Développement économique Canada

Office de la Propriété Intellectuelle du Canada

I*I Innovation, Sciences et

Innovation, Science and CA 3134210 A1 2021/03/25

Economic Development Canada

Canadian Intellectual Property Office (21) 3 1 34 21 0
12 DEMANDE DE BREVET CANADIEN

CANADIAN PATENT APPLICATION
(13 A1

(86) Date de dépét PCT/PCT Filing Date: 2020/09/17 (51) CLInt./Int.Cl. HO4N 19/597(2014.01)
(87) Date publication PCT/PCT Publication Date: 2021/03/25 | (71) Demandeur/Applicant:

(85) Entrée phase nationale/National Entry: 2021/09/17

TENCENT AMERICA LLC, US

86) N° demande PCT/PCT Application No.: US 2020/051192| (72 Inventeurs/Inventors:

CHOI, BYEONGDOO, US;

(87) N° publication PCT/PCT Publication No.: 2021/055552 WENGER, STEPHAN, US;

(30) Priorités/Priorities: 2019/09/20 (US62/903,635),

2020/09/14 (US17/019,692)

LIU, SHAN, US
(74) Agent: BORDEN LADNER GERVAIS LLP

(54) Titre : PROCEDE DE TRAITEMENT DE REMPLISSAGE AVEC DES PARTITIONS DE SOUS-REGIONS DANS UN

FLUX VIDEO

(54) Title: METHOD FOR PADDING PROCESSING WITH SUB-REGION PARTITIONS IN VIDEO STREAM

S0 Start
%
801 Paming# paramister set
¥
907 Decoding picturs partitioning information
37 e 15 Fadiding applied to the boundaries staige -
T regions? e o
Yes ; ;
: 805 Decading each sulrregion without
904 Parsing the padding type padding
¥
s06 sl is.a wrag-around padding applied?
;' Y
Yes | s S .
908 Padding the boundaries of sub
4= it pen-werap-around podding
(57) Abrégé/Abstract:

A method, computer program, and computer system is provided for video coding. Coded syntax elements corresponding to wrap-
around padding process are decoded. At least one coded current picture is reconstructed using wrap-around padding process.
The syntax elements indicate an offset value for wrap-around processing; or left and right padding width information. A flag
indicates whether syntax elements corresponding to wrap-around padding process is present in parameter set. A pixel position for
motion compensated prediction in a reference picture is determined by interpreting the syntax elements corresponding to wrap-

around padding process with a clipping process.

C an a dg http:vopic.ge.ca » Ottawa-Hull K1A 0C9 - aup.:/eipo.ge.ca OPIC

OPIC - CIPO 191

wo 2021/055552 A1 |0 00000 KRN0 0 0 0

CA 03134210 2021-09-17

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

J

=

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date
25 March 2021 (25.03.2021)

(10) International Publication Number

WO 2021/055552 Al

WIPO I PCT

(51) International Patent Classification:
HO4N 19/597 (2014.01)

(21) International Application Number:
PCT/US2020/051192

(22) International Filing Date:
17 September 2020 (17.09.2020)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
62/903,635 20 September 2019 (20.09.2019) US
17/019,692 14 September 2020 (14.09.2020) US

(71) Applicant: TENCENT AMERICA LLC [US/US]; 2747
Park Boulevard, Palo Alto, California 94306 (US).

(72) Inventors: CHOI, Byeongdoo; c/o TENCENT AMERI-
CALLC, 2747 Park Boulevard, Palo Alto, California 94306
(US). WENGER, Stephan; c/o TENCENT AMERICA

(74)

@81)

LLC, 2747 Park Boulevard, Palo Alto, California 94306
(US). LIU, Shan; c/o TENCENT AMERICA LLC, 2747
Park Boulevard, Palo Alto, California 94306 (US).

Agent: RABENA, John F. et al; SUGHRUE MION,
PLLC, 2000 Pennsylvania Ave., N.-W., Suite 900, Washing-
ton, District of Columbia 20006 (US).

Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ,
CA, CH, CL, CN, CO, CR, CU, CZ,DE, DJ, DK, DM, DO,
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN,
HR, HU, ID, IL, IN, IR, IS, IT, JO, JP, KE, KG, KH, KN,
KP,KR,KW,KZ,LA,LC,LK, LR, LS, LU, LY, MA, MD,
ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO,
NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW,
SA, SC, SD, SE, SG, SK, SL, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US,UZ, VC, VN, WS, ZA, ZM, ZW.

(54) Title: METHOD FOR PADDING PROCESSING WITH SUB-REGION PARTITIONS IN VIDEO STREAM

G, 3 EE—
o0 . Start _,:
¥
801 Parsing e parameter set
v
902 Decoding picture partitioning information
%
gz .] paddir{g appited to1he bounﬁaréésofsdb« -
o regions?
Yes f
L4

904 Parsing the padding type

Bo

padding

.

{s a wrap-around padding applied?]

Mo

908 Padding the boundaries of sub.
regions with non-wran-around sadding

(57) Abstract: A method, computer program, and computer system is provided for video coding. Coded syntax elements corresponding
to wrap-around padding process are decoded. At least one coded current picture is reconstructed using wrap-around padding process.
The syntax elements indicate an offset value for wrap-around processing; or left and right padding width information. A flag indicates
whether syntax elements corresponding to wrap-around padding process is present in parameter set. A pixel position for motion com-
pensated prediction in a reference picture is determined by interpreting the syntax elements corresponding to wrap-around padding

process with a clipping process.

[Continued on next page]

CA 03134210 2021-09-17

WO 20217055552 A [I00])00 000 00RO O 00 0O 0

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,
KM, ML, MR, NE, SN, TD, TG).

Published:
— with international search report (Art. 21(3))

CA 03134210 2021-09-17

WO 2021/055552 PCT/US2020/051192

METHOD FOR PADDING PROCESSING WITH SUB-REGION PARTITIONS IN VIDEO
STREAM

CROSS-REFERENCE TO RELATED APPLICATION
[0001] This application claims priority from U.S. Provisional Patent Application No.
62/903,635, filed on September 20, 2019, and U.S. Patent Application No. 17/019,692, filed on

September 14, 2020, the entirety of which are incorporated herein.

FIELD
[0002] This disclosure relates generally to field of data processing, and more particularly to

video encoding and decoding.
BACKGROUND

[0003] Video coding and decoding using inter-picture prediction with motion compensation
has been known for decades. Uncompressed digital video can consist of a series of pictures, each
picture having a spatial dimension of, for example, 1920 x 1080 luminance samples and
associated chrominance samples. The series of pictures can have a fixed or variable picture rate
(informally also known as frame rate), of, for example 60 pictures per second or 60 Hz.
Uncompressed video has significant bitrate requirements. For example, 1080p60 4:2:0 video at 8
bit per sample (1920x1080 luminance sample resolution at 60 Hz frame rate) requires close to 1.5

Gbit/s bandwidth. An hour of such video requires more than 600 GByte of storage space.

[0004] One purpose of video coding and decoding can be the reduction of redundancy in the
input video signal, through compression. Compression can help reducing aforementioned
bandwidth or storage space requirements, in some cases by two orders of magnitude or more.
Both lossless and lossy compression, as well as a combination thereof can be employed. Lossless
compression refers to techniques where an exact copy of the original signal can be reconstructed
from the compressed original signal. When using lossy compression, the reconstructed signal
may not be identical to the original signal, but the distortion between original and reconstructed
signal is small enough to make the reconstructed signal useful for the intended application. In the
case of video, lossy compression is widely employed. The amount of distortion tolerated depends
on the application; for example, users of certain consumer streaming applications may tolerate

higher distortion than users of television contribution applications. The compression ratio

CA 03134210 2021-09-17

WO 2021/055552 PCT/US2020/051192

achievable can reflect that: higher allowable/tolerable distortion can yield higher compression

ratios.

[0005] A video encoder and decoder can utilize techniques from several broad categories,
including, for example, motion compensation, transform, quantization, and entropy coding, some

of which will be introduced below.

[0006] The concept of dividing a coded video bitstream into packets for transportation over
packet networks has been in use for decades. Early on, video coding standards and technologies
were in their majority optimized for bot-oriented transport, and defined bitstreams. Packetization
occurred in system layer interfaces specified, for example, in Real-time Transport Protocol (RTP)
payload formats. With the advent of Internet connectivity suitable for mass-use of video over the
Internet, the video coding standards reflected that prominent use case through the conceptual
differentiation of a video coding layer (VCL) and a network abstraction layer (NAL). NAL units
were introduced in H.264 in 2003, and have been retained in certain video coding standards and

technologies since then with only slight modifications.

[0007] A NAL unit can, in many cases, be seen as the smallest entity on which a decoder can
act upon without necessarily having decoded all preceding NAL units of a coded video sequence.
Insofar, NAL units enable certain error resilience technologies as well as certain bitstream
manipulation techniques, to include bitstream pruning, by Media Aware Network Elements

(MANES) such as Selective Forwarding Units (SFUs) or Multipoint Control Units (MCUs).

[0008] FIG. 1 depicts relevant parts of the syntax diagram of NAL unit headers in accordance
with H.264 (101) and H.265 (102), in both cases without any of their respective extensions. In
both cases, the forbidden zero bit is a zero bit used for start code emulation prevention in certain
system layer environments. The nal unit_type syntax element refers to the type of data a NAL
unit carries, which can be, for example, one of certain slice types, parameter set types,
Supplementary Enhancement Information (SEI) message, and so on. The H.265 NAL unit header
further comprises nuh_layer id and nuh _temporal id plusl, which indicate the spatial/SNR and
temporal layer of a coded picture to which the NAL unit belongs.

[0009] It can be observed that the NAL unit header includes only easily parseable fixed

CA 03134210 2021-09-17

WO 2021/055552 PCT/US2020/051192

length codewords, that do not have any parsing dependency to other data in the bitstream such as,
for example, other NAL unit headers, parameter sets, and so on. As NAL unit headers are the
first octets in a NAL unit, MANESs can easily extract them, parse them, and act on them. Other
high level syntax elements, for example slice or tile headers, in contrast, are less easily accessible
to MANES as they may require keeping parameter set context and/or the processing of variable

length or arithmetically coded codepoints.

[0010] It can further be observed that the NAL unit headers as shown in Fig. 1 do not include
information that can associate a NAL unit to a coded picture that is composed of a plurality of
NAL units (such as, for example, comprising multiple tiles or slices, at least some of which being

packetized in individual NAL units).

[0011] Certain transport technologies such as RTP (RFC 3550), MPEG-system standards,
ISO file formats, and so on, may include certain information, often in the form of timing
information such as presentation time (in case of MPEG and ISO file format) or capture time (in
case of RTP) that can be easily accessible by MANESs and can help associating their respective
transport units with coded pictures. However, the semantics of these information can differ from
one transport/storage technology to another, and may have no direct relationship with the picture
structure used in the video coding. Accordingly, these information may be, at best, heuristics and
may also not be particularly well suited to identify whether or not NAL units in a NAL unit

stream belong to the same coded picture

SUMMARY
[0012] Embodiments relate to a method, system, and computer readable medium for video
coding. According to one aspect, a method for video coding is provided. The method may
include decoding coded syntax elements corresponding to wrap-around padding process. At least
one coded current picture is reconstructed using wrap-around padding process. The syntax
elements indicate an offset value for wrap-around processing; or left and right padding width

information.

[0013] According to another aspect, a computer system for video coding is provided. The
computer system may include one or more processors, one or more computer-readable memories,

one or more computer-readable tangible storage devices, and program instructions stored on at

CA 03134210 2021-09-17

WO 2021/055552 PCT/US2020/051192

least one of the one or more storage devices for execution by at least one of the one or more
processors via at least one of the one or more memories, whereby the computer system is capable
of performing a method. The method may include decoding coded syntax elements
corresponding to wrap-around padding process. At least one coded current picture is
reconstructed using wrap-around padding process. The syntax elements indicate an offset value

for wrap-around processing; or left and right padding width information.

[0014] According to yet another aspect, a computer readable medium for video coding is
provided. The computer readable medium may include one or more computer-readable storage
devices and program instructions stored on at least one of the one or more tangible storage
devices, the program instructions executable by a processor. The program instructions are
executable by a processor for performing a method that may accordingly include decoding coded
syntax elements corresponding to wrap-around padding process. At least one coded current
picture is reconstructed using wrap-around padding process. The syntax elements indicate an

offset value for wrap-around processing; or left and right padding width information.

BRIEF DESCRIPTION OF THE DRAWINGS
[0015] These and other objects, features and advantages will become apparent from the
following detailed description of illustrative embodiments, which is to be read in connection with
the accompanying drawings. The various features of the drawings are not to scale as the
illustrations are for clarity in facilitating the understanding of one skilled in the art in conjunction

with the detailed description. In the drawings:

FIG. 1 is a schematic illustration of NAL Unit Headers in accordance with H.264 and
H.265;

FIG. 2 is a schematic illustration of a simplified block diagram of a communication

system in accordance with an embodiment;

FIG. 3 is a schematic illustration of a simplified block diagram of a communication

system in accordance with an embodiment;

FIG. 4 is a schematic illustration of a simplified block diagram of a decoder in

accordance with an embodiment;

CA 03134210 2021-09-17

WO 2021/055552 PCT/US2020/051192

FIG. 5 is a schematic illustration of a simplified block diagram of an encoder in

accordance with an embodiment;

FIG. 6 is a schematic illustration of syntax elements for offset signaling in accordance

with an embodiment;

FIG. 7 1s a schematic illustration of syntax elements for padding width signaling of an

encoder in accordance with an embodiment;

FIG. 8 is a schematic illustration of a simplified block diagram of padding processing

of each sub-region (tile or sub-picture) in accordance with an embodiment;

FIG. 9 is a schematic illustration of syntax elements for padding offset signaling of

each sub-picture in accordance with an embodiment;

FIG. 10 is a schematic illustration of syntax elements for unified padding offset

signaling of each sub-picture in accordance with an embodiment; and

FIG. 11 is a schematic illustration of a computer system in accordance with an

embodiment.

DETAILED DESCRIPTION
[0016] Detailed embodiments of the claimed structures and methods are disclosed herein;
however, it can be understood that the disclosed embodiments are merely illustrative of the
claimed structures and methods that may be embodied in various forms. Those structures and
methods may, however, be embodied in many different forms and should not be construed as
limited to the exemplary embodiments set forth herein. Rather, these exemplary embodiments
are provided so that this disclosure will be thorough and complete and will fully convey the scope
to those skilled in the art. In the description, details of well-known features and techniques may

be omitted to avoid unnecessarily obscuring the presented embodiments.

[0017] Embodiments relate generally to the field of data processing, and more particularly to
video encoding and decoding. The following described exemplary embodiments provide a

system, method and computer program to, among other things, reconstruct a coded current

CA 03134210 2021-09-17

WO 2021/055552 PCT/US2020/051192

picture using a wrap-around padding process based on decoding coded syntax elements.
Therefore, some embodiments have the capacity to improve the field of computing by allowing

for coding of syntax elements to be used in the reconstruction of a compressed image.

[0018] As previously described, one purpose of video coding and decoding can be the
reduction of redundancy in the input video signal, through compression. Compression can help
reducing aforementioned bandwidth or storage space requirements, in some cases by two orders
of magnitude or more. Both lossless and lossy compression, as well as a combination thereof can
be employed. Lossless compression refers to techniques where an exact copy of the original
signal can be reconstructed from the compressed original signal. When using lossy compression,
the reconstructed signal may not be identical to the original signal, but the distortion between
original and reconstructed signal is small enough to make the reconstructed signal useful for the
intended application. In the case of video, lossy compression is widely employed. The amount
of distortion tolerated depends on the application; for example, users of certain consumer
streaming applications may tolerate higher distortion than users of television contribution
applications. The compression ratio achievable can reflect that: higher allowable/tolerable
distortion can yield higher compression ratios. However, when a picture is partitioned into one or
more sub-regions (tile, slice or sub-picture), boundary processing of each sub-region may affect
the coding efficiency and the subjective visual quality. Adaptive control of boundary processing
at each sub-region boundary is a key factor in 360 media processing. It may be advantageous,
therefore, to reconstruct a coded current picture using a wrap-around padding process based on

decoding coded syntax elements.

[0019] Aspects are described herein with reference to flowchart illustrations and/or block
diagrams of methods, apparatus (systems), and computer readable media according to the various
embodiments. It will be understood that each block of the flowchart illustrations and/or block
diagrams, and combinations of blocks in the flowchart illustrations and/or block diagrams, can be

implemented by computer readable program instructions.

[0020] The following described exemplary embodiments provide a system, method and
computer program that reconstructs a coded current picture using a wrap-around padding process

based on decoding coded syntax elements.

CA 03134210 2021-09-17

WO 2021/055552 PCT/US2020/051192

[0021] FIG. 2 illustrates a simplified block diagram of a communication system (200)
according to an embodiment of the present disclosure. The system (200) may include at least two
terminals (210-220) interconnected via a network (250). For unidirectional transmission of data,
a first terminal (210) may code video data at a local location for transmission to the other
terminal (220) via the network (250). The second terminal (220) may receive the coded video
data of the other terminal from the network (250), decode the coded data and display the
recovered video data. Unidirectional data transmission may be common in media serving

applications and the like.

[0022] FIG. 2 illustrates a second pair of terminals (230, 240) provided to support
bidirectional transmission of coded video that may occur, for example, during videoconferencing.
For bidirectional transmission of data, each terminal (230, 240) may code video data captured at a
local location for transmission to the other terminal via the network (250). Each terminal (230,
240) also may receive the coded video data transmitted by the other terminal, may decode the

coded data and may display the recovered video data at a local display device.

[0023] In FIG. 2, the terminals (210-240) may be illustrated as servers, personal computers
and smart phones but the principles of the present disclosure may be not so limited.
Embodiments of the present disclosure find application with laptop computers, tablet computers,
media players and/or dedicated video conferencing equipment. The network (250) represents any
number of networks that convey coded video data among the terminals (210-240), including for
example wireline and/or wireless communication networks. The communication network (250)
may exchange data in circuit-switched and/or packet-switched channels. Representative
networks include telecommunications networks, local area networks, wide area networks and/or
the Internet. For the purposes of the present discussion, the architecture and topology of the
network (250) may be immaterial to the operation of the present disclosure unless explained

herein below.

[0024] FIG. 3 illustrates, as an example for an application for the disclosed subject matter, the
placement of a video encoder and decoder in a streaming environment. The disclosed subject
matter can be equally applicable to other video enabled applications, including, for example,

video conferencing, digital TV, storing of compressed video on digital media including CD,

CA 03134210 2021-09-17

WO 2021/055552 PCT/US2020/051192

DVD, memory stick and the like, and so on.

[0025] A streaming system may include a capture subsystem (313), that can include a video
source (301), for example a digital camera, creating a for example uncompressed video sample
stream (302). That sample stream (302), depicted as a bold line to emphasize a high data volume
when compared to encoded video bitstreams, can be processed by an encoder (303) coupled to
the camera (301). The encoder (303) can include hardware, software, or a combination thereof to
enable or implement aspects of the disclosed subject matter as described in more detail below.
The encoded video bitstream (304), depicted as a thin line to emphasize the lower data volume
when compared to the sample stream, can be stored on a streaming server (305) for future use.
One or more streaming clients (306, 308) can access the streaming server (305) to retrieve copies
(307, 309) of the encoded video bitstream (304). A client (306) can include a video decoder
(310) which decodes the incoming copy of the encoded video bitstream (307) and creates an
outgoing video sample stream (311) that can be rendered on a display (312) or other rendering
device (not depicted). In some streaming systems, the video bitstreams (304, 307, 309) can be
encoded according to certain video coding/compression standards. Examples of those standards
include ITU-T Recommendation H.265. Under development is a video coding standard
informally known as Versatile Video Coding or VVC. The disclosed subject matter may be used

in the context of VVC.

[0026] FIG. 4 may be a functional block diagram of a video decoder (310) according to an

embodiment of the present disclosure.

[0027] A receiver (410) may receive one or more codec video sequences to be decoded by the
decoder (310); in the same or another embodiment, one coded video sequence at a time, where
the decoding of each coded video sequence is independent from other coded video sequences.
The coded video sequence may be received from a channel (412), which may be a
hardware/software link to a storage device which stores the encoded video data. The receiver
(410) may receive the encoded video data with other data, for example, coded audio data and/or
ancillary data streams, that may be forwarded to their respective using entities (not depicted).

The receiver (410) may separate the coded video sequence from the other data. To combat

network jitter, a buffer memory (415) may be coupled in between receiver (410) and entropy

CA 03134210 2021-09-17

WO 2021/055552 PCT/US2020/051192

decoder / parser (420) (“parser” henceforth). When receiver (410) is receiving data from a
store/forward device of sufficient bandwidth and controllability, or from an isosychronous
network, the buffer (415) may not be needed, or can be small. For use on best effort packet
networks such as the Internet, the buffer (415) may be required, can be comparatively large and

can advantageously of adaptive size.

[0028] The video decoder (310) may include an parser (420) to reconstruct symbols (421)
from the entropy coded video sequence. Categories of those symbols include information used to
manage operation of the decoder (310), and potentially information to control a rendering device
such as a display (312) that is not an integral part of the decoder but can be coupled to it, as was
shown in Fig, 3. The control information for the rendering device(s) may be in the form of
Supplementary Enhancement Information (SEI messages) or Video Usability Information (VUI)
parameter set fragments (not depicted). The parser (420) may parse / entropy-decode the coded
video sequence received. The coding of the coded video sequence can be in accordance with a
video coding technology or standard, and can follow principles well known to a person skilled in
the art, including variable length coding, Huffman coding, arithmetic coding with or without
context sensitivity, and so forth. The parser (420) may extract from the coded video sequence, a
set of subgroup parameters for at least one of the subgroups of pixels in the video decoder, based
upon at least one parameter corresponding to the group. Subgroups can include Groups of
Pictures (GOPs), pictures, tiles, slices, macroblocks, Coding Units (CUs), blocks, Transform
Units (TUs), Prediction Units (PUs) and so forth. The entropy decoder / parser may also extract
from the coded video sequence information such as transform coefficients, quantizer parameter

values, motion vectors, and so forth.

[0029] The parser (420) may perform entropy decoding / parsing operation on the video

sequence received from the buffer (415), so to create symbols (421).

[0030] Reconstruction of the symbols (421) can involve multiple different units depending on
the type of the coded video picture or parts thereof (such as: inter and intra picture, inter and intra
block), and other factors. Which units are involved, and how, can be controlled by the subgroup

control information that was parsed from the coded video sequence by the parser (420). The flow

of such subgroup control information between the parser (420) and the multiple units below is not

CA 03134210 2021-09-17

WO 2021/055552 PCT/US2020/051192

depicted for clarity.

[0031] Beyond the functional blocks already mentioned, decoder 310 can be conceptually
subdivided into a number of functional units as described below. In a practical implementation
operating under commercial constraints, many of these units interact closely with each other and
can, at least partly, be integrated into each other. However, for the purpose of describing the

disclosed subject matter, the conceptual subdivision into the functional units below is appropriate.

[0032] A first unit is the scaler / inverse transform unit (451). The scaler / inverse transform
unit (451) receives quantized transform coefficient as well as control information, including
which transform to use, block size, quantization factor, quantization scaling matrices, etc. as
symbol(s) (421) from the parser (420). It can output blocks comprising sample values, that can
be input into aggregator (455).

[0033] In some cases, the output samples of the scaler / inverse transform (451) can pertain to
an intra coded block; that is: a block that is not using predictive information from previously
reconstructed pictures, but can use predictive information from previously reconstructed parts of
the current picture. Such predictive information can be provided by an intra picture prediction
unit (452). In some cases, the intra picture prediction unit (452) generates a block of the same
size and shape of the block under reconstruction, using surrounding already reconstructed
information fetched from the current (partly reconstructed) picture (456). The aggregator (455),
in some cases, adds, on a per sample basis, the prediction information the intra prediction unit
(452) has generated to the output sample information as provided by the scaler / inverse

transform unit (451).

[0034] In other cases, the output samples of the scaler / inverse transform unit (451) can
pertain to an inter coded, and potentially motion compensated block. In such a case, a Motion
Compensation Prediction unit (453) can access reference picture memory (457) to fetch samples
used for prediction. After motion compensating the fetched samples in accordance with the
symbols (421) pertaining to the block, these samples can be added by the aggregator (455) to the
output of the scaler / inverse transform unit (in this case called the residual samples or residual
signal) so to generate output sample information. The addresses within the reference picture

memory form where the motion compensation unit fetches prediction samples can be controlled

10

CA 03134210 2021-09-17

WO 2021/055552 PCT/US2020/051192

by motion vectors, available to the motion compensation unit in the form of symbols (421) that
can have, for example X, Y, and reference picture components. Motion compensation also can
include interpolation of sample values as fetched from the reference picture memory when sub-

sample exact motion vectors are in use, motion vector prediction mechanisms, and so forth.

[0035] The output samples of the aggregator (455) can be subject to various loop filtering
techniques in the loop filter unit (456). Video compression technologies can include in-loop filter
technologies that are controlled by parameters included in the coded video bitstream and made
available to the loop filter unit (456) as symbols (421) from the parser (420), but can also be
responsive to meta-information obtained during the decoding of previous (in decoding order)
parts of the coded picture or coded video sequence, as well as responsive to previously

reconstructed and loop-filtered sample values.

[0036] The output of the loop filter unit (456) can be a sample stream that can be output to
the render device (312) as well as stored in the reference picture memory (456) for use in future

inter-picture prediction.

[0037] Certain coded pictures, once fully reconstructed, can be used as reference pictures for
future prediction. Once a coded picture is fully reconstructed and the coded picture has been
identified as a reference picture (by, for example, parser (420)), the current reference picture
(456) can become part of the reference picture buffer (457), and a fresh current picture memory

can be reallocated before commencing the reconstruction of the following coded picture..

[0038] The video decoder 420 may perform decoding operations according to a
predetermined video compression technology that may be documented in a standard, such as
ITU-T Rec. H.265. The coded video sequence may conform to a syntax specified by the video
compression technology or standard being used, in the sense that it adheres to the syntax of the
video compression technology or standard, as specified in the video compression technology
document or standard and specifically in the profiles document therein. Also necessary for
compliance can be that the complexity of the coded video sequence is within bounds as defined
by the level of the video compression technology or standard. In some cases, levels restrict the
maximum picture size, maximum frame rate, maximum reconstruction sample rate (measured in,

for example megasamples per second), maximum reference picture size, and so on. Limits set by

11

CA 03134210 2021-09-17

WO 2021/055552 PCT/US2020/051192

levels can, in some cases, be further restricted through Hypothetical Reference Decoder (HRD)

specifications and metadata for HRD buffer management signaled in the coded video sequence.

[0039] In an embodiment, the receiver (410) may receive additional (redundant) data with the
encoded video. The additional data may be included as part of the coded video sequence(s). The
additional data may be used by the video decoder (420) to properly decode the data and/or to
more accurately reconstruct the original video data. Additional data can be in the form of, for
example, temporal, spatial, or SNR enhancement layers, redundant slices, redundant pictures,

forward error correction codes, and so on.

[0040] FIG. 5 may be a functional block diagram of a video encoder (303) according to an

embodiment of the present disclosure.

[0041] The encoder (303) may receive video samples from a video source (301) (that is not

part of the encoder) that may capture video image(s) to be coded by the encoder (303).

[0042] The video source (301) may provide the source video sequence to be coded by the
encoder (303) in the form of a digital video sample stream that can be of any suitable bit depth
(for example: 8 bit, 10 bit, 12 bit, ...), any colorspace (for example, BT.601 Y CrCB, RGB, ...)
and any suitable sampling structure (for example Y CrCb 4:2:0, Y CrCb 4:4:4). In a media
serving system, the video source (301) may be a storage device storing previously prepared
video. In a videoconferencing system, the video source (303) may be a camera that captures local
image information as a video sequence. Video data may be provided as a plurality of individual
pictures that impart motion when viewed in sequence. The pictures themselves may be organized
as a spatial array of pixels, wherein each pixel can comprise one or more sample depending on
the sampling structure, color space, etc. in use. A person skilled in the art can readily understand

the relationship between pixels and samples. The description below focusses on samples.

[0043] According to an embodiment, the encoder (303) may code and compress the pictures
of the source video sequence into a coded video sequence (543) in real time or under any other
time constraints as required by the application. Enforcing appropriate coding speed is one
function of Controller (550). Controller controls other functional units as described below and is

functionally coupled to these units. The coupling is not depicted for clarity. Parameters set by

12

CA 03134210 2021-09-17

WO 2021/055552 PCT/US2020/051192

controller can include rate control related parameters (picture skip, quantizer, lambda value of
rate-distortion optimization techniques, ...), picture size, group of pictures (GOP) layout,
maximum motion vector search range, and so forth. A person skilled in the art can readily
identify other functions of controller (550) as they may pertain to video encoder (303) optimized

for a certain system design.

[0044] Some video encoders operate in what a person skilled in the are readily recognizes as
a “coding loop”. As an oversimplified description, a coding loop can consist of the encoding part
of an encoder (530) (“source coder” henceforth) (responsible for creating symbols based on an
input picture to be coded, and a reference picture(s)), and a (local) decoder (533) embedded in the
encoder (303) that reconstructs the symbols to create the sample data a (remote) decoder also
would create (as any compression between symbols and coded video bitstream is lossless in the
video compression technologies considered in the disclosed subject matter). That reconstructed
sample stream is input to the reference picture memory (534). As the decoding of a symbol
stream leads to bit-exact results independent of decoder location (local or remote), the reference
picture buffer content is also bit exact between local encoder and remote encoder. In other
words, the prediction part of an encoder “sees” as reference picture samples exactly the same
sample values as a decoder would “see” when using prediction during decoding. This
fundamental principle of reference picture synchronicity (and resulting drift, if synchronicity
cannot be maintained, for example because of channel errors) is well known to a person skilled in

the art.

[0045] The operation of the “local” decoder (533) can be the same as of a “remote” decoder
(310), which has already been described in detail above in conjunction with Fig. 4. Briefly
referring also to Fig 4, however, as symbols are available and en/decoding of symbols to a coded
video sequence by entropy coder (545) and parser (420) can be lossless, the entropy decoding
parts of decoder (310), including channel (412), receiver (410), buffer (415), and parser (420)
may not be fully implemented in local decoder (533).

[0046] An observation that can be made at this point is that any decoder technology except
the parsing/entropy decoding that is present in a decoder also necessarily needs to be present, in

substantially identical functional form, in a corresponding encoder. For this reason, the disclosed

13

CA 03134210 2021-09-17

WO 2021/055552 PCT/US2020/051192

subject matter focusses on decoder operation. The description of encoder technologies can be
abbreviated as they are the inverse of the comprehensively described decoder technologies. Only

in certain areas a more detail description is required and provided below.

[0047] As part of its operation, the source coder (530) may perform motion compensated
predictive coding, which codes an input frame predictively with reference to one or more
previously-coded frames from the video sequence that were designated as “reference frames.” In
this manner, the coding engine (532) codes differences between pixel blocks of an input frame
and pixel blocks of reference frame(s) that may be selected as prediction reference(s) to the input

frame.

[0048] The local video decoder (533) may decode coded video data of frames that may be
designated as reference frames, based on symbols created by the source coder (530). Operations
of the coding engine (532) may advantageously be lossy processes. When the coded video data
may be decoded at a video decoder (not shown in FIG. 5), the reconstructed video sequence
typically may be a replica of the source video sequence with some errors. The local video
decoder (533) replicates decoding processes that may be performed by the video decoder on
reference frames and may cause reconstructed reference frames to be stored in the reference
picture cache (534). In this manner, the encoder (303) may store copies of reconstructed
reference frames locally that have common content as the reconstructed reference frames that will

be obtained by a far-end video decoder (absent transmission errors).

[0049] The predictor (535) may perform prediction searches for the coding engine (532).
That is, for a new frame to be coded, the predictor (535) may search the reference picture
memory (534) for sample data (as candidate reference pixel blocks) or certain metadata such as
reference picture motion vectors, block shapes, and so on, that may serve as an appropriate
prediction reference for the new pictures. The predictor (535) may operate on a sample block-by-
pixel block basis to find appropriate prediction references. In some cases, as determined by
search results obtained by the predictor (535), an input picture may have prediction references

drawn from multiple reference pictures stored in the reference picture memory (534).

[0050] The controller (550) may manage coding operations of the video coder (530),

including, for example, setting of parameters and subgroup parameters used for encoding the

14

CA 03134210 2021-09-17

WO 2021/055552 PCT/US2020/051192

video data.

[0051] Output of all aforementioned functional units may be subjected to entropy coding in
the entropy coder (545). The entropy coder translates the symbols as generated by the various
functional units into a coded video sequence, by loss-less compressing the symbols according to
technologies known to a person skilled in the art as, for example Huffman coding , variable

length coding, arithmetic coding, and so forth.

[0052] The transmitter (540) may buffer the coded video sequence(s) as created by the
entropy coder (545) to prepare it for transmission via a communication channel (560), which may
be a hardware/software link to a storage device which would store the encoded video data. The
transmitter (540) may merge coded video data from the video coder (530) with other data to be

transmitted, for example, coded audio data and/or ancillary data streams (sources not shown).

[0053] The controller (550) may manage operation of the encoder (303). During coding, the
controller (550) may assign to each coded picture a certain coded picture type, which may affect
the coding techniques that may be applied to the respective picture. For example, pictures often

may be assigned as one of the following frame types:

[0054] An Intra Picture (I picture) may be one that may be coded and decoded without using
any other frame in the sequence as a source of prediction. Some video codecs allow for different
types of Intra pictures, including, for example Independent Decoder Refresh Pictures. A person
skilled in the art is aware of those variants of I pictures and their respective applications and

features.

[0055] A Predictive picture (P picture) may be one that may be coded and decoded using
intra prediction or inter prediction using at most one motion vector and reference index to predict

the sample values of each block.

[0056] A Bi-directionally Predictive Picture (B Picture) may be one that may be coded and
decoded using intra prediction or inter prediction using at most two motion vectors and reference
indices to predict the sample values of each block. Similarly, multiple-predictive pictures can use

more than two reference pictures and associated metadata for the reconstruction of a single block.

15

CA 03134210 2021-09-17

WO 2021/055552 PCT/US2020/051192

[0057] Source pictures commonly may be subdivided spatially into a plurality of sample
blocks (for example, blocks of 4x4, 8x8, 4x8, or 16x16 samples each) and coded on a block-by-
block basis. Blocks may be coded predictively with reference to other (already coded) blocks as
determined by the coding assignment applied to the blocks’ respective pictures. For example,
blocks of I pictures may be coded non-predictively or they may be coded predictively with
reference to already coded blocks of the same picture (spatial prediction or intra prediction).
Pixel blocks of P pictures may be coded non-predictively, via spatial prediction or via temporal
prediction with reference to one previously coded reference pictures. Blocks of B pictures may
be coded non-predictively, via spatial prediction or via temporal prediction with reference to one

or two previously coded reference pictures.

[0058] The video coder (303) may perform coding operations according to a predetermined
video coding technology or standard, such as ITU-T Rec. H.265. In its operation, the video coder
(303) may perform various compression operations, including predictive coding operations that
exploit temporal and spatial redundancies in the input video sequence. The coded video data,
therefore, may conform to a syntax specified by the video coding technology or standard being

used.

[0059] In an embodiment, the transmitter (540) may transmit additional data with the
encoded video. The video coder (530) may include such data as part of the coded video
sequence. Additional data may comprise temporal/spatial/ SNR enhancement layers, other forms
of redundant data such as redundant pictures and slices, Supplementary Enhancement
Information (SEI) messages, Visual Usability Information (VUI) parameter set fragments, and so

on.

[0060] In an embodiment, 360 video is captured by a set of cameras or a camera device with
multiple lenses. The cameras typically cover omni-directions around the centre point of the
camera set. The images of the same time instance are stitched, possibly rotated, projected, and
mapped onto a picture. The packed pictures are encoded as coded to a coded video bitstream, and
streamed, according to a particular media container file format. The file includes metadata such

as projection and packing information.

[0061] In an embodiment, 360 video may be projected to 2D video, using equirectangular

16

CA 03134210 2021-09-17

WO 2021/055552 PCT/US2020/051192

projection (ERP). The ERP projection may result in seam artifacts. The padded ERP (PERP)
format may effectively reduce the seam artifacts in reconstructed viewports that encompass the
left and right boundaries of the ERP picture. However, padding and blending may not be

sufficient to completely resolve the seam issue.

[0062] In an embodiment, a horizontal geometry padding may be applied for ERP or PERP to
reduce seam artifact. The padding process for PERP may be the same as for ERP, with the
exception that the offset may be based on the unpadded ERP width instead of the picture width to
account for the size of the padded regions. If a reference block is outside the left (right) reference
picture boundary, it may be replaced with the “wrapped-around” reference block shifted to the
right (left) by the ERP width. The traditional repetitive padding may be employed in the vertical
direction. The blending of the left and right padded regions is kept out of loop, as a post-

processing operation.

[0063] In an embodiment, a syntax to enable horizontal geometry padding of reference

pictures for the ERP and PERP formats is shown in Fig. 6.

[0064] sps_ref wraparound_enabled flag (602) equal to 1 specifies that horizontal wrap-
around motion compensation is used for inter prediction. sps_ref wraparound enabled flag equal

to 0 specifies that this motion compensation method is not applied.

[0065] ref_wraparound_offset (603) specifies the offset in luma samples used for
computing the horizontal wrap-around position. ref wraparound_offset shall be greater than
pic_width in luma samples - 1, shall not be greater than pic_width_in_luma samples, and shall

be an integer multiple of MinCbSizeY.

[0066] In an embodiment, syntax elements to enable horizontal geometry padding of

reference pictures for the ERP and PERP formats are shown in Fig. 7.

[0067] sps_ref wraparound_enabled flag (702) equal to 1 specifies that horizontal wrap-
around motion compensation is used for inter prediction. sps_ref wraparound enabled flag equal

to 0 specifies that this motion compensation method is not applied.

[0068] left wraparound_padding_ width (703) specifies the width of left-side padding

17

CA 03134210 2021-09-17

WO 2021/055552 PCT/US2020/051192

region in luma samples. ref wraparound_offset shall be larger than or equal to 0, shall not be

larger than pic_width_in_luma samples /2, and shall be an integer multiple of MinCbSizeY.

[0069] right wraparound padding_width (704) specifies the width of right-side padding
region in luma samples. ref wraparound_offset shall be larger than or equal to 0, shall not be

larger than pic_width_in_luma samples /2, and shall be an integer multiple of MinCbSizeY.

[0070] Referring now to FIG. 8, an operational flowchart illustrating the steps of a method
900 for encoding video data is depicted.

[0071] At 901, the method 900 includes parsing a parameter set.
[0072] At 902, the method 900 includes decoding picture partitioning information.

[0073] At 903, the method 900 includes determining whether padding is applied to the

boundaries of sub-regions.

[0074] At 904, the method 900 includes parsing the padding type if padding is applied to the

boundaries of sub-regions.

[0075] At 905, the method 900 includes decoding each sub-region without padding if padding

is not applied to the boundaries of sub-regions.

[0076] At 906, the method 900 includes determining whether wrap-around padding is
applied.

[0077] At 907, the method 900 includes padding the boundaries of sub-regions with wrap-
around padding if wrap-around padding is applied.

[0078] At 908, the method 900 includes padding the boundaries of sub-regions with non-

wrap-around padding if wrap-around padding is not applied.

[0079] In an embodiment, the wrap-around offset value may be obtained by the following
derivation process:
if ref wraparound_offset is present

wrapAroundOffset = ref wraparound offset

18

CA 03134210 2021-09-17

WO 2021/055552 PCT/US2020/051192

else if left wraparound padding width and right wraparound padding width are
present
wrapAroundOffset = pic_width_in luma samples —
(left wraparound padding width + right wraparound padding width)
else

wrapAroundOffset = pic_width _in luma samples

[0080] In an embodiment, to enable horizontal geometry padding of reference pictures for the

ERP and PERP formats, the luma and chroma sample interpolation processes may be modified.

X z<X
Clip3(x,y,z)={y ; z>y
z ; otherwise
(o—=(—x)%o0)%o ; x<0
ClipH(o,W,x)Z{(x—W)%0+W—0 ; x>P—1
X . otherwise

2

[0081] Luma sample interpolation process. Inputs to this process may include a luma
location in full-sample units (xIntr, yInt), a luma location in fractional-sample units
(xFracr, yFracy), and the luma reference sample array refPicLX;. Outputs of this process may

include a predicted luma sample value predSampleL X,

[0082] The variables shiftl, shift2 and shift3 are derived as follows. The variable shift] is set
equal to Min(4, BitDepthy — 8), the variable shift2 is set equal to 6 and the variable shift3 is set
equal to Max(2, 14 — BitDepthy). The variable picW is set equal to

pic width in luma samples and the variable picH is set equal to pic_height in luma_samples.
The variable xOffset is set equal to wrapAroundOffset. The luma interpolation filter coefficients

fi] p] for each 1/16 fractional sample position p equal to xFracy, or yFraci, may be specified.

[0083] The predicted luma sample value predSampleL Xy, is derived as follows. If both
xFracrand yFracy, are equal to O, the following applies. If sps_ref wraparound enabled flag is
equal to 0, the value of predSampleL X, is derived as predSamplelL. X, =

refPicLXy[Clip3(0, picW — 1, xInt,)][Clip3(0, picH — 1, yInty)] <<shift3. Otherwise, the
value of predSampleLX], is derived as: predSampleL X, =

refPicLXy[ClipH(xOffset, picW, xIntr,)][Clip3(0, picH — 1, yIntr,)] << shift3. Otherwise if

19

CA 03134210 2021-09-17

WO 2021/055552 PCT/US2020/051192

xFracr.is not equal to 0 and yFracy. is equal to O, the following applies. The value of yPosy is

derived as yPost, = Clip3(0, picH — 1, yInty).

[0084] If sps_ref wraparound enabled flagis equal to O, the value of predSampleLX is
derived as follows:

predSampleL X =
(fi[xFracy,][0] * refPicLXy[Clip3(0, picW — 1, xIntp, —3)][yPosr] +

fi[xFracy][1] * refPicLXy[Clip3(0, picW — 1, xIntp, —2)][yPosr | +

f1[xFracy][2] * refPicLXy[Clip3(0, picW — 1, xIntp, — 1)][yPosr | +

fL] xFracy J[3] * refPicLXy[Clip3(0, picW — 1, xIntr,)][yPosL] +

f1[xFracy][4] * refPicLXy[Clip3(0, picW — 1, xIntp, + 1)][yPosr | +

fi[xFracy][5] * refPicLXy[Clip3(0, picW — 1, xInty, + 2)][yPosr | +

f1[xFracy][6] * refPicLXy[Clip3(0, picW — 1, xInty, + 3)][yPosr | +

fi[xFracy,][7] * refPicLXy[Clip3(0, picW — 1, xInty, + 4)][yPost |) >> shiftl

[0085] Otherwise, the value of predSampleL X\, is derived as follows:
predSampleL Xy, = ({L[xFracr][0] * refPicLXy[ClipH(xOffset, picW, xInt, —3)][yPosr | +
fi[xFracy][1] * refPicLXy[ClipH(xOffset, picW, xIntp, —2)][yPost | +
f1[xFracy [2] * refPicLXy[ClipH(xOffset, picW, xIntp, — 1)][yPost | +
f1[xFracy][3] * refPicLX1[ClipH(xOffset, picW, xIntr,)][yPosr] +
f1[xFracy][4] * refPicLXy[ClipH(xOffset, picW, xInt, + 1)][yPosr | +
f1[xFracy][5] * refPicLXy[ClipH(xOffset, picW, xInt;, +2)][yPost | +
f1[xFracy,][6] * refPicL X[ClipH(xOffset, picW, xInt;, + 3)][yPost, | +
fi[xFracy][7] * refPicLX1[ClipH(xOffset, picW, xInt;, + 4)][yPosr]) >> shift.

[0086] Otherwise if xFracy.is equal to 0 and yFracy, is not equal to O, the value of
predSampleL X, is derived as follows. If sps_ref wraparound enabled flag is equal to O, the
value of xPosy, is derived as xPos;, = Clip3(0, picW — 1, xInt;,). Otherwise, the value of xPosy, is

derived as: xPost, = ClipH(xOffset, picW, xInty,).

[0087] The predicted luma sample value predSampleL X}, is derived as follows:
predSampleL Xy = ({1 yFracr][0] * refPicLXy[xPost.][Clip3(0, picH— 1, yInt., =3)] +
fi] yFracy][1] * refPicLX1[xPost.][Clip3(0, picH— 1, yIntp, —2)] +

20

CA 03134210 2021-09-17

WO 2021/055552 PCT/US2020/051192

fi[yFracy][2] * refPicLX1[xPost.][Clip3(0, picH— 1, yIntp, — 1)] +

f1[yFracy][3] * refPicL X[xPost.][Clip3(0, picH— 1, yIntr,) | +

f1[yFracy][4] * refPicLXy1[xPost,][Clip3(0, picH— 1, yInt, + 1)] +

fi[yFracy][5] * refPicLXy[xPost.][Clip3(0, picH— 1, yInt, +2)] +

f1[yFracy][6] * refPicL X[xPost][Clip3(0, picH— 1, yInt., +3)] +

f1] yFracy,][7] * refPicLXy[xPost,][Clip3(0, picH — 1, yInt;, + 4)]) >> shiftl.

[0088] Otherwise if xFracy is not equal to O and yFracy. is not equal to 0, the value of
predSampleL X, is derived as follows. If sps_ref wraparound enabled flag is equal to O, the
sample array temp[n] with n =0..7, is derived as follows:
yPos. = Clip3(0, picH— 1, ylnt, + n—3)
temp[n | = (fi[xFracy,][0] * refPicLXy[Clip3(O, picW — 1, xInt;, — 3)][yPosr] +

fi[xFracy][1] * refPicLXy[Clip3(0, picW — 1, xIntp, —2)][yPosr | +

f1[xFracy][2] * refPicLXy[Clip3(0, picW — 1, xIntp, — 1)][yPosr | +

fi[xFracy][3] * refPicLXy[Clip3(0, picW — 1, xInty,)][yPost,] +

f1[xFracy][4] * refPicLXy[Clip3(0, picW — 1, xIntp, + 1)][yPosr | +

fi[xFracy][5] * refPicLXy[Clip3(0, picW — 1, xInty, + 2)][yPosr | +

f1[xFracy][6] * refPicLXy[Clip3(0, picW — 1, xInty, + 3)][yPosr | +

f1] xFracy][7] * refPicLXy[Clip3(0, picW — 1, xInty, + 4)][yPost, |) >> shiftl.

[0089] Otherwise, the sample array temp[n] with n=0..7, is derived as follows:
yPosL = Clip3(0, picH— 1, yInt. +n—3)
temp[n | = (fi[xFracy,][0] * refPicLX;[ClipH(xOffset, picW, xInt;, — 3)][yPost, | +
fi[xFracy][1] * refPicLXy[ClipH(xOffset, picW, xIntp, —2)][yPost | +
f1[xFracy [2] * refPicLXy[ClipH(xOffset, picW, xIntp, — 1)][yPost | +
f1[xFracy][3] * refPicLX1[ClipH(xOffset, picW, xIntr,)][yPosr] +
f1[xFracy,][4] * refPicLX;[ClipH(xOffset, picW, xInt;, + 1)][yPost, | +
fi[xFracy,][5] * refPicLX;[ClipH(xOffset, picW, xInt;, + 2)][yPost, | +
f1[xFracy][6] * refPicLXy[ClipH(xOffset, picW, xInt;, + 3)][yPost | +
f1[xFracy][7] * refPicLXy[ClipH(xOffset, picW, xInty, + 4)][yPost]) >> shiftl.

[0090] The predicted luma sample value predSampleL X}, is derived as follows:

21

CA 03134210 2021-09-17

WO 2021/055552 PCT/US2020/051192

predSampleL Xy, = ({1 yFracL][0] * temp[O] +
fi[yFracL J[1] *temp[1]+
fi[yFracL [[2] *temp[2] +
fi[yFracL [[3] *temp[3]+
fi] yFracL][4] * temp[4] +
fi[yFrac, J[5] * temp[5]+
fi[yFracL][6] *temp[6] +
fi[yFracy [7] * temp[7]) >> shift2.

[0091] Chroma sample interpolation process. Inputs to this process may include a chroma
location in full-sample units (xIntc, ylntc), a chroma location in 1/32 fractional-sample units
(xFracc, yFracc), and the chroma reference sample array refPicLXc. Outputs of this process

may include a predicted chroma sample value predSampleLXc

[0092] The variables shift1, shift2 and shift3 are derived as follows. The variable shift] is set
equal to Min(4, BitDepthc — 8), the variable shift2 is set equal to 6 and the variable shift3 is set
equal to Max(2, 14 — BitDepthc). The variable picWc is set equal to
pic_width in luma samples / SubWidthC and the variable picHc is set equal to
pic_height in luma samples/ SubHeightC. The variable xOffsetc is set equal to
wrapAroundOffset / SubWidthC. The luma interpolation filter coefficients fc[p] for each 1/32

fractional sample position p equal to xFracc or yFracc may be specified.

[0093] The predicted chroma sample value predSampleLXc is derived as follows. If both
xFracc and yFracc are equal to 0, the following applies. If sps_ref wraparound enabled flagis
equal to 0, the value of predSampleLXc is derived as:

predSampleLXc = refPicLXc[Clip3(0, picW¢ — 1, xIntc)][Clip3(0, picHc — 1, yIntc)] <<
shift3.

[0094] Otherwise, the value of predSampleLXc is derived as predSampleLX¢ =
refPicLX¢[ClipH(xOffsetc, picWc, xIntc)][Clip3(0, picHc — 1, yIntc)] << shift3.—

[0095] Otherwise if xFracc is not equal to 0 and yFracc is equal to 0, the following applies.
The value of yPosc is derived as yPosc = Clip3(0, picHc — 1, yIntc). If

22

CA 03134210 2021-09-17

WO 2021/055552 PCT/US2020/051192

sps_ref wraparound enabled flag is equal to O, the value of predSampleL.Xc is derived as:
predSampleLXc = (fc[xFracc][0] * refPicLXc[Clip3(0, picWc — 1, xIntc — 1)][yIntc | +
fc[xFrace][1] * refPicLXc[Clip3(0, picWc — 1, xIntc)][yIntc] +
fc[xFrace][2] * refPicLXc[Clip3(0, picWc — 1, xIntc + 1)][yIntc] +
fc[xFrace][3] * refPicLXc[Clip3(0, picWc — 1, xIntc + 2)][yIntc]) >> shiftl.

[0096] Otherwise, the value of predSamplelXc is derived as:

predSampleL.Xc =

(fc[xFracc][0] * refPicLXc[ClipH(xOffsetc, picWc, xIntc — 1)][yPosc | +

fc[xFracc][1] * refPicLXc[ClipH(xOffsetc, picWc, xIntc)][yPosc] +

fc[xFrace][2] * refPicLXc[ClipH(xOffsetc, picWc, xIntc + 1)][yPosc | +

fc[xFrace][3] * refPicLXc[ClipH(xOffsetc, picWc, xIntc + 2)][yPosc |) >> shiftl.

[0097] Otherwise if xFracc is equal to 0 and yFracc is not equal to 0, the value of
predSampleLXc is derived as follows. If sps ref wraparound enabled flag is equal to O, the
value of xPosc is derived as: xPosc = Clip3(0, picW¢ — 1, xIntc). Otherwise, the value of xPosc

is derived as: xPosc = ClipH(xOffsetc, picWc, xIntc)

[0098] The predicted chroma sample value predSampleLXc is derived as follows:
predSampleLXc = (fc[yFracc][0] * refPicLXc[xPosc][Clip3(0, picHc — 1, yIntc — 1)] +
fc[yFracc][1] * refPicLXc[xPosc][Clip3(0, picHc — 1, yIntc)] +
fc[yFracc][2] * refPicLXc[xPosc][Clip3(0, picHc — 1, yIntc + 1)] +
fc[yFracc][3] * refPicLXc[xPosc][Clip3(0, picHc — 1, yIntc + 2)]) >> shiftl.

[0099] Otherwise if xFracc is not equal to 0 and yFracc is not equal to 0, the value of
predSampleLXc is derived as follows. If sps ref wraparound enabled flag is equal to O, the
sample array temp[n] with n =0..3, is derived as follows:
yPosc = Clip3(0, picHc — 1, ylntc +n— 1)
temp[n] = (fc[xFracc][0] * refPicLXc[Clip3(0, picW¢c — 1, xIntc — 1)][yPosc] +

fc[xFrace][1] * refPicLXc[Clip3(0, picWc — 1, xIntc)][yPosc] +

fc[xFrace][2] * refPicLXc[Clip3(0, picWc — 1, xIntc + 1)][yPosc | +

fc[xFrace][3] * refPicLXc[Clip3(0, picWc — 1, xIntc + 2)][yPosc |) >> shiftl.

23

CA 03134210 2021-09-17

WO 2021/055552 PCT/US2020/051192

[0100] Otherwise, the sample array temp[n] with n = 0..3, is derived as follows:

yPosc = Clip3(0, picHc — 1, yIntc +n—1)

temp[n] = (fc[xFracc][0] * refPicLXc[ClipH(xOffsetc, picWc, xIntc — 1)][yPosc | +
fc[xFrace][1] * refPicLXc[ClipH(xOffsetc, picWc, xIntc)][yPosc] +

fc[xFrace][2] * refPicLXc[ClipH(xOffsetc, picWc, xIntc + 1)][yPosc | +

fc[xFrace][3] * refPicLXc[ClipH(xOffsetc, picW¢, xIntc + 2)][yPosc |) >> shiftl.

[0101] The predicted chroma sample value predSampleLXc is derived as follows:
predSampleLXc = (fc[yFracc][O0] * temp[O] +

fc[yFracc][1] *temp[1] +

fc[yFracc][2] * temp[2] +

fc[yFracc][3] * temp[3]) >> shift2.

[0102] In an embodiment, if sps_ref wraparound enabled flagis equal to O or is not present,
a traditional repetitive padding may be applied. Otherwise, the wrap-around padding may be

applied.

[0103] In an embodiment, the wrap-around padding may be applied at both horizontal and
vertical boundaries. A flag in a high level syntax structure may indicate the wrap-around padding

is applied in both horizontal and vertical.

[0104] In an embodiment, the wrap-around padding may be applied at tile or tile group
boundaries. A flag in a high level syntax structure may indicate the wrap-around padding is

applied in both horizontal and vertical.

[0105] In an embodiment, the reference picture may be identical to the current picture for
motion compensated prediction. The wrap-around padding may be applied at the boundary of the

current picture, when the current picture is the reference.

[0106] In an embodiment, when a picture is partitioned into one or more sub-picture, which is
a rectangular region of one or more slices, the boundary of each sub-picture may or may not be
handled as a picture boundary. Treating a sub-picture as a picture indicates that the boundary of

each sub-picture may be padded for motion compensated prediction.

24

CA 03134210 2021-09-17

WO 2021/055552 PCT/US2020/051192

[0107] Referring to FIG. 9, in SPS (or any other parameter set), subpic_treated as pic_flag[i
] equal to 1 specifies that the i-th subpicture of each coded picture in the CVS is treated as a
picture in the decoding process. subpic treated as pic flag[1] equal to O specifies that the i-th
subpicture of each coded picture in the CVS is not treated as a picture in the decoding process.

When not present, the value of subpic_treated as pic flag[i] is inferred to be equal to 0.

[0108] In the same embodiment, when subpic treated as pic flag[i] is equal to 1, which
indicates that the i-th sub-picture is treated as a picture, a flag

subpic_ref wraparound enabled flag[i] is signaled. subpic ref wraparound enabled flag| i]
equal to 1. subpic_ref wraparound enabled flag[i] equal to 1 specifies that horizontal wrap-
around motion compensation is applied in inter prediction at the boundary of the i-th sub-picture
of each coded picture. sps_ref wraparound enabled flag[i] equal to O specifies that horizontal
wrap-around motion compensation is not applied at the boundary of the i-th sub-picture of each

coded picture.

[0109] In the same embodiment, subpic_ref wraparound offset minusl1[1 | plus 1 specifies
the offset of the i-th sub-picture of each coded picture, used for computing the horizontal wrap-

around position in units of MinCbSizeY luma samples.

[0110] In the same embodiment, the interploation filtering process is as follows. Luma
sample interpolation filtering process. Inputs to this process may include a luma location in full-
sample units (xIntr, yIntr), a luma location in fractional-sample units (xFracr, yFracy), a luma
location in full-sample units (xSbIntr, ySbinty) specifying the top-left sample of the bounding
block for reference sample padding relative to the top-left luma sample of the reference picture,
the luma reference sample array refPicL X1, the half sample interpolation filter index hpelIfldx, a
variable sbWidth specifying the width of the current subblock, a variable sbHeight specifying the
height of the current subblock, and a luma location (xSb, ySb) specifying the top-left sample of
the current subblock relative to the top-left luma sample of the current picture. Outputs of this

process may include a predicted luma sample value predSampleL X,

[0111] The variables shift1, shift2 and shift3 are derived as follows. The variable shift] is set
equal to Min(4, BitDepthy — 8), the variable shift2 is set equal to 6 and the variable shift3 is set
equal to Max(2, 14 — BitDepthy). The variable picW is set equal to

25

CA 03134210 2021-09-17

WO 2021/055552 PCT/US2020/051192

pic_width in luma samples and the variable picH is set equal to pic_height in luma_ samples.

[0112] The luma interpolation filter coefficients fi[p] for each 1/16 fractional sample
position p equal to xFracr, or yFracy, are derived as follows. If MotionModelldc[xSb][ySb] is
greater than 0, and sbWidth and sbHeight are both equal to 4, the luma interpolation filter
coefficients fi[p | may be specified. Otherwise, the luma interpolation filter coefficients fi[p]

are specified in Table 8-11 depending on hpelIfldx.

[0113] The luma locations in full-sample units (xInt;, yInt;) are derived as follows for
1=0...7. If subpic treated as pic flag[SubPicldx] is equal to 1, the following applies:

xInt; = Clip3(SubPicLeftBoundaryPos, SubPicRightBoundaryPos,

subpic_ref wraparound enabled flag] SubPicldx]

ClipH((subpic_ref wraparound offset minusl[SubPicldx |+ 1) * MinCbSizeY, SubPicRight
BoundaryPos, xInt, +1—3) :

xInty, +1—3).

yInt; = Clip3(SubPicTopBoundaryPos, SubPicBotBoundaryPos, ylnt;, +1—3).

[0114] Otherwise (subpic treated as pic flag[SubPicldx] is equal to 0), the following
applies:

xInt; = Clip3(0, picW — 1, sps_ref wraparound enabled flag

ClipH((sps_ref wraparound_offset minusl + 1) * MinCbSizeY, picW, xInt, +1—3) :
xIntp +1—3)

yInt; = Clip3(0, picH— 1, yInt, +1—3)

[0115] The luma locations in full-sample units are further modified as follows fori=0...7:
xInt; = Clip3(xSbInt;, — 3, xSbIntr, + sbWidth + 4, xInt;)
yInt; = Clip3(ySbInty, — 3, ySbIntr, + sbHeight + 4, yInt;)

[0116] The predicted luma sample value predSampleL X} is derived as follows. If both
xFracrand yFracy, are equal to O, the value of predSamplel. X, is derived as:

predSampleLX;, = refPicLXy[xInt3][yInts] << shift3.

[0117] Otherwise, if xFracy is not equal to 0 and yFracy, is equal to 0, the value of

predSampleLX] is derived as predSampleL. Xy, =

26

CA 03134210 2021-09-17

WO 2021/055552 PCT/US2020/051192

(X7 ofu[xFrac][i] * refPicLXL[xInti][yIntz]) >> shiftl.

[0118] Otherwise, if xFracy,is equal to 0 and yFracy, is not equal to 0, the value of
predSampleL XLy is derived as predSampleL. X1 =
(X7 ofi yFrac][i] * refPicLXi[xInt3][yInti]) >> shiftl.

[0119] Otherwise, if xFracy is not equal to 0 and yFracr, is not equal to 0, the value of

predSampleLXy is derived as follows:

[0120] The sample array temp[n] with n=0..7, is derived as: temp[n] =
(X7 ofu[xFrac][i] * refPicLXL[xInti][yInta]) >> shiftl.

[0121] The predicted luma sample value predSampleL X, is derived as predSamplel. X1, =
(X7 of[yFract][i] * temp[i]) >> shift2.

[0122] In the same or another embodiment, referring to FIG. 10, in SPS (or any other
parameter set), all_subpic treated as pic_flag equal to 1 specifies that any sub-picture of each
coded picture in the CVS is treated as a picture in the decoding process.

subpic_treated as pic_flag[1] equal to O specifies that any subpicture of each coded picture in

the CVS is not treated as a picture in the decoding process.

[0123] In the same embodiment, when all_subpic treated as pic flag[i]is equal to 1, a flag
all_subpic_ref wraparound enabled flag is signaled. all subpic ref wraparound enabled flag
equal to 1 specifies that horizontal wrap-around motion compensation is applied in inter
prediction at the boundary of any sub-picture of each coded picture.

all sps ref wraparound enabled flag equal to O specifies that horizontal wrap-around motion

compensation is not applied at the boundary of any sub-picture of each coded picture.

[0124] In the same embodiment, all subpic ref wraparound offset minusl[i] plus 1
specifies the offset of any sub-picture of each coded picture, used for computing the horizontal
wrap-around position in units of MinCbSizeY luma samples. In the same embodiment, when
subpic treated as pic flag[1] is not present, the value of subpic treated as pic flag[1]is

inferred to be equal to all_subpic treated as pic flag.

27

CA 03134210 2021-09-17

WO 2021/055552 PCT/US2020/051192

[0125] In the same embodiment, when subpic ref wraparound enabled flag[i]is not
present, the value of subpic ref wraparound enabled flag| i] is inferred to be equal to

all _subpic ref wraparound enabled flag.

[0126] In the same embodiment, when subpic_ref wraparound offset minusl[i] is note
present, the value of subpic ref wraparound offset minusl1[i] is inferred to be equal to

all_subpic_ref wraparound offset minusl.

[0127] The techniques for wrap-around padding process described above, can be
implemented as computer software using computer-readable instructions and physically stored in
one or more computer-readable media. For example, FIG. 11 shows a computer system 800

suitable for implementing certain embodiments of the disclosed subject matter.

[0128] The computer software can be coded using any suitable machine code or computer
language, that may be subject to assembly, compilation, linking, or like mechanisms to create
code comprising instructions that can be executed directly, or through interpretation, micro-code
execution, and the like, by computer central processing units (CPUs), Graphics Processing Units

(GPUs), and the like.

[0129] The instructions can be executed on various types of computers or components
thereof, including, for example, personal computers, tablet computers, servers, smartphones,

gaming devices, internet of things devices, and the like.

[0130] The components shown in FIG. 11 for computer system 800 are exemplary in nature
and are not intended to suggest any limitation as to the scope of use or functionality of the
computer software implementing embodiments of the present disclosure. Neither should the
configuration of components be interpreted as having any dependency or requirement relating to
any one or combination of components illustrated in the exemplary embodiment of a computer

system 800.

[0131] Computer system 800 may include certain human interface input devices. Such a
human interface input device may be responsive to input by one or more human users through,
for example, tactile input (such as: keystrokes, swipes, data glove movements), audio input (such

as: voice, clapping), visual input (such as: gestures), olfactory input (not depicted). The human

28

CA 03134210 2021-09-17

WO 2021/055552 PCT/US2020/051192

interface devices can also be used to capture certain media not necessarily directly related to
conscious input by a human, such as audio (such as: speech, music, ambient sound), images (such
as: scanned images, photographic images obtain from a still image camera), video (such as two-

dimensional video, three-dimensional video including stereoscopic video).

[0132] Input human interface devices may include one or more of (only one of each
depicted): keyboard 801, mouse 802, trackpad 803, touch screen 810, data-glove 804, joystick

805, microphone 806, scanner 807, camera 808.

[0133] Computer system 800 may also include certain human interface output devices. Such
human interface output devices may be stimulating the senses of one or more human users
through, for example, tactile output, sound, light, and smell/taste. Such human interface output
devices may include tactile output devices (for example tactile feedback by the touch-screen 810,
data-glove 804, or joystick 805, but there can also be tactile feedback devices that do not serve as
input devices), audio output devices (such as: speakers 809, headphones (not depicted)), visual
output devices (such as screens 810 to include CRT screens, LCD screens, plasma screens,
OLED screens, each with or without touch-screen input capability, each with or without tactile
feedback capability—some of which may be capable to output two dimensional visual output or
more than three dimensional output through means such as stereographic output; virtual-reality
glasses (not depicted), holographic displays and smoke tanks (not depicted)), and printers (not
depicted).

[0134] Computer system 800 can also include human accessible storage devices and their
associated media such as optical media including CD/DVD ROM/RW 820 with CD/DVD or the
like media 821, thumb-drive 822, removable hard drive or solid state drive 823, legacy magnetic
media such as tape and floppy disc (not depicted), specialized ROM/ASIC/PLD based devices
such as security dongles (not depicted), and the like.

[0135] Those skilled in the art should also understand that term “computer readable media”
as used in connection with the presently disclosed subject matter does not encompass

transmission media, carrier waves, or other transitory signals.

[0136] Computer system 800 can also include interface to one or more communication

29

CA 03134210 2021-09-17

WO 2021/055552 PCT/US2020/051192

networks. Networks can for example be wireless, wireline, optical. Networks can further be
local, wide-area, metropolitan, vehicular and industrial, real-time, delay-tolerant, and so on.
Examples of networks include local area networks such as Ethernet, wireless LANs, cellular
networks to include GSM, 3G, 4G, 5G, LTE and the like, TV wireline or wireless wide area
digital networks to include cable TV, satellite TV, and terrestrial broadcast TV, vehicular and
industrial to include CANBus, and so forth. Certain networks commonly require external
network interface adapters that attached to certain general purpose data ports or peripheral buses
(849) (such as, for example USB ports of the computer system 800; others are commonly
integrated into the core of the computer system 800 by attachment to a system bus as described
below (for example Ethernet interface into a PC computer system or cellular network interface
into a smartphone computer system). Using any of these networks, computer system 800 can
communicate with other entities. Such communication can be uni-directional, receive only (for
example, broadcast TV), uni-directional send-only (for example CANbus to certain CANbus
devices), or bi-directional, for example to other computer systems using local or wide area digital
networks. Certain protocols and protocol stacks can be used on each of those networks and

network interfaces as described above.

[0137] Aforementioned human interface devices, human-accessible storage devices, and

network interfaces can be attached to a core 840 of the computer system 800.

[0138] The core 840 can include one or more Central Processing Units (CPU) 841, Graphics
Processing Units (GPU) 842, specialized programmable processing units in the form of Field
Programmable Gate Areas (FPGA) 843, hardware accelerators for certain tasks 844, and so forth.
These devices, along with Read-only memory (ROM) 845, Random-access memory 846, internal
mass storage such as internal non-user accessible hard drives, SSDs, and the like 847, may be
connected through a system bus 848. In some computer systems, the system bus 848can be
accessible in the form of one or more physical plugs to enable extensions by additional CPUs,
GPU, and the like. The peripheral devices can be attached either directly to the core’s system bus
848, or through a peripheral bus 849. Architectures for a peripheral bus include PCI, USB, and
the like.

[0139] CPUs 841, GPUs 842, FPGAs 843, and accelerators 844 can execute certain

30

CA 03134210 2021-09-17

WO 2021/055552 PCT/US2020/051192

instructions that, in combination, can make up the aforementioned computer code. That
computer code can be stored in ROM 845 or RAM 846. Transitional data can be also be stored in
RAM 846, whereas permanent data can be stored for example, in the internal mass storage 847.
Fast storage and retrieve to any of the memory devices can be enabled through the use of cache
memory, that can be closely associated with one or more CPU 841, GPU 842, mass storage 847,
ROM 845, RAM 846, and the like.

[0140] The computer readable media can have computer code thereon for performing various
computer-implemented operations. The media and computer code can be those specially
designed and constructed for the purposes of the present disclosure, or they can be of the kind

well known and available to those having skill in the computer software arts.

[0141] As an example and not by way of limitation, the computer system having architecture
800, and specifically the core 840 can provide functionality as a result of processor(s) (including
CPUs, GPUs, FPGA, accelerators, and the like) executing software embodied in one or more
tangible, computer-readable media. Such computer-readable media can be media associated with
user-accessible mass storage as introduced above, as well as certain storage of the core 840 that
are of non-transitory nature, such as core-internal mass storage 847 or ROM 845. The software
implementing various embodiments of the present disclosure can be stored in such devices and
executed by core 840. A computer-readable medium can include one or more memory devices or
chips, according to particular needs. The software can cause the core 840 and specifically the
processors therein (including CPU, GPU, FPGA, and the like) to execute particular processes or
particular parts of particular processes described herein, including defining data structures stored
in RAM 846 and modifying such data structures according to the processes defined by the
software. In addition or as an alternative, the computer system can provide functionality as a
result of logic hardwired or otherwise embodied in a circuit (for example: accelerator 844), which
can operate in place of or together with software to execute particular processes or particular
parts of particular processes described herein. Reference to software can encompass logic, and
vice versa, where appropriate. Reference to a computer-readable media can encompass a circuit
(such as an integrated circuit (IC)) storing software for execution, a circuit embodying logic for
execution, or both, where appropriate. The present disclosure encompasses any suitable

combination of hardware and software.

31

CA 03134210 2021-09-17

WO 2021/055552 PCT/US2020/051192

[0142] While this disclosure has described several exemplary embodiments, there are
alterations, permutations, and various substitute equivalents, which fall within the scope of the
disclosure. It will thus be appreciated that those skilled in the art will be able to devise numerous
systems and methods which, although not explicitly shown or described herein, embody the

principles of the disclosure and are thus within the spirit and scope thereof.

32

CA 03134210 2021-09-17

WO 2021/055552 PCT/US2020/051192

CLAIMS

What is claimed is:

1. A method of video decoding, executable by a processor, the method comprising:
decoding coded syntax elements corresponding to wrap-around padding process; and

reconstructing at least one coded current picture using wrap-around padding process.

2. The method of claim 1, wherein the syntax elements indicate an offset value for wrap-

around processing; or left and right padding width information.

3. The method of claim 2, wherein a flag indicates whether syntax elements corresponding

to wrap-around padding process is present in parameter set.
4. The method of claim 3, wherein a pixel position for motion compensated prediction in a
reference picture is determined by interpreting the syntax elements corresponding to wrap-around

padding process with a clipping process.

5. The method of claim 4, wherein a fractional pixel is interpolated for motion compensated

prediction based on the determined pixel position.

6. The method of claim 5, wherein the overwrapped region is blended to remove a seam

artifact as a post processing,

7. The method of claim 1, wherein the wrap-around padding process is applied at a tile or

tile group boundary.

8. The method of claim 1, wherein the current picture is the reference for motion

compensation.

9. The method of claim 8, wherein the wrap-around padding is applied at the boundary of

the current picture.

33

CA 03134210 2021-09-17

WO 2021/055552 PCT/US2020/051192

10. The method of claim 1, wherein the wrap-around padding is applied at a horizontal or

vertical boundary or both vertical and horizontal boundaries.

11. The method of claim 10, wherein a flag in a high level syntax structure indicates whether
the wrap-around padding is applied at a horizontal or vertical boundary or both vertical and

horizontal boundaries.

12. A computer system for video coding, the computer system comprising:
one or more computer-readable non-transitory storage media configured to store computer
program code; and
one or more computer processors configured to access said computer program code and
operate as instructed by said computer program code, said computer program code including:
decoding code configured to cause the one or more computer processors to decode
coded syntax elements corresponding to wrap-around padding process; and
reconstructing code configured to cause the one or more computer processors to

reconstruct at least one coded current picture using wrap-around padding process.

13. The computer system of claim 12, wherein the syntax elements indicate an offset value

for wrap-around processing; or left and right padding width information.

14. The computer system of claim 13, wherein a flag indicates whether syntax elements

corresponding to wrap-around padding process is present in parameter set.
15. The computer system of claim 14, wherein a pixel position for motion compensated
prediction in a reference picture is determined by interpreting the syntax elements corresponding

to wrap-around padding process with a clipping process.

16. The computer system of claim 15, wherein a fractional pixel is interpolated for motion

compensated prediction based on the determined pixel position.

34

CA 03134210 2021-09-17

WO 2021/055552 PCT/US2020/051192

17. The computer system of claim 16, wherein the overwrapped region is blended to remove

a seam artifact as a post processing.

18. The computer system of claim 12, wherein the wrap-around padding process is applied at

a tile or tile group boundary.

19. The computer system of claim 12, wherein the current picture is the reference for motion
compensation.
20. A non-transitory computer readable medium having stored thereon a computer program

for video coding, the computer program configured to cause one or more computer processors to:
decode coded syntax elements corresponding to wrap-around padding process; and

reconstruct at least one coded current picture using wrap-around padding process.

35

CA 03134210 2021-09-17

PCT/US2020/051192

WO 2021/055552

1

“‘
1
{em pumpd e pasdusy yns
{iym o ARAR oy
{om a4y wun

R
{1y

y1eg vy uappigany

2038135343 o vampuy e e
i
1
{sm Y a5y e e
{gm iy gt
13 Wy BI7 BP0
anhasag { yunrpy MupsarAgng wun jeu

{10y 10143 1 014

WO 2021/055552

CA 03134210 2021-09-17

PCT/US2020/051192

£
B
e

SUBSTITUTE SHEET (RULE 26)

¢« ™
4
3
1 A
.
]
~
E
E el
E i/" b E
| | | |
| /Lt |
H (@] H
i N = { E 2
E \,\\ ~ g !! % (N
5 & | : :
‘N l [|
£ ™ \‘\ /'/ h
‘ -// (ii:t(aos u
."] N H
5 N
3
v
9? ___ |
~ 73
r/,/
_f,:’. !/-
Q o b
s =
\\-.‘\ %
=

Streaming System 300

FIG. 3

WO 2021/055552

CA 03134210 2021-09-17

PCT/US2020/051192
31
0
(@]
C)
e ')
L -
Nl g a
A
[*)]
o
on
P)
D
i
o

p

303.

g o0
5 ~ P
£
- =4 o
o
@

SUBSTITUTE SHEET (RULE 26)

PCT/US2020/051192

Y I3
7 B
L gy

1457
FBYTY 2D SILBIB50Y

NN

Fnononnas

CA 03134210 2021-09-17

WO 2021/055552

4/11

: \\\\\\\\\\\\\\\\\\\\\\\\hN\\\\\\\\\\@,
B %, N

Hi3]

0ey
sa5aeg

515
AsGUIB I
aapng

somEey - puuRyD

NP LV RETR

¥ ol

CA 03134210 2021-09-17
PCT/US2020/051192

WO 2021/055552

058

BPOIBY

S

e

Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
o2,
%

(3 :
AIOWBW B0 SUIBeY

ABpIASLEL

“ Bisy fetieee)
Eiabigiza B
mtttttt\\\ p ‘\\\\\\\W % \,m\.w &
e Pt S S NN FEPPIFPPPE PP “ 444444444444444444
: i B I 7
Gpoooonsssosossssssisssss S s o 7
aumg "
Buposy
054 aausnbag :
% ey i 5 B

CADIA BIIN0G

1354
LTl E T el

tvtviiiiiiiiieiiiieeid,

£l Jopuatiy 55

Fig. &

CA 03134210 2021-09-17

WO 2021/055552 PCT/US2020/051192

819

%
§, P
> b bl
o b S
i
bal
ey
3 B
B 3
g§ {I\QE
FE !
2R
K
IR
-l I8i§3
A &(i \ﬁi m
NOIRIEI
R 818
o BN
2 81 &
;.»:vi i &g
X LA R Y
& RN
3 (SRS PR
8 w8 e
b i Wl oW
& St
w} oo e
S:\: N

601
goz e
603

PCT/US2020/051192
7

CA 03134210 2021-09-17

WO 2021/055552

ANy

e

gy Buwppped puncsedean yyBu R, 474
ypsa swipped puncsedesn g e S

%
H

{ Fey pomews poncsedein Jed s i

Beyy poygeer pumaavdess gax eds LT POy

aepdrangag L PREE s e Bae | 0L

L5

CA 03134210 2021-09-17

PCT/US2020/051192

WO 2021/055552

811

: duipped
Nmoﬁwgmawmﬁ.\mﬁm%mmmémmumm

506

506

20Ay Butpped sy Suisied 0B

%

535,

voneuou Buivoniued sunpd Suipoosg 0B
198 sayseied g Buisied 106

i

CA 03134210 2021-09-17

PCT/US2020/051192

WO 2021/055552

g/11

e

et

i

£130

{1 19ey poppenn skgns Sspa0R oy doey

L0

vy

olpsnung 2siye punossdeas s suhyn

{1 ¢ idmy popeus prnomdzin ja sulges i

(i

{1 ey poppas” punoavdens o3 sglgns

LRy ol e poyssny oudons g

L0

{an

£l g onpuryaggngtinmy = Uig e [y

HQ mn k Wﬁw._.”u,

4

P

PR YL GHSUIE

{a3n

[SOHRE JYSIY woa pris sxkgns

{ A

psnums P 3 prad sulgus

{gim

psomy soukms neas

i sopdeng i

VE Bayy s

29

duy masasd soxlgns

{rJan

pynugy s ponpanivan g uls

(o pogrny pencgeduin e sdy i

£11m

ey pamens pusosaizan 08 wls

EYHERE STy

P sde o aopmmal bas

CA 03134210 2021-09-17

PCT/US2020/051192

WO 2021/055552

prse

i
{1 TR} oot SRHINS SR0J5Y TOiTY OO0
i
(A3 T ISR «@mm@ PUNCATHTIA Jo4 agns
U SR OIS T pUNGIEaEINT 18T STOGHR 1
i 17 1081] @@Emmm BUBGIBOOIM {04 JRELIG
R G O S A T T
T TTIHEL] 318 S8 ajamdt JHAin%
T BU[] o1 S0 Dotoaii otd gres 18 I8
I R 1 S T TN S P 15
%
Arn ﬁ,mm SRU{IY ja%ij0 DUNCIBODRLY o4 JHRINS 118
T B0 Poaens pusoeaniay ol Jiaans e
{ine Tiin8Y; Dahile PUBOIBORIM Jod JRLIs 18
VT ZR] Old Ne poiboil oig 408 ge i
(i BEY] AWl G mxﬁk &m gmx i
(A
N Ms\wn:d,:m@mmﬁﬁ b elm §eisis
T xﬁamﬁﬁ@uﬁxswgﬁ? S k{3 b BHY
Py TRBUINE (Uo1a8 AMOd DLIG JHIGHS
{Am T GIpIa J08 Dhigd SHRERS
o TENRINT SoRHIAY SBHE
{O6] juosaid $O1000% 11
£ T TR SN T T
{aen [5DUIIE 105510 pUBOIBULLG 1og %05
{881 pajgeud ponommdein Jof s0% gt
{im SR} DPOGRLs DUBOIDOTLA (94 SA
HMILI5ag) P 0BG s stuRma Dos

01 "0

CA 03134210 2021-09-17

PCT/US2020/051192

WO 2021/055552

iATEN

O e

<

£
i BIBHORY
jpomEN

%

054
Bydepy
soydeiny

0%

S

URRAS N0y
L1790

Sga7 isrmddmg applied to the boundaries of sl
‘ regions?

Yes

%7

904 Parsing the padding type

05

 Decoding each sub-region without

906 is a wrap-around padding applied?

	Page 1 - COVER_PAGE
	Page 2 - ABSTRACT
	Page 3 - ABSTRACT
	Page 4 - DESCRIPTION
	Page 5 - DESCRIPTION
	Page 6 - DESCRIPTION
	Page 7 - DESCRIPTION
	Page 8 - DESCRIPTION
	Page 9 - DESCRIPTION
	Page 10 - DESCRIPTION
	Page 11 - DESCRIPTION
	Page 12 - DESCRIPTION
	Page 13 - DESCRIPTION
	Page 14 - DESCRIPTION
	Page 15 - DESCRIPTION
	Page 16 - DESCRIPTION
	Page 17 - DESCRIPTION
	Page 18 - DESCRIPTION
	Page 19 - DESCRIPTION
	Page 20 - DESCRIPTION
	Page 21 - DESCRIPTION
	Page 22 - DESCRIPTION
	Page 23 - DESCRIPTION
	Page 24 - DESCRIPTION
	Page 25 - DESCRIPTION
	Page 26 - DESCRIPTION
	Page 27 - DESCRIPTION
	Page 28 - DESCRIPTION
	Page 29 - DESCRIPTION
	Page 30 - DESCRIPTION
	Page 31 - DESCRIPTION
	Page 32 - DESCRIPTION
	Page 33 - DESCRIPTION
	Page 34 - DESCRIPTION
	Page 35 - DESCRIPTION
	Page 36 - CLAIMS
	Page 37 - CLAIMS
	Page 38 - CLAIMS
	Page 39 - DRAWINGS
	Page 40 - DRAWINGS
	Page 41 - DRAWINGS
	Page 42 - DRAWINGS
	Page 43 - DRAWINGS
	Page 44 - DRAWINGS
	Page 45 - DRAWINGS
	Page 46 - DRAWINGS
	Page 47 - DRAWINGS
	Page 48 - DRAWINGS
	Page 49 - DRAWINGS
	Page 50 - REPRESENTATIVE_DRAWING

