US006282535B1

United States Patent

(12) (10) Patent No.: US 6,282,535 B1
Pham et al. 5) Date of Patent: Aug. 28, 2001
(54) DIGITAL SIGNATURING METHOD AND 5,870,756 * 2/1999 Nakata et al. ...c.coccrereecrccnne 707/200
SYSTEM FOR WRAPPING MULTIPLE FILES 5,983,295 * 11/1999 Cotugnoccoevevevvvvrvirnrnne. 710/74
INTO A CONTAINER FOR OPEN NETWORK 6,035,323 * 3/2000 Narayen et al.c.ccccovevnnnne 709/201
TRANSPORT AND FOR BURNING ONTO 6,079,047 * 6/2000 Cotugno et al.ccovvereveee. 714/807
CD-ROM. 6,085,266 * 7/2000 Cotugno e T10/68
6,088,747 * 7/2000 Cotugno et al.ccccevrvvrunene. 710/74
(75) TInventors: Thien Huu Pham, Garden Grove;
Lauren Ann Cotugno, Dove Canyon; * cited by examiner
Edward Henry Frankel, Rancho
Cucamonga, all of CA (US)
Primary Examiner—Jean R. Homere
(73) Assignee: Unisys Corporation, Blue Bell, PA (74) Attorney, Agent, or Firm—Alfred W. Kozak; Mark T.
Us) Starr; Lise A. Rode
(*) Notice: Subject to any disclaimer, the term of this (57) ABSTRACT
patent is extended or adjusted under 35 . . . L
U.S.C. 154(b) by 0 days. A container of data files and directory in a specialized first
format are converted (wrapped) into an industry-standard
text container file into a protocol suitable for Internet
21) Appl. No.: 09/191,395
(1) Appl. No /191, transmittal. A Signature Support Library and several proce-
(22) Filed: Nov. 13, 1998 dural routines, together with parameters from the Support
(51) Int.Cl GOG6F 12/00: GOGF 13/00 Library are utilized to combine with a user’s private key to
Loy T) Do] generate a signature particular to the container data file
(52) US. Cl . 707/4; 707/104; 771130//17746, which has been converted. The container now with signature
. . . resides in a protocol suitable for transmission on the Internet
(58) Field of Search ... ;é;)//zgi 7113/14769, or for burning onto a CD-ROM which is now usable for
o different platforms other than the original file protocol of a
i rst plattorm which was only compatible with said special-
(56) References Cited first platf hich ly compatible with said special
ized first format of the first platform.
U.S. PATENT DOCUMENTS
5,809,145 * 9/1998 Silk et al. ..cceveeerennvineencennn 380/25 4 Claims, 17 Drawing Sheets
14 20 34
CLEARPATH NX AND A SERIES
SYSTEM
MCP_FILEWRAPPER RQUTINE DISK®
32 40
36 | co WRITE MODULE |~ [
23
20
MY/CONTAINER/FILE 30
DISK A OPEN
0 NT SYSTEM n o NETWORK
21 %%| INTERNET OR EMAIL <
MY/FILE/= SOFTWARE /30x
|
—=| WINDOW EXPLORER — ™ pigk ¢
CD WRITE PACKAGE re—-]
(EXECUTE) “__I
L]
g S— 30w |
102 25
OPERATOR CAMY\CONTAINER\FILE
TERMINAL
| L

103

- OVERVIEW OF DIGITAL SIGNATURING AND WRAPPING MULTIPLE FILES INTO A CONTAINER

US 6,282,535 Bl

Sheet 1 of 17

Aug. 28, 2001

U.S. Patent

HINIVINOD V OLNI S3TId FTdILTNN ONIddVHM ANV DNIHNLYNDIS TVLIDIA 40 MIIAHIAO - Vi 'OI

g0t _
IVNINESL
y TFUNHINIVINODWWNND HOLVH3dO
Sc 201
MO
\ i
(31no3x3a)
| ———= IOWMOVd ILIHM 0D
OXSId —— HIHOTdX3 MOANIM [T
X0E =AT4/AN
< JHYMLH0S L
y | TIYINT HO LINHILINI |0 2
WHOMLIN
" IALSAS LN O
N3dO oe v MSId
I714/HINIVLINOD/AN
<
/
€z
7 _| FNAOW 3L8M a0 9
ob 26 ‘
3NILNOY H3ddvHMI T4 dOW
asia
W3LSAS
S3IH3S V ANV XN HLYJHYI1D
/
pE cc b1

US 6,282,535 Bl

Sheet 2 of 17

Aug. 28, 2001

U.S. Patent

g1 914

(0¥}

A40OA L3N
N3d0

3TITANI3NIVINDOINAWN D

SIA[o'y
A
SS3204d 0L
114 §3HLONY
RFHL SI

ON

371 4/783INIVLINDOD/ AN

/
g2

| —=

ce

J

Se

143

po Sg >

ugHm/mqucmeu/>Z/"u

\\..

(6E VAR~ 3LIYN

—
ASIA OL

:

| (8€)33ddVIA~dINW e

:

3 (9€)183ddVAAT TN 47 dIN g

1e

=/37114/7 AW

8 NO 3NI4/743INIVINOIMAW

=~

¥ NO=/371134ANW

[E—

TONIWY3L 0LV¥3d0

N
8

2|
AS1d

(E1JAYVNEIT
Ld0ddNns
JAN1IYNIIS

(A0E)3NVYAL4OS

TIVW3 d0 L3N¥3IUINI

—

(x0€)

d3307dX3 SAOANIA

(S1)
A311dWOI 14A

— -
~— 0S

(2€13NA0wW
3LIdA 023

-]

(MOE) (ILNI3XT)

{OEIW3LSAS IN

\\\mo~

(OTJW3LSAS
ONI 1v33d0
(WYy90dd
1081NDJ
331SYWIdINW

e
S3IJTAY3S XN

(91)300208J1TW

(BT)AYOWIW

| 201

(c1)NdJ

(VP 1IXN/dWH H1vYdav3D

39VMIvd 3ILIyM 4o

U.S. Patent Aug. 28, 2001 Sheet 3 of 17 US 6,282,535 Bl

(101) l

ENTER WFL WRAP MY/FILE/= INTO
(@) MY/CONTAINER/FILE (FROM DISK A
TO DISK B)
INFO=INPUT FILE
TITLES & LOCATION:
OUTPUT FILE TITLE
& LOCATION;
WRAP ACTION
PARSE COMMAND :
o) & PASS INFORMATION CONTAINER OPTION
FROM WFL COMPILER | __
TO OPERATING SYSTEM
(MCP_FILEWRAPPER)

l

c(i) MCP_FILEWRAPPER:
VERIFY FILE NAMES;
OPEN NEW FILE
MY/CONTAINER/FILE
(ON DISK B) FOR OUTPUT:
VERIFY OPTIONS;

CALL STEP (e) AND
PASS INFORMATION
(ONE FILE AT A TIME)

'

MCP_WRAPPER OPERATION
VERIFY INPUT FILE TITLE AND LOCATION,;
OPENS THE FILE;

(e) VERIFIES OPTIONS FOR WRAP;
CALLING OS (OPERATING SYSTEM);
VERIFYFEATUREKEY

(©
INFO=INPUT FILE TITLE
AND LOCATION; OUTPU
PROCEDURE TO WRITH
NEW FILE; OPTIONS
<—— (WRAP ACTION)
CONTAINER OUTPUT

2
—

Fig. 2A-1

U.S. Patent Aug. 28, 2001 Sheet 4 of 17

(101) l

e(i) COPY INPUT FILES
DFH TO LOCAL ARRAY
IN MEMORY;

(e) e(ii) CALCULATE CHECKSUM
FOR DFH: ADD CHECKSUM TO
END OF ARRAY

l

US 6,282,535 Bl

e(iii) SAVE CHECKSUM IN A
LOCAL VARIABLE

e(iv) CALL QUTPUT PROCEDURE
(e) (d) TO WRITE DFH ALONG WITH
THE CHECKSUM TO

ON DISK B

OUTPUT FILE - MY/CONTAINER/FILE

l

OUTPUT PROCEDURE: ACCEPT ARRAY:
WRITE ARRAY TO
(d) OUTPUT FILE--MY/CONTAINER/FILE
(ON DISK B); RETURN ANY /0
ERRORS TO CALLER (USER)

Fig. 2A-2

U.S. Patent

(101) l

(e)

(d)

Aug. 28, 2001 Sheet 5 of 17

—»! e(v) READ INPUT FILE

USING DISK ROW
ADDRESSES OF DISK A,
ONE ROW AT A TIME;
WHEN ROW ADDRESSES
ARE EXHAUSTED, GO TO e(viii)

e(vi) PASS INFORMATION IN
ARRAY TO OUTPUT
PROCEDURE (d)

TO WRITE TO OUTPUT FILE
(ON TO DISK B)

US 6,282,535 Bl

l

OUTPUT PROCEDURE:
ACCEPT ARRAY;
WRITE ARRAY TO QUTPUT
FILE ON DISK B;
RETURN ANY /O ERRORS
TO CALLER (USER)

(e)

e(vii) CALCULATE
RUNNING CHECKSUM
FOR EACH ROW & ADD

TO LOCAL CHECKSUM VARIABLE

(e)

e(viii) CALL OUTPUT
PROCEDURE (d)
(WHEN FINISHED

CHECKSUM TO WRITE
TO OUTPUT FILE ON
DISKB

WITH FILE) AND PASS (e

Fig. 2A-3

U.S. Patent Aug. 28, 2001 Sheet 6 of 17 US 6,282,535 Bl

OUTPUT PROCEDURE: ACCEPT ARRAY CONTAINING CHECKSUM
WRITE ARRAY TO OUTPUT FILE
(d) (ON DISK B);
RETURN ANY I/O ~
ERRORS TO CALLER (USER)

Y

e(ix) CLOSE INPUT FILE
{ON DISK A)

(e)
e(x) UPDATE TIME STAMP
INFORMATION

o(xi) SET TIME STAMPS
() IN DFH FOR INPUT
FILE (ON DISK A)

[

() e(xii) RETURN TO CALLER
AT cfi)

[

SAVE ALL BYTES
AND OFFSET INFORMATION;
(cii) OUTPUT FILE
TITLE INFORMATION
INTO OUTPUT
DIRECTORY ARRAY
IN MEMORY 18

(ciii) LOOP BACK TO (c1) TO
PROCESS NEXT FILE (IF EXISTING)

WRITE OUTPUT
(civ) DIRECTORY ARRAY FROM MEMORY
TO OUTPUT FILE ON DISK B

|
CLOSE AND SAVE Fig, 2A-4

(cv) OUTPUT FILE ON
DISK B

)
END OF CYCLE 101

U.S. Patent Aug. 28, 2001 Sheet 7 of 17 US 6,282,535 Bl

DRAG & DROP CONTAINER FROM
SHARED DISK B TO LOCAL DISK C

l (102) () OF PC USING THE PC'S l (102)

MICROSOFT EXPLORER PROGRAM

EXECUTE (AT PC) CD-WRITER

l (103) ()| PACKAGE TO BURN CONTAINER l (103)
(FROM DISK C) ONTO COMPACT DISK

Y

REMOVE COMPACT DISK
(h) AND DELIVER TO CUSTOMER
FOR PC PLATFORM

Fig. 2B

US 6,282,535 Bl

Sheet 8 of 17

Aug. 28, 2001

U.S. Patent

ve Old

S Y WNSHMOIHO H3AVIH+
JHNLYNDIS TVLIDIa S3HIS v IHL
(1) (N (A1) (1) (1))

US 6,282,535 Bl

H3INIVLNOOD G3HNLVYNDIS ¥ NIHLIM 3714 3ddVHM V 40 LNOAVT D € "Old

—— WNSYO3HD H3AVIH
40 NNSYoato> | I 3HLH0 viva> L EERERE <SNOILdO> J0LOODOSASINN.
= YSI1Q SIS ¥ IHL
S
=)
=)
E
=
wn
FHNLVYNDIS TV.LIDI3 HLIM 3714 HaNIVLINOD V 40 LNOAV €€ "Old
=
=
[\
&
s <HINIYLNOD WNSHOIHO HINIVLNOD
< NI SNOLLYOOT aNV “O13 ‘SS3Haav
<s®Y ML <al SI14 | IHUNLYNDIS “TIAITHSS | <NOILYOOT <l
STHNLYNOIS | o\ cmiio oo [AHOLOIHIQ> |dVHM 3HLI HOLVOIONI FHNLYNDIS |AHOLOIHIG> | HANIVINOD>
wuoIa> | 5T RS S 'SQHOM
NOILdO HIANIVLNOD

U.S. Patent

U.S. Patent Aug. 28, 2001 Sheet 10 of 17 US 6,282,535 Bl

(START)
Y Y

USER INITIATES WFL WRAP A2 USER INITIATES WRAPPING

STATEMENT WITH DIGITAL CONTAINERS WITH DIGITAL
SIGNATURE FOR SIGNATURE BY INVOKING

CONTAINERS PASSING A MCP_FILEWRAPPER THRU A

PHIVATE KEY USER PROGRAM

|

WFL COMPILER PARSES
COMMAND AND ASKS
OPERATING SYSTEM TO INITIATE
MCP_FILEWRAPPER AS A
SEPARATE PROCESS

, |

MCP_FILEWRAPPER (SEE FIG. 4B) IS EXECUTED WITH THE
FOLLOWING ELEMENTS:

Al

A3

B1

(i) - FILE LIST CONTAINING OUTPUT CONTAINER NAMES AND INPUT
FILE NAMES TO BE PACKAGED INTO THOSE CONTAINERS
(i) - PRIVATE KEY
(iii) - OPTIONAL SSR LEVEL

MCP_FILEWRAPPER (SEE FIG. 4B) EXITS TO OPERATING SYSTEM
B2 OR TO USER PROGRAM

END

FIG. 4A: THE OVERALL PROCESS OF SIGNING AND
WRAPPING CONTAINER FILES

U.S. Patent Aug. 28, 2001 Sheet 11 of 17 US 6,282,535 Bl

F'Gfgél“(":c_rpo—'ggyARL‘g{PER(ENTER MCP_FILEWRAPPER) B1
SIGN AND WRAP Y

CONTAINERS (i) VERIFY ALL PARAMETERS

) GET THE SPECIFIED OR DEFAULT SSR
(i) LEVEL

CALL GET_DSA PQGKEY PASSING SSR
LEVEL TO
Bla (i)
- ENSURE DSAKEYSFILE AVAILABILITY
- GET PRIME NUMBERS P.Q,G & SYSTEM

PUBLIC KEY BASED ON SSR LEVEL

(iv) VERIFY THE SPECIFIED PRIVATE KEY'S
HEXADECIMAL PRESENTATION

(v) VERIFY WRAP LICENSE KEY

(vi) LINK TO SIGNATURESUPPORT LIBRARY

Y

BASED ON THE PASSED-IN FILE LIST, BUILD AN INTERNAL
LIST THAT CONTAINS ENTRIES WHOSE ELEMENTS ARE:

B1b (i) - REQUESTED OUTPUT CONTAINER NAME

(ii) - IF FOUND, THE NAMES OF THE REQUESTED
FILES TO BE INCLUDED IN THE SPECIFIED CONTAINER

INTERNAL LIST IS EMPTY?

Bicn NO
YES CALL EXTRACTLIST (SEE FIG. 4C) TO PROCESS
FILES INDICATED IN THE INTERNAL LIST
Bicy l Bid i
" IF MCP_FILEWRAPPER HAD ENCOUNTERED
LEEXEPQSIFILES »| ANY ERROR OR WAS ABNORMALLY TERMINATED,
ERROR MESSAGH SET APPROPRIATE ERROR CODE IN THE
[RETURNED VALUE
Y

Bide (EXIT MCP_FILEWRAPPER >

U.S. Patent Aug. 28, 2001 Sheet 12 of 17 US 6,282,535 Bl

FIG. 4C: EXTRACTLIST ENTER EXTRACTLIST) Ci1
LOGIC TO DIGITALLY

SIGN AND WRAP
CONTAINERS

S THERE A CONTAINER

EXTRACT

i NAME IN THE | Cab
INTERNAL LIST? NOHEMENT TO
NEXT NAME IN
THE INTERNAL
LIST
c3 ¥
5 THERE AN INP C3a
FILE NAME FOR CALL ENDCONTAINER
IS CONTAINER2”NO| (SEE FIG. F) TO
FINISH UP THE
CURRENT
CONTAINER
c4
r (i) OPEN AND CREATE AN OUTPUT CONTAINER FILE

(i) WRITE TO CONTAINER FILE THE CONTAINER ID, EMPTY DIRECTORY
ADDRESS, AND EMPTY OPTION WORDS (TO BE DETERMINED LATER)

(iii) MAKE FIRST DSASIGN CALL TO SIGNATURE THE ID "UNISYS"
j (iv) SAVE SIGNATURE CONTEXT RETURNED FROM THE DSASIGN CALL

(v) SAVE CURRENT CONTAINER FILE LOCATION AS FILE ADDRESS
FOR THE INPUT FILE TO BE PROCESSED

(vi) CALL MCP_WRAPPER (SEE FIG. 4D) TO SIGN AND WRAP DATA OF THE

INPUT FILE PASSING:
- INPUT FILE NAME
~ - THE WRITE_WRAP (SEE FIG. 4E) ROUTINE
1 C6
INCREMENT TO NEXT
NAME IN THE INTERNAL
LIST
I —
STORE THE SAVED
FILE ADDRESS INTO DISPLAY ERROR MESSAGE AND REPOSITION
< THE INTERNAL LIST CONTAINER FILE POINTER TO THE SAVED
FOR THE INPUT FILE CONTAINER LOCATION
JUST GOT
PROCESSED RESTORE THE PROCESSING SIGNATURE
CONTEXT WITH THE SAVED SIGNATURE
CONTEXT

U.S. Patent Aug. 28, 2001 Sheet 13 of 17 US 6,282,535 Bl

D1 ENTER
MCP_WRAPPER

; MCP_WRAPPER
(i)

WRAP ACTION

(ii) GET INPUT FILE FROM DISK 20
D2 <

(iiy| GET INPUT FILE'S DISK FILE HEADER

(v)] CHECKIF INPUT FILE IS ALLOWED
L TO BE WRAPPED

!

CALL WRITE_WRAP (SEE FIG. 4E) PASSING DATA
D3 BUFFER CONTAINING WRAP VERSION ID
AND WRAP OPTIONS

!

D4 CALL WRITE_WRAP (SEE FIG. 4E) PASSING DATA
BUFFER CONTAINING INPUT FILE'S DISK FILE HEADER

)

]

’_ READ DATA FROM A DISK ROW OF THE
INPUT FILE INTO DATA BUFFER

D5

CALL WRITE_WRAP (SEE FIG. 4E) PASSING DATA
Dé BUFFER CONTAINING INPUT FILE'S DISK ROW DATA

D9

EXIT
MCP_WRAPPER

YES

MORE DISK ROWS
FOR INPUT FILE?

CALL WRITE_WRAP (SEE FIG. 4E) THE LAST TIME
D8 INDICATING NO MORE DATA TO COME, PASSING
DATA BUFFER CONTAINING THE CALCULATED
RUNNING CHECKSUM OF THE INPUT FILE'S DATA

FIG. 4D: MCP_WRAPPER LOGIC TO DIGITALLY SIGN AND WRAP SINGLE FILES

U.S. Patent Aug. 28, 2001 Sheet 14 of 17 US 6,282,535 Bl

ENTER
E1 WRITE_WRAP

WRITE_WRAP

CALL DSASIGN WITH PRIME NUMBERS P,Q,G
TO SIGNATURE DATA IN THE PASSED-IN DATA
BUFFER. DSASIGN WILL ALSO GENERATER & S
SIGNATURES IF THIS IS THE LAST CALL.

E2

MORE DATA YES

TO COME?

E3

ADD R & S SIGNATURES GENERATED BY

E4 DSASIGN TO THE END OF DATA IN BUFFER

E5 WRITE DATA IN BUFFER TO OUTPUT FILE

EXIT
E6 WRITE_WRAP

FIGURE 4E: WRITE_WRAP LOGIC
TO DIGITALLY SIGN AND WRAP SINGLE FILE

U.S. Patent

F3

Fa <

F5 <

@i

(ii)

(iii)

(iv)

(ii)

(ii)

Aug. 28, 2001 Sheet 15 of 17

F1 ENTER
ENDCONTAINER

US 6,282,535 Bl

F2y

CONTAINER

F2

CLOSE AND PURGE
CONTAINER FILE

SAVE CURRENT CONTAINER FILE POINTER

AS CONTAINER DIRECTORY ADDRESS

NO

¥

WRITE_CONTAINER_DIRECTORY

CALL WRITE_WRAP (SEE FIG. 4E) TO WRITE
DIRECTORY ID FOR THE CONTAINER

PROCESS THE UPDATED INTERNAL LIST
AND CALL WRITE_WRAP (SEE FIG. 4E) TO:

- WRITE ALL FILE NAMES THAT HAVE BEEN
WRAPPED SUCCESSFULLY
- THEIR ADDRESSES IN THE CONTAINER

PUT A NULL BYTE AT THE END OF THE
CONTAINER DIRECTORY

MAKE THE LAST DSASIGN CALL ON THE
NULL BYTE OF THE DIRECTORY TO
CALCULATE R & S SIGNATURES

WRITE R & S SIGNATURES AT THE END OF
THE CONTAINER FILE

!

PUT DIRECTORY ADDRESS WORD, OPTION
WORDS (CONTAINING SIGNATURE BYTE,
SSR LEVEL, ETC.) INTO A LOCAL BUFFER

CALCULATE CHECKSUM BASED ON THE
CONTENTS OF THE LOCAL BUFFER AND
PUT THE RESULT AT THE END OF THE
BUFFER

REPOSITION THE CONTAINER FILE POINTER
TO THE DIRECTORY ADDRESS LOCATION
AND WRITE OUT THE WHOLE LOCAL
BUFFER

F7

EXIT
ENDCONTAINER

F6

CLOSE AND LOCK
CONTAINER FILE

FIG. 4F:
ENDCONTAINER
|.OGIC TO SIGN AND
MRAP CONTAINERS

U.S. Patent Aug. 28, 2001 Sheet 16 of 17 US 6,282,535 Bl

DSAINFO/442 DSAKEYSFILE

(KEYID, SSR, P ,Q ,G)

(KEYID, SSR, P, Q, G,
PUBLIC KEY)

DSATOOLS
(GETKEYS)

DSAKEYS/442

(KEYID, SSR, P, Q, G, PUBLIC KEY, PRIVATE KEY)

FIGURE 5: - CREATING A DSA KEYSFILE

Fig. 5

U.S. Patent Aug. 28, 2001 Sheet 17 of 17 US 6,282,535 Bl

DSAKEYSFILE

(KEYID, SSR, P, Q, G)

I SIGNATURED
FILE
SYSTEM DSA PRIVATE KE Flg. 6
FILE
FIGURE 6: - WRAP AND SIGNATURE A FILE

DSAKEYSFILE

(KEYID, SSR, P, Q, G ORIGINAL

PUBLIC KEY) FILE

Fig. 7

SIGNATURED FILE

FIGURE 7: - VERIFY AND UWRAP A SIGNATURED FILE

US 6,282,535 B1

1

DIGITAL SIGNATURING METHOD AND
SYSTEM FOR WRAPPING MULTIPLE FILES
INTO A CONTAINER FOR OPEN NETWORK

TRANSPORT AND FOR BURNING ONTO

CD-ROM.

CROSS-REFERENCES TO RELATED
APPLICATIONS

This application is related to several co-pending applica-
tions designated as follows: (i) U.S. Ser. No. 08/962,468
entitled “Method and System for Wrapping Single Files for
Burning Into Compact Disk”; (ii) U.S. Ser. No. 09/026,743
entitled “Method and System for Wrapping Multiple Files to
a Container for Burning Onto Compact Disk; (iii) U.S. Ser.
No. 09/124,557 entitled “Digital Signaturing Method and
System for Packaging Specialized Native Files for Open
Network Transport and For Burning Onto CD-ROM” each
of which are incorporated herein by reference.

FIELD OF THE INVENTION

This system relates to methods for enabling and signa-
turing one or more files which are organized in a first native
format to be packaged (wrapped) into a single container file
in a second format suitable for burning onto an industry-
standard Compact Disk or to be transported via standard
protocols and utilized outside their native environment and
in networks utilizing different data formats.

BACKGROUND OF THE INVENTION

In the usage of modern computer systems and networks,
the situation arises where systems having one proprietary
protocol and data format are connected to systems having
different data formats and protocols. Thus in order to pro-
vide for systems integration in different networks, it is
necessary that there be provided a system or method
whereby the data formats of a first system can be transferred
to and utilized by the network of a differently oriented
system.

For example, the Unisys A Series computer systems
involve a Central Processing Unit and memory together with
storage such as disk storage which operates under the
control of a Master Control Program. These A Series sys-
tems use a particular format for the data files compatible
with the A Series software which can be placed on
CD-ROMs. Thus, the CD-ROMs which contain this A Series
software contain an image of a formatted tape which can be
utilized only by the A Series systems.

However, when it is desirable to integrate a first system
such as the A Series systems for operation with other
platforms such as an NT system, then problems arise in that
the second system such as the NT system, utilizes formats
which are not compatible with the software formats of the A
Series system, which is the first system.

Presently, the software for a first system, such as an A
Series system with software, is utilized by providing meth-
ods to burn CD disks from a Library Maintenance formatted
tape. This method has the limitation in that it limits the type
of files that are burned into CD-ROMs to those of the native
A Series files.

Now, in order to provide for system integration where an
A Series system is to be coupled to a NT system, which
overall system would be designated as a Unisys ClearPath
system, the desirability here would be to make and use a
single CD-ROM disk which would carry both the A series
software and at the same time carry the NT software.

15

20

25

30

35

40

50

55

60

65

2

Thus in this regard, a method is needed to couple the A
Series files with their native attributes and also arrange them
in a format capable of being stored on a particular media
such as a CD-ROM which will also hold the readable
software for the NT system.

The same system or method also provides the ability to
package files of a proprietary system in such a way that
allows the files to be transported across an open (non-
proprietary) network without losing their original character-
istics. When such files return to their native environment,
their true data formats can be restored.

For example, the A Series systems have files with spe-
cialized attributes such as FILEKIND, CREATIONDATE,
RELEASEID, etc. When these files are transferred to a PC
running Windows NT, all those attributes will be lost. By
packaging the files and their attributes into standard, simple
text files, the now files then can be transported across any
open system (e.g., UNIX, NT). Upon reaching their desti-
nations (which are other A Series systems), the text files are
converted back to their native forms with all the right
attributes. This is ideal for maintaining A Series data formats
in a heterogeneous networking environment.

A digital signature is calculated for every file or container
of files, as it is being WRAPPED (packaged). This signature
is calculated using the Disk File Header (DFH) and the data
within the file, along with the Public/Private key pair. This
will ensure that there is no intentional corruption of the Disk
File Header (DFH) and the data as the file is shipped across
a network. It will also provide the receiver of the file a
certain measure of confidence as to the origin of the file.
Additionally to the signature, there will be calculated a
checksum for the entire contents of the file, including the
Disk File Header.

When a file is wrapped with a request for digital signature,
its Disk File Header will have a checksum, its entire file will
also have another checksum, and a digital signature will be
calculated for the entire contents of the newly wrapped file.
The functionality of wrapping files with digital signature is
available through the WFL syntax as well as through pro-
grammatic interface.

As a result, the Unisys A Series systems will provide a
programmatic interface to its Master Control Program
(MCP) which will provide a mechanism for “wrapping”
containers with signature and for “Unwrapping” signed
wrapped containers.

Wrapping is a term which is used to define the process of
packaging an A Series file, along with its Disk File Header
information and a checksum and optionally a digital
signature, as a byte-stream data file, so that it can be
transported across heterogeneous networks and non-A
Series specific media, while still maintaining its native A
Series attributes.

Unwrapping is a term used to define the process of taking
a previously “wrapped file” and coupling it with the infor-
mation from its original Disk File Header (DFH) in order to
restore the original native A Series file, as it existed prior to
being wrapped.

Thus, the problem of a software and file format which is
oriented to one specialized system can now be transformed
in order to provide a format that is utilizable not just for a
first system, but also for a first and second system, whereby
the second system would not ordinarily be compatible with
the first system. Thus, it is desirable to allow files (created
on a Unisys ClearPath HMP/NX system or A-Series system)
to be transformed so they can travel across a completely
different system (such as NT) without loss of the file’s
original native characteristics.

US 6,282,535 B1

3

The presently described system and methods provide for
taking one or more files in a first format such as used in
Unisys A-Series systems and putting them into a single
container file of a second generalized format for transport to
an open network without losing the native attributes and for
burning into a CD-ROM such that now this container file
format is compatible for both NT and other systems in
addition to A-Series systems.

The second file format container will provide a signature
to be created for the entire file. This is so, since the
checksum is not sufficient to ensure that a Disk File Header
has not been intentionally corrupted, since the checksum
algorithm is not protected, and could easily be reproduced.
A signed, wrapped container file can be sent to another user
through e-mail, through the Internet, or put into an industry-
standard CD-ROM.

Thus, the packaged (wrapped) container file can be trans-
ported to an open network without loss of the native
attributes and can be burned onto an industry-standard
CD-ROM without loss of native attributes. In each case, a
digital signature is generated to ensure the integrity of the
packaged file.

CONTAINER: “A container”, as used herein, involves a
byte stream file, usually holding multiple files, together with
a “directory” of the files that are stored. There is a consid-
ered distinction between a “wrapped file” and a “wrapped
container”. The wrapped container is a special file whose
contents include one more wrapped files and a directory. A
single wrapped file has no directory within itself.

SUMMARY OF INVENTION

An algorithmic sequence is implemented in software for
providing and developing specialized multiple native files
and a directory into a container with digital signature option.
The new container file is stored in a standard text file format
such that it can be transported to and across an open network
while still maintaining all native characteristics of the files
it holds. Containers can also be burnt together with files
originated from other platforms onto the same industry-
standard Compact Disks (CD-ROMs) which then can be
viewed and utilized by a variety of systems.

The present system is applicable in the Unisys ClearPath
environment which involves a situation where two systems
are connected to and communicating with each other, for
example, such as that both a Microsoft NT platform and a
Unisys A Series platform can both read from the same
Compact Disc in a compatible fashion. Thus, this makes it
possible to put the NT platform software and the A Series
platform software all on the same CD-ROM. With the use of
such a uniform standard Compact Disk, an operator can load
and use the NT platform in order to pull the NT software he
needs from the CD-ROM by using an “Install” procedure
which accesses the information on the Compact Disk.
Likewise, a person using the Unisys A-Series platform can
also pull A-Series files from a container file or stored on the
CD-ROM by using the WFL__ UNWRAP command in order
to load the A-Series software from the Compact Disk.

The present system is also applicable in a heterogeneous
networking environment where one Unisys A Series system
needs to transport its native files across computers of dif-
ferent platforms (for example, UNIX, Windows NT) to
another Unisys A Series system.

The method enables native files to be encoded into one
single container in such a way that the container can be
treated as a simple text file by any computing platform and
still be able to restore files in the container back to their

10

15

20

25

30

35

40

45

50

55

60

65

4

original forms by an A-Series machine without losing the
original native attributes.

For security and data integrity reasons, the Master Control
Program of the A Series computer generally cannot trust
files, particularly code files that come from external sources.
Thus, the method creates a digital signature for a container
to ensure that none of the files it holds is tampered with
either intentionally or unintentionally during the container’s
transit.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1A is a general overview of the present system for
digital signaturing and developing a transportable container
file;

FIG. 1B is a more detailed block diagram of the system
which enables digital signaturing, the packaging of a trans-
portable container file and burning-in of a Compact Disk
with a container file which is compatible to both a first
protocol system and a second protocol system;

FIGS. 2A (-1,-2,-3,-4) and 2B are flow charts indicating
the system of steps involved for burning a CD-ROM with
the data in a generalized protocol format suitable for Internet
transmission and for compatibility with MT or other plat-
forms;

FIG. 3A is an illustration of the format for a WRAPPED-
DATA file with checksum and digital signature as a byte-
steam file;

FIG. 3B illustrates the layout of a container file with
digital signature;

FIG. 3C shows the layout of a wrapped file within a
signatured container;

FIG. 4A is a flow chart illustrating the overall process of
signaturing and wrapping container files;

FIG. 4B is a flow chart illustrating the MCP__
FILEWRAPPER logic to digitally sign and wrap containers;

FIG. 4C is a flow chart illustrating the EXTRACTLIST
logic to digitally sign and wrap containers;

FIG. 4D is a flow chart illustrating the MCP_ WRAPPER
logic to digitally signature and wrap a single file;

FIG. 4E is a flow chart illustrating the WRITE_ WRAP
logic to digitally sign and wrap a single file;

FIG. 4F is a flow chart illustrating the ENDCONTAINER
logic to sign and wrap a container;

FIG. § in a block diagram to show the creating of a
DSAKEYSFILE;

FIG. 6 is a block diagram to show how to wrap and
signature a file;

FIG. 7 is a block diagram to show how to verify and
unwrap a signatured file.

GLOSSARY ITEMS

1. ASERIES ATTRIBUTES: Native attributes that can be
assigned to a file to allow the system to control how the file
is accessed and used, and by whom (security privileges).
There are somewhere on the order of 450 such attributes for
Unisys A Series files.

2. A SERIES KEYS FILE: A native file, located on a
individual system, that contains license key information
used to control which features an individual system is
allowed to use for some features. License keys need to be
purchased by the user before the feature can be utilized on
the individual system.

3. ATTRIBUTE INFORMATION OF A SERIES FILES:
Specific attributes assigned to individual files stored in the
file’s Disk File Header (DFH) on Disk.

US 6,282,535 B1

5

4. BYTE-STREAM FILE: A character oriented file with
FILESTRUCTURE=STREAM, MAXRECSIZE=1, AND
FRAMESIZE=8. This is a simple, non-executable, data file
that can exist on any kind of system.

5. DATA CD-ROM: See ISO 9660 Format (Item 12
below). These CD’s appear like disks on A Series systems.
Multiple user access is allowed to these CDs.

6. DIGITAL SIGNATURE: A digital signature is a hash
pattern created by applying an industry standard signaturing
algorithm (similar to a checksum) to a file or data stream,
along with a private key. This hash pattern travels with the
file across a network and in used, along with a public key,
in order to ensure the file has not been compromised
(intentionally or otherwise) during the transfer process.

7. CONTAINER: A single byte-stream file consisting of
one or more wrapped files, a simple directory of files stored
in the container, and optionally a digital signature.

8. CREATIONDATE: An A Series (Unisys) file attribute,
used to store the data and time a file was created. 9.
FILEDATA—LFILE: An A Series (Unisys) program, or
utility, used to interrogate attribute information of native A
Series files.

10. FILEKIND: An A Series (Unisys) file attribute, used
to identify the internal structure of the file being accessed
(e.g. Algol symbol, Algol object code, character data, or
system directory).

11. INTERIM CORRECTION PROCESS (ICP): The
process used by Unisys computer systems to deliver soft-
ware updates to released products held by customers.

12. ISO 9660 FORMAT (A.K.A. ISO STANDARD
FORMAT, HIGH SIERRA FORMAT): A standard format
used for directories and files on CD-ROM disks. The pre-
sentation for the information contained on these directories
is at the operating system’s discretion. On Unisys A Series
systems, directories and files are viewed using the standard
CANDE “FILES” and ODT “PD” commands. CANDE
represents a Command and Edit program.

13. LIBRARY MAINTENANCE FORMAT: A Unisys
proprietary format for tapes containing multiple files used
primarily for archives, backup or restore, and transferring of
files among A Series systems.

14. LIBMAINT CD-ROM: A specially formatted
CD-ROM, created on an ISO 9660 Formatted CD-ROM,
that contains an image of a Library Maintenance tape. This
appears to an A Series system as if it were a Library
maintenance tape. Only one user is permitted access at a
time, and only COPY (and COPY-related) syntax, and
Filedata TDIR are allowed to act on this CD.

15. NATIVE A SERIES FILES: A file created on Unisys
A Series systems or ClearPath HMP/NX systems specifi-
cally for use on that same class of systems.

16. NON A SERIES FILES: Files that were created on
systems other than Unisys A Series or ClearPath HMP/NX
systems.

17. NEW FORMAT FILE: the Byte-Stream data file that
results from executing the WRAP process on an A Series
file.

18. NT SOFTWARE—CD BURN PROCESS: Any stan-
dard “Off-the-shelf” package capable of burning images on
to a Compact Disk (CD) that runs on a Microsoft NT system.
19. P, Q, G, keys: Primary numbers, stored in the system’s
digital signature keys file and used in the creation of
public/private keys as well for both signing files and veri-
fying the signatures of files, using the public and private
keys.

20. PUBLIC & PRIVATE KEYS: Public and private key
pairs are generated at the same time by a special utility.

10

15

20

25

30

35

40

45

50

55

60

65

6

These key pairs are used to create a signature and then later
check that signature to ensure that a file has not been
compromised. These keys are generated together and must
be used together to ensure the integrity of a file. Under
normal operations, the private key is intended to be known
only by the person or utility generating the hashed signature
of the file. This key is meant to be restricted. The public key
can be made available to any person or utility wishing to
check the signature to ensure the integrity of the file once it
has reached its destination.

21. PUBLIC/PRIVATE ENCRYPTION: A common
methodology for encrypting files so they may be transported
across an open network so as to use a public/private pass-
word encryption scheme. Typically, the two passwords are
programmatically generated at the same time such that they
can be used in conjunction with each other. One password,
the private one, will be used to encrypt the file. The other
password, the public one, is used by the recipient of the file
to decode it. Typically, a smear pattern, or some clear text
string, is added at the beginning of the file before the file is
encrypted. When the file has been decoded using the public
password, this smear pattern should match what was origi-
nally placed in the file. If the string does not match, it can
be assumed that the integrity of the file has been compro-
mised.

22. RELEASE ID: A Unisys A Series file attribute, used
to store the specific “release level” that the software was
created for.

23. SHARE: A Directory or disk that is made available to
selected or all users across a network.

24. UNWRAP The process of taking a previously
wrapped file (or data stream) and coupling it with the
information from its original Disk File Header, to re-create
the original native A Series file as it existed prior to being
wrapped.

25. WFL SYNTAX: Work flow language syntax, used to
control job flow on a system.

26. WFL UNWRAP syntax: Specific work flow language
syntax used to execute the unwrap process on a file, or files.

27. WRAP: The process of packaging an A Series file,
along with its Disk File Header information and a digital
signature, as a data stream, or as a byte-stream data file
(FILESTRUCTURE=STREAM, MAXRECSIZE=1,
FRAMESIZE=8), so that it can be transported across het-
erogeneous networks and non-A Series specific media, while
still maintaining its native A Series attributes.

28. INPUT FILE: The already existing file that is to be
packaged into a byte-stream text file by the wrap process.

29. OUTPUT FILE: The resultant byte-stream text file
created by “wrapping” the input file.

30. DSA: Digital Signature Algorithm—used to create a
digital signature for a file container or data stream. It should
not be confused with any data encryption algorithm since the
data is not encrypted by any means.

31. DSAINFORMATION SET: This term is used loosely
here. It is essentially the same as DSA Key Set, but without
the system DSA public key. DSA=Digital Signature Algo-
rithm.

32. DSA KEY SET: A set of DSA information which
consists of {KeyID, SSR level, Prime P, Prime Q,G, system
DSApublic key} for a particular software level. Only one set
is created for a software release. SSR represents System
Software Release.

33. DSAKEYSFILE: The system file that contains one or
more DSA key sets. If the file is titled as *SYSTEM/
DSAKEYSFILE and is stored on the halt/load pack, it is
considered as the active system DSA keysfile.

US 6,282,535 B1

7

34. SIGNATURING: The process of applying the Digital
Signature Algorithm to a file while wrapping it into a
WRAPPEDDATA or CONTAINERDATA file. The resulting
file is said to be digitally “signatured” or “signed”.

35. SYSTEM DSA PRIVATE KEY: A DSA private key
created for the sole purpose of signaturing Unisys-released
software. It is kept secret by the Unisys Software Releases
(and/or Support Group). Only one system private key exists
per release. Its counterpart—the system public key—is
stored in the system DSA keysfile.

36. SYSTEM DSA PUBLIC KEY: A DSA public key
created for the sole purpose of verifying wrapped software
signed by the Unisys Software Releases (and/or Support
Group) using a corresponding system DSA private key. Only
one system public key exists per release and is stored as part
of a DSA key set in the system DSA keysfile.

37. VERIFYING: The process of validating the digital
signature of a WRAPPEDDATA or CONTAINERDATA file
before unwrapping it.

38. WRAPPED FILES: Files created as a result of the
wrapping process—See wrapping.

39. SL (SYSTEM LIBRARY): SL is a Unisys A-Series
MCP systems operation used to declare that a codefile or
program, is to be considered a “System Library” for execu-
tion purposes. It allows for other programs to access the
functions in that library without knowing much of anything
about the library itself. The operating system will have
knowledge about where the library is located on the disk,
and control over which programs are allowed to link to the
library for the purpose of accessing its routines.

40. MASTER CONTROL PROGRAM (MCP): This is
the Operating System (OS) of the Unisys A Series and
ClearPath platforms.

GENERAL OVERVIEW

As seen in FIG. 1A, a user terminal 8 is connected to a
first operating system 14, such as a Unisys A Series
computer, having outputs to a disk A,20 and a disk B,22.

A second operating system, such as NT platform system
30, utilizing the Microsoft Explorer program 30x, Internet or
e-mail program 30y, and a CD Write Package 30w, com-
municates with disk C,24 so that the User terminal 8 can
initiate the CD Write Package 30w to energize the CD Write
Module 32 in order to burn a container onto the compact
disk (CD) 34.

The disk A,20 holds directory of files designated as
MY/FILE/=(21). The Disk B,22 holds the resultant con-
tainer file designated MY/CONTAINER/FILE,23. The Disk
C,24 holds a copy of the Container File designated
CAMY\CONTAINERVFILE,25 on the NT side. The data 25
of Disk C,24, is controlled by the CD Write Package 30w for
transmittal to the CD Write Module 32 for burning into the
compact disk (CD) disk 34. The Internet/e-mail programs
30y enable transmittal of a packaged container (wrapped) to
the open network 40. It may also be noted that Disk A and
Disk B could actually be the same physical device. It is not
necessary that they always be two separate entities.

In summary, the User terminal 8 will use the channel
marker cycle designated 101 to the first system computer 14
to wrap a number of files (21) on Disk A,20 into a single
container file 23 on Disk B,22 by using the WFL._ WRAP
statement.

Then using channel marker cycle designated 102, the
User terminal 8 will communicate with the NT system 30
having Microsoft Windows Explorer program 30x, in order
to start an operation which drags the resultant container file
(23) from the A-Series' Disk B,22, and drops the file onto the
NT systems' Disk C 24, under the name
C\MY\CONTAINER\FILE(25).

10

15

20

25

30

35

40

45

50

55

60

65

8

The User terminal 8 using the designated channel marker
cycle 103 then executes the CD Write Package 30w by
initiating the CD Write Module 32 in order to burn the file
25, C:\MY\CONTAINERV\FILE, on to the CD (compact
disk) unit 34.

Finally at this time, the resultant file data on the compact
disk 34 in in a protocol compatible for usage by other
platforms.

In FIG. 1A, the second system designated as the NT
system 30 could also be designated alternatively as a UNIX
system, in which case, the NX services 50 shown in FIG. 1B
would not be required and the Microsoft Explorer program
30x of FIG. 1A would be replaced by the industry-wide
standard File Transfer Protocol (FTP).

FIG. 1B will be subsequently described herein to indicate
the hardware system in greater detail.

DESCRIPTION OF PREFERRED EMBODIMENT

Referring to FIG. 1B, there is seen a drawing of the major
elements involved in the present system.

A first system is shown, for example, such as a Unisys A
Series ClearPath computer Operating System 14 which
involves a Central Processing Unit 12, a main memory 18,
a microcode memory 16 which is managed by the MCP 10
(Master Control Program). The CPU 12 is also supported by
a storage media 20, Disk A, which carries an original
directory of files 21, designated MY/FILE/= which are
formatted suitably for the first system such as the A Series
computer system 14 and Disk B,22, which will be processed
and stored into a new file designated MY/CONTAINER/
FXLZ, which is formatted for transport to a second system.

Now, in the sense of integrating to other systems, there is
seen a second system called the “NT System 307
(alternatively a UNIX, IBM or other system) which is a
platform developed by the Microsoft Corporation of
Redland, Wash. The NT System 30 is seen having a storage
medium 24 such as Disk C, which will eventually be
provided with a transferred copy of the resultant container
file designated CAMY\CONTAINER\FILE,25.

The A-Series system 14 is provided with a WFL (Work
Flow Language) compiler 15 which is an interpretive lan-
guage capable of taking User instructions and translating
them into Operating System (O.S.) procedure calls. The
MCP 10 has a communication relationship relationship to
the NT system 30 through use of an NX Services unit 50.

NX/Services 50 is a software unit used to integrate MCP
operations with NT platform operations through the use of
a Microsoft (MS) Standard RPC (Remote Procedure Call)
interface.

The WFL compiler 15 is an interpretive compiler which
provides a new language syntax using the word “Wrap”.

The Operator Terminal 8 of FIG. 1B, is the operator
interface in which an operator would enter a command such
as WRAP MY/FILE/=AS MY/CONTAINER/FILE FROM
Disk A TO B, which is the directory of files 21 residing on
Disk A and the file 23 (FIG. 1B) residing on Disk B. This
command is transmitted through the MCP (or Master Con-
trol Program 10) in order to initiate the action of the WFL
compiler program 15.

The MCP 10 then calls the MCP_ FILEWRAPPER rou-
tine 36 passing parameters built by WFL 15 as the input to
this routine. The MCP_ FILEWRAPPER routine 36 deter-
mines the presence of all files stored under the specified
directory MY/FILE/=21 and build an internal list containing
all the file names it found so that they can be processed later.

Then for each file name in the internal list, the MCP__
FILEWRAPPER process 36 will call MCP_ WRAPPER

US 6,282,535 B1

9

routine 38 indicating that the file should be processed,
wrapped and signed.

Thus, the MCP_ WRAPPER routine 38 communicates
back to Disk A and reads in the file starting with its Disk File
Header (DFH) information and then its “rows” of data. For
each buffer read, MCP_ WRAPPER 38 calculates the run-
ning checksum of the file and calls the WRITE WRAP
routine 39 to calculate the running signature of the container
as well as to write the data out to the temporary output file
MY/CONTAINER/FILE on Disk B.

When there are no more rows of data, the MCP__
WRAPPER routine 38 determines the final checksum of the
file and calls WRITE_ WRAP to write the checksum out to
the container file MY/CONTAINER/FILE before returning
to MCP_FILEWRAPPER routine 38. MCP__
FILEWRAPPER repeats the whole process for the next file
name in the internal list.

When the internal list is exhausted, MCP_ WRAPPER 36
calls WRITE WRAP directly to write out the container
directory which consists of the file names that have been
processed and their locations in the container. MCP__
WRAPPER then calculates the final signature words and
calls WRITE__WRAP to store the signature at the end of the
container.

The MCP_WRAPPER routine 38 returns to MCP__
FILEWRAPPER 36 and tells it to make the file
MY/CONTAINER/FILE 23 on Disk B,22 permanent. As a
result, there is now a data file provided onto the storage Disk
B,22. This file, MY/CONTAINER/FILE,23 is now available
to the NT system platform 30 from the file 23 residing on
Disk 3,22.

Another example of a problem that arises is the situation
where there are two separate and different A Series
computers, whereby the first computer has data and infor-
mation (files) which it is desired to give or present for use
by the second computer system. Normally, if the first system
file in in object code, it is then necessary to put it on a tape
and mail it to the second computer User or alternatively, to
have the first system and second system connected to each
other through a proprietary network connection. However,
this is sometimes a long and cumbersome process, when it
would be most desirable to be able to transmit it electroni-
cally to the second user through an open network such as
e-mail or FTP (File Transfer Protocol).

Thus in the present system, the first computer system user
would create a container file by doing a Wrapping operation
using either the Work Flow Language (WFL) WRAP state-
ment or using a user program that interfaces with the MCP
routine MCP__FILEWRAPPER 36 (or MCP_ WRAPPER
38 if no digital signature is required). This container can then
be sent to the second A-Series computer via an open network
of different computing platforms.

Thus, what has been accomplished is to take a number of
A-Series files and repackage them into a single file, allowing
the resultant file to be transported across an open network or
to be burnt onto a PC-readable CD-ROM without losing the
file’s native attributes. When the file is loaded back to its
native environment, it will be restored to its original state.

It should be noted that once the new file 23 has been
placed on storage Disk B, 22, then by the use of the NX
services 50, this new container file 23 can be transmitted to
the NT system 30. Thus, the NT system with its hard Disk
C,24, can now receive and utilize the new file 25 (as
C:\MY\CONTAINERV\FILE) which came from the storage
Disk B,22.

Another problem aspect involved is when an operator
wishes to take a file from a first system, such as an A Series

10

15

20

25

30

35

40

45

50

55

60

65

10

system program and copy it into a UNIX box or an NT
box—that information cannot normally be transported
because of the format and protocol differences.

Thus, the specialized structure and format of the A Series
native files which normally could not be moved across a
network, would have to be reconstituted and stored as part
of the data in the data file and then made into a regular
character data file of a common format such that any
operating system can read it. This would be a byte-stream
data file which could be read by any platform, whether it be
a UNIX box, an IBM box, or a NT box. Thus, resultantly,
there is now a file that any platform can read.

In what is called the “Unwrapping” operation, all the files
within a container file are recreated into their native forms.
All the time-stamped dates are reapplied, all the disk, row,
address information is supplied, each file is rewritten row for
row, segment for segment, exactly as it looked on the
original system. Thus, if there were “spaces™ at the end of
the segment on the original file, there will also be the same
spaces at the end of this segment on the resultant file. This
is so because all this information is in the file’s Disk File
Header.

Thus, what has been accomplished is to take one or more
original native files and repackage them into a single,
character-oriented file. This container file then can be burnt
onto a CD-ROM, so it can be transported anywhere to a
second location, and then be loaded and unwrapped on the
first platform (Unisys A-Series) to act like the original files.

One method of getting system software out from the
originator to a customer is on a Compact Disk, that is a
CD-ROM, which has specially formatted arrangements in
order to transmit Unisys A Series software. However, these
files often are not always an industry standard format.

Customers often ask saying that they have a Compact
Disk writer on their PC and they want to know—*“how do |
format a file so that I can distribute software to my other
terminal” or to other customers that they have in their area?

Thus, the present system allows these recipients to down-
load these containers to their personal computer and then
burn them into a Compact Disk and send them to their local
co-workers or to their other customers. The burned-in files
on the Compact Disk are burned using Industry Standard
format for compatibility to other systems platforms, such as
NT system platforms, UNIX system platforms, IBM system
platforms, DEC System platforms and Unisys A Series
system platforms.

Thus, the present system operates such that operators
using the A Series systems can unwrap their files directly
from an industry compatible Compact Disk, so that the file
is usable just by putting the Compact Disk into the A Series
system and giving it the command to “Unwrap Files”. The
files and software can then be received for utilization.

The present system requires the packaging of native
container files of a first computer system such as a Unisys A
Series system, in such a way as to allow them to co-exist on
the same CD-ROM media, as non-native container files.
This packaging of container files also allows for the trans-
port of the native (A Series) files across heterogeneous
networks, while still maintaining information on their native
(A Series) attributes.

Previously CD-ROM’s contained native A Series soft-
ware on CD disks which were burned from a library main-
tenance formatted tape. However, this limited these types of
files to only be useful for native A Series systems which are
formatted for native A Series files. The present system
provides an expanded ability for burning the native A Series

US 6,282,535 B1

11

files of software for a first computer system onto CD-ROM
disks which will be compatible with suitable files for a
second computer system, such an a Microsoft NT system
and other platforms.

The native formatting of A Series files had attributes such
as FILEKIND, CREATIONDATE, and RELEASEID,
which now need to be placed in a format capable of being
stored on a disk media which is using an industry-standard
file format.

As mentioned earlier, “wrapping” is a term used to define
the process of packaging a native A Series file (first com-
puter system) along with its Disk File Header information,
(plus either a checksum, or optionally a digital signature), as
a byte-stream data file (FILESTRUCTURE=STREAM,
MAXRECSIZE=1, FRAMESIZE =8) So that it can be
transported across heterogeneous networks and non-A
Series specific media, while still maintaining its native A
Series attributes.

The “digital signature” is created using an industry-
standard public key/private key digital signaturing algorithm
(DSA) which provides a measure of security in that it
provides a user confidence as to where the file originated
from. The present system encompasses the Master Control
Program (MCP), the Work Flow Language (WFL) program,
and the FILEDATA work necessary to wrap container files
by packaging them into new, byte-stream files (wrapping)
and later restoring them to their original native A Series
format when needed for A Series systems (Unwrapping).

NEW WFL SYNTAX: This involves a new work flow
language syntax, so that arrangements are made in the WFL
compiler 15 to support the new syntax which will have some
similarity to a previous Library Maintenance MOVE com-
mand. The now syntax allows a User to wrap either a single
file, a list of files, or a directory of files, in addition to
subsequently enabling the unwrapping of these files, by
specifying both the input file and the output file, or the
directory title and location.

ADDED FIRST PROGRAMMATIC INTERFACES 36
(MCP_FILEWRAPPER): A programmatic interface is pro-
vided that will allow the User-Caller to pass native A series
files' titles and location as “Input” along with an “Output”
file, title and location. The “Output” file seen in FIG. 3B,
will be a “byte-stream” file with a beginning data block
containing (i) an identification stream,; (ii) directory location
within the file; (iii) container option information and con-
tainer checksum; (iv) one or more wrapped files; (v) direc-
tory identification streams (vi) directory of wrapped files
within the container; and (vii) an ending block containing an
optional digital signature..

Thus, the added programmatic interface 36 allows the
caller to pass the byte-stream file’s title and location as
input, along with an output file title and location if needed,
for use of the “unwrapping” process. The “resultant file” will
be a native A Series file created with the output file and
location, but also containing the data and all of the native A
Series attributes of the original file.

SINGLE PROCEDURE CALL: This first programmatic
interface 36 will allow input and output directory names to
be passed in order to wrap or unwrap a directory of files with
a single procedural call. This also allows for a single output
“container file” to be created from multiple input files.

SECOND PROGRAMMATIC INTERFACE 38 (MCP__
WRAPPER): This interface is created to allow a caller to
pass the A Series file’s title and location as “input”, together
with an “output” procedure. The data returned to the caller’s
output procedure will be a stream of data FIG. 3A with (i)

10

15

20

30

35

40

45

50

55

60

65

12

a beginning data block containing an identification string;
(ii) options chosen,; (iii) the original file’s Disk File Header
information; (iv) the file itself as byte-stream data; and (v)
an ending block containing a checksum; (vi) a digital
signature.

Functionally, the second programmatic interface 38 will
also allow the caller to pass an input procedure, along with
the title and location of an output file. The data passed to the
input procedure here would consist of a stream of data, FIG.
3 A with a beginning data block containing the identification
string, the original file’s Disk File Header (DFH)
information, the file itself as “byte-stream data”, and also an
ending block containing the checksum and optionally the
digital signature, which is basically the same information
that was passed to the output procedure when the container
file was originally wrapped. Here, the “resultant file” will be
a native A Series file created with the output file title and
location, but containing the data and all of the native A
Series attributes of the original file.

NEW FILEDATA SYNTAX: New syntax has been added
to the FILEDATA LFILE command in order to specify that
the file being interrogated is actually a WRAPPEDDATA
file. If this is a WRAPPEDDATA file, then FILEDATA will
report the “attributes” of the native A Series file “contained
within” the wrapped data file, rather than the attributes of the
“wrapped” data file itself.

If this is a CONTAINERDATA file, the FILEDATA will
report the attributes of all of the Native A-Series files
contained within the CONTAINERDATA file, rather than on
the “container” file itself.

WFL WRAP COMMAND: This is the Work Flow Lan-
guage wrap command usable in a first system computer such
as the Unisys A Series computer system which can be
executed to initiate the action of taking specialized format-
ted native A Series files and turning them into byte-stream
files which can later be burned onto CD-ROM disks. Thus,
the software files of a first computer platform, such as the
Unisys A Series system, can now be made able to co-exist
on the same data CD-ROM’s as other types of software
which is not A Series software.

KEYSFILES: The system will provide the use of an A
Series KEYSFILE which will also be wrapped using the
new WFL syntax. This resulting file will also be burned onto
the CD-ROM. Normally, the Unisys A Series KEYSFILES
are shipped on separate tapes from the rest of the software
releases, so that in the present situation, the newly wrapped
KEYSFILE will be shipped on a separate data CD-ROM
separate from the rest of the A Series release software files.

The A Series KEYSFILE is a file on each A Series system
used to store License Key information for the individual
system in order to determine which of the Unisys licensed
features the user has purchased for use on that system.

The now WFL UNWRAP syntax can be used to unwrap
the KEYSFILE off of the CD, while copying it into the A
Series system. Once the file (as KEYSFILE) has been copied
onto the A Series system, then a IK MERGE can be
performed. IK MERGE is the system command used to
merge the data from the now KEYSFILE (unwrapped from
the CD ROM on to Disk) on the A Series system into the
system’s current KEYSFILE.

DIGITAL SIGNATURE AIGORITHM: The acronym
DSA refers to the digital signature algorithm (DSA). The
DSA public key and DSA private key are a function of a set
of large prime numbers designated P,Q,G, which are gener-
ated by the digital signature algorithm. When “signing” a
given file, the DSA requires the values of P,Q,G, and their

US 6,282,535 B1

13

private key to produce a digital signature which consists of
two large integers designated R and S. When this message
is to be verified, the “verification process” asks for a set of
data designated [P,Q,G, PUBLICKEY, R, S].

A user is only concerned with the public and the private
key pair. However, since prime numbers P,Q,G,R,S, are
inherent and required in the creation and verification of a
“digital signature”, there must be provided a way to manage
them and make their presence essentially transparent to the
user. R and S are easy to handle because they are created
during the “signing” process of a WRAP operation, so that
their values are readily available to be embedded in the
WRAPPED container file. The handling of elements P,Q,G,
on the other hand, is more complex because their values
must be supplied from an “external source”, (that is to say,
the user), to the WRAPPING function.

Thus questions and decisions arise regarding (i) how
should P,Q,G, be generated? (ii) Since the generation pro-
cess consumes so much resources, how often should P,Q,G,
be generated, that is to say, should it be on a per-run basis,
on a per-user basis, or otherwise? (iii) Since each binary
value occupies an array of 11 words, how would a user
handle such large values, since the manual typing of these
values would be unnecessarily time-consuming? (iv) Then,
what kind of user interface should be provided to accom-
modate the P,Q,G, public key and private keys? Now would
they be handled by the Work Flow Language statements of
WRAP and UNWRAP? (v) Should the items P,Q,G, be
embedded within the WRAPPED FILES? And if so, would
that compromise the security of the file, if the file is
intercepted when it is transferred across an open network?

The solution to these types of problems and questions will
be delineated in the following paragraphs.

OVERALL PROCESS

For each software Release made, a special Release group
will run a special utility that generates the values for P,Q,G,
public and private keys. This particular set [ID, software
level, public key, P,Q,G] will be stored by the utility as a
record of the new KEYSFILE called *SYSTEM/
DSAKEYSFILE.

The Release group will use the “private key” during the
WRAP process to “sign” all the required system soft-
ware files for that particular level.

The DSA (Digital Signature Algorithm) KEYSFILE will
be distributed to customers in the same manner as the
existing SYSTEM/KEYSFILE. Upon receiving the
DSAKEYSFILE and the system software, the customer
installs the KEYSFILE into the system and starts
UNWRAPPING WRAPPED software without the need for
specifying a public key.

When a user wants to WRAP his files with the “digital
signature option”, he must obtain a DSA keypair. Keypairs
can be generated by writing a program that calls the MCP,
MCP__GENERATEDSAKEYS procedure.

The private key would then be supplied to the WRAP-
PING routine (for example, through the
TASKSTRING) attribute of the WFL_WRAP
statement). The public key would be given to the
receiver of the files. When these files are to be
UNWRAPPED, a correct public key must be provided
(for example, via the TASKSTRING attribute of the
WFL UNWRAP statement) for the operation to suc-
ceed.

HANDLING DSA VALUE DURING WRAP AND
UNWRAP:

The WRAPPING routine, upon recognizing that a digital

signature is required, obtains the P,Q,G, values from the

10

15

20

25

30

35

40

45

50

55

60

65

14

active DSAKEYSFILE for the System Software Release
(SSR) level that the system is currently running on. It then
provides these values, along with the user-furnished private
key, to the DSA “signing routine”. This routine, after sig-
naturing the file, returns two large integers, R and S. These
two integers, along with the current SSR level, can be stored
within the file (FIG. 3B) by the WRAPPING process.

When this file is UNWRAPPED, the UNWRAPPING
routine gets P,Q.G, values from the active DSAKEYSFILE
based on the SSR level it extracts from the file. The file’s R
and 8 values, along with P,Q,G, and the user-supplied public
key, are then passed to the DSA “signature verification
routine”. If there is no user-supplied public key (an is often
the case of System Software WRAPPED by the Release
group), then the public key from the active DSAKEYSFILE
is used.

CHECKSUM: A checksum is calculated for the Disk File
Header (DFH) for every file as it in wrapped. This ensures
that there is no unintentional corruption of the Disk File
Header as the file is shipped across a network. It also
provides the receiver of the file some measure of confidence
as to the origin of the file.

In addition to the checksum for the Disk File Header, a
checksum is also calculated for the entire context of the file
including the Disk File Header (DFH).

SIGNATURE AND CHECKSUM (PREVENTION OF
CORRUPTION): The checksum will not normally be suf-
ficient to ensure that a Disk File Header has not been
intentionally corrupted, since the checksum algorithm is not
protected and is fairly easy to reproduce. There is significant
overhead to validate the Disk File Header if there were no
protection of the structure, other than the simple checksum.
Thus, without any real protection for the Disk File Header,
it would be necessary to create an entirely new Disk File
Header for the original file, and then separately validate
every attribute of the header before it could be considered
trustworthy for application.

The Master Control Program (MCP) 10, FIG. 1B, will
assume that a Disk File Header is a valid piece of data.
However, it is necessary to validate the Disk File Header
before the rest of the file has oven been retrieved, since even
the information regarding the “size” of the file is stored in
the Disk File Header.

In order to insure that there was no intentional corruption
while the file was in transit and also provide the “receiver”
of the file with some insurance that the sender of the file was
indeed that who the receiver expected it to be, a “digital
signature” may be requested when the file is wrapped by
specifying a “private key” with which to identify the sig-
nature file while wrapping. The receiver must specify the
file’s “public key” in order to verify the file when unwrap-
ping it.

PUBLIC/PRIVATE KEYS FOR SIGNATURING: A
KEYS generation utility is provided as a separate utility to
generate public/private key pairs to be used when signing
files. Public/Private key pairs are generated using the new
utility in order to be used by the wrapping interfaces for
signaturing files. Users who wish to create their own utility
can write a program to interface with the MCP procedure
MCP__GENERATEDSAKEYS.

WRAPPEDDATA FILE FORMAT: With reference to
FIG. 3A, there will be seen the format of the WRAPPED-
DATA FILE which will be a simple byte-stream file. This
file, as seen in FIG. 3A, will contain several sections. The
first section (i) is the word UNISYS “000010” (Source Co
ID) which will be “EBCDIC” data used to indicate that this
is likely to be a Wrapped file. The number associated with
this identifier may be changed if the format of this file is
changed.

US 6,282,535 B1

15

The second block (ii) labeled “options” contains the
options used when wrapping the file, such as the identifier to
be used to locate the “public key” information in order to
verify a file containing a digital signature.

The third block of FIG. 3Ais (iii) designated as the Disk
File Header, which involves a copy of the actual A Series
Disk File Header for the file. This will become the actual
Disk File Header for the file when it is restored to its native
format after a “Unwrap” operation. Additionally in block
(iii), there is seen the Header checksum, which is a separate
checksum for the Disk File Header itself.

The fourth block (iv) of FIG. 3A indicates “the file” which
involves the contents of the file itself, written as byte-stream
data.

The fifth block (v) of FIG. 3A, is designated an
“checksum”, which will be a single word of 48 bits calcu-
lated for the file and the disk file header combined, using a
private key from a public/private key pair.

The sixth section (vi) shows the digital signature as being
composed of Section R and Section S. The Section R
includes 11 words or a total of 528 bits. Likewise, the
Section S includes 11 words of a total of 528 bits. This
constitutes the digital signature portion of the transmitted
file which has been wrapped.

DSAKEYSFILE FILE FORMAT: The now system
involves a keys file called “SYSTEM/DSAKEYSFILE”.
This file is stored and managed similarly to the manner of
existence on earlier A Series systems which used the
“SYSTEM/KEYSFILE”. This file is used to store records of
ID, software level, public key, and integers P,Q,G. These
involve the following:

() ID: This is a unique and meaningful EBCDIC string
with a length of up to 17 characters which is used for
external display and for identifying the set.

(ii) Software Level: This is a real number that identifies
the software level involved.

(iii) Public Key: This is a system DSA key generated
along with a system private key based on certain prime
numbers designated P, Q, G. This key is subsequently
used in the “Unwrap” process of the A Series software.

(iv) P,Q,G: These are prime numbers generated by a
special utility. For a given set of (P,Q,G), there are a
variety of public and private key pairs which can be
generated.

The DSAKEYSFILE is an unblocked file which consists
of records whose maximum record size is 60 words in
length. The general information record contains miscella-
neous data about the file, for example, version, number of
search table records, number of key entries, etc. This record
is then followed by one or more search table records which
in turn, contain a number of four word search entries.
Following the search table records are the data records with
each containing a different sot of [ID, software, public key,
P,Q,G].

The main purpose of the DSAKEYSFILE is to store the
P,Q,G primes used when creating public and private key
pairs. It is also used to store system public keys which are
normally about 60 characters long, so the caller of Unwrap
does not need to enter this character string every time when
the caller unwraps Unisys’ signed software.

This procedure involves a further procedure entitled
“GET_DSA_PQGKEY” which obtains the corresponding
set of [P,Q,G, system public key] from the active DSAKEY-
SFILE based on the SSR level and returns the set to the
caller.

INTERFACE OPERATIONS: This system involves new
work flow language (WFL commands) designated as WRAP

10

15

20

25

30

35

40

45

50

55

60

65

16

and UNWRAP which are provided to allow Users a simple
method of invoking the new interfaces of this system.

There are two new FILEKIND values created to identify
the files of the new format. These will help to prevent users
from accidentally using the WRAP syntax to act on a file that
has already previously been wrapped.

There is basically now provided two new programmatic
interfaces designated as (i) MCP_ FILEWRAPPER 36 and
also (i) MCP_WRAPPER 38. These programmatic inter-
faces are exported out of the Master Control Program (MCP)
10.

FILEKIND: This involves a set of values which will aid
in identifying files that have been “wrapped” as long as the
files have never left the environment of the first computer
system, that is to say, the A Series computer. Once the file
has then been copied into a non-A Series system, and then
back on to the A Series system, this information is lost. The
main purpose of new FILEKIND value is to ensure that a
user does not accidentally attempt to WRAP an already
WRAPPED file, as would be the case if a WFL WRAP
command was executed on a directory of files and then the
system did a Halt/Load before all of the files of a directory
were wrapped. If the job were to restart after the Halt/L.oad,
the WRAP command would begin to act on the directory
over from the very beginning. If a file is encountered with
a FILEKIND or with a WRAPPEDDATA value, that file will
be skipped, and an error message will be issued for the file
indicating that the file had already been previously wrapped.

WORK FLOW LANGUAGE (WFL): The Work Flow
Language syntax is provided to allow a user easy access to
the new programmatic interfaces. The new WFL commands
permit the user to access the now interfaces to institute a
wrap or an unwrap action without having to know the layout
of the interfaces or having to create a program to call up
these interfaces.

TASKSTRING: This is a data structure that contains
private or public key information for either signaturing or
for verifying the signature of the file. Thus, for a “Unwrap”
operation, the TASKSTRING will be used to specify the
public key that should be used to verify the signature that
was calculated when the file was wrapped. Then conversely,
for the WRAP operation, the TASKSTRING is used to
specify the “private key” that should be used to calculate the
signature of the file.

MCP?FILEWRAPPER INTERFACE: The newly devel-
oped MCP_ FILEWRAPPER program is used for Work
Flow Language support and User programs. A User can call
this program specifying either a “Wrap” or an “Unwrap”
action along with the title and the location of both the input
files and the output files. Of course, the input file specified
for a “Wrap” operation must not have a FILEKIND of
WRAPPEDDATA. Further, the caller must have the proper
privilege for both the input and the output files or directories.

The MCP_FILEWRAPPER program involves proce-
dures which return errors. These errors are returned as
display messages if the procedure is called from the Work
Flow Language (WFL). MCP_ WRAPPER INTERFACE:
When this interface program is called to “Wrap” a file, it
takes a standard form name for an existing A Series file,
along with an output, or Write, procedure. The A Series files
Disk File Header (DFH) will be checksum passed the output
procedure as data along with the checksum. Then the file
itself will be read and passed on to the output procedure as
data. Finally, there will be provided (optionally) a calculated
digital signature or a checksum for the entire file which will
be passed to the output procedure as data.

When the MCP_ WRAPPER program 38 copies a file
from disk (i.e. “Wraps” the file), it updates the files COPY

US 6,282,535 B1

17
SOURCE time-stamp in the Disk File Header (DFH) of the
A Series file that has been wrapped.

One of the parameters for the MCP_ WRAPPER is the
procedure designated IOWRAP. IOWRAP is the procedure
being passed, either as an output or a WRITE procedure for
Wrap or an input or READ procedure for the Unwrap. The
parameters for IOWRAP involve (i) LGTH which indicates
the length array data in bytes; (ii) DATA is the array
containing the data to be written when WRITE for wrapping
or READ for unwrapping.

It is significant to note that a Disk File Header (DFH) can
involve data up to about 20,000 words long. Thus, the
IOWRAP parameter procedure must be able to handle at
least 20,000 words in the data array in one call.

A CONTAINERDATA FILE: This will be a simple byte
stream file of the Format shown in FIG. 3B with sections
designate (i) to (vii). Section (i) is the <Container ID> which
is EBCDIC data used to indicate that this is a Container File.
For example, this identifier can be designated as MCP__
FILEWRAPPER 442. This identifier could be subject to
change if the format or contents of the file changes.

Section (ii) <Directory Location> is a 6 character index to
the location of the directory of this container. Section (iii)
labeled “Container Option words, etc., and Container
Checksum” contains the options used when wrapping the
container such as an identifier to be used to locate the
“public Key” information in order to verify a container with
a digital signature.

Section (iv) <The Wrapped Files>(also see FIG. 3C) are
the wrapped files themselves. This is the data returned by the
I/0_ WRAP call back procedure in the MCP_ WRAPPER
program 38 for each file placed into the container.

Section (v) <Directory ID> is EBCDIC data used to
identify the directory in a container file. For example, this
identifier could be “DIRECTORY 442” and could be
changed if the format or contents of the directory changes.

Section (vi) Directory of file names and locations, is the
directory for all of the files in the container. The directory
contains the standard form name of each file in the container,
followed by a six (6) character index to the location of the
beginning of the wrapped file itself.

Section (vii) is the optional area for a digital signature,
R.S.

After a preliminary discussion of the Digital Signal
Algorithm, (DSA utility) then subsequently the description
of FIGS. 4A, 4B, 4C, 4D, 4E and 4F will provide a sequence
for WRAPPING a native container file into a text stream
data file and generating the signatures which can be used to
guarantee reliability of the data.

THE DSA UTILITY: The Digital Signal Algorithm
(DSA) utility has a symbol file designated SYMBOL/
DSATOOLS. When compiling this symbol file with the
compiler option set at “INTERNAL”, a non-restricted ver-
sion of the utility is produced, otherwise, a restricted version
of the utility is produced. This latter version only provides
the capability to generate DSA public/private key pairs from
a DSAKEYSFILE and is intended for general use.

The symbol file for the DSA utility provides certain
functionalities which include:

(i) the ability to generate key pairs from a sequential file

containing sets of DSA information.
(ii) the ability to create or to add DSA key sets to a
DSAKEYSFILE.

(iii) the ability to delete DSA key sets from a DSAKEY-
SFILE.

(iv) the ability to dump contents of a DSAKEYSFILE into
a “sequential file” (regular text file).

5

10

15

20

25

30

35

40

45

50

55

60

65

18

(v) the ability to merge a DSAKEYSFILE into the active
*SYSTEM/DSAKEYSFILE.

(vi) the ability to copy certain DSA key sets from one
DSAKEYSFILE and store them into another KEY-
SFILE.

Both of the above versions of the code file must be

executed under a “privileged” User code.

The restricted version of the DSA utility is designated
“OBJECT/DSATOOLS”.

A non-restricted version of the DSA utility is designated
“OBJECT/DSATOOLS/FULL".

A sequential file containing sets of DSA information is
designated, DSAINFO/SOURCE. Currently, this file con-
tains 21 sots of DSA information used to generate system
public and private key pairs. Only one set is used per each
software release, so that these can last for a considerable
period of time.

OVERALL PROCESS: For each Software Release
(SSR=System Software Release), the software origination
group will do the following steps:

1. Create a DSAKEYSFILE containing a DSA key set for
that release, including a system DSA public/private key pair.
The DSA public key is part of the DSA key set. The DSA
private key is kept on a secret basis.

2. Using the generated DSA private key, the software
origination group will signature Unisys system software.
This, however, can be omitted if software is burned into
Compact Disks (CD’S), since the software on a Compact
Disk cannot be tampered with.

3. Distribute the signatured software and the related
DSAKEYSFILE to users and customers.

GENERATING A SYSTEM DSAKEY PAIR AND CRE-
ATING ADSAKEYSFILE By using a privileged User code,
one can execute the following steps:

1. Create a sequential file (for example, DSAINF0442)
with at least one of the DSA information sets in the file
DSAINFO/SOURCE. Each DSA information set is intended
to be used in any one particular Software Release, and the
same set should not be used more than once.

For example, in a Command and Edit (CANDE) session,
insert the following commands:

MAKE DSAINFO/442SEQ
UED

JINSERT DSAINFO/SOURCE from line- to line <editKEYID
name if necessary, for example, SSR442DSAKEYID>

<edit SSR number, if necessary, for example, 442.>
JEND

SAVE

FIG. § is a diagram illustrating how the digital signature
algorithm information, together with the key ID is inserted
into the DSATOOLS, which feeds one Output to the
DSAKEYSFILE, and another output to the DSAKEYS/442.
This results in the creation of the DSAKEYSFILE, having
a public key and a DSAKEYS/442 unit which combines the
public key and the private key.

SIGNATURING SYSTEM SOFTWARE USING DSA
PRIVATE KEY:

1. Assuming that the system in running on a System
Software Release designated 44.2, the method in now ready
to signature the files. If the system is not ready to signature
the files, it is necessary to go back to step 1, in the previous
section (generating a system DSA key pair) and create a

US 6,282,535 B1

19
DSA key set in the *SYSTEM/DSAKEYSFILE for the
particular level the system is running on.

2. It is necessary to ensure that SIGNATURESUPPORT
in SL-ed. If this is not the came, then SL it with *SYSTEM/
DIGITAL/SIGNATURE/SUPPORT. “SL” is defined in item
39 of the Glossary an System Library.

For example, at the Operating Display Terminal (ODT),
enter the following:

SL SIGNATURESUPPORT *SYSTEM/DIGITAL/SIGNATURE/
SUPPORT

3. Ensure that DIGESTSUPPORT is SL-ed. If this is not
the case, then SL it with:

*SYSTEM/MESSAGE/DIGEST/SUPPORT

For example, at the operator Display Terminal, enter the
following:

SL DIGESTSUPPORT=*SYSTEM/MESSAGE/DIGEST/SUP-
PORT

4. Now operate to signature the software by using the
system DSA private key. Files can be wrapped as separately
Wrapped files, or as Containers. The latter, (Containers),
allows a number of Wrapped files to be grouped into one
single entity. For the software that in to be burned into a
Compact Disk (CD), there is no need to signature them since
they cannot be altered after they are put into a Compact
Disk.

EXAMPLE

Using the NFL. WRAP syntax, (to pass the system DSA
private key in the task attribute TASKSTRING), a
Work Flow Language (WFL) job can then be created to
automate the wrapping process.

In a Command and Edit (CANDE) session, enter the

following:

WFL WRAP AFILE AS WRAPPED/
AFILE;TASKSTRING=<system DSA private key>
WFL WRAP ADIR/=INTO CONTAINERA;

TASKSTRING- <system DSA private key>

It should be noted that the files can also be wrapped and
signatured using a programmatic interface to the MCP-
exported entry point MCP_ FILEWRAPPER, 36.

WRAP AND SIGNATURE FILE: FIG. 6 in an illustration
of wrapping and signaturing a file. Here, it in seen that the
wrapping sequence receives information from the
DSAKEYSFILE. It also receives an input from the system
DSA private key, in addition to receiving the file
information, after which the wrapping sequence will pro-
duce the signatured file.

5. To make sure that wrapped files are signatured
correctly, it is desirable to verify these files before shipping
them out to customers over the Internet, or via the CD-ROM.

EXAMPLES UTILIZING THE UNWRAPPING
SEQUENCE FOR SYSTEM SOFTWARE THAT WAS
SIGNED WITH A SYSTEM DSA PRIVATE KEY:

Using the WFL UNWRAP syntax, do not pass any string
in the TASKSTRING attribute. The system will pick-up the
corresponding system DSA public key in the file *SYSTEM/
DSAKEYSFILE for verification. This step can also be
incorporated into the same Work Flow Language (WFL) job
that also WRAPS files, enter:

10

15

20

25

30

35

40

45

50

55

60

65

20

WEFL UNWRAP WRAPPED/FILE AS UNWRAPPED/
AFILE WFL UNWRAP*=AS UNWRAPPED/=
OUTOF CONTAINERA

As seen in FIG. 7, the UNWRAP sequence is fed infor-
mation from the DSAKEYSFILE, and also fed by the
signatured FILE in order to then produce the original native
file which is compatible for the first original computer
system which uses the Master Control Program.

DISTRIBUTION: The distribution of the signatured files
and the DSAKEYSFILE is done using the ordinary proce-
dures for shipment which can be done via Internet transfer
or by CD-ROM.

USING DIGITAL SIGNATURES WITH WRAPPED
FILES AM UPPED

With the advent of the WRAP/UNWRAP feature, the
present system also gives users the ability to optionally sign
wrapped files and wrapped containers with digital signa-
tures. Like a normal signature on a real piece of paper, a
digital signature allows the recipient of a singed wrapped file
to be certain of its origin. Unlike a normal signature, the
digital signature is electronically represented as binary data
rather than handwritten characters. This allows the signature
to be “embedded” within the file, and it enables the system
to do some special calculations in order to authenticate the
signature and verify that the file has not been tampered with
or altered during its transmission.

Digital signature “creation” is based on the data within a
file and a private key. Similarly, digital signature “authen-
tication” is based on the same data of the file and a
corresponding public key. The private key and public key
are generated as a pair by the system, so even though they
are not the same, they still share some underlying common
mathematical properties. BY differentiating the public key
and the private key of a key pair, one cannot use either key
for both signing and verification. Thus, a person possessing
only a “public key”, though is capable of “authenticating” a
wrapped file’s digital signature “created” by a corresponding
“private key”, but cannot use it to produce the same signa-
ture. On the other hand, a person with only the private key
will not be able to verify the signed wrapped file.

The digital signature algorithm (DSA) also ensures that a
public key belonging to one key pair cannot be used to
validate the digital signature derived from a private key of
another key pair.

Since the DSA is not an encryption algorithm, signing a
wrapped file or wrapped container does not scramble its
data. Instead the DSA makes a pass through the data stream
and applies the specified private key to come up with a
checksum-like binary hash pattern which is then inserted
into the resulting file.

When creating a wrapped file or wrapped container with
digital signature, the originator would perform the following
steps:

Obtain a DSA key pair that consists of a public key and

a private key;

Specify the private key in the wrapping process to create
a digitally signed wrapped file or container;

Send the signed wrapped file to its intended recipient;

Send the public key to the same recipient.

The last two steps should get executed separately to make
the file more secure. If both the signed wrapped file and the
public key are transmitted in the same message, it may be
possible for some unauthorized party to intercept the
message, unwrap and modify the file, then sign it with their
own private key, and forward, to the unsuspecting recipient,
the altered signed wrapped file and a different public key.

Upon receiving a signed wrapped file or container, the
recipient of the file would perform the following steps:

Obtain the corresponding public key;

US 6,282,535 B1

21

Specity the public key in the unwrapping process. If the
system does not attempt to authenticate the file’s digital
signature or fails to do so, the signed wrapped file is
either corrupted or was modified and should not be
trusted.

The following sections describe in detail what a customer
should do to unwrap the signed wrapped files and containers
(such as ICS), and how one can wrap and unwrap one’s own
files with digital signatures.

GETTING STARTED: New System Libraries; There are
two new System Library files that need to be installed and
SL’ed (Glossary, item 39) on the system before one can
utilize the digital signature feature. These are SYSTEM/
DIGITAL/SIGNATURE/SUPPORT and SYSTEM/
MESSAGE/DIGEST/ SUPPORT. These files are shipped
with software releases beginning with HMP NX3.0/
SSR44.2. If these files are not currently available on the
system, they may be obtained by ordering the SECURITY
Interim correction (IC) for releases beginning with SSR
42.3. From the ODT, (Operator Display Terminal) install
these files as follows:

SL SIGNATURESUPPORT=*SYSTEM/DIGITAL/SIGNATURE/
SUPPORT

SL DIGESTSUPPORT=*SYSTEM/MESSAGE/DIGEST/SUP-
PORT

NEW DSA KEYSFILE: A customer also needs to obtain
a copy of the SYSTEM/DSAKEYSFILE. This keysfile
contains one or more DSA information “sets” where each
corresponds to a particular SSR (System Software Release).
One can only wrap and unwrap files with digital signatures
for the levels indicated in the DSA keysfile. If the
*SYSTEM/DSAKEYSFILE already exists on the Halt/I.oad
family, the available levels can be shown by entering the
ODT (Operator Display Terminal) command: IK
DSASHOW

Beginning with EMP NX4.0/SSR45.1, the DSA keysfile.
is shipped with standard software releases. For earlier
releases, a customer needs to call the support organization to
obtain a copy of this file. This file will be delivered through
the same process as *SYSTEM/KEYSFILE because wrap-
ping the DSA keysfile could compromise Unisys’ digital
signature security mechanism.

The DSA keysfile is cumulative, that is—a DSA keysfile
of a later SSR release will contain the DSA information set
of that release plus all DSA information sets of earlier
releases [Note: All supported software levels earlier than
BSR 44.2 will use the 44.2 DSA information set.] Thus,
installing a DSA keysfile is as simple as copying the most
current DSA keysfile to one’s Halt/Load family. However,
only the DSA keysfile with the name *SYSTEM/
DSAKEYSFILE will be recognized by the system as the
active system DSA keysfile. To install a DSA keysfile as the
active DSA keysfile, the following command is used:

COPY<DSA keysfile filename>AS *SYSTEM/DSAKEYSFILE
To<Halt/Load Pack>(PACK)

SIGNING AND VERIFYING ONE’S OWN FILE:

Obtaining One’s Own Public/Private Key Pairs: In order
to add a digital signature to one’s own files during the
wrapping process, one mist first obtain a public/private key
pair. Generating key pairs involves writing a program that
interfaces with the new MCP procedure MCP__
GENERATEDSAKEYS. One may want to use the sample
program listed at the end of this document (SAMPLE
PROGRAM TO GENERATE DSAKEYPAIRS) to help one
get the key pairs, or one may want to modify it to suit one’s
own needs. SSR=System Software Release.

10

15

20

25

30

35

40

45

50

55

60

65

22

Note that key pairs are generated based on an SSR level.
This means one cannot use a private key of one SSR level
to digitally sign wrapped files for another SSR level. SSR=
System Software Release.

Creating Digitally Signed Wrapped Files: Once a key pair
is generated, one can use the WFL. WRAP syntax to create
a digitally signed wrapped file. By passing the private key
through the task attribute TASKSTRING of the WRAP
statement, one indicates the desire to add a digital signature
to the file.

By default, the system will produce the signed container
for the current software level. At times, one may want to
create a digitally signed wrapped file for an BSR level
different than that of the running system (for example, the
recipient of the file may not be on the same SSR level as the
operator). For such situations, one will need to specify the
targeted SSR level for the WRAP statement through the task
attribute TARGET. The level value should be represented as
a whole number without the decimal point.

Distributing and Verifying Digitally Signed Wrapped
Files: One can now send the signed wrapped files to intended
users. In order for these files to be verified and unwrapped,
one also needs to send the corresponding public key to them.
To ensure the wrapped files are not compromised in transit,
one should avoid sending both signed files and public key at
the same time. For instance, if using *-mail as the delivery
mechanism, send the public keys in a separate mail message
from the wrapped files they are protecting. If files are to be
transferred over the Internet, one can allow the wrapped files
themselves to be down loaded, but simply display the public
key for the recipient to “cut and paste” into the WFL WRAP
statement, or offer to send the public key to the recipient via
a provided e-mail address.

Recipients of the signed files would use the SFL
UNWRAP syntax to verify and unwrap files, passing the
public key one had provided through TASKSTRING.

Dealing with Digital Signatures:

One should not release one’s private key because it may
compromise the signed wrapped file’s security.

Because both public and private keys are long hex strings,
when one needs to execute many WRAP and
UNWRAP statements dealing with digital signatures, it
may be better for one to create a WFL job and associate
the key values with string variables. For instance,
STRING PUBLICKEY,PRIVATEKEY;
PUBLICKEY:=“<hex string for DSA public key>";
PRIVATEKEY:=“<hex string for DSA private key>";
WRAP MYDIR/=INTO
MYCONTAINER; TASKSTRTNG=PRIVATEKEY;

UNWRAP=OUTOF
YOURCONTAINER;TASKSTRING=
PUBLICKEY;

Since wrapping files with digital signatures is processor-
intensive, one should generally avoid creating many
separate signed wrapped files. One may want to put
them into one single signed container instead.

One should not trust files that are supposedly wrapped
with digital signatures under conditions when the sys-
tem does not either attempt to verify the signature or
fails to do so.
SAMPLE PROGRAM TO GENERATE DSA KEY
PAIRS:

BEGIN

This sample program demonstrates the basic technique on
how to generate DSA key pairs based on a specified SSR
level. The resulting public and private key pairs then can be
used in the WFLL. WRAP/UNWRAP statements to sign and
verify signatured wrapped files.

US 6,282,535 B1
23 24

FILE DSAKEYS (KIND=DISK, MAXRECSIZE=14, MINRECSIZE=14,
BLOCKSIZE=420, BLOCKSTRUCTURE=FIXED,
FILEKIND=DATA,
FRAMESIZE=48, NEWFILE=TRUE);
LIBRARY MCP (LIBACCESS=BYFUNCTION,
FUNCTIONNAME=“MCPSUPPORT.”);
REAL PROCEDURE MCP_ GENERATEDSAKEYS (SOFTLEVEL,
NUMOFPAIRS, ARY,

PROC, OPT);
VALUE SOFTLEVEL, NUMOFPAIRS, OPT:
REAL SOFTLEVEL, NUMOFPAIRS, OPT:
ARRAY ARY [0];
REAL PROCEDURE PROC (INX, PUBKEY, PRIKEY);
VALUE INX;
REAL INX;

ARRAY PUBKEY, PRIKEY [0]; FORMAL;
LIBRARY MCP;
REAL PROCEDURE WRITEKEYPAIR (PAIRNUM, PUBKEY, PRIKEY);

VALUE PAIRNUM;

REAL PAIRNUM;

ARRAY PUBKEY, PRIKEY[0];
BEGIN

ARRAY BUFF [0:13];
DEFINE WRITEIT =
BEGIN
WRITE(DSAKEYS, 14, BUFF);
REPLACE POINTER(BUFF) BY “ ” FOR 14
WORDS;
END #,
WRITEHEXSTR (PREFIX, ARY, INX, LEN) =
BEGIN
REPLACE POINTER(BUFF) BY PREFIX,
POINTER(ARY[INX],4) FOR LEN WITH
HEXTOEBCDIC;
WRITEIT;
END #;
% Notify user about the progress. Useful if
USEUSERPROCF is set.
DISPLAY (“Key pair #” ! | STRING(PAIRNUM,*) ! ! «
generated.”);
% Keep key pair information secret. Write it out to

file.
REPLACE POINTER(BUFF) BY “KEY PAIR #”, PAIRNUM FOR
* DIGITS, “:™
WRITEIT;
WRITEHEXSTR (¢ PublicKey = 7, PUBKEY, 0, 48);
WRITEHEXSTR (¢ ”, PUBKEY, 4, 48);
WRITEHEXSTR (¢ ”, PUBKEY, 8, 36);
WRITEHEXSTR (¢ PrivateKey= ", PRIKEY, 0, 48);
WRITEHEXSTR (¢ ”, PRIKEY, 4, 48);
WRITEHEXSTR (¢ ”, PRIKEY, 8, 36);
END;
DEFINE % Returned value

CODEF =[15:08] #,
SCODEF = [31:16] #,

% OPT word
USEUSERARYF =[01:01] #,
USEUSERPROCF = [00:01] #,
% Others
NUMRETKEYS = KEYARY[0][15:16] #,
FIRSTKEY = KEYARY[0][31:16] #,
NUMREQKEYS =4#, % Number of
requested keypairs
KEYWORDS =11 #, % Words for
each key
SSRLEVEL =442 # % SSR Level
442
REAL R, L
ARRAY KEYARY [0:(KEYWORDS*2*NUMREQKEYS)],

PUBKEY [0:(KEYWORDS-1)],
PRIKEY [0:(KEYWORDS-1)};
MAIN PROGRAM
Generate 10 DSA public/private key pairs for SSR level
442,
Because both USEUSERARYF and USEUSERPROCEF return the same
information, we normally set either flag but not both.
This is just an example to illustrate how both cases
work.
R := MCP__GENERATEDSAKEYS (SSRLEVEL, NUMREQKEYS,

US 6,282,535 B1

25

-continued

26

KEYARY, WRITEKEYPAIR,
0 & 1 USEUSERARYF & 1
USEUSERPROCF);
IF BOOLEAN (R) THEN
DISPLAY (“DSA key generation Error #° ! !
STRING(R.CODEEFE,*) ! !
“ - SubCode #” ! ! STRING(R.SCODEEF,*));
If USEUSERARYF is set, process the returned info.
IF (NUMRETKEYS GTR 0) THEN % Got some good key
pairs
BEGIN
FOR I:=1 STEP 1 UNTIL NUMRETKEYS DO
BEGIN
R := ((I-1) * 2 * KEYWORDS) + FIRSTKEY;
REPLACE POINTER(PUBKEY) BY
POINTER(KEYARY[R])
FOR KEYWORDS
WORDS;
REPLACE POINTER(PRIKEY) BY
POINTER(KEYARY[R+KEYWORDS])
FOR KEYWORDS

WORDS;
WRITEKEYPAIR (I, PUBKEY, PRIKEY);
END;
END;
LOCK (DSAKEYS);
END.

SEQUENCE FOR SIGNING AND WRAPPING CON-
TAINER FILES:

The overall process of signing and wrapping container
files is illustrated by the flowchart in FIG. 4A, which is then
amplified via FIGS. 4B through 4F.

At step Al, FIG. 4A, the user initiates a workflow
language (WFL) wrap statement with digital signature for
containers by passing a private key. Then at step A3, the
workflow language compiler parses the command and asks
the operating system (MCP) to initiate the MCP__
FIZZWRAPPER program 36 as a separate process.

Concurrently, at step A2, the user initiates the wrapping of
containers with a digital signature by invoking the program
MCP_FILEWRAPPER 36 through a user program.

Whether initiated through the legs of steps Al, A3 or
through the leg step A2, the next sequence operates under
the step B1.

At step Bl, the MCP__FILEWRAPPER 36 routine is
executed with a series of elements as follows:

() file list containing output container names and input

file names to be packaged into those containers;

(ii) private key;

(iii) optional SSR level. This in illustrated in greater detail

by reference to FIG. 4B.

At step B2, the program MCP__ FILEWRAPPER 36 exits
to the operating system or to the user program which then
results in the end of the cycle.

Note that Stop B2 is further delineated in terms of the
steps in involved in FIG. 4B.

Now referring to FIG. 4B, there is seen the flowchart
showing the operation of the MCP_ FILEWRAPPER logic
in order to digitally sign and wrap containers.

At step Bl, the user will enter MCP_ FILEWRAPPER, to
initiate the program. Then at step Bla, there are a series of
six various sequences which involve (i) a verification of all
parameters; (ii) getting the specified level or default system
software release level (SSR); (iii) calling and getting the
digital signal algorithm P,Q,G key for passing the system
software release level in order to insure availability of the
DSA keysfile and to get the prime numbers P,Q,G and the

30

35

40

45

50

55

60

65

system public key which is based on the SSR level; (iv)
verifying the specified private keys hexadecimal presenta-
tion; (v) verifying the wrap license key; (vi) linking to the
signature support library (13, FIG. 1B).

Then at step Blb, the sequence operates to build an
internal list that contains a series of entries which are (i) the
requested output container named; and (ii) if found, the
names of the requested files which are to be included in the
specified container.

Then at step Blec, a decision tree is used to determined if
the internal list is empty. If the answer is “yes,” then at step
Blcy, there will be issued a “No Files Wrapped” error
message which then precedes to step Bid.

At step Blc, if the answer is “No,” then there occurs step
Blcn which is the “no” link and here the sequence operates
to call the EXTRACTLIST in order to process the files
indicated in the internal list. FIG. 4C will subsequently
delineate factors involved in implementing the
EXTRACTLIST.

Then at step Bld, it is seen that if the MCP__
FILEWRAPPER program 36 had encountered any error or
was abnormally terminated, then it would be necessary to set
the appropriate error code in the return value. At step Ble,
there is the completion or exiting of the MCP__
FILEWRAPPER program.

FIG. 4C illustrates a flowchart for the EXTRACTLIST
logic to digitally sign and wrap containers.

At step C1, there is an entrance to the EXTRACTLIST
program.

At step C2, there is a decision tree to query as to whether
there is a container name in the internal list. If the answer is
“No,” then at step C2n, there is an exit for the
EXTRACTLIST program. However, if the answer is “Yes,”
then at step C3 another decision tree occurs to query whether
there is an input file name for this container. If the answer
to this is “No,” then step C3a occurs where the program
called the ENDCONTAINER program operates to finish up
the current container. The END-CONTAINER program is
subsequently shown in FIG. 4F. Continuing with FIG. 4C,
from step C3a, the sequence turns to step C3b where the
system will increment to the next name in the internal list
and then connect back to step C2.

US 6,282,535 B1

27

At step C3, which involves a query as to the occurrence
of an input file name for the container, if the answer is “Yes,”
then step C4 occurs which is seen to have six separate
substeps.

At step C4, substep (i) shows the opening and creating of
an output container file; (ii) then a writing to the container
file of the container ID plus emptying the directory address
and emptying the option words; at substep (iii) the sequence
will make the first DSASIGN call in order to signature the
ID “Unisys” (source name) at substep (iv) the signature
context will be saved which was returned from the DSA-
SIGN call; at substep (v), there is a saving of the current
container file location as the file address for the input file to
be processed; at step (vi) there is a calling again of the
MCP_WRAPPER program 38 (as per FIG. 4D) in order to
sign and wrap data of the input file while passing the input
file name and the WRITE__ WRAP routine as will be illus-
trated in FIG. 4E, hereinafter.

At step C5, a decision tree occurs to question whether the
MCP_WRAPPER program 38 returns an error or not. If the
answer is “No,” then at step C5n, the sequence will store the
same file address into the internal list for the input file which
just got processed, after which step C6é will increment to the
next name in the internal list and return to step C3.

At step CS, if the MCP_ WRAPPER program does return
an error (Yes), then step C5y occurs.

At step C5y, there will be a display of the error message
and repositioning of the container file pointer to the saved
container location after which there will be a restoration of
the processing signature context with the saved signature
context.

FIG. 4D is a flowchart illustrating the MCP_ WRAPPER
logic 38 used to digitally sign and wrap single files. This is
shown as a sequence of steps from D1 through D9.

At step D1, there is an initiation of the MCP_ WRAPPER
program.

At step D2, there are several steps illustrated where
substep (i) is the WRAP action of the MCP_ WRAPPER
program; at substep (ii) the sequence will get an input file
from Disk 20; at substep (iii) the sequence will get the input
files Disk File Header (DFH); at substep (iv) a check will be
made to see if the input file is allowed or permitted to be
wrapped.

Then at step D3, a call is made to the program WRITE__
WRAP for passing the data buffer containing the wrap
version ID and the wrap options (later shown in FIG. 4E), is
the WRITE__WRAP sequence.

At step D4, a call is made to the WRITE _ WRAP program
(as per FIG. 4E) for passing the data buffer containing the
input file’s Disk File Header.

At step D5, data is read from a disk row of the input file
into the data buffer.

At step D6, a call is made to the WRITE _ WRAP program
(as per FIG. 4E) for passing the data buffer containing the
input file’s disk row data.

At step D7, a decision tree is utilized to question whether
more disk rows are involved for the input file. If the answer
is “Yes,” then the sequence returns back to step DS. If the
answer is “No,” then step D8 occurs where a call in made to
the WRITE_ WRAP program (as per FIG. 4E) and where
the last time (no more data to process) indicates no more
data to come and there is is a passing of the data buffer
containing the calculated running checksum of the input
file’s data.

Then at step D9, there is a completion and exit of the
program MCP_ WRAPPER, 38.

FIG. 4E is a flowchart illustrating the WRITE _WRAP
logic used to digitally sign and wrap a single file.

10

15

20

25

30

35

40

45

50

55

60

65

28

Here at step El, there is an initiation of the program
WRITE _WRAP.

At step E2, the WRITE_WRAP program will call the
Digital Signature Algorithm signature program (DSASIGN)
with the prime numbers P, Q. G, in order to signature data
in the pass-in data buffer. DSASIGN will also generate the
R and S signatures if this is the last call.

At step E3, a decision tree is indicated to query whether
there is more data to be forthcoming.

If there is no more data forthcoming “No,” then step E4
operates to add the R and S signature which is generated by
the program DSASIGN to the end of the available data in the
buffer.

At step ES, there is a writing of the data in the buffer over
to the output file, after which at step E6, there is a comple-
tion and exit of the WRITE_ WRAP program.

FIG. 4F is the program sequence illustrating the END-
CONTAINER logic used to sign and wrap containers.

At step F1, there is an initiation of the program designated
ENDCONTAINER.

At step F2, a decision tree occurs to determine whether
the container is empty or not. If the container is empty (Yes),
then step F2y will close and purge the container file which
will then cause an exit of the ENDCONTAINER program at
step F7.

At step F2, if the container is not empty (No), then step
F3 occurs where the program saves the current container file
pointer as a container directory address.

At step F4, the program enters the phase designated
WRITE__ CONTAINERDIRECTORY which involves six
substeps. At step F4(i) a call is made to the WRITE_ WRAP
program (per FIG. 4E) in order to write the directory ID for
the containers at substep (ii) the updated internal list is
processed and a call is made to the WRITE WRAP pro-
gram (as per FIG. 4E) in order to write all file names that
have been wrapped successfully and also to write their
addresses in the container; at substep (iii) a null byte is put
at the end of the container directory; at substep (iv) a call is
made on the last DSASIGN sequence on the null byte of the
directory in order to calculate the R and S signatures; at
substep (Vv), there will be writing of the R and S signatures
at the end of the container file, as per FIG. 3B.

At step F5, there is seen three substeps whereby at step (i)
there is the placing of the directory address word and the
options words into a local buffer. The options word contain
the signature byte, the SSR level and other information; at
step F5(i), the sequence then calculates the checksum based
on the contents of the local buffer and puts the result in the
end of the buffer; at step F5(iii), the container file pointer is
repositioned to the directory address location and there is a
writing out of the entire local buffer.

At step F6, there is a closing or and a locking up of the
container file.

At step F7, there is an ending or completion for exit of the
program ENDCONTAINER.

The following indicates a generalized overview of the
sequential steps for the method of signaturing and wrapping
a container.

1. The WFL WRARP procedure (FIG. 4) in initiated by the
User 10 which then calls the procedure MCP__
FILEWRAPPER 36, (FIG. 4B).

2. The MCP_FILEWRAPPER program 36 builds an
internal list containing names of files to be wrapped as
well as their container names, then calls the procedure
EXTRACTLIST (FIG. 4C). This extracts the file names
from the “internal list” in memory 18 and reads the files
and puts them in the container. The operator terminal 8

US 6,282,535 B1

29

or User tells which container is to contain which
particular file. The system can handle multiple contain-
ers. Some files can go in several different containers.
For example, if there were five files, such as files 1, 2,
3,4, and 5, the User can prescribe that Container A gets
file 1, 2, and 3 and Container B gets files 3, 4, and S.
Thus the User 8 can write a statement such as—WRAP
1, 2, 3 into Container A-3, 4, 5, into Container B.
“Internal List”:—is an array in memory 18 (FIG. 1B).
This gives a list of the container file “names” (not the
files themselves). This internal list is processed by the
EXTRACTLIST (FIG. 4C) program to place what
particular files should go into what particular container.

3. For each file name in the Internal List, EXTRACTLIST
calls MCP_ WRAPPER 38 to wrap the file, passing
through the procedure WRITE_ WRAP (FIG. 4E).

4. The MCP_WRAPPER 38 procedure then calls the
routine designated WRITE WRAP, FIG. 4E, which is
a subprocedure of the MCP__FILE PER 36. WRITE__
WRAP writes the data of a wrapped file to a container
(MY/CONTAINER/FILE) on Disk B.

5. The MCP_WRAPPER 38, (FIG. 4D), returns to
EXTRACTLIST procedure, FIG. 4C, so that
EXTRACTLIST repeats the whole process with the
next file name in the internal list.

6. When the Internal List is exhausted, the
EXTRACTLIST procedure, (FIG. 4C), then calls
ENDCONTAINER (FIG. 4F) to write out the contain-
er’s directory as well as its digital signature.

7. The ENDCONTAINER program after writing out the
directory and the address location of each file in the
directory, (and optionally digital signature words) then
returns to EXTRACTLIST which returns to MCP__
FILEWRAPPER.

8. The MCP_ FILEWRAPPER 36 then returns to the
Work Flow Language wrap (WFLWRAP) program to
indicate that the sequence is completed and the file has
been wrapped and signatured.

The WRITEWRAP program writes the data of a wrapped
file to a container on Disk B. The WRITEWRAP program is
used by the MCP_FILEWRAPPER program. The END-
CONTAINER procedure comes from the MCP__
FILEWRAPPER program and operates to write out the
directory the address location of the directory items, and the
container’s digital signature and then closes the file to save
it on disk as per the file structure of FIG. 3B.

Appendix I is attached to indicate how to run the DSA
utility program routine.

Described herein has been a method and system whereby
a native specialized container of files in a first computer
system, can use the operating system of the first computer
system together with first and second programmatic inter-
faces therein in order to transform a container file (native to
the first system) into a standard byte-stream container file
which is utilizable by any other typos of computer platforms
(second system), and which byte-stream files can be burned
into a CD-ROM (or transported via an open network) which
is then available for utilization by multiple numbers of other
system platforms. The integrity for transforming the native
container files of the first system into a standard byte stream
container file utilizable by other computer platforms, and
which can be transferred over the Internet, is rendered
reliably verifiable by the use of the digital signaturing
systems described herein.

While other variations and embodiments of the described
method and system may be implemented for various

10

15

20

25

30

35

40

45

50

55

60

65

30

purposes, the invention is defined by the following claims
appended below.

What is claimed is:

1. A method for wrap-packaging and signaturing a con-
tainer of specialized first format data files and directory from
a first specialized format into a second file in a second
format compatible for burning onto an industry-standard
Compact Disk, as well as for transmission on the Internet,
wherein a primary sourced Operating System 10 of a plat-
form 14 holds a first programmatic routine MCP__
FILEWRAPPER and a second programmatic routine
MCP__WRAPPER, plus a WRITE-WRAP routine, said
Operating System 10 utilizing a Work Flow Language
compiler 15 and Signature Support Library 13, and com-
municating with a secondary platform 30, said method for
wrap-packaging and creating a digital signature to verify the
validity of the container comprising the steps of:

(a) initiating, by a user, of a WRAP operation together

with a digital signature request;

(b) utilizing the WRAP statement of Work Flow Language
procedure for making a direct programmatic call to said
routine designated as MCP_FILEWRAPPER and
passing a private key to indicate the request for a digital
signature by utilizing said primary-sourced Operating
System (MCP 10) to initiate said specialized routine
designated MCP_ FILEWRAPPER;

(c) obtaining digital signature parameter information from
an active DSAKEYSFILE in said Signature Support
Library 13, said parameter information being based on
the particular Software Release level of the Operating
System 10;

(d) developing a link to said Signature Support Library in
order to gain access to said Digital Signature Algorithm
routine (DSASIGN);

(e) calling said Digital Signature Algorithm routine of
said Signature Support Library in order to digitally sign
the ID with a “source company name”;

(f) calling said MCP_WRAPPER routine in order to
wrap-package a container file from a first specialized
format into a second format compatible for the Internet
and compatible for burning onto an industry-standard
CD-ROM,;

(g) calling said WRITE__WRAP routine in order to
invoke the Digital Signature Algorithm routine to
develop a digital signature for the wrapped container;

(h) developing said wrapped container file together with
its digital signature as a resultant file, so that said digital
signature can later be used in subsequent operations to
verify the integrity of the wrapped container.

2. The method of claim 1 which includes the step of:

(i) placing said container file with signature onto a Com-
pact Disk.

3. The method of claim 1 which includes the step of:

(j) transmitting said container file with signature over an
open network.

4. A system initiated by a client-user for digitally signa-
turing and wrapping a container of a first set of native
original files and directory for conversion from a first
specialized format into a second format compatible with the
File Transfer Protocol of the Internet, said system compris-
ing:

(a) operator terminal means for initiating a first platform
and its operating system which operates on a special-
ized first format protocol;

(b) means for initiating a first program routine (MCP__
FILEWRAPPER) in order to access Digital Signature

US 6,282,535 B1

31 32
Algorithm (DSA) parameters and to access a Digital (DSA) to signature the converted container and
Signature Algorithm signature routine in a Signature directory, and also to generate two integers, R & S as
Support Library; a signature to be added to the end of the file;

(c) means for calling a second program routine (MCP__
WRAPPER) in order to institute a wrapping action to 3
convert said container of data files and directory from
a first specialized format into a second text file format digital signature compatible for transfer on the Internet
of Internet-compatible protocol; via File Transfer.

(e) means to develop an output resultant container con-
stituting the wrapped data files and directory with a

(d) means for calling a third program routine (WRITE__
WRAP) which calls the Digital Signature Algorithm ¥ % % % %

