发明名称
信息载体和用于获取信息的系统

摘要
本发明描述了一种电容信息载体，其中至少一个导电触摸结构被布置于非导电基板上。本发明还包括一种用于获取信息的系统和方法，由电容信息载体，电容区域传感器和两个元件之间的接触和交互所组成，其使信息载体的触摸结构可由连接至区域传感器的数据处理系统评估，并可触发与信息载体相关的事件。
1. 一种电容信息载体(1)，
其特征在于
至少一个导电触摸结构(3)被设置在一非导电基板(2)上；
至少一个导电触摸结构(3)用于模拟指尖的布置和/或属性；并且
至少一个耦合表面(5)被设置于非导电基板(2)上，至少一个耦合表面(5)通过至少一个导电路径(4)连接于至少一个触摸结构(3)，和/或至少一个导电触摸结构(3)的一部分作为耦合表面(5)。

2. 如权利要求1所述的电容信息载体(1)，
其特征在于
该至少一个导电触摸结构(3)由另一层所覆盖。

3. 如权利要求1所述的电容信息载体(1)，
其特征在于
覆盖该至少一个导电触摸结构(3)的另一层为纸质层、薄膜层、涂层、磷基层和/或其组合。

4. 如权利要求1所述的电容信息载体(1)，
其特征在于
电容信息载体(1)具有至少一个覆盖层(6)，至少一个覆盖层(6)全部或部分覆盖非导电基板(2)。

5. 如权利要求1所述的电容信息载体(1)，
其特征在于
电容信息载体(1)连接至物品(7)，或该物品(7)本身作为非导电基板(2)。

6. 如权利要求1所述的电容信息载体(1)，
其特征在于
所施加的触摸结构(3)通过加成法和/或减成法在其构造上在某些区域中是可变的。

7. 如权利要求1所述的电容信息载体(1)，
其特征在于
所述加成法是喷墨方法。

8. 如权利要求1所述的电容信息载体(1)，
其特征在于
所述减成法是激光方法。

9. 一种用于制作电容信息载体(1)的方法，包括如下步骤：
 a. 在湿纸上提供转印膜，其中该转印膜包含载体薄膜以及在至少某些区域中放置其上的导电转移层，
 b. 提供非导电基板，
 c. 提供粘合剂，
 d. 以结构化方式将根据步骤c提供的粘合剂施加到该非导电基板和/或转印膜上，
 其中在该非导电基板中，该导电转移层至少在某些区域中被设置为触控结构(3)；
 至少一个导电触摸结构(3)被设置在非导电基板(2)上；
 至少一个导电触摸结构(3)用于模拟指尖的布置和/或属性；并且
至少一个耦合表面(5)被设置于非导电基板(2)上，至少一个耦合表面(5)通过至少一个导体路径(4)连接于至少一个导电触摸结构(3)，和/或至少一个导电触摸结构(3)的一部分为耦合表面(5)。

10. 根据权利要求9所述的方法制成的电容信息载体(1)。

11. 一种用于获取信息的系统，包括：
 a. 根据权利要求1所述的至少一个电容信息载体(1)，
 b. 至少一个电容区域传感器(9)；及
 c. 至少一个电容信息载体(1)和至少一个电容区域传感器(9)之间产生静态和/或动态接触，从而实现电容相互作用。

12. 如权利要求11所述的系统，
 其特征在于
 通过该电容相互作用，至少一个电容信息载体(1)的触模结构(3)通过连接至区域传感器(9)的数据处理系统进行评估，且所述数据处理系统触发与至少一个电容信息载体(1)相关的事件。

13. 如权利要求11或12所述的系统，
 其特征在于
 包括至少一个电容区域传感器(9)的设备(8)还包括电容触模屏和/或触摸板，并且选自以下组：智能电话、蜂窝电话、显示器、平板PC、平板笔记本、触摸板设备、经图板、电视机、PDA、MP3播放器和跟踪板。

14. 如权利要求11或12所述的系统，
 其特征在于
 至少一个电容信息载体(1)在至少某些区域与至少一个电容区域传感器(9)相触摸。

15. 如权利要求11或12所述的系统，
 其特征在于
 相对于至少一个电容信息载体(1)而移动的至少一个电容区域传感器(9)逐渐接收来自至少一个电容信息载体(1)的全部或部分信息。

16. 如权利要求11或12所述的系统，
 其特征在于
 多个电容信息载体(1)被合并读取。

17. 如权利要求16所述的系统，
 其特征在于
 多个电容信息载体(1)彼此相邻的和/或自上而下的和/或时间上连续的被读取。

18. 一种根据权利要求1所述的电容信息载体用于获取信息的应用，包括：
 a. 提供至少一个电容信息载体(1)，所述至少一个电容信息载体具有非导电基板(2)，所述非导电基板包括至少一个导电触模结构(3)和至少一个电容区域传感器(9)，
 b. 将至少一个电容信息载体(1)与至少一个电容区域传感器(9)相触摸，其中触摸为静态和/或动态，
 c. 触发至少一个电容区域传感器(9)与至少一个电容信息载体(1)之间的电容相互作用，其中通过该电容相互作用，至少一个电容信息载体(1)的至少一个导电触模结构(3)通
过连接到至少一个电容区域传感器(9)的数据处理系统进行评估，并触发与至少一个电容信息载体(1)相关的事件。

19. 如权利要求18所述的电容信息载体用于获取信息的应用，
其特征在于
至少一个电容信息载体(1)被分配至数据处理系统中的数据集，且该数据集保持不变。

20. 如权利要求18所述的电容信息载体用于获取信息的应用，
其特征在于
至少一个电容信息载体(1)被分配至数据处理系统中的数据集，且该数据集发生变化。

21. 如权利要求18所述的电容信息载体用于获取信息的应用，
其特征在于
与至少一个电容区域传感器(9)相连接的至少一个电容信息载体(1)通过至少一个导电触摸结构(3)分配至数据处理系统的动作或触发数据处理系统的动作。

22. 如权利要求18所述的电容信息载体用于获取信息的应用，
其特征在于
至少两个电容信息载体(1)被合并，且通过该合并，事件被触发。
信息载体和用于获取信息的系统

[0001] 本发明描述了一种电容信息载体，其中至少一个导电接触结构被设置于非导电基板上。此外，本发明包括一种用于获取信息的系统和方法，由电容信息载体、电容区域传感器、两个元件之间的接触和交互组成，其使信息载体的接触结构可由连接至区域传感器的数据处理系统评估，并可触发与信息载体相关的事件。

[0002] 在本发明的含义中，信息载体特指一种用于对信息进行存储、映像、归档和/或分配的介质。

[0003] 在本发明的含义中，电容区域传感器特指一种物理接口，用于获取电容和/或已定义区域的子区域中的电容差。包含区域传感器的设备例如包括智能电话、蜂窝电话、显示器、平板PC、平板笔记本、触摸板设备、绘图板、电视机、PDA、MP3播放器、跟踪板和/或电容输入设备。这种区域传感器例如也可以是输入设备的集成部件，如触摸屏、触摸板或绘图板。触摸屏还称为触摸式屏幕或触感屏幕。这种输入设备与其他设备一起被用在智能电话、PDA、触摸显示器或笔记本中。

[0004] 用于获取和读取电容信息的已知的阅读器或装置表示有且仅有该用途的独立设备。现有技术所披露的阅读器或装置的缺点在于，对于独立应用，单独的电容阅读器必须始终为可用，并且通常经由接口将他们连接至数据处理媒体。因此，阅读器的分布和接受相对较差，并且购买阅读器还涉及附加的费用。此外，将真实打印的信息与数字信息相联是难以实现的。一种可能是条形码，可利用适当的扫描仪或照相机来获取所述条形码也可以调用数字内容。已知的条码的缺点在于，他们与系统典型的缺陷相关联，例如信息可任意被复制，视觉上占据了产品或广告媒体的空间。难以足够高质量地被个性化，由于污渍、划痕、光线条件等原因需要编码与获取单元之间的直接视觉接触，使得难以正确获取和读出，或者可以将其完全阻碍。先前已知的电容数据载体在阅读器中始终在(至少)一个读取电极和一个接收电极之间进行桥接。根据是否存在电容结构，识别逻辑“1”和/或“0”。

[0005] 现有技术示出了通过印刷技术或其它涂层方法生产信息载体的多种可能，其中可利用适当的读取方法或阅读器来读取信息载体（例如US3,719,804）。以这种方式生成的最通常的信息载体可能是条码，在实施例中为一维条码，或者例如二维变型。利用合适的光学扫描仪来获取他们，并在需要时，由适当的数据处理系统进行进一步处理。

[0006] 用于生成这种类似特性的印刷技术和涂层技术在不断发展中。因而，EP1803562描述了一种用于将成像层从一个载体膜或转印膜传输至板材处理机中的印刷电路板上的方法。此处，粘合剂被施加在第一施加工位，并在另一涂层工位中连同转印膜一起粘合，来自转印膜的材料通过粘合而被施加于印刷电路板上。在该过程中，在该施加工位中形成转移间隙，且沉积的表面，将该转印膜放置在印刷电路板的涂层转移材料的一侧上，并与该印刷电路板一起在压力的作用下进给经过所述转移间隙，以使得在覆盖有粘合剂的区域中将该成像层从载体薄膜转移至该印刷电路板上，以进行粘合。由此，能够容易地施加条码和字母数字混合信息。

以及彩印都是有意义的。印刷的信息保证了例如鉴定或作为有效性校验。并且，在专利申请US 3,719,804（永久信息存储）和US 4,587,410（停车系统）中已知电容可读信息载体。在最后提到的示例中，说明了用于停车计时器的电容结构的处理和可变性。通过一种机械单元，阅读器中的电容结构被连续改变，因而其“内部值”被改变。并未提供该结构的个性化。该完整系统是一个自给自足的系统，没有与其它系统或数据处理或数据存储的交互。在US 3,719,804中，列出了通过印刷技术的生产可能性，所述印刷技术例如干网印刷、柔版印刷和凹版印刷。该描述涉及适用于印刷过程的液态可加工材料。这带来了这种液态可加工墨水涉及的所有问题。满足这种需求的墨水价格昂贵，包含溶剂，保存期有限并会产生过程相关的问题。通过所应用的导电轨道的分离技术来完成个性化。该读取方法非常具有位置依赖性，并关联于阅读器中信息载体的固定读取位置。

总而言之，现有技术所建议的用于信息载体的解决方案具有多个问题。例如，对于大容量应用，其并不是足够的廉价，由于其复杂的结构，只有一部分为可回收（RFID系统），有时可以被轻易地复制（条码），将其附加至终端产品时产生高额花销，而且利用印刷技术（芯片卡）难以加工，或根本无法加工。

基于该现有技术，本发明的一个目标是提供一种容易实现的电容区域传感器的电容信息载体，用于触发至少一个事件。

在本发明的含义中，事件指优先地在应用中触发动作，因此产生状态变化的事物。这些事件可以是例如用户输入或系统事件。优先地，在带有区域传感器的设备自身触发事件，这些设备是例如智能电话、蜂窝电话、显示器、平面PC、平板笔记本、触摸板设备、绘图板、电视机、MP3播放器、跟踪板和电容输入设备，不限于此。

该目标由独立权利要求来实现。优选的示例性实施例产生于从属权利要求。

特别地，利用根据本发明的电容信息载体、根据本发明的系统和信息载体与系统的应用，以及利用根据本发明用于获取信息的方法，现有技术的缺点可被克服。

因而，提供了一种电容信息载体，其中至少一个导电基底被设置在非导电基板上，作为触摸结构。该触摸结构优选地包括至少一个触摸点、一个耦合表面和/或导体路径。

在本发明的含义中，耦合表面特指基板上的导电区域。耦合表面表示根据本发明信息载体的优选变型，例如其可以耦合至不属于触摸结构一部分的外部电容，并以此增加信息载体触摸结构的有效电容。因此，该信息载体能够以特定的安全可靠的方式被读取。这可在个人触摸或接近它，以及在物体与它连接时发生。

导体路径优选地由导电层组成，并且优选地建立两个或多个子区域之间的电连接。

有利地，在优选的实施例中，基板由塑料、纸张、纸板、木材、复合材料、玻璃、陶瓷、织物、皮革或其他组合物组成。基板指一种非导电物质，优选地为有弹性的，并具有轻小的重量。可应用半透明或不透明基板。优选的塑料特别包括PVC、PETG、PV、PETX、PE和合成纸。

优选地，该导电层为金属层、包含金属颗粒的层、包含导电颗粒的层、导电聚合物层，或这些层的至少一个组合。导电颗粒剂指碳黑或石墨颗粒。在本发明的含义中，聚合物指的化学上统一构成的大分子（聚合物分子）的集合所组成的物质，然而，他们通常在聚合度、摩尔质量和链长上有所不同。聚合物优选地为导电。在具有统一聚合物的物质中，所有大分子优选地为统一构成，仅在他们的链长上不同（聚合度）。这种聚合物可称为聚合物
同系物。聚合物可选自包含无机聚合物、金属有机聚合物、全部或部分芳香族聚合物、同聚
物、共聚物、二元共聚物、化学改性聚合物和/或合成聚合物的组。特别优选的聚合物选自对
亚苯基、聚乙炔、聚吡咯、聚噻吩、聚苯胺(PANI)和PEDOT。因此，可利用大量生产方法以具有
成本效益的方式生产该信息载体。

[0018] 根据本发明，触摸结构特指以结构化方式施加的导体材料的层。通过根据本发明的两个属性，导电性和结构的结合，意外地，可实现触摸结构与电容有效区域的特定交互。

[0019] 由于触摸点、导体路径和耦合表面可以优先地由相同或相似的电容材料组成，因而，可优选地仅利用一种技术方法来生产信息载体。因此，该信息载体能够容易且经济地实现成为大规模生产的物品。在本发明优选的实施例中，在基板上可提供触摸结构，该触摸结构被设置为具有至少一个耦合表面通过至少一个导体路径连接至至少一个触摸点，且/或触摸点的一部分为耦合表面。

[0020] 在本发明的含义中，触摸结构可以特指为签名或图章。通过根据本发明的两个属性，导电性和结构的结合，可意外地实现触摸结构与区域传感器的电容有效区域的特定交互。因而，被连接至区域传感器的电容处理器系统可评价触摸结构的结构。有利地，在特定区域中，所应用的触摸结构在构成方式上是可变的，通过构成加法和/或减法，优选通过喷墨法，特别优选地通过激光法。

[0021] 在优选的实施例中，触摸结构为基板上的印刷层。特别意外地，可通过印刷方法将触摸结构施加在基板上。优选地，利用印刷方法来生产信息载体，优选为本领域技术人员已知的加成法和/或减成法。这是相对于现有技术一个显著的优点，由此，可应用大规模生产方法来生产信息载体。有利地，可利用加成法和/或减成法容易而经济地实现触摸结构。

[0022] 然而，优选地通过转移方法将触摸结构转移至基板上。优选地，将基板施加到触摸结构上，实质上可通过已知的转移方法来进行；优选地，此处考虑转印膜方法，尤其是优选的冷膜转移方法。这些方法为本领域技术人员所知，并且此/相关方法包括印刷方法等。例如，基板与触摸结构彼此相对地连接，并且利用激光或电容法，优选通过结合加法和/或减法，优选通过喷墨法，特别优选地通过激光法。

[0023] 此外，提供了一种利用转印方法生成的导电信息载体，该方法包括如下步骤：

[0024] a. 在基板上提供转印膜，其中该转印膜包含载体薄膜以及在至少某些区域中，在其上放置导电转移层，

[0025] b. 提供导电基板，

[0026] c. 提供粘合剂，

[0027] d. 以结构化方式将根据c)的粘合剂施加到该基板和/或转印膜上，

[0028] 其中，在非导电基板上，导电层在至少在某些区域中被设置为触摸结构。优选地，至多触摸结构被另一个层所覆盖。

[0029] 信息载体优选地包括非导电基板，粘合剂被施加于其上的至少某些区域中，以及
通过粘合在粘合剂上，将至少一单层的导电层重叠施加其上，其中粘合剂和导电层为通过
转移方法，优选通过转印膜方法，特别优选地通过冷膜转移方法施加的层，并且导电层被配
置为触摸结构，至少触摸结构被另一个层所覆盖。

[0030] 特别通过粘合剂优选为导电粘合剂来完成导电层的构造。优选地，以一种排列或
布局来直接将粘合剂施加到基板（印刷基板）上，并随后结合转印膜来操作。有利地，施加粘合剂以及使基板和转印膜相结合可在机器中实现。转印膜本身由至少两层所组成，可转移层（=转移层）和承载所述层的另一载体材料（载体薄膜）。两层的连接被配置为能够以粘合剂的形式无地将转移层转移至基板上，因此，对基板和转移层的粘合剂粘性必须高于转移层的内聚性和在载体材料上的转移层的粘性。一旦材料转移完成，基板材料包括以结构化方式施加的粘合剂和覆盖所述粘合剂的作为转移层的转移材料，其中，现在转移材料同样被结构化。这可在压力，温度，如硬印，接触加压的机械辅助方法的帮助下实现。通过这种方式，可提供一种信息载体，由于其布局和转移材料的材料属性而产生一种电容可读结构，这种可读解构可在适当的阅读器中被决定或可与区域传感器进行交互。优选地，由另一层在至少某些区域覆盖至少组成结构的层，其中所述层优选为纸质层，薄膜层，涂层层，硬基层和/或其组合。在本发明的含义中，另一层还可称为覆盖层。覆盖层可有利地被用于保护或被用于信息载体结构的隐藏。在优选的变型中，该覆盖层还可被实现为盖板。盖板可由刚性或柔性材料组成。

[0031] 在另一优选的实施例中，模拟指尖的布置和/或属性，至少一个导电触摸结构被设置在非导电基板上。这里，模拟指尖的布置和/或属性的触摸结构的附加属性尤其有利，因为这种结构可由连接于区域传感器的数据处理系统通过简单的方式来评估，且可由软件进行更好的处理。

[0032] 在本发明的含义中，电容区域传感器可特指触屏。

[0033] 在现有技术中，这种触屏特别包含有源电路，触屏被连接至电极结构。这些电极通常被分为发送电极和接收电极。触摸控制器优选地以如下方式控制电极，每种情况下，在一个或多个发送电极和一个或多个接收电极之间传输信号。在触屏的空闲状态中，举例而言，信号保持恒定。现有技术描述的触屏的目的特别在于识别手指与它们在触屏表面上的位置。这里引入手指影响电极之间的信号发生改变。通常，信号强度被降低，因为放置在其上的手指从发送电极吸收了一部分信号，并且因此较弱的信号到达接收电极。

[0034] 触摸结构的有利属性是其电导率。如果代替手指，具有触摸结构的优选信息载体接触区域传感器，则传导区域优选地产生与手指相同的效应。然而，传导结构被逐个区域地结构化，因为另一方面，能够与引入手指相类似的效应将在某些位置被最大化，特别是触摸点，以使触摸控制者能够以最佳可能的方式来辨认。因此有利地，触摸结构可由连接至区域传感器的数据处理系统评估。

[0035] 在进一步优选的实施例中，模拟指尖的布置和/或属性的至少一个导电触摸结构被布置在非导电基板上。触摸结构包括至少一个触摸点，一条导体路径和/或一个耦合表面。优选地，触摸中的至少一个或多个触摸点的组合模拟指尖的布置和/或属性。在本发明的含义中，触摸结构（优选地包含至少一个耦合表面，特别优选地包括至少一条导体路径，且更优选地包括至少一个触摸点），可以类似于手指实现在区域传感器上的输入。为此，本发明优选实施例可被描述为触摸结构模拟指尖属性的事实，其得，这优选地表示触摸结构的属性，即触摸结构像手指一样能够在区域传感器上进行输入。模拟指尖的布置和/或属性的触摸结构的这种附加属性在这里尤其有利，因为能够通过连接至区域传感器的数据处理系统以简单的方式来评估这种结构，并可由软件进行更好的处理这种结构。

[0036] 在这种连接中，通过构造信息载体上的传导区域，触摸点恰当地模拟指尖属性。
领域技术人员已经得知，在触屏或区域传感器上的输入可通过一个或多个手指（单点触摸或多点触摸）的方式来实现。区域传感器的技术以及输入原理，或分别通过手指的哪一属性产生输入，均非领域技术人员所知。例如，除手指的电气属性（例如电导率）之外，深度、输入压力，或与区域传感器的距离也可影响输入。通过构造传导区域，优选的系统在区域传感器上实现了与手指相同的效应，即在区域传感器上的位置上的输入。该位置由信息载体的传导区域所定义。因而，本领域技术人员不需要大量实验工作即可用这种方式实现模拟手指或指尖属性的信息载体的触摸结构，并且使用信息载体的导电区域，得以实现区域传感器上的输入。

【0037】在非限制性的一个示例中，优选的信息载体与具有网格形式的电极排列的所谓触屏相交互，合适的触摸点的结构化例如为1至20mm直径的圆，优选为4至15mm，尤其优选6至10mm。由于触屏适用于为确定指尖的位置，所以可用同样方式通过触屏来确定信息载体的触摸点。有利地，触屏或区域传感器无法区别输入是由信息载体的触摸结构还是由手指来实现的。

【0038】优选地，根据本发明，可在信息载体上应用多个触摸结构。有利地，触摸结构的子区域的形状、方向、数量、对准方式、距离和/或位置可用于存储信息。

【0039】有利地，根据进一步优选的实施例，导电材料为基板上的印刷层。因而，可以简单而经济的有心方式利用加成方法实现层，这种方法为本领域技术人员所知。当然，以结构化方式用于应用导电层的所有其它方法均可使用。

【0040】根据进一步优选的实施例，利用减成方法实现导电层，其中层的区域被移除。为此，利用蚀刻或激光的已知的烧蚀方法可被使用。在后者情况下，通过激光束的作用蒸发要被移除的材料。当然，还可应用更多方法。

【0041】完全意外地，根据本发明的信息载体或一组信息载体和/或系统可被用于许多经济生活的领域，这些领域包括，例如扑克牌、收集卡、邮箱、邮寄、邮寄费用、货物后勤、货物跟踪、访问、票据、固定区域访问、虚拟内容、市场竞争、消费者保留、彩票和赌场活动、会员身份、票、支付应用、认证证书、证书、物品保护、附件保护、签名、提货单、银行声明、包裹传单、电子游戏中的对象、音乐/视频/电子书下载、奖品卡/程序/设备控制器或礼品卡，不限于此。

【0042】优选地，信息载体被连接于物品，或者物品本身作为基板。本发明的含义中，物品特指一种事物、主体或物体。物品优选地选自包括包裹、餐具、印刷品、衣物、家具、文件、玩具、消费品、食物、半成品、机械部件、建材，一次性和可重复使用的容器和/或电气设备的组。本质上，非平面物品也可为信息载体的直接载体（物品承担了基板的功能），或间接载体，其中信息载体可被依附至物品或被施加于其上。依附或施加，例如可用自粘合方式或通过其它已知的接合技术或辅助材料来实现，例如织物上的标签。

【0043】有利地，至少一个信息载体至少在某些区域中接触至少一个区域传感器。为此，至少一个导电层被施加在基底上的某些区域中，其中导电层的至少一个区域为子区域。在本发明的含义中的一个或多个子区域也被称为触摸结构。触摸结构或其子区域的形状、方向、数量、对齐方式、距离和/或位置优选地组成信息，以使通过至少在某些区域中的区域传感器上放置信息载体，或通过信息载体的至少一个区域相对于区域传感器的相对移动，触发至少一个事件。在本发明的含义中，至少在某些区域中的区域传感器上放置信息载体特指
信息载体的一个区域接触区域传感器的至少一个区域。

在本发明的含义中，进行接触特指在信息载体与区域传感器之间没有间隙。这表示信息载体优选地与该区域传感器进行物理接触。然而在优选地，在信息载体与区域传感器之间没有直接接触，并且接近已经足以触发事件。当接近时，信息载体与区域传感器之间存在大于0cm到2cm的优选距离。

因而，本发明还涉及一种系统，包括至少一个电容信息载体和至少一个电容区域传感器。同样在信息载体与区域传感器之间产生接触或接近，由此实现电容相互作用。通过电容区域传感器的电容特性触测结构，信息载体的触测结构可由连接于区域传感器的数据库系统评估并因此能够触发与信息载体相关的事件。在本发明的含义中，区域传感器还表示触屏。

通过电容相互作用，优选地，可在承载区域传感器的设备上触发事件。事件继而触发例如，不用于，诸如激活和/或最终应用（程序），改变数值和/或文本，操作绘图，改变数据库或获取对信息传输的访问等动作。

优选地，该区域传感器包括至少一个电容屏，且设备包括选自以下组的区域传感器，所述组包括智能电话、天线电话、显示器、平板PC、平板笔记本、触摸屏设备、绘图板、电视机、MP3播放器、跟踪板和/或电容输入设备，不在于此。电容区域传感器例如还可为电容触屏和触敏板或绘图板的输入设备的集成部件。触屏还称为触测式屏幕或触敏屏幕。这种输入设备与其他设备一起被用于智能电话、MP3播放器或笔记本中。区域传感器并非必须位于屏幕前方。例如，所述区域传感器还可被配置和应用为键盘。除点击功能外，还可实现拖放操作。此外，举例而言，电容区域传感器还称为“多点触测”的形式使用多个同时的触测，用于旋转或缩放所显示的元素。区域传感器在这里优选地被实现为所谓的投射式电容触摸技术（PCT），PCT技术的变换例如为“互电容”（mutual capacitance）和“自电容”（self capacitance），其可被实现为互电容屏幕和自电容屏幕。

有利地，根据本发明的信息载体的特征在于可实现与具有区域传感器的设备的连接。区域传感器优选地类似于电容阅读器运作，但是不依赖固定的预定义的导体路径或读取电极，如同现有技术US 3,719,804～永储信息存储Permanent information store中当前有限得知的。通过根据本发明的信息载体，披露了包含电容区域传感器的设备的功能范围的延伸。因此，对信息的访问被更容易地获得，并且/或设备的使用被简化（特别对于身体障碍人士、残疾人或老年人）和/或可实现新的应用，不在于此。

优选地，区域传感器（可被配置为子区域）形式的信息被存储在信息载体上。一旦接触或者当信息载体接近区域传感器时，可通过后者读取信息，其中特别地，电容被部分地改变。

组成信息的触测结构即区域的子区域由导电材料所组成。根据本发明的公开，本领域技术人员了解，触测结构由角度和/或如矩形、圆或类似图案的由曲线定义的填充区域所组成。子区域之间的空间关系（方向、数量、对齐方式、距离和/或位置）和/或子区域的形状优选地表示信息。当将信息载体放置在区域传感器上时，触测结构被解释为例如手指输入，以使得从触测结构的子区域确定编码信息，这种编码信息例如以二进制编码数字形式，不在于此。然而，信息载体可直接被解释为信息载体，或者特别地，信息载体的连续的环境
分别确定其具体信息。还可通过信息载体相对于区域传感器的运动来实现定位。优选地，处于相对于信息载体的运动中的区域传感器从信息载体逐步接收全部或部分信息。在这种连接中，还可以根据信息载体相对于区域传感器的位置产生不同的事件。其要约束如为信息载体相对于区域传感器的移动的方向或驻留时间。

[0052] 有利地，信息载体可被配置为简单的、签名的或编码的信息载体。因此，信息载体适于作为密钥，用于一定数量的数据或硬件的授权使用，其中通过如互联网的已知数据网络可产生通信。还可通过包含区域传感器的设备产生。

[0053] 如本文随后的概括，优选地由事件触发动作。

[0054] 连接于包含区域传感器的设备的信息载体为

[0055] -简单信息载体，用于触发设备自身的程序序列中的动作。

[0056] -签名的信息载体，用于触发设备和/或通过数据网络相连的外部数据处理系统的程序序列中的动作。

[0057] -编码的信息载体，由设备和/或外部数据处理系统的程序序列进行解码，并触发设备或外部数据处理系统的程序序列中的动作。

[0058] 根据进一步的优选实施例，至少两个触摸结构位于基板上，每一个触摸结构具有至少一个相关的耦合表面。利用这种布置，例如当用户触摸各自相关的耦合表面时，至少两个事件可被触发。由此，举一可见，可由用户通过信息载体来触发是/否的决定。

[0059] 有利地，可以合并读取多个信息载体，特别是彼此紧靠，和/或自上而下，和/或以时间顺序。以这种方式，还可以信息载体中存储复杂信息，其中信息载体例如被印刷在纸板和/或纸张上。信息载体以外地利用数字媒体连接印刷媒体，到目前为止还无法形成这种方式。

[0060] 进一步优选地，信息载体被分配至数据处理系统中的数据集，并且数据集保持不变。在优选的实施例中，信息载体被分配至数据处理系统中的数据集，并且数据集被改变。这可例如通过使用信息载体和/或时间的方式实现，而非限制于此。

[0061] 有利地，信息载体能够以这种方式使用，即可通过触摸结构将与区域传感器相连的信息载体分配至数据处理系统的动作或可触发所述动作。这种动作特别应用于非网络化数据处理系统，并且尤其优选地用于网络化数据处理系统。

[0062] 本发明还涉及用于获取信息的电容信息载体的应用。这里提供了至少一个电容区域传感器和至少一个电容信息载体，其中信息载体具有非导电基板，其包括至少一个导电触摸结构。至少一个信息载体与至少一个区域传感器相接触，其中该接触可为静态和/或动态的。这里的静态接触尤其描述了在对信息载体进行评价时，相对于区域传感器没有产生运动或产生微不足道的运动。相反，动态接触特别描述了在对信息载体进行评价期间可产生相对运动。根据本发明，所述接触还可包括接近。通过所述接触，电容相互作用被触发，其中通过电容相互作用，从而信息载体将信息传送至区域传感器。

[0063] 导电层的区域-触控结构-优选地由子区域组成。特别地，子区域的形成、方向、数量、对齐方式、距离和/或位置组成了信息载体的信息，以使一旦信息载体与区域传感器接触，事件被触发。在这种环境中，设备的程序序列可由区域传感器来控制。子区域即触摸结构优选地由角度和/或如矩形、圆或类似图案的由曲线定义的填充区域所组成。

[0064] 子区域，举例而言，可为8mm的圆。因此，在具有50mm宽度和75mm高度的163ppi(每
说明书

英寸像素分辨率的区域传感器上，子区域事实上具有近似50 × 50像素的尺寸。具有8mm尺寸的子区域可被分为540份，在区域传感器上形成6 × 9的排列。其结果如下:

[0065] 子区域的位置可由其直径的一半来决定，每个轴的可能位置的数量因此加倍。然而，在每种情况下，在边缘上的一个位置被忽略。因此可辨别(6 × 2 - 1) × (9 × 2 - 1) = 11 × 17个位置。

[0066] 在极端情况下，已占用的位置阻止了九个可能的邻接位置。因此，在五个已用位置的情况下，17 × 11 = 187个可能位置中的5 × 9 = 45个位置被忽略。因而剩余142个空闲位置。作为子区域的空闲位置服从于二项式系数。

[0067] 因此，公式 \(\left(\begin{array}{c}
142 \\
5
\end{array} \right) \) 产生了子区域的可能的排列。在这种情况下，可能在子区域的448072338种不同的排列。这个数字可表示为29位的二进制数。这产生至少2^{28}种可能的排列，并且可表示28位数据。

[0068] 对于从5到18个子区域的数量，结果如下表:

5 * 9 = 45	142 选 5	<2^{29}
6 * 9 = 54	133 选 6	<2^{23}
7 * 9 = 63	124 选 7	<2^{27}
8 * 9 = 72	115 选 8	<2^{20}
9 * 9 = 81	106 选 9	<2^{12}
10 * 9 = 90	97 选 10	<2^{44}
11 * 9 = 99	88 选 11	<2^{45}
12 * 9 = 108	79 选 12	<2^{46}
13 * 9 = 117	70 选 13	<2^{46}
14 * 9 = 126	61 选 14	<2^{45}
15 * 9 = 135	52 选 15	<2^{43}
16 * 9 = 144	43 选 16	<2^{38}
17 * 9 = 153	34 选 17	<2^{32}
18 * 9 = 162	25 选 18	<2^{19}

[0069]

[0070] 因此，根据本例可表示出十二个子区域产生最大45位的数据。这意味着:

[0071] - 在最多五个子区域时，最多高达28位可容纳于信息载体1，且

[0072] - 在十二个子区域时，最多高达45位可容纳于信息载体1。

[0073] 通过减少子区域，数据量可显著地被增加。

[0074] 本发明还涉及一种用于识别电容信息载体的方法，其优选地被安装于具有触屏的基于计算机的系统。所述方法包括提供电容基线，当电容信息载体接触触屏或接近后者时，生成电流信号。通过比较电容基线与所生成的信号，事件被触发。
说明书

[0075] 当具有触屏的基于计算机的系统识别出电容信息载体(通过接触或接近)时，事件就被触发。然而还可以优选地，触屏仅识别信息载体并将其发送至计算机，相应地，该计算机触发事件。触屏可为监视器的集成部件，包括单色监视器、彩色监视器(如 VGA、EVA、VGA、超级VGA)、LCD、CRT、LED、OLED 或等离子监视器。然而，如果触屏不被集成在监视器中，而是被实现为独立元件也可以是有利的。例如，触屏被配置为触摸板或跟踪板。触屏优选地将从信息载体接收的信息发送至数据处理设备，优选地，事件因此而被触发。

[0076] 事件继而相应优选地触发事件。动作例如可为，在计算机或计算机网络上的注册、或对受限区域的访问、加载与计算机个人设置相关的计算机性质、访问网络内容、启动计算机程序、打开和/或关闭文档、浏览菜单、执行更多动作、编码和/或解码文档，或操作输入和/或输出设备。还可以优选地，例如多个信息载体必须被合并，以获得对访问受限区域的访问。这里，必要信息载体可被分发至不同的人，这满足了高级的安全标准。多个信息载体还可被合并形成相关序列，以使事件仅在完成整个序列时被触发。信息载体如被用于触发输出个人数据、银行数据和信用卡数据的事件。这在银行部门或零售部门可以是尤其有利的。

[0077] 信息载体还可被用于广告目的，例如通过将其用作彩票，其建立对主页的访问，在该主页上做出可能获胜的决策的。信息载体还可作为推销物品连同其他物品一起被赠送或出售。通过信息载体，接收者可获得对促销信息或产品信息的访问。例如，通过信息载体，接收者特别地，可以打开包含所购买产品的用户手册的网站。

[0078] 具有触屏的计算机或设备的操作系统优选包括程序，尤其是识别程序，其包括用于识别电容信息载体的方法。操作系统是众所周知的，包括 OS/2、DOS、UNIX、Linux、Windows、Windows Mobile、基于 Android 的系统、iOS、Mac OS、Darwin 等。识别程序可在操作系统中实现，或可被实现为独立软件。优选地，识别程序被存储在ROM或RAM中。

[0079] 识别程序还可被存储在外部存储介质中，包括CD-ROM、PC-CARD、磁盘、磁性存储介质或网络部件。如果识别程序在触屏本身(例如在固件中)中也可以是有利的。识别程序优选地可由用户访问，可在触屏上显示程序。用户可改变设置和/或可确定屏幕上信息载体优选地被识别的区域。原则上，识别程序可由识别与信息载体的接触并将此通知操作系统和/或触发事件的指令生成。

[0080] 计算机优选为PC(个人电脑)，包括桌面计算机、膝上型电脑或智能电话。然而计算机还可为公共计算机系统的集成部件，如公共计算机终端、取款机(ATM)、POS(销售点机器)、工业计算机系统、控制台、自动售货机、售检票机、订票机、服务站等。

[0081] 应用到信息载体上的触摸结构可有利地包括简单和/或复杂结构。例如，圆、方形、矩形、点、三角形、微标、符号、文本等可被施加于其上。此外，优选地将结构实现为二进制码或浮点图表。结构还可为要完成的动作的表示。例如，结构可以具有按键的形状，表示利用信息载体或相应地利用结构，入口被打开。结构还可被应用于已有的卡，例如信用卡。触屏可为能够传送、接收和/或存储的任意计算机系统的集成部件。计算机系统可为PC、膝上型电脑、手持计算机、兼容IBM、Windows或Apple的计算机。

[0082] 下文中，将以示例形式来解释信息载体的应用，但不限于此：

[0083] 用于购买产品或货物的信用卡载体的使用

[0084] 信息载体可用于购买货物或产品。例如商店或售货亭可安置具有触屏的设备，可
由顾客访问。顾客具有信息载体，他/她借此能够在商店或售货亭中通过设备被标识。通过使用信息载体，顾客可在设备上标识他/她自己，并且例如能够浏览已购买的货物或个人信息。通过必须接触设备的区域传感器—触屏—或必须接近触屏的信息载体产生标识。在本发明的含义中，触屏也特指区域传感器。

有利地，通过互联网或更多的计算机设备将具有触屏的设备连接到网络，信息由此可进行交换。例如，顾客可具有可通过信息载体检索的信用，其中，通过网络，信用的实际数量可被确定。在加载个人数据和已购买货物之后，顾客可决定他/她是否希望再次订购相同货物。这在涉及购买报纸或购买基本食品时尤其有利，其被定期购买。例如，通过信息载体，顾客还可获得书籍样品或报纸或杂志的试用订阅的访问。通过这种方式，以广告传单形式的信息载体可被传递给杂志买家。买家利用他/她的智能电话可读取信息载体并获取关于某一产品的信息的访问。由买家决定订购产品或在产品供应的商网页上查看产品。并且，告知买家供应商和供应商的位置。

有利地，信息载体还可被印刷于杂志或报纸上，并可包括例如旅游代理商的广告。感兴趣者可以将具有区域传感器的设备接触广告—信息载体—并接收关于所报出旅程的信息。如果感兴趣者希望预定该旅程，可通过如智能手机的设备直接完成。为此，智能电话上的程序通过互联网联系旅游代理商的另一程序，给出感兴趣者的个人数据和信用卡数据。如果感兴趣者同意所提议的价格，则他/她可预定该旅程。然后他/她用邮件或数字接收预定确认。并且，通过类似过程，报纸或杂志中宣传的航班也可被预定。

有利地，信息载体被提供给餐厅访问者，并且访问者通过信息载体和具有触屏的设备（例如智能电话）可以访问餐厅的网页，其中有餐厅提供的菜品的菜谱。有利地，还可以直接在线订购用于菜谱的货物。此外，可向访问者显示有关菜品配料的信息，这对于过敏者尤其重要。

而且，通过所接收的信息载体，访问者可收到关于餐厅发生的特定事件的通知。有利地，所接收的事件或其他信息可被直接存储于例如智能电话的设备中，或例如可被输入日历中。并且可由访问者启动将餐厅自动输入至智能电话的联系人数据库，因为通过信息载体，联系人数据对访问者是可用的。

有利地，对于购买货物或产品，不需要人员的参与。货物或产品可由顾客订购，随后可被递送至顾客。信息载体还可触发动作，举例而言，借以使信息载体直接接收产品。例如，具有触屏的糖果自动售卖机或报纸自动售卖机可由信息载体操作。顾客所购买的产品被显示在触屏上，并且客户可以确认或拒绝购买。为此，例如触屏上的两个区域可被提供给顾客使用。仅在顾客确认购买之后，购买才被触发。在购买之后，顾客在触屏上接收购买概览，其可被存储在设备的存储介质上。

优选地，信息载体也可依附于所购买产品或产品包装。通过信息载体，已购买产品的顾客获得对特定产品的材料或附件信息的访问。顾客只要将信息载体接触触屏或向触屏接近，动作就在此被触发，通过该动作，例如互联网中的某一网页被显示给顾客，某一程序被启动，或对顾客显示视频。

信息载体可被印刷在例如食品包装上。买家使用例如他/她的智能电话以便读取信息载体中的信息并因此获取所购买食品的特定信息的访问，包括菜谱、配料和/或烹调指导（视频和/或音频）。
优选地，还可利用信息载体通过电视机（优选为电容触屏）购买货物。电视机优选地具有区域传感器，优选为电容触屏。信息载体可与电视机的触屏相接触或向后者靠近。例如，可从购物频道中购买产品，在所述购物频道中顾客通过信息载体标识他自己/她自己，由此产品被购买。

信息载体优选地可用于触发程序。例如，参加一场音乐会之后，此人可获得信息载体。在家中，此人在信息载体与具有触屏的设备相接触或向其靠近，由此触发事件和动作。有利地，设备具有互联网接入并允许此人访问网页，其中先前参加的音乐会产品被提供。此人在观看网页中访问的音乐会视频，其中此人首先已经通过信息载体标识他自己/她自己。仅通过信息载体，此人获得对网页中受限区域的访问。

信息载体作为印刷品的补充的使用

信息载体还可被印刷作为教科书的一部分，或被封装其中。教科书包括例如学生能够解答的练习。在解答问题之后，学生可将例如电话的具有触屏的设备与教科书中的信息载体相接触或向信息载体靠近，并由此获得对解决方案的访问，其例如在具有受限访问的网页上可获得。并且，在学习中帮助学生的视频或音频文件也可用这种方式来访问。

信息载体还可被封装在书籍或被印刷在书籍上。通过该信息载体并提供触屏，书籍的买家获得对网页的访问，其中该作者的更多书籍被提供，并且很可能书籍的计划电影版预告片可被观看。在买书之前，感兴趣的可将书籍上的信息载体与他/她的智能电话相接触，借此在此次人的智能电话上显示免费样品。因此，感兴趣的可以在购买之前读取书籍的样品。

信息载体还可被印刷于DVD或蓝光的包装上，或被封装其中。信息载体使买家能够访问包含所购买电影更多相关信息的网页（例如关于演员的信息或其它资料）。有利地，信息载体可被印刷于DVD、蓝光或视频游戏的包装上。利用智能电话，潜在买家可读取信息载体，并能免费测试要购买商品的样本。

信息载体还可作为购买杂志或报纸的补充而被获得，并可通过具有触屏的设备建立对程序或网络内容的访问。

信息载体作为优惠券的使用

信息载体还可作为优惠券或打折卡使用。信息载体可作为广告，由企业发送者或发布至潜在顾客。接收方可在优选地位于企业中的专门的终端或具有触屏的类似设备兑换该信息载体。例如，顾客可选择某一金额的企业的某一种产品，并通过将信息载体与触屏相接触或向触屏靠近，而使用信息载体来支付，借此触发事件。信息载体例如触发类似于优惠券的动作，其中顾客可将优惠券用于购买产品。

有利地，信息载体也可在互联网上用于优惠券。例如，顾客可在互联网上购买产品，并通过将信息载体与具有触屏的设备相接触来触发支付动作。信息载体还可作为优惠券用于音乐下载等。

如果多个信息载体被个人收集，并且仅通过预定义数量的信息载体的组合激活优惠券，这也是有利的。例如，可以将这种方式将多个信息载体与触屏进行合并，使得具有特定数量的信息载体触发事件或动作。单个的信息载体在触屏上被显示为几何图案的一部分，以使人们能够看到不需要多少信息载体来完成该图案。完整的图案优选地可以被存储
说明书

于具有触屏的设备上，如果可用，能够与收集信息载体的其它人进行交换。通过网络或包括蓝牙、红外等的其它通信通道，设备可以互相通信。

【0103】信息载体作为票据的使用

【0104】优选地，信息载体还可作为票据使用。信息载体例如可作为电影票使用。信息载体可作为广告活动的一部分被发送至个人，或者个人接收信息载体作为报纸补充。当然，此人在销售点直接购买信息载体，例如信息载体使此人在影城能够进入影院，特别是进入某场电影。在影院入口，此人只需将信息载体接触触屏，其中触屏为影院设备的集成部件。通过接触或接近该触屏，事件或动作被触发，并且优选地，将电影的票据发放给此人。

【0105】优选地，信息载体可以已经被印刷在产品或票据上。信息载体还可被印刷在包装上，优选地，利用转移方法作为印刷方法，优选为转印膜方法。因此例如，信息载体可被印刷于CD的包装上，通过信息载体，CD的买家获取对更多音乐片段或表演者的销售产品的进入。

【0106】信息载体作为商品卡的使用

【0107】该信息载体还可作为商品卡使用。信息载体的所有者可在信息载体上存储个人数据，以便可以将信息载体发送给他人。他人简单地将信息载体靠近触屏，由此触发动作。动作可为，例如信息载体的所有者的私人主页被打开。个人信息优选地被直接存储于具有触屏的设备上，并被传送至例如联系人数据库中。

【0108】信息载体作为钥匙的使用

【0109】优选地，信息载体还可作为钥匙使用。这表示，所有者只能通过信息载体获得对受限区域的访问。例如所有者在门口通过信息载体标识他自己，由此在依附于门的触屏上触发动作，可实现门的打开。

【0110】有利地，可利用多个信息载体用于访问受限区域。例如，仅在使用被发放至两个不同的人的两个不同的信息载体时才允许对高度安全区域的访问。并且，重要程序的触发可用这种方式来限制，以使仅通过使用至少两个不同的信息载体才启动程序，所述两个不同的信息载体优选地被分发给两个不同的人。

【0111】信息载体与智能电话的使用

【0112】有利地，该信息载体还可与智能电话交互。为此，信息载体与电话触屏相接触，或向后者靠近，由此在智能电话上触发事件，继而可以启动程序。智能电话优选地显示信息载体的标识并允许地为用户提供不同步骤的选择。由此，用户可立即触发程序或仅在随后时间触发。如果无法建立互联网连接时，这是尤其有利的，并且连接将在随后时间被建立。用户随后在当前没有互联网连接的触屏上接收消息，其中用户可选择是否应当立即建立连接，还是仅随后建立。有利地，关于信息载体的信息也被显示至用户，如果需要，该信息被存储于智能电话的存储器中。并且，信息载体可向智能电话传输指令，这继而可通过程序被实现。因此，例如，程序能够执行超链接并可直接或通过网络服务来联络某互联网的网页。

【0113】在该连接中，信息载体还可允许用户访问特定网站或程序所需的证书或认证装置而被使用。例如，信息载体可包括密码，通过触屏将其传送至设备，并且对受限内容的访问仅能够通过提供所述密码来实现。智能电话还可用于发送和接收电子邮件。如果邮件被解码，在接收时就无法读出。仅在输入编码后，电子邮件才成为可读。还可将信息载体作为认证装置使用。信息载体被传递至电子邮件可能的接收端。在接收解码后的电子邮件之后，接收端被要求将信息载体靠近触屏，借此，信息载体中的信息成为可读。所读取的信息
被检查，并且在产生肯定的有效性之后，电子邮件就可由接收方阅读。

【0114】信息载体作为购物指导的使用

信息载体可被印刷在产品或货物上。如果顾客对产品感兴趣，而产品上没有专家建议，可将信息载体与他/她的具有电容触屏的智能电话或其它设备相触动，或可以靠近所述设备。信息载体触发事件或动作，由此例如该产品制造商的网页被显示于智能电话上。此时，顾客可找到关于该产品的更多信息。信息可以以文本、视音频文件的形式被呈现，并且例如可包括产品的使用、专用附件或其它事务。

【0116】优选地，信息载体还可作为广告传单由商店发。感兴趣者可将接收的信息载体与包括区域传感器的设备进行绑定。信息载体触发事件或动作，以便在智能电话上向感兴趣者显示他/她如何从其位置到达商店。同时，他/她可通过该信息载体接收用于商店的打折卡。

【0117】信息载体作为支付手段的使用

信息载体例如可被印刷在产品或货物的包装上。如果顾客对产品感兴趣，他/她可通过信息载体浏览有关产品的信息，如上所述。然而，还可直接购买产品。信息载体，例如将产品的重要数据（如价格）传送到智能电话。智能电话有利地具有对互联网的访问，并具有允许通过互联网购买产品的应用程序。在信息载体已经与智能电话相接触并且智能电话具有用于购买的所需的全部信息时，可完成购买。程序将产品和顾客有关的信息通过互联网发送至处理该购买的另一程序。如地址和银行卡号和/或信用卡数据的顾客数据被传送至这一程序。在已确认购买之后，这被发送至顾客，且他/她可取消产品。成功购买的确认被发送至智能电话，所述成功购买的确认可作为购买的证据，并可作为离开商场出口的确认，举例而言。

【0119】信息载体组合微芯片的使用

【0120】如果微芯片被布置在信息载体上，也是有利的。微芯片可有利地为有源地或无源地将例如序列号或代码的电子信息传输至电子接收器。信息载体的用户例如可通过信息载体在触屏上标识他/她自己，其中该设备从微芯片接收更多信息。然而，如果条码被施加于信息载体上，也是有利的。条码可以是二维码的形式被施加于信息载体上，也可用于编码序列号，举例而言。条码，例如可为矩阵码、QR码或Aztec码。微芯片和/或条码还可用于标识信息载体。

【0121】信息载体作为城市向导的使用

【0122】信息载体可被依附在兴趣点上，例如，将其依附于纪念碑、建筑物或公告牌上。优选地，拥有具有区域传感器的智能电话或其它设备的游客可在旅途中浏览公告牌，如果需要，可将他/她的智能电话与信息载体相触动。这在智能电话上触发动作，通过该动作，网页被显示给游客，他/她可从中找到关于兴趣点的其它信息。信息可被显示为文本或视频，举例而言。如果需要，也可通过互联网获得兴趣点的推销产品，产品被直接发送至游客的家庭地址。

【0123】在游客常规访问的某区域中，如果信息载体被依附于物体的中心位置上，也是有利的。在游客已经将其智能电话与信息载体相触动之后，他/她接收有关区域的信息。可例如通过程序或互联网来提供信息，并且该信息可包括视频和音频数据。游客收到有关餐厅、商店、兴趣点以及哪里有他们的打折活动的信息。
信息载体作为安全部件的使用

信息载体可有利地作为安全部件而被应用于文档或身份证上。为此，信息载体可被印刷在基板上，例如钞票。其中的钞票上的信息载体为可见或不可见。为验证钞票，所述钞票可与阅读器或区域传感器相接触。优选地，信息载体借此为电容式读取，钞票的真实性由此可被验证。信息载体不仅能够验证钞票的真实性，还能够用于计数和确定钞票的价值。例如，利用阅读器或区域传感器（如触屏），视觉受损的人能够确定钞票的价值。其中信息载体将对应价值进行编组，并且所述价值由阅读器或区域传感器读取。还可将信息载体集成在信用卡或身份证中，以验证真实性。

本发明为示例性的，其结合附图来描述，但并非限制于此；图中：
图1至图4示出了一种信息载体的优选配置的顶视图。
图5a和图5b示出了信息载体的截面图示。
图6和图7示出了具有导体路径的信息载体。
图8至图11示出了具有导体路径和耦合表面的信息载体。
图12a和图12b以截面图示示出了具有覆盖层的信息载体。
图13和图14示出了物品上的信息载体。
图15至图20示出了一个或多个信息载体与区域传感器的交互。
图21至图25示出了信息载体的优选应用。
图26至图28示出了在具有区域传感器的设备上的信息载体的使用。
图29示出了在设备上的信息载体运动。
图30至图34示出了信息载体的优选使用。
图35至图38示出了信息载体作为钞票上的安全部件的使用。
图1至图4示出了一种信息载体的优选配置的顶视图。信息载体实际上由具有施加在至少某些区域中的至少一个导电层的基板2组成，其中所述层为触摸结构3。基板2为载体，并优选地由塑料、纸张、纸板、木材、复合材料、玻璃、陶瓷、织物、皮革或其组合而组成。导电触摸结构3被施加在基板2上的某区域中。
触摸结构3可被施加在基板2上，例如以圆形和/或矩形的形式。有利地，还可用不同的几何图案来表示触摸结构3（图1,2,3），其中，他们还可相互进行组合（图4）。
图5a和图5b以示意性的截面图示示出了信息载体1。图5b中被升高的触摸结构3能够更好地说明。根据触摸结构3的制造方法，后者可被浮凸（如丝网印刷），与表面齐平（如胶印）或甚至相对于周围基板形成凹陷（如热印）。
图6和图7示出了具有导体路径4的信息载体1。有利地，触摸结构3的子区域可以小于、等于（图6）或大于（图7）导体路径4。在进一步的实施例中（图8,9,10,11），导电层（触摸结构3）的至少另一个子区域被放置在基板2上作为耦合表面5。触摸结构3的独立子区域优选地通过导体路径4以导电形式彼此间连接。有利地，触摸结构3和导体路径4形成于导电层。
图12a和图12b以示意性截面图示示出了具有覆盖层6的信息载体1。在基板2和导电触摸结构3上存在至少一个覆盖层6，以便获得紧密的信息载体1，特别是触摸结构3不会被损坏并且从外部不可见。覆盖层6还可以被配置为盖板。
图13和图14示出了在物品7上的信息载体1。有利地，根据本发明的该信息载体可
以被施加在例如杯子的物品上。有利地，由此，能够通过信息载体1以快速简便的方式将数字信息发送至物品的买家。信息载体1优选地被印刷在物品7上，其中信息载体1可以被施加在平坦的或不平坦的表面上。

【0145】图15至图20示出了一个或多个信息载体1与区域传感器9的交互。信息载体1与区域传感器9的交互是指它们在平面上的相互作用。该区域传感器9的设备8可与信息载体1上存储的信息一起使用。例如，信息载体1可仅在某些区域接近区域传感器9。还可以优选地，信息载体1并不被施加在区域传感器9上，而是移动穿过区域传感器。通过不同方式的接触和接近，优选地，在区域传感器9上触发不同事件。此外，多个信息载体1可与区域传感器9交互。例如，在图20中，区域传感器9(即包括区域传感器的设备8)移动穿过信息载体1，其中信息载体1必须在不同位置多次接触或接近区域传感器9，以使信息载体1的完整信息成为可读。因此，由于现存的信息载体1可以比区域传感器9更大，所以大量信息可以被存储在信息载体1中。由具有区域传感器的设备8来读取信息可优选地通过擦写动作实现。

【0146】图21至图25示出了信息载体1的优选应用。该信息载体1可根据图21被用作与区域传感器交互的简单信息载体，借此，优选地触发事件。该事件继而触发动作，如激活和/或终止应用、改变数值和/或文本、操作绘图、改变数据表或获取信息技术的入口等动作，不限于此。此外，根据图22，可通过例如设备电容触屏形式的区域传感器来影响设备自身的数据处理系统的程序序列。所触发的动作可为单边或双边的，即可触发在外部数据处理系统上进行的动作，其中，后者继而在数据处理设备上进行动作(见图23)。此外，信息载体还可被配置为与信息载体1(见图24)，优选产生数据处理设备、数据网络和数据处理系统之间的交互。因此，例如，可通过互联网检查和验证签名的信息载体1。根据本发明的系统，数据处理系统的访问和/或使用被限制。为此，通过信息载体将设备通过数据网络连接至数据处理系统。在检查数据处理系统中的签名之后，设备建立访问。此外，根据图25，信息载体还可被编码，其中后者特别与设备、数据网络和数据处理系统进行交互。通过区域传感器，数据处理系统的使用能够被启用。为此，通过数据网络将设备连接至数据处理系统。在主动检查数据处理系统中的信息载体之后，通过设备建立访问。

【0147】图26至图28示出了在不同设备8上的信息载体1的使用，其中所有设备8都具有区域传感器9，尤其是电容触屏。信息载体1实质上包括具有至少一个施加在某些区域中的导电层的基板，其中所述层为触屏。基板为载体，并优选由塑料、纸张、纸板、木材、复合材料、玻璃、陶瓷、织物、皮革或其组合而组成。导电触控结构被施加到某些区域中的基板上。根据本发明，触控结构为以结构化的方式施加的导电材料的层。优选通过转印膜方法制成信息载体1，由此可以产生完全具有成本效益的信息载体1。信息载体1可用作例如优惠券。优惠券(信息载体1)的接收方将信息载体1与具有区域传感器的设备8相接触。这可以是例如PC (见图26)、膝上型电脑(见图27)或平板PC(图28)。特别地，电容区域传感器用于获取电容和/或预定区域的子区域内的电容差的物理接口。包含区域传感器的设备包括例如智能电话、蜂窝电话、显示器、平板PC、平板笔记本、触摸板设备、绘图板、电视机、PDA、MP3播放器、跟踪板和/或电容输入设备。这种区域传感器例如也可为输入设备的集成部件，如触屏、触摸板或绘图板。触屏还被称为触摸式屏幕或触感屏幕。这种输入设备与其他设备仪器被用在智能电话、PDA、触摸屏或笔记本中。信息载体1可与区域传感器9相接触，或与其接近，以便借此触发事件。该事件可包括例如信息载体1触发设备8上的程序，例如向优惠券接收方显示
某些网页。接收方接收预量的折扣，并可以将该折扣用于网页中展示的产品。有利地，通过如PC、膝上型电脑或平板PC的设备8进行的与信息载体1的交互或识别很快速地发生。[0148] 图29示出了在区域传感器上的信息载体的运动。信息载体1可与区域传感器9在某些区域进行接触或至少可以被移动靠近区域传感器9。在信息载体1的基板上，存在被施加在某些区域中的至少一个导电层，其中导电层的至少一个区域为子区域。在本发明的含义中，子区域也可称为触摸结构。触摸结构或其子区域的形状、方向、数量、对齐方式、距离和/或位置优选地形成信息，以便通过将信息载体1放置在至少某些区域中的区域传感器9上，或通过信息载体1的至少一个区域相对于区域传感器9的相对移动触发至少一个事件。在本发明的含义中，将信息载体1放置在某些区域中的区域传感器9上时指信息载体1的一个区域接触区域传感器9的至少一个区域。信息载体1在区域传感器9上的选移动如图29所示。可在区域传感器9上的所有方向产生移动—如水平或垂直—并且能够以例如曲线、圆或直线的形式实现。通过接触或接近，实现了信息载体1与区域传感器9之间的电容相互作用，并且信息载体1的移动结构变为可由连接至区域传感器9的数据处理系统进行评估的，由此可触发与信息载体1相关的事件。

[0149] 图30至图34示出了信息载体的优选应用。可用各种形式来部署和应用信息载体1。信息载体1可被依附在不同的物品7上，或可以被印刷在其上。例如，优选地将信息载体1依附于如书籍的物品7上（见图30）。信息载体1还可被依附在图书封面中或书中的不同位置上，其中该信息载体1被印刷在书上或以不同方式被依附于其上。对书籍感兴趣的可将具有区域传感器的设备（如智能电话）与信息载体1接触或与其接近，由此在智能电话上触发事件，优选为触发动作。该动作可将支持互联网的智能电话指向例如网页，在该网页上，感兴趣者可获得该物品的免费样本。感兴趣者因此可在购买之前通知他/她自己关于书籍的内容。书籍的感兴趣者或潜在买家还可通过信息载体1找到关于本书作者的信息，并可收到关于该作者其它作品的通知。在图31中，示出了信息载体1进一步优选的使用。这里，信息载体1被施加于另一物品7上，称为菜单。信息载体1可被印刷在菜单上，或以不同方式被依附于其上。当在餐厅用餐时，菜单被呈现给访问者。访问者可从菜单中选择菜，此外还可利用具有区域传感器的设备（例如利用他/她的智能电话）来读取被施加于菜单上的信息载体1。为此，他/她将该设备与信息载体1相接触，或与其接近，由此，在智能电话上触发例如事件和动作。该动作可包括被显示给访问者的所选菜品的进一步信息。信息可包括配料，还包括物质或过敏信息。同样，在适当的情况下，访问者可浏览用于准备菜品的菜谱，并可将其保存在他/她的设备，例如，餐厅可以对此进行收费。而且，利用信息载体1，访问者可收到关于餐厅发生事件的通知。有利地，访问者感兴趣的事件可被直接存储于智能电话的日历应用中。此外，有利地，餐厅地址被输入至智能电话的地址管理应用中。图32示出了信息载体1的进一步优选的应用。这里，信息载体1被施加于物品7上，例如DVD封面。有利地，信息载体1可被印刷在不同的包装上，或经不同方式被依附于其上。希望获取DVD的感兴趣的可将具有区域传感器的设备（例如他/她的智能电话）与信息载体1相接触，或其接近。感兴趣者在智能电话上触发事件或动作，感兴趣者由此接收关于该产品更多信息。例如，利用信息载体1，支持互联网的智能电话可被指向网页，在该网页中，感兴趣者可观看他/她希望购买的电影预告片。感兴趣者可用获得关于演员、可用语言等信息。如果信息载体1被施加于音乐CD上，则感兴趣者在利用智能电话读取信息载体1之后，可听到该音乐CD的免费样本。还可以有利的
是，信息载体1以以下方式被依附于包装之上或之中，这种方式使得仅在购买产品之后买家
才能访问信息载体1。信息载体1随后给予买家对其它资料的访问，例如可通过网页浏览的资
料。并且，所购买电影的推销产品也可在网页上被提供。图33说明了信息载体1进一步优选
的应用。信息载体1被依附于物品7上，例如票据。该票据可为音乐会门票、剧院门票或电影
票，人们凭此进入相应的演出。另一方面，信息载体1可作为访问授权认证证明，使得通
过具有区域传感器的阅读器或设备读取信息载体1，并相应信的信息之后允许人们进入
演出。另一方面，信息载体1可被用于这种目的，使某人将具有区域传感器的设备与信息载
体1相接触，或与其接近，并且在设备上触发事件或动作。动作可包括，例如从人获取对网
页的访问，在该网页上，音乐会记录或音乐家相关信息可被浏览。此外，通过信息载体1，音
乐会的日期可被自动地输入日历应用，并且演出地点的地址可被自动输入地址管理应用。因
此，可在电话上为此人显示例如去往演出地点的路线。图34示出了信息载体1进一步优选
的应用，其被依附于物品7，其中物品可为日报。信息载体1可被印刷于报纸上，或可被封
装于其中。报纸买家可利用具有区域传感器的设备读取信息载体1，例如，买家由此可获取
更多信息。买家获取对网页的访问，在该网页上，例如文章或采访所涉及的视频可被观看。
另外，如果信息载体1作为优惠券也是有利的。这意味着，报纸的买家可读取信息载体1并可
接收该报纸的订阅。信息载体1还可用于广告目的，其中包含第三方广告的更多信息载体1
被封装于报纸中。例如，报纸的买家可利用智能电话读取信息载体1，并获取对第三方网页
的访问，在所述网页上，后者的商品被提供。如果合适，第三方的商店地址被直接存储于该
智能电话上。此外，可通过信息载体1将第三方的产品供应传送给买家。如果潜在买家在购买
报纸之前能够读取信息载体1并通过智能电话接收报纸中所包含的文章的概览，也是有利
的。在购买报纸之后，与访问事前时，可以已经将报纸摘要提供给买家。

[0150] 图35至图38示出了在钞票上，将信息载体作为安全部件的使用。信息载体1例如可
被实现为钞票，即纸币。这里，纸币的纸张可作为基板2，信息载体1或触摸结构3被施加于其
上。因此，信息载体可作为安全部件使用，其对钞票的用户是不可见的。然而，首选地，触摸
结构3也可用完全或部分对用户可见的方式被印刷在钞票上。这种方式对用户显示钞票含
有多种安全特征。因而，作为可见的复制保护，这可作为一种警示。可通过阅读器或区域传
感器9读取信息载体1，以使钞票的真实性由此被验证。区域传感器9（如触摸）可为具有区域
传感器9的电气设备8的集成电路。此外，包括区域传感器的设备上适当的阅读器或应用可
用于视觉受损的人，由此使验证和数钞票成为可能。在这种连接中，钞票上的信息载体1可
以对所述钞票的面值进行编码。具有信息载体1的钞票被放置到区域传感器9上或通过运动
划过，该信息载体1由此被区域传感器9所读取，并且数据被进一步处理（例如用于验证真实
性）。

[0151] 参考列表
[0152] 1 信息载体
[0153] 2 基板
[0154] 3 触摸结构
[0155] 4 导体路径
[0156] 5 耦合表面
[0157] 6 覆盖层
【0158】 7 物品
【0159】 8 具有区域传感器的设备
【0160】 9 区域传感器
图21
图22
图25
图27
图30
图32
图35
图36
图37

图38