

Australia

Patents Act 1990

Patent Request: Standard Patent

We, the Applicant/Nominated Person specified below, request we be granted a patent for the invention disclosed in the accompanying standard complete specification.

[70,71] Applicant/Nominated Person:

Shell Internationale Research Maatschappij B.V., a Netherlands company, of Carel van Bylandtlaan 30, 2596 HR The Hague, THE NETHERLANDS

[54] Invention Title:

Sulphonamide Herbicides

[72] Inventor:

Trevor William Newton

[74] Address for Service in Australia:

Spruson & Ferguson, Patent Attorneys

Level 33 St Martins Tower

31 Market Street

Sydney New South Wales Australia [Code SF]

Basic Convention Application Details

[31] Application No

[33] Country

[32] Date of Application

EP 91122208.1

DE

24 December 1991

Basic Applicant:

Shell Internationale Research Maatschappij B.V.

DATED 2 December 1994

Shell Internationale Research Maatschappij B.V.

Registered Patent Attorney

IRN:

226840

INSTR CODE:

60925

T 955 AUS

SPRUSON & FERGUSON

AUSTRALIA

PATENTS ACT 1990

NOTICE OF ENTITLEMENT

I, Albertus Wilhelmus Joannus ZEESTRATEN, of Carel van Bylandtlaan 30, 2596 HR The Hague, the Netherlands, being authorised by the Applicant/Nominated Person in respect of Application No. $\frac{30347/92}{\text{state the following:}}$

The Applicant/Nominated Person has entitlement from the actual inventor (s) as follows:-

The Applicant/Nominated Person is the assignee of the actual inventor (s).

The Applicant/Nominated Person is the applicant of the basic applicacation(s) listed on the Patent Request.

The basic application (s) listed on the Patent Request is/are the application (s) first made in a Convention Country in respect of the invention.

DATED this ______ day of __November _____, 199 2

Albertus Wilhelmus Joannes ZEESTRATEN

(12) F'ATENT ABRIDGMENT (11) Document No. AU-B-30347/92

(19) AUSTRALIAN PATENT OFFICE

(10) Acceptance No. 657022

(54) Title

SULPHONAMIDE HERBICIDES

International Patent Classification(s)

(51)⁵ C07D 239/60 A01N 043/54 A01N 043/66 A01N 043/78 A01N 043/82 C07D 239/34 C07D 239/52 C07D 251/16 C07D 251/34 C07D 401/12 C07D 417/12

(21) Application No.: 30347/92

(22) Application Date: 22.12.92

- (30) Priority Data
- (31) Number (32) Date (33) Country 91122208 24.12.91 EP EUROPEAN PATENT OFFICE (EPO)
- (43) Publication Date: 01.07.93
- (44) Publication Date of Accepted Application: 23.02.95
- (71) Applicant(s)
 SHELL INTERNATIONALE RESEARCH MAATSCHAPPIJ B.V.
- (72) Inventor(s)
 TREVOR WILLIAM NEWTON
- (74) Attorney or Agent SPRUSON & FERGUSON, GPO Box 3898, SYDNEY NSW 2001
- (56) Prior Art Documents US 5158599
- (57) Claim
 - 1. A compound of the general formula

$$\begin{array}{c|c}
R^{2} & & & \\
N & & C & \\
R^{1} & & & R^{5}
\end{array}$$

$$\begin{array}{c|c}
R^{3} & & & \\
C & & & \\
R^{4} & & & \\
\end{array}$$

$$\begin{array}{c|c}
R^{5} & & \\
R^{6} & & \\
\end{array}$$

$$\begin{array}{c|c}
(I)$$

in which

A represents a nitrogen atom or a group CR^7 ;

R¹, R² and R⁷ each independently represents a hydrogen or halogen atom, a formyl, cyano, carboxy or azido group, or an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, alkoxy, alkenyloxy, alkynyloxy, aryloxy, alkylthio, alkenylthio, alkynylthio, arylthio, alkylcarbonyl, alkoxycarbonyl, amino. aminoxy or dialkyliminoxy group;

R³ represents a hydrogen atom, or an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aralkyl or aryl group;

R4 represents A hydrogen atom or an optionally substituted

(10) 657022

alkyl, alkenyl, aralkyl, aryl or heterocyclic group, or an optionally substituted acyl group of the formula COR⁸ in which R⁸ represents an alkyl, aryl or aralkyl group; and

 ${
m R}^5$ and ${
m R}^6$ each independently represents a hydrogen atom or an optionally substituted alkyl, alkoxy, alkenyl, alkynyl, aryl, aralkyl, amino, cycloalkyl or heterocyclic group, or a group of the formula ${
m SO}_2{
m R}^8$, in which ${
m R}^8$ is as defined hereinabove, or a group

NH , in which R^{11} is an alkylthic group, or together form a R^{11}

group =C in which \mathbb{R}^9 and \mathbb{R}^{10} each independently represents a

hydrogen atom or an alkyl, alkoxy, aryl, aralkyl or dialkylamino group, or R^9 and R^{10} together form an optionally substituted heterocyclic group, or R^5 and R^6 together form an alkylene chain which is optionally interrupted by an oxygen or sulphur atom or by a group -NR- in which R represents a hydrogen atom or an alkyl group;

or a salt thereof.

11. A method of combating undesired plant growth at a locus, which comprises treating the locus with a compound of formula I as claimed in any one of claims 1 to 8, or with a composition as claimed in claim 10.

S & F Ref: 226840

AUSTRALIA PATENTS ACT 1990

COMPLETE SPECIFICATION

FOR A STANDARD PATENT

ORIGINAL

Name and Address of Applicant:

Shell Internationale Research Maatschappij B.V.

Carel van Bylandtlaan 30

2596 HR The Hague THE NETHERLANDS

Actual Inventor(s):

Trevor William Newton

Address for Service:

Spruson & Ferguson, Patent Attorneys Level 33 St Martins Tower, 31 Market Street Sydney, New South Wales, 2000, Australia

Invention Title:

Sulphonamide Herbicides

The following statement is a full description of this invention, including the best method of performing it known to me/us:-

SULPHONAMIDE HERBICIDES

The present invention relates to certain new sulphonamide derivatives, their preparation, herbicidal compositions containing them, and their use in combating undesired plant growth.

Sulphonamide compounds are well known for their biological activity. Certain classes of sulphonamide derivatives are useful as herbicides whilst other classes are useful as anti-bacterial agents.

In EP-A-0411706 it is disclosed that sulphonamide compounds of the general formula

10

in which A is a nitrogen atom or a group CR^5 , each of R^1 , R^2 , R^3 and R^5 is the of a range of moieties, and, in particular, R^4 is an optionally abstituted alkyl, aralkyl, aryl or heterocyclic group, or salts thereof, exhibit herbicidal activity.

A class of sulphonamide derivatives has now been found which differ structurally from those disclosed in EP-A-0411706 in that the terminal group R^4 has been replaced by a substituted amino group and which have useful herbicidal properties.

The present invention thus provides a compound of the general 20 formula

in which

5

10

15

20

25

30

35

A represents a nitrogen atom or a group CR⁷;

R¹, R² and R⁷ each independently represents a hydrogen or halogen atom, a formyl, cyano, carboxy or azido group, or an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, alkoxy, alkenyloxy, alkynyloxy, aryloxy, alkylthio, alkenylthio, alkynylthio, arylthio, alkylcarbonyl, alkoxycarbonyl, amino, aminoxy or dialkyliminoxy group;

R³ represents a hydrogen atom, or an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aralkyl or aryl group:

R⁴ represents a hydrogen atom, or an optionally substituted alkyl, alkenyl, aralkyl, aryl or heterocyclic group, or an optionally substituted acyl group of the formula COR⁸ in which R⁸ represents an alkyl, aryl or aralkyl group; and

 R^5 and R^6 each independently represents a hydrogen atom or an optionally substituted alkyl, alkoxy, alkenyl, alkynyl, aryl, aralkyl, amino, cycloalkyl or heterocyclic group, or a group of the formula SO_2R^8 , in which R^8 is as defined

hereinabove, or a group -C $_{\rm R}^{\rm NH}$, in which ${\rm R}^{\rm 11}$ is an alkylthio

group, or together form a group =C

R¹⁰ in which R⁹ and R¹⁰
each independently represents a hydrogen atom or an alkyl,
alkoxy, aryl, aralkyl or dialkylamino group, or R⁹ and R¹⁰
together form an optionally substituted heterocyclic group, or
R⁵ and R⁶ together form an alkylene chain which is optionally
interrupted by an oxygen or sulphur atom, or by a group -NRin which R represents a hydrogen atom or an alkyl group;
or a salt thereof.

An alkyl, alkenyl or alkynyl radical or moiety may be a straight or branched chain group. Generally an alkyl radical or

moiety has from 1 to 12 carbon atoms, preferably from 1 to 6, especially from 1 to 4, carbon atoms. Alkenyl and alkynyl radicals or moieties suitably have from 2 to 12 carbon atoms, preferably from 2 to 6, especially from 2 to 4, carbon atoms. Cycloalkyl groups suitably have from 3 to 8 carbon atom ring members.

5

10

15

20

25

30

35

An aryl radical, or an aryl moiety in an aralkyl, aryloxy, arylthio or acyl radical, may be a single or fused carbocyclic ring system having from 6 to 10 ring members. Suitably an aryl radical or moiety comprises a single ring system and preferably is a phenyl ring.

A heterocyclic radical is suitably a single or fused, saturated or unsaturated ring system having from 5 to 10, preferably 5 or 6, ring members of which from 1 to 3 ring members may be hetero atoms selected from oxygen, nitrogen and sulphur atoms.

Radicals represented by the symbols R^1 , R^2 , R^3 , R^4 , R^5 , R^6 , R^7 , R^8 , R^9 and R^{10} may be unsubstituted or substituted. Where substituents are present, the substituent groups may be any of those customarily employed in the modification and/or development of pesticidal compounds and are expecially substituents that maintain or enhance the herbicidal activity associated with the compounds of the present invention, or influence persistence of action, soil or plant penetration, or any other desirable property for herbicidal compounds. There may be one or more of the same or different substituents present in each radical.

Optional substituents for alkyl, alkenyl, alkynyl, alkoxy, alkenyloxy, alkynyloxy, alkylthio, alkenylthio, alkynylthio, alkylcarbonyl and alkoxycarbonyl groups or alkyl moieties in aralkyl groups or alkyl moieties in acyl groups may be independently selected from one or more of halogen atoms and alkoxy, alkenyloxy, aryloxy, hydroxy, alkylthio, arylthio, aryl, alkylsulphonyl, alkylsulphinyl, alkylenedioxy, alkylenedithio, haloalkyl and alkoxycarbonyl groups, heterocyclic groups, and dialkyliminoxy, optionally substituted amino, trialkylsilyl,

alkylcarbonyl, arylcarbonyl, alkoxycarbonyl, carboxy, cyano, thiocyanato and optionally substituted aminocarbonyl groups.

5

10

15

20

25

30

35

Optional substituents for aryl, cycloalkyl aryloxy or arylthio groups, heterocyclic rings or aryl moieties in aralkyl groups may be independently selected from one or more of halogen atoms and nitro, cyano, alkyl, haloalkyl, alkoxy, haloalkoxy, alkylthio, alkylsulphonyl, mono- or di-alkylsulphonamido, aryloxy, carboxy, alkoxycarbonyl and aralkoxycarbonyl groups.

Optional substituents for an amino group or for an amino moiety in an aminoxy or aminocarbonyl group, may suitably be independently selected from alkyl, alkenyl, aryl, alkoxy, amino, mono- or di-alkylamino, arylamino, alkoxyalkyl, haloalkyl, hydroxy, hydroxyalkyl, cyano, carboxyalkyl or alkylcarbonylamino, or the amino group may form part of a heterocyclic ring.

Suitable salts of the invention are agrochemically acceptable salts of compounds of general formula I. It is possible for salts to be formed with inorganic or organic cations by conventional methods. Such salts suitably include salts with inorganic cations derived from alkali metals and alkaline earth metals such as, for example, sodium, potassium, calcium and magnesium, and from transition metals, for example copper, and salts with organic cations such as alkylammonium and alkylsulphonium cations.

A haloalkyl or haloalkoxy radical suitably has from 1 to 3 halogen atoms; a preferred haloalkyl radical is a trifluoroethyl group. A halogen atom as a substituent is suitably a fluorine, chlorine or bromine atom.

A is preferably a nitrogen atom or a group CH. Suitable examples of the radical R^1 include C_{1-4} alkyl groups, C_{1-4} alkoxy groups and C_{1-4} haloalkyl groups, preferably methyl, methoxy and trifluoromethyl groups. Suitable examples of the

radical $\rm R^2$ include $\rm C_{1-4}$ alkyl groups, $\rm C_{1-4}$ alkoxy groups and halogen atoms, preferably methyl and methoxy groups and chlorine atoms.

Suitable examples of the radical \mbox{R}^3 include $\mbox{C}_{1\text{-}6}$ alkyl and phenyl groups. Preferably the radical \mbox{R}^3 is selected from methyl,

ethy(, n-propyl, i-propyl, n-butyl, i-butyl, s-butyl, t-butyl and phenyl groups.

Preferably, R⁴ represents a hydrogen atom.

Suitably, R^5 and R^6 each independently represents a hydrogen atom, a C_{1-6} alkyl, C_{1-6} haloalkyl, C_{1-6} alkoxy, C_{2-6} alkenyl, C_{2-6} alkynyl, mono- or di- $(C_{1-4}$ alkoxy) C_{1-4} alkyl, $(C_{1-4}$ alkoxy)carbonyl(C_{1-4} alkyl), C_{3-8} cycloalkyl or benzyl group, or an optionally substituted phenyl, pyridyl, pyrimidinyl or $(C_{3-8}$ cycloalkyl) C_{1-4} alkyl group,

or a group

5

10

15

20

25

-C R^{11} in which R^{11} is a C_{1-4} alkylthio R^{9}

group, or together form a group =C

in which R⁹ and R¹⁰ each independently represents a C_{1-4} alkyl, C_{1-4} alkoxy or $di(C_{1-4}$ alkyl)amino group, or R⁹ and R¹⁰ together form a five-membered ring in which two or three ring members are hetero atoms selected from nitrogen and sulphur atoms, the ring being substituted by a benzyl or one or two C_{1-4} alkyl groups, or R⁵ and R⁶ together form an alkylene chain which is optionally interrupted by an oxygen atom or by a group -NR- in which R represents a C_{1-4} alkyl group.

Preferably R⁵ represents a hydrogen atom or a methyl or ethyl group, R⁶ represents a hydrogen atom or a methyl, ethyl, n-propyl, i-propyl, n-butyl, methoxy, chloroethyl, methoxycarbonylmethyl, mono- or di-methoxyethyl, allyl, propynyl, cyclopropyl, cyclobutyl, pyridyl, dimethylpyrimidinyl, (dichlorocyclopropyl)methyl, phenyl,

30 chlorophenyl or benzyl group or a group -C SCH₃ or R⁵ and R⁶ together represent one of the groups

35

5

$$CH_3$$
 CH_3
 CH_3

together represent a group $-(CH_2)_2O(CH_2)_2$ -, $-(CH_2)_2N(CH_3)(\cup H_2)_2$ - or $-(CH_2)_4$ -.

It will be appreciated that the compounds of the present invention in which R³ is other than a hydrogen atom have an asymmetric carbon atom and will therefore exist in different stereoisomeric forms. The present invention accordingly includes all individual isomeric forms of the compounds of general formula I and mixtures thereof in whatever proportion. Thus, the R- and S-enantiomers of the compound of general formula IA

in which A, R^1 , R^2 , R^4 , R^5 and R^6 are as hereinbefore defined and R^3 is other than a hydrogen atom, and mixtures thereof, are included within the present invention.

35

20

25

30

In accordance with the present invention there is also provided a process for the preparation of a compound of the general formula I, which process comprises

(a) reacting a compound of the general formula

$$\mathbb{R}^2$$
 \mathbb{R}^3
 \mathbb{R}^3
 \mathbb{R}^3
 \mathbb{R}^3
 \mathbb{R}^3
 \mathbb{R}^3

in which A, ${\bf R}^1$, ${\bf R}^2$ and ${\bf R}^3$ are as defined above, or a corresponding ester, acid chloride or acid anhydride, with a compound of the general formula

in which R^4 , R^5 and R^6 are as previously defined, or a salt thereof, if appropriate in the presence of a carboxyl-activating agent,

or

25

30

35

5

10

(b) reacting a compound of the general formula

$$\mathbb{R}^2$$
 \mathbb{L}^1
(IV)

in which A, R^1 and R^2 are as previously defined and L^1 represents a leaving group, with, when R^4 represents a hydrogen atom, a di-salt, and, when R^4 represents a moiety other than a hydrogen

atom, a mono-salt of a compound of the general formula

5

10

15

20

25

30

35

$$HO - CNSO_2 N R^5$$

$$H R^4 R^6$$
(V)

in which R^3 , R^4 , R^5 and R^6 are as previously defined, and, if required or desired, converting a resulting compound into any other compound of the invention.

A leaving group is any group that will, under the reaction conditions, cleave from the starting material thus promoting reaction at a specified site.

The leaving group L¹ is conveniently a halogen atom, for example a bromine, chlorine or iodine atom, or, especially for the pyrimidine starting materials, an alkanesulphonyl group, for example methanesulphonyl.

A salt of compound V is suitably an alkali metal salt, preferably a sodium salt.

Process (a) is suitably carried out at ambient or elevated temperature, i.e. at a temperature above 20°C. A preferred temperature range in which to carry out the reaction is from 20°C to 80°C; an especially suitable reaction temperature is in the range of from 20°C to 50°C. The molar ratio of reactant II to reactant III may, for example, be in the range of from 1.0 to 5.0 preferably from 1.0 to 2.5.

The reaction (a) is suitably carried out in an inert organic solvent such as a hydrocarbon solvent, e.g. benzene or toluene, a chlorinated hydrocarbon, e.g. dichloromethane or chloroform, an alcohol, e.g. methanol or ethanol, an ether, e.g. diethyl ether, tetrahydrofuran, 1,4-dioxane, a ketone, e.g. acetone or methyl ethyl ketone, an ester, e.g. ethyl acetate, an aprotic polar solvent, e.g. dimethylformamide, dimethylacetamide or dimethylsulphoxide or a nitrile, e.g. acetonitrile.

Preferably, the reaction (a) is carried out in the presence of a tertiary amine, for example 1,8-diazabicyclo[5.4.0]undec-7-ene. Other suitable tertiary amines include triethylamine and pyridine.

5

10

15

20

25

30

3,5

When the reactant II is in the form of a free carboxylic acid, the carboxy group needs to be activated for the reaction to proceed. Suitable carboxyl-activating agents include 2-chloro-N-methyl pyridinium iodide, dicylohexylcarbodiimide and carbonyldiimidazole. Suitably the acid reactant II is activated by the carboxyl-activating agent in the presence of an inert organic solvent at ambient or elevated temperature, for example at a temperature in the range of from 20°C to the reflux temperature of the mixture, prior to the addition of reactant III and, if desired, the tertiary amine.

Process (b) is suitably carried out at a temperature in the range of from ambient to the reflux temperature of the reaction medium, preferably in the range of from 100 to 150°C, for example at 120°C. The molar ratio of the reactants IV:V is suitably in the range of from 1.0 to 2.5.

In reaction (b) the salt may suitably be prepared from a compound V by the action of an alkali metal, such as metallic sodium or potassium, or, conveniently, a strong base, for example, an alkali metal hydride, such as sodium or potassium hydride, an alkaline earth metal hydride, such as calcium hydride, an alkali metal alkoxide, such as potassium <u>t</u>-butoxide, or an alkali metal hydroxide, such as sodium or potassium hydroxide. Suitably conversion of a hydroxy compound V to the salt occurs <u>in situ</u>.

Suitably, the reaction (b) is carried out in the presence of a solvent; typical solvents are, for example, the same as noted above for process (a).

The compound of general formula I obtained by either of the methods (a) or (b) may be converted to a further compound of general formula I by methods known to a man skilled in the art, provided that suitable care is taken to ensure that the sulphonamide group is not affected. Thus for example, a compound of general formula I where R^1 and/or R^2 represents a halogen atom,

suitably chlorine, may be transformed into other derivatives by nucleophilic displacement, for example by reaction with two equivalents of an amine, such as dimethylamine, to give the corresponding compound of general formula I in which R^1 and/or R^2 represents a substituted amino group. Likewise a compound of general formula I in which R^1 and/or R^2 represents a halogen atom, may be reacted with two equivalents of an alkylthio organo-metallic compound, for example sodium methanethiolate, to yield the corresponding compound of general formula I in which R^1 and/or R^2 represents an alkylthio group such as methylthio, or may be hydrogenated to yield the corresponding compound in which R^1 and/or R^2 is a hydrogen atom. Furthermore, a compound of general formula I in which R^4 represents a hydrogen atom can be converted into the corresponding compound of formula I in which R^4 represents a moiety other than a hydrogen atom.

Acid and salt conversion reactions may be carried out using conventional techniques as appropriate.

Individual enantiomers may be obtained using stereospecific reactants or by conventional resolution techniques.

The prepared compounds of the invention may, if desired, be isolated and purified using conventional techniques.

Suitable starting carboxylic acids of general formula II, and esters thereof, and also their preparation, are described and claimed in EP-A-0400741. Thus the starting carboxylic acids of general formula II, and esters thereof, may be prepared either by reacting a compound of the general formula

$$\mathbb{R}^{1}$$
 \mathbb{N} \mathbb{L} \mathbb{N}

35

30

5

10

15

20

25

in which ${\bf R}^1$, ${\bf R}^2$ and A are as defined above and L represents a leaving group, for example a halogen atom or alkanesulphonyl group, with a compound of the general formula

in which \mathbb{R}^3 is as defined above, or an ester thereof,

$$\mathbb{R}^7$$
 \mathbb{N}
 \mathbb{N}
 \mathbb{N}
 \mathbb{N}
 \mathbb{N}
 \mathbb{N}

in which R^1 , R^2 and R^7 are as defined above, preferably with an ester of a compound of the general formula

$$H \longrightarrow C \longrightarrow \mathbb{R}^3$$
 (IX)

in which R³ is as defined above and X represents a leaving group, for example a halogen atom or a sulphonyloxy group, and, if required or desired, converting the resulting ester into another ester or into a corresponding acid, or converting an acid into another acid or into an ester. The acid chloride and acid anhydride derivatives are preparable from the compounds of formula II by standard techniques.

35

5

10

15

25

30

0

5

10

15

20

25

30

35

The reactants of general formula III are either known or can be prepared using techniques described in the literature. For example, said compounds may be prepared by methods such as those described in (A) G. Lohaus, Chem. Ber., 105, 2791 (1972) or in (B) G. Weiss and G. Schulze, Liebigs Ann. Chem., 729, 40 (1969)

The starting triazine compounds of general formulae IV and VI (i.e. in which A is a nitrogen atom) are either known or can be prepared using techniques described in the literature. For example such compounds may be prepared from 2,4,6-trichloro-triazine by methods such as those described by Dudley et al, J. Am. Chem. Soc., 73, 2986, (1951), Koopman et al, Rec. Trav. Chim., 79, 83, (1960), Hirt et al, Helv. Chim. Acta, 33, 1365, (1950), Kobe et al, Monatshefte fur Chemie, 101, 724, (1970) and Ross et al, US Patent Specification No. 3 316 263.

The starting pyrimidines of general formulae IV, VI and VIII (i.e. in which A is a group CH) may be prepared by conventional techniques, for example those described in Heterocyclic compounds, 16 "The Pyrimidines", edited by D.J. Brown, Interscience, 1962.

The compounds of general formula ${\tt V}$ may be prepared from the corresponding benzyloxy derivatives

$$CH_2 - O - CNSO_2 N$$

$$R^5$$

$$R^6$$

$$(X)$$

by hydrogenation, suitably using gaseous hydrogen in conjunction with a palladium- or platinum- carbon catalyst. The benzyloxy derivatives may be prepared in analogous fashion to reaction (a) above by the reaction of an appropriate 2-benzyloxycarboxylic acid

$$CH_2$$
 $-O$ C $-C$ $-OH$ (XI)

or reactive derivative thereof, with a compound of general formula III described above, or a salt thereof.

The compounds of general formula VII are either known compounds or may be prepared by conventional procedures. Compounds in which R^3 represents an aryl group may for example be prepared by treating the corresponding aldehyde, R^3 CHO, with a suitable cyanide compound, for example potassium cyanide or trimethylsilylcyanide with, respectively, zinc iodide or sodium bisulphite, followed by conversion of the cyano substituent to the acid group, see, for example, Schnur and Morville, J.Med. Chem. $\underline{29}$, 770 (1986) and U.S. Patent Specification No. 4 537 623. Compounds in which R^3 represents an alkyl group may, for example, be prepared by the method of Kolasa and Miller, J. Org. Chem. $\underline{52}$, 4978, (1987), starting from a suitable amino acid with a 2 stage conversion.

10

15

20

25

30

35

The compounds of general formula IX may be prepared by conventional techniques, for example by halogenating a corresponding compound, for example by the procedure of Epstein <u>et al</u>. J.Med. Chem., <u>24</u>, 481, (1981).

Compounds of the general formula I have been found to have useful herbicidal activity. Accordingly the present invention further provides a herbicidal composition comprising a compound of formula I as defined above in association with at least one carrier.

A carrier in a composition according to the invention is any material with which the active ingredient is formulated to facilitate application to the locus to be treated, which may for example be a plant, seed or soil, or to facilitate storage, transport or handling. A carrier may be a solid or a liquid, including a material which is normally gaseous but which has been compressed to form a liquid, and any of the carriers normally used in formulating herbicidal compositions may be used. Preferably compositions according to the invention contain 0.5 to 95% by weight of active ingredient.

Suitable solid carriers include natural and synthemic clays and silicates, for example natural silicas such as diatomaceous

earths; magnesium silicates, for example talcs; magnesium aluminium silicates, for example attapulgites and vermiculites; aluminium silicates, for example kaolinites, montmorillonites and micas; calcium carbonate; calcium sulphate; ammonium sulphate; synthetic hydrated silicon oxides and synthetic calcium or aluminium silicates; elements, for example carbon and sulphur; natural and synthetic resins, for example coumarone resins, polyvinyl chloride, and styrene polymers and copolymers; solid polychlorophenols; bitumen; waxes; and solid fertilisers, for example superphosphates.

5

10

15

20

25

30

35

Suitable liquid carriers include water; alcohols, for example isopropanol and glycols; ketones, for example acetone, methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone; ethers; aromatic or araliphatic hydrocarbons, for example benzene, toluene and xylene; petroleum fractions, for example kerosine and light mineral oils; chlorinated hydrocarbons, for example carbon tetrachloride, perchlorocthylene and trichloroethane. Mixtures of different liquids are often suitable.

Agricultural compositions are often formulated and transported in a concentrated form which is subsequently diluted by the user before application. The presence of small amounts of a carrier which is a surface-active agent facilitates this process of dilution. Thus preferably at least one carrier in a composition according to the invention is a surface-active agent. For example the composition may contain at least two carriers, at least one of which is a surface-active agent.

A surface-active agent may be an emulsifying agent, a dispersing agent or a wetting agent; it may be nonionic or ionic. Examples of suitable surface-active agents include the sodium or calcium salts of polyacrylic acids and lignin sulphonic acids; the condensation of fatty acids or aliphatic amines or amides containing at least 12 carbon atoms in the molecule with ethylene oxide and/or propylene oxide; fatty acid esters of glycerol, sorbitan, sucrose or pentaerythritol; condensates of these with ethylene oxide and/or propylene oxide; condensation products of fatty alcohol or alkyl phenols, for example p-octylphenol or

p-octylcresol, with ethylene oxide and/or propylene oxide; sulphates or sulphonates of these condensation products; alkali or alkaline earth metal salts, preferably sodium salts, of sulphuric or sulphonic acid esters containing at least 10 carbon atoms in the molecule, for example sodium lauryl sulphate, sodium secondary alkyl sulphates, sodium salts of sulphonated castor oil, and sodium alkylaryl sulphonates such as dodecylbenzene sulphonate; and polymers of ethylene oxide and copolymers of ethylene oxide and propylene oxide.

5

35

10 The compositions of the invention may for example be formulated as wettable powders, dusts, granules, solutions, emulsifiable concentrates, emulsions, suspension concentrates and aerosols. Wettable powders usually contain 25, 50 or 75% w of active ingredient and usually contain in addition to solid inert 15 carrier, 3-10% w of a dispersing agent and, where necessary, 0-10% w of stabiliser(s) and/or other additives such as penetrants or stickers. Dusts are usually formulated as a dust concentrate having a similar composition to that of a wettable powder but without a dispersant, and are diluted in the field with further 20 solid carrier to give a composition usually containing 1/2-10% w of active ingredient. Granules are usually prepared to have a size between 10 and 100 BS mesh (1.676 - 0.152 mm), and may be manufactured by agglomeration or impregnation techniques. Generally, granules will contain 12-75% w active ingredient and 25 0-10% w of additives such as stabilisers, surfactants, slow release modifiers and binding agents. The so-called "dry-flowable powders" consist of relatively small granules having a relatively high concentration of active ingredient. Emulsifiable concentrates usually contain, in addition to a solvent and, when necessary, 30 co-solvent, 10-50% w/v active ingredient, 2-20% w/v emulsifiers and 0-20% w/v of other additives such as stabilisers, penetrants and corrosion inhibitors. Suspension concentrates are usually compounded so as to obtain a stable, non-sedimenting flowable product and usually contain 10-75% w active ingredient, 0.5-15% w

of dispersing agents, 0.1-10% w of suspending agents such as

protective colloids and thixotropic agents, 0-10% w of other additives such as defoamers, corrosion inhibitors, stabilisers, penetrants and stickers, and water or an organic liquid in which the active ingredient is substantially insoluble; certain organic solids or inorganic salts may be present dissolved in the formulation to assist in preventing sedimentation or as anti-freeze agents for water.

Aqueous dispersions and emulsions, for example compositions obtained by diluting a wettable powder or a concentrate according to the invention with water, also lie within the scope of the invention. The said emulsions may be of the water-in-oil or of the oil-in-water type, and may have a thick 'mayonnaise'-like consistency.

The composition of the invention may also contain other active ingredients, for example compounds possessing insecticidal or fungicidal properties or other herbicides.

The present invention still further provides the use as a herbicide of a compound of the general formula I as defined above or a composition as defined above and a method of combating undesired plant growth at a locus with such a compound or composition according to the present invention. The locus may, for example, be the soil or plants in a crop area. The dosage of active ingredient used, may, for example, be in the range of from 0.01 to 10 kg/ha, suitably 0.05 to 4 kg/ha.

Examples 1-166 below illustrate the process of the present invention; Examples 1 and 2 illustrate the preparation of intermediates of general formula III, by Methods (A) and (B) respectively, while Examples 3 to 166 illustrate the preparation of compounds of general formula I.

EXAMPLE 1

5

10

15

20

25

30

35

Preparation of 1-n-butylsulphamide

(i) A solution of chlorosulphonylisocyanate (60.9 g, 0.43 mol) in toluene (20 ml) was added dropwise to a stirred solution of 2,4,5-trichlorophenol (84.9 g, 0.43 mol) in toluene (80 ml),

maintaining the temperature of the reaction mixture at or below 35°C. After the addition was complete, the mixture was refluxed for 3 hours, during which, copious hydrogen chloride was evolved. The mixture was then cooled to 40°C and water was added dropwise until no further carbon dioxide was evolved. The white precipitate which formed was collected by filtration and dried to give the crude 0-(2,4,5-trichlorophenyl)- sulphamate as white crystals (93.0 g, 78%), m.p. 153-155°C, which was used without further purification.

(ii) 0-(2,4,5-trichlorophenyl)-sulphamate (13.83 g, 50 mmol) was added in two portions to a stirred solution of n-butylamine (4.94 ml, 50 mmol) and triethylamine (6.9 ml, 50 mmol) in acetonitrile (50 ml). After stirring for 5 min, the solution was evaporated in vacuo. The residue was dissolved in ethyl acetate (50 ml) and the organic phase was washed with 0.05N hydrochloric acid (2 x 25 ml). The organic phase was then dried (sodium sulphate) and evaporated in vacuo. The residue was purified by flash chromatography (ethyl acetate/petroleum ether, 40:60, followed by pure ethyl acetate) to give the title compound as a pale brown waxy solid (2.52 g, 33%).

EXAMPLE 2

25

30

35

Preparation of 1-methylsulphamide

(i) Sulphuryl chloride (81.3 ml, 1.0 mol) and antimony V chloride (0.21 ml, 1.7 mmol) were added sequentially to a stirred suspension of methylamine hydrochloride (67.0 g, 1.0 mol) in acetonitrile (500 ml). The mixture was refluxed for 4 hours, during which time chlorine and hydrogen chloride gases were evolved. Further sulphuryl chloride (81.3 ml, 1.0 mol) was added to the mixture, which was then refluxed again for 4 hours. A final portion of sulphuryl chloride (40.7 ml, 0.5 mol) was then added and the mixture was refluxed overnight. The mixture was then cooled to room temperature and the solvent evaporated in vacuo. The residue was distilled (b.p. 55-57°C/0.02 mBar) to give methylsulphamoyl chloride as a colourless viscous oil (112 g, 86%).

(ii) Methylsulphamoyl chloride (10.0 g, 77 mmol) was added dropwise slowly to a stirred solution of liquid ammonia (ca. 50 ml, excess) in tetrahydrofuran (250 ml) at -40°C. A white precipitate was formed. The mixture was allowed to attain room temperature and the excess ammonia and solvent were evaporated in vacuo. The white crystalline residue was recrystallised from ethyl acetate/hexane to give the title compound as white needles (5.53g, 65%), m.p. 62-65°C.

,0 EXAMPLE 3

5

Preparation of 1-[2-(4,6-dimethoxypyrimidin-2-yl)oxy-

3,3-dimethylbutan-1-oyl]-3-methylsulphamide

A solution 2-(4,6-dimethoxypyrimidin-2-yl-oxy-3,3-dimethylbutan-1-oic acid (1.35 g, 5.0 mmol) in tetrahydrofuran 15 (20 ml) was added dropwise to a stirred solution of carbonyldiimidazole (0.89 g, 5.5 mmol) in tetrahydrofuran (40 ml) at room temperature. mixture was heated to reflux for 30 min, then allowed to cool again to room temperature. N-methylsulphamide (0.55 g, 5.0 mmol) was 20 added. After stirring the mixture for 15 min, a solution of 1,8-diazabicyclo[5.4.0]undec-7-ene (0.76 g, 5.0 mmol) in tetrahydrofuran (10 ml) was added. After stirring for a further 15 min, the solvent was evaporated off in vacuo. Aqueous sodium chloride solution (40 ml) was added to the residue. The mixture 25 was then acidified with 5N hydrochloric acid until there was no further precipitation. The mixture was extracted with ethyl acetate (4 x 25 ml) and the combined organic phases were dried (sodium sulphate) and evaporated in vacuo. The residue was purified by flash chromatography (dichloromethane/ methanol, 97:3)

EXAMPLES 4 TO 166

200-202°C.

30

35

By methods analogous to that of Example 3, further compounds of the general formula I were prepared by reaction of compounds of

to give the title compound as white crystals (0.97 g, 54%), m.p.

the general formula II with compounds of general formula III. Details are given in Tables I and II.

Table I

Ex No	R ¹	R ²	R ³	R ⁵	R ⁶	mp (°C)	Yield (%)
4	OCH ₃	OCH ₃	tC4H9	сн ₃	CH ₃	1.64	36
3	OCH ₃	OCH ₃	tC4H9	н	C ₆ H ₅	198	69
6	OCH ₃	осн ₃	tC4H9	- (Ci	H ₂) ₂ 0(CH ₂) ₂ -	58	39
7	OCH ₃	осн ₃	tC4H9		^H 2)2N(GH2)2- CH3	225-227	1.9
8	och ₃	OCH3	tC4H9	- ((CH ₂) ₄ -	145-147	55
9	och ₃	осн ₃	tC4H9	CH3	C ₆ H ₅	134-136	40
10	OCH ₃	осн ₃	tC ₄ H ₉	Н	nC ₄ H ₉	164-167	49
11	ocH ₃	осн ₃	tC4H9	Н	CH ₂ C ₆ H ₅	170-171	60
12	осн ₃	осн ₃	iC ₄ H ₉	CH ₃	CH ₃	115-120	76
13	сн ₃	CH ₃	tC4H9	CH ₃	CH ₃	118-120	6₹
14	CH ₃	сн ₃	ic4H9	CH ₃	CH ₃	133-136	74
15	CH ₃	CH ₃	C ₆ H ₅	CH ₃	CH ₃	187	36
16	OCH ₃	осн ₃	C ₆ H ₅	Н	о ₆ н ₅	192-193	55
17	осн ₃	OCH ₃	G ₆ H ₅	CH ₃	C ₆ H ₅	137-138	55
18	OCH ₃	C1	ic ₄ H ₉	CH ₃	CH ₃	150-152	41
19	осн	C1	ic ₄ H ₉	Н	CH ₃	166-168	24
20	CH ₃	CH ₃	nC ₄ H ₉	Н	CH ₃	154-156	42
21	och ₃	сн ₃	tC ₄ H ₉	CH3	GH ₃	123-124	56
22	осн ₃	осн ₃	tC4H9	н	\wedge	188-189	73
23	CH.	CH,	sC,H	CH,	CH	150	60

- 20 -

Tab	٦۵	т /	(continued)
Tao	тe	Τ (continued

Ex No	R ¹	R ²	R ³	 R ⁵	R ⁶	mp (°C)	Yield (%)
24	CH ₃	CH ₃	sC ₄ H ₉	Н	CH ₃	161	72
25	осн ₃	осн ₃	IC3H7	CH ₃	CH ₃	123-126	30
26	OCH ₃	OCH ₃	iC ₃ H ₇	Н	CH ₃	166-169	73
27	CH ₃	сн ₃	tC4H9	Н	CH ₃	178-180	76
28	CH ₃	CH ₃	tC4H9	Н	\triangle	185-186	79
29	OCH ₃	CH ₃	tC4H9	Н	СН ₃	188-189	76
30	OCH ₃	OCH ₃	tC4H9	Н	CH ₂ CF ₃	159-161	54
31	осн ₃	осн ₃	sC ₄ H ₉	Н	CH ₃	150-153	79
32	осн ₃	OCH ₃	tC4H9	H	nC ₃ H ₇	159-160	60
33	OCH ₃	OCH ₃	tC4H9	H	ic ₃ H ₇	172-173	58
34	CH ₃	CH ₃	tC4H9	Н	nC ₄ H ₉	175-176	66
35	och ₃	och ₃	nC ₄ H ₉	CH ₃	CH ₃	122-123	53
36	OCH ₃	och ₃	tC4H9	Н	\Diamond	155-158	52
37	осн ₃	och ₃	nC ₄ H ₉	н	CH ₃	171-174	79
38	осн ₃	осн ₃	tC ₄ H ₉	=	N	236-238	79
39	OCH	CU	+C 11	11	^{CH} 3	100 100	Έ0
40	OCH ₃	CH ₃	tC ₄ H ₉	H		190-192	59
41	CH ₃	CH ₃	nC ₄ H ₉	CH ₃	CH ₃	123-124	50
42	OCH ₃	OCH ₃	sC ₄ H ₉	CH ₃	CH ₃	75-77	21
43	OCH ₃	OCH ₃	tC ₄ H ₉	H	CH ₂ CH=CH ₂	136-139	70
44	OCH ₃	OCH ₃	tC ₄ H ₉	Н	CH ₂ CECH	155-156	66 4.0
45	CH ₃	CH ₃	tC ₄ H ₉		-(CH ₂) ₄ -	115-118 156-159	42 63
46	OCH ₃	OCH ₃		H	GH ₃		
47	СН _З	CH ₃	.,	H	CH ₃	174-176	73
48	OCH ₃	OCH ₃		Ĥ	nC ₄ H _g	133-135 154-156	59
49	CH ₃	CH ₃			CH ₂) ₂ O(CH ₂) ₂ -		76 60
43	осн ₃	och ₃	tC ₄ H ₉	н	^С 2 ^Н 5	173-175	68

- 21 -

Table	Ι	(continued)

Ex No	R^1	R^2	R ³	R ⁵	R ⁶	mp (°C)	Yield (%)
50	CH ₃	CH ₃	tC ₄ H ₉	Н	^С 2 ^Н 5	176-178	65
51	OCH ₃	осн ₃	ic ₃ H ₇	н	C ₂ H ₅	177-178	72
52	OCH ₃	осн _з	iC ₄ H ₉	Н	C ₂ H ₅	147-149	74
53	CH ₃	CH ₃	iC ₄ H ₉	Н	C ₂ H ₅	169-171	73
54	OCH ₃	осн _з	sC ₄ H ₉	н	C ₂ H ₅	142-144	77
55	CH ₃	сн ₃	nG ₄ H ₉	Н	C ₂ H ₅	107-108	53
56	CH ₃	CH ₃	tC ₄ H ₉	Н	nC ₃ H ₇	170-171	73
57	CH ₃	CH ₃	tC ₄ H ₉	н	iC ₃ H ₇	191-192	54
58	осн ₃	OCH ₃	iC ₃ H ₇	Н	nC ₃ H ₇	165-167	74
59	осн ₃	och;	iC ₃ H ₇	Н	iC ₃ H ₇	179-182	57
60	CH ₃	CH ₃	nC ₃ H ₇	Н	CH ₃	151-154	58
	3	3	3 /		OC ₂ H ₅		
61	осн _з	осн ₃	tC4H9		-C	110-113	33
	3	3	4 2		CH ₃		
62	OCH ₃	och ₃	tC ₄ H ₉	Н	н	176	63
63	осн _а	och3	nC ₃ H ₇	Н	CH ₃	177-179	70
64	CH ₃	CH ₃	nC ₃ H ₇	Н	CH ₃	151-154	58
65	осн ₃	OCH ₃	nC3H7	CH ₃	CH ₃	74-76	35
66	OCH ₃	OCH ₃	tC4H9	CH ₃	С ₂ Н ₅	131-134	48
67	CH ₃	сн ₃	tC4H9	сн ₃	C ₂ H ₅	120-122	47
68	CH ₃	CH ₃	tC4H9	H	CH2CH-CH2	169-171	71
69	сн ₃	сн ₃	tC4H9	Н	CH ₂ C≡CH	155-156	51
70	осн ₃	осн ₃	ic ₃ H ₇	Н	CH ₂ C≡CH	165-168	80
71	OCH	OCH3	tC4H9	H	CH ₂ CO ₂ CH ₃	148-151	61
72	OCH	OCH		H	CH ₂ C≣CH	130-134	67
73	осн ₃	_	~ /	CH ₃	OCH ₃	112-115	11
74	OCH ₃	_		H	CH ₂ C≡CH	154-157	
75	OCH ₃	och ₃		Н	CH ₂ CH-CH ₂	131-134	69
76	OCH ₃	OCH ₃	, .	н	CH ₃	191-193	69
77	осн ₃	och ₃	о 5 С ₆ Н ₅	сн ₃	CH ₃	148-151	54

Table I ((continued)

			Table	1 (00	ncinded)		
Ex No	R ¹	R ²	R ³	R ⁵	R ⁶	mp (°C)	Yield (%)
78	осн ₃	осн	nC ₄ H ₉	Н	CH ₂ C≡CH	145-148	18
79	CH ₃	GH ₃	tC4H9	Н	Н	178-181	39
80	och ₃	OCH ₃	sC ₄ H ₉	Н	Н	161-163	94
81	OCH ₃	осн ₃	ic ₄ H ₉	Н	Н	157	34
82	осн ₃	осн ₃	nC ₃ H ₇	Н	Н	156-157	43
83	CH ₃	CH ₃	ic,H ₉	Н	Н	162-163	63
84	OCH ₃	осн ₃	sC ₄ H ₉	CH ₃	^C 2 ^H 5	oil	76
85	OCH ₃	осн ₃	tC4H9	н	(CH ₂) ₂ C1	169-171	64
86	CH ₃	CH ₃	tC4H9	Н	(CH ₂) ₂ C1	158-161	63
87	CH ₃	CH ₃	nC ₄ H ₉	Н	CH ₂ C≣CH	106-109	32
88	осн ₃	och ₃	nC ₄ H ₉	Н	CH ₂ CH-CH ₂	152-154	15
89	сн ₃	CH ₃	ic4H9	Н	CH ₂ CH=CH ₂	123-126	34
90	сн ₃	CH ₃	nC_4H_9	Н	CH ₂ CH∞CH ₂	119-123	46
91	осн ₃	OCH ₃	tC4H9	Н	CH2CH(OCH3)2	149-152	72
92	CF ₃	och ₃	tC4H9	Н	н	93-96	24
93	CF ₃	OCH ₃	tC4H9	Н	CH ₃	179-181	29
94	осн ₃	осн ₃	tC4H9	Н	-(_N	158-161	32
95	OCH ₃	OCH ₃	tC4H9	CH ₃	^{CH} 2 ^C 6 ^H 5	oil	29
96	осн ₃	осн ₃	tC4H9	н	N=CH3	156	13
97	осн ₃	och ₃	nC ₃ H ₇	Н	CH, CH-CH,	154-156	75
98	осн ₃	och _a	nC ₃ H ₇	Н	CH ₂ C≡CH	159-161	67
99	CH ₃	CH ₃	ic ₄ H ₉	Н	CH ₂ C≣CH	139-141	67
100	осна	oлн _а	nC ₃ H ₇	Н	\triangle	183-186	43
101	OCH ₃	осн ₃	ic4H9	H	CH2CH-CH2	138-140	45
102	och ₃	OCH ₃	104H9	Н		175-177	52

Table I	(cont	tinued)

Ex No	R ¹	R ²	R ³	R ⁵	R ⁶	mp (°G)	Yield (%)
103	CH ₃	CH ₃	iC ₄ H ₉	Н	\triangle	160-164	58
104	OCH ₃	OCH ₃	nC ₄ H ₉	Н	\triangle	178-182	37
105	OCH ₃	OCH ₃	sC ₄ H ₉	Н	\triangle	167-169	54
106	OCH ₃	OCH ₃	nC ₃ H ₇	Н	^C 2 ^H 5	160-164	56
107	OCH ₃	och ₃	nC ₃ H ₇	Н	nC ₃ H ₇	155-153	37
108	осн ₃	och3	nC ₄ H ₉	Н	С ₂ Н ₅	170-172	21
109	och ₃	осн _з	sC ₄ H ₉	H	nC ₃ H ₇	93-97	16
110	осн ₃	OCH ₃	tC4H9	Н	OCH ₃	176-179	37
111	OCH ₃	OCH ₃	ic ₃ H ₇	Н	н	166-169	93
112	OCH ₃	och ₃	103H7	Н	\triangle	186-188	39
113	OCH ₃	OCH3	103H7	Н	CH2CH=CH2	155-157	40
114	OCH ₃	OCH ₃	OCH ₃	CH ₃	CH ₃	139-143	15
115	OCH ₃	OCH ₃	nG4H9	Н	н	169-170	52
116	och ₃	OCH ₃	nC4H9	Н	(CH ₂) ₂ C1	158-160	27
117	OCH ₃	осн ₃	iC4H9	H	(CH ₂) ₂ Cl	174-175	53
118	OCH ₃	OCH ₃	sC4H9	Н	(CH ₂) ₂ C1	147-150	43
119	OCH ₃	OCH ₃	ic ₃ H ₇	Н	(CH ₂) ₂ C1	163-165	51
120	OCH ₃	OCH ₃	CH ₃	Н	nc ₄ H ₉	138-141	40
121	OCH ₃	OCH ₃	CH ₃	Н	СН ₂ С ₆ Н ₅	183-184	47
122	OCH ₃	осн ₃	sC ₄ H ₉	Н	nC ₄ H ₉	127-129	40
123	OCH ₃	OCH ₃	sC ₄ H ₉	H	ic ₃ H ₇	156-157	11
124	OCH ₃	OCH ₃	nC ₄ H ₉	Н	nC ₃ H ₇	154-155	31
125	och ₃	OCH ₃	tC4H9	H	(сн ₂) ₂ осн ₃ с1	132-135	68
126	ОСН ₃	och ₃	CH ₃	Н		171-173	26
127	OCH ₃	och ₃	^C 6 ^H 5	н	I.	177-178	32
128	CH ₃	CH ₃	nC ₄ H ₉	Н	н сі сі	169-170	25
129	осн ₃	och ₃	tС ₄ Н ₉	Ħ	-CH2	156-157	53

Table	I	(continued)
	_ ,	~~~~

Ex No	R ¹	R ²	R ³	 R ⁵	R ⁶	mp (°C)	Yield (%)
130	осн ₃	оснз	sC ₄ H ₉	CH ₃	оснз	138-144	10
131.	осн ₃	OCH ₃	^C 6 ^H 5	н	CH2C6H5	200-201	41
132	осн ₃	OCH ₃	nC ₄ H ₉	СH ₃	с ₂ н ₅	103-104	4
133	OCH ₃	OCH ₃	sC ₄ H ₉	н	OCH ₃	136-137	33
134	OCH ₃	осн ₃	с ₂ н ₅	Н	Н	167-168	77
135	och ₃	осн ₃	с ₂ н ₅	Н	CH ₃	171-174	59
136	OCH ₃	осн ₃	с ₂ н ₅	сн ₃	CH ₃	oil	55
137	CH ₃	осн ₃	tC4H9	н	Ĥ	182-184	47
138	och3	осн ₃	tC4H9	с ₂ н ₅	^С 2 ^Н 5	134-142	39
139	осн ₃	осн ₃	cC ₄ H ₉	₹	CH ₃ CH ₃ CH ₃	3 207-211 148-151	80 78
141	осн ₃	OCH ₃	tC ₄ H ₉	~	NH -C-SCH ₃	178-180	33
142	осн ₃	осн ₃	ic ₃ h ₇	\Rightarrow	/ ^{ос} 2 ^н 5 \ _{сн3}	148-150	19
143	ocH3	оснз	ic ₃ H ₇	=<	S CH 3	167-170	27
144	осн ₃	och ₃	^{tC} 4 ^H 9	=<	CH ₃ CH ₃	235-238	60

₹D

Table	I	(continued)

Ex No	R ¹	R ²	R ³	R ⁵ R ⁶	mp (°C)	Yield (%)
145	och ₃	оснз	ic ₄ H ₉	S-ICH ₂ C ₆ H ₅	187-189	63
146	OCH ₃	осн	ic _u H ₉	S CH ₃ CH ₃	178-179	11
147	och ₃	осн3	nC ₄ H ₉	S CH ₃	160-162	13
148	осн ₃	осн ₃	nC ₃ H ₇	S CH ₃ CH ₃	171-173	12
149	осн ₃	осн ₃	tC ₄ H ₉	$= \begin{pmatrix} H \\ N(CH_3) \end{pmatrix}_2$	187-191	54
150	осн ₃	осн ₃	sC ₄ H ₉	S H ₃	172-176	58
151	осн ₃	och ₃	iC ₄ H ₉	S CH ₃	183-185	11
152	CH3	сн ₃	tG ₄ H ₉	S GH3	175-176	35
153	CH ₃	осн ₃	tC ₄ H ₉	$=$ $\stackrel{\circ}{\underset{\text{CH}_3}{\circ}}$	181-184	55
154	осн	och ₃	sC ₄ H ₉		111-112	38

Table I (continued)

Ex No	R ¹	R ²	R ³	R ⁵	R ⁶	mp (°C)	Yield (%)
155	och ₃	OCH ₃	iC ₄ H ₉	=<	OC2H5	126-128	39
156	OCH ₃	OCH ₃	nC ₄ H ₉	=	OC ₂ H ₅	129-130	41
157	CH ₃	CH ₃	tC ₄ H ₉	=	_ос ₂ н ₅ >сн ₃	151-153	22
158	CH ₃	och ₃	tC ₄ H ₉	=	OC ₂ H ₅	oil	28

Table II

$$\mathbb{R}^2$$
 \mathbb{R}^3
 \mathbb{R}^5
 \mathbb{R}^5
 \mathbb{R}^5
 \mathbb{R}^5

Ex No	R ¹	R ²	R ³	R ⁵	R ⁶	mp (°C)	Yield (%)
159	OCH	OCH3	tC ₄ H ₉	н	Н	145-148	62
160	och ₃	och ₃	tC4H9	Н	CH ₃	187-188	54
161	OCH ₃	OCH ₃	tC4H9	CH ₃	CH ₃	oil	32
162	OCH ₃	OCH ₃	tC4H9	CH ₃	С ₂ Н ₅	oil	21
163	CH ₃	OCH ₃	tC4H9	н	CH ₃	141-144	35
164	CH ₃	OCH ₃	tC4H9	н	Н	179-180	65
165	och ₃	och ₃	tC4H9	=	< ^{OC} 2 ^H 5	oil	16
166	OCH ₃	OCH ₃	tC4H9	<u>-</u>	< ^S N− S CH 3	200-104	39

Elemental analysis or n.m.r. data for the compounds of general formula I described above is set out in Table III below.

 $\frac{\text{Table II}}{^{1}\text{H n.m.r.}} - \text{chemical shift, } \emptyset \text{ , in p.p.m.}$ for solutions in CDCl $_{3}$ (unless other wise indicated) or Analysis %

	G		Н		N				
	Calc.	Found	Calc.	Found	Calc.	Found			
Ex No									
3	43.1	43.3	6.1	6.2	15.5	15.5			
4	44.7	44.9	6.4	6.7	14.9	15.0			
5	50,9	51.2	5.7	6.0	13.2	13.1			
6	1.1(9H,	1.1(9H,s), 3.3(4H,m), 3.7(4H,m), 3.9(6H,s), 4.9(1H,s),							
	5.7(1H,	s), 8.4(1H,	br.s)						
7	47.3	47.4	6.8	6.9	16,2	16.0			
8	1.1(9H,	s), 1.9(4H,	m), 3.3-3.	5(4H,m), 3.	9(6H,s), 4	.9(1H,s),			
	5.8(1H,	s), 8.5(1H,	br.s)						
9	52.0	52.1	6.0	6.2	12.8	12.8			
10	0.9(3H,	t), 1.1(9H,	s), 1.3(2H	,m), 1.5(2H	,m), 2.9(2	H,q),			
	3.9(6H,	s), 4.9(1H,	s), 5.1(1H	,br.t), 5.8	(1H,s), 8.	5(1H,br.s)			
11	52.0	52.1	6.0	6.3	12.8	12.8			
12	44.7	44.4	6.4	6.6	14.9	14.6			
13	48.8	49.0	7.0	6.8	16.3	16.2			
14	48.8	48.9	7.0	7.0	16.3	16.1			
15	52.7	53.1	5.5	5.6	15.4	15.5			
16	54.0	54.3	4.5	4.5	12.6	12.6			
17	55.0	55.1	4.8	4.8	12.2	12.2			
18	41.0	41.1	5.6	5.6	14.7	14.6			
19	39.3	40.1	5.2	5.3	15.3	15.2			
20	47.3	47.7	6.7	6.8	17.0	17.1			
21	46.7	46.9	6.7	6.8	15.5	15.4			
22	46.4	46.4	6.2	6.2	14.4	14.4			
23	48.8	48.5	7.0	6.9	16.3	16.1			
24	47.3	47.3	6.7	6.6	17.0	16.8			
25	43.1	43.4	6.1	5.7	15.5	15.5			
26	41,4	41.3	5.8	5.9	16.1	16.1			

```
27
        47.3
                   47.2
                               6.7
                                          6.7
                                                     17.0
                                                                16.9
28
        50.5
                   50.7
                               6.8
                                          6.7
                                                     15.7
                                                                15.8
29
        45.1
                   45.2
                               6.4
                                          6.3
                                                      16.2
                                                                16.3
30
        39.1
                   39.2
                               4.9
                                          5.0
                                                     13.0
                                                                12.9
31
        43.1
                   43.5
                               6.1
                                          6.0
                                                     15.5
                                                                15.7
32
        46.1
                   46.1
                               6.7
                                          6.7
                                                      14.3
                                                                14.5
33
        46.1
                   45.9
                               6.7
                                          6.7
                                                      14.3
                                                                14.1
34
        51.6
                   51.6
                               7.6
                                          7.3
                                                      15.0
                                                                15.1
34
                               6.4
        44.7
                   44.8
                                          6.4
                                                      14.9
                                                                15.0
36
        1.1(9H,s), 1.5-2.3(6H,m), 3.7(1H,m), 3.9(6H,s), 5.0(1H,s),
        5.4(1H,d), 5.7(1H,s), 8.5(1H,br.s)
37
        43.1
                   43.1
                               6.1
                                          6.1
                                                     15.5
                                                                15.2
        43.1
                               5.2
38
                   43.4
                                          5.2
                                                     15.7
                                                                15.8
39
        48.4
                   48.2
                               6.5
                                          6.4
                                                      15.0
                                                                14.9
40
        48.8
                   49.1
                               7.0
                                          7.0
                                                     16.3
                                                                16.4
41
        0.8(3H,t), 1.0(3H,m), 1.2(1H,m), 1.5(1H,m), 2.0(1H,m),
        2.8(2x3H,s), 3.8(6H,s), 5.1 and 5.3(1H,2xd), 5.7(1H,s),
        8.5(1H,br.s)
42
        46.4
                   46.2
                               6.2
                                          6.6
                                                     14.4
                                                                14.5
43
        46.6
                   46.0
                               5.7
                                          5,9
                                                     14.5
                                                                14.4
44
        1.1(9H,s), 1.8(4H,m), 2.4(6H,s), 3.4(4H,m), 5.0(1H,s),
        6.7(1H,s), 8.4(1H,br.s)
45
        43.1
                   42.8
                               6.1
                                          6.1
                                                     15.5
                                                                15.8
46
        47.3
                   46.8
                               6.7
                                          6.7
                                                     17.0
                                                                17.1
47
        47.5
                   47.4
                               7.0
                                          7.0
                                                     13.9
                                                                14.2
48
        49.7
                   49.8
                               6.8
                                          6.9
                                                     14.5
                                                                14.7
49
        44.7
                   44.5
                               6.4
                                          6.5
                                                     14.9
                                                                15.1
50
        48.8
                   48.5
                               7.0
                                          7.1
                                                     16.3
                                                                16.3
51
        43.1
                   42.6
                               6.1
                                          6.2
                                                     15.5
                                                                15.6
52
        0.9(6H,dd), 1.1(3H,t), 1.7(1H,m), 1.8(2H,m), 2.9(2H,q),
        3.8(6H,s), 5.2(1H,br.t), 5.3(1H,dd), 5.7(1H,s),
        8.6(1H,br.s)
53
        0.9(6H,dd), 1.1(3H,t), 1.7-1.9(2H,m), 2.4(6H,s), 3.0(2H,m),
        5.1(1H,br.t), 5.5(1H,dd), 6.7(1H,s), 8.9(1H,br.s)
```

```
54
        1.0(3H,m), 1.1(3H,dd), 1.2(3H,dt), 1.2-1.6 (2H,m),
        2.0(1H,m), 3.0(2H,m), 3.9(6H,s), 5.1(1H,br.m), 5.2 and
        5.4(1H, 2xa), 5.8(1H,s), 8.6(1H,br.s)
                  48.4
                             7.0
                                                             16.4
55
        48.8
                                                   16.3
        0.9(3H,t), 1.1(9H,s), 1.5(2H,m), 2.5(6H,s), 2.8(2H,q),
56
        5.1(1H,s), 5.2(1H,br.t), 6.7(1H,s), 8.5(1H,br.s)
57
        1.0(6H,dd), 1.1(9H,s), 2.4(6H,s), 3.4(1H,m), 5.0(1H,br.d),
        5.1(1H,s), 6.7(1H,s), 8.5(1H,br.s)
58
        0.9(3H,t), 1.1(6H,dd), 1.5(2H,m), 2.3(1H,m), 2.9(2H,m),
        3.9(6H,s), 5.1(1H,s), 5.2(1H,s), 5.7(1H,s), 8.5(1H,br.s)
59
        1.1(6H,dd), 1.2(6H,dd), 2.8(1H,m), 3.5(1H,m), 3.9(6H,s),
        5.0(1H,br.d), 5.2(1H,d), 5.7(1H,s), 8.6(1H,br.s)
60
        0.9(3H,t), 1.5(2H,m), 2.0(2H,m), 2.4(6H,s), 2.7(3H,d),
        5.3(1H,br.q), 5.4(1H,t), 6.7(1H,s), 9.0(1H,br.s)
        1.1(9H,s), 1.2(3H,t), 2.5(3H,s), 3.9(6H,s), 4.1(2H,q),
61
        4.8(1H,s), 5.7(1H,s), 8.8(1H,br.s)
62
        1.1(9H,s), 3.9(6H,s), 5.0(1H,s), 5.6(2H,br.s), 5.7(1H,s),
        9.0(1H,br,s)
63
        1.0(3H,t), 1.5(2H,m), 2.0(2H,m), 2.7(3H,d), 3.9(6H,s),
        5.2(1H,br.q), 5.3(1H,t), 5.7(1H,s), 8.7(1H,br.s)
64
        0.9(3H,t), 1.5(2H,m), 2.0(2H,m), 2.4(6H,s), 2.6(3H,d),
        5.4(1H,q), 5.5(1H,t), 6.8(1H,S), 9.0(1H,br s)
65
        43.1
                  42.5
                             6.1
                                        6.4
                                                   15.5
                                                             15.5
                  46.3
                             6.7
66
        46.1
                                        6.8
                                                   14.3
                                                             14.7
67
        50.3
                  50.2
                             7.3
                                        7.3
                                                   15.6
                                                             15.7
68
        1.1(9H,s), 1.7(1H, br s), 2.4(6H,s), 3.5(2H,m),
        5.2-5.0(3H,m), 5.7(1H,m), 6.8(1H,s), 8.6(1H,br s)
69
        1.1(9H,s), 1.7(1H,br s), 2.2(1H,t), 2.4(6H,s), 3.8(2H,m),
        5.5(1H,br s), 6.7(1H,s), 8.7(1H,br s)
70
        1.0(3H,d), 1.1(3H,d), 2.2(1H,t), 2.3(1H,m), 3.8(2H,d),
        3.9(6H,s), 5.2(1H,d), 5.7(1H,s)
71
        1.1(9H,s), 3.7(3H,s), 3.8(2H,s), 3.9(6H,s), 4.9(1H,s),
        5.7(1H,s)
72
        46.6
                  47.1
                             5.7
                                        5,8
                                                   14.5
                                                             14.5
```

```
73
        1.1(9H,s), 1.6(1H,br s), 3.0(3H,s), 3.6(3H,s), 3.9(9H,s),
        4.9(1H,s), 5.7(1H,s)
74
        46.6
                   47.0
                               5.7
                                         6.1
                                                     14.5
                                                                14.7
75
        46.4
                   46.6
                               6.2
                                         6.5
                                                     14.4
                                                                14.6
76
        47.1
                               4.7
                   47.3
                                         5.0
                                                     14.7
                                                                14.9
77
        48.5
                   48.8
                               5.1
                                         5.3
                                                     14.1
                                                                14.2
78
        0.9(3H,t), 1.3-1.6(4H,m), 1.9-2.1(2H,q), 2.2(1H,t),
        3.8(2H,br d), 3.9(6H,s), 5.3(1H,dd), 5.8(1H,s)
79
        45.6
                   43.4
                               6.4
                                         6.6
                                                     17.7
                                                                17.7
80
        41.4
                   40.6
                               5.8
                                         6.1
                                                     16.1
                                                                15.7
81
        41.4
                   41.8
                               5.8
                                         6,2
                                                     16.1
                                                                16.4
82
        39.5
                   39.4
                               5.4
                                         5.6
                                                     16.8
                                                                16.8
83
        45.6
                   45.8
                              6.4
                                         6.7
                                                     17.7
                                                                17.5
84
        0.9(3H,q), 1.0-1.8(8H,m), 2.1(1H,m), 2.9(3H,2xs),
        3.3(2H,m), 3.6(1H,m), 3.8(6H,s), 5.1 and 5.2(1H, 2 x d),
        5.7(1H,s), 8.5(1H,br s)
85
        40.9
                   41.2
                              5.6
                                         6.0
                                                     13.6
                                                               13.7
86
        44.4
                   44.0
                              6.1
                                         6.4
                                                     14.8
                                                                14.8
87
        0.9(3H,t), 1.2-1.5(4H,m), 2.0(2H,br q), 2.2(1H,t),
        2.4(6H,s), 3.8(2H,br m), 5.4(1H,dd), 5.6(1H,br s),
        6.7(1H,s)
88
        46.4
                   46.3
                              6.2
                                         6.4
                                                     14.4
                                                               14.5
89
        1.0(6H,dd), 1.6-2.0(3H,m), 2.4(6H,s), 3.5(2H,br s),
        5.1-5.4(4H,m), 5.7(1H,m), 6.8(1H,s)
90
        50.6
                   49.9
                              6.8
                                         7.0
                                                     15.7
                                                               15.8
91
        44.0
                   44.1
                              6.5
                                         6.8
                                                     12.8
                                                               12.9
92
        37.3
                   38.0
                              4.4
                                         4.8
                                                     14.5
                                                               14.6
93
        39.0
                   39.2
                              4.8
                                         5.0
                                                    14.0
                                                               13.9
94
        48.0
                   47.5
                              5.4
                                         5.6
                                                    16.5
                                                               17.2
95
        1.0(9H,s), 2.6(3H,s), 3.8(6H,s), 4.3(2H,s), 4.8(1H,s),
        5.7(1H,s), 8.7(1H,br s)
96
        1.0(9H,s), 2.3(6H,s), 2.4(1H,s), 3.8(6H,s), 4.7(1H,s),
        5.5(1H,s), 6.4(1H,s)
97
        1.0(3H,t), 1.5(2H,m), 2.0(2H,m), 3.6(2H,br.m), 3.9(6H,s),
        5.1-5.3(3H,m), 5.7(1H,m)
```

```
98
        44.2
                   44.9
                               5.4
                                          5.3
                                                      15.1
                                                                14.6
99
        1.0(6H,dd), 1.8-2.0(3H,m), 2.2(1H,t), 2.4(6H,s), 3.8(2H,m),
        5.5(1H,dd), 5.6(1H,m), 6.7(1H,s)
100
        44.9
                   44.6
                               5.9
                                          6.1
                                                      15.0
                                                                14.7
101
        46.4
                   46.2
                               6.2
                                          6.5
                                                      14.4
                                                                14.3
102
        46.4
                   46.1
                               6.2
                                          6.3
                                                      14.4
                                                                14.5
103
        0.6(2H,m), 0.7(2H,m), 0.9(6H,dd), 1.7-2.0(2H,m),
        2.2(1H,m), 2.4(6H,s), 5.5(1H,dd), 5.7(1H,br s)
104
        0.7(2H,m), 0.8(2H,m), 0.9(3H,t), 1.3-1.6(4H,m), 2.0(2H,q),
        2.1(1H,br s), 2.3(1H,m), 3.9(6H,s), 5.3(1H,t), 5.7(1H,s),
        9.1(1H,br s)
105
        46.4
                   46.8
                               6.2
                                         6.4
                                                      14,4
                                                                14.8
106
        43.1
                   43.4
                               6.1
                                          6.4
                                                      15.5
                                                                15.9
107
        44.7
                   44.8
                               6.4
                                          6.7
                                                      14.9
                                                                15.0
108
        44.7
                   45.0
                               6.3
                                         6.6
                                                      14.9
                                                                14.9
109
        0.8-0.9(6H, 2xm), 1.0(3H, 2xd), 1.3-1.7(4H, m), 2.0(1H, m),
        2.9(2H,q), 3.9(6H,s), 5.6(1H,m), 5.7(1H,2xd)
110
        1.0(9H,s), 1.8(1H,br s), 3.7(3H,s), 3.8(6H,s), 4.9(1H,s),
        5.7(1H,s), 8.0(1H,br s)
111
        44.3
                   44.8
                               2.8
                                         3.1
                                                      21.5
                                                                21.9
112
        44.9
                   44.3
                               5.9
                                         5.9
                                                      14.7
                                                                15.0
113
        44.9
                   44.2
                               5.9
                                          5.6
                                                      14.7
                                                                14.8
114
        1.6(3H,d), 2.9(6H,s), 3.9(6H,s), 5.3(1H,q), 5.7(1H,s),
        8.5(1H, br s)
115
        41.4
                   41.2
                               5.8
                                         5.8
                                                     16.1
                                                                15.8
116
        40.9
                   41.1
                               5,6
                                         5.8
                                                     13.6
                                                                13.6
117
        40.9
                   40.7
                               5,6
                                         5.6
                                                     13.6
                                                                13.7
118
        40.9
                   40.7
                               5.6
                                                     13.6
                                         5.7
                                                                13.7
119
        39.4
                   40.0
                               5.3
                                         5.9
                                                     14.1
                                                                14.6
120
        43,0
                   42.6
                               6.1
                                                     15.5
                                         6.8
                                                                16.1
121
        48.5
                   48.7
                               5.1
                                         5.6
                                                     14.1
                                                                14.8
122
        47.5
                   48.0
                               7.0
                                         7,6
                                                     13.9
                                                                14.7
123
        46.1
                   45.5
                               6,1
                                         6.8
                                                     14.4
                                                                14.8
124
        46.1
                   45.8
                               6.7
                                         6.7
                                                     14.4
                                                                15.0
```

```
125
        1.1(9H,s), 3.1(2H,br m), 3.3(3H,s), 3.4(2H,t), 3.9(6H,s).
        4.9(1H,s), 5.6(1H,br s), 5.7(1H,s)
126
        43,2
                  43.2
                              4.1
                                         4.5
                                                    13.4
                                                               13.8
127
        45.7
                              4.4
                   45.2
                                         4.8
                                                    15.2
                                                               15.3
128
        45.6
                   44.9
                              6.4
                                         6.6
                                                    17.7
                                                               17.8
129
        1.0(9H,s), 1.2(1H,d t), 1.6(1H,d d), 1.9(1H m), 3.0(1H,m),
        3.3(1H,m), 3.9(6H,s), 4.5(1H,s), 5.6(1H,br.m), 5.7(1H,s),
        8.6(1H,br s)
130
        0.8-1.0(6H,m), 1.2-1.7(2H,m), 2.0(1H,m), 2.6(3H,s),
        3.6(3H,s), 3.9(6H,s), 4.9(1H,2xd), 5.7(1H,s) (in d^6-DMSO)
131
        1.8(1H,br s), 3.9(6H,s), 4.0(1H,m), 4.1(1H dd),
        5.5(1H,br\ t), 5.7(1H,s), 6.1(1H,s), 7.0-7.5(10H,m),
        9.2(1H,br s)
132
        46.1
                  45.8
                              6.7
                                         6.9
                                                    14.4
                                                               14.4
133
        41.3
                   41.4
                              5.9
                                         5.7
                                                    14.8
                                                               14.9
134
        37.5
                   37.2
                              5.0
                                         5.6
                                                    17.5
                                                               17.4
        39.5
                   39.1
                              5.4
135
                                         5.8
                                                    16.8
                                                               16.7
136
        1.0(3H,t), 2.0(2H,m), 2.8(6H,s), 3.3(6H,s), 5.0(1H,t),
        5.6(1H,s), 8.9(1H,br s)
        43.1
                  42.5
137
                              6.1
                                         6.4
                                                    15.5
                                                               15.5
138
        47.5
                  46.9
                              7.0
                                         7.6
                                                    13.9
                                                               13.9
139
        41.7
                  42.3
                              5.3
                                         5.7
                                                    18.2
                                                               17.7
140
        41.7
                  41.8
                              5.3
                                         5,3
                                                    18.2
                                                               18.2
141
        1.1(9H,s), 1.7(1H,br s), 2.3(3H,s), 3.9(H,s), 4.3(1H,s),
        5.7(1H,s), 8.5(1H,br s)
142
        44.6
                  45.2
                              6.0
                                         6.4
                                                    13.9
                                                               14.1
143
        40.4
                  40.8
                              5.0
                                         5.2
                                                    18.8
                                                               19,1
144
        44.4
                  44.3
                              5.5
                                         5.7
                                                    15.2
                                                               15.2
145
        50.7
                  49.9
                                         5.0
                              5.2
                                                    13.4
                                                               13.4
146
        41.8
                  41.1
                              5.3
                                         5.0
                                                    18.3
                                                               18.0
147
        41.7
                  41.1
                              5.3
                                         5.3
                                                    18.3
                                                               18.2
        40.4
148
                  40.7
                              5.0
                                         5.2
                                                    18.8
                                                               18.4
149
        1.0(9H,s), 2.8(3H,s), 3.1(3H,s), 3.9(6H,s), 3.6(1H,s),
        5.8(1H,s), 8.0(1H,s), 11.6(1H,s)
150
        50.3
                  50.2
                              7.3
                                         7.3
                                                    15.6
                                                               15.7
```

```
151
              47.5
                        47.1
                                    7.0
                                               7.2
                                                          13.9
                                                                     13.4
      152
              46.5
                         45.6
                                    5.6
                                               6.1
                                                          16.9
                                                                     16.7
      153
              44.7
                        44.1
                                    5.4
                                               5.8
                                                          16.3
                                                                     16.2
      154
              45.9
                        45.4
                                    6.3
                                               6.8
                                                          13.4
                                                                     13.6
 5
      155
              45.9
                        45.4
                                    6.3
                                               6.8
                                                          13.4
                                                                     13.4
                         45.5
              45.9
                                    6.3
                                               6.7
      156
                                                          13.4
                                                                     13.4
              1.1(9H,s), 1.3(3H,t), 2.4(6H,s), 2.5(3H,s), 4.1(2H,q),
      157
              5.1(1H,2xs), 6.7(1H,s), 8.7(1H,br s)
              1.0(9H,s), 1.2(3H,t), 2.2(3H,s), 2.4(3H,s), 3.7(3H,s),
      158
10
              4.0(2H,q), 4.8(1H,s), 6.1(1H,s), 8.9(1H,br s)
              1.0(9H,s), 3.9(6H,s), 4.8(1H,s), 7.5(2H,s), 11.8(1H,s),
      159
              (in d^6 - DMSO)
              1.0(9H,s), 2.5(3H,br d), 3.9(6H,s), 4.8(1H,s) 7.5(1H,br q),
      160
              11.8(1H,br s), (in d^6-DMSO)
15
              1.0(9H,2), 2.8(6H,s), 4.0(9H,s), 5.0(1H,s), 8.4(1H,br s)
      161
      162
              1.0(9H,s), 1.1(3H,t), 2.8(3H,s), 3.3(2H,q), 3.9(6H,s),
              4.9(1H,s), 8.7(1H,br s)
              1.1(9H,s), 2.5(3H,s), 2.7(3H,d), 4.0(3H,s), 5.0(1H,s),
      163
              5.2(1H,br q)
              1.1(9H,s), 2.4(3H,s), 4.0(3H,s), 4.7(1H,s), 7.5(2H,br s),
20
      164
              11.8(1H,br s) (in d^6-DMSO)
              1.0(9H,s), 1.2(3H,t), 2.4(3H,s), 3.9(6H,s), 4.0(2H,m),
      165
              4.8(1H,s), 9.5(1H,br s)
      166
              40.4
                        40.4
                                    5,0
                                               5.5
                                                          18.8
                                                                     18.1
```

EXAMPLE 167

Herbicidal Activity

To evaluate their herbicidal activity, compounds according to the invention were tested using as representative range of plants: maize, Zea mays (Mz); rice, Oryza sativa (R); barnyard grass, Echinochloa crusgalli (BG); oat, Avena sativa (O); linseed, Linum usitatissimum (L); mustard, Sinapsis alba (M); sugar beet, Beta vulgaris (SB); and soya bean, Glycine max (S).

35

30

The tests fall into two categories, pre-emergence and post-emergence. The pre-emergence tests involved spraying a liquid formulation of the compound onto the soil in which the seeds of the plant species mentioned above had recently been sown. The post-emergence tests involved two types of test, viz., soil drench and foliar spray tests. In the soil drench tests the soil in which the seedling plants of the above species were growing was drenched with a liquid formulation containing a compound of the invention, and in the foliar spray tests the seedling plants were sprayed with such a formulation.

The soil used in the tests was a prepared horticultural loam.

The formulations used in the tests were prepared from solutions of the test compounds in acetone containing 0.4% by weight of an alkylphenol/ethylene oxide condensate available under the trade mark TRITON X-155. These acetone solutions were diluted with water and the resulting formulations applied at dosage levels corresponding to 5 kg or 1 kg of active material per hectare in a volume equivalent to 600 litres per hectare in the soil spray and foliar spray test, and at a dosage of level equivalent to 10 kilograms of active material per hectare in a volume equivalent to approximately 3,000 litres per hectare in the soil drench tests.

In the pre-emergence tests untreated sown soil and in the post-emergence tests untreated soil bearing seedling plants were used as controls.

The herbicidal effects of the test compounds were assessed visually twelve days after spraying the foliage and the soil, and thirteen days after drenching the soil and were recorded on a 0-9 scale. A rating 0 indicates growth as untreated control, a rating 9 indicates death. An increase of 1 unit on the linear scale approximates to a 10% increase in the level of effect.

The results of the tests are set out in Table IV below, in which the compounds are identified by reference to the preceding Examples. Absence of a numeral in the Table indicates a zero rating; an asterisk indicates that no result was obtained.

5

10

15

20

25

TABLE IV

Compound of		Se	oil d	irend	h 10) kg/	⁄ha		Dosage			Fc	liai	spi	ay					Pre	-eme	erger	nce		
Ex. No.	Mz	R			L			S	kg/ha	Mz	R	BG		L		SB	S	Mz	R	BG			M	SB	S
3	7	7	7	6	7	8	7	8	5 1	7 2	7 6	8 7	7 4	7 7	9 9	9 8	7 6	8 7	8 6	8	7 2	8 7	8	8 8	8
4	5	8	9	8	8	9	9	7	5 1	8 5	8	8 8	8 7	8 8	9 8	8 8	8	8	9 6	9 8	8 4	9 8	8	8	4
5	4	6	6	5	5	6	7	5	5 1		5 2	8 2	4 1	5	8 7	8 7	7 4	7 5	7 2	5		2	7 5	7 5	4
6	6	6	6	4	7	8	8	6	5 1	6 2	7 5	9 8	7	8 7	8 8	9 8	8 7	8 2	8 2	6 1	6	7	8	7 5	2
7								_	5 1			4	2	2	8 7	7 5	3								
8	7	7	6	5	6	9	8	7	5 1	8 2	8	8 7	8	7 7	9 8	9	8	7	8 6	6 2	7	7	7	8 7	:
9	4	6	6	4	5	7	7	4	5 1	3	3	7	3	5 3	9 8	8 8	4 2	6 2	7 5	7	6 2	7	8 7	8 8	
10	8	7	7	8	8	9	7	7	5 1	6 4	7 5	7 6	7 6	8 7	8	8 7	7 6	8 5	8 7	8 6	8 5	8	8	8 7	-
11	2	4	3		5	7	7	5	5 1	7 2	7 6	8	7 5	8	9	9	8 7	8	8	9	7	8 4	8	8 5	8

 θ

TABLE IV (continued)

Compound		_		-					_			_								_					
of Ex. No.	Mz	R	oil d BG	ren 0		M Kg/	'ha SB	s	Dosage kg/ha		R			r spi L		SB	s	Mz	R			erge: L	nce M	SB	S
12	4	6	6	4	5	8	8	5	5 1	7	8 6	8	5 2	8 7	9	9	8 7	8 2	8 4	8 5	6	8	8	8	8
13	8	6	8	7	8	9	9	*	5 1	9 7	8 7	9	7 5	8	9 9	9	8 7	9	9 6	9	8 4	8 7	8 8	8	8
14	8	7	8	7	6	9	9	7	5 1	7 4	7 6	8 7	7 6	7	9 8	9	8	8 5	9 7	9 6	7 5	7 5	8	9 8	7
15	6	6	7	6	4	9	9		5 1	5 1	5 4	7 6	6 2	7 2	9	9 8	2	6 2	8 5	6	6 2	1	7 7	8 7	
16			4		4	6	3	2	5 1						8 7	6 6	7 2	3	2	2 2	2 2	4 2	7 6	7 6	4
17	3	2	5	2	5	6		2	5 1	3		2		5	9 7	8 6	7 2	2		2			6	7 6	4
18	6	3	2	1	4	7	4	3	5 1	4	4	7 6	3 2	6 4	9 8	8 6	6 5	5	7	7	3	6	7	8 7	6
19	6	7	*	3	2	7	7	1	5 1	6 1	6 6	7 6	2	3 2	7 7	8	6 6	6	8	7	3	2	7 7	7 6	3
20	8	7	7	7	2	8	7	*	5 1	8 5	6 6	7 6	7 5	5 4	9	9 7	8 6	8	7 6	8	6 5	3	7 7	8 7	 5 5

<u>.</u>;

TABLE IV (continued)

Compound of	ľ	30	oil d	irend	ch 10) kg/	'ha		Dosage			Fo	lian	spi	cav					Pre	-eme	ergei	nce		
Ex. No.	Mz		BG	0	L	M	SB	S	kg/ha	Mz	R	BG		L		SB	S	Mz	R		0		M	SB	S
21	8	8	9	6	7	8	*	4	5 1	8 7	7 7	9 8	7 6	8 7	9 8	9 8	9	9	8 7	9 8	7 5	8 7	8	8	7
22	6	6	7	4	7	8	6	6	5 1	7 6	7 7	8	7 6	7	9	8	8 7	8 6	9 7	9 7	8 5	8 6	8	8	7
23			5			6	*		5 1	2		8 5		4	8 7	8 7	4 2	3		7			7	7 4	4
24	4	5	6			6	5		5 1	5 2	2	7 5		5	8 6	8 6	6 5	7 2	5	7	3 2		7 6	4	3
25	8	7	8	7	7	8	7	6	5 1	8 5	7 7	9 8	8 7	7 7	9	8	7 5	8 6	9	9 7	7 4	8 6	7 7	8 7	4
26	. 7	8	8	7	7	8	8	7	5 1	8 7	7 7	8	7 7	7	9	8 7	8	8	9	9 8	7 7	7 6	7	8 7	7
27	8	8	8	7	6	7	8	7	5 1	8	7 7	9	7 6	8	9	9	8 7	9	9	9	7 5	7 6	7 <i>i</i>	8 7	9
28	8	5	6	5	6	7	5	5	5 1	6 5	4	8 7	5 5	7	9	8 7	8	6 2	7 2	8	3	6 4	7 7	6 5	5
29	8	8	9	7	7	8	8	8	5 1	8 7	7 5	8	4	7	8	8 7	7 7	9 8	9	9	7 5	7	7	8	9

. 37

TABLE IV (continued)

Compound of		e.	oil d	Iron	ah 10) lear	/ha		Dosage			Fo	Jian	c sp:	rav					Pro	em	erge	nce		
Ex. No.	Mz	R		0	L	M M	SB	S		Mz	R		0		M	SB	S	Mz	R		0	_	M	SB	S
30	6	7	6	5	7	7	7	4	5	5 2	7 6	8 7	6 6	6 6	8 7	8 7	7 4	7	8 4	7 2	7 4	7 5	7 5	7 6	4
31	8	8	8	7	7	9	9	7	5 1	7 6	7 7	9 8	7 7	7 7	8 7	8 7	8 7	8 7	9	9	8 7	7 6	7	8 7	7 6
32	6	8	7	4	7	7	7	6	5 1	7 6	8 7	8	7 6	7	8 7	9 7	7 2	8	9	9 7	8 2	8 7	7	8 7	8 5
33	7	7	7	6	7	7	8	5	5 1	6 5	8 8	8 8	7 6	7	8 7	8 7	6 3	8 6	9 8	8 6	7 2	8	7 7	8	7 4
34	5		6	1	2	7	2	2	5 1	4 2	2	7	3	6 5	7	7 6		7 2	6	7 2	4	6	7 6	7 5	6
35	6	8	8	6	4	7	6	4	5 1	6 4	7	7 7	6 5	6 5	9 8	9 8	5 4	7	9 8	8 7	8 5	6	7	8 7	8 7
36	6	5	8	2	7	9	8	5	5	6 5	8 7	8 7	7 2	7 7	8 7	8 7	8 2	8 2	9 2	8 7	7 2	8 7	7	8 7	8 2
37	7	7	8	. 7	3	7	7	7	5 1	7 5	7 7	7 7	5 5	6 5	8 7	8 7	7 2	7 5	9 6	8 7	7 2	4	7 7	7 7	7 2
38	7	7	7	7	7	7	7	8	5 1	6 5	6 5	8 7	6 4	7 7	8 7	7	8 7	8	9	8 6	7 4	6	7 7	7	8

γ̈́

TABLE IV (continued)

	pound		_							_			_								_					
	of No.	Mz		BG		ch 10 L	M Kg/	'na SB	3	Dosage kg/ha	Mz	R	BG		r sp		SB	S	Mz	R	Pre BG		ergei L	nce M	SB	5
39		7	7	8	7	7	7	6	5	5 1	7 2	3 1	8 7	3	7 6	7 7	7 6	4 2	8 5	8	8 5	3	4	7 6	7 6	6
40		5	6	6	7		7	8		5 1	6	6 2	7 6	4 2	6	8 7	9	6 2	7 5	9 7	8 7	7 5	6 4	7	7	 6
41		7	8	7	7	6	7	7	8	5 1	7 6	8	8 7	7 7	7	8 7	9	7 6	8 7	9 9	9 7	8 7	8 7	7 7	7	 8
42		6	8	7	7	7	7	7	6	5 1	6 4	7 2	7 4	7 5	7 7	8 7	7	7 6	8 7	9 7	8 7	7 6	8 7	7	8 7	8
43		7	7	7	7	7	7	7	7	5 1	8 7	8 7	8 7	7 6	7 7	8	9 8	7 6	8 7	9 7	8 7	7 6	8 7	7	8	9
44		4	2	6	2	3	8	2	6	5 1	4 2	3 1	7 5	2	7 6	8 7	7 6	7	4 2	7	7 5	4 2	6	7	7	6
45		5	7	7	5	5	7	7	6	5 1	6 4	7 2	8 7	4 2	7 4	8 7	7 7	7 5	7 5	8	8 7	7	7 2	7	7	9
46	44	6	7	7	7		9	7		5 1	7 2	7 6	7	7 6	6 2	8	8 7	6 5	8 7	8	8	7	6	7	7	- 6 5
47		5	7	6	2		7	6	6	5 1	4		6 2		5	8 7	8 7	5 4	7	7	7 5	7 2		7 6	7	 8 7

ργ

Compound							-		_											_					
of Ex. No.	Mz	R.	oil o BG		ch 10 L	U kg, M	/ha	ς.	Dosage kg/ha		R	Fc BG	lia: 0	c spi	ray M	SB	s	Mz	R		-eme	ergei L	nce M	SB	S
48			4		3	7	•		5 1	4 2		7	2	7 6	8 7	8 7	5	5 2		6			7 6		
49	8	8	8	8	7	8	8	7	5 1	6 3	8 7	8 8	7 6	7 7	8 7	8 7	7 5	9 7	9 8	9	8 7	9	8	8 8	8 7
50	*	*	*	*	*	*	*	*	5 1	7 4	7 3	8	6 4	7 7	8 7	8 8	7 5	8	8 6	9 8	8 6	8	8 8	8	7 5
51	8	8	8	7	6	8	8	7	5 1	8 6	8	8 8	7 6	7 7	8 7	8 7	7 5	9 5	9	9 7	8 5	7 4	8	8 8	8
52	7	8	7	4	2	8	8	5	5 1	5 3	6 5	8	2	5 3	8	8 7	5 2	8	8	9	6 5	7 2	7	8 8	8 5
53	8	7	8	7		8	8	6	5 1	6 4	6 2	8	5 2	3	8 7	8 7	5 2	8 6	8 7	9	8 7	5 2	8	8	6
54	8	8	8	8	6	8	8	6	5 1	7 4	8 7	8	8	7	8 7	8 7	6 4	9	9	9	8 7	8	8	8	8 6
55	8	7	7	7		8	8		5 1	5 1	4 2	8 7		2	8	8 7	5 2	7 3	8 7	9 7	7		8	8 7	5
56	5		7	6	5	7	6	5	5 1	7 5	2 1	8 7	5 4	7	8 7	8 7	5 2	8 7	6 2	8 7	7 2	7 5	7 7	7 · 7	7 5

TABLE IV (continued)

Compound of Ex. No.	Mz	S R	oil d BG	lrene 0	ch 10 L) kg,	/ha SB	s	Dosage kg/ha	Mz	R		lia 0	c spi	ray M	SB	S	Mz	R		o e-em	erge: L	nce M	SB	S
57	4		7		6	7	6		5 1	6 4	•	7 5	4 2	7 6	7	7 7	3 2	7 5	7 2	7 6	4 2	7 6	7 7	7	4
58	6	7	7	6	5	7	6	7	5 1	6 4	7 6	7 7	6	6 6	7 6	7	6 2	8 6	9	8 7	7 6	7 2	7	7 7	7 5
59	6	7	7	6	4	7	4	5	5 1	6 2	7	7 7	5 2	7 6	7 7	7	4 2	8 4	9 7	8 7	7 6	7	7 6	7	7 2
60	7	6	7	7		7	7		5 1	5 2	4 2	7 7	4 2	7	8 7	8 7	4 2	7	7 5	7 5	7 2	6	7	7	4
61	7	8	8	6	7	8	8	7	5 1	6 4	7 5	8 8	6 2	7	8 7	8 7	9	8 7	9	9 7	7 4	8 7	7 7	7	8
62	7	8	8	7	7	7	7	8	5 1	7 6	7	7	7 6	7 7	7	8 7	8 7	9 8	9	9	8 6	8 7	7	7	8
63	7	8	8	7	5	7	7	6	5 1	8 7	8 7	7 7	5 2	7	8 7	8 7	7 6	8 6	9	8	7 7	7	7	7	8
64	7	6	7	7		7	7		5 1	5 2	4 2	7	4 2	7	8 7	8	4 2	7	7 5	7 5	7 2	6	7	7	4 2
65	7	8	7	7	7	7	6	7	5 1	8 5	8	8 7	7 6	7	8 7	8 7	8	8 6	9	8 7	8 7	8 6	7 7	7 6	8

TABLE IV (continued)

Compound of		S.	sil d	Iron	ch 10) ka	/ha		Dosage			Fo	lian	c spi	raw					Dro	- om/	ergei	1CA		
Ex. No.	Mz	R		0		M M	SB	S	kg/ha	Mz	R		0		M	SB	S	Mz	R		0		M	SB	S
66	7	8	8	7	7	7	7	7	5 1	7 5	8	8 7	7 6	7 7	8 7	8 7	8 7	8 7	9	9	8	8 7	8 7	8 7	9
67	7	6	7	7	7	7	7	7	5 1	8 7	7 2	9 8	7 5	7	8 7	8 7	8 7	9	9	9	7 2	8 7	7 7	8 7	8 2
68	6	6	5	6	6	7	6	5	5 1	7 5	7	8 7	6 4	7 7	8	9 7	7 5	8 7	8 6	7 6	7 5	7	7 7	7 6	7 4
69	7	7	7	6	5	7	7	6	5 1	6 4	7 2	8 7	6 4	7	8	8 7	8 6	7 6	9	8	6 5	7	7	7	8 2
70	7	8	7	6	6	7	8	6	5 1	7 5	7	8 7	7	7 7	7 7	8 7	7 6	8	9	8 7	7 5	7 2	7 7	8 7	8 7
71	5	8	7	2	2	7	4	2	5 1	3	7 2	8 7	6 5	7 6	7	7	5 2	5 2	9	8	4 2	6 2	7 7	8 7	4 2
72	7	8	7	7	6	7	7	4	5 1	7 4	8	8	7 5	7 6	7 7	8 7	6 6	8 7	9 9	9	6 5	7 6	7	8	7
73	6	7	7	4	7	7	7	5	5 1	5 *	7 *	7 *	4 *	7 *	7	7	6 *	6 *	9	4 *	5 *	8	7 *	4 *	5 *
74	8	4	8	7	4	7	7	5	5 1	8 6	5	8	4 2	7 6	7	8 7	7 6	8 6	8 7	8 7	8	7 4	7 7	8 7	7 6

Compound		•		•	. 1	. 1							1:							D					
of Ex. No.	Mz		BG	o 0			sB	S	Dosage kg/ha	Mz	R	BG		sp:	M	SB	S	Mz	R	BG		ergei L		SB	S
75	7	7	8	7	4	7	7	4	5 1	8 6	6 5	8	7 6	7 6	8 7	8 7	7 5	8	9	8 7	8	4	7 7	8	5 4
76	5	2	7	6	4	7	8	5	5 1	6 2		8 7	1	6 4	8 7	8 7	4 2	7 5	7 5	8 7	4 2	2	7 7	7 7	7
77	5	2	7	2	3	6	7	4	5 1	6 2	1	8 7	4	4 2	8	8 7	4 2	6 5	7 4	7 6	2	2	7	8 7	6
78	7	6	7	6		7	7	6	5 1	5 2	6 6	7 6	5 2	6 2	7 7	7	2	7 6	8 7	7	5 2		7 7	8	6
79	7	6	7	6	7	8	7	7	5 1	6 4	4 2	7	4 2	7 7	9	9	6 5	8 7	9 8	8	7 4	7 2	8 7	8	8
80	7	6	7	4	5	7	7	7	5 1	7 6	6 5	7	6 5	7 6	7 7	8 7	6 4	7 5	9	8 7	6 2	4	7	8	8
81	6	5	7	2		7	7	6	5 1	6 2	4	8	4 2	5 2	7 7	8 7	6 2	7 5	7 2	8 7	6	5	7	7	8
82	7	6	7	6	5	7	7	6	5 1	6 4	5 5	7 6	4 2	7 6	9	9 8	5 2	7 5	9	7 4	4 2		7	8	8 7
83	7	5	6	7	· · · · ·	9	7	6	.5 1	7 5	4 2	7 6	4 2	5	9	8	6 5	8 7	9	9	7 6		7	8 7	7 6

7.

TABLE IN (COULTHURE	TABLE	IV	(continued
---------------------	-------	----	------------

Compound of		S	oil d	Ireno	ch 10) kg	/ha		Dosage			Fo	liar	: sp:	av					Pre	-eme	ergei	nce		
Ex. No.	Mz		BG			M	SB	S	kg/ha	Mz	R.	BG			M	SB	S	Mz	R			L	M	SB	S
84	8	6	8	8	7	6	6	7	5 1	8	6 6	8	8 7	7 6	8	8	8 7	8 7	9	8	8 7	8 6	8	8 7	6
85	8	6	8	8	7	8	8	6	5 1	7 6	6 6	8 7	7 5	7 6	8 7	8 7	8	8 7	9 7	8 8	8	8 6	8 7	8 7	7
86	7	2	7	4	6	7	6	6	5 1	5 2	5 2	7 6	2	6 5	8 7	7 6	7 6	7 2	8	8 2	7 1	5 1	8 7	7 5	1
87	3	4	2	3		7	6		5 1	4 2	3	7 5	4 2		7 7	8 7	4 2	7 5	7 6	8	6 5	4 2	7	7	
88	6	7	6	5	2	7	6	2	5 1	6 2	5 5	7 7	6 2	4 2	7	7	4 2	7 6	9 8	8 7	7 7	6 2	7 7	8	6 5
89	6	4	6	7	2	7	6	4	5 1	6 2	5 2	8 7	7 2		8 7	7 6	5 4	8 7	8 7	8 7	8	6	7 7	8 7	7 6
90	3	2	7	6		7	6		5 1	4 2	6 2	7 5	4 2	2	8 7	8	4 2	7 6	8 7	8 7	8	4	7	7 6	
91	2		4			7	2	2	5 1	7 4	7 6	7 6	7 5	7 6	8 7	8	7	7 6	9 6	7 5	6 2	8	7	7	8
92	3	4	6	3	4	7	7	5	5	4 2	3 2	 7 6	4 2	7 6	8 7	7 7	6	5 1	6 2	6 2	5 2	6 2	7	7	4 2

1.4

Compound		<u> </u>	1		-1 7C) 1	n		Deno			 P-	110	- ar	×01+					Dro	- Am-	erge	nce		
of Ex. No.	Mz		oil d BG	0	L L	M M	SB	s	Dosage kg/ha	Mz	R	BG		c spi		SB	S	Mz	R			L		SB	S
93	7	6	5	4	7	6	5	6	5 1	2	4 2	7 5	3	7 6	8 7	8 7	6 4	7 4	6	5 2	6 2	7 6	7 6	7 6	4 2
94	5	6	4	1	1	7	7	5	5 1	4 2	7 6	8 7	7 2	7 6	8	8	6	7 4	8 6	8	4 2	5 2	7 7	7 6	4
95	6	4	4	4	7	7	7	4	5 1	5 1	4 2	7 6	4	7 7	8	8 7	6 4	4 2	6 5	7 2	6	6 2	7 6	7	4
96	3	2	4	2	3	6	6	4	5 1	7 2	5 2	7 4	7 2	7 6	7 7	8 7	6 5	7 2	6 2	4 2	4	5 2	7	7	5 4
97	7	7	6	5	6	7	7	5	5 1	7 5	6 5	7 6	7 5	7 6	8 7	9	5 4	9 7	9 8	8 6	8	7 6	7	7 6	5 2
98	7	8	7	6	6	7	8	6	5 1	7 6	7	8	7 5	7 6	8	9	7 6	8 7	9 8	8 7	8 5	7 6	7	8 7	8 6
99	*	*	*	*	*	*	*	*	5 1	6 4	4 2	7 6	5 2	2	8	9	6	7 5	8 7	8 7	6 2		7 7	8 7	7 2
100	7	6	7	7	6	6	7	5	5 1	7 6	6	8 7	6 4	7 7	8 7	8 7	5 4	8	9	8 7	7 6	7 6	7	7 7	8 7
101	7	6	7	6		7	6	5	5 1	7 4	5 4	8 7	4 2	1	8 7	8 7	7 5	8 6	8 7	8 6	8 6		7 7	7	7 2

1 5.4 1

Compound		_		_	• •				_																
of Ex. No.		R R	oil o BG				/ha SB	S	Dosage kg/ha			Fo BG			ray M	SB	S	Mz	R			erge L		SB	s
102	7	7	6	6		8	6	5	5 1	7 2	6 2	7 7	4 2	3 1	8 7	8 7	6 5	7 6	9	9	6 5	4	7 6	7 5	5
103	7	2	6	7		9	7	3	5 1	4 2	3	7 5	3		9 8	8 6	5 4	6 2	2	8 6	7 6	5 2	7 5	7 5	2
104	6	7	6	6	2	7	7	2	5 1	6 2	7 6	7 7	5 2	5 5	7	7 6	6 4	5 2	6 5	6 5	7 7	6 2	8 7	7	2
105	7	7	7	7	5	8	7	7	5 1	8 5	7 7	8 8	8 7	6 2	8 7	8 7	8 6	8 7	9 8	8 5	7 6	8 5	8	8 7	5 2
106	6	7	7	4	7	8	7	6	5 1	6 5	7 6	7 5	4 2	6 6	8 7	8 7	4 2	8 6	9 7	7 6	7 6	8 7	8 8	8 7	8
107	7	4	7	2	4	7	6	4	5 1	3 1	6 2	6 6	4	6 5	8	8 7	7 2	4 2	7 2	8	2	2	7 6	8	2
108	3	7	6	2	2	8	7	2	5 1	4 2	7 7	7 7	2	4	9 8	8 7	4	7 4	7 6	6	4		7 5	8 7	2
109	7	7	6	7	4	8	7	6	5 1	7 6	6 5	8 7	7	6 5	9	9	8 7	8 7	9 9	8 7	8	7 6	8 7	8 7	8
110	8	8	4	3	8	9	9	8	5 1	6 1	7 6	7	7 5	8	9 9	9	7 6	4	* 2	7	4	8	8 8	8	8 6

£

Compound		e,	oil d	iron	ch 10	ነ	/ha		Dosage			Fo	lia	c en	rav					Pro	- em	erge	nce		
Ex. No.		R					SB		kg/ha	Mz			0		M	SB	S	Mz	R	BG			M	SB	S
111	7	8	8	7	7	8	8	7	5 1	7 5	8 8	8	6 5	8 7	9	9	9 8	7 2	9	8 6	7 6	7 2	8	8	8 2
1.12	7	8	6	4	6	7	4	5	5 1	7 6	4 2	7 7	7 5	7	8	8 7	4 2	7 2	8 7	6	4 2	3	5 2	6 5	4 2
113	7	6	4	3	2	7	5	4	5 1	7 4	6 5	8 7	5 4	7 6	8	8 8	6 5	8 2	8 7	6 4	4 2	2	7 6	8 7	2
114									5 1					4 2	6 2	4 2	5 4								
115	6	8	6	7		8	8	6	5 1	4 2	7 6	7 7	2	4 2	9	8 8	6 5	4 2	8 7	8 8	4 2		8	8	4 2
116	7	8	6	5		8	6	4	5 1	7 2	6 5	7 7	4 2	4 2	8 7	8 7	4 2	6 5	8 6	7 6	6 2	4 2	7 6	8 7	5 4
117	7	6	6	4		6	6	5	5 1	3 1	4 2	7	4 2		8 7	8 7	6 4	6 5	7 2	6 5	2		6 5	8 7	6 5
118	7	6	7	6	5	7	6	7	5	7 4	7 7	8	6 2	7 2	7 6	8	6 5	7 2	8 7	6 5	4 2	6 2	8 7	8 7	5 4
119	7	8	7	7	7	8	8	8	5 1	8 7	8	8	7 6	8 7	8	8	8 7	8 7	9 7	8 2	4 2	8 2	8	8 7	7 4

Compoun of		S	oil (dren	ch 10	ko.	/ha		Dosage			Fc	liar	· sn:	rav					Pre	-em	erge	nce		
Ex. No.		R			L				kg/ha	Mz	R	BG	0	L	M	SB	S	Mz	R	BG			М	SB	S
120		-			2	8	7		5 1																
121						8	4		5 1						7 6	7	2			,			7		
122	7	8	7	7	4	8	7	6	5 1	7 5	8	8 8	7 6	7 5	8	8 8	8 7	4 2	8	7 4	6 5	4	8	8 7	2
123	7	8	8	7	7	8	8	7	5	6	7 7	8 8	7 6	7 6	8 7	9 8	7 6	8 4	9	7 6	6 5	8 2	8	8 7	6 5
124	4	7	7	4		7	6	7	5 1	2	6 5	6 2			8 7	8 7	2	3	7 6	5 4	2		8 7	8 6	2
125	7	6	6	2	7	7	9	7	5 1	4	7 4	8 7	4 2	8 7	8	ڻ 6	7 6	6	4 2	7 2	2	7 2	8 7	8 7	8 7
126									5 1						4 2	2									
127	6	5	7	4		7	8	6	5 1	2	1	8 2	1	2	8	8	4 2	2	1	4 2			8 7	8 6	4 2
128	5	7	7	6		8	8	2	5 1	7 2	5 2	8 2	3		8	8	2	6 5	6	8 7	4 2		8	7 6	2

13

Compound		_		•	-1 7/		a		D			Г-	74							Dva		ergei	200		
of Ex. No.		R	oil d BG				ona SB	s	Dosage kg/ha			Fo BG		_	M	SB	S	Mz	R	BG		_	M	SB	s
129	7	5	7	6	5	7	6	5	5 1	? 2	7 6	8 7	5 4	8 8	8	9 8	8	7 2	7 2	7 2	4 2	6	7 6	8 7	4 2
130	8	8	7	6	8	8	8	8	5 1	8 5	8 8	8	8 5	8	9 8	9	8	8 4	9 7	7 4	6 5	8	8	8 6	6 5
131			4	2		8	8	5	5 1			5 2	2	7 2	8	8 7	7 6	2	4 2	3	2		7	7 5	5 4
132	6	7	6	7	7	7	8	5	5	5 *	7 *	8	2	6 *	8	8	6 *	4 *	8	7	4 *	7 *	8	8	5 *
139	8	6	8	6	6	7	5	8	5 1	8 7	6 4	8 7	7 6	7 6	8	8	8 7	7	9	8 7	7 5	8 5	7	8	8 7
140	3	<i>!</i>	6	7	7	8	4	7	5 1	7 5	7 4	8	6 5	8	8	8	7 6	5 3	9	5 3	6 2	8 7	8	8	8
141	7	8	7	2	8	8	8	8	5	6 5	7 5	7	4 2	8	9	9	9	6 5	7	8 6		8 6	8	8	9
142	8	8	7	6	7	8	8	8	5 1	8	8	8	6 5	8 7	8	8	8	5	8 7	8 7	7 6	8	8	8	8 7
143	8	8	6	4	7	8	7	7	5 1	8	8 7	8 8	2 2	8	9 8	8 7	8 8	7 2	8	3 2	2 1	7 5	8	8 7	7 5

- 640 -

TABLE IV (continued)

Compound of		S	oíl d	iren	h 10) ka	/ha		Dosage			Fo	lia	c spi	rav					Pre	-eme	erge	nce		
Ex. No.	Mz		BG			M	SB	S	kg/ha	Mz	R	BG	0	L	M	SB	S	Mz	R	BG		_	М	SB	S
144	7	7	6	5	2	8	4	8	5 1	7 4	8	8 8	6 5	7 7	8	8 8	7	7 6	8 7	7 6	4 2	5 4	8	8 8	8
145	6	5	4	6	5	7	4	6	5 1	6 5	7 7	8 7	5 4	7	8	8	5 4	4 4	4 2	4 2	2	3	8 7	8	6 5
146	7	7	8	6	8	8	9	7	5 1	7 6	7 5	8 8	4 1	8 7	9 8	8 7	7	8 6	8 7	8 6	4 2	8	8	8	7
147	7	7	8	6	8	8	8	7	5 1	7 4	7 6	8 7	2	8 7	8 7	8 8	8 7	8 4	9 8	8 6	7 5	8 6	8	8 7	8 7
148	8	8	7	7	8	8	8	7	5 1	8	7 6	8	6	8	9	9 8	8 7	8 6	y 8	8	7 5	8 7	8	8 8	8
149	8	7	8	7	8	8	8	7	5 1	7 7	7	9	8 7	8	9	9	8 7	7	9	8 7	6 6	6 6	7	7	5
150	6	7	7	6	8	8	8	7	5 1	6 4	5 2	9	7 6	8	8	8	8 7	8 7	8 7	7 6	7	6 5	7	7 7	7
151	7	6	7	6	7	8	8	7	5 1	4 2	6 2	8 7	7 5	8 7	8	8	7	8 5	7 2	6 5	2	8 7	8	8	8
152	7	6	7	5	6	8	7	6	5 1	7 6	7 6	9	7 6	7	8 7	8 8	8 6	7 5	 8 7	7 6	6 6	5 4	6 5	7 7	4

л Л

Compound of		Se	oil d	lreno	ch 10) kg/	/ha		Dosage			Fc	lia	r sp:	ray					Pre	-em	erge	nce		
Ex. No.	Mz		BG		L		SB	S	kg/ha	Mz	R	BG		L	M.	SB	S	Mz	R	BG		Ľ	M	SB	S
153	7	7	6	7	7	8	8	6	5 1	7 5	7 7	8	6 5	8 8	8 7	9 7	8 7	7 6	5 4	7 6	5 4	4	6 5	5 2	2
159	7	7	6	5	4	7	4	6	5 1	8 6	8	9	8 7	8 7	8	8	8 7	8 2	9 7	7 5	4 2	7 2	8	8 7	8 7
160	8	8	8	7	8	8	9	7	5 1	7	7 7	8	7	8	8	8 8	8 7	9	9	9 8	8 4	8 7	8	8	8
161	7	7	8	6	8	8	9	7	5 1	7 6	7 6	8 7	6 5	8	8	9 8	8 7	8 7	8 6	9	4 2	7 6	8	8	9

The claims defining the invention are as follows:

1. A compound of the general formula

in which

A represents a nitrogen atom or a group GR^7 ;

R¹, R² and R⁷ each independently represents a hydrogen or halogen atom, a formyl, cyano, carboxy or azido group, or an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, alkoxy, alkenyloxy, alkynyloxy, aryloxy, alkylthio, alkenylthio, alkynylthio, arylthio, alkylcarbonyl, alkoxycarbonyl, amino.

10 aminoxy or dialkyliminoxy group;

R³ represents a hydrogen atom, or an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aralkyl or aryl group;

R⁴ represents a hydrogen atom or an optionally substituted
15 alkyl, alkenyl, aralkyl, aryl or heterocyclic group, or an
optionally substituted acyl group of the formula COR⁸ in which R⁸
represents an alkyl, aryl or aralkyl group; and

R⁵ and R⁶ each independently represents a hydrogen atom or an optionally substituted alkyl, alkoxy, alkenyl, alkynyl, aryl, aralkyl, amino cycloalkyl or beterocyclic group, or a group of the

aralkyl, amino, cycloalkyl or heterocyclic group, or a group of the formula ${\rm SO_2R}^8$, in which ${\rm R}^8$ is as defined hereinabove, or a group

, in which R^{11} is an alkylthic group, or together form a R^{11}

group =C in which R^9 and R^{10} each independently represents a

hydrogen atom or an alkyl, alkoxy, aryl, aralkyl or dialkylamino group, or R^9 and R^{10} together form an optionally substituted heterocyclic group, or R⁵ and R⁶ together form an alkylene chain which is optionally interrupted by an oxygen or sulphur atom or by a group -NR- in which R represents a hydrogen atom or an alkyl group;

10 or a salt thereof.

- A compound as claimed in claim 1, in which A represents, a nitrogen atom or a group CH.
- A compound as claimed in claim 1 or claim 2, in which R^{\perp} represents a C₁₋₄ alkyl, C₁₋₄ alkoxy or C₁₋₄ haloalkyl group.
- A compound as claimed in claim 1, 2 or 3, in which R^2 15 represents a C_{1-4} alkyl or C_{1-4} alkoxy group or a halogen atom.
 - A compound as claimed in any one of claims 1 to 4, in which R^3 represents a C₁₋₆ alkyl or a phenyl group.
- A compound as claimed in any one of claims 1 to 5, in which R4 20 represents a hydrogen atom.
 - A compound as claimed in any one of claims 1 to 6, in which R^3 and R^6 each independently represents a hydrogen atom, a C_{1-6} alkyl, C_{1-6} haloalkyl, C_{1-6} alkoxy, C_{2-6} alkenyl, C_{2-6} alkynyl, mono- or $di-(C_{1-4} alkoxy)C_{1-4} alkyl, (C_{1-4} alkoxy)carbonyl(C_{1-4} alkyl), C_{3-8}$ cycloalkyl or benzyl group, or an optionally substituted phenyl, pyridyl, pyrimidinyl or (C3-8 cycloalkyl) C1-4 alkyl group,

25

30

35

or a group -C R^{11} in which R^{11} is a C_{1-4} alkylthio group, or together form a group -C R^{10}

in which R^9 and R^{10} each independently represents a C_{1-4} alkoxy or $di(C_{1-4}$ alkyl) amino group, or R^9 and R^{10} together form a five-membered ring in which two or three ring members are

hetero atoms selected from nitrogen and sulphur atoms, the ring being substituted by a benzyl or one or two C_{1-4} alkyl groups, or R^5 and R^6 together form an alkylene chain which is optionally interrupted by an oxygen atom or by a group -NR- in which R represents a C_{1-4} alkyl group.

8. A compound as claimed in any one of claims 1 to 7, in which R¹ represents a methyl, methoxy or trifluoromethyl group; R² represents a methyl or methoxy group or a chlorine atom; R³ represents a methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, s-butyl, t-butyl or phenyl group; R⁴ represents a hydrogen atom; R⁵

represents a hydrogen atom or a methyl or ethyl group; R⁶
represents a hydrogen atom or a methyl, ethyl, n-propyl, i-propyl, n-butyl, methoxy, chloroethyl, methoxycarbonylmethyl, mono- or dimethoxyethyl, allyl, propynyl, cyclopropyl, cyclobutyl, pyridyl,

dimethylpyrimidinyl, (dichlorocyclopropyl)methyl, phenyl,

chlorophenyl or benzyl group or a group -C

or R⁵ and R⁶ together represent one of the groups

$$\underset{\text{CH}_3}{\overset{\text{S}}{\longrightarrow}}$$
 and $\underset{\text{CH}_2^{\text{C}_6}\text{H}_5}{\overset{\text{S}}{\longrightarrow}}$, or R^5 and R^6

30

5

10

15

together represent a group -(CH₂)₂O(CH₂)₂-, -(CH₂)₂N(CH₃)(CH₂)₂- or -(CH₂)₄-.

- 9. A process for the preparation of a compound as claimed in claim 1, which comprises
 - (a) reacting a compound of the general formula

in which A, R^1 , R^2 and R^3 are as defined in claim 1, or a corresponding ester, acid chloride or acid anhydride, with a compound of the general formula

$$\begin{array}{ccc}
H & R^5 \\
NSO_2 N & (III)
\end{array}$$

in which R^4 , R^5 and R^6 are as defined in claim 1, or a salt thereof, if appropriate in the presence of a carboxyl-activating agent, or

(b) reacting a compound of the general formula

in which A, R^1 and R^2 are as defined in claim 1, and L^1 represents a leaving group, with, when R^4 represents a hydrogen atom, a di-salt, and, when R^4 represents a molety

35

20

25

other than a hydrogen atom, a mono-salt of a compound of the general formula

in which R³, R⁴, R⁵ and R⁶ are as defined in claim 1, and, if required or desired, converting a resulting compound into another compound as claimed in claim 1.

- 10. A herbicidal composition comprising a compound as claimed in any one of claims 1 to 8, together with a carrier and/or surface-active agent.
 - 11. A method of combating undesired plant growth at a locus, which comprises treating the locus with a compound of formula I as claimed in any one of claims 1 to 8, or with a composition as claimed in claim 10.
- 10 12. A pyrimidin-2-yloxyethan-1-oylsulfamide or triazin-2-yloxyethan-1-oylsulfamide derivative, substantially as hereinbefore described with reference to any one of examples 3 to 166.
- 13. A process for the preparation of a pyrimidin-2-yloxyethan-1-oylsulfamide or triazin-2-yloxyethan-1-oylsulfamide derivative, substantially as hereinbefore described 15 with reference to any one of examples 3 to 166.

Dated 1 December, 1992 Shell Internationale Research Maatschappij B. V.

Patent Attorneys for the Applicant/Nominated Person SPRUSON & FERGUSON

ABSTRACT

SULPHONAMIDE HERBICIDES

Compounds of the formula

in which

A is nitrogen or CR^7 ;

R¹, R² and R⁷ each independently are hydrogen, halogen, formyl, cyano, carboxy or azido, or optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, alkoxy, alkenyloxy, alkynyloxy, aryloxy, alkylthio, alkenylthio, alkynylthio, arylthio, alkylcarbonyl, alkoxycarbonyl, amino, aminoxy or dialkyliminoxy;

R³ is hydrogen, or optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aralkyl or aryl;

R⁴ is hydrogen or optionally substituted alkyl, alkenyl, aralkyl, aryl, heterocyclic or acyl; and

 ${\tt R}^5$ and ${\tt R}^6$ each independently are hydrogen or optionally substituted alkyl, alkoxy, alkenyl, alkynyl, aryl, aralkyl, amino, cycloalkyl or heterocyclic, or a sulphonyl-containing group, or

NH -C where
$$R^{11}$$
 is alkylthio, or together form R^{11}

where R^9 and R^{10} each independently are hydrogen, alkyl,

alkoxy, aryl, aralkyl or dialkylamino, or R^9 and R^{10} together form optionally substituted heterocyclic or optionally interrupted alkylene chain; and salts thereof, have herbicidal properties.