thr Leu Pro Ile Leu Ser Arg Ser Leu Ala Val Ser Asp
 85 90 95

30

Thr Arg Glu Met Lys Val Glu Val Val Ser Ser Lys Phe Ile Glu Lys
 100 105 110

35

Lys Asn Val Leu Ile Ala Pro Ser Lys Gly Met Ile Met Arg Asn Glu
 115 120 125

35

Asp Pro Lys Lys Ile Pro Tyr Val Tyr Gly Lys Thr Tyr Ser Gln Asn
 130 135 140

40

Lys Phe Phe Pro Gly Glu Ile Ala Thr Leu Asp Asp Pro Phe Ile Leu
 145 150 155 160

45

Arg Asp Val Arg Gly Gln Val Val Asn Phe Ala Pro Leu Gln Tyr Asn
 165 170 175

50

Pro Val Thr Lys Thr Leu Arg Ile Tyr Thr Glu Ile Thr Val Ala Val
 180 185 190

Ser Glu Thr Ser Glu Gln Gly Lys Asn Ile Leu Asn Lys Lys Gly Thr
 195 200 205

55

Phe Ala Gly Phe Glu Asp Thr Tyr Lys Arg Met Phe Met Asn Tyr Glu
 210 215 220

EP 3 260 135 A1

Pro Gly Arg Tyr Thr Pro Val Glu Glu Lys Gln Asn Gly Arg Met Ile
225 230 235 240

5 Val Ile Val Ala Lys Lys Tyr Glu Gly Asp Ile Lys Asp Phe Val Asp
245 250 255

10 Trp Lys Asn Gln Arg Gly Leu Arg Thr Glu Val Lys Val Ala Glu Asp
260 265 270

Ile Ala Ser Pro Val Thr Ala Asn Ala Ile Gln Gln Phe Val Lys Gln
275 280 285

15 Glu Tyr Glu Lys Glu Gly Asn Asp Leu Thr Tyr Val Leu Leu Ile Gly
290 295 300

20 Asp His Lys Asp Ile Pro Ala Lys Ile Thr Pro Gly Ile Lys Ser Asp
305 310 315 320

25 Gln Val Tyr Gly Gln Ile Val Gly Asn Asp His Tyr Asn Glu Val Phe
325 330 335

Ile Gly Arg Phe Ser Cys Glu Ser Lys Glu Asp Leu Lys Thr Gln Ile
340 345 350

30 Asp Arg Thr Ile His Tyr Glu Arg Asn Ile Thr Thr Glu Asp Lys Trp
355 360 365

35 Leu Gly Gln Ala Leu Cys Ile Ala Ser Ala Glu Gly Gly Pro Ser Ala
370 375 380

40 Asp Asn Gly Glu Ser Asp Ile Gln His Glu Asn Val Ile Ala Asn Leu
385 390 395 400

Leu Thr Gln Tyr Gly Tyr Thr Lys Ile Ile Lys Cys Tyr Asp Pro Gly
405 410 415

45 Val Thr Pro Lys Asn Ile Ile Asp Ala Phe Asn Gly Gly Ile Ser Leu
420 425 430

50 Ala Asn Tyr Thr Gly His Gly Ser Glu Thr Ala Trp Gly Thr Ser His
435 440 445

Phe Gly Thr Thr His Val Lys Gln Leu Thr Asn Ser Asn Gln Leu Pro
450 455 460

55 Phe Ile Phe Asp Val Ala Cys Val Asn Gly Asp Phe Leu Phe Ser Met

EP 3 260 135 A1

465

470

475

480

5 Pro Cys Phe Ala Glu Ala Leu Met Arg Ala Gln Lys Asp Gly Lys Pro
 485 490 495

10 Thr Gly Thr Val Ala Ile Ile Ala Ser Thr Ile Asn Gln Ser Trp Ala
 500 505 510

Ser Pro Met Arg Gly Gln Asp Glu Met Asn Glu Ile Leu Cys Glu Lys
 515 520 525

15 His Pro Asn Asn Ile Lys Arg Thr Phe Gly Gly Val Thr Met Asn Gly
 530 535 540

20 Met Phe Ala Met Val Glu Lys Tyr Lys Lys Asp Gly Glu Lys Met Leu
 545 550 555 560

Asp Thr Trp Thr Val Phe Gly Asp Pro Ser Leu Leu Val Arg Thr Leu
 565 570 575

25 Val Pro Thr Lys Met Gln Val Thr Ala Pro Ala Gln Ile Asn Leu Thr
 580 585 590

30 Asp Ala Ser Val Asn Val Ser Cys Asp Tyr Asn Gly Ala Ile Ala Thr
 595 600 605

35 Ile Ser Ala Asn Gly Lys Met Phe Gly Ser Ala Val Val Glu Asn Gly
 610 615 620

Thr Ala Thr Ile Asn Leu Thr Gly Leu Thr Asn Glu Ser Thr Leu Thr
 625 630 635 640

40 Leu Thr Val Val Gly Tyr Asn Lys Glu Thr Val Ile Lys Thr Ile Asn
 645 650 655

45 Thr Asn Gly Glu Pro Asn Pro Tyr Gln Pro Val Ser Asn Leu Thr Ala
 660 665 670

50 Thr Thr Gln Gly Gln Lys Val Thr Leu Lys Trp Asp Ala Pro Ser Thr
 675 680 685

Lys Thr Asn Ala Thr Thr Asn Thr Ala Arg Ser Val Asp Gly Ile Arg
 690 695 700

55 Glu Leu Val Leu Leu Ser Val Ser Asp Ala Pro Glu Leu Leu Arg Ser
 705 710 715 720

EP 3 260 135 A1

Gly Gln Ala Glu Ile Val Leu Glu Ala His Asp Val Trp Asn Asp Gly
725 730 735

5 Ser Gly Tyr Gln Ile Leu Leu Asp Ala Asp His Asp Gln Tyr Gly Gln
740 745 750

10 Val Ile Pro Ser Asp Thr His Thr Leu Trp Pro Asn Cys Ser Val Pro
755 760 765

Ala Asn Leu Phe Ala Pro Phe Glu Tyr Thr Val Pro Glu Asn Ala Asp
770 775 780

15 Pro Ser Cys Ser Pro Thr Asn Met Ile Met Asp Gly Thr Ala Ser Val
785 790 795 800

20 Asn Ile Pro Ala Gly Thr Tyr Asp Phe Ala Ile Ala Ala Pro Gln Ala
805 810 815

Asn Ala Lys Ile Trp Ile Ala Gly Gln Gly Pro Thr Lys Glu Asp Asp
820 825 830

25 Tyr Val Phe Glu Ala Gly Lys Lys Tyr His Phe Leu Met Lys Lys Met
835 840 845

30 Gly Ser Gly Asp Gly Thr Glu Leu Thr Ile Ser Glu Gly Gly Ser
850 855 860

35 Asp Tyr Thr Tyr Thr Val Tyr Arg Asp Gly Thr Lys Ile Lys Glu Gly
865 870 875 880

Leu Thr Ala Thr Thr Phe Glu Glu Asp Gly Val Ala Thr Gly Asn His
885 890 895

40 Glu Tyr Cys Val Glu Val Lys Tyr Thr Ala Gly Val Ser Pro Lys Val
900 905 910

45 Cys Lys Asp Val Thr Val Glu Gly Ser Asn Glu Phe Ala Pro Val Gln
915 920 925

50 Asn Leu Thr Gly Ser Ala Val Gly Gln Lys Val Thr Leu Lys Trp Asp
930 935 940

Ala Pro Asn Gly Thr Pro Asn Pro Asn Pro Asn Pro Asn Pro Asn Pro
945 950 955 960

55 Asn Pro Gly Thr Thr Leu Ser Glu Ser Phe Glu Asn Gly Ile Pro
965 970 975

EP 3 260 135 A1

Ala Ser Trp Lys Thr Ile Asp Ala Asp Gly Asp Gly His Gly Trp Lys
 980 985 990

5 Pro Gly Asn Ala Pro Gly Ile Ala Gly Tyr Asn Ser Asn Gly Cys Val
 995 1000 1005

10 Tyr Ser Glu Ser Phe Gly Leu Gly Gly Ile Gly Val Leu Thr Pro
 1010 1015 1020

15 Asp Asn Tyr Leu Ile Thr Pro Ala Leu Asp Leu Pro Asn Gly Gly
 1025 1030 1035

20 Lys Leu Thr Phe Trp Val Cys Ala Gln Asp Ala Asn Tyr Ala Ser
 1040 1045 1050

25 Glu His Tyr Ala Val Tyr Ala Ser Ser Thr Gly Asn Asp Ala Ser
 1055 1060 1065

30 Asn Phe Thr Asn Ala Leu Leu Glu Glu Thr Ile Thr Ala Lys Gly
 1070 1075 1080

35 Val Arg Ser Pro Glu Ala Met Arg Gly Arg Ile Gln Gly Thr Trp
 1085 1090 1095

40 Arg Gln Lys Thr Val Asp Leu Pro Ala Gly Thr Lys Tyr Val Ala
 1100 1105 1110

45 Phe Arg His Phe Gln Ser Thr Asp Met Phe Tyr Ile Asp Leu Asp
 1115 1120 1125

50 Glu Val Glu Ile Lys Ala Asn Gly Lys Arg Ala Asp Phe Thr Glu
 1130 1135 1140

55 Thr Phe Glu Ser Ser Thr His Gly Glu Ala Pro Ala Glu Trp Thr
 1145 1150 1155

60 Thr Ile Asp Ala Asp Gly Asp Gly Gln Gly Trp Leu Cys Leu Ser
 1160 1165 1170

65 Ser Gly Gln Leu Asp Trp Leu Thr Ala His Gly Gly Thr Asn Val
 1175 1180 1185

70 Val Ser Ser Phe Ser Trp Asn Gly Met Ala Leu Asn Pro Asp Asn
 1190 1195 1200

75 Tyr Leu Ile Ser Lys Asp Val Thr Gly Ala Thr Lys Val Lys Tyr
 1205 1210 1215

EP 3 260 135 A1

Tyr	Tyr	Ala	Val	Asn	Asp	Gly	Phe	Pro	Gly	Asp	His	Tyr	Ala	Val
1220						1225					1230			
5														
Met	Ile	Ser	Lys	Thr	Gly	Thr	Asn	Ala	Gly	Asp	Phe	Thr	Val	Val
1235						1240					1245			
10														
Phe	Glu	Glu	Thr	Pro	Asn	Gly	Ile	Asn	Lys	Gly	Gly	Ala	Arg	Phe
1250						1255					1260			
15														
Gly	Leu	Ser	Thr	Glu	Ala	Asp	Gly	Ala	Lys	Pro	Gln	Ser	Val	Trp
1265						1270					1275			
Ile	Glu	Arg	Thr	Val	Asp	Leu	Pro	Ala	Gly	Thr	Lys	Tyr	Val	Ala
1280						1285					1290			
20														
Phe	Arg	His	Tyr	Asn	Cys	Ser	Asp	Leu	Asn	Tyr	Ile	Leu	Leu	Asp
1295						1300					1305			
25														
Asp	Ile	Gln	Phe	Thr	Met	Gly	Gly	Ser	Pro	Thr	Pro	Thr	Asp	Tyr
1310						1315					1320			
Thr	Tyr	Thr	Val	Tyr	Arg	Asp	Gly	Thr	Lys	Ile	Lys	Glu	Gly	Leu
1325						1330					1335			
30														
Thr	Glu	Thr	Thr	Phe	Glu	Glu	Asp	Gly	Val	Ala	Thr	Gly	Asn	His
1340						1345					1350			
35														
Glu	Tyr	Cys	Val	Glu	Val	Lys	Tyr	Thr	Ala	Gly	Val	Ser	Pro	Lys
1355						1360					1365			
40														
Lys	Cys	Val	Asn	Val	Thr	Val	Asn	Ser	Thr	Gln	Phe	Asn	Pro	Val
1370						1375					1380			
Lys	Asn	Leu	Lys	Ala	Gln	Pro	Asp	Gly	Gly	Asp	Val	Val	Leu	Lys
1385						1390					1395			
45														
Trp	Glu	Ala	Pro	Ser	Ala	Lys	Lys	Thr	Glu	Gly	Ser	Arg	Glu	Val
1400						1405					1410			
50														
Lys	Arg	Ile	Gly	Asp	Gly	Leu	Phe	Val	Thr	Ile	Glu	Pro	Ala	Asn
1415						1420					1425			
55														
Asp	Val	Arg	Ala	Asn	Glu	Ala	Lys	Val	Val	Leu	Ala	Ala	Asp	Asn
1430						1435					1440			
Val	Trp	Gly	Asp	Asn	Thr	Gly	Tyr	Gln	Phe	Leu	Leu	Asp	Ala	Asp

EP 3 260 135 A1

1445

1450

1455

5 His Asn Thr Phe Gly Ser Val Ile Pro Ala Thr Gly Pro Leu Phe
 1460 1465 1470

10 Thr Gly Thr Ala Ser Ser Asp Leu Tyr Ser Ala Asn Phe Glu Ser
 1475 1480 1485

Leu Ile Pro Ala Asn Ala Asp Pro Val Val Thr Thr Gln Asn Ile
 1490 1495 1500

15 Ile Val Thr Gly Gln Gly Glu Val Val Ile Pro Gly Gly Val Tyr
 1505 1510 1515

20 Asp Tyr Cys Ile Thr Asn Pro Glu Pro Ala Ser Gly Lys Met Trp
 1520 1525 1530

Ile Ala Gly Asp Gly Gly Asn Gln Pro Ala Arg Tyr Asp Asp Phe
 1535 1540 1545

25 Thr Phe Glu Ala Gly Lys Lys Tyr Thr Phe Thr Met Arg Arg Ala
 1550 1555 1560

30 Gly Met Gly Asp Gly Thr Asp Met Glu Val Glu Asp Asp Ser Pro
 1565 1570 1575

35 Ala Ser Tyr Thr Tyr Thr Val Tyr Arg Asp Gly Thr Lys Ile Lys
 1580 1585 1590

Glu Gly Leu Thr Glu Thr Thr Tyr Arg Asp Ala Gly Met Ser Ala
 1595 1600 1605

40 Gln Ser His Glu Tyr Cys Val Glu Val Lys Tyr Thr Ala Gly Val
 1610 1615 1620

45 Ser Pro Lys Val Cys Val Asp Tyr Ile Pro Asp Gly Val Ala Asp
 1625 1630 1635

50 Val Thr Ala Gln Lys Pro Tyr Thr Leu Thr Val Val Gly Lys Thr
 1640 1645 1650

Ile Thr Val Thr Cys Gln Gly Glu Ala Met Ile Tyr Asp Met Asn
 1655 1660 1665

55 Gly Arg Arg Leu Ala Ala Gly Arg Asn Thr Val Val Tyr Thr Ala
 1670 1675 1680

Gln Gly Gly Tyr Tyr Ala Val Met Val Val Val Asp Gly Lys Ser
 1685 1690 1695

5 Tyr Val Glu Lys Leu Ala Ile Lys
 1700 1705

10 <210> 62
 <211> 1732
 <212> PRT
 <213> Porphyromonas gingivalis

<400> 62

15 Met Arg Lys Leu Leu Leu Leu Ile Ala Ala Ser Leu Leu Gly Val Gly
 1 5 10 15

20 Leu Tyr Ala Gln Ser Ala Lys Ile Lys Leu Asp Ala Pro Thr Thr Arg
 20 25 30

25 Thr Thr Cys Thr Asn Asn Ser Phe Lys Gln Phe Asp Ala Ser Phe Ser
 35 40 45

30 Phe Asn Glu Val Glu Leu Thr Lys Val Glu Thr Lys Gly Gly Thr Phe
 50 55 60

35 Ala Ser Val Ser Ile Pro Gly Ala Phe Pro Thr Gly Glu Val Gly Ser
 65 70 75 80

40 Pro Glu Val Pro Ala Val Arg Lys Leu Ile Ala Val Pro Val Gly Ala
 85 90 95

45 Thr Pro Val Val Arg Val Lys Ser Phe Thr Glu Gln Val Tyr Ser Leu
 100 105 110

50 Asn Gln Tyr Gly Ser Glu Lys Leu Met Pro His Gln Pro Ser Met Ser
 115 120 125

55 Lys Ser Asp Asp Pro Glu Lys Val Pro Phe Val Tyr Asn Ala Ala Ala
 130 135 140

60 Tyr Ala Arg Lys Gly Phe Val Gly Gln Glu Leu Thr Gln Val Glu Met
 145 150 155 160

65 Leu Gly Thr Met Arg Gly Val Arg Ile Ala Ala Leu Thr Ile Asn Pro
 165 170 175

70 Val Gln Tyr Asp Val Val Ala Asn Gln Leu Lys Val Arg Asn Asn Ile
 180 185 190

EP 3 260 135 A1

Glu Ile Glu Val Ser Phe Gln Gly Ala Asp Glu Val Ala Thr Gln Arg
195 200 205

5 Leu Tyr Asp Ala Ser Phe Ser Pro Tyr Phe Glu Thr Ala Tyr Lys Gln
210 215 220

10 Leu Phe Asn Arg Asp Val Tyr Thr Asp His Gly Asp Leu Tyr Asn Thr
225 230 235 240

Pro Val Arg Met Leu Val Val Ala Gly Ala Lys Phe Lys Glu Ala Leu
245 250 255

15 Lys Pro Trp Leu Thr Trp Lys Ala Gln Lys Gly Phe Tyr Leu Asp Val
260 265 270

20 His Tyr Thr Asp Glu Ala Glu Val Gly Thr Thr Asn Ala Ser Ile Lys
275 280 285

25 Ala Phe Ile His Lys Lys Tyr Asn Asp Gly Leu Ala Ala Ser Ala Ala
290 295 300

Pro Val Phe Leu Ala Leu Val Gly Asp Thr Asp Val Ile Ser Gly Glu
305 310 315 320

30 Lys Gly Lys Lys Thr Lys Lys Val Thr Asp Leu Tyr Tyr Ser Ala Val
325 330 335

35 Asp Gly Asp Tyr Phe Pro Glu Met Tyr Thr Phe Arg Met Ser Ala Ser
340 345 350

Ser Pro Glu Glu Leu Thr Asn Ile Ile Asp Lys Val Leu Met Tyr Glu
355 360 365

40 Lys Ala Thr Met Pro Asp Lys Ser Tyr Leu Glu Lys Val Leu Leu Ile
370 375 380

45 Ala Gly Ala Asp Tyr Ser Trp Asn Ser Gln Val Gly Gln Pro Thr Ile
385 390 395 400

50 Lys Tyr Gly Met Gln Tyr Tyr Asn Gln Glu His Gly Tyr Thr Asp
405 410 415

Val Tyr Asn Tyr Leu Lys Ala Pro Tyr Thr Gly Cys Tyr Ser His Leu
420 425 430

55 Asn Thr Gly Val Ser Phe Ala Asn Tyr Thr Ala His Gly Ser Glu Thr
435 440 445

EP 3 260 135 A1

Ala Trp Ala Asp Pro Leu Leu Thr Thr Ser Gln Leu Lys Ala Leu Thr
 450 455 460

5 Asn Lys Asp Lys Tyr Phe Leu Ala Ile Gly Asn Cys Cys Ile Thr Ala
 465 470 475 480

10 Gln Phe Asp Tyr Val Gln Pro Cys Phe Gly Glu Val Ile Thr Arg Val
 485 490 495

Lys Glu Lys Gly Ala Tyr Ala Tyr Ile Gly Ser Ser Pro Asn Ser Tyr
 500 505 510

15 Trp Gly Glu Asp Tyr Tyr Trp Ser Val Gly Ala Asn Ala Val Phe Gly
 515 520 525

20 Val Gln Pro Thr Phe Glu Gly Thr Ser Met Gly Ser Tyr Asp Ala Thr
 530 535 540

25 Phe Leu Glu Asp Ser Tyr Asn Thr Val Asn Ser Ile Met Trp Ala Gly
 545 550 555 560

Asn Leu Ala Ala Thr His Ala Gly Asn Ile Gly Asn Ile Thr His Ile
 565 570 575

30 Gly Ala His Tyr Tyr Trp Glu Ala Tyr His Val Leu Gly Asp Gly Ser
 580 585 590

35 Val Met Pro Tyr Arg Ala Met Pro Lys Thr Asn Thr Tyr Thr Leu Pro
 595 600 605

Ala Ser Leu Pro Gln Asn Gln Ala Ser Tyr Ser Ile Gln Ala Ser Ala
 610 615 620

40 Gly Ser Tyr Val Ala Ile Ser Lys Asp Gly Val Leu Tyr Gly Thr Gly
 625 630 635 640

45 Val Ala Asn Ala Ser Gly Val Ala Thr Val Ser Met Thr Lys Gln Ile
 645 650 655

50 Thr Glu Asn Gly Asn Tyr Asp Val Val Ile Thr Arg Ser Asn Tyr Leu
 660 665 670

Pro Val Ile Lys Gln Ile Gln Val Gly Glu Pro Ser Pro Tyr Gln Pro
 675 680 685

55 Val Ser Asn Leu Thr Ala Thr Thr Gln Gly Gln Lys Val Thr Leu Lys
 690 695 700

EP 3 260 135 A1

Trp Glu Ala Pro Ser Ala Lys Lys Ala Glu Gly Ser Arg Glu Val Lys
705 710 715 720

5 Arg Ile Gly Asp Gly Leu Phe Val Thr Ile Glu Pro Ala Asn Asp Val
725 730 735

10 Arg Ala Asn Glu Ala Lys Val Val Leu Ala Ala Asp Asn Val Trp Gly
740 745 750

Asp Asn Thr Gly Tyr Gln Phe Leu Leu Asp Ala Asp His Asn Thr Phe
755 760 765

15 Gly Ser Val Ile Pro Ala Thr Gly Pro Leu Phe Thr Gly Thr Ala Ser
770 775 780

20 Ser Asn Leu Tyr Ser Ala Asn Phe Glu Tyr Leu Ile Pro Ala Asn Ala
785 790 795 800

25 Asp Pro Val Val Thr Thr Gln Asn Ile Ile Val Thr Gly Gln Gly Glu
805 810 815

Val Val Ile Pro Gly Gly Val Tyr Asp Tyr Cys Ile Thr Asn Pro Glu
820 825 830

30 Pro Ala Ser Gly Lys Met Trp Ile Ala Gly Asp Gly Gly Asn Gln Pro
835 840 845

35 Ala Arg Tyr Asp Asp Phe Thr Phe Glu Ala Gly Lys Lys Tyr Thr Phe
850 855 860

40 Thr Met Arg Arg Ala Gly Met Gly Asp Gly Thr Asp Met Glu Val Glu
865 870 875 880

Asp Asp Ser Pro Ala Ser Tyr Thr Tyr Thr Val Tyr Arg Asp Gly Thr
885 890 895

45 Lys Ile Lys Glu Gly Leu Thr Ala Thr Thr Phe Glu Glu Asp Gly Val
900 905 910

50 Ala Ala Gly Asn His Glu Tyr Cys Val Glu Val Lys Tyr Thr Ala Gly
915 920 925

Val Ser Pro Lys Val Cys Lys Asp Val Thr Val Glu Gly Ser Asn Glu
930 935 940

55 Phe Ala Pro Val Gln Asn Leu Thr Gly Ser Ser Val Gly Gln Lys Val

EP 3 260 135 A1

945	950	955	960
Thr Leu Lys Trp Asp Ala Pro Asn Gly Thr Pro Asn Pro Asn Pro Asn			
965	970		975
Pro Asn Pro Asn Pro Gly Thr Thr Leu Ser Glu Ser Phe Glu Asn Gly			
980	985		990
Ile Pro Ala Ser Trp Lys Thr Ile Asp Ala Asp Gly Asp Gly His Gl			
995	1000		1005
Trp Lys Pro Gly Asn Ala Pro Gly Ile Ala Gly Tyr Asn Ser Asn			
1010	1015		1020
Gly Cys Val Tyr Ser Glu Ser Phe Gly Leu Gly Gly Ile Gly Val			
1025	1030		1035
Leu Thr Pro Asp Asn Tyr Leu Ile Thr Pro Ala Leu Asp Leu Pro			
1040	1045		1050
Asn Gly Gly Lys Leu Thr Phe Trp Val Cys Ala Gln Asp Ala Asn			
1055	1060		1065
Tyr Ala Ser Glu His Tyr Ala Val Tyr Ala Ser Ser Thr Gly Asn			
1070	1075		1080
Asp Ala Ser Asn Phe Thr Asn Ala Leu Leu Glu Glu Thr Ile Thr			
1085	1090		1095
Ala Lys Gly Val Arg Ser Pro Lys Ala Ile Arg Gly Arg Ile Gln			
1100	1105		1110
Gly Thr Trp Arg Gln Lys Thr Val Asp Leu Pro Ala Gly Thr Lys			
1115	1120		1125
Tyr Val Ala Phe Arg His Phe Gln Ser Thr Asp Met Phe Tyr Ile			
1130	1135		1140
Asp Leu Asp Glu Val Glu Ile Lys Ala Asn Gly Lys Arg Ala Asp			
1145	1150		1155
Phe Thr Glu Thr Phe Glu Ser Ser Thr His Gly Glu Ala Pro Ala			
1160	1165		1170
Glu Trp Thr Thr Ile Asp Ala Asp Gly Asp Gly Gln Gly Trp Leu			
1175	1180		1185

EP 3 260 135 A1

Cys Leu Ser Ser Gly Gln Leu Asp Trp Leu Thr Ala His Gly Gly
 1190 1195 1200

5 Ser Asn Val Val Ser Ser Phe Ser Trp Asn Gly Met Ala Leu Asn
 1205 1210 1215

10 Pro Asp Asn Tyr Leu Ile Ser Lys Asp Val Thr Gly Ala Thr Lys
 1220 1225 1230

Val Lys Tyr Tyr Tyr Ala Val Asn Asp Gly Phe Pro Gly Asp His
 1235 1240 1245

15 Tyr Ala Val Met Ile Ser Lys Thr Gly Thr Asn Ala Gly Asp Phe
 1250 1255 1260

20 Thr Val Val Phe Glu Glu Thr Pro Asn Gly Ile Asn Lys Gly Gly
 1265 1270 1275

25 Ala Arg Phe Gly Leu Ser Thr Glu Ala Asn Gly Ala Lys Pro Gln
 1280 1285 1290

Ser Val Trp Ile Glu Arg Thr Val Asp Leu Pro Ala Gly Thr Lys
 1295 1300 1305

30 Tyr Val Ala Phe Arg His Tyr Asn Cys Ser Asp Leu Asn Tyr Ile
 1310 1315 1320

35 Leu Leu Asp Asp Ile Gln Phe Thr Met Gly Gly Ser Pro Thr Pro
 1325 1330 1335

40 Thr Asp Tyr Thr Tyr Thr Val Tyr Arg Asp Gly Thr Lys Ile Lys
 1340 1345 1350

Glu Gly Leu Thr Glu Thr Thr Phe Glu Glu Asp Gly Val Ala Thr
 1355 1360 1365

45 Gly Asn His Glu Tyr Cys Val Glu Val Lys Tyr Thr Ala Gly Val
 1370 1375 1380

50 Ser Pro Lys Lys Cys Val Asn Val Thr Val Asn Ser Thr Gln Phe
 1385 1390 1395

Asn Pro Val Gln Asn Leu Thr Ala Glu Gln Ala Pro Asn Ser Met
 1400 1405 1410

55 Asp Ala Ile Leu Lys Trp Asn Ala Pro Ala Ser Lys Arg Ala Glu
 1415 1420 1425

EP 3 260 135 A1

Val Leu Asn Glu Asp Phe Glu Asn Gly Ile Pro Ala Ser Trp Lys
1430 1435 1440

5 Thr Ile Asp Ala Asp Gly Asp Gly Asn Asn Trp Thr Thr Thr Pro
1445 1450 1455

10 Pro Pro Gly Gly Ser Ser Phe Ala Gly His Asn Ser Ala Ile Cys
1460 1465 1470

Val Ser Ser Ala Ser Tyr Ile Asn Phe Glu Gly Pro Gln Asn Pro
1475 1480 1485

15 Asp Asn Tyr Leu Val Thr Pro Glu Leu Ser Leu Pro Gly Gly Gly
1490 1495 1500

20 Thr Leu Thr Phe Trp Val Cys Ala Gln Asp Ala Asn Tyr Ala Ser
1505 1510 1515

25 Glu His Tyr Ala Val Tyr Ala Ser Ser Thr Gly Asn Asp Ala Ser
1520 1525 1530

Asn Phe Ala Asn Ala Leu Leu Glu Glu Val Leu Thr Ala Lys Thr
1535 1540 1545

30 Val Val Thr Ala Pro Glu Ala Ile Arg Gly Thr Arg Ala Gln Gly
1550 1555 1560

35 Thr Trp Tyr Gln Lys Thr Val Gln Leu Pro Ala Gly Thr Lys Tyr
1565 1570 1575

Val Ala Phe Arg His Phe Gly Cys Thr Asp Phe Phe Trp Ile Asn
1580 1585 1590

40 Leu Asp Asp Val Val Ile Thr Ser Gly Asn Ala Pro Ser Tyr Thr
1595 1600 1605

45 Tyr Thr Ile Tyr Arg Asn Asn Thr Gln Ile Ala Ser Gly Val Thr
1610 1615 1620

50 Glu Thr Thr Tyr Arg Asp Pro Asp Leu Ala Thr Gly Phe Tyr Thr
1625 1630 1635

Tyr Gly Val Lys Val Val Tyr Pro Asn Gly Glu Ser Ala Ile Glu
1640 1645 1650

55 Thr Ala Thr Leu Asn Ile Thr Ser Leu Ala Asp Val Thr Ala Gln
1655 1660 1665

EP 3 260 135 A1

Lys Pro Tyr Thr Leu Thr Val Val Gly Lys Thr Ile Thr Val Thr
 1670 1675 1680

5 Cys Gln Gly Glu Ala Met Ile Tyr Asp Met Asn Gly Arg Arg Leu
 1685 1690 1695

10 Ala Ala Gly Arg Asn Thr Val Val Tyr Thr Ala Gln Gly Gly His
 1700 1705 1710

Tyr Ala Val Met Val Val Val Asp Gly Lys Ser Tyr Val Glu Lys
 1715 1720 1725

15 Leu Ala Val Lys
 1730

20 <210> 63
 <211> 2164
 <212> PRT
 <213> Porphyromonas gingivalis

25 <400> 63
 Met Arg Lys Leu Asn Ser Leu Phe Ser Leu Ala Val Leu Leu Ser Leu
 1 5 10 15

30 Leu Cys Trp Gly Gln Thr Ala Ala Gln Gly Gly Pro Lys Thr Ala
 20 25 30

35 Pro Ser Val Thr His Gln Ala Val Gln Lys Gly Ile Arg Thr Ser Lys
 35 40 45

35 Ala Lys Asp Leu Arg Asp Pro Ile Pro Ala Gly Met Ala Arg Ile Ile
 50 55 60

40 Leu Glu Ala His Asp Val Trp Glu Asp Gly Thr Gly Tyr Gln Met Leu
 65 70 75 80

45 Trp Asp Ala Asp His Asn Gln Tyr Gly Ala Ser Ile Pro Glu Glu Ser
 85 90 95

50 Phe Trp Phe Ala Asn Gly Thr Ile Pro Ala Gly Leu Tyr Asp Pro Phe
 100 105 110

Glu Tyr Lys Val Pro Val Asn Ala Asp Ala Ser Phe Ser Pro Thr Asn
 115 120 125

55 Phe Val Leu Asp Gly Thr Ala Ser Ala Asp Ile Pro Ala Gly Thr Tyr
 130 135 140

EP 3 260 135 A1

Asp Tyr Val Ile Ile Asn Pro Asn Pro Gly Ile Ile Tyr Ile Val Gly
 145 150 155 160

5 Glu Gly Val Ser Lys Gly Asn Asp Tyr Val Val Glu Ala Gly Lys Thr
 165 170 175

10 Tyr His Phe Thr Val Gln Arg Gln Gly Pro Gly Asp Ala Ala Ser Val
 180 185 190

Val Val Thr Gly Glu Gly Asn Glu Phe Ala Pro Val Gln Asn Leu
 195 200 205

15 Gln Trp Ser Val Ser Gly Gln Thr Val Thr Leu Thr Trp Gln Ala Pro
 210 215 220

20 Ala Ser Asp Lys Arg Thr Tyr Val Leu Asn Glu Ser Phe Asp Thr Gln
 225 230 235 240

25 Thr Leu Pro Asn Gly Trp Thr Met Ile Asp Ala Asp Gly Asp Gly His
 245 250 255

Asn Trp Leu Ser Thr Ile Asn Val Tyr Asn Thr Ala Thr His Thr Gly
 260 265 270

30 Asp Gly Ala Met Phe Ser Lys Ser Trp Thr Ala Ser Ser Gly Ala Lys
 275 280 285

35 Ile Asp Leu Ser Pro Asp Asn Tyr Leu Val Thr Pro Lys Phe Thr Val
 290 295 300

Pro Glu Asn Gly Lys Leu Ser Tyr Trp Val Ser Ser Gln Glu Pro Trp
 305 310 315 320

40 Thr Asn Glu His Tyr Gly Val Phe Leu Ser Thr Thr Gly Asn Glu Ala
 325 330 335

45 Ala Asn Phe Thr Ile Lys Leu Leu Glu Glu Thr Leu Gly Ser Gly Lys
 340 345 350

50 Pro Ala Pro Met Asn Leu Val Lys Ser Glu Gly Val Lys Ala Pro Ala
 355 360 365

Pro Tyr Gln Glu Arg Thr Ile Asp Leu Ser Ala Tyr Ala Gly Gln Gln
 370 375 380

55 Val Tyr Leu Ala Phe Arg His Phe Gly Cys Thr Gly Ile Phe Arg Leu

EP 3 260 135 A1

385	390	395	400
Tyr Leu Asp Asp Val Ala Val Ser Gly Glu Gly Ser Ser Asn Asp Tyr			
5	405	410	415
Thr Tyr Thr Val Tyr Arg Asp Asn Val Val Ile Ala Gln Asn Leu Thr			
10 420 425 430			
Ala Thr Thr Phe Asn Gln Glu Asn Val Ala Pro Gly Gln Tyr Asn Tyr			
435 440 445			
15 Cys Val Glu Val Lys Tyr Thr Ala Gly Val Ser Pro Lys Val Cys Lys			
450 455 460			
Asp Val Thr Val Glu Gly Ser Asn Glu Phe Ala Pro Val Gln Asn Leu			
20 465	470	475	480
Thr Gly Ser Ala Val Gly Gln Lys Val Thr Leu Lys Trp Asp Ala Pro			
485 490 495			
25 Asn Gly Thr Pro Asn Pro Asn Pro Gly Thr Thr Leu Ser Glu Ser			
500 505 510			
30 Phe Glu Asn Gly Ile Pro Ala Ser Trp Lys Thr Ile Asp Ala Asp Gly			
515 520 525			
35 Asp Gly Asn Asn Trp Thr Thr Pro Pro Pro Gly Ser Ser Phe			
530 535 540			
Ala Gly His Asn Ser Ala Ile Cys Val Ser Ser Ala Ser Tyr Ile Asn			
545 550 555 560			
40 Phe Glu Gly Pro Gln Asn Pro Asp Asn Tyr Leu Val Thr Pro Glu Leu			
565 570 575			
45 Ser Leu Pro Asn Gly Gly Thr Leu Thr Phe Trp Val Cys Ala Gln Asp			
580 585 590			
50 Ala Asn Tyr Ala Ser Glu His Tyr Ala Val Tyr Ala Ser Ser Thr Gly			
595 600 605			
Asn Asp Ala Ser Asn Phe Ala Asn Ala Leu Leu Glu Glu Val Leu Thr			
55 610 615 620			
Ala Lys Thr Val Val Thr Ala Pro Glu Ala Ile Arg Gly Thr Arg Val			
625 630 635 640			

EP 3 260 135 A1

Gln Gly Thr Trp Tyr Gln Lys Thr Val Gln Leu Pro Ala Gly Thr Lys
645 650 655

5 Tyr Val Ala Phe Arg His Phe Gly Cys Thr Asp Phe Phe Trp Ile Asn
660 665 670

10 Leu Asp Asp Val Glu Ile Lys Ala Asn Gly Lys Arg Ala Asp Phe Thr
675 680 685

Glu Thr Phe Glu Ser Ser Thr His Gly Glu Ala Pro Ala Glu Trp Thr
690 695 700

15 Thr Ile Asp Ala Asp Gly Asp Gly Gln Gly Trp Leu Cys Leu Ser Ser
705 710 715 720

20 Gly Gln Leu Gly Trp Leu Thr Ala His Gly Gly Thr Asn Val Val Ala
725 730 735

Ser Phe Ser Trp Asn Gly Met Ala Leu Asn Pro Asp Asn Tyr Leu Ile
740 745 750

25 Ser Lys Asp Val Thr Gly Ala Thr Lys Val Lys Tyr Tyr Tyr Ala Val
755 760 765

30 Asn Asp Gly Phe Pro Gly Asp His Tyr Ala Val Met Ile Ser Lys Thr
770 775 780

35 Gly Thr Asn Ala Gly Asp Phe Thr Val Val Phe Glu Glu Thr Pro Asn
785 790 795 800

Gly Ile Asn Lys Gly Gly Ala Arg Phe Gly Leu Ser Thr Glu Ala Asn
805 810 815

40 Gly Ala Lys Pro Gln Ser Val Trp Ile Glu Arg Thr Val Asp Leu Pro
820 825 830

45 Ala Gly Thr Lys Tyr Val Ala Phe Arg His Tyr Asn Cys Ser Asp Leu
835 840 845

50 Asn Tyr Ile Leu Leu Asp Asp Ile Gln Phe Thr Met Gly Gly Ser Pro
850 855 860

Thr Pro Thr Asp Tyr Thr Tyr Thr Val Tyr Arg Asp Gly Thr Lys Ile
865 870 875 880

55 Lys Glu Gly Leu Thr Glu Thr Thr Phe Glu Glu Asp Gly Val Ala Thr
885 890 895

Gly Asn His Glu Tyr Cys Val Glu Val Lys Tyr Thr Ala Gly Val Ser
 900 905 910

5 Pro Lys Glu Cys Val Asn Val Thr Val Asp Pro Val Gln Phe Asn Pro
 915 920 925

10 Val Gln Asn Leu Thr Gly Ser Ala Val Gly Gln Lys Val Thr Leu Lys
 930 935 940

15 Trp Asp Ala Pro Asn Gly Thr Pro Asn Pro Asn Pro Gly Thr Thr Thr
 945 950 955 960

20 Leu Ser Glu Ser Phe Glu Asn Gly Ile Pro Ala Ser Trp Lys Thr Ile
 965 970 975

25 Asp Ala Asp Gly Asp Gly Asn Asn Trp Thr Thr Thr Pro Pro Pro Gly
 980 985 990

30 Gly Thr Ser Phe Ala Gly His Asn Ser Ala Ile Cys Val Ser Ser Ala
 995 1000 1005

35 Ser Tyr Ile Asn Phe Glu Gly Pro Gln Asn Pro Asp Asn Tyr Leu
 1010 1015 1020

40 Val Thr Pro Glu Leu Ser Leu Pro Asn Gly Gly Thr Leu Thr Phe
 1025 1030 1035

45 Trp Val Cys Ala Gln Asp Ala Asn Tyr Ala Ser Glu His Tyr Ala
 1040 1045 1050

50 Val Tyr Ala Ser Ser Thr Gly Asn Asp Ala Ser Asn Phe Ala Asn
 1055 1060 1065

Ala Leu Leu Glu Glu Val Leu Thr Ala Lys Thr Val Val Thr Ala
 1070 1075 1080

Pro Glu Ala Ile Arg Gly Thr Arg Val Gln Gly Thr Trp Tyr Gln
 1085 1090 1095

Lys Thr Val Gln Leu Pro Ala Gly Thr Lys Tyr Val Ala Phe Arg
 1100 1105 1110

His Phe Gly Cys Thr Asp Phe Phe Trp Ile Asn Leu Asp Asp Val
 1115 1120 1125

55 Glu Ile Lys Ala Asn Gly Lys Arg Ala Asp Phe Thr Glu Thr Phe
 1130 1135 1140

EP 3 260 135 A1

Glu Ser Ser Thr His Gly Glu Ala Pro Ala Glu Trp Thr Thr Ile
 1145 1150 1155

5 Asp Ala Asp Gly Asp Gly Gln Gly Trp Leu Cys Leu Ser Ser Gly
 1160 1165 1170

10 Gln Leu Asp Trp Leu Thr Ala His Gly Gly Thr Asn Val Val Ala
 1175 1180 1185

15 Ser Phe Ser Trp Asn Gly Met Ala Leu Asn Pro Asp Asn Tyr Leu
 1190 1195 1200

20 Ile Ser Lys Asp Val Thr Gly Ala Thr Lys Val Lys Tyr Tyr Tyr
 1205 1210 1215

25 Ala Val Asn Asp Gly Phe Pro Gly Asp His Tyr Ala Val Met Ile
 1220 1225 1230

30 Ser Lys Thr Gly Thr Asn Ala Gly Asp Phe Thr Val Val Phe Glu
 1235 1240 1245

35 Glu Thr Pro Asn Gly Ile Asn Lys Gly Gly Ala Arg Phe Gly Leu
 1250 1255 1260

40 Ser Thr Glu Ala Asn Gly Ala Lys Pro Gln Ser Val Trp Ile Glu
 1265 1270 1275

45 Arg Thr Val Asp Leu Pro Ala Gly Thr Lys Tyr Val Ala Phe Arg
 1280 1285 1290

50 His Tyr Asn Cys Ser Asp Leu Asn Tyr Ile Leu Leu Asp Asp Ile
 1295 1300 1305

55 Gln Phe Thr Met Gly Gly Ser Pro Thr Pro Thr Asp Tyr Thr Tyr
 1310 1315 1320

60 Thr Val Tyr Arg Asp Gly Thr Lys Ile Lys Glu Gly Leu Thr Glu
 1325 1330 1335

65 Thr Thr Phe Glu Glu Asp Gly Val Ala Thr Gly Asn His Glu Tyr
 1340 1345 1350

70 Cys Val Glu Val Lys Tyr Thr Ala Gly Val Ser Pro Lys Glu Cys
 1355 1360 1365

75 Val Asn Val Thr Val Asp Pro Val Gln Phe Asn Pro Val Gln Asn

EP 3 260 135 A1

1370

1375

1380

5 Leu Thr Gly Ser Ala Val Gly Gln Lys Val Thr Leu Lys Trp Asp
 1385 1390 1395

Ala Pro Asn Gly Thr Pro Asn Pro Asn Pro Gly Thr Thr Thr Leu
 1400 1405 1410

10

Ser Glu Ser Phe Glu Asn Gly Ile Pro Ala Ser Trp Lys Thr Ile
 1415 1420 1425

15

Asp Ala Asp Gly Asp Gly Asn Asn Trp Thr Thr Pro Pro Pro
 1430 1435 1440

20

Gly Gly Thr Ser Phe Ala Gly His Asn Ser Ala Ile Cys Val Ser
 1445 1450 1455

Ser Ala Ser Tyr Ile Asn Phe Glu Gly Pro Gln Asn Pro Asp Asn
 1460 1465 1470

25

Tyr Leu Val Thr Pro Glu Leu Ser Leu Pro Asn Gly Gly Thr Leu
 1475 1480 1485

30

Thr Phe Trp Val Cys Ala Gln Asp Ala Asn Tyr Ala Ser Glu His
 1490 1495 1500

35

Tyr Ala Val Tyr Ala Ser Ser Thr Gly Asn Asp Ala Ser Asn Phe
 1505 1510 1515

40

Ala Asn Ala Leu Leu Glu Glu Val Leu Thr Ala Lys Thr Val Val
 1520 1525 1530

Thr Ala Pro Glu Ala Ile Arg Gly Thr Arg Val Gln Gly Thr Trp
 1535 1540 1545

45

Tyr Gln Lys Thr Val Gln Leu Pro Ala Gly Thr Lys Tyr Val Ala
 1550 1555 1560

Phe Arg His Phe Gly Cys Thr Asp Phe Phe Trp Ile Asn Leu Asp
 1565 1570 1575

50

Asp Val Glu Ile Lys Ala Asn Gly Lys Arg Ala Asp Phe Thr Glu
 1580 1585 1590

55

Thr Phe Glu Ser Ser Thr His Gly Glu Ala Pro Ala Glu Trp Thr
 1595 1600 1605

EP 3 260 135 A1

Thr Ile Asp Ala Asp Gly Asp Gly Gln Gly Trp Leu Cys Leu Ser
 1610 1615 1620

5 Ser Gly Gln Leu Gly Trp Leu Thr Ala His Gly Gly Thr Asn Val
 1625 1630 1635

10 Val Ala Ser Phe Ser Trp Asn Gly Met Ala Leu Asn Pro Asp Asn
 1640 1645 1650

Tyr Leu Ile Ser Lys Asp Val Thr Gly Ala Thr Lys Val Lys Tyr
 1655 1660 1665

15 Tyr Tyr Ala Val Asn Asp Gly Phe Pro Gly Asp His Tyr Ala Val
 1670 1675 1680

20 Met Ile Ser Lys Thr Gly Thr Asn Ala Gly Asp Phe Thr Val Val
 1685 1690 1695

Phe Glu Glu Thr Pro Asn Gly Ile Asn Lys Gly Gly Ala Arg Phe
 1700 1705 1710

25 Gly Leu Ser Thr Glu Ala Asn Gly Ala Lys Pro Gln Ser Val Trp
 1715 1720 1725

30 Ile Glu Arg Thr Val Asp Leu Pro Ala Gly Thr Lys Tyr Val Ala
 1730 1735 1740

Phe Arg His Tyr Asn Cys Ser Asp Leu Asn Tyr Ile Leu Leu Asp
 35 1745 1750 1755

Asp Ile Gln Phe Thr Met Gly Gly Ser Pro Thr Pro Thr Asp Tyr
 1760 1765 1770

40 Thr Tyr Thr Val Tyr Arg Asp Gly Thr Lys Ile Lys Glu Gly Leu
 1775 1780 1785

45 Thr Glu Thr Thr Phe Glu Glu Asp Gly Val Ala Thr Gly Asn His
 1790 1795 1800

Glu Tyr Cys Val Glu Val Lys Tyr Thr Ala Gly Val Ser Pro Lys
 50 1805 1810 1815

Glu Cys Val Asn Val Thr Ile Asn Pro Thr Gln Phe Asn Pro Val
 1820 1825 1830

55 Gln Asn Leu Thr Ala Glu Gln Ala Pro Asn Ser Met Asp Ala Ile
 1835 1840 1845

EP 3 260 135 A1

Leu Lys Trp Asn Ala Pro Ala Ser Lys Arg Ala Glu Val Leu Asn
 1850 1855 1860

5 Glu Asp Phe Glu Asn Gly Ile Pro Ala Ser Trp Lys Thr Ile Asp
 1865 1870 1875

10 Ala Asp Gly Asp Gly Asn Asn Trp Thr Thr Thr Pro Pro Pro Gly
 1880 1885 1890

Gly Ser Ser Phe Ala Gly His Asn Ser Ala Ile Cys Val Ser Ser
 1895 1900 1905

15 Ala Ser Tyr Ile Asn Phe Glu Gly Pro Gln Asn Pro Asp Asn Tyr
 1910 1915 1920

20 Leu Val Thr Pro Glu Leu Ser Leu Pro Gly Gly Thr Leu Thr
 1925 1930 1935

Phe Trp Val Cys Ala Gln Asp Ala Asn Tyr Ala Ser Glu His Tyr
 1940 1945 1950

25 Ala Val Tyr Ala Ser Ser Thr Gly Asn Asp Ala Ser Asn Phe Ala
 1955 1960 1965

30 Asn Ala Leu Leu Glu Glu Val Leu Thr Ala Lys Thr Val Val Thr
 1970 1975 1980

35 Ala Pro Glu Ala Ile Arg Gly Thr Arg Val Gln Gly Thr Trp Tyr
 1985 1990 1995

Gln Lys Thr Val Gln Leu Pro Ala Gly Thr Lys Tyr Val Ala Phe
 2000 2005 2010

40 Arg His Phe Gly Cys Thr Asp Phe Phe Trp Ile Asn Leu Asp Asp
 2015 2020 2025

45 Val Val Ile Thr Ser Gly Asn Ala Pro Ser Tyr Thr Tyr Thr Ile
 2030 2035 2040

50 Tyr Arg Asn Asn Thr Gln Ile Ala Ser Gly Val Thr Glu Thr Thr
 2045 2050 2055

Tyr Arg Asp Pro Asp Leu Ala Thr Gly Phe Tyr Thr Tyr Gly Val
 2060 2065 2070

55 Lys Val Val Tyr Pro Asn Gly Glu Ser Ala Ile Glu Thr Ala Thr
 2075 2080 2085

Leu Asn Ile Thr Ser Leu Ala Asp Val Thr Ala Gln Lys Pro Tyr
 2090 2095 2100

5 Thr Leu Thr Val Val Gly Lys Thr Ile Thr Val Thr Cys Gln Gly
 2105 2110 2115

10 Glu Ala Met Ile Tyr Asp Met Asn Gly Arg Arg Leu Ala Ala Gly
 2120 2125 2130

Arg Asn Thr Val Val Tyr Thr Ala Gln Gly Gly His Tyr Ala Val
 2135 2140 2145

15 Met Val Val Val Asp Gly Lys Ser Tyr Val Glu Lys Leu Ala Val
 2150 2155 2160

20 Lys

25 <210> 64
 <211> 8
 <212> PRT
 <213> *Porphyromonas gingivalis*

30 <220>
 <221> MISC_FEATURE
 <222> (2)..(2)
 <223> X can be either S or Y

35 <220>
 <221> MISC_FEATURE
 <222> (3)..(3)
 <223> X can be either Y or S

40 <220>
 <221> MISC_FEATURE
 <222> (6)..(6)
 <223> X can be either P or S

45 <220>
 <221> MISC_FEATURE
 <222> (7)..(7)
 <223> X can be either K or Q

50 <220>
 <221> MISC_FEATURE
 <222> (8)..(8)
 <223> X can be either I or V

<400> 64

55 Asp Xaa Xaa Trp Asn Xaa Xaa Xaa
 1 5

1 5

5
 <210> 69
 <211> 23
 <212> PRT
 <213> *Porphyromonas gingivalis*

<400> 69

10 Pro Val Ser Asn Leu Thr Ala Thr Thr Gln Gly Gln Lys Val Thr Leu
 1 5 10 15

15 Lys Trp Asp Ala Pro Ser Thr
 20

20 <210> 70
 <211> 23
 <212> PRT
 <213> *Porphyromonas gingivalis*

<400> 70

25 Pro Val Ser Asn Leu Thr Ala Thr Thr Gln Gly Gln Lys Val Thr Leu
 1 5 10 15

30 Lys Trp Glu Ala Pro Ser Ala
 20

35 <210> 71
 <211> 23
 <212> PRT
 <213> *Porphyromonas gingivalis*

<400> 71

40 Pro Val Gln Asn Leu Thr Gly Ser Ser Val Gly Gln Lys Val Thr Leu
 1 5 10 15

45 Lys Trp Asp Ala Pro Ser Thr
 20

50 <210> 72
 <211> 23
 <212> PRT
 <213> *Porphyromonas gingivalis*

<400> 72

55 Pro Val Gln Asn Leu Thr Gly Ser Ala Val Gly Gln Lys Val Thr Leu
 1 5 10 15

Lys Trp Asp Ala Pro Asn Gly
 20

<210> 73
 <211> 23
 <212> PRT
 <213> *Porphyromonas gingivalis*

5

<400> 73

Pro Val Lys Asn Leu Lys Ala Gln Pro Asp Gly Gly Asp Val Val Leu
 1 5 10 15

10

Lys Trp Glu Ala Pro Ser Ala
 20

15

<210> 74
 <211> 23
 <212> PRT
 <213> *Porphyromonas gingivalis*

20

Pro Val Gln Asn Leu Thr Ala Glu Gln Ala Pro Asn Ser Met Asp Ala
 1 5 10 15

25

Ile Leu Lys Trp Asn Ala Pro
 20

30

<210> 75
 <211> 24
 <212> PRT
 <213> *Porphyromonas gingivalis*

<400> 75

35

Pro Val Gln Asn Leu Thr Gln Trp Ser Val Ser Gly Gln Thr Val Thr
 1 5 10 15

40

Leu Thr Trp Gln Ala Pro Ala Ser
 20

45

<210> 76
 <211> 27
 <212> PRT
 <213> *Porphyromonas gingivalis*

<400> 76

50

Tyr Thr Tyr Thr Val Tyr Arg Asp Gly Thr Lys Ile Lys Glu Gly Leu
 1 5 10 15

55

Thr Glu Thr Thr Phe Glu Glu Asp Gly Val Ala
 20 25

55

<210> 77
 <211> 27
 <212> PRT

<213> Porphyromonas gingivalis

<400> 77

5	Tyr	Thr	Tyr	Thr	Val	Tyr	Arg	Asp	Asn	Val	Val	Ile	Ala	Gln	Asn	Leu
	1				5						10				15	

10	Thr	Ala	Thr	Thr	Phe	Asn	Gln	Glu	Asn	Val	Ala					
					20						25					

15	<210>	78														
	<211>	28														
	<212>	PRT														
	<213>	Porphyromonas	gingivalis													

<400> 78

20	Tyr	Thr	Tyr	Thr	Val	Tyr	Arg	Asp	Gly	Thr	Lys	Ile	Lys	Glu	Gly	Leu
	1				5						10				15	

25	Thr	Ala	Glu	Thr	Thr	Phe	Glu	Glu	Asp	Gly	Val	Ala				
					20						25					

30	<210>	79														
	<211>	16														
	<212>	PRT														
	<213>	Porphyromonas	gingivalis													

35	<220>															
	<221>	MISC_FEATURE														
	<222>	(6) .. (7)														
	<223>	X can be NP or NPNP or NPNPNP or NPNPNPNP or NPNPNPNPNP or NPNPNPNPNPNP														

40	<400>	79														
	Pro	Asn	Gly	Thr	Pro	Xaa	Xaa	Gly	Thr	Thr	Thr	Leu	Ser	Glu	Ser	Phe
	1					5						10				15

45	<210>	80														
	<211>	325														
	<212>	PRT														
	<213>	Porphyromonas	gingivalis													

<400> 80

50	Gly	Gly	Pro	Lys	Thr	Ala	Pro	Ser	Val	Thr	His	Gln	Ala	Val	Gln	Lys
	1					5					10				15	

55	Gly	Ile	Arg	Thr	Ser	Lys	Ala	Lys	Asp	Leu	Arg	Asp	Pro	Ile	Pro	Ala
					20					25				30		

	Gly	Met	Ala	Arg	Ile	Ile	Leu	Glu	Ala	His	Asp	Val	Trp	Glu	Asp	Gly
					35				40			45				

EP 3 260 135 A1

Thr Gly Tyr Gln Met Leu Trp Asp Ala Asp His Asn Gln Tyr Gly Ala
50 55 60

5 Ser Ile Pro Glu Glu Ser Phe Trp Phe Ala Asn Gly Thr Ile Pro Ala
65 70 75 80

10 Gly Leu Tyr Asp Pro Phe Glu Tyr Lys Val Pro Val Asn Ala Asp Ala
85 90 95

Ser Phe Ser Pro Thr Asn Phe Val Leu Asp Gly Thr Ala Ser Ala Asp
100 105 110

15 Ile Pro Ala Gly Thr Tyr Asp Tyr Val Ile Ile Asn Pro Asn Pro Gly
115 120 125

20 Ile Ile Tyr Ile Val Gly Glu Gly Val Ser Lys Gly Asn Asp Tyr Val
130 135 140

25 Val Glu Ala Gly Lys Thr Tyr His Phe Thr Val Gln Arg Gln Gly Pro
145 150 155 160

Gly Asp Ala Ala Ser Val Val Val Thr Gly Glu Gly Gly Asn Glu Phe
165 170 175

30 Ala Pro Val Gln Asn Leu Gln Trp Ser Val Ser Gly Gln Thr Val Thr
180 185 190

35 Leu Thr Trp Gln Ala Pro Ala Ser Asp Lys Arg Thr Tyr Val Leu Asn
195 200 205

40 Glu Ser Phe Asp Thr Gln Thr Leu Pro Asn Gly Trp Thr Met Ile Asp
210 215 220

45 Ala Asp Gly Asp Gly His Asn Trp Leu Ser Thr Ile Asn Val Tyr Asn
225 230 235 240

50 Thr Ala Thr His Thr Gly Asp Gly Ala Met Phe Ser Lys Ser Trp Thr
245 250 255

55 Ala Ser Ser Gly Ala Lys Ile Asp Leu Ser Pro Asp Asn Tyr Leu Val
260 265 270

Thr Pro Lys Phe Thr Val Pro Glu Asn Gly Lys Leu Ser Tyr Trp Val
275 280 285

55 Ser Ser Gln Glu Pro Trp Thr Asn Glu His Tyr Gly Val Phe Leu Ser
290 295 300

EP 3 260 135 A1

Thr Thr Gly Asn Glu Ala Ala Asn Phe Thr Ile Lys Leu Leu Glu Glu
 305 310 315 320

5 Thr Leu Gly Ser Gly
 325

<210> 81
 <211> 260
 <212> PRT
 <213> Porphyromonas gingivalis

<400> 81

15 Ala Pro Ala Pro Tyr Gln Glu Arg Thr Ile Asp Leu Ser Ala Tyr Ala
 1 5 10 15

20 Gly Gln Gln Val Tyr Leu Ala Phe Arg His Phe Gly Cys Thr Gly Ile
 20 25 30

25 Phe Arg Leu Tyr Leu Asp Asp Val Ala Val Ser Gly Glu Gly Ser Ser
 35 40 45

30 Asn Asp Tyr Thr Tyr Val Tyr Arg Asp Asn Val Val Ile Ala Gln
 65 70 75 80

35 Tyr Asn Tyr Cys Val Glu Val Lys Tyr Thr Ala Gly Val Ser Pro Lys
 85 90 95

40 Val Cys Lys Asp Val Thr Val Glu Gly Ser Asn Glu Phe Ala Pro Val
 100 105 110

45 Gln Asn Leu Thr Gly Ser Ala Val Gly Gln Lys Val Thr Leu Lys Trp
 115 120 125

50 Asp Ala Pro Asn Gly Thr Pro Asn Pro Asn Pro Gly Thr Thr Thr Leu
 130 135 140

Ser Glu Ser Phe Glu Asn Gly Ile Pro Ala Ser Trp Lys Thr Ile Asp
 145 150 155 160

55 Ala Asp Gly Asp Gly Asn Asn Trp Thr Thr Pro Pro Pro Gly Gly
 165 170 175

Ser Ser Phe Ala Gly His Asn Ser Ala Ile Cys Val Ser Ser Ala Ser
 180 185 190

EP 3 260 135 A1

Tyr Ile Asn Phe Glu Gly Pro Gln Asn Pro Asp Asn Tyr Leu Val Thr
 195 200 205

5 Pro Glu Leu Ser Leu Pro Asn Gly Gly Thr Leu Thr Phe Trp Val Cys
 210 215 220

10 Ala Gln Asp Ala Asn Tyr Ala Ser Glu His Tyr Ala Val Tyr Ala Ser
 225 230 235 240

Ser Thr Gly Asn Asp Ala Ser Asn Phe Ala Asn Ala Leu Leu Glu Glu
 245 250 255

15 Val Leu Thr Ala
 260

20 <210> 82
 <211> 258
 <212> PRT
 <213> Porphyromonas gingivalis

25 <400> 82
 Pro Gln Ser Val Trp Ile Glu Arg Thr Val Asp Leu Pro Ala Gly Thr
 1 5 10 15

30 Lys Tyr Val Ala Phe Arg His Tyr Asn Cys Ser Asp Leu Asn Tyr Ile
 20 25 30

35 Leu Leu Asp Asp Ile Gln Phe Thr Met Gly Gly Ser Pro Thr Pro Thr
 35 40 45

40 Asp Tyr Thr Tyr Thr Val Tyr Arg Asp Gly Thr Lys Ile Lys Glu Gly
 50 55 60

45 Leu Thr Glu Thr Thr Phe Glu Glu Asp Gly Val Ala Thr Gly Asn His
 65 70 75 80

50 Glu Tyr Cys Val Glu Val Lys Tyr Thr Ala Gly Val Ser Pro Lys Glu
 85 90 95

55 Cys Val Asn Val Thr Val Asp Pro Val Gln Phe Asn Pro Val Gln Asn
 100 105 110

Leu Thr Gly Ser Ala Val Gly Gln Lys Val Thr Leu Lys Trp Asp Ala
 115 120 125

55 Pro Asn Gly Thr Pro Asn Pro Asn Pro Gly Thr Thr Thr Leu Ser Glu
 130 135 140

Ser Phe Glu Asn Gly Ile Pro Ala Ser Trp Lys Thr Ile Asp Ala Asp
 145 150 155 160

5 Gly Asp Gly Asn Asn Trp Thr Thr Pro Pro Pro Gly Gly Thr Ser
 165 170 175

10 Phe Ala Gly His Asn Ser Ala Ile Cys Val Ser Ser Ala Ser Tyr Ile
 180 185 190

15 Asn Phe Glu Gly Pro Gln Asn Pro Asp Asn Tyr Leu Val Thr Pro Glu
 195 200 205

Leu Ser Leu Pro Asn Gly Gly Thr Leu Thr Phe Trp Val Cys Ala Gln
 210 215 220

20 Asp Ala Asn Tyr Ala Ser Glu His Tyr Ala Val Tyr Ala Ser Ser Thr
 225 230 235 240

25 Gly Asn Asp Ala Ser Asn Phe Ala Asn Ala Leu Leu Glu Glu Val Leu
 245 250 255

Thr Ala

30 <210> 83
 <211> 15
 <212> PRT
 <213> *Porphyromonas gingivalis*

35 <400> 83

Pro Tyr Gln Pro Val Ser Asn Leu Thr Ala Thr Thr Gln Gly Gln
 1 5 10 15

40 <210> 84
 <211> 15
 <212> PRT
 <213> *Porphyromonas gingivalis*

45 <400> 84

Glu Gly Leu Thr Ala Thr Thr Phe Glu Glu Asp Gly Val Ala Ala
 1 5 10 15

50 <210> 85
 <211> 17
 <212> PRT
 <213> *Porphyromonas gingivalis*

55 <400> 85

Gly Thr Pro Asn Pro Asn Pro Asn Pro Asn Pro Asn Pro Gly
 1 5 10 15

5 Thr

<210> 86
 <211> 13
 <212> PRT
 <213> Bos taurus
 <400> 86

15 Leu Pro Gln Glu Val Leu Asn Glu Asn Leu Leu Arg Phe
 1 5 10

<210> 87
 <211> 17
 <212> PRT
 <213> bos taurus
 <400> 87

25 Tyr Gln Glu Pro Val Leu Gly Pro Val Arg Gly Pro Phe Pro Ile Ile
 1 5 10 15

30 Val

35 <210> 88
 <211> 29
 <212> PRT
 <213> Bos taurus
 <400> 88

40 Pro Pro Lys Lys Asn Gln Asp Lys Thr Glu Ile Pro Thr Ile Asn Thr
 1 5 10 15

Ile Ala Ser Gly Glu Pro Thr Ser Thr Pro Thr Thr Glu
 20 25

45 <210> 89
 <211> 13
 <212> PRT
 <213> bos taurus
 <400> 89

50 Tyr Gln Glu Pro Val Leu Gly Pro Val Arg Gly Pro Phe
 1 5 10

55 <210> 90
 <211> 21
 <212> PRT

<213> Bos taurus

<400> 90

5 Thr Glu Ile Pro Thr Ile Asn Thr Ile Ala Ser Gly Glu Pro Thr Ser
 1 5 10 15

Claims

15 1. An immunogen and an antimicrobial agent, or a kit comprising the immunogen and antimicrobial agent, for use in
treating a disease or condition associated with the presence of *P. gingivalis* in an oral tissue of a subject, wherein
the treating comprises administering to the subject an antimicrobial agent, wherein the antimicrobial agent is an
antibiotic or an anti-biofilm agent that is capable of inhibiting, reducing or preventing bacterial biofilm formation or
development, and wherein the immunogen comprises a *P. gingivalis* peptide or protein, and the immunogen is
administered after the agent.

20 2. The immunogen and antimicrobial agent or kit for use according to claim 1, wherein the immunogen is administered
one to two weeks after the agent.

25 3. The immunogen and antimicrobial agent or kit for use according to claim 1 or claim 2, wherein the disease or
condition is selected from the group consisting of dental plaque, gingivitis, periodontitis, chronic periodontitis, dental
caries, bone loss, alveolar bone loss and coronary artery disease.

30 4. The immunogen and antimicrobial agent or kit for use according to any one of claims 1-3, wherein the antimicrobial
agent is an inhibiting agent of fumarate reductase.

35 5. The immunogen and antimicrobial agent or kit for use according to claim 4, wherein the anti-microbial agent is
selected from oxantel, morantel or thiabendazole.

40 6. The immunogen and antimicrobial agent or kit for use according to any one of the preceding claims, wherein the
immunogen is a recombinant *P. gingivalis* peptide or protein.

7. The immunogen and antimicrobial agent or kit for use according to claim 6, wherein the recombinant *P. gingivalis*
protein is a chimeric or fusion protein.

8. The immunogen and antimicrobial agent or kit for use according to any one of the preceding claims, wherein the
immunogen and/or antimicrobial agent is administered systemically.

45 9. The immunogen and antimicrobial agent or kit for use according to any one of the preceding claims, wherein the
immunogen and/or antimicrobial agent is administered directly to oral tissue, for example directly to oral mucosa.

10. The immunogen and antimicrobial agent or kit for use according to any one of the preceding claims, wherein the
treating further comprises a dental procedure, for example debridement, scaling and/or root planing, wherein the
antimicrobial agent and the immunogen are administered after the dental procedure.

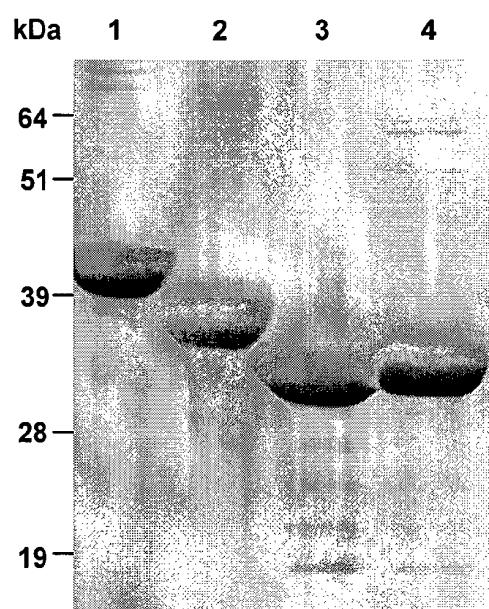


Fig 1.

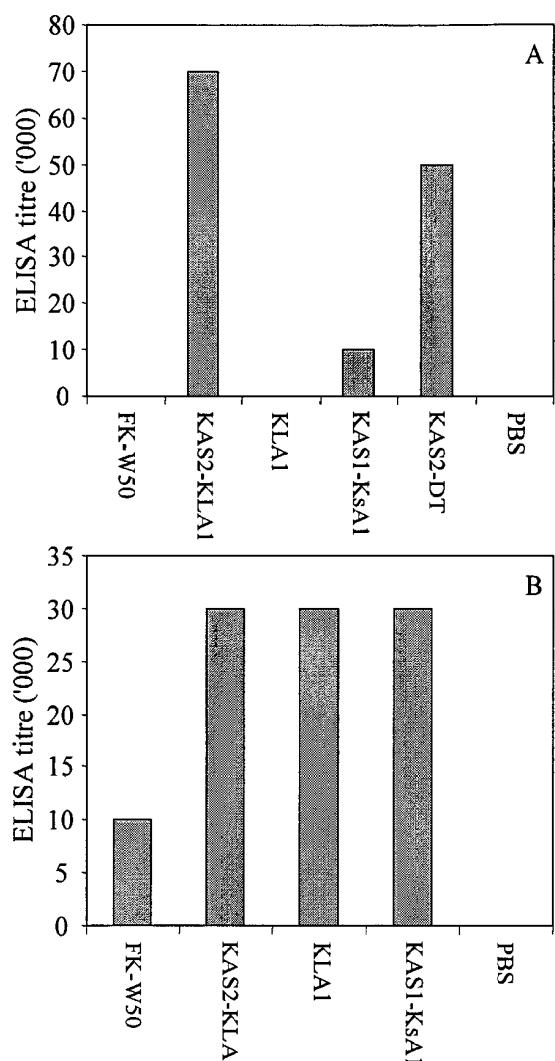


Fig. 2.

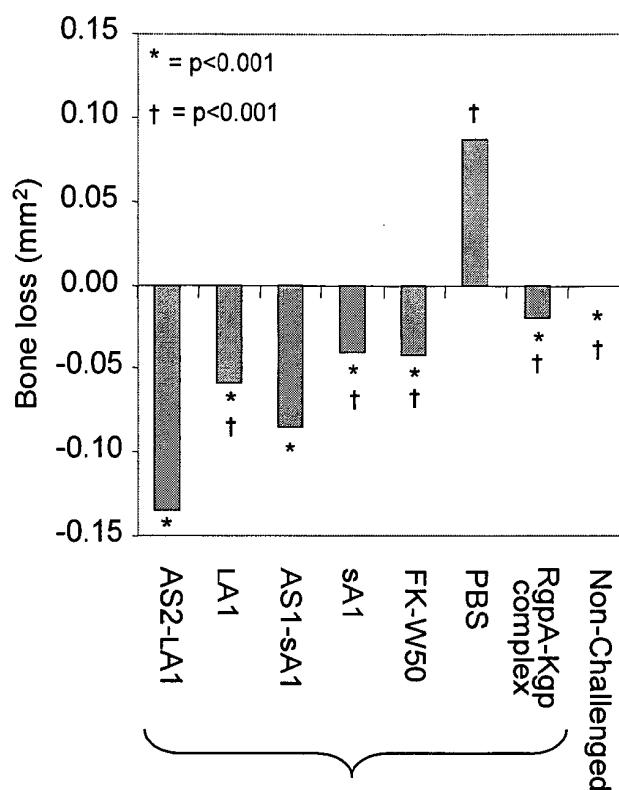


Fig. 3

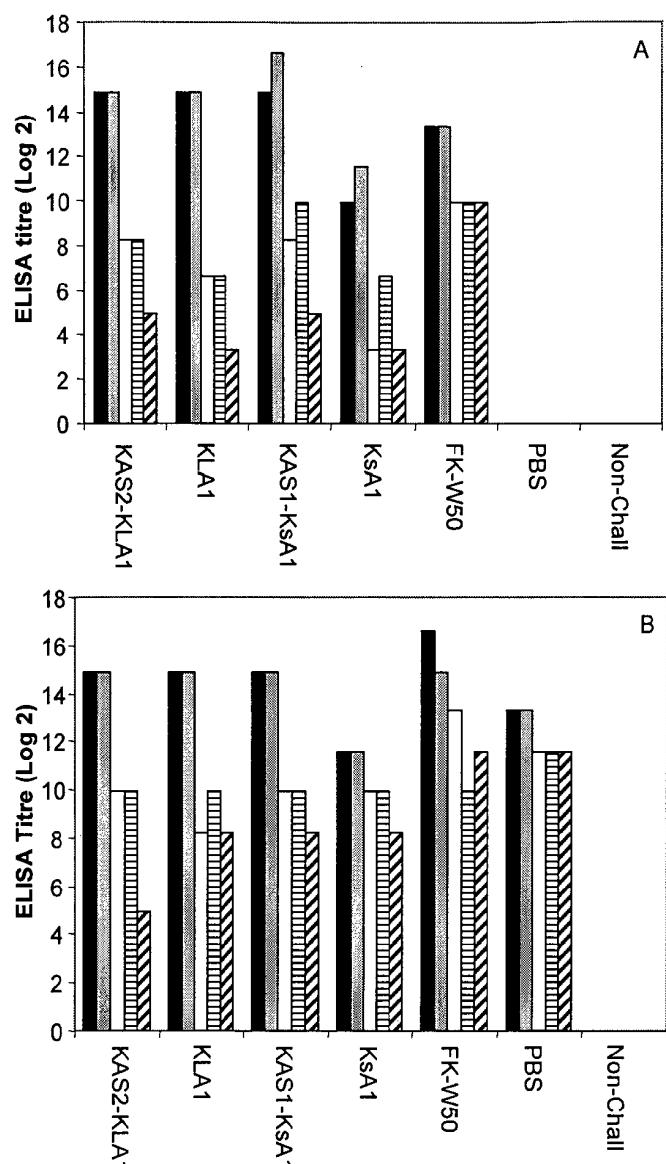


Fig 4.

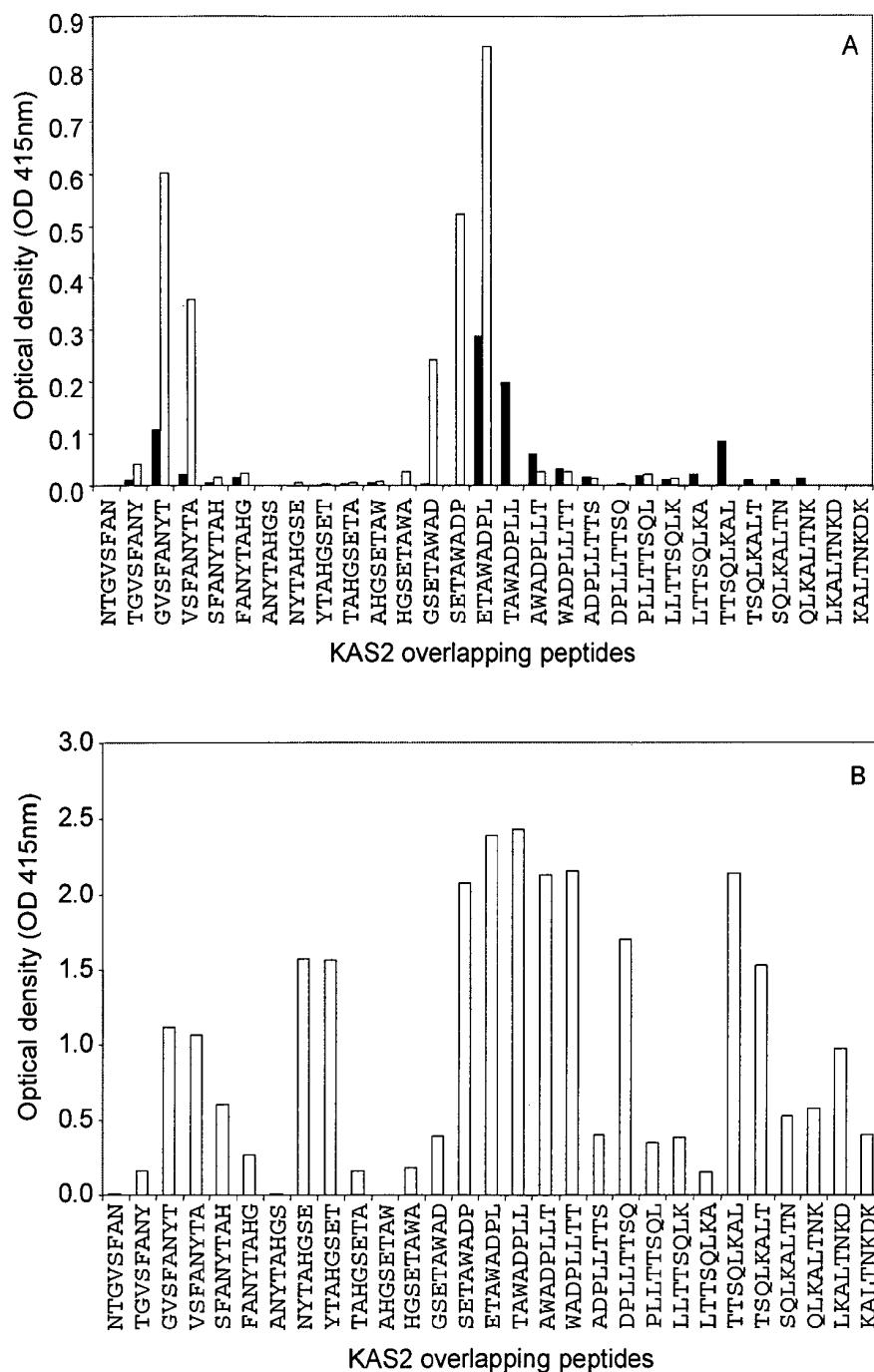


Fig 5.

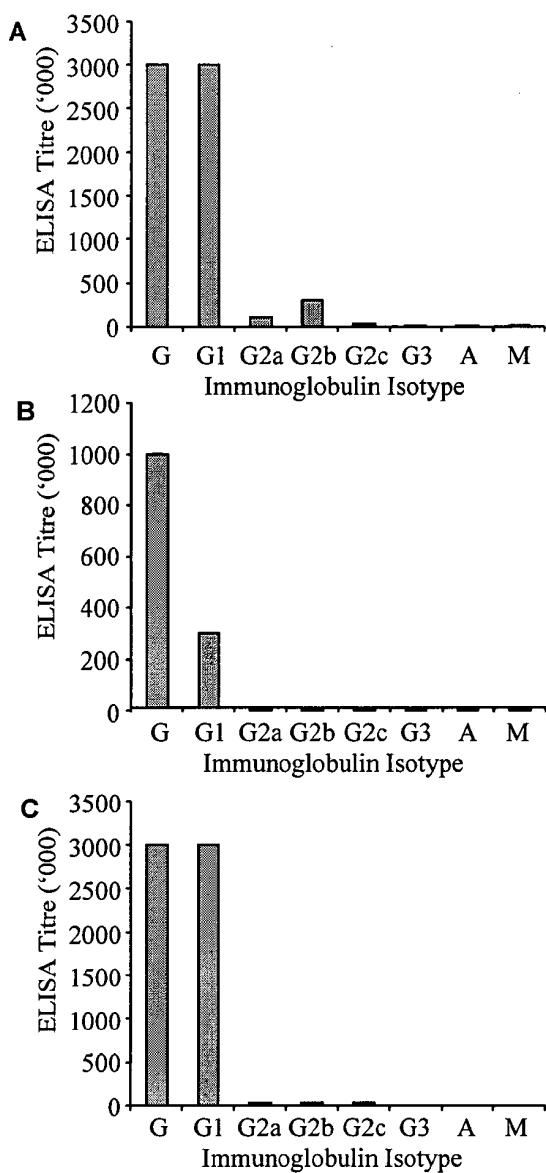


Figure 6

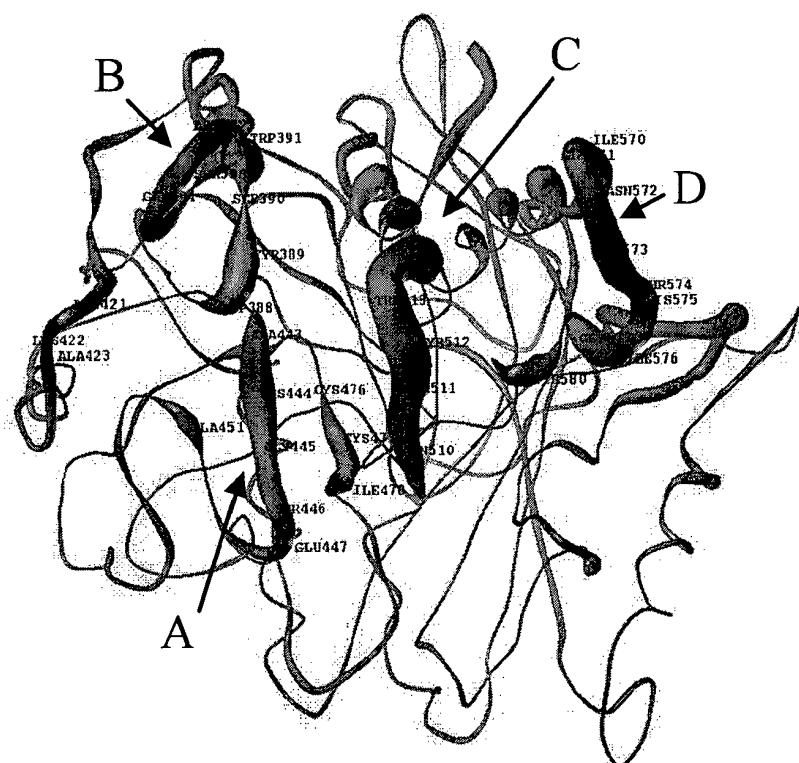


Fig. 7

EUROPEAN SEARCH REPORT

Application Number

EP 17 16 7876

5

DOCUMENTS CONSIDERED TO BE RELEVANT				CLASSIFICATION OF THE APPLICATION (IPC)
Category	Citation of document with indication, where appropriate, of relevant passages	Relevant to claim		
10	X WO 2005/112992 A1 (QUEEN MARY & WESTFIELD COLLEGE [GB]; CURTIS MICHAEL ANTHONY [GB]; SHI) 1 December 2005 (2005-12-01) * page 17, line 7 - line 12 * * page 1, line 3 - line 5 * -----	1-10	INV. A61K39/02 A61K35/74	
15	A HOWELL T HOWARD ET AL: "Nonsteroidal antiinflammatory drugs as inhibitors of periodontal disease progression", CRITICAL REVIEWS IN ORAL BIOLOGY AND MEDICINE, vol. 4, no. 2, 1993, pages 177-196, XP002714869, ISSN: 1045-4411 * the whole document *	1-10		
20				
25	X, P WO 2011/014947 A1 (SANOFI PASTEUR LTD [CA]; MCCLUSKEY JACQUELINE [CA]; CHARLEBOIS ROBERT) 10 February 2011 (2011-02-10) * examples 2, 10 * -----	1,3,8		TECHNICAL FIELDS SEARCHED (IPC)
30	A PAGE R C ET AL: "Immunization of Macaca fascicularis against experimental periodontitis using a vaccine containing cysteine proteases purified from Porphyromonas gingivalis", ORAL MICROBIOLOGY AND IMMUNOLOGY, vol. 22, no. 3, June 2007 (2007-06), pages 162-168, XP055406383, ISSN: 0902-0055 * the whole document *	1-10	A61K	
35				
40		-/--		
45				
2	The present search report has been drawn up for all claims			
50	Place of search Munich	Date of completion of the search 14 September 2017	Examiner Saame, Tina	
	CATEGORY OF CITED DOCUMENTS			
	X : particularly relevant if taken alone Y : particularly relevant if combined with another document of the same category A : technological background O : non-written disclosure P : intermediate document	T : theory or principle underlying the invention E : earlier patent document, but published on, or after the filing date D : document cited in the application L : document cited for other reasons & : member of the same patent family, corresponding document		

EPO-FORM 1503 03/82 (P04-C01)

55

page 1 of 3

EUROPEAN SEARCH REPORT

Application Number

EP 17 16 7876

5

DOCUMENTS CONSIDERED TO BE RELEVANT			CLASSIFICATION OF THE APPLICATION (IPC)
Category	Citation of document with indication, where appropriate, of relevant passages	Relevant to claim	
10	X P. S. RAJAPAKSE ET AL: "Immunization with the RgpA-Kgp Proteinase-Adhesin Complexes of Porphyromonas gingivalis Protects against Periodontal Bone Loss in the Rat Periodontitis Model", INFECTION AND IMMUNITY, vol. 70, no. 5, 1 May 2002 (2002-05-01), pages 2480-2486, XP055406389, ISSN: 0019-9567, DOI: 10.1128/IAI.70.5.2480-2486.2002 * page 2481, column 2, paragraph 4 - paragraph 5 *	1-10	
15			
20	A WO 2005/019249 A2 (UNIV FLORIDA [US]; PROGULSKE-FOX ANN [US]; HILLMAN JEFFREY DANIEL [US]) 3 March 2005 (2005-03-03) * the whole document *	1-10	
25	A US 2004/005276 A1 (REYNOLDS ERIC CHARLES [AU] ET AL) 8 January 2004 (2004-01-08) * the whole document *	1-10	
30	X WO 2006/032104 A1 (UNIV MELBOURNE [AU]; REYNOLDS ERIC CHARLES [AU]; O'BRIEN-SIMPSON NEIL) 30 March 2006 (2006-03-30) * example 2 *	1-10	
35		-/--	
40			
45			
2	The present search report has been drawn up for all claims		
50	Place of search Munich	Date of completion of the search 14 September 2017	Examiner Saame, Tina
	CATEGORY OF CITED DOCUMENTS		
	X : particularly relevant if taken alone Y : particularly relevant if combined with another document of the same category A : technological background O : non-written disclosure P : intermediate document		
	T : theory or principle underlying the invention E : earlier patent document, but published on, or after the filing date D : document cited in the application L : document cited for other reasons & : member of the same patent family, corresponding document		

EPO-FORM 1533 03.82 (P04-C01)

55

page 2 of 3

EUROPEAN SEARCH REPORT

Application Number

EP 17 16 7876

5

DOCUMENTS CONSIDERED TO BE RELEVANT			CLASSIFICATION OF THE APPLICATION (IPC)
Category	Citation of document with indication, where appropriate, of relevant passages	Relevant to claim	
10	X NEIL M. O'BRIEN-SIMPSON ET AL: "An Immune Response Directed to Proteinase and Adhesin Functional Epitopes Protects against Porphyromonas gingivalis-Induced Periodontal Bone Loss", THE JOURNAL OF IMMUNOLOGY, vol. 175, no. 6, 1 January 2005 (2005-01-01), pages 3980-3989, XP055094603, ISSN: 0022-1767, DOI: 10.4049/jimmunol.175.6.3980 * page 3981, column 2, paragraph 1 *	1-10	
15			
20	A J L Ebersole ET AL: "Effects of immunization with Porphyromonas gingivalis and Prevotella intermedia on progression of ligature-induced periodontitis in the nonhuman primate Macaca fascicularis", Infection and Immunity, 1 October 1991 (1991-10-01), pages 3351-3359, XP055406434, UNITED STATES Retrieved from the Internet: URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC258890/pdf/iai00046-0019.pdf * the whole document *	1-10	
25			TECHNICAL FIELDS SEARCHED (IPC)
30			
35			
40			
45			
50	The present search report has been drawn up for all claims		
	Place of search Munich	Date of completion of the search 14 September 2017	Examiner Saame, Tina
	CATEGORY OF CITED DOCUMENTS		
	X : particularly relevant if taken alone Y : particularly relevant if combined with another document of the same category A : technological background O : non-written disclosure P : intermediate document		
	T : theory or principle underlying the invention E : earlier patent document, but published on, or after the filing date D : document cited in the application L : document cited for other reasons & : member of the same patent family, corresponding document		

EPO-FORM 1533 03/82 (P04-C01)

55

page 3 of 3

ANNEX TO THE EUROPEAN SEARCH REPORT
ON EUROPEAN PATENT APPLICATION NO.

EP 17 16 7876

5 This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report.
 The members are as contained in the European Patent Office EDP file on
 The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

14-09-2017

	Patent document cited in search report		Publication date		Patent family member(s)	Publication date
10	WO 2005112992	A1	01-12-2005	CN GB US WO	1980693 A 2428042 A 2008057006 A1 2005112992 A1	13-06-2007 17-01-2007 06-03-2008 01-12-2005
15	WO 2011014947	A1	10-02-2011	AU BR CA CN EP JP JP JP KR RU US WO ZA	2010281313 A1 112012002429 A2 2769231 A1 102712693 A 2462160 A1 5876411 B2 2013501007 A 2015178533 A 20120050469 A 2012107993 A 2012156211 A1 2011014947 A1 201200799 B	08-03-2012 08-11-2016 10-02-2011 03-10-2012 13-06-2012 02-03-2016 10-01-2013 08-10-2015 18-05-2012 10-09-2013 21-06-2012 10-02-2011 26-06-2013
20	WO 2005019249	A2	03-03-2005	AT AU CA DK EP EP JP US US WO	495189 T 2004266213 A1 2535799 A1 1660524 T3 1660524 A2 2426140 A1 2007529195 A 2006078950 A1 2008299591 A1 2005019249 A2	15-01-2011 03-03-2005 03-03-2005 09-05-2011 31-05-2006 07-03-2012 25-10-2007 13-04-2006 04-12-2008 03-03-2005
25	US 2004005276	A1	08-01-2004	AT CA CA CA CA DK EP EP EP EP EP EP ES JP JP KR NZ US US	408618 T 2288234 A1 2639048 A1 2720332 A1 2815903 A1 1017714 T3 1017714 A1 1985625 A2 2246361 A1 2530510 T3 4276300 B2 2002511847 A 20010020417 A 500451 A 2004005276 A1 2008124284 A1	15-10-2008 05-11-1998 05-11-1998 05-11-1998 05-11-1998 05-01-2009 12-07-2000 29-10-2008 03-11-2010 03-03-2015 10-06-2009 16-04-2002 15-03-2001 23-02-2001 08-01-2004 29-05-2008
30						
35						
40						
45						
50						

EPO FORM P0459

For more details about this annex : see Official Journal of the European Patent Office, No. 12/82

55

page 1 of 2

ANNEX TO THE EUROPEAN SEARCH REPORT
ON EUROPEAN PATENT APPLICATION NO.

EP 17 16 7876

5 This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report.
 The members are as contained in the European Patent Office EDP file on
 The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

14-09-2017

10	Patent document cited in search report	Publication date	Patent family member(s)		Publication date
			US	2011268670 A1	03-11-2011
			US	2013309179 A1	21-11-2013
			WO	9849192 A1	05-11-1998
15	WO 2006032104	A1 30-03-2006	CA	2581319 A1	30-03-2006
			EP	1799705 A1	27-06-2007
			JP	5154935 B2	27-02-2013
			JP	2008513033 A	01-05-2008
20			NZ	554331 A	30-04-2009
			US	2009169568 A1	02-07-2009
			US	2011081358 A1	07-04-2011
			WO	2006032104 A1	30-03-2006
25					
30					
35					
40					
45					
50					
55					

EPO FORM P0459

For more details about this annex : see Official Journal of the European Patent Office, No. 12/82

page 2 of 2

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- WO 2004002418 A [0087]
- WO 2006023844 A [0087]
- WO 2007092640 A [0087]
- WO 9314779 A [0089]
- WO 0247762 A [0089]
- AU 9800972 W [0094]
- AU 2004001764 W [0094]
- AU 2008001017 W [0094]
- AU 9800311 W [0117] [0118] [0140]
- WO 98049192 A [0117] [0118]
- US 6017532 A [0140]
- AU 9600673 W [0140]
- AU 9700212 W [0140]
- AU 199800311 W [0140]
- US 6962706 B [0140]
- AU 0001588 W [0140]
- AU 0100482 W [0140]
- AU 2005001463 W [0140]
- AU 2007000890 W [0140]
- AU 2008001018 W [0140]
- US 2004025778 W [0140]
- US 20050288866 A [0140]
- US 4603112 A [0151]
- US 5210035 A, Stocker [0151]
- US 4837151 A [0151]
- US 4735801 A [0151]

Non-patent literature cited in the description

- DIMITROV. *MAbs*, 2009, vol. 1, 26-28 [0097]
- SKERRA. *Current Opinions in Biotechnology*, 2007, vol. 18, 295-304 [0097]
- VEITH et al. *Biochmica et Biophysica Acta*, 2009, vol. 1794, 1421-1432 [0140]
- VEITH et al. *Journal of Proteome Research*, 2009, vol. 8, 4279-4292 [0140]
- YOO et al. *FEMS Microbiol. Lett.*, 2007, vol. 275, 344-352 [0140]
- COX ; COULTER. Animals parasite control utilising technology. CRC press, 1992, 49-112 [0141]
- CURTISS et al. *Vaccine*, 1988, vol. 6, 155-160 [0151]
- ZHU et al. *Science*, 1993, vol. 261, 209-211 [0152]
- FYNAN et al. *Proc Natl Acad Sci USA*, 1993, vol. 90, 11478-11482 [0152]
- EMBO J., 15 October 1999, vol. 18 (20), 5453-62 [0206]
- MCKEE, A. S. ; A. S. MCDERMID ; A. BASKERVILLE ; A. B. DOWSETT ; D. C. ELLWOOD ; P. D. MARSH. Effect of hemin on the physiology and virulence of *Bacteroides gingivalis* W50. *Infect. Immun.*, 1986, vol. 52, 349-355 [0222]
- SLOTS, J. Importance of black-pigmented *Bacteroides* in human periodontal disease. Host parasite interactions in periodontal diseases. *American Society for Microbiology*, 1982 [0222]
- O'BRIEN-SIMPSON ; N. M., R. PATHIRANA ; R. A. PAOLINI ; Y.-Y. CHEN ; P. D. VEITH ; T. V. ; R. N. PIKE ; N. ALLEY ; E. C. REYNOLDS. An immune response directed to proteinase and adhesin functional epitopes protects against *Porphyromonas gingivalis*-induced bone loss. *Journal of Immunology*, 2005, vol. 175, 3980-3989 [0222]
- BAKER, P. J. ; R. T. EVANS ; D. C. ROOPENIAN. Oral infection with *Porphyromonas gingivalis* and induced alveolar bone loss in immunocompetent and severe combined immunodeficient mice. *Arch Oral Biol*, 1994, vol. 39, 1035-1040 [0222]

摘要

本发明涉及一种降低个体中疾病或病症的发病率或严重程度的方法，所述疾病或病症是与个体的口腔组织中存在的牙龈卟啉单胞菌相关的疾病或病症，并且包括使用一种由抗微生物剂和来自牙龈卟啉单胞菌的免疫原形成的组合物。