

(12) STANDARD PATENT
(19) AUSTRALIAN PATENT OFFICE

(11) Application No. AU 2018303064 B2

(54) Title
Virus for treating tumors

(51) International Patent Classification(s)
C12N 7/00 (2006.01) **A61P 35/00** (2006.01)
A61K 35/76 (2015.01) **C12N 15/11** (2006.01)

(21) Application No: **2018303064** **(22) Date of Filing:** **2018.07.18**

(87) WIPO No: **WO19/015601**

(30) Priority Data

(31) Number **201710600732.8** **(32) Date** **2017.07.21** **(33) Country** **CN**

(43) Publication Date: **2019.01.24**
(44) Accepted Journal Date: **2024.11.14**

(71) Applicant(s)
Xiamen University;Yang Sheng Tang Company, Ltd.

(72) Inventor(s)
CHENG, Tong;WANG, Wei;WAN, Junkai;FU, Wenkun;YE, Xiangzhong;ZHANG, Jun;XIA, Ningshao

(74) Agent / Attorney
Davies Collison Cave Pty Ltd, Level 15 1 Nicholson Street, MELBOURNE, VIC, 3000, AU

(56) Related Art
US 2016/0312314 A1

(12) 按照专利合作条约所公布的国际申请

(19) 世界知识产权组织

国际局

(43) 国际公布日

2019年1月24日 (24.01.2019)

(10) 国际公布号

WO 2019/015601 A1

(51) 国际专利分类号:

C12N 7/00 (2006.01) *A61K 35/76* (2015.01)
C12N 15/11 (2006.01) *A61P 35/00* (2006.01)

(21) 国际申请号:

PCT/CN2018/096100

(22) 国际申请日:

2018年7月18日 (18.07.2018)

(25) 申请语言:

中文

(26) 公布语言:

中文

(30) 优先权:

201710600732.8 2017年7月21日 (21.07.2017) CN

(71) 申请人: 厦门大学 (XIAMEN UNIVERSITY) [CN/CN]; 中国福建省厦门市思明区思明南路422号, Fujian 361005 (CN)。 养生堂有限公司 (YANG SHENG TANG COMPANY, LTD.) [CN/CN]; 中国海南省海口市金盘工业区金牛路, Hainan 570216 (CN)。

(72) 发明人: 程通 (CHENG, Tong); 中国福建省厦门市思明区思明南路422号, Fujian 361005 (CN)。 王玮 (WANG, Wei); 中国福建省厦门市思明区思明南路422号, Fujian 361005 (CN)。 万俊凯 (WAN, Junkai); 中国福建省厦门市思明区思明南路422号, Fujian 361005 (CN)。 付文锟 (FU, Wenkun); 中国福建省厦门市思明区思明南路422号, Fujian 361005 (CN)。 叶祥忠 (YE, Xiangzhong); 中国北

京市昌平区科学园路31号, Beijing 102206 (CN)。 张军 (ZHANG, Jun); 中国福建省厦门市思明区思明南路422号, Fujian 361005 (CN)。 夏宁邵 (XIA, Ningshao); 中国福建省厦门市思明区思明南路422号, Fujian 361005 (CN)。

(74) 代理人: 中国国际贸易促进委员会专利商标事务所 (CCPIT PATENT AND TRADEMARK LAW OFFICE); 中国北京市西城区阜成门外大街2号万通新世界广场8层, Beijing 100037 (CN)。

(81) 指定国(除另有指明, 要求每一种可提供的国家保护): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW。

(84) 指定国(除另有指明, 要求每一种可提供的地区保护): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), 欧亚 (AM, AZ, BY, KG, KZ, RU, TJ, TM), 欧洲 (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU,

(54) Title: VIRUS FOR TREATING TUMORS

(54) 发明名称: 一种用于治疗肿瘤的病毒

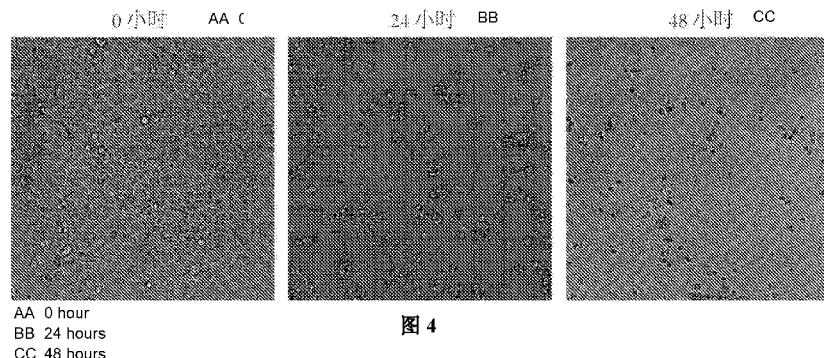


图 4

(57) Abstract: Provided are Enterovirus D68 (EV-D68) or a modified form thereof, a nucleic acid molecule containing the genomic sequence or cDNA sequence of the EV-D68 or the modified form thereof or a complementary sequence of the genomic sequence or cDNA sequence, a pharmaceutical composition containing the EV-D68, the modified form thereof, or the nucleic acid molecule, and a use of the EV-D68, the modified form thereof, or the nucleic acid molecule in preparation of the pharmaceutical composition for treating tumors.

(57) 摘要: 提供了肠道病毒 68 型 (EV-D68) 或其修饰形式、或包含 EV-D68 或其修饰形式的基因组序列或 cDNA 序列、或其互补序列的核酸分子, 包含该 EV-D68、其修饰形式或核酸分子的药物组合物, 以及将其用于制备治疗肿瘤的药物组合物中的用途。

IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT,
RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI,
CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

本国际公布：

- 包括国际检索报告(条约第21条(3))。
- 包括说明书序列表部分(细则5.2(a))。

A virus for treatment of tumor

Technical Field

The present invention relates to the field of viruses and the field of tumor treatment. Specifically, the present invention relates to use of an Enterovirus D68 (EV-D68) or a modified form thereof, or a nucleic acid molecule comprising a genomic sequence or cDNA sequence of EV-D68 or a modified form thereof, or a complementary sequence of the genomic sequence or cDNA sequence, for treating a tumor in a subject (e.g., a human), and for manufacture of a medicament for treating a tumor in a subject (e.g., a human). The present invention also relates to a method for treating a tumor, which comprises a step of administering to a subject in need thereof EV-D68 or a modified form thereof, or a nucleic acid molecule comprising a genomic sequence or cDNA sequence of EV-D68 or a modified form thereof, or a complementary sequence of the genomic sequence or cDNA sequence.

Background Art

The current methods for treatment of malignant tumors include surgery chemotherapy and radiotherapy. These traditional therapies are not satisfactory for the treatment of metastatic tumors, and may also cause great harm to patients' health. In contrast, as a new type of treatment method, the tumor treatment method using oncolytic virus has high specificity, good effectiveness, and less side effects, and is currently considered as a promising tumor treatment method.

Oncolytic virus is a virus that can self-replicate in tumor cells, thereby killing and lysing the tumor cells, or arresting the growth of the tumor cells. When used in in vivo treatment, oncolytic virus shows specificity for tumor cells, and can directly induce death of tumor cells, but has little or no effect on normal cells. Meanwhile, oncolytic virus can also induce cytotoxic T lymphocyte response in the immune system, thereby indirectly killing tumor cells.

Enterovirus belongs to *Picornaviridae* family, and its genome is single-stranded positive-sense RNA. There are following advantages in using enterovirus as oncolytic virus: firstly, as single-stranded RNA virus, its genome won't undergo any stages of DNA in the host, so that there won't be genotoxicity caused by the insertion of the viral genome into the host's DNA, which has better safety; secondly, the enterovirus genome is relatively small, and a large number of viruses can be replicated in a short period of time to further infect other tumor cells, causing a strong cytopathic effect; next, the enterovirus does not contain oncogenes and therefore does not induce

tumor; and finally, the genome of the enterovirus can be modified by reverse genetics technology to achieve attenuation of virus and reduce its side effects.

At present, the reported enteroviruses with oncolytic activity include chimeric polioviruses for the treatment of human solid tumors such as malignant gliomas (Dobrikova et al., Mol Ther 2008, 16 (11): 1865-1872); Coxsackie viruses A13, A15, A18, and A21 that kill human melanoma cells (Au et al., Virol J 2011, 8: 22); Echo virus ECHO1 that kills human gastric cancer cells and ovarian cancer cells (Shafren et al., Int J Cancer 2005, 115 (2): 320-328; Haley et al., J Mol Med (Berl) 2009, 87 (4): 385-399) and the like. However, it is still necessary to obtain viruses with both tumor-specificity and tumor-killing activity.

Enterovirus D68 (EV-D68) is a kind of Enterovirus D of the genus *Enteroviruses* of *Picornaviridae* family, which was first isolated from children with respiratory infections in California in 1962 (Schieble et al., Am J Epidemiol 1967, 85 (2): 297-310). Unlike most enteroviruses, which are resistant to acids and reproduce in the human gastrointestinal tract, EV-D68 is sensitive to acids and replicates mainly in the respiratory tract. Since there have been few reports of EV-D68 infection for a long time, EV-D68 is considered to be a rare pathogen that mainly causes mild respiratory diseases, including runny nose, sneezing, and cough. At present, there is not report in the art that enterovirus 68 has oncolytic activity.

Contents of the Invention

After a lot of experiments and repeated explorations, it is unexpectedly found that Enterovirus D68 has a broad spectrum and significant tumor cell killing ability. Based on this finding, the inventors of the present invention have developed a new oncolytic virus for treating tumors and a tumor treatment method based on the virus.

Medical use

In a first aspect, the present invention provides use of an Enterovirus D68 (EV-D68) or a modified form thereof, or an isolated nucleic acid molecule, in treatment of a tumor in a subject, or in the manufacture of a medicament for treating a tumor in a subject; wherein the isolated nucleic acid molecule comprises a sequence selected from the following:

- (1) a genomic sequence or cDNA sequence of EV-D68 or a modified form thereof; and
- (2) a complementary sequence of the genomic sequence or cDNA sequence.

In certain preferred embodiments, the EV-D68 is a wild-type EV-D68. In certain preferred embodiments, the EV-D68 may be a clinical isolate isolated from an individual infected with the

Enterovirus D68.

In certain preferred embodiments, the EV-D68 or a modified form thereof has a genomic sequence that has a sequence identity of at least 70%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% to a nucleotide sequence as shown in SEQ ID NO: 12. In certain preferred embodiments, the genomic sequence of the EV-D68 or a modified form thereof is a nucleotide sequence as shown in SEQ ID NO: 12.

In certain preferred embodiments, the EV-D68 or a modified form thereof has a cDNA sequence that has a sequence identity of at least 70%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% to a nucleotide sequence shown in SEQ ID NO: 1. In certain preferred embodiments, the cDNA sequence of the EV-D68 or a modified form thereof is a nucleotide sequence as shown in SEQ ID NO: 1.

In certain preferred embodiments, the modified form is a modified EV-D68, which has a substitution, insertion, or deletion of one or more nucleotides in the genome as compared to a wild-type EV-D68.

In certain preferred embodiments, as compared to the wild-type EV-D68, the modified EV-D68 has one or more modifications selected from the following:

- (1) one or more mutations in an untranslated region (e.g., 5'UTR or 3'UTR);
- (2) an insertion of one or more exogenous nucleic acids;
- (3) a deletion or mutation of one or more endogenous genes; and
- (4) any combination of the above three items.

In certain preferred embodiments, the modified EV-D68 includes one or more mutations in the 5' untranslated region (5'UTR).

In certain preferred embodiments, the modified EV-D68 has a substitution of all or part of the 5'UTR sequence. In certain preferred embodiments, the internal ribosome entry site (IRES) sequence in the 5'UTR of the modified EV-D68 is replaced with an exogenous IRES sequence, such as the internal ribosome entry site sequence of human rhinovirus 2 (HRV2). In certain preferred embodiments, the internal ribosome entry site sequence of the human rhinovirus 2 (HRV2) is shown in SEQ ID NO: 2.

The use of the internal ribosome entry site sequence of human rhinovirus 2 (HRV2) is advantageous in some cases, for example, it is conducive to improvement of the tumor specificity

of oncolytic viruses. It has been previously reported that in normal human nerve cells, the internal ribosome entry site sequence of human rhinovirus 2 is specifically bound by host RNA-binding proteins (DRBP76 and NF45), thereby preventing the recruitment of factors such as eIF4G (Merrill et al., J Virol 2006, 80 (7): 3147-3156; Merrill and Gromeier, J Virol 2006, 80 (14): 6936-6942; Neplioueva et al., PLoS One 2010, 5 (7): e11710); meanwhile, due to the lack of support of signaling pathways such as Raf/Erk1/2/MAPK, it is difficult for ribosomes to bind to the internal ribosome entry site sequence of human rhinovirus 2, so that it is impossible to initiate translation of viral protein (Dobrikov et al., Mol Cell Biol 2011, 31(14): 2947-2959; Dobrikov et al., Mol Cell Biol 2013, 33(5): 937-946). In human glioma tumor cells, the internal ribosome entry site of human rhinovirus 2 is not affected by the above two factors, and thus can normally initiate transcription and translation of viral protein. Therefore, in some cases, replacing the internal ribosome entry site sequence of EV-D68 with the internal ribosome entry site sequence of human rhinovirus 2 is beneficial to avoid or reduce the toxic and side effect of the virus of the present invention to normal human nerve cells, without affecting the use of the virus in the treatment of human gliomas.

In certain preferred embodiments, the modified EV-D68 comprises an exogenous nucleic acid.

In certain preferred embodiments, the exogenous nucleic acid encodes a cytokine (e.g., GM-CSF, preferably human GM-CSF), or an antitumor protein or polypeptide (e.g., a scFv against PD-1 or PD-L1, preferably a scFv against human PD-1 or PD-L1). In certain preferred embodiments, the exogenous nucleic acid is inserted between the 5'UTR gene and the VP4 gene, or between the VP1 gene and the 2A gene of the genome of the modified EV-D68.

In certain preferred embodiments, the exogenous nucleic acid comprises a target sequence of microRNA (miRNA) (e.g., miR-133 or miR-206). In certain preferred embodiments, the target sequence of microRNA inserted in the 3' untranslated region (3'UTR) of the genome of the modified EV-D68.

It has been previously reported that the expression level of certain microRNA in tumor cells is significantly lower than normal cells and/or has obvious tissue specificity. Therefore, in some cases, the modified EV-D68 of the present invention containing a target sequence of such microRNA is advantageous, because such microRNA that are highly expressed in normal cells or tissues can reduce or even block the replication of the modified EV-D68 in the normal cells or tissues by the corresponding target sequence, thereby reducing even avoiding the toxic side effects of the modified EV-D68 on non-tumor cells. Such microRNAs include but are not limited to miR-133, miR-206, miR-1, miR-143, miR-145, miR-217, let-7, miR-15, miR-16, etc. (see, for example, PCT International Application WO2008103755A1, US patent application US20160143969A1, or Baohong Zhang et al., Developmental Biology, Volume 302, Issue 1, 1 February 2007, Pages 1-

12; all of these documents are incorporated herein by reference).

In certain preferred embodiments, the exogenous nucleic acid comprises a target sequence of one or more (e.g., 2, 3, or 4) microRNA as described above. In certain preferred embodiments, the exogenous nucleic acid comprises a target sequence of miR-133 and/or miR-206. In certain preferred embodiments, the target sequence of miR-133 is shown in SEQ ID NO: 3. In certain preferred embodiments, the target sequence of miR-206 is shown in SEQ ID NO: 4. In some cases, the insertion of the target sequence of miR-133 and/or miR-206 is advantageous. This is because miR-133 and miR-206 are specifically expressed in muscle tissue, so that the tissue tropism of the oncolytic virus can be changed by inserting the target sequence of miR-133 and/or miR-206 into the modified EV-D68, thereby reducing or avoiding damage to normal muscle tissue.

In certain preferred embodiments, the modified EV-D68 comprises at least one insertion of the exogenous nucleic acid as described above and/or at least one mutation in the untranslated region as described above.

In certain preferred embodiments, the genomic sequence of the modified EV-D68 has a sequence identity of at least 70%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% to a nucleotide sequence selected from: the nucleotide sequences as shown in SEQ ID NOs: 13-16. In certain preferred embodiments, the genomic sequence of the modified EV-D68 is selected from the nucleotide sequences as shown in any one of SEQ ID NOs: 13-16.

In certain preferred embodiments, the cDNA sequence of the modified EV-D68 has a sequence identity of at least 70%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% to a nucleotide sequence selected from: the nucleotide sequences as shown in SEQ ID NOs: 8-11. In certain preferred embodiments, the cDNA sequence of the modified EV-D68 is selected from the nucleotide sequences as shown in any one of SEQ ID NOs: 8-11.

In the present invention, the modified EV-D68 can be obtained by reverse genetics technology, and the reverse genetics technology is known in the art, for example, see Yang LS, Li SX, Liu YJ, et al. Virus Res, 2015, 210: 165-168; Hou WH, Yang LS, Li SX, et al. Virus Res, 2015, 205: 41-44; which is incorporated herein by reference in its entirety. In such embodiments, the modified EV-D68 is typically obtained by modifying the cDNA of wild-type EV-D68 (e.g., insertion of an exogenous nucleic acid, deletion or mutation of an endogenous gene, or mutation in a non-translated region).

In the present invention, the EV-D68 or a modified form thereof may be pretreated to reduce

or eliminate the immune response against the virus in a subject, wherein the pretreatment may comprise: packaging the EV-D68 in a lipidosome or micelle, and/or using a protease (e.g., chymotrypsin or trypsin) to remove the capsid protein of the virus to reduce the humoral and/or cellular immunity against the virus in host.

In the present invention, the EV-D68 or a modified form thereof can be serially passaged for adaptation in tumor cells. In certain preferred embodiments, the tumor cells may be tumor cell lines or tumor cell strains known in the art, or may be tumor cells obtained by surgical resection or clinical isolation from an individual (e.g., a subject) having a tumor. In certain preferred embodiments, the EV-D68 or a modified form thereof is serially passaged for adaptation in tumor cells obtained from an individual (e.g., a subject) having a tumor. In certain preferred embodiments, the tumor cells are obtained by surgical resection or clinical isolation from an individual (e.g., a subject) having a tumor. In certain preferred embodiments, the method for serial passaging for adaptation comprises a plurality of (e.g., at least 5, at least 10, at least 15, at least 20) cycles consisting of the following processes: 1) infecting a target tumor cell with a virus; 2) harvesting the virus in a supernatant; and 3) reinfecting a fresh target tumor cell with the obtained virus.

In certain preferred embodiments, the EV-D68 and modified forms thereof as described above can be used in combination. Therefore, the medicament may comprise one or several of EV-D68 and modified forms thereof.

In certain preferred embodiments, the isolated nucleic acid molecule consists of a genomic sequence or cDNA sequence of EV-D68 or a modified form thereof as described above, or a complementary sequence of the genomic sequence or cDNA sequence. In certain preferred embodiments, the isolated nucleic acid molecule has a genomic sequence of EV-D68 or a modified form thereof as described above. In certain preferred embodiments, the isolated nucleic acid molecule is RNA. In certain preferred embodiments, the isolated nucleic acid molecule has a nucleotide sequence as shown in any one of SEQ ID NOS: 12-16.

In certain preferred embodiments, the isolated nucleic acid molecule is a vector (e.g. cloning vector or expression vector) comprising a genomic sequence or cDNA sequence of EV-D68 or a modified form thereof as described above, or a complementary sequence of the genomic sequence or cDNA sequence. In certain preferred embodiments, the isolated nucleic acid molecule is a vector (e.g., cloning vector or expression vector) comprising a cDNA sequence of EV-D68 or a modified form thereof as described above, or a complementary sequence of the cDNA sequence. In certain preferred embodiments, the isolated nucleic acid molecule is a vector comprising a nucleotide sequence as shown in any one of SEQ ID NOS: 1, 8-11 or a complementary sequence thereof.

In certain preferred embodiments, the isolated nucleic acid molecule comprises the complementary sequence of the genomic sequence of EV-D68 or a modified form thereof as described above. In certain preferred embodiments, the complementary sequence is complementary to a nucleotide sequence selected from:

- (1) a nucleotide sequence as shown in SEQ ID NO: 12;
- (2) a nucleotide sequence having a sequence identity of at least 70%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% to the nucleotide sequence as shown in SEQ ID NO: 12;
- (3) a nucleotide sequence as shown in any one of SEQ ID NOs: 13-16; and
- (4) a nucleotide sequence having a sequence identity of at least 70%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% to the nucleotide sequence as shown in any of SEQ ID NOs: 13-16.

In certain preferred embodiments, the isolated nucleic acid molecule comprises a complementary sequence to the cDNA sequence of EV-D68 or a modified form thereof as described above. In certain preferred embodiments, the complementary sequence is complementary to a nucleotide sequence selected from:

- (1) a nucleotide sequence as shown in SEQ ID NO: 1;
- (2) a nucleotide sequence having a sequence identity of at least 70%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% to the nucleotide sequence as shown in SEQ ID NO: 1;
- (3) a nucleotide sequence as shown in any one of SEQ ID NOs: 8-11; and
- (4) a nucleotide sequence having a sequence identity of at least 70%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% to the nucleotide sequence as shown in any one of SEQ ID NOs: 8-11.

In the present invention, the isolated nucleic acid molecule can be delivered by any means known in the art, for example, a naked nucleic acid molecule (e.g., a naked RNA) can be directly injected, or a non-viral delivery system can be used. The non-viral delivery system can be obtained from a variety of materials well known in the art, including, but not limited to, the materials

described in detail in "Yin H, et al. *Nat Rev Genet.* 2014 Aug; 15(8): 541-55." and "Riley MK, Vermerris W. *Nanomaterials (Basel).* 2017 Apr 28; 7(5). pii: E94.", which are incorporated herein by reference in their entirety, such as liposomes, inorganic nanoparticles (such as gold nanoparticles), polymers (such as PEG), and so on.

In certain preferred embodiments, the medicament comprises a therapeutically effective amount of the EV-D68 and/or a modified form thereof as described above, or a therapeutically effective amount of the isolated nucleic acid molecule as described above. In certain preferred embodiments, the medicament may be in any form known in the medical arts. For example, the medicament may be in the form of a tablet, a pill, a suspension, an emulsion, a solution, a gel, a capsule, a powder, a granule, an elixir, a lozenge, a suppository, or an injection (including injection solution, lyophilized powder) and so on. In some embodiments, the medicament is an injection solution or a lyophilized powder.

In certain preferred embodiments, the medicament further comprises a pharmaceutically acceptable carrier or excipient. In certain preferred embodiments, the medicament comprises a stabilizer.

In certain preferred embodiments, the medicament optionally further comprises an additional pharmaceutically active agent. In a preferred embodiment, the additional pharmaceutically active agent is a medicament having antitumor activity, such as an additional oncolytic virus, chemotherapeutic agent or immunotherapeutic agent.

In the present invention, the additional oncolytic virus includes, but is not limited to, herpesvirus, adenovirus, parvovirus, reovirus, Newcastle disease virus, vesicular stomatitis virus, measles virus, or any combination thereof. The chemotherapeutic agent includes but is not limited to 5-fluorouracil, mitomycin, methotrexate, hydroxyurea, cyclophosphamide, dacarbazine, mitoxantrone, anthracyclines (e.g., epirubicin or doxorubicin), etoposide, platinum compounds (e.g., carboplatin or cisplatin), taxanes (e.g., paclitaxel or taxotere), or any combination thereof. The immunotherapeutic agent includes, but is not limited to, immune checkpoint inhibitors (e.g., PD-L1/PD-1 inhibitors or CTLA-4 inhibitors), tumor-specific targeting antibodies (e.g., rituximab or Herceptin) or any combination thereof.

In certain preferred embodiments, the medicament comprises a unit dose of the EV-D68 and/or a modified form thereof as described above, for example comprising at least 1×10^2 pfu, at least 1×10^3 pfu, at least 1×10^4 pfu, 1×10^5 pfu, 1×10^6 pfu, at least 1×10^7 pfu, at least 1×10^8 pfu, at least 1×10^9 pfu, at least 1×10^{10} pfu, at least 1×10^{11} pfu, at least 1×10^{12} pfu, at least 1×10^{13} pfu, at least 1×10^{14} pfu, or at least 1×10^{16} pfu of the EV-D68 and/or a modified form thereof. In certain preferred embodiments, the medicament comprises 1×10^2 pfu to 1×10^{17} pfu of the EV-D68 and/or

a modified form thereof as described above.

In certain preferred embodiments, the medicament contains a unit dose of an isolated nucleic acid molecule as described above, such as the nucleic acid molecule containing 3×10^{10} to 3×10^{14} virus genome copies.

In certain preferred embodiments, the medicament may be administered in combination with an additional therapy. This additional therapy may be any therapy known for tumors, such as surgery, chemotherapy, radiation therapy, immunotherapy, hormone therapy or gene therapy. This additional therapy may be administered before, concurrently with, or after the administration of the medicament.

In certain preferred embodiments, the tumor includes, but is not limited to, cervical cancer, ovarian cancer, endometrial cancer, lung cancer, liver cancer, kidney cancer, neuroblastoma, glioma, breast cancer, melanoma, prostate cancer, bladder cancer, pancreatic cancer, gastric cancer, colorectal cancer, esophageal cancer, thyroid cancer, laryngeal cancer, osteosarcoma, hematopoietic malignancy (e.g., lymphoma or leukemia).

In certain preferred embodiments, the subject is a mammal, such as a human.

In another aspect, the invention also relates to use of the EV-D68 and/or a modified form thereof as defined in the first aspect, or the isolated nucleic acid molecule as defined in the first aspect, as a medicament.

Treatment method

In a second aspect, the present invention provides a method for treating a tumor, comprising the step of administering to a subject in need thereof an effective amount of an EV-D68 or a modified form thereof, or an effective amount of an isolated nucleic acid molecule; wherein the isolated nucleic acid molecule comprises a sequence selected from the group consisting of:

- (1) a genomic sequence or cDNA sequence of EV-D68 or a modified form thereof; and
- (2) a complementary sequence of the genomic sequence or cDNA sequence.

In certain preferred embodiments, EV-D68 is administered to the subject. In certain preferred embodiments, the EV-D68 is wild-type EV-D68. In certain preferred embodiments, the EV-D68 may be a clinical isolate that is isolated from an individual infected with Enterovirus D68.

In certain preferred embodiments, the genomic sequence of the EV-D68 or a modified form

thereof has a sequence identity of at least 70%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% to the nucleotide sequence as shown in SEQ ID NO: 12. In certain preferred embodiments, the genomic sequence of the EV-D68 or a modified form thereof is a nucleotide sequence as shown in SEQ ID NO: 12.

In certain preferred embodiments, the cDNA sequence of the EV-D68 or a modified form thereof has a sequence identity of at least 70%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% to the nucleotide sequence as shown in SEQ ID NO: 1. In certain preferred embodiments, the cDNA sequence of the EV-D68 or a modified form thereof is a nucleotide sequence as shown in SEQ ID NO: 1.

In certain preferred embodiments, a modified form of EV-D68 is administered to the subject. In certain preferred embodiments, as compared to the wild-type EV-D68, the modified form is a modified EV-D68, which has a substitution, insertion, or deletion of one or more nucleotides in the genome.

In certain preferred embodiments, as compared to the wild-type EV-D68, the modified EV-D68 has one or more modifications selected from the following:

- (1) one or more mutations in an untranslated region (e.g., 5'UTR or 3'UTR);
- (2) an insertion of one or more exogenous nucleic acids;
- (3) a deletion or mutation of one or more endogenous genes; and
- (4) any combination of the above three items.

In certain preferred embodiments, the modified EV-D68 includes one or more mutations in the 5' untranslated region (5'UTR).

In certain preferred embodiments, the modified EV-D68 has a substitution of all or part of the 5'UTR sequence. In certain preferred embodiments, the internal ribosome entry site (IRES) sequence in the 5'UTR of the modified EV-D68 is replaced with an exogenous IRES sequence, such as the interior ribosome entry site sequence of human rhinovirus 2 (HRV2). In certain preferred embodiments, the internal ribosome entry site sequence of the human rhinovirus 2 (HRV2) is shown in SEQ ID NO: 2.

In certain preferred embodiments, the modified EV-D68 comprises an exogenous nucleic acid.

In certain preferred embodiments, the exogenous nucleic acid encodes a cytokine (e.g., GM-CSF, preferably human GM-CSF), or an antitumor protein or polypeptide (e.g., scFv against PD-

1 or PD-L1, preferably scFv against human PD-1 or PD-L1). In certain preferred embodiments, the exogenous nucleic acid is inserted between the 5'UTR gene and the VP4 gene, or between the VP1 gene and the 2A gene of the genome of the modified EV-D68.

In certain preferred embodiments, the exogenous nucleic acid comprises a target sequence of microRNA (miRNA) (e.g., miR-133 or miR-206). In certain preferred embodiments, the target sequence of microRNA is inserted in the 3' untranslated region (3'UTR) of the genome of the modified EV-D68.

In certain preferred embodiments, the exogenous nucleic acid comprises a target sequence of one or more (e.g., 2, 3, or 4) microRNA as described above. In certain preferred embodiments, the exogenous nucleic acid comprises a target sequence of miR-133 and/or miR-206. In certain preferred embodiments, the target sequence of miR-133 is shown in SEQ ID NO: 3. In certain preferred embodiments, the target sequence of miR-206 is shown in SEQ ID NO: 4.

In certain preferred embodiments, the modified EV-D68 comprises at least one insertion of the exogenous nucleic acid as described above and/or at least one mutation in the untranslated region as described above.

In certain preferred embodiments, the genomic sequence of the modified EV-D68 has a sequence identity of at least 70%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% to a nucleotide sequence selected from: the nucleotide sequences as shown in SEQ ID NOS: 13-16. In certain preferred embodiments, the genomic sequence of the modified EV-D68 is selected from the nucleotide sequence as shown in any one of SEQ ID NOS: 13-16.

In certain preferred embodiments, the cDNA sequence of the modified EV-D68 has a sequence identity of at least 70%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% to a nucleotide sequence selected from: the nucleotide sequences as shown in SEQ ID NOS: 8-11. In certain preferred embodiments, the cDNA sequence of the modified EV-D68 is selected from the nucleotide sequence as shown in any one of SEQ ID NOS: 8-11.

In certain preferred embodiments, the EV-D68 and modified forms thereof as described above can be used in combination. Thus, one or more of the EV-D68 and modified forms can be administered to a subject.

In certain preferred embodiments, the isolated nucleic acid molecule as described above is administered to the subject.

In certain preferred embodiments, the isolated nucleic acid molecule consists of the genomic

sequence or cDNA sequence of the EV-D68 or a modified form thereof as described above, or the complementary sequence of the genomic sequence or cDNA sequence. In certain preferred embodiments, the isolated nucleic acid molecule has the genomic sequence of the EV-D68 or a modified form thereof as described above. In certain preferred embodiments, the isolated nucleic acid molecule is RNA. In certain preferred embodiments, the isolated nucleic acid molecule has a nucleotide sequence as shown in any one of SEQ ID NOS: 12-16.

In certain preferred embodiments, the isolated nucleic acid molecule is a vector (e.g. cloning vector or expression vector) comprising the genomic sequence or cDNA sequence of EV-D68 or a modified form thereof as described above, or the complementary sequence of the genomic sequence or cDNA sequence. In certain preferred embodiments, the isolated nucleic acid molecule is a vector (e.g., cloning vector or expression vector) comprising the cDNA sequence of EV-D68 or a modified form thereof as described above, or the complementary sequence of the cDNA sequence. In certain preferred embodiments, the isolated nucleic acid molecule is a vector comprising the nucleotide sequence as shown in any one of SEQ ID NOS: 1, 8-11 or the complementary sequence thereof.

In certain preferred embodiments, the isolated nucleic acid molecule comprises the complementary sequence of the genomic sequence of EV-D68 or a modified form thereof as described above. In certain preferred embodiments, the complementary sequence is complementary to a nucleotide sequence selected from:

- (1) a nucleotide sequence as shown in SEQ ID NO: 12;
- (2) a nucleotide sequence having a sequence identity of at least 70%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% to the nucleotide sequence as shown in SEQ ID NO: 12;
- (3) a nucleotide sequence as shown in any one of SEQ ID NOS: 13-16; and
- (4) a nucleotide sequence having a sequence identity of at least 70%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% to the nucleotide sequence shown in any of SEQ ID NOS: 13-16.

In certain preferred embodiments, the isolated nucleic acid molecule comprises the complementary sequence of the cDNA sequence of EV-D68 or a modified form thereof as described above. In certain preferred embodiments, the complementary sequence is complementary to a nucleotide sequence selected from:

- (1) a nucleotide sequence as shown in SEQ ID NO: 1;
- (2) a nucleotide sequence having a sequence identity of at least 70%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% to the nucleotide sequence as shown in SEQ ID NO: 1;
- (3) a nucleotide sequence as shown in any one of SEQ ID NOs: 8-11; and
- (4) a nucleotide sequence having a sequence identity of at least 70%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% to the nucleotide sequence as shown in any one of SEQ ID NOs: 8-11.

In the present invention, the isolated nucleic acid molecule can be delivered by any means known in the art, for example, a naked nucleic acid molecule (e.g., naked RNA) can be directly injected, or a non-viral delivery system can be used. The non-viral delivery system can be obtained from a variety of materials well known in the art, including, but not limited to, the materials described in detail in "Yin H, et al. Nat Rev Genet. 2014 Aug; 15(8): 541-55." and "Riley MK, Vermerris W. Nanomaterials (Basel). 2017 Apr 28; 7(5). Pii: E94.", which are incorporated herein by reference in their entirety, such as liposomes, inorganic nanoparticles (such as gold nanoparticles), polymers (such as PEG), and so on.

In certain preferred embodiments, the EV-D68 and/or a modified form thereof as described above, or the isolated nucleic acid molecule as described above, can be formulated and administered as a pharmaceutical composition. Such a pharmaceutical composition may comprise a therapeutically effective amount of the EV-D68 and/or a modified form thereof as described above, or a therapeutically effective amount of the isolated nucleic acid molecule as described above. In certain preferred embodiments, the pharmaceutical composition may be in any form known in the medical arts. For example, the pharmaceutical composition may be in the form of a tablet, a pill, a suspension, an emulsion, a solution, a gel, a capsule, a powder, a granule, an elixir, a lozenge, a suppository, or an injection (including injection solution, lyophilized powder) and so on. In some embodiments, the medicament is an injection solution or a lyophilized powder.

In certain preferred embodiments, the pharmaceutical composition further comprises a pharmaceutically acceptable carrier or excipient. In certain preferred embodiments, the pharmaceutical composition comprises a stabilizer.

In the present invention, the EV-D68 and/or a modified form thereof, or the isolated nucleic acid molecule as described above can be administered to a subject by any suitable administration

route. In some cases, the route of administration of the EV-D68 and/or a modified form thereof, or the isolated nucleic acid molecules as described above, depends on the location and type of tumor. For example, for a solid tumor that is easily accessible, the virus or nucleic acid molecule is optionally administered by injection directly into the tumor (e.g., intratumoral injection); for a tumor of hematopoietic system, the virus or nucleic acid molecule can be administered by intravenous or other intravascular routes; for a tumor that is not easily accessible in the body (e.g., metastases), the virus or nucleic acid molecule can be administered systematically so that it can run over the whole body and thereby reaching the tumor (e.g., intravenous or intramuscular injection). Optionally, the virus or nucleic acid molecule of the present invention can be administrated via subcutaneous, intraperitoneal, intrathecal (e.g., for brain tumors), topical (e.g., for melanoma), oral (e.g., for oral or esophageal cancer), intranasal or inhalation spray (e.g., for lung cancer) routes and so on. In certain preferred embodiments, the EV-D68 and/or a modified form thereof as described above, or the isolated nucleic acid as described above, can be administered via intradermal, subcutaneous, intramuscular, intravenous, oral routes etc.

In certain preferred embodiments, the method further comprises administering an additional pharmaceutically active agent having antitumor activity. This additional pharmaceutically active agent may be administered before, concurrently with or after the administration of the EV-D68 and/or a modified form thereof, or an isolated nucleic acid molecule as described above.

In certain preferred embodiments, the additional pharmaceutically active agent includes an additional oncolytic virus, chemotherapeutic agent, or immunotherapeutic agent. In the present invention, the additional oncolytic virus includes, but is not limited to, herpesvirus, adenovirus, parvovirus, reovirus, Newcastle disease virus, vesicular stomatitis virus, measles virus, or any combination thereof. The chemotherapeutic agent includes but is not limited to 5-fluorouracil, mitomycin, methotrexate, hydroxyurea, cyclophosphamide, dacarbazine, mitoxantrone, anthracyclines (such as epirubicin or doxorubicin), etoposide, platinum compounds (such as carboplatin or cisplatin), taxanes (such as paclitaxel or taxotere), or any combination thereof. The immunotherapeutic agents include, but are not limited to, immune check point inhibitors (such as PD-L1/PD-1 inhibitors or CTLA-4 inhibitors), tumor-specific targeting antibodies (such as rituximab or Herceptin) or any combination thereof.

In certain preferred embodiments, the EV-D68 and/or a modified form thereof can be administered in any amount from 1 to 1×10^{15} pfu/kg of the subject's body weight, for example, the EV-D68 and/or a modified form thereof is administered in an amount of at least 1×10^3 pfu/kg, at least 1×10^4 pfu/kg, 1×10^5 pfu/kg, 1×10^6 pfu/kg, at least 1×10^7 pfu/kg, at least 1×10^8 pfu/kg, at least 1×10^9 pfu/kg, at least 1×10^{10} pfu/kg, at least 1×10^{11} pfu/kg, or at least 1×10^{12} pfu/kg of the

subject's body weight. In certain preferred embodiments, the isolated nucleic acid molecule as described above can be administered in any amount of 3×10^{10} to 3×10^{14} virus genome copies per kg of the subject's body weight. In certain preferred embodiments, the EV-D68 and/or a modified form thereof or the isolated nucleic acid molecule as described above can be administered 3 times a day, 2 times a day, 1 time a day, once every 2 days or once a week, optionally the above dosage regimen can be repeated weekly or monthly as appropriate.

In certain preferred embodiments, the method further comprises administering an additional therapy. This additional therapy may be any therapy known for tumors, such as surgery, chemotherapy, radiation therapy, immunotherapy, hormone therapy or gene therapy. This additional therapy may be administered before, concurrently with, or after the administration of the method described above.

In certain preferred embodiments, the subject is a mammal, such as a human.

In certain preferred embodiments, the tumor includes, but is not limited to, cervical cancer, ovarian cancer, endometrial cancer, lung cancer, liver cancer, kidney cancer, neuroblastoma, glioma, breast cancer, melanoma, prostate cancer, bladder cancer, pancreatic cancer, gastric cancer, colorectal cancer, esophageal cancer, thyroid cancer, laryngeal cancer, osteosarcoma, hematopoietic malignancy (e.g., lymphoma or leukemia).

Pharmaceutical composition

In a third aspect, the present invention provides a pharmaceutical composition comprising an EV-D68 and/or a modified form thereof as defined in the first or second aspect, or an isolated nucleic acid molecule as defined in the first or second aspect.

In certain preferred embodiments, the pharmaceutical composition comprises the EV-D68 and/or a modified form thereof as defined in the first or second aspect. In certain preferred embodiments, the EV-D68 and/or modified forms thereof may be used in combination. Therefore, the pharmaceutical composition of the present invention may comprise one or several of the EV-D68 and/or modified forms thereof. In certain preferred embodiments, the pharmaceutical composition comprises a unit dose of the EV-D68 and/or a modified form thereof, for example at least 1×10^2 pfu, at least 1×10^3 pfu, at least 1×10^4 pfu, 1×10^5 pfu, 1×10^6 pfu, at least 1×10^7 pfu, at least 1×10^8 pfu, at least 1×10^9 pfu, at least 1×10^{10} pfu, at least 1×10^{11} pfu, at least 1×10^{12} pfu, at least 1×10^{13} pfu, at least 1×10^{14} pfu, or at least 1×10^{16} pfu of the EV-D68 and/or a modified form thereof. In certain preferred embodiments, the pharmaceutical composition comprises 1×10^2 pfu to 1×10^{17} pfu of the EV-D68 and/or a modified form thereof.

In certain preferred embodiments, the pharmaceutical composition comprises an isolated nucleic acid molecule as defined in the first aspect or the second aspect. In certain preferred embodiments, the isolated nucleic acid molecules can be used in combination. Therefore, the pharmaceutical composition of the present invention may include one or several of the isolated nucleic acid molecules. In certain preferred embodiments, the pharmaceutical composition comprises a unit dose of the isolated nucleic acid molecule, for example 3×10^{10} to 3×10^{14} virus genome copies of the isolated nucleic acid molecule.

In certain preferred embodiments, the pharmaceutical composition may be in any form known in the medical arts. For example, the pharmaceutical composition may be in the form of a tablet, a pill, a suspension, an emulsion, a solution, a gel, a capsule, a powder, a granule, an elixir, a lozenge, a suppository, or an injection (including injection solution, lyophilized powder) and so on. In some embodiments, the medicament is an injection solution or a lyophilized powder.

In certain preferred embodiments, the pharmaceutical composition further comprises a pharmaceutically acceptable carrier or excipient. In certain preferred embodiments, the pharmaceutical composition comprises a stabilizer.

In certain preferred embodiments, the pharmaceutical composition optionally further comprises an additional pharmaceutically active agent. In a preferred embodiment, the additional pharmaceutically active agent is a medicament having antitumor activity, such as an additional oncolytic virus, chemotherapeutic agent or immunotherapeutic agent.

In certain preferred embodiments, the pharmaceutical composition is used to treat a tumor in a subject.

In certain preferred embodiments, the subject is a mammal, such as a human.

In certain preferred embodiments, the tumor includes, but is not limited to, cervical cancer, ovarian cancer, endometrial cancer, lung cancer, liver cancer, kidney cancer, neuroblastoma, glioma, breast cancer, melanoma, prostate cancer, bladder cancer, pancreatic cancer, gastric cancer, colorectal cancer, esophageal cancer, thyroid cancer, laryngeal cancer, osteosarcoma, hematopoietic malignancy (e.g., lymphoma or leukemia).

Modified EV-D68

In a fourth aspect, the present invention provides a modified EV-D68 having a substitution, insertion, or deletion of one or more nucleotides in the genome compared to wild-type EV-D68.

In certain preferred embodiments, the genomic sequence of the wild-type EV-D68 has a

sequence identity of at least 70%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% to a nucleotide sequence selected from the nucleotide sequence as shown in SEQ ID NO: 12. In certain preferred embodiments, the genomic sequence of the wild-type EV-D68 is a nucleotide sequence as shown in SEQ ID NO: 12.

In certain preferred embodiments, the cDNA sequence of the wild-type EV-D68 has a sequence identity of at least 70%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% to a nucleotide sequence as shown in SEQ ID NO: 1. In certain preferred embodiments, the cDNA sequence of the wild-type EV-D68 is a nucleotide sequence as shown in SEQ ID NO: 1.

In certain preferred embodiments, as compared to the wild-type EV-D68, the modified EV-D68 has one or more modifications selected from the following:

- (1) one or more mutations in an untranslated region (e.g., 5'UTR or 3'UTR);
- (2) an insertion of one or more exogenous nucleic acids;
- (3) a deletion or mutation of one or more endogenous genes; and
- (4) any combination of the above three items.

In certain preferred embodiments, the modified EV-D68 includes one or more mutations in the 5' untranslated region (5'UTR).

In certain preferred embodiments, the modified EV-D68 has a substitution of all or part of the 5'UTR sequence. In certain preferred embodiments, the internal ribosome entry site (IRES) sequence in the 5'UTR of the modified EV-D68 is replaced with an exogenous IRES sequence, such as the interior ribosome entry site sequence of human rhinovirus 2 (HRV2). In certain preferred embodiments, the internal ribosome entry site sequence of the human rhinovirus 2 (HRV2) is shown in SEQ ID NO: 2.

In certain preferred embodiments, the modified EV-D68 comprises an exogenous nucleic acid.

In certain preferred embodiments, the exogenous nucleic acid encodes a cytokine (e.g., a GM-CSF, preferably a human GM-CSF), or an antitumor protein or polypeptide (e.g., a scFv against PD-1 or PD-L1, preferably a scFv against human PD-1 or PD-L1). In certain preferred embodiments, the exogenous nucleic acid is inserted between the 5'UTR gene and the VP4 gene, or between the VP1 gene and the 2A gene of the genome of the modified EV-D68.

In certain preferred embodiments, the exogenous nucleic acid comprises a target sequence of

microRNA (miRNA) (e.g., miR-133 or miR-206). In certain preferred embodiments, the target sequence of microRNA is inserted in the 3' untranslated region (3'UTR) of the genome of the modified EV-D68.

In certain preferred embodiments, the exogenous nucleic acid comprises a target sequence of one or more (e.g., 2, 3, or 4) microRNA as described above. In certain preferred embodiments, the exogenous nucleic acid comprises a target sequence of miR-133 and/or miR-206. In certain preferred embodiments, the target sequence of miR-133 is shown in SEQ ID NO: 3. In certain preferred embodiments, the target sequence of miR-206 is shown in SEQ ID NO: 4.

In certain preferred embodiments, the modified EV-D68 comprises at least one insertion of the exogenous nucleic acid as described above and/or at least one mutation in the untranslated region as described above.

In certain preferred embodiments, the genomic sequence of the modified EV-D68 has a sequence identity of at least 70%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% to a nucleotide sequence selected from: the nucleotide sequences as shown in SEQ ID NOs: 13-16. In certain preferred embodiments, the genomic sequence of the modified EV-D68 is selected from the nucleotide sequences as shown in any one of SEQ ID NOs: 13-16.

In certain preferred embodiments, the cDNA sequence of the modified EV-D68 has a sequence identity of at least 70%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% to a nucleotide sequence selected from: the nucleotide sequences as shown in SEQ ID NOs: 8-11. In certain preferred embodiments, the cDNA sequence of the modified EV-D68 is selected from the nucleotide sequences as shown in any one of SEQ ID NOs: 8-11.

In the present invention, the modified EV-D68 can be obtained by reverse genetics technology, and the reverse genetics technology is known in the art, for example, see Yang LS, Li SX, Liu YJ, et al. Virus Res, 2015, 210: 165-168; Hou WH, Yang LS, Li SX, et al. Virus Res, 2015, 205: 41-44; which are incorporated herein by reference in their entirety. In such embodiments, the modified EV-D68 is typically obtained by modifying the cDNA of wild-type EV-D68 (e.g., insertion of an exogenous nucleic acid, deletion or mutation of an endogenous gene, or mutation in a non-translated region).

In the present invention, the modified EV-D68 may be pretreated to reduce or eliminate the immune response against the virus in a subject, wherein the pretreatment may comprise: packaging

the EV-D68 in a lipidosome or micelle, and/or using a protease (e.g., chymotrypsin or trypsin) to remove the capsid protein of the virus to reduce the humoral and/or cellular immunity against the virus in host.

In the present invention, the modified EV-D68 can be serially passaged for adaptation in tumor cells. In certain preferred embodiments, the tumor cells may be tumor cell lines or tumor cell strains known in the art, or may be tumor cells obtained by surgical resection or clinical isolation from an individual (e.g., a subject) having a tumor. In certain preferred embodiments, the modified EV-D68 is serially passaged for adaptation in tumor cells obtained from an individual (e.g., a subject) having a tumor. In certain preferred embodiments, the tumor cells are obtained by surgical resection or clinical isolation from an individual (e.g., a subject) having a tumor. In certain preferred embodiments, the method for serial passaging for adaptation comprises a plurality of (e.g., at least 5, at least 10, at least 15, at least 20) cycles consisting of the following processes: 1) infecting a target tumor cell with a virus; 2) harvesting the virus in a supernatant; and 3) reinfecting a fresh target tumor cell with the obtained virus.

In certain preferred embodiments, the modified EV-D68 is used to treat a tumor in a subject, or to prepare a medicament for treating a tumor in a subject.

In certain preferred embodiments, the tumor includes, but is not limited to, cervical cancer, ovarian cancer, endometrial cancer, lung cancer, liver cancer, kidney cancer, neuroblastoma, glioma, breast cancer, melanoma, Prostate cancer, bladder cancer, pancreatic cancer, gastric cancer, colorectal cancer, esophageal cancer, thyroid cancer, laryngeal cancer, osteosarcoma, hematopoietic malignancy (such as lymphoma or leukemia).

In certain preferred embodiments, the subject is a mammal, such as a human.

In certain preferred embodiments, the modified EV-D68 of the present invention has the internal ribosome entry site (IRES) sequence in the 5'UTR replaced with the internal ribosome entry site sequence of human rhinovirus 2 (HRV2) compared to wild type EV-D68.

In certain preferred embodiments, the modified EV-D68 further comprises an exogenous nucleic acid.

In certain preferred embodiments, the exogenous nucleic acid encodes a cytokine (eg, GM-CSF, preferably human GM-CSF), or an antitumor protein or polypeptide (e.g., a scFv against PD-1 or PD-L1, preferably a scFv against human PD-1 or PD-L1). In certain preferred embodiments, the exogenous nucleic acid is inserted between the 5'UTR and the VP4 gene, or between the VP1 gene and the 2A gene of the genome of the modified EV-D68.

In certain preferred embodiments, the exogenous nucleic acid comprises a target sequence of microRNA (microRNA, miRNA) (eg, miR-133 or miR-206). In certain preferred embodiments, the target sequence of the microRNA is inserted in the 3' untranslated region (3'UTR) of the genome of the modified EV-D68.

In certain preferred embodiments, the exogenous nucleic acid includes a target sequence of one or more (e.g., two, three, or four) microRNAs as described above. In certain preferred embodiments, the exogenous nucleic acid comprises a target sequence of miR-133 and/or miR-206. In certain preferred embodiments, the target sequence of the miR-133 is shown in SEQ ID NO: 3. In certain preferred embodiments, the target sequence of the miR-206 is shown in SEQ ID NO: 4.

In certain preferred embodiments, the modified EV-D68 comprises an insertion of at least one exogenous nucleic acid as described above.

In certain preferred embodiments, the genomic sequence of the modified EV-D68 has at least 70%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% sequence identity to the nucleotide sequence shown in SEQ ID NO: 13. In certain preferred embodiments, the genomic sequence of the modified EV-D68 is a nucleotide sequence as shown in SEQ ID NO: 13.

In certain preferred embodiments, the cDNA sequence of the modified EV-D68 has at least 70%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% sequence identity to the nucleotide sequence shown in SEQ ID NO: 8. In certain preferred embodiments, the cDNA sequence of the modified EV-D68 is a nucleotide sequence as shown in SEQ ID NO: 8.

In certain preferred embodiments, the modified EV-D68 is used to treat a tumor in a subject.

In certain preferred embodiments, the tumor includes, but is not limited to, cervical cancer, ovarian cancer, endometrial cancer, lung cancer, liver cancer, kidney cancer, neuroblastoma, glioma, breast cancer, melanoma, prostate cancer, bladder cancer, pancreatic cancer, gastric cancer, colorectal cancer, esophageal cancer, thyroid cancer, laryngeal cancer, osteosarcoma, hematopoietic malignancy (such as lymphoma or leukemia).

In certain preferred embodiments, the tumor is selected from the group consisting of gastric cancer, endometrial cancer, cervical cancer, and thyroid cancer.

In a fifth aspect, the invention provides an isolated nucleic acid molecule comprising a

sequence selected from:

(1) the genomic sequence or cDNA sequence of the modified EV-D68 according to the fourth aspect; and

(2) a complementary sequence of the genomic sequence or cDNA sequence.

In certain preferred embodiments, the isolated nucleic acid molecule consists of the genomic sequence or cDNA sequence of the modified EV-D68 as described above, or the complementary sequence of the genomic sequence or cDNA sequence.

In certain preferred embodiments, the isolated nucleic acid molecule has the genomic sequence of the modified EV-D68 as described above. In certain preferred embodiments, the isolated nucleic acid molecule is RNA. In certain preferred embodiments, the isolated nucleic acid molecule has the nucleotide sequence as shown in any one of SEQ ID NOS: 12-16.

In certain preferred embodiments, the isolated nucleic acid molecule is a vector (e.g. a cloning vector or an expression vector) comprising a genomic sequence or cDNA sequence of EV-D68 or a modified form thereof as described above, or a complementary sequence of the genomic sequence or cDNA sequence. In certain preferred embodiments, the isolated nucleic acid molecule is a vector (e.g., a cloning vector or an expression vector) comprising a cDNA sequence of EV-D68 or a modified form thereof as described above, or a complementary sequence of the cDNA sequence. In certain preferred embodiments, the isolated nucleic acid molecule is a vector (e.g., a cloning vector or an expression vector) comprising a nucleotide sequence as shown in any one of SEQ ID NOS: 1, 8-11 or a complementary sequence thereof.

In certain preferred embodiments, the isolated nucleic acid molecule comprises a complementary sequence of the genomic sequence of the modified EV-D68 as described above. In certain preferred embodiments, the complementary sequence is complementary to a nucleotide sequence selected from:

(1) a nucleotide sequence as shown in any one of SEQ ID NOS: 13-16; and

(2) a nucleotide sequence having a sequence identity of at least 70%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% to a nucleotide sequence as shown in any one of SEQ ID NOS: 13-16.

In certain preferred embodiments, the isolated nucleic acid molecule comprises the complementary sequence of the cDNA sequence of the modified EV-D68 as described above. In certain preferred embodiments, the complementary sequence is complementary to a nucleotide

sequence selected from:

- (1) a nucleotide sequence as shown in any one of SEQ ID NOs: 8-11; and
- (2) a nucleotide sequence having a sequence identity of at least 70%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% to a nucleotide sequence as shown in any one of SEQ ID NOs: 8-11.

In certain preferred embodiments, the isolated nucleic acid molecule has a nucleotide sequence as shown in SEQ ID NO: 13, or the isolated nucleic acid molecule is a vector (e.g., a cloning vector or an expression vector) comprising a nucleotide sequence as shown in SEQ ID NO: 8 or a complementary sequence thereof.

In the present invention, the isolated nucleic acid molecule can be delivered by any means known in the art, for example, a naked nucleic acid molecule (e.g., naked RNA) can be directly injected, or a non-viral delivery system can be used. The non-viral delivery system can be obtained from a variety of materials well known in the art, including, but not limited to, the materials described in detail in "Yin H, et al. Nat Rev Genet. 2014 Aug; 15 (8): 541- 55." and "Riley MK, Vermerris W. Nanomaterials (Basel). 2017 Apr 28; 7(5). Pii: E94.", which are incorporated herein by reference in their entirety, such as liposomes, inorganic nanoparticles (such as gold nanoparticles), polymers (such as PEG), and so on.

In certain preferred embodiments, the isolated nucleic acid molecule is used to treat a tumor in a subject, or to prepare a medicament for treating a tumor in a subject.

In certain preferred embodiments, the tumor includes, but is not limited to, cervical cancer, ovarian cancer, endometrial cancer, lung cancer, liver cancer, kidney cancer, neuroblastoma, glioma, breast cancer, melanoma, prostate cancer, bladder cancer, pancreatic cancer, gastric cancer, colorectal cancer, esophageal cancer, thyroid cancer, laryngeal cancer, osteosarcoma, hematopoietic malignancy (such as lymphoma or leukemia).

In certain preferred embodiments, the subject is a mammal, such as a human.

In another aspect, the present invention also relates to a pharmaceutical composition comprising the modified EV-D68 according to the fourth aspect, or the isolated nucleic acid molecule according to the fifth aspect.

In another aspect, the present invention also relates to use of the modified EV-D68 according

to the fourth aspect, or the isolated nucleic acid molecule according to the fifth aspect, in treating a tumor in a subject, or in the manufacture of a medicament for treating a tumor in a subject.

In another aspect, the invention also relates to a method for treating a tumor, comprising a step of administering to a subject in need thereof an effective amount of the modified EV-D68 as described in the fourth aspect, or the isolated nucleic acid molecule according to the fifth aspect .

Definition of terms

In the present invention, unless otherwise stated, scientific and technical terms used herein have meanings commonly understood by those skilled in the art. In addition, the laboratory procedures of cell culture, biochemistry, cell biology, nucleic acid chemistry and the like used herein are all routine steps widely used in the corresponding fields. Meanwhile, in order to better understand the present invention, definitions and explanations of related terms are provided below.

As used herein, the term "enterovirus D68 (EV-D68)" refers to one kind of Enterovirus D of the genus *Enteroviruses* of *Picornaviridae* family, the genome of which is a single-stranded positive-sense RNA, consisting of a 5' non-coding region (5'UTR), an open reading frame (ORF), a 3' non-coding region (3'UTR), and a poly(A) tail; wherein its ORF encodes a precursor polyprotein, which can be hydrolyzed and cleaved by its protease to produce structural proteins VP1 to VP4 and non-structural proteins 2A, 2B, 2C, 3A, 3B, 3C and 3D. In order to more clearly describe the present invention, the nucleic acid sequences in the EV-D68 genome corresponding to the above proteins are called VP1 gene, VP2 gene, VP3 gene, VP4 gene, 2A gene, 2B gene, 2C gene, 3A gene, 3B gene, 3C gene, and 3D gene, respectively. In the present invention, the expression "enterovirus D68 (EV-D68)" refers to a wild-type EV-D68, which can be isolated from sources in nature and has not been intentionally modified artificially, examples of which include, but are not limited to, prototype strains AY426531 (CA62-1) and AY426488 (CA62-3), and various clinical isolates (for example, the clinical isolate described in Example 1 of the present invention). The genomic sequence or cDNA sequence of the wild-type EV-D68 is well known in the art and can be found in various public databases (for example, GenBank database, accession number KM881710).

As used herein, the term "modified form" of a virus refers to a modified virus obtained by modifying a wild-type virus, which retains the desired activity (e.g., oncolytic activity) of the wild-type virus. In the present invention, a "modified form" of EV-D68 includes, but is not limited to, a modified EV-D68 virus, the genome sequence of which has a substitution, insertion, or deletion of one or more nucleotides as compared to that of the wild-type EV-D68, and at least retains the

oncolytic activity of EV-D68.

As used herein, the term "oncolytic virus" refers to a virus capable of infecting a tumor cell, replicating in the tumor cell, causing the tumor cell death, lysis, or blocking tumor cell growth. Preferably, the virus has minimal toxic effects on a non-tumor cell.

As used herein, the term "tumor-specific" refers to selectively exhibiting a biological function or activity within a tumor cell. For example, in the present invention, when the term "tumor specificity" is used to describe the killing selectivity of a virus, it means that the virus can selectively kill a tumor cell without killing or substantially killing a non-tumor cell, or the virus is more effective in killing a tumor cell than killing a non-tumor cell.

As used herein, the term "oncolytic activity" primarily includes tumor killing activity. When describing the oncolytic activity of a virus, the oncolytic activity of the virus can typically be measured by indicators such as the virus' ability to infect a tumor cell, ability to replicate in a tumor cell, and/or ability to kill a tumor cell. The oncolytic activity of a virus can be measured using any method known in the art. For example, the ability of a virus to infect a tumor cell can be evaluated by measuring the viral dose required to infect a given percentage of tumor cells (for example, 50% of the cells); the ability to replicate in a tumor cell can be evaluated by measuring the growth of the virus in the tumor cell; the ability to kill a tumor cell can be evaluated by monitoring cytopathic effect (CPE) or measuring tumor cell activity.

As used herein, the expression "cDNA sequence of EV-D68" means the DNA form of the viral genomic RNA sequence, which differs from the RNA sequence only in that the ribonucleotides in the RNA sequence are replaced by corresponding deoxyribonucleotides, for example, uracil ribonucleotides (UMP) are replaced by thymine deoxyribonucleotides (dTMP).

As used herein, the term "exogenous nucleic acid" refers to an artificially introduced nucleotide sequence that is foreign to the original sequence. Exogenous nucleic acid includes, but is not limited to, any gene or nucleotide sequence not found in the viral genome. However, in the present invention, it is particularly preferred that the exogenous nucleic acid is composed of at most 1500, such as at most 1200, and at most 1000 nucleotides. In some cases, preferably, the exogenous nucleic acid encodes a protein or polypeptide having antitumor killing activity, such as a cytokine, or an antitumor protein or polypeptide; or, the exogenous nucleic acid comprises a target sequence of microRNA (miRNA). In the present invention, the microRNA is preferably a microRNA having an expression level in a tumor cell significantly lower than that in a normal cell and/or having obvious tissue specificity. Examples of the microRNA include, but are not limited to, miR-122, miR-192, miR-483, etc., which are specifically expressed in liver tissue; miR-1, miR-133a/b, miR-208, etc., which are specifically expressed in heart; miR-192, miR-196a/b, miR-204,

miR-215, etc., which are specifically expressed in kidney tissue; miR-133a/b, miR-206, etc., which are specifically expressed in muscle tissue; miR-124a, miR-125a/b, miR-128a/b, miR-138, etc., which are specifically expressed in brain tissue; and miR-34, miR-122a, miR-26a, which are under-expressed in liver tumor tissue; miR-34, which is under-expressed in kidney tumor tissue; miR-143, miR-133a/b, which are under-expressed in bladder tumor tissue; miR-Let-7, miR-29, which are under-expressed in lung tumor tissue; and so on (see, for example, Ruiz AJ and Russell S J. MicroRNAs and oncolytic viruses. [J]. *Curr Opin Virol*, 2015, 13: 40–48; which is incorporated herein by reference in its entirety).

In the present invention, when the modified EV-D68 comprises the target sequence of microRNA described above, it is regulated by the microRNA in a cell/tissue in which the microRNA is highly expressed or specifically expressed, so that replication of the oncolytic virus is attenuated and even its killing activity is lost, while in a tumor cell/tissue in which the microRNA is under-expressed or even not expressed, the oncolytic virus can normally replicate and thus kill the tumor cell.

As used herein, the term "cytokine" has a meaning well known to those skilled in the art. However, in the present invention, when the oncolytic virus of the present invention is used to treat a tumor, it is particularly preferred that the cytokine is a cytokine that can be used for tumor treatment. Examples of "cytokines" include, but are not limited to, interleukins (e.g., IL-2, IL-12, and IL-15), interferons (e.g., IFN α , IFN β , IFN γ), tumor necrosis factors (e.g., TNF α), and colony-stimulating factors (e.g., GM-CSF), and any combination thereof (see, for example, Ardolino M, Hsu J, Raulet D H. Cytokine treatment in cancer immunotherapy [J]. *Oncotarget*, 2015, 6 (23): 19346-19347).

As used herein, the term "antitumor protein or polypeptide" refers to a protein or polypeptide having antineoplastic activity, including but not limited to: (1) proteins or polypeptides having toxicity to cells, capable of inhibiting cell proliferation, or inducing apoptosis, examples thereof include, but are not limited to, thymidine kinase TK (TK/GCV), TRAIL, and FasL (see, for example, Candolfi M, King GD, Muhammad AG, et al. Evaluation of proapoptotic transgenes to use in combination with Flt3L in an immune-stimulatory gene therapy approach for Glioblastoma multiforme (GBM) [J]. *FASEB J*, 2008, 22: 1077.13); (2) proteins or polypeptides having immunotherapeutic effects, examples thereof include, but are not limited to, single chain antibody (scFv) against cytotoxic T lymphocyte-associated antigen 4 (anti-CTLA-4), against programmed death receptor 1 (anti-PD-1), and against programmed death ligand 1 (anti-PDL-1) (see, for example, Nolan E, Savas P, Policheni AN, et al. Combined immune checkpoint blockade as a therapeutic strategy for BRCA1-mutated breast cancer [J]. *Science Trans Med*, 2017, 9: eaal4922;

which is incorporated herein by reference in its entirety); (3) proteins or polypeptides that inhibit tumor angiogenesis, examples thereof include, but are not limited to, single-chain antibody (scFv) against vascular endothelial growth factor (anti-VEGF), VEGF-derived polypeptides (e.g., D(LPR), KSVRGKGKGQKRKRKKSRYK, etc.) and ATN-161 (see, for example, Rosca EV, Koskimaki JE, Rivera CG, et al. Anti-angiogenic peptides for cancer therapeutics [J]. *Curr Pharm Biotechnol*, 2011, 12 (8): 1101–1116; which is incorporated herein by reference in its entirety).

As used herein, the term "scFv" refers to a single polypeptide chain comprising a heavy chain variable region (VH) and a light chain variable region (VL), wherein the VL and VH are linked by a linker (see, for example, Bird et al., *Science* 242: 423-426 (1988); Huston et al., *Proc. Natl. Acad. Sci. USA* 85: 5879-5883 (1988); and Pluckthun, *The Pharmacology of Monoclonal Antibodies*, No. Volume 113, edited by Roseburg and Moore, Springer-Verlag, New York, pp. 269-315 (1994)). Such scFv molecule may have a general structure: NH₂-VL-linker-VH-COOH or NH₂-VH-linker-VL-COOH.

As used herein, the term "identity" refers to the match degree between two polypeptides or between two nucleic acids. When two sequences for comparison have the same monomer sub-unit of base or amino acid at a certain site (e.g., each of two DNA molecules has an adenine at a certain site, or each of two proteins/polypeptides has a lysine at a certain site), the two molecules are identical at the site. The percent identity between two sequences is a function of the number of identical sites shared by the two sequences over the total number of sites for comparison x 100. For example, if 6 of 10 sites of two sequences are matched, these two sequences have an identity of 60%. For example, DNA sequences: CTGACT and CAGGTT share an identity of 50% (3 of 6 sites are matched). Generally, the comparison of two sequences is conducted in a manner to produce maximum identity. Such alignment can be conducted by for example using a computer program such as Align program (DNAstar, Inc.) which is based on the method of Needleman, et al. (*J. Mol. Biol.* 48:443-453, 1970). The percentage of identity between two amino acid sequences can also be determined using the algorithm of E. Meyers and W. Miller (*Comput. Appl. Biosci.*, 4:11-17 (1988)) which has been incorporated into the ALIGN program (version 2.0), using a PAM120 weight residue table, and with a gap length penalty of 12 and a gap penalty of 4. In addition, the percentage of identity between two amino acid sequences can be determined by the algorithm of Needleman and Wunsch (*J. Mol. Biol.* 48:444-453 (1970)) which has been incorporated into the GAP program in the GCG software package (available at <http://www.gcg.com>), using either a Blossum 62 matrix or a PAM250 matrix, and with a gap weight of 16, 14, 12, 10, 8, 6, or 4 and a length weight of 1, 2, 3, 4, 5, or 6.

As used herein, the term "vector" refers to a nucleic acid vehicle into which a polynucleotide

can be inserted. When a vector enables expression of a protein encoded by an inserted polynucleotide, the vector is referred to as an expression vector. A vector can be introduced into a host cell by transformation, transduction, or transfection, so that the genetic material elements carried by the vector can be expressed in the host cell. The vector is well known to those skilled in the art and includes, but is not limited to: plasmids; phagemids; cosmids; artificial chromosomes, such as yeast artificial chromosomes (YAC), bacterial artificial chromosomes (BAC) or P1-derived artificial chromosomes (PAC); bacteriophages such as λ -phage or M13 phage and animal viruses. Animal viruses that can be used as vectors include, but are not limited to, retroviruses (including lentiviruses), adenoviruses, adeno-associated viruses, herpesviruses (such as herpes simplex virus), poxviruses, baculoviruses, papillomaviruses, and papovaviruses (such as SV40). A vector may contain a variety of elements that control expression, including, but not limited to, promoter sequences, transcription initiation sequences, enhancer sequences, elements for selection, and reporter genes. In addition, the vector may contain a replication initiation site.

As used herein, the term "internal ribosome entry site (IRES)" refers to a nucleotide sequence located in a messenger RNA (mRNA) sequence that is capable of initiating translation without the need for the 5' cap structure. IRES is usually located in the 5' untranslated region (5'UTR), but may also be located elsewhere in the mRNA.

As used herein, the term "human rhinovirus 2 (HRV2)" refers to a virus of picornaviridae family, the genomic or cDNA sequence of which is well known in the art and can be found in various public databases (e.g., GenBank database, accession number X02316.1).

As used herein, the expression "a nucleic acid molecule comprising a genomic sequence of EV-D68 or a modified form thereof" or "a nucleic acid molecule comprises a genomic sequence of EV-D68 or a modified form thereof" has the meaning commonly understood by those skilled in the art, that is, when the nucleic acid molecule is DNA, the nucleic acid molecule comprises a genomic sequence of EV-D68 or a modified form thereof in form of DNA; when the nucleic acid molecule is RNA, the nucleic acid molecule comprises a genomic sequence of EV-D68 or a modified form thereof.

As used herein, the term "pharmaceutically acceptable carrier and/or excipient" refers to a carrier and/or excipient that is pharmacologically and/or physiologically compatible with the subject and the active ingredient, which is well known in the art (see, for example, Remington's Pharmaceutical Sciences. Edited by Gennaro AR, 19th ed. Pennsylvania: Mack Publishing Company, 1995), and includes, but is not limited to: pH adjusting agents, surfactants, ionic strength enhancers, agents to maintain osmotic pressure, agents to delay absorption, diluents, adjuvants, preservatives, stabilizers, etc. For example, pH adjusting agents include, but are not

limited to, phosphate buffered saline. Surfactants include, but are not limited to, cationic, anionic or non-ionic surfactants, such as Tween-80. Ionic strength enhancers include, but are not limited to, sodium chloride. Agents that maintain osmotic pressure include, but are not limited to, sugar, NaCl, and the like. Agents that delay absorption include, but are not limited to, monostearate and gelatin. Diluents include, but are not limited to, water, aqueous buffers (such as buffered saline), alcohols and polyols (such as glycerol), and the like. Adjuvants include, but are not limited to, aluminum adjuvants (such as aluminum hydroxide), Freund's adjuvants (such as complete Freund's adjuvant), and the like. Preservatives include, but are not limited to, various antibacterial and antifungal agents, such as thimerosal, 2-phenoxyethanol, parabens, trichloro-t-butanol, phenol, sorbic acid, and the like. Stabilizers have the meaning commonly understood by those skilled in the art, which can stabilize the desired activity (such as oncolytic activity) of the active ingredients in the drug, including but not limited to sodium glutamate, gelatin, SPGA, sugars (e.g., sorbitol, mannitol, starch, sucrose, lactose, dextran, or glucose), amino acids (e.g., glutamic acid, glycine), proteins (e.g., dried whey, albumin, or casein) or their degradation products (e.g., lactalbumin hydrolysates).

As used herein, the term "treating" refers to treating or curing a disease (e.g., a tumor), delaying the onset of symptoms of a disease (e.g., a tumor), and/or delaying the development of a disease (e.g., a tumor).

As used herein, the term "effective amount" refers to an amount that can effectively achieve the intended purpose. For example, a therapeutically effective amount can be an amount effective or sufficient to treat or cure a disease (e.g., a tumor), delay the onset of symptoms of a disease (e.g., a tumor), and/or delay the development of a disease (e.g., a tumor). Such an effective amount can be easily determined by a person skilled in the art or a doctor, and can be related to the intended purpose (such as treatment), the general health condition, age, gender, weight of the subject, severity, complications, administration route of the disease to be treated. The determination of such an effective amount is well within the capabilities of those skilled in the art.

As used herein, the term "subject" refers to a mammal, such as a primate mammal, such as a human. In certain embodiments, the subject (e.g., a human) has a tumor, or is at risk for having a tumor.

The beneficial effects of the present invention

Compared with the prior art, the technical solution of the present invention has at least the following beneficial effects:

The inventors of the present application have found for the first time that enterovirus D68 (EV-D68) has broad-spectrum tumor-killing activity. Based on this finding, the present invention further provides an EV-D68-based oncolytic virus, which has a broader-spectrum tumor-killing activity and higher tumor specificity, especially also has a very high killing effect to hematopoietic malignancy (such as lymphoma or leukemia), thus can be used alone for the treatment of tumors, and can also be used as a supplementary method of traditional tumor treatment, or as a treatment in the absence of other treatment methods.

The EV-D68 or a modified form thereof of the present invention has little or no effect on normal cells, and does not induce an immunogenic response against the virus in a subject (for example, a human), and thus can be safely administered to a subject (for example, a human). Therefore, the EV-D68 or a modified form thereof of the present invention has great clinical value.

The embodiments of the present invention will be described in detail below with reference to the drawings and examples, but those skilled in the art will understand that the following drawings and examples are only used to illustrate the present invention, rather than limiting the scope of the present invention. Various objects and advantageous aspects of the present invention will become apparent to those skilled in the art from the following detailed description of drawings and the preferred embodiments.

Description of the Drawings

FIG. 1 shows photomicrographs of the in vitro killing tests of the wild-type EV-D68 on human umbilical vein endothelial cell line HUVEC, human esophageal cancer cell line TE-1, human thyroid cancer cell lines SW-579 and TT in Example 2, wherein MOCK represents cells that are not infected with the virus. The results showed that the EV-D68 had a significant oncolytic effect on human tumor cell lines TE-1, SW-579, and TT after 72 hours of infection at a multiplicity of infection (MOI) of 10, but had no effect on HUVEC of human normal cells.

FIG. 2 shows the photos of crystal violet staining of the in vitro killing tests of the wild-type EV-D68 on human liver cancer cell lines HepG2, SMMC7721, BEL7404, BEL7402, and Huh7, human cervical cancer cell lines Hela and Caski, human lung cancer cell lines NCI-H1299 and A549, human foreskin fibroblast cell line HFF-1, human embryonic kidney cell line HEK-293, and differentiated human liver progenitor cell line HepaRG in Example 2, wherein MOCK represents cells that are not infected with the virus. The results showed that the EV-D68 had significant oncolytic effects on human tumor cell lines HepG2, SMMC7721, BEL7404, BEL7402,

Huh7, Hela, Caski, NCI-H1299 and A549 after 72 hours of infection at MOIs of 10, 1, and 0.1, but had limited effect on HFF-1, HEK-293 and differentiated HepaRG of human normal cells.

FIG. 3 shows an electrophoresis image of four samples of wild-type EV-D68 virus genomic RNA of the same batch obtained by the in vitro transcription method in Example 2.

FIG. 4 shows the killing effect of the wild-type EV-D68 virus genomic RNA on human cervical cancer tumor cell line Hela in Example 2. The results showed that Hela cells showed obvious CPE after 24 hours of transfection with EV-D68 genomic RNA, and were almost all lysed to death by 48 hours.

FIGs. 5A to 5C show the results of in vivo antitumor experiment of the wild-type EV-D68 in Example 3 on human cervical cancer cell line Hela (A), human glioma cell line U118-MG (B), and human lymphoma cell line Raji (C). The results showed that, in the challenge experimental group, 10^6 TCID50 per tumor mass of EV-D68 were injected intratumorally every third day. After 5 treatments in total, the growth of tumors formed by subcutaneous inoculation of Hela, U118-MG, or Raji cells in SCID mice significantly slowed down and arrested, and the tumors were even lysed and disappeared. In contrast, the tumors of the negative group (CTRL) without treatment of oncolytic virus maintained the normal growth, and their tumor volumes are significantly larger than those in the challenge group.

FIG. 6 shows the results of toxicity detection of EV-D68-WT in BALB/c mice in Example 4. FIG. 6A shows the survival rates and health scores of 1-day-old BALB/c mice after challenge with EV-D68 at different doses (10^3 , 10^4 , 10^5 , 10^6 , and 10^7 TCID50/mouse) by intraperitoneal injection; FIG. 6B shows the survival rates and health scores of BALB/c mice of different ages (1-day-old, 2-day-old, 3-day-old, 7-day-old and 14-day-old) challenged with a very high dose (10^7 TCID50/mouse) by intraperitoneal injection. The overall toxicity of EV-D68 to BALB/c mice was relatively weak, and only high doses caused the death of 1-day-old to 3-day-old BALB/c mice, but had no effect on 4- or more-day-old BALB/c mice, indicating that EV-D68 had good safety in vivo.

Sequence information

Information of a part of sequences involved in the present invention is provided in Table 1 as below.

Table 1: Sequence description

SEQ ID	Description
--------	-------------

NO:	
1	cDNA sequence of wild type EV-D68 (EV-D68-WT)
2	RNA sequence of the internal ribosome entry site of human rhinovirus 2 (HRV2)
3	RNA sequence of the target sequence of miR-133
4	RNA sequence of the target sequence of miR-206
5	RNA sequence of tandem sequence of miR-133 target sequence and miR-206 target sequence
6	DNA sequence of human granulocyte-macrophage colony-stimulating factor (GM-CSF) gene
7	DNA sequence of anti-human programmed death receptor 1 single chain antibody (Anti-PD-1 scFv)
8	cDNA sequence of the modified form of EV-D68 (EV-D68-HRV2)
9	cDNA sequence of the modified form of EV-D68 (EV-D68-miR133&206T)
10	cDNA sequence of the modified form of EV-D68 (EV-D68-GM-CSF)
11	cDNA sequence of the modified form of EV-D68 (EV-D68-Anti-PD1)
12	Genomic sequence of wild-type EV-D68 (EV-D68-WT)
13	Genomic sequence of the modified form of EV-D68 (EV-D68-HRV2)
14	Genomic sequence of the modified form of EV-D68 (EV-D68-miR133 & 206T)
15	Genomic sequence of the modified form of EV-D68 (EV-D68-GM-CSF)
16	Genomic sequence of the modified form of EV-D68 (EV-D68-Anti-PD1)
17	DNA sequence of miR-133 target sequence
18	DNA sequence of miR-206 target sequence
19	DNA sequence of tandem sequence of miR-133 target sequence and miR-206 target sequence
20	DNA sequence of the internal ribosome entry site sequence of human rhinovirus 2 (HRV2)

Specific Models for Carrying Out the Invention

The present invention is now be described with reference to the following examples which are intended to illustrate the present invention (rather than to limit the present invention).

Unless otherwise specified, the molecular biology experimental methods and immunoassays used in the present invention were carried out substantially by referring to the methods described

in J. Sambrook et al., Molecular Cloning: A Laboratory Manual, 2nd Edition, Cold Spring Harbor Laboratory Press, 1989, and F. M. Ausubel et al., Short Protocols in Molecular Biology, 3rd Edition, John Wiley & Sons, Inc., 1995; restriction enzymes were used under conditions recommended by the product manufacturer. If the specific conditions were not indicated in the examples, the conventional conditions or the conditions recommended by the manufacturer were used. If the reagents or instruments used were not specified by the manufacturer, they were all conventional products that were commercially available. Those skilled in the art will understand that the examples describe the present invention by way of examples, and are not intended to limit the scope of protection claimed by the present invention. All publications and other references mentioned herein are incorporated by reference in their entirety.

Example 1: Obtainment and preparation of EV-D68 and its modified form

1.1 Isolation of enterovirus EV-D68 from patient clinical sample

(1) A throat swab of patient was gained from the Center for Disease Control and Prevention of Xiamen City, China; African green monkey kidney cells (Vero cells; ATCC® Number: CCL-81™) were kept by the National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, China, and cultured in MEM medium containing 10% fetal bovine serum, as well as glutamine, penicillin and streptomycin.

(2) Sample processing: the throat swab of patient was sufficiently agitated in a sample preservation solution to wash off the virus and virus-containing cells adhering to the swab, and then the sample preservation solution was subjected to a high speed centrifugation at 4000 rpm and 4 °C for 30min;

(3) Inoculation and observation:

A) The Vero cells were plated in a 24-well plate with 1×10^5 cells/well. The growth medium (MEM medium, containing 10% fetal bovine serum, as well as glutamine, penicillin and streptomycin) was aspirated, and 1 mL of maintenance medium (MEM medium, containing 2% fetal calf serum, as well as glutamine, penicillin and streptomycin) was added in each well. Then except the negative control wells, each well was inoculated with 50 μ L of the sample supernatant, and cultured in an incubator at 37 °C, 5% CO₂.

B) The cells were observed under a microscope every day for one week, and the occurrence of specific cytopathic effect (CPE) in the inoculated wells was recorded.

C) If the enterovirus-specific cytopathic effect appeared in the cells in the inoculated wells

within 7 days, the cells and supernatant were collected and frozen at -80 °C; if no CPE appeared after 7 days, the cells were subjected to blind passage.

D) If CPE appeared within 6 blind passages, the cells and supernatant were collected and frozen at -80 °C; If CPE did not appear after 6 blind passages, the cells were determined as negative.

(4) Isolation and cloning of viruses:

RT-PCR (Piralla et al., J Clin Microbiol 2015, 53 (5): 1725-1726) and enzyme-linked immunospot method based on specific antibody (Yang et al., Clin Vaccine Immunol 2014, 21 (3): 312 -320; Hou et al., J Virol Methods 2015, 215-216: 56-60) were used to identify the viruses isolated from the clinical sample, and EV-D68 positive cultures were selected and subjected to at least 3 cloning experiments. The virus clones obtained by the limiting dilution method in each experiment were also identified by RT-PCR and ELISPOT, and the EV-D68 positive clones were selected for the next round of cloning. A single EV-D68 strain with strong growth viability was selected as a candidate oncolytic virus strain.

1.2 Rescued strain of enterovirus EV-D68 and its modified form obtained by infectious cloning and reverse genetics technology

This example used wild-type EV-D68 (SEQ ID NO: 1) as an example to show how to obtain EV-D68 and its modified form for the present invention through reverse genetics technology. The specific method was as follows.

(1) Construction of viral infectious clone: the cDNA sequence of wild-type enterovirus EV-D68 (named EV-D68-WT) was shown in SEQ ID NO: 1, and its genomic RNA sequence was SEQ ID NO: 12; or gene insertion or replacement based on the cDNA (SEQ ID NO: 1) of enterovirus EV-D68 was performed, comprising:

Modified form 1: the internal ribosome entry site sequence of wild-type EV-D68 was replaced with the internal ribosome entry site sequence of human rhinovirus 2 (which has a DNA sequence shown in SEQ ID NO: 20) to obtain the cDNA (SEQ ID NO: 8) of the recombinant virus (named as EV-D68-HRV2), which has a genomic RNA sequence shown as SEQ ID NO: 13;

Modified form 2: the tandem sequence (which has a DNA sequence shown in SEQ ID NO: 19) of miR-133 target sequence (which has a DNA sequence shown in SEQ ID NO: 17) and miR-206 target sequence (which has a DNA sequence shown in SEQ ID NO: 18) was inserted between 7293-7294 bp of the 3' untranslated region of the cDNA (SEQ ID NO: 1) of the wild-type EV-D68, to obtain the cDNA (SEQ ID NO: 9) of the recombinant virus (named EV-D68-miR133&206T), which has a genomic RNA sequence shown as SEQ ID NO: 14;

Modified form 3: the human granulocyte-macrophage colony-stimulating factor (GM-CSF) gene (SEQ ID NO: 6) was inserted between the VP1 gene and 2A gene of the cDNA (SEQ ID NO: 1) of wild-type EV-D68 to obtain the cDNA (SEQ ID NO: 10) of the recombinant virus (named EV-D68-GM-CSF), which has a genomic RNA sequence shown as SEQ ID NO: 15;

Modified form 4: the sequence (SEQ ID NO: 7) encoding the single chain antibody against human programmed death receptor 1 (Anti-PD-1 scFv) was inserted between the VP1 gene and 2A gene of the cDNA (SEQ ID NO: 1) of wild-type EV-D68 to obtain the cDNA (SEQ ID NO: 11) of the recombinant virus (named EV-D68-Anti-PD-1), which has a genomic RNA sequence shown as SEQ ID NO: 16.

Then, the cDNA sequences (SEQ ID NO: 1, 8-11) of the above five oncolytic viruses were sent to the gene synthesis company (Shanghai Biotech Engineering Co., Ltd.) for full gene synthesis, and ligated into the pSVA plasmid (Hou et al. Virus Res 2015, 205: 41-44; Yang et al., Virus Res 2015, 210: 165-168) to obtain the infectious cloning plasmids of enterovirus EV-D68 or modified forms thereof (i.e., EV-D68-WT, EV-D68-HRV2, EV-D68-miR133&206T, EV-D68-GM-CSF and EV-D68-Anti-PD-1).

(2) Plasmid mini-kit and *E coli*. DH5 α competent cells were purchased from Beijing Tiangen Biochemical Technology Co., Ltd.; Hela cells (ATCC® Number: CCL-2™) and human rhabdomyosarcoma cells (RD cells; ATCC® Number: CCL-136™) were kept by National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, China, and were cultured with DMEM and MEM media respectively, in which 10% fetal bovine serum as well as glutamine, penicillin and streptomycin were added; transfection reagents Lipofactamine2000 and Opti-MEM were purchased from Thermo Fisher Scientific Company.

(3) The infectious cloning plasmids containing the cDNA sequences of the above five oncolytic viruses were transformed into *E coli* DH5 α competent cells, the monoclonal strains were picked out and shaken after the outgrowth of clones, and the plasmids were extracted using the plasmid mini-kit, and then sent to the company (Shanghai Biotech Engineering Co., Ltd.) for sequencing analysis.

(4) The infectious cloning plasmids with correct sequence and the helper plasmid pAR3126 were co-transfected into the cells to rescue virus (Hou et al. Virus Res 2015, 205: 41-44; Yang et al. Virus Res 2015, 210: 165-168). Hela cells were first transfected according to the instructions of the transfection reagent; then observed under a microscope. When CPE appeared in Hela cells, the cells and culture supernatant were harvested, and inoculated with RD cells followed by passaging and culturing, thereby obtaining the candidate strain of oncolytic virus.

Example 2: In vitro antitumor experiment of EV-D68 and modified form thereof

2.1 Viruses and cell lines as used

(1) Viruses: this example used EV-D68-WT (SEQ ID NO: 12), EV-D68-HRV2 (SEQ ID NO: 13), EV-D68-miR133&206T (SEQ ID NO: 14), EV-D68-GM-CSF (SEQ ID NO: 15) and EV-D68-Anti-PD-1 (SEQ ID NO: 16) as provided in Example 1.

(2) Cell lines: human rhabdomyosarcoma cell RD (ATCC® Number: CCL-136™); human cervical cancer cell lines Hela (ATCC® Number: CCL-2™), SiHa (ATCC® Number: HTB-35™), Caski (ATCC® Number: CRL-1550™) and C-33A (ATCC® Number: HTB-31™); human ovarian cancer cell lines SKOV-3/TR (drug-resistant strain of SKOV-3), SKOV-3 (ATCC® Number: HTB-77™) and Caov3 (ATCC® Number: HTB-75™); human endometrial cancer cell lines Hec-1-A (ATCC® Number: HTB-112™), Hec-1-B (ATCC® Number: HTB-113™) and Ishikawa (ECACC No. 99040201); human lung cancer cell lines SPC-A-1 (CCTCC Deposit Number: GDC050), NCI-H1299 (ATCC® Number: CRL-5803™), NCI-H1417 (ATCC® Number: CRL-5869™), NCI-H1703 (ATCC® Number: CRL-5889™), NCI-H1975 (ATCC® Number: CRL-5908™), A549 (ATCC® Number: CCL-185™), NCI-H661 (ATCC® Number: HTB-183™), EBC-1 (Thermo Fisher Scientific, Catalog #: 11875101), and DMS114 (ATCC® Number: CRL-2066™); human liver cancer cell lines MHCC97H (purchased from the Institute of Liver Cancer, Fudan University), C3A (ATCC® Number: CRL-10741™), Hep3B (ATCC® Number: HB-8064™), HepG2 (ATCC® Number: HB-8065™), SMMC7721 (purchased from the Basic Medical Cell Center of the Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, number: 3111C0001CCC000087), BEL7402 (CCTCC Deposit Number: GDC035), BEL7404 (purchased from the Cell Resource Center, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, number: 3131C0001000700064), Huh7 (CCTCC Deposit Number: GDC134), PLC/PRF/5 (ATCC® Number: CRL-8024™) and SK-Hep-1 (ATCC® Number: HTB-52™); human kidney cancer cell lines A-498 (ATCC® Number: HTB-44™), 786-O (ATCC® Number: CRL-1932™) and Caki-1 (ATCC® Number: HTB-46™); human neuroblastoma cell lines SH-SY5Y (ATCC® Number: CRL-2266™) and SK-N-BE (2) (ATCC® Number: CRL-2271™); human glioma cell lines U87-MG (ATCC® Number: HTB-14™) and U118-MG (ATCC® Number: HTB-15™); human breast cancer cell lines MCF-7 (ATCC® Number: HTB-22™), BcaP37 (CCTCC Deposit Number: GDC206), BT-474 (ATCC® Number: HTB-20™), MDA-MB-231 (ATCC® Number: CRM-HTB-26™) and MDA-MB-453 (ATCC® Number: HTB-131™); human melanoma cell lines A-375 (ATCC® Number: CRL-1619™), SK-MEL-1 (ATCC® Number: HTB-67™) and MeWo (ATCC® Number: HTB-65™);

human prostate cancer cell lines PC-3 (ATCC® Number: CRL-1435™), LNCap (ATCC® Number: CRL-1740™) and DU145 (ATCC® Number: HTB-81™); human bladder cancer cell lines J82 (ATCC® Number: HTB-1™) and 5637 (ATCC® Number: HTB-9™); human pancreatic cancer cell lines Capan-2 (ATCC® Number: HTB-80™), HPAF-2 (ATCC® Number: CRL-1997™), and PANC-1 (ATCC® Number: CRL-1469™); human gastric cancer cell lines AGS (ATCC® Number: CRL-1739™), SGC7901 (CCTCC Deposit Number: GDC150), BGC823 (CCTCC Deposit Number: GDC151), and NCI-N87 (ATCC® Number: CRL-5822™); human colorectal cancer cell lines DLD-1 (ATCC® Number: CCL-221™), SW1116 (ATCC® Number: CCL-233™), SW480 (ATCC® Number: CCL-228™), HCT-116 (ATCC® Number: CCL-247™) and HT-29 (ATCC® Number: HTB-38™); human esophageal cancer cell line TE-1 (purchased from the Cell Resource Center, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, No. 3131C0001000700089); human thyroid cancer SW-579 (ATCC® Number: HTB-107™) and TT (ATCC® Number: CRL-1803™); human laryngeal cancer Hep-2 (ATCC® Number: CCL-23™); osteosarcoma 143B (ATCC® Number: CRL-8303™) and U2OS (ATCC® Number: HTB-96™); human lymphoma and leukemia cell lines K562 (ATCC® Number: CCL-243™), U937 (ATCC® Number: CRL-1593.2™), THP-1 (ATCC® Number: TIB-202™), Raji (ATCC® Number: CCL-86™), Daudi (ATCC® Number: CCL-213™), Jurkat (ATCC® Number: TIB-152™) and MT-4 (obtained from the National Institutes of Health, USA); human normal cell lines include: human embryo lung fibroblast cell line MRC-5 (ATCC® Number: CCL-171™), human embryonic kidney cell line HEK-293 (ATCC® Number: CRL-1573™), human foreskin fibroblast cell line HFF-1 (ATCC® Number: SCRC-1041™), human skin keratinocyte cell line HaCat (CCTCC Deposit Number: GDC106), human prostate stromal cell line WPMY-1 (ATCC® Number: CRL-2854™), human umbilical vein endothelial cell line HUVEC (Thermo Fisher Scientific, Catalog #: C01510C), and differentiated human liver progenitor cell line HepaRG (with characteristics of primary hepatocytes; Thermo Fisher Scientific, Catalog #: HPRGC10). The above cells were kept by National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, China. HepaRG cells were cultured in WME medium (added with 1.5% DMSO), AGS and TT were cultured with F-12K medium, SW-579 was cultured with L-15 medium, SH-SY5Y and SK-N-BE (2) were cultured with DMEM:F12 (1:1) medium, RD, C-33A, EBC-1, J82, SK-Hep-1, SK-MEL-1 and DU145 were cultured with MEM medium, K562, U937, THP-1, Raji, Daudi, Jurkat, MT-4, 5637, 786-O, TE-1, Caski, NCI-H1417, NCI-H1703, NCI-H1975, NCI-H661, SGC7901, BGC823, DLD-1, SW1116, Hep-2, and LNCap were cultured with RPMI-1640 medium, other cells were cultured with DMEM medium. All the mediums mentioned above were supplemented with 10% fetal bovine serum, glutamine and penicillin-streptomycin. All the above cells were cultured under the standard conditions of 37 °C and 5% CO₂.

2.2 Virus culture

RD cells were evenly plated on 10 cm cell culture plates, and the culture conditions included MEM medium containing 10% fetal bovine serum and glutamine, penicillin and streptomycin, 37 °C, 5% CO₂, and saturated humidity. When the cell confluence reached 90% or more, the cell culture medium was replaced with serum-free MEM medium, and each plate was inoculated with 10⁷ TCID₅₀ of EV-D68-WT, EV-D68-HRV2, EV-D68-miR133&206T, EV-D68-GM-CSF or EV-D68-Anti-PD-1, the culture environment was changed to 33 °C, 5% CO₂, saturated humidity. After 24 hours, the EV-D68 or its modified form proliferated in RD cells and caused CPE in cells. When more than 90% of the cells turned contracted and rounded, showed increased graininess, and became detached and lysed, the cells and culture supernatants thereof were harvested. After freeze-thawing for three cycles, the culture supernatant was collected and centrifuged to remove cell debris, wherein the centrifuge conditions were 4000 rpm, 10min, 4 °C. Finally, the supernatant was filtered with a 0.22 µm disposable filter (Millipore Company) to remove impurities such as cell debris.

2.3 Determination of virus titer

The RD cells were plated in a 96-well plate with a cell density of 10⁴ cells/well. After the cells adhered, the virus solution obtained in Example 2.2 was diluted 10-fold with serum-free MEM medium from the first 10-fold dilution. 50 µl of the dilution of virus was added to the wells with cells. After 7 days, the wells where CPE appeared were monitored and recorded, followed by calculation using Karber method, in which the calculation formula was $lg^{TCID50} = L - D (S - 0.5)$, L: logarithm of the highest dilution, D: difference between the logarithms of dilutions, S: sum of proportions of positive wells. The unit of TCID₅₀ thus calculated was TCID₅₀/50µl, which should be converted to TCID₅₀/ml.

2.4 In vitro antitumor experiment of viruses

Human tumor cells and normal cells were inoculated into 96-well plates at 10⁴ cells/well. After the cells adhered, the medium in each well was replaced with the corresponding cell culture medium without serum, and viruses were inoculated at an MOI of 0.1, 1, 10 or 100. Subsequently, CPE of the cells were monitored daily by a microscope.

FIG. 1 shows micrographs of the human umbilical vein endothelial cell line HUVEC, the human esophageal cancer cell line TE-1, and the human thyroid cancer cell line SW-579 and TT, which were not infected with viruses (negative control group, Mock) or which were treated with EV-D68-WT at MOI = 10 for 72 hours. The results showed that after 72 hours of infection at a

multiplicity of infection (MOI) of 10, a significant reduction in the number of the tumor cells, marked shrinking and lysis and the like, were detected in the virus-infected groups; while as compared to the non-tumor cells in the Mock group, the non-tumor cells infected with the viruses showed almost no change in cell morphology. The above results demonstrated that EV-D68 had significant oncolytic effects on human tumor cell lines TE-1, SW-579 and TT, but did not have any effect on non-tumor cells HUVEC.

After 72 hours of virus infection and culture, the cell survival rate was detected using Cell Counting Kit-8 (CCK-8 kit; Shanghai Biyuntian Biotechnology Co., Ltd.) and crystal violet staining method (only for adherent cells), and the specific method was as follows:

(1) Cell survival rate detected by CCK8 method

For adherent cells, the original medium in a 96-well cell culture plate was directly discarded; for suspension cells, the original medium in a 96-well cell culture plate was carefully discarded after centrifugation; and then 100 μ l of fresh serum-free medium was added per well. 10 μ l of CCK-8 solution was added to each of the wells inoculated with cells, and an equal amount of CCK-8 solution was also added to the blank culture medium as a negative control, followed by incubation at 37 °C in a cell culture incubator for 0.5-3 hours. The absorbance was detected at 450 nm using a microplate reader at 0.5, 1, 2, 3 hours, respectively, and the time point where the absorbance was within a suitable range was selected as a reference for cell survival rate. The CCK-8 test results of EV-D68-WT for each kind of cells were shown in Table 2, where "-" indicated that the cell survival rate after virus treatment was not significantly different from that of the MOCK group; "+" indicated that after virus treatment, the cell number was reduced, the survival rate was still greater than 50% but was significantly different from that of the MOCK group; "++" indicated that the cell survival rate after virus treatment was less than 50%, and was significantly different from that of the MOCK group.

The calculation of cell survival rate was:

$$\text{Cell_survival_rate}(\%) = \frac{(\text{reading_of_test_group} - \text{reading_of_negative_group})}{(\text{reading_of_positive_group} - \text{reading_of_negative_group})} \times 100\%.$$

(2) Cell survival rate detected by crystal violet staining method (only for adherent cells)

After the cells were infected with viruses for 3 days, the culture supernatant in the 96-well cell culture plate was discarded, 100 μ l of methanol was added to each well, followed by fixation in the dark for 15 min. Crystal violet powder (Shanghai Biotech Biotechnology Co., Ltd.) was weighed, and formulated as 2% (w/v) crystal violet methanol solution, which was stored at 4 °C. An appropriate amount of 2% crystal violet methanol solution was taken and formulated with PBS

solution to prepare 0.2% crystal violet working solution. After fixation for 15 minutes, the methanol fixation solution in the 96-well cell culture plate was discarded, and 100 μ l of the crystal violet working solution was added to the plate and staining was performed for 30min. After the crystal violet staining solution was discarded, PBS solution was used for washing for 3 to 5 times, until the excess staining solution was washed off, and air-drying was performed. ImmunSpot @ S5 UV Analyzer (Cellular Technology Limited, USA) was used for photographing. FIG. 2 showed the crystal violet staining results of the human liver cancer cell lines HepG2, SMMC7721, BEL7404, BEL7402 and Huh7, the human cervical cancer cell lines Hela and Caski, the human lung cancer cell lines NCI-H1299 and A549, the human foreskin fibroblast cell line HFF-1, the human embryonic kidney cell line HEK-293, and the differentiated human hepatic progenitor cell line HepaRG in the control group (MOCK) and in the experimental groups (infected for 72 hours with EV-D68-WT at MOIs of 0.1, 1, and 10, respectively). As shown in the results, after 72 hours of infection at MOIs of 10, 1, and 0.1, the tumor cells in the experimental groups were significantly reduced as compared to the control group (MOCK) without addition of virus; while the number of non-tumor cells showed no significant change. The above results indicated that the EV-D68-WT had significant oncolytic effects on human tumor cell lines HepG2, SMMC7721, BEL7404, BEL7402, Huh7, Hela, Caski, NCI-H1299 and A549, but had no significant effect on non-tumor cell lines HFF-1, HEK-293 and the differentiated HepaRG.

Table 2: Results of in vitro antitumor experiment of wild-type enterovirus EV-D68

Cell Line \ Multiplicity of infection MOI	0.1	1	10	100
RD	++	++	++	++
Hela	++	++	++	++
SiHa	-	-	++	++
Caski	-	+	++	++
C-33A	-	++	++	++
SKOV-3/TR	-	-	-	+
SKOV-3	-	-	++	++
Caov3	+	++	++	++
Hec-1-A	-	-	-	++
Hec-1-B	-	+	++	++
Ishikawa	-	-	++	++
SPC-A-1	-	+	++	++
NCI-H1299	-	++	++	++
NCI-H1417	-	-	-	+
NCI-H1703	-	-	-	+
NCI-H1975	-	++	++	++
A549	+	++	++	++
NCI-H661	-	-	+	++
EBC-1	-	-	+	++
DMS114	++	++	++	++

MHCC97H	+	++	++	++
C3A	++	++	++	++
Hep3B	-	+	+	++
HepG2	-	++	++	++
SMMC7721	+	++	++	++
BEL7402	++	++	++	++
BEL7404	+	++	++	++
Huh7	++	++	++	++
PLC/PRF/5	-	+	++	++
SK-Hep-1	-	-	+	++
A-498	+	++	++	++
786-O	-	-	+	++
Caki-1	++	++	++	++
SH-SY5Y	-	+	++	++
SK-N-BE(2)	-	-	-	+
U87-MG	+	++	++	++
U118-MG	++	++	++	++
MCF-7	-	-	-	+
BcaP37	-	++	++	++
BT-474	-	-	-	+
MDA-MB-231	++	++	++	++
MDA-MB-453	-	-	+	++
A-375	-	+	++	++
SK-MEL-1	+	++	++	++
MeWo	-	+	++	++
PC-3	++	++	++	++
LNCap	-	+	++	++
DU145	++	++	++	++
J82	-	+	++	++
5637	-	-	-	+
Capan-2	-	-	+	++
HPAF-2	-	+	+	++
PANC-1	-	++	++	++
AGS	-	-	+	++
SGC7901	-	-	-	+
BGC823	-	+	+	++
NCI-N87	-	+	++	++
DLD-1	-	-	-	+
SW1116	+	+	++	++
SW480	-	+	++	++
HCT-116	-	-	+	++
HT-29	+	++	++	++
TE-1	-	+	++	++
SW-579	-	-	++	++
TT	-	-	++	++
Hep-2	-	+	++	++
143B	-	-	-	+
U2OS	+	+	++	++
K562	-	+	+	++
U937	-	-	+	++
THP-1	+	++	++	++
Raji	++	++	++	++
Daudi	++	++	++	++
Jurkat	++	++	++	++
MT-4	++	++	++	++

MRC-5	-	-	+	++
HEK-293	-	-	-	-
HFF-1	-	-	+	+
HaCat	-	-	-	-
WPMY-1	-	-	-	-
HUVEC	-	-	-	-
HepaRG	-	-	-	+

Note: "-" indicated that there was no significant difference in cell survival rate between virus treatment group and MOCK group; "+" indicated that after virus treatment, the number of cells was reduced, the survival rate was greater than 50% but was significantly different from that of MOCK group; "++" indicated that the cell survival rate after virus treatment was less than 50%, and was significantly different from that of the MOCK group.

It could be known from Table 2 that the wild-type enterovirus EV-D68 had a killing effect on the tested tumor cells, and therefore had a broad-spectrum anti-tumor activity. In particular, the virus had significant killing effects on liver cancer cell lines, glioma cell lines, prostate cancer cell lines, leukemia and lymphoma cell lines. On the other hand, the virus had little or no toxicity to the non-tumor cell lines tested, except that it was significantly toxic to human embryonic lung fibroblast MRC-5 at higher MOIs.

In addition, in vitro antitumor experiments of EV-D68-HRV2, EV-D68-miR133&206T, EV-D68-GM-CSF and EV-D68-Anti-PD-1 showed that the four modified EV-D68s retained the broad-spectrum killing effect of the wild-type enterovirus EV-D68 on the tested tumor cells, and substantially retained the significant killing effect on the tested tumor cells of human hepatocellular carcinoma cell line, prostate cancer cell line, leukemia and lymphoma cell lines, wherein the CCK-8 test results of oncolytic effect of the four modified EV-D68s on cervical cancer cell line Hela, glioma cell line U118-MG, liver cancer cell line Huh7, prostate cancer cell line PC-3, and lymphoma cell line Raji were shown in Table 3.

Table 3: Results of in vitro antitumor experiment of EV-D68-HRV2, EV-D68-miR133&206T, EV-D68-GM-CSF and EV-D68-Anti-PD-1

Multiplicity of infection MOI		0.1	1	10	100
Cell Lines					
EV-D68-HRV2	Hela	+	+	++	++
	U118-MG	+	++	++	++
	Huh7	++	++	++	++
	PC-3	++	++	++	++
	Raji	-	+	+	++
EV-D68-miR133&206T	Hela	++	++	++	++
	U118-MG	++	++	++	++

	Huh7	++	++	++	++
	PC-3	++	++	++	++
	Raji	++	++	++	++
EV-D68-GM-CSF	Hela	++	++	++	++
	U118-MG	++	++	++	++
	Huh7	++	++	++	++
	PC-3	++	++	++	++
	Raji	++	++	++	++
EV-D68-Anti-PD-1	Hela	++	++	++	++
	U118-MG	++	++	++	++
	Huh7	++	++	++	++
	PC-3	++	++	++	++
	Raji	++	++	++	++

Note: "-" indicated that there was no significant difference in cell survival rate between virus treatment group and MOCK group; "+" indicated that after virus treatment, the number of cells was reduced, the survival rate was greater than 50% but was significantly different from that of MOCK group; "++" indicated that the cell survival rate after virus treatment was less than 50%, and was significantly different from that of the MOCK group.

In addition, the inventors unexpectedly found that EV-D68-HRV2 exhibited significantly improved killing activity on some tumors compared to EV-D68-WT, wherein the CCK-8 test results of the oncolytic activity of the human gastric cancer cell line AGS, the human endometrial cancer cell lines HEC-1-A and Ishikawa, the human cervical cancer cell line C-33A, and the human thyroid cancer cell line SW579 were shown in Table 4.

Table 4: Comparison of the results of in vitro oncolytic experiment of EV-D68-WT and EV-D68-HRV2 on some tumor cells

MOI		0.01	0.1	1	10
Cell Line					
EV-D68-WT	AGS	-	-	-	+
	HEC-1-A	-	-	-	-
	Ishikawa	-	-	-	++
	C-33A	-	-	++	++
	SW579	-	-	-	++
EV-D68-HRV2	AGS	++	++	++	++
	HEC-1-A	-	+	++	++
	Ishikawa	++	++	++	++
	C-33A	++	++	++	++
	SW579	++	++	++	++

Note: "-" indicated that there was no significant difference in cell survival rate between virus treatment group and MOCK group; "+" indicated that after virus treatment, the number of cells was reduced, the survival rate was greater than 50% but was significantly different from that of MOCK group; "++" indicated that the cell survival rate after virus treatment was less than 50%, and was significantly different from that of the MOCK group.

2.5 Serial passaging of EV-D68 for adaptation

In this example, EV-D68 was serially passaged for adaptation in a certain type of tumor cell to obtain a virus strain with enhanced killing activity to the tumor cell.

The wild-type enterovirus EV-D68 was serially passaged for adaptation in the human cervical cancer cell line SiHa, human ovarian cancer cell line SKOV-3, human liver cancer cell line SK-hep-1, human pancreatic cancer cell line Capan-2, human gastric cancer cell line AGS or human colorectal cancer cell line HCT-116 on which the oncolytic effect of EV-D68 was not very significant, and the specific method was as follows:

One kind of the above tumor cells was evenly plated on a 10 cm cell culture plate, and the culture conditions included a corresponding cell culture media containing 10% fetal bovine serum and glutamine, penicillin and streptomycin, 37 °C, 5% CO₂, and saturated humidity. When the cell confluence reached 90% or more, the cell culture medium was replaced with serum-free cell culture medium, each plate was inoculated with 10⁷ TCID50 of EV-D68, the culture environment was changed to 33 °C, 5% CO₂, saturated humidity. When EV-D68 proliferated in tumor cells and caused CPE in the cells (after infection for up to 3 days), the cells and their culture supernatant were harvested. After freeze-thawing for three cycles, centrifugation was performed at 4 °C, 4000 rpm for 10 min. The centrifugation supernatant was taken and added onto new tumor cells with a cell confluence of more than 90% to complete one round of virus passage. The passage was repeated for more than 10 times, and a part of the virus solution was taken for virus titer detection in RD cells in each round of passage, and the specific method referred to Example 2.3. Generally, the virus replication ability would increase with the generation, and when a relatively high infectious titer was reached and the virus replication was stable in the tumor cell, the adapted strain of EV-D68 for the tumor cell was obtained.

Subsequently, by the in vitro antitumor experimental method described in Example 2.4, the human tumor cell SiHa, SKOV-3, SK-hep-1, Capan-2, AGS, or HCT-116 was inoculated to a 96-well plate at 10⁴ cells/well. After the cells adhered, the medium in each well was replaced with the corresponding culture medium free of serum, followed by incubation at 37 °C for 30 min, and then the serially passaged EV-D68 virus strains (viral titers of which were detected on RD cells) adapted for each of the above kinds of cells at MOIs of 0.1, 1, 10, and 100 were inoculated. Subsequently, CPE of the cells were monitored daily by a microscope, and the cell survival rate was detected using CCK-8 method 72 hours after the infection and culture of viruses.

The results were shown in Table 5, in which after serial passaging of the wild-type enterovirus

EV-D68 in a certain kind of tumor cells on which EV-D68 had poor oncolytic effect, the killing activity thereof on the tumor cells was significantly enhanced, indicating that the serial passaging method could be used to obtain an EV-D68 adapted strain with enhanced oncolytic effect on the tumor cells.

Table 5: Results of in vitro killing experiment of EV-D68 on a tumor cell after serial passaging for adaptation in the tumor cell

Cell Line	0.1	1	10	100
SiHa	+	++	++	++
SKOV-3	-	++	++	++
SK-hep-1	-	++	++	++
Capan-2	-	+	++	++
AGS	+	+	++	++
HCT-116	-	+	++	++

Note: "-" indicated that there was no significant difference in cell survival rate between virus treatment group and MOCK group; "+" indicated that after virus treatment, the number of cells was reduced, the survival rate was greater than 50% but was significantly different from that of MOCK group; "++" indicated that the cell survival rate after virus treatment was less than 50%, and was significantly different from that of the MOCK group.

2.6 Evaluation of oncolytic effect of genomic RNA of EV-D68

In this example, a large amount of infectious live viruses of EV-D68 could be produced by transfecting the purified genomic RNA of EV-D68 into a certain kind of tumor cells, and thus kill the tumor cells.

The viral genomic RNA was first obtained by in vitro transcription, and this method could be found in, for example, Hadac E M, Kelly E J and Russell S J. Mol Ther, 2011, 19(6): 1041-1047. Specifically, the infectious cloning plasmid of wild-type EV-D68 obtained in Example 1 was linearized, and the linearized plasmid was used as a template for in vitro transcription using MEGAscript™ T7 Transcription Kit (Thermo Fisher Scientific, AM1333) so as to produce a large amount of viral RNA. And the obtained viral RNA was purified using MEGAclear™ Transcription Clean-Up Kit (Thermo Fisher Scientific, AM1908) for next use. The RNA electropherograms of 4 parallel samples were shown in FIG. 3.

Subsequently, according to the method of the in vitro antitumor experiment described in Example 2.4, the human cervical cancer tumor cell line Hela was inoculated to a 24-well plate at 10^5 cells/well. After the cells adhered, the medium in each well was replaced with a corresponding

cell culture medium free of serum, followed by incubation at 37 °C for 30 min. Then Hela cells were transfected with purified virus RNA at 1 µg per well using transfection reagent Lipofectamine® 2000 (Thermo Fisher Scientific, 11668019), and the negative control group was transfected with irrelevant RNA nucleic acid molecules. Subsequently, CPE of the cells were monitored daily by a microscope.

The results showed that CPE began to appear in the Hela cells transfected with genomic RNA of EV-D68 about 8 hours after transfection, and then the cytopathy gradually increased. After 48 hours, the survival rate was measured using the CCK8 method, the Hela cells had almost all died and lysed. And the micrographs of Hela cells at 0, 24 and 48 hours after infection were shown in FIG. 4. The culture supernatant was inoculated into new Hela cells and CPE was quickly produced. The results indicated that the direct administration with the nucleic acid of EV-D68 also had good killing activity and could be used to treat tumors.

Example 3: In vivo antitumor experiments of enterovirus EV-D68 and its modified forms

3.1 Viruses, cell lines and experimental animals

(1) Viruses: the EV-D68-WT (SEQ ID NO: 12), EV-D68-HRV2 (SEQ ID NO: 13), EV-D68-miR133&206T (SEQ ID NO: 14), EV-D68-GM-CSF (SEQ ID NO: 15) and EV-D68-Anti-PD-1 (SEQ ID NO: 16) provided in Example 1 were used in this example. The methods of virus culture and virus titer measurement could be seen in Examples 2.2 and 2.3, respectively.

(2) Cell lines: human cervical cancer cell line Hela (ATCC® Number: CCL-2™), glioma cell line U118-MG (ATCC® Number: HTB-15™), and lymphoma cell line Raji (ATCC® Number: CCL-86™). Except that Raji was cultured with RPMI-1640 medium, the other Hela and U118-MG were all cultured with DMEM medium. These mediums were all supplemented with 10% fetal bovine serum, glutamine and penicillin-streptomycin. All the above cells were cultured under the standard conditions of 37 °C and 5% CO₂.

(3) Experimental animals: female C.B17 SCID mice aged 6-8 weeks were from Shanghai Slark Experimental Animal Co., Ltd.; the mice were raised under SPF conditions, according to the protocol approved by the Experimental Animal Center and Ethics Committee of Xiamen University.

3.2 In vivo antitumor experiments of the virus

The tumor cells used for subcutaneous tumor formation in SCID mice were digested with

0.01% trypsin, and then resuspended into a single-cell suspension using a cell culture medium containing 10% fetal bovine serum. The cell density of the suspension was counted. The cells were precipitated by centrifugation under 1000 g for 3 min, and then the cells were resuspended with an appropriate volume of PBS to reach a concentration of about 10^6 - 10^7 cells/100 μ l PBS. The tumor cells were subcutaneously inoculated in the back of SCID mice at 10^6 - 10^7 cells/100 μ l PBS/site with a syringe. When the tumor cells grew into a tumor mass of about 100 mm³ under the skin of SCID mice after about 14-21 days, the tumor-bearing SCID mice were randomly divided into experimental groups (administrated with EV-D68-WT, EV-D68-HRV2, EV-D68-miR133&206T, EV-D68-GM-CSF or EV-D68-Anti-PD-1) and negative control group, with 4 mice (n = 4) in each group. Oncolytic virus (EV-D68-WT, EV-D68-HRV2, EV-D68-miR133&206T, EV-D68-GM-CSF or EV-D68-Anti-PD-1) at 10^6 TCID50/100 μ l serum-free medium/tumor mass or equivalent amount of serum-free medium were intratumorally injected every two days, for a total of 5 treatments. The tumor size was measured with a vernier caliper and recorded every two days, and the method for calculating the tumor size was:

$$\text{Tumor size (mm}^3\text{)} = \text{tumor length value} \times (\text{tumor width value})^2 / 2.$$

The treatment results of EV-D68-WT for the above three tumors were shown in FIGs. 5A-5C. The results showed that after the challenge of EV-D68-WT, the growth of the three tested tumors of Hela (A), U118-MG (B) and Raji (C) gradually slowed down and arrested, and the tumors were even lysed and disappeared; by contrast, the tumors of the negative group (CTRL) maintained the normal growth, and their tumor sizes were significantly larger than those of the experimental groups.

Table 6 showed the results obtained after a treatment of the Raji tumor model with EV-D68-WT, EV-D68-HRV2, EV-D68-miR133&206T, EV-D68-GM-CSF or EV-D68-Anti-PD-1 for 10 days. The results showed that the tumor volumes were significantly reduced after treatment with EV-D68-WT, EV-D68-HRV2, EV-D68-miR133&206T, EV-D68-GM-CSF, and EV-D68-Anti-PD as compared with the negative control group that was not treated with oncolytic virus, wherein similar reductions in tumor volume were detected after treatment with 4 oncolytic viruses EV-D68-WT, EV-D68-miR133&206T, EV-D68-GM-CSF and EV-D68-Anti-PD-1. The above results indicated that all of EV-D68-WT, EV-D68-HRV2, EV-D68-miR133&206T, EV-D68-GM-CSF and EV-D68-Anti-PD-1 showed remarkable and favorable antitumor activity in vivo.

Table 6: Results of in vivo anti-tumor experiments of EV-D68-WT, EV-D68-HRV2, EV-D68-miR133&206T, EV-D68-GM-CSF and EV-D68-Anti-PD-1 on human lymphoma cell line Raji

Oncolytic virus	In vivo oncolytic effect on Raji after 10 days of treatment
-----------------	---

EV-D68-WT	++
EV-D68-HRV2	+
EV-D68-miR133&206T	++
EV-D68-GM-CSF	++
EV-D68-Anti-PD-1	++

Note: "+" indicated that after treatment, the tumor volume reduced and was greater than 50% of the negative control group, but was significantly different from that of the negative control group; "++" indicated that the tumor volume reduced to less than 50% of the negative control group after treatment, and was significantly different from that of the negative control group.

Example 4: Safety evaluation of oncolytic virus

4.1 Viruses and laboratory animals used

(1) Virus: the EV-D68-WT (SEQ ID NO: 12) provided in Example 1 was used in this example. The methods for virus culture and virus titer measurement could refer to Examples 2.2 and 2.3, respectively.

(2) Experimental animals: BALB/c pregnant mice were from Shanghai Slark Experimental Animal Co., Ltd.; according to the protocol approved by the Experimental Animal Center and Ethics Committee of Xiamen University, the mice were raised under clean conditions, and then the 1-day-old, 2-day-old, 3-day-old, 7-day-old and 14-day-old mice produced by the BALB/c pregnant mice were used for in vivo virulence evaluation of EV-D68.

4.2 Evaluation of the safety of the virus in mice

(1) BALB/c suckling mice aged 1 day were selected for challenge with EV-D68-WT by intraperitoneal injection, and the titer doses for challenge were 10^3 , 10^4 , 10^5 , 10^6 , or 10^7 TCID50/mouse. Then the survival rates and health scores for the BALB/c mice challenged with different doses were recorded daily, wherein the evaluation criteria of the health score were: score of 5, represents dying or died; score of 4 represents severe limb paralysis; score of 3 represents weakness or mild deformity of limb; score of 2 represents wasting; score of 1 represents lethargy, piloerection, and trembling; and score of 0 represents healthy.

The results were shown in FIG. 6A. Within 20 days after challenge, all mice in the group with extremely high-dose of 10^7 TCID50 became ill and died within 1 week; 80% of the mice in the group with high-dose of 10^6 TCID50 eventually survived and only few mice became ill and died; in addition, no morbidity and death occurred in the mice of the challenge groups with other doses.

(2) The 1-day-old, 2-day-old, 3-day-old, 7-day-old and 14-day-old BALB/c mice were injected with EV-D68-WT at an extremely high dose of 10^7 TCID50/mouse, and then the survival

rates and health scores for the BALB/c with different ages in days were recorded daily, wherein the evaluation criteria of the health score were the same as above.

The results were shown in FIG. 6B. Within 20 days after challenge, the 1-day-old mice all died within 1 week; the 2-day-old mice resisted in a certain extent to EV-D68 toxicity, and eventually had a survival rate of 70%, but with a relatively high incidence of disease and relatively severe symptoms; the 3-day-old mice were already not vulnerable to EV-D68, and eventually had a survival rate of 90%, and with a low incidence of disease and mild symptoms; the 4- or more-day-old mice were fully tolerant to the high doses of EV-D68, and no morbidity and death occurred.

The above results showed that the EV-D68-WT was less toxic to mice, and was only lethal to the 1- to 3-day-old BALB/c mice at an extremely high dose of 10^7 TCID50/mouse, and had no effect on the 4- or more-day-old mice, thereby indicating good safety in vivo.

Although specific embodiments of the present invention have been described in detail, those skilled in the art will understand that according to all the teachings that have been published, various modifications and changes can be made to the detail, and these changes are all within the protection scope of the present invention. The protection scope of the present invention is given by the appended claims and any equivalents thereof.

Throughout this specification and the claims which follow, unless the context requires otherwise, the word “comprise”, and variations such as “comprises” and “comprising”, will be understood to imply the inclusion of a stated integer or step or group of integers or steps but not the exclusion of any other integer or step or group of integers or steps.

The reference in this specification to any prior publication (or information derived from it), or to any matter which is known, is not, and should not be taken as an acknowledgment or admission or any form of suggestion that that prior publication (or information derived from it) or known matter forms part of the common general knowledge in the field of endeavour to which this specification relates.

The claims defining the invention are as follows:

1. Use of a wild-type Enterovirus D68 (EV-D68) or a modified EV-D68, or an isolated nucleic acid molecule, in the treatment of a tumor in a subject, or in the manufacture of a medicament for treating a tumor in a subject; wherein the nucleic acid molecule comprises a sequence selected from the following:

(1) a genomic sequence or cDNA sequence of the wild-type EV-D68 or the modified EV-D68; and

(2) a complementary sequence of the genomic sequence or cDNA sequence defined in (1);

wherein the wild-type EV-D68 has a genomic sequence defined by SEQ ID NO: 12, and/or has a cDNA sequence defined by SEQ ID NO: 1; and

a genome of the modified EV-D68 has one or more modifications selected from the following as compared to a genome of the wild-type EV-D68:

(1) a substitution of the internal ribosome entry site (IRES) sequence in a 5' untranslated region (5'UTR) with an exogenous IRES sequence; and

(2) an insertion of an exogenous nucleic acid which is selected from a nucleic acid sequence encoding a cytokine, a nucleic acid sequence encoding an antitumor protein or polypeptide, and/or a target sequence of microRNA.

2. The use according to claim 1, wherein the exogenous IRES sequence is an internal ribosome entry site sequence of human rhinovirus 2 (HRV2).

3. The use according to claim 1 or 2, characterized by one or more of the following characteristics:

(1) the cytokine is GM-CSF;

(2) the antitumor protein or polypeptide is a scFv against PD-1 or PD-L1; and

(3) the microRNA is selected from miR-133 and/or miR-206.

4. The use according to any one of claims 1 to 3, wherein the modified EV-D68 has one of the following characteristics:

(1) the genomic sequence of the modified EV-D68 is selected from the nucleotide sequences

as shown in any one of SEQ ID NOs: 13-16; and

(2) the cDNA sequence of the modified EV-D68 is selected from the nucleotide sequences as shown in any one of SEQ ID NOs: 8-11.

5. The use according to any one of claims 1 to 4, characterized by one of the following characteristics:

(1) the isolated nucleic acid molecule consists of a genomic sequence of the wild-type EV-D68 or the modified EV-D68; and

(2) the isolated nucleic acid molecule is a vector comprising a cDNA sequence of the wild-type EV-D68 or the modified EV-D68, or a complementary sequence of the cDNA sequence.

6. The use according to claim 5, wherein the isolated nucleic acid molecule has a nucleotide sequence defined by any one of SEQ ID NOs: 12-16, or is a vector comprising a nucleotide sequence defined by any one of SEQ ID NOs: 1, 8-11 or a complementary sequence thereof.

7. The use according to any one of Claims 1 to 6, wherein the wild-type EV-D68 or the modified EV-D68, or the isolated nucleic acid molecule, is used in combination with an additional pharmaceutically active agent having antitumor activity.

8. The use according to claim 7, wherein the additional pharmaceutically active agent is selected from an additional oncolytic virus, chemotherapeutic agent or immunotherapeutic agent.

9. The use according to claim 8, wherein the additional pharmaceutically active agent is characterized by one or more of the following:

(1) the additional oncolytic virus is selected from herpesvirus, adenovirus, parvovirus, reovirus, Newcastle disease virus, vesicular stomatitis virus, measles virus or any combination thereof;

(2) the chemotherapeutic agent is selected from 5-fluorouracil, mitomycin, methotrexate, hydroxyurea, cyclophosphamide, dacarbazine, mitoxantrone, anthracyclines, etoposide, platinum compounds, taxanes, or any combination thereof; and

(3) the immunotherapeutic agent is selected from immune checkpoint inhibitors, tumor-specific targeting antibodies or any combination thereof.

10. The use according to any one of claims 1 to 9, wherein the tumor is selected from cervical cancer, ovarian cancer, endometrial cancer, lung cancer, liver cancer, kidney cancer, neuroblastoma, glioma, breast cancer, melanoma, prostate cancer, bladder cancer, pancreatic cancer, gastric cancer, colorectal cancer, esophageal cancer, thyroid cancer, laryngeal cancer, osteosarcoma, hematopoietic malignancy.

11. The use according to any one of claims 1 to 10, wherein the subject is a human.

12. A method for treating a tumor, comprising the step of administering to a subject in need thereof an effective amount of a wild-type EV-D68 or a modified EV-D68, or an effective amount of an isolated nucleic acid molecule; wherein the isolated nucleic acid molecule comprises a sequence selected from:

(1) a genomic sequence or cDNA sequence of the wild-type EV-D68 or the modified EV-D68; and

(2) a complementary sequence of the genomic sequence or cDNA sequence defined in (1);

wherein the wild-type EV-D68 has a genomic sequence defined by SEQ ID NO: 12, and/or has a cDNA sequence defined by SEQ ID NO: 1; and

a genome of the modified EV-D68 has one or more modifications selected from the following as compared to a genome of the wild-type EV-D68:

(1) a substitution of the internal ribosome entry site (IRES) sequence in a 5' untranslated region (5'UTR) with an exogenous IRES sequence; and

(2) an insertion of an exogenous nucleic acid which is selected from a nucleic acid sequence encoding a cytokine, a nucleic acid sequence encoding an antitumor protein or polypeptide, and/or a target sequence of microRNA.

13. The method according to claim 12, wherein the tumor is selected from cervical cancer, ovarian cancer, endometrial cancer, lung cancer, liver cancer, kidney cancer, neuroblastoma, glioma, breast cancer, melanoma, prostate cancer, bladder cancer, pancreatic cancer, gastric cancer, colorectal cancer, esophageal cancer, thyroid cancer, laryngeal cancer, osteosarcoma,

hematopoietic malignancy.

14. The method according to claim 12, wherein the subject is a human;

15. The method according to any one of claims 12-14, wherein the wild-type EV-D68 or modified EV-D68, or the isolated nucleic acid molecule, is as defined in any one of Claims 2 to 11.

16. A modified EV-D68, a genome of which has one or more modifications selected from the following as compared to a genome of a wild-type EV-D68:

(1) a substitution of the internal ribosome entry site (IRES) sequence in a 5' untranslated region (5'UTR) with an exogenous IRES sequence;

(2) an insertion of an exogenous nucleic acid which is selected from a nucleic acid sequence encoding a cytokine, a nucleic acid sequence encoding an antitumor protein or polypeptide, and/or a target sequence of microRNA;

wherein the wild-type EV-D68 has a genomic sequence defined by SEQ ID NO: 12, and/or has a cDNA sequence defined by SEQ ID NO: 1.

17. The modified EV-D68 according to claim 16, wherein the exogenous IRES sequence is an internal ribosome entry site sequence of a human rhinovirus 2 (HRV2).

18. The modified EV-D68 according to claim 16 or 17, characterized by one or more of the following characteristics:

(1) the cytokine is GM-CSF;

(2) the antitumor protein or polypeptide is a scFv against PD-1 or PD-L1; and

(3) the microRNA is selected from miR-133 and/or miR-206.

19. The modified EV-D68 according to any one of Claims 16 to 18, wherein the modified EV-D68 has at least one of the following characteristics:

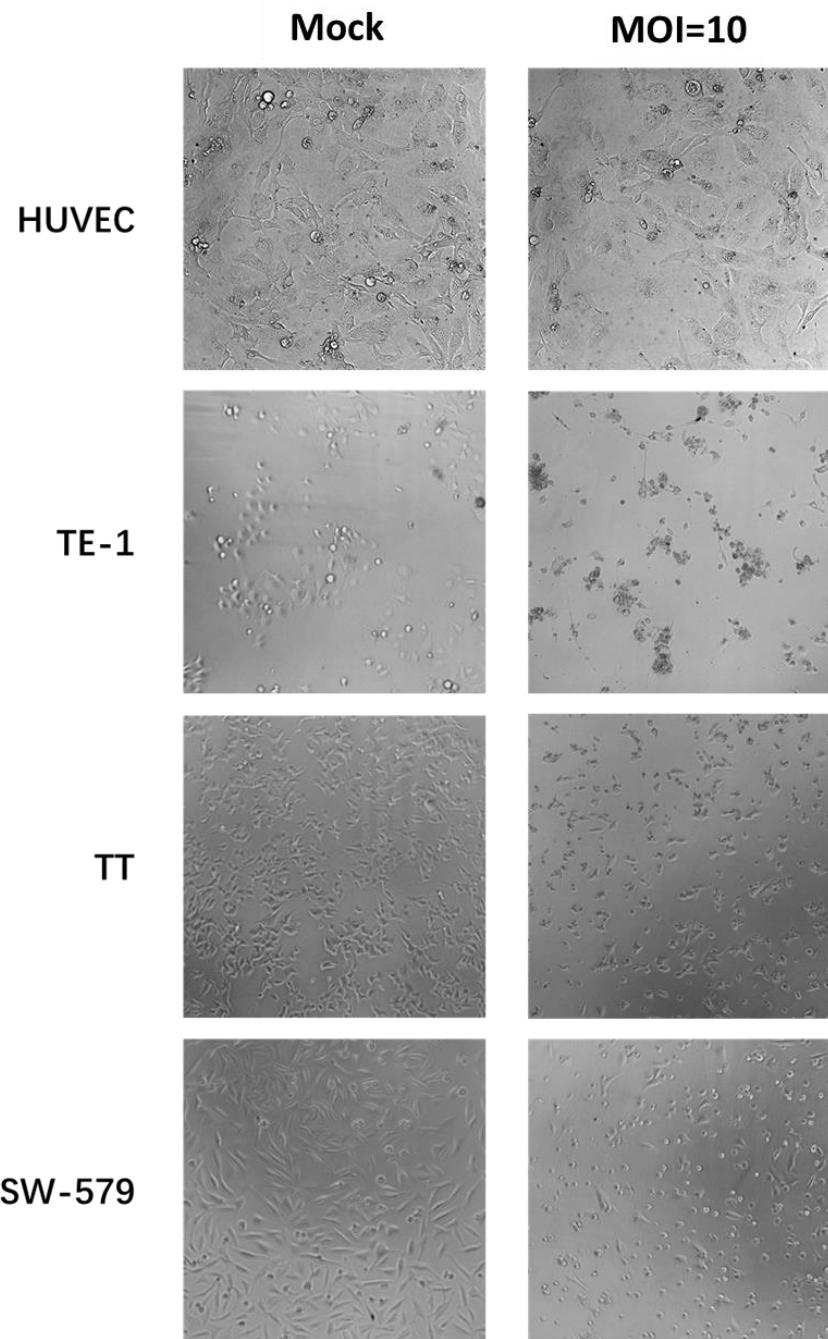
(1) the genomic sequence of the modified EV-D68 is selected from the nucleotide sequences as shown in any one of SEQ ID NOS: 13-16; and

(2) the cDNA sequence of the modified EV-D68 is selected from the nucleotide sequences as shown in any one of SEQ ID NOS: 8-11.

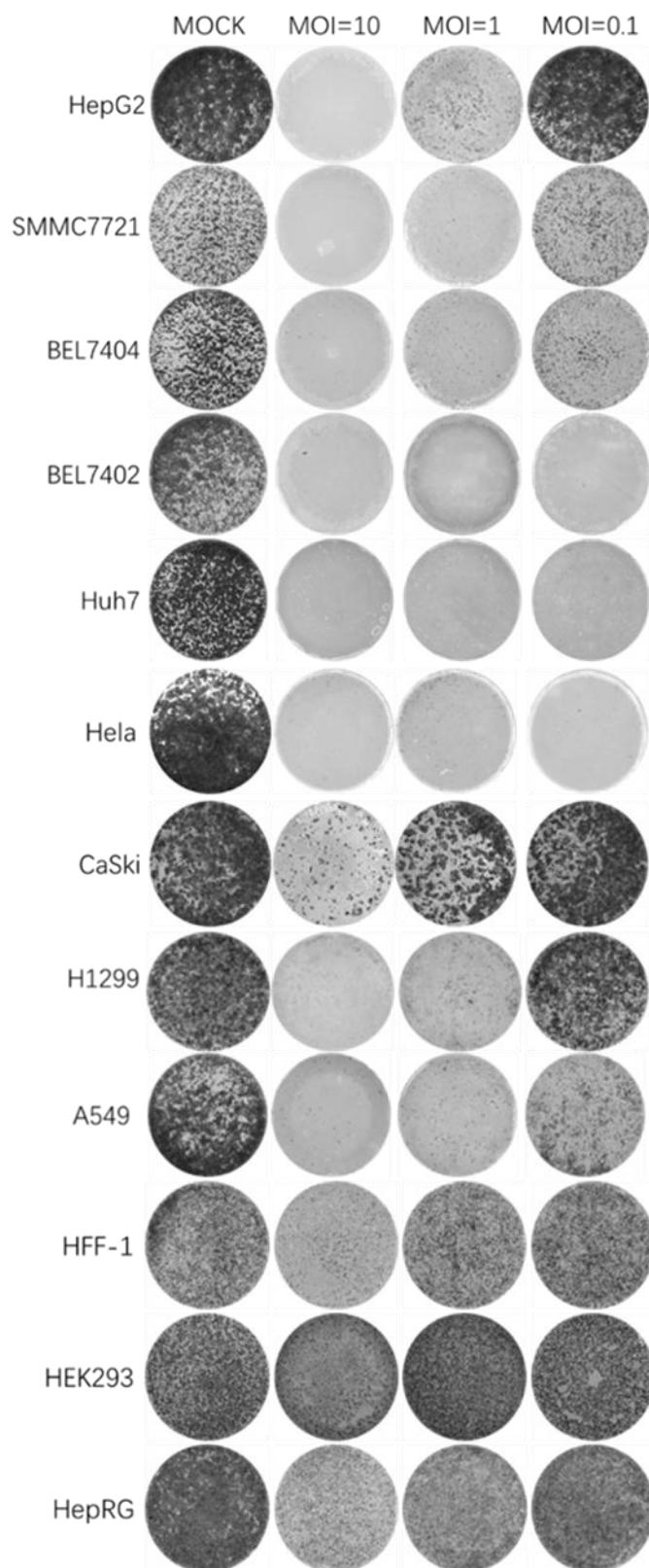
20. An isolated nucleic acid molecule, which comprises a sequence selected from the group consisting of:

(1) a genomic sequence or cDNA sequence of the modified EV-D68 according to any one of Claims 16 to 19; and

(2) a complementary sequence of the genomic sequence or cDNA sequence defined in (1).


21. The isolated nucleic acid molecule according to claim 20, characterized by one of the following characteristics:

(1) the isolated nucleic acid molecule consists of a genomic sequence of the modified EV-D68; or


(2) the isolated nucleic acid molecule is a vector comprising a cDNA sequence of the modified EV-D68, or a complementary sequence of the cDNA sequence.

22. The isolated nucleic acid molecule according to claim 21, wherein the isolated nucleic acid molecule has a nucleotide sequence defined by any one of SEQ ID NOS: 12-16, or is a vector comprising a nucleotide sequence defined by any one of SEQ ID NOS: 1, 8-11 or a complementary sequence thereof.

Drawings

FIG. 1

FIG. 2

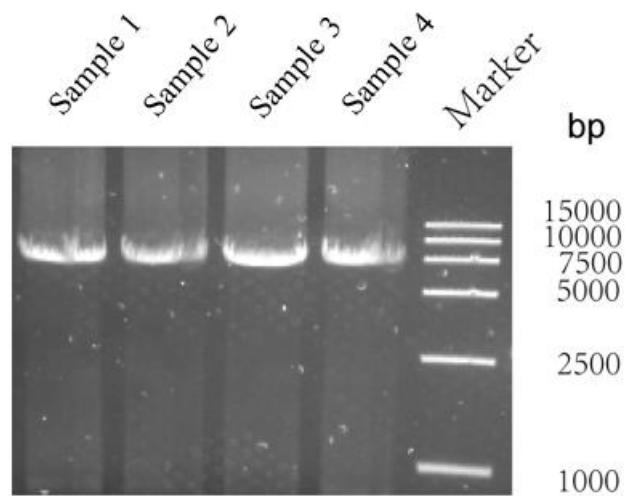


FIG. 3

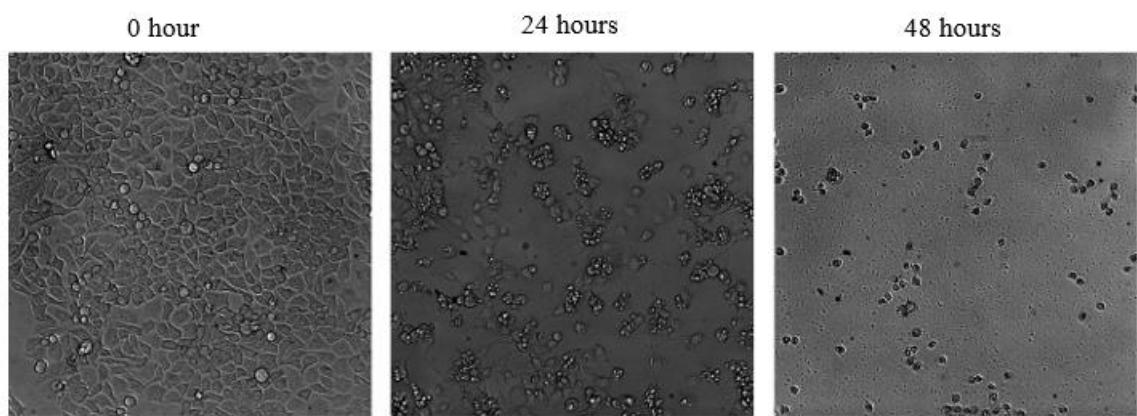
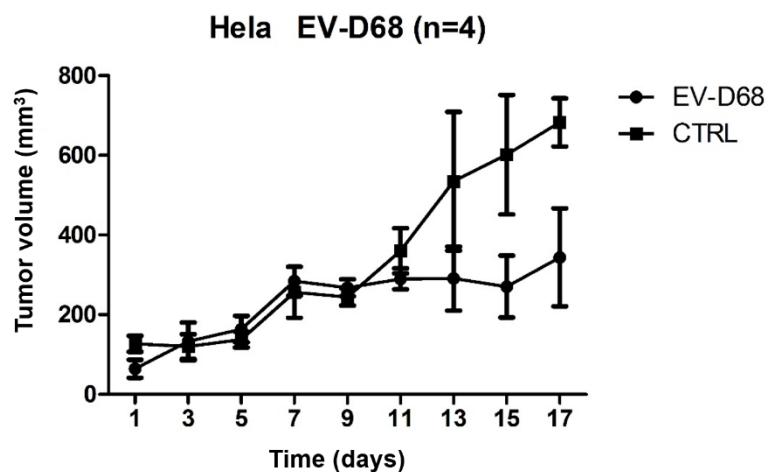
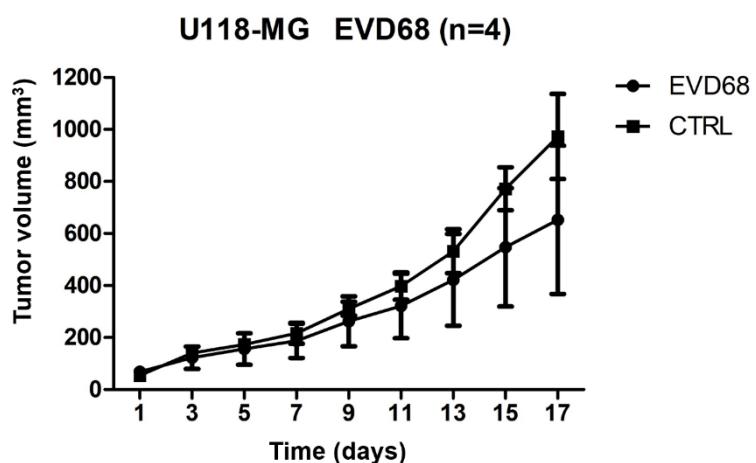
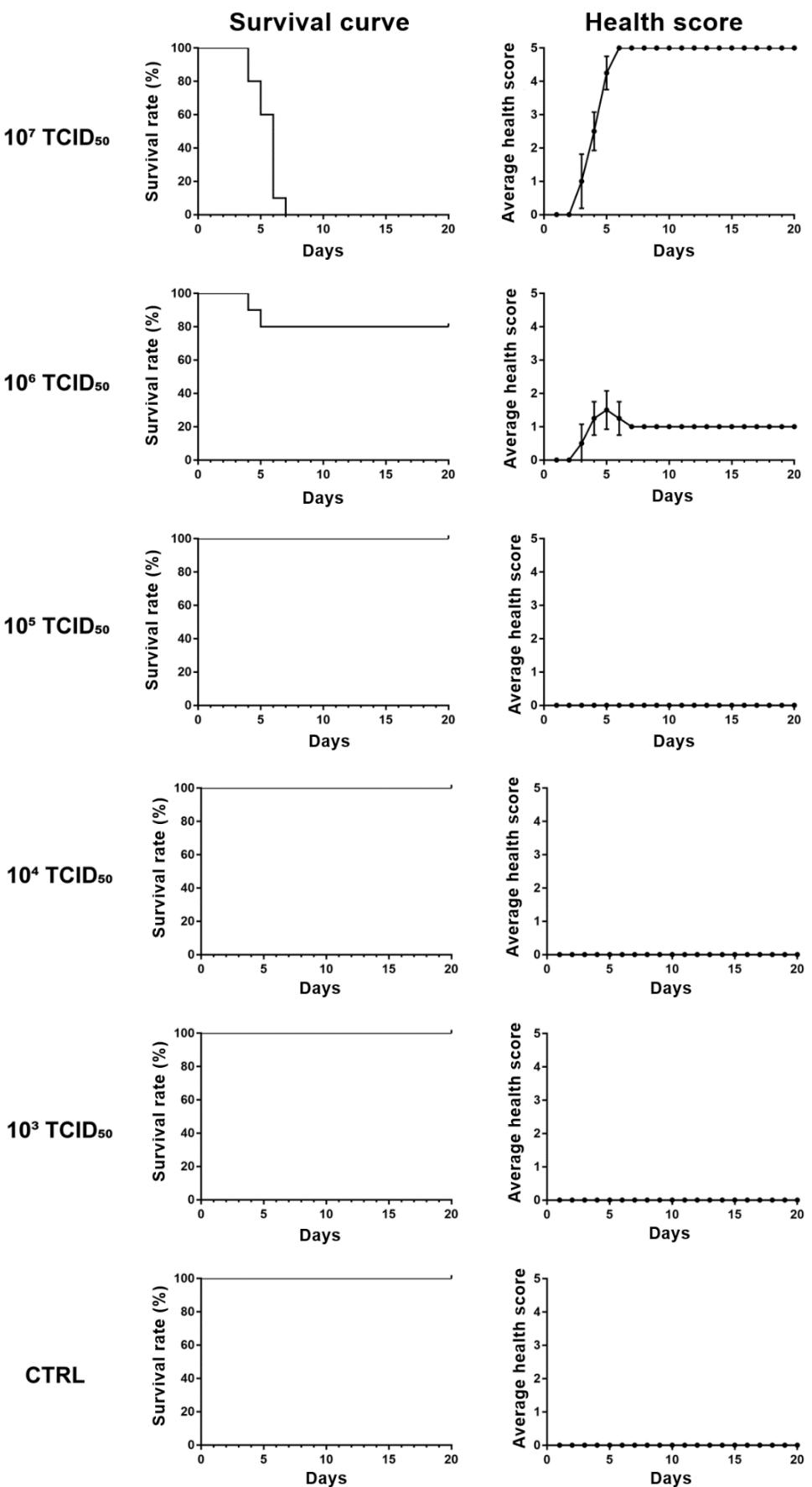




FIG. 4


FIG. 5A

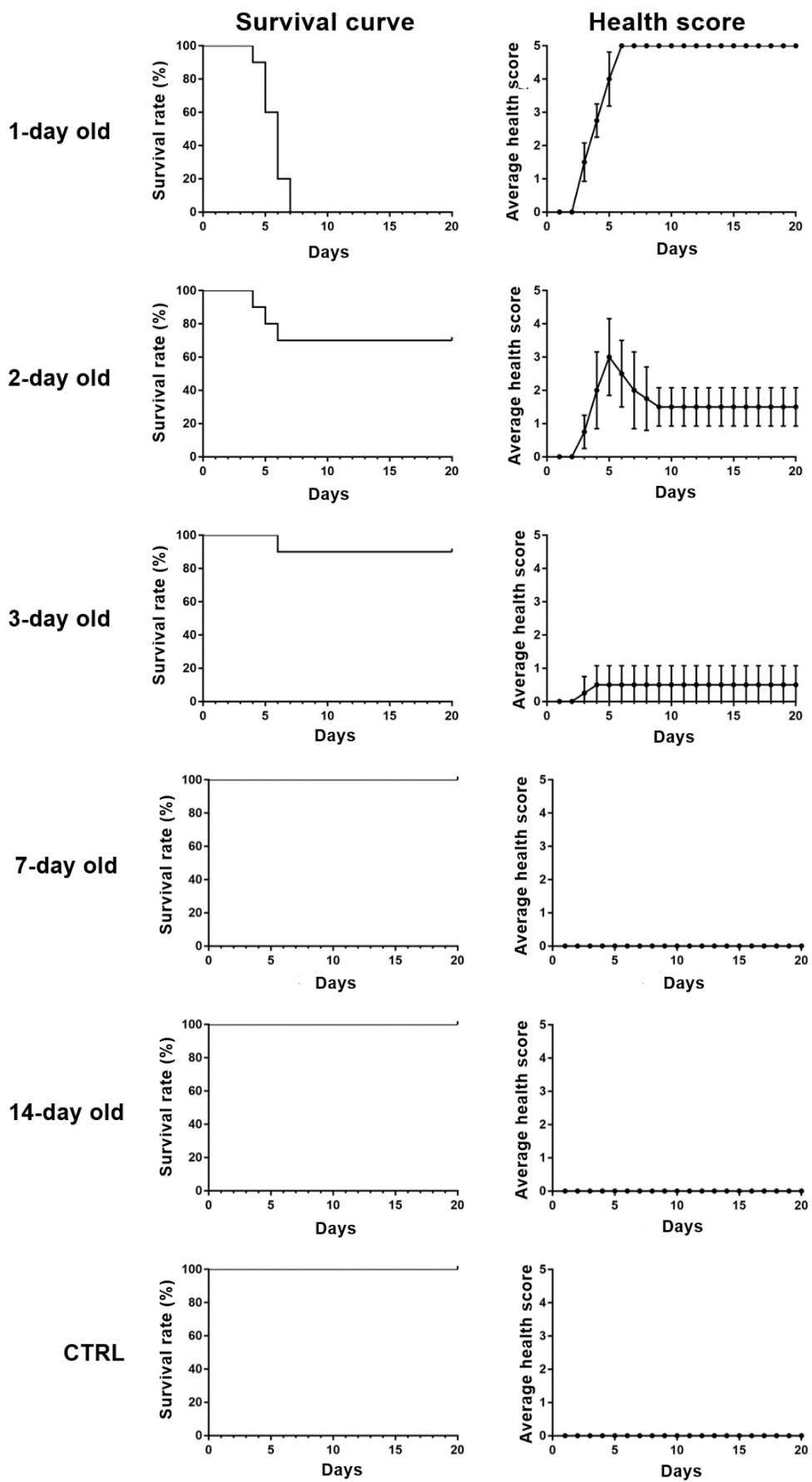

FIG. 5B

FIG. 5C

FIG. 6A

FIG. 6B

IEC170083PCT-seql.txt
序列表

<110> 厦门大学
养生堂有限公司

<120> 一种用于治疗肿瘤的病毒

<130> IEC170083PCT

<160> 20

<170> PatentIn version 3.5

<210> 1

<211> 7383

<212> DNA

<213> 人工序列

<220>

<223> EV-D68-WT的cDNA序列

<400> 1

taatacgaact cactataggta taaaacagcc ttgggggtgt tcccaactcca agggccca	60
tggcggttag tactctggta cttcggtacc tttgtacgcc tgtttatct cccttccaa	120
tgtacttag aagttcttaa atcaatgctc aatagggtggg gcgcaaacc	180
gagcaagcac tcctgtctcc ccgggtgaggt tgtataaact gttcccacgg ttgaaaacaa	240
cctatccgtt atccgctata gtacttcgag aaaccttagta ccaccttgg attgttgacg	300
cgttgcgtc agcacactaa cccgtgtgta gcttgggtcg atgagtctgg acataaccta	360
ctggcgacag tggtccaggc tgcgttggcg gcctactcat ggtgaaagcc atgagacgct	420
agacatgaac aaggtgtgaa gagtctattg agctactata gagtcctccg gcccctgaat	480
gcggctaatac ctaaccatgg agcaagtgc	540
cacaggccag tgagttgctt gtcgtaatgc	600
gcaagtccgt ggcggAACCG actacttgg gtgtccgtgt ttcactttt actttatga	660
ctgcttatgg tgacaatttg atattgttac catttagctt gtcaaataa ttgcaaaaga	720
tcctaaatct tatttatcaa ctgcattt gataacttta atttgaaaat tttaacaatg	780
ggagctcagg ttactagaca acaaactggc actcatgaaa atgccaacat tgccacaaat	840
ggatctcata tcacatacaa tcagataaac ttttacaagg atagctatgc ggcttcagcc	900
agcaagcagg attttcaca ggaccatca aaattcactg aaccagtagt ggaaggttta	

IEC170083PCT-seql.txt

aaagcagggg	cgccagttt	gaaatctcct	agtgctgagg	catgtggcta	cagtgataga	960
gtattacagc	tcaaattagg	aaattcagct	attgtcaccc	aggaagcagc	gaactactgc	1020
tgcgcttatg	gtgaatggcc	caattactta	ccagaccatg	aagcagtagc	cattgataaa	1080
cctacacaac	cagaaactgc	tacagataga	ttctacactt	tgaaatcagt	caaatggaa	1140
actggaagca	caggaatggtg	gtggaaacta	cccgatgcac	tgaataatat	aggcatgttt	1200
ggacagaatg	tgcagcatca	ctacctata	agatctggtt	tcttgattca	tgtcagtgt	1260
aatgccacaa	aattccatca	aggtgcctta	ttagtggtag	caattccaga	acatcagagg	1320
ggagcgcaca	acaccaacac	tagcccaggg	tttgatgata	taatgaaagg	tgaagaagga	1380
gggaccttca	atcatccata	tgtccttgat	gatggaacat	cattggcttg	tgcgacgata	1440
tttccacatc	agtggataaa	tctgagaacc	aacaattcag	caacaattgt	tcttccctgg	1500
atgaatgctg	ctccaatgga	tttcccactt	agacataatc	agtggacgct	agcaataata	1560
ccagtggtgc	cattaggtac	gcgtacaaca	tcaagtatgg	tcccaataac	agtttcaatc	1620
gctccaatgt	gttgtgagtt	taatggactt	agacacgcca	ttactcaagg	tgtcccaaca	1680
tacctttac	caggctcggg	acaattccta	acaactgatg	atcatagctc	tgcaccagct	1740
ctcccggtt	tcaacccaac	tccagaaatg	catatcccag	ggcaggtccg	taacatgcta	1800
gaagtggtcc	aagtggaaatc	aatgatggag	attaataaca	cagaaagtgc	agttggcatg	1860
gagcgtctta	agggtgat	atcagcattg	acagatgtcg	atcaattgtt	attcaacatt	1920
ccactggaca	tacagttgga	tgggccactt	agaaacactt	tggtaggaaa	catatctaga	1980
tattacactc	attggtctgg	atccctagaa	atgacgttta	tgtttgtgg	cagcttcatg	2040
gcaacggaa	aattaatcct	gtgctatact	cctccaggtg	gatcatgcc	gacaaccaga	2100
gagaccgcca	tgttaggtac	acatattgtt	tgggattttg	gattacaatc	tagttaacc	2160
ctgataatac	cttggattag	tggatcccac	tacaggatgt	ttaataatga	tgctaagtca	2220
actaatgcca	acgttggcta	tgtcacttgt	tttatgcaga	ccaatctgat	agtccccagt	2280
gaatccctcg	acacgtttc	cttgataggg	ttcatagcag	caaaagatga	tttctccctc	2340
agattaatga	gagacagccc	tgacattgga	caactagacc	atttacatgc	agcagaggca	2400
gcctaccaga	tcgagagcat	catcaaaaca	gcgaccgaca	ctgtgaaaag	tgagattaat	2460

IEC170083PCT-seql.txt

gctgaacttg	gtgtggtccc	tagcttaat	gcagttaaaa	caggtgcaac	ttctaacact	2520
gaaccagaag	aagccataca	aactcgacac	gtgataaaatc	agcacgggt	atccgagact	2580
ctagtggaga	attttctcag	tagagcagct	ttggtatcaa	agagaagttt	tgaatacaaa	2640
gatcatactt	cgtctgcagc	acaaggcagac	aagaactttt	tcaaatggac	aattaacacc	2700
agatcccttg	tacagttaag	aagaaaatta	gaattattca	cataccttag	atttgatgct	2760
gagatcacta	tactcacaac	tgttagcagtg	aatggtagtg	gtaataatac	atacgtgggt	2820
cttcctgact	tgacactcca	agcaatgttt	gtacccactg	gtgctttac	cccagaaaaa	2880
caggactcat	tccactggca	gtcaggcagt	aatgctagtg	tattctttaa	aatctccgac	2940
cccccagcca	gaataaccat	acctttatg	tgcattaact	cagcatactc	agtttttat	3000
gatggctttg	ccggatttga	gaaaaacggt	ctgtatggaa	taaatccagc	tgacactatt	3060
ggttaacttat	gtgttagaat	agtgaatgaa	caccaaccag	ttggtttcac	agtgaccgtt	3120
agggtttaca	tgaagcctaa	acacataaaa	gcatggcac	cacgaccacc	acgaactttg	3180
ccatatatga	gtattgcaaa	tgcaaattac	aaaggtaaag	aaagagcacc	aaatgcgc	3240
aatgctataa	ttggcaatag	agacagtgtc	aaaaccatgc	ctcataatat	agtgaacact	3300
ggtccaggct	tcggaggagt	tttttaggg	tctttcaaaa	taatcaacta	tcacttggcc	3360
actacagaag	agagacagtc	agctatctat	gtggattggc	aatcagacgt	cttggttacc	3420
cccattgctg	ctcatggaag	gcaccaaata	gcaagatgca	agtgcacac	aggggtttac	3480
tattttaggc	acaaaaacag	aagttacccg	atttgcttg	aaggcccagg	gattcaatgg	3540
attgaacaaa	atgaatatta	cccagcaagg	taccagacca	atgtactatt	ggcagtttgt	3600
cctgcggaag	caggagattg	cggtggttta	ctagttgtc	cacatggggt	aatcggtctt	3660
cttacagcag	gagggggtgg	aattttagt	ttcactgata	tcaggaattt	gctatggta	3720
gatactgatg	ctatggaaca	aggcattact	gattatattc	aaaatcttgg	taatgcctt	3780
ggagcaggat	ttacagaaac	aatctcta	aaagccaagg	aagtgcaaga	tatgctaatt	3840
ggagagagtt	cactattaga	aaaattgtta	aaagctctaa	tcaaaaatcat	atcagcatta	3900
gtaattgtaa	tcagaaactc	agaagattt	gtcacagtca	cagccacact	agcattgtt	3960
ggatgccatg	attcaccatg	gagctacttg	aaacagaagg	tatgttcata	cttaggtatt	4020

IEC170083PCT-seql.txt

ccttatgtac	ctagacaggg	tgaatcgtgg	cttaagaaat	tcacagaggg	atgcaatgct	4080
cttagaggc	tggattggct	atcgcaaaag	atagataaat	tcatcaactg	gcttaaaacc	4140
aaaatattac	cagaagctag	ggagaaatat	gaatttgc	aaaggctcaa	acagttaccg	4200
gtgatagaaa	accaagttag	tacaatcgag	catagctgcc	caacaacaga	acaacaacag	4260
gccttattca	acaacgtcca	atactattca	cactactgta	gaaagtacgc	accactttac	4320
gcagtggaaag	caaagagggt	agtagctctt	gaaaagaaaa	taaacaacta	catccagttc	4380
aagtccaaat	ctcgcatatga	accggtttgt	ttaataatac	atggctctcc	aggaactggc	4440
aagtcagtgg	cttcaaattt	aattgccagg	gctatcacag	agaaattggg	gggggacatt	4500
tattccttgc	ctccagaccc	taaatatttt	gatggataca	aacagcaaac	agtggtcctc	4560
atggatgatt	taatgcaaaa	tccagatggg	aatgacatat	ctatgttctg	ccaaatggtc	4620
tccactgttag	atttcataacc	cccaatggct	agtttgagg	aaaaaggaac	tctatacacc	4680
agtccatttt	taatagctac	taccaatgct	ggctcaatac	atgcaccaac	tgtatcagac	4740
tcaaaggctt	tgtcacgcag	atttaaattt	gacgtggaca	ttgaagtcac	agattcatac	4800
aaggactcaa	ataaatttga	tatgtcaagg	gcagtcgaga	tgtcaaacc	agatggctgt	4860
ccccccacca	attacaaaag	atgctgccc	ttgatctgt	gaaaggctat	ccaattcaga	4920
gatgcagaa	ctaattgcaag	atccactatt	gatatgctag	taactgatat	tataaaggaa	4980
tatagaacca	gaaacagtac	acaggataag	ctggaagctc	tgtttcaggg	gcctccacag	5040
tttaaagaga	tcaaaatttc	agtacccca	gatacaccag	ctcctgatgc	tataaatgac	5100
cttcttaggt	cagtggattc	tcaagaagtt	agggattatt	gccaaaagaa	aggatggatt	5160
gtagtagacc	catcaaatga	gctaataatgta	gaaaaacaca	tttagtagagc	ttttattact	5220
ctacaagcca	ttgccaccc	tgtatcaata	gctgggttag	tttatgttat	atacaaactt	5280
tttgctggca	ttcagggtcc	atacacagga	atccccaaatc	ctaaacctaa	agtaccctct	5340
ctcagaacag	ctaaagtgc	aggaccaggg	ttcgattttg	cacaagccat	aatgaagaaa	5400
aataccgtca	ttgcaaggac	tgaaaagggt	gagttcacca	tgctgggtgt	atatgatagg	5460
gtagcggtca	tccccacaca	cgcacatgtt	ggagaaacca	tttacattaa	tgatgttagag	5520
actaaagttt	tagatgcgtg	tgcacttaga	gacttgactg	atacaaactt	agagataacc	5580

IEC170083PCT-seql.txt

atagtcaa at tagaccgtaa tcaaaaattt agagatatca gacatttct gcccagat	5640
gaggatgatt acaatgacgc tgtgcttagc gtacatacat caaaattccc aaatatgtat	5700
atcccagttg gacaagtcac caattatggc ttcttgaacc taggtggtag accgacgcac	5760
cgcatttaa tgtataactt cccacaaga gctggccagt gtgggtgt ggtgacaact	5820
acaggtaagg ttagatggaa atcatgttaggt ggaaatggag ctcaaggatt tgcagcaatg	5880
ctactacact cttactttc cgatacaca ggtgagatag ttagtagtga aaagagtggg	5940
gtgtgcatta acgcacccgc aaagactaaa ctccaaccta gtgtttcca tcaagtttt	6000
gaaggttcaa aggaaccagc agttctcaat ccaaaagatc cttaggcttaa aacagatttc	6060
gaggaggcca ttttctcaaa gtacacaggt aacaaaatta tgttaatgga tgagtacatg	6120
gaagaggcag tggatcatta tgtgggtgt ttagaaccat tagacatcag tgtggatccc	6180
atacccctgg aaagtgcacat gtatggaatg gatggccttg aggcatttgc cttaactacc	6240
agtgcaggat tcccttactt actacaaggg aagaagaaaa gggatataatt taatagacat	6300
actagagaca ccagtgaaat gacaaaaatg ttagagaaat atggagttga cctacccttt	6360
gtaacctttg taaaagatga gcttagatca agagaaaaag ttgaaaaagg gaaatcacgc	6420
ctgattgagg ccagttcctt gaatgactca gttgctatga gagttgcctt tggaaacctt	6480
tacgccacat ttcacaacaa tccaggtaca gcaactggta gtgcagttgg ttgtgatcca	6540
gatataaaaa ggtcaaaaaat ccctatttt ttagatggag aaatcttgc ttttactac	6600
actggttatg atgctagttt gtcaccagtg tggttgcct gcttaaagaa agttctaatt	6660
aagtttagtt acacacatca aacgtctttt atagattatt tgtgtcattc agtacattt	6720
tataaggaca aaaaatacat agttaatggt ggaatgcct ctggttcttc aggcaccagc	6780
atattcaaca ctatgatcaa caatataatc ataagaactt tattaattag ggtttacaaa	6840
ggcatagacc tggaccagtt caaaatgatt gcctatgggg atgatgttat tgctagctac	6900
ccacataaga ttgatccagg tttgctggca gaagcaggtt aacagtatgg attagtaatg	6960
acgccagcag acaaaggaac cagttttatt gacacaaatt gggaaaatgt aactttcttta	7020
aaaagatatt tcagagcaga tcatcaatac cccttctca tacatccagt gatgccaatg	7080
aaagagatac atgaatctat tagatggact aaagatccc gaaacacaca ggatcatgtt	7140

IEC170083PCT-seql.txt

aggctttgt gctacctcgc atggataat ggagaggagg cttataatga atttgcaga	7200
aaaatcagaa gtgtgcctgt gggaaagagca ttgacactac ctgcatactc tagtcttgc	7260
cggaaatggt tagattcggt ctagacaact ctaattgaaa cccaaatgtt agttactttc	7320
attttagaggt aaattttgggt cacttggggg ccaaaaaaaaaaaaaaaa aaaaaaaaaagtc	7380
gac	7383

<210> 2

<211> 507

<212> RNA

<213> 人工序列

<220>

<223> HRV2的内部核糖体进入位点序列的RNA序列

<400> 2

aacuuagaag uuuuucacaa agaccaauag ccgguaauca gccagauuac ugaagguaa	60
gcacuucugu uuccccgguc aauguugaua ugcuccaaca gggcaaaaac aacugcgauc	120
guuaaccgca aagcgccuac gcaaagcuua guagcaucuu ugaaaucguu uggcuggucg	180
auccgccauu ucccccuggua gaccuggcag augaggcuag aauuacccca cuggcgacag	240
uguucuagcc ugcguggcug ccugcacacc cuaugggugu gaagccaaac auggacaag	300
gugugaagag ccccgugugc ucgcuuugag uccuccggcc ccugaaugug gcuaaccuu	360
acccugcagc uagagcacgu aacccaaugu guaucuaguc guaauugagca auugcgggau	420
gggaccaacu acuuugggug uccguguuuc acuuuuuccu uuauauuugc uuauggugac	480
aauauauaca auauauauau uggcacc	507

<210> 3

<211> 22

<212> RNA

<213> 人工序列

<220>

<223> miR-133靶序列的RNA序列

<400> 3

acagcugguu gaaggggacc aa	22
--------------------------	----

<210> 4

IEC170083PCT-seql.txt

<211> 22
<212> RNA
<213> 人工序列

<220>
<223> miR-206靶序列的RNA序列

<400> 4
ccacacacuu ccuuacauuc ca

22

<210> 5
<211> 102
<212> RNA
<213> 人工序列

<220>
<223> miR-133靶序列与miR-206靶序列的串联序列的RNA序列

<400> 5
acagcugguu gaaggggacc aacgauacag cugguugaag gggaccaaac cgguccacac
acuuuccuuac auuccaucac ccacacacuu ccuuacauuc ca

60

102

<210> 6
<211> 435
<212> DNA
<213> 人工序列

<220>
<223> GM-CSF基因DNA序列

<400> 6
atgtggctgc agagcctgct gctcttggc actgtggcct gcagcatctc tgcacccgcc
cgctcgccca gccccagcac gcagccctgg gagcatgtga atgccatcca ggaggcccg
cgtctcctga acctgagtag agacactgct gctgagatga atgaaacagt agaagtcatc
tcagaaatgt ttgacctcca ggagccgacc tgcctacaga cccgcctgga gctgtacaag
cagggcctgc ggggcagcct caccaagctc aagggccct tgaccatgat ggccagccac
tacaaggcagc actgccctcc aaccccgaa acttcctgtg caacccagat tatcacctt
gaaagttca aagagaacct gaaggacttt ctgcttgtca tccccttga ctgctggag
ccagtcagg agtga

60

120

180

240

300

360

420

435

<210> 7

IEC170083PCT-seql.txt

<211> 795
<212> DNA
<213> 人工序列

<220>
<223> 编码Anti-PD-1 scFv的DNA序列

<400> 7
atgaagcacc tgtggttctt cctgctgctg gtggccgctc ctaggtgggt gctgtcccag 60
gtgcagctgg tgcagagcgg cgtggaggtg aagaagcccg gcgcctccgt gaaggtgtcc 120
tgcaaggcct ccggctacac cttcaccaac tactacatgt actgggtgag gcaggcccct 180
ggacagggac tggagtggat gggcggcatc aacccttcca acggcggcac caacttcaac 240
gagaagttca agaaccgggt gaccctgacc accgactcct ccaccaccac cgcctacatg 300
gagctgaagt ccctgcagtt tgacgacacc gccgtgtact actgcgccag gagggactac 360
cggttcgaca tgggcttcga ctactggggc cagggcacaa ccgtgaccgt gtccagcgg 420
ggtggcggat ctggaggggg tggtagcggt ggaggcggga gtgagatcgt gctgaccag 480
tccccctgcta cactgtccct gtccccggc gagagggcta cactgagctg cagggcctcc 540
aagggcgtgt ccacctccgg ctactcctac ctgcactggc accagcagaa gcctggacag 600
gctcccaggc tgctgatcta cctggcctcc tacctggagt ccggcgtgcc tgcttagttt 660
tccggcagcg gcagcggcac cgatttcacc ctgaccatct cctccctgga gcccggaggac 720
ttcggcgtgt actactgccs gcactccagg gatctgcctc tgaccttcgg cggcggcacc 780
aaggtggaga tcaag 795

<210> 8
<211> 7306
<212> DNA
<213> 人工序列

<220>
<223> EV-D68-HRV2的cDNA序列

<400> 8
taatacgact cactataggt taaaacagcc ttggggttgt tcccactcca agggcccacg 60
tggcggctag tactctggta cttcggtacc tttgtacgcc tgttttatct cccttcccaa 120
tgtaacttag aagaacttag aagttttca caaagaccaa tagccggtaa tcagccagat 180

IEC170083PCT-seql.txt

tactgaaggt caagcacttc tttttcccg gtcaatgtt atatgctcca acagggcaaa	240
aacaactgcg atcgtaacc gcaaagcgcc tacgcaaagc ttagtagcat ctttcaaacc	300
gtttggctgg tcgatccgccc atttccctg gtagacctgg cagatgaggc tagaaatacc	360
ccactggcga cagtgttcta gcctgcgtgg ctgcctgcac accctatggg tgtgaagcca	420
aacaatggac aaggtgtgaa gagccccgtg tgctcgctt gagtcctccg gcccctgaat	480
gtggctaacc ttaaccctgc agctagagca cgtaacccaa tgtgtatcta gtcgtaatga	540
gcaattgcgg gatgggacca actacttgg gtgtccgtgt ttcactttt cctttatatt	600
tgcttatggt gacaatatac acaatatac tattggcacc atgggagctc aggttactag	660
acaacaaact ggcactcatg aaaatgccaa cattgccaca aatggatctc atatcacata	720
caatcagata aactttaca aggatagcta tgcggcttca gccagcaagc aggattttc	780
acaggaccca tcaaaattca ctgaaccagt agtggaaagg ttaaaagcag gggcgccagt	840
tttgaatct cctagtgtg aggcatgtgg ctacagtgtat agagtattac agctcaaatt	900
aggaaattca gctattgtca cccaggaagc agcgaactac tgctgcgtt atggtaatg	960
gcccaattac ttaccagacc atgaagcagt agccattgtat aaacctacac aaccagaaac	1020
tgctacagat agattctaca cttgaaatc agtcaaattgg gaaactggaa gcacaggatg	1080
gtggtgaaa ctacccgatg cactgaataa tataggcatg tttggacaga atgtcagca	1140
tcactaccta tatagatctg gtttcttgc tcatgtgcag tgtaatgcca caaaattcca	1200
tcaaggtgcc ttatttagtgg tagcaattcc agaacatcag aggggagcgc acaacaccaa	1260
cactagccca gggtttgc atataatgaa aggtgaagaa ggagggaccc tcaatcatcc	1320
atatgtcctt gatgatggaa catcattggc ttgtgcgacg atattccac atcagtggat	1380
aaatctgaga accaacaatt cagcaacaat tttttttccc tggatgaatg ctgctccaaat	1440
ggatttccca ctttagacata atcagtggac gctagcaata ataccagtgg tgccattagg	1500
tacgcgtaca acatcaagta tggccaaat aacagttca atcgctccaa tgtgttgc	1560
gtttaatgga ctttagacacg ccattactca aggtgtccca acataccctt taccaggctc	1620
gggacaattc ctaacaactg atgatcatag ctctgcacca gctctcccg tttcaaccc	1680
aactccagaa atgcataatcc cagggcaggt ccgtaacatg cttagaagtgg tccaagtgg	1740

IEC170083PCT-seql.txt

atcaatgatg gagattaata acacagaaag tgcagttggc atggagcgtc ttaagggtga	1800
tatatcagca ttgacagatg tcgatcaatt gttattcaac attccactgg acatacagtt	1860
ggatgggcca cttagaaaca ctttggtagg aaacatatct agatattaca ctcattggtc	1920
tggatcccta gaaatgacgt ttatgttttgc tggcagcttc atggcaacgg gaaaattaat	1980
cctgtgctat actcctccag gtggatcatg cccgacaacc agagagaccg ccatgttagg	2040
tacacatatt gtttgggatt ttggattaca atctagtgtta accctgataa taccttggat	2100
tagtggatcc cactacagga tggtaataa tggatgctaag tcaactaatg ccaacgttgg	2160
ctatgtcact tggatccatgc agaccaatct gatagtcccc agtgaatcct ctgacacgtg	2220
ttccttggata ggggtcatag cagcaaaaga tgatttctcc ctcagattaa tgagagacag	2280
ccctgacatt ggacaactag accatttaca tgcagcagag gcagcctacc agatcgagag	2340
catcatcaaa acagcgaccg acactgtgaa aagtggatt aatgctgaac ttgggtgtgg	2400
cccttagctta aatgcagttg aaacaggtgc aacttctaactc actgaaccag aagaagccat	2460
acaaaactcgc acagtgataa atcagcacgg tggatccgag actctagtgg agaattttct	2520
cagtagagca gctttggat caaagagaag ttttgaatac aaagatcata cttcgctgc	2580
agcacaagca gacaagaact ttttcaaattt gacaattaac accagatcct ttgtacagtt	2640
aagaagaaaa ttggaaattt tcacatacct tagatttgc gctgagatca ctatactcac	2700
aactgttagca gtgaatggta gtggtaataa tacatacgtg ggtcttcctg acttgacact	2760
ccaagcaatg tttgtaccca ctgggtctct tacccagaa aaacaggact cattccactg	2820
gcagtcaggc agtaatgcta gtgtattctt taaaatctcc gaccccccag ccagaataac	2880
catacctttt atgtgcatta actcagcata ctcagtttt tatgtggct ttgccggatt	2940
tgagaaaaac ggtctgtatg gaataaatcc agctgacact attggtaact tatgtgttag	3000
aatagtgaat gaacaccaac cagttggttt cacagtgacc gttagggttt acatgaagcc	3060
taaacacata aaagcatggg caccacgacc accacgaact ttgccatata tgagtattgc	3120
aaatgcaaatac tacaaggta aagaaagagc accaaatgcg ctcaatgcta taattggcaa	3180
tagagacagt gtcaaaacca tgcctcataa tatagtgaac actggtccag gcttcggagg	3240
agttttgtta gggtcttca aaataatcaa ctatcacttg gccactacag aagagagaca	3300

IEC170083PCT-seql.txt

gtcagctatc tatgtggatt ggcaatcaga cgtctggtt acccccattg ctgctcatgg	3360
aaggcaccaa atagcaagat gcaagtgcaa cacagggggtt tactattgta ggcacaaaaa	3420
cagaagttac ccgatttgct ttgaaggccc agggattcaa tggattgaac aaaatgaata	3480
ttacccagca aggtaccaga ccaatgtact attggcagtt ggtcctgcgg aagcaggaga	3540
ttgcggtggt ttactagttt gtccacatgg ggtaatcggt cttcttacag caggaggggg	3600
tggaattgta gcttcactg atatcagggaa tttgctatgg ttagatactg atgctatgga	3660
acaaggcatt actgattata ttcaaaatct tggtaatgcc tttggagcag gatttacaga	3720
aacaatctct aataaagcca aggaagtgca agatatgcta attggagaga gttcactatt	3780
agaaaaattg taaaagctc taatcaaaat catatcagca ttagtaatttgaatcagaaa	3840
ctcagaagat ttagtcacag tcacagccac actagcatttggatgcc atgattcacc	3900
atggagctac ttgaaacaga aggtatgttc atacttaggt attccttatg tacctagaca	3960
gggtgaatcg tggcttaaga aattcacaga ggcattcaat gctcttagag gtctggattg	4020
gctatcgcaa aagatagata aattcatcaa ctggcttaaa accaaaatat taccagaagc	4080
tagggagaaa tatgaatttgc tcaaaggct caaacagtttccgggtatggaaaaccaagt	4140
tagtacaatc gagcatagct gccaacaac agaacaacaa caggcatttacacaacgt	4200
ccaatactat tcacactact gtagaaagta cgcaccactt tacgcgttgg aagcaaagag	4260
ggtagtagct cttgaaaaga aaataaacaa ctacatccag ttcaagtcca aatctcgcat	4320
tgaaccgggtt tggcttaataa tacatggctc tccaggaact ggcaagtcag tggcttcaaa	4380
tttaattgcc agggctatca cagagaaatt ggggggggac atttattcct tgcctccaga	4440
ccctaaatat tttgatggat acaaacagca aacagtggtc ctcatggatg atttaatgca	4500
aaatccagat gggaaatgaca tatctatgtt ctgcattatgt gtctccactg tagatttcat	4560
accccaatg gctagtttgg agggaaaagg aactctatac accagtccat tttaatagc	4620
tactaccaat gctggctcaa tacatgcacc aactgtatca gactcaaagg ctttgcacg	4680
cagatttaaa tttgacgtgg acattgaagt cacagattca tacaaggact caaataaatt	4740
ggatatgtca agggcagtcg agatgtgcaa accagatggc tgtgccccca ccaattacaa	4800
aagatgctgc ccattgatct gtggaaaggc tatccaattc agagatcgca gaactaatgc	4860

IEC170083PCT-seql.txt

aagatccact	attgatatgc	tagtaactga	tattataaag	gaatataagaa	ccagaaaacag	4920
tacacaggat	aagctggaag	ctctgttca	ggggcctcca	cagttaaag	agatcaaaat	4980
ttcagtcacc	ccagatacac	cagctcctga	tgctataaaat	gacttctta	ggtcagtgga	5040
ttctcaagaa	gttagggatt	attgccaaaa	gaaaggatgg	attgttagtac	acccatcaaa	5100
tgagctaata	gtagaaaaac	acattagtag	agcttttatt	actctacaag	ccattgccac	5160
ctttgtatca	atagctggtg	tagtttatgt	tatatacaaa	cttttgctg	gcattcaggg	5220
tccatacaca	ggaatcccc	atcctaaacc	taaagtaccc	tctctcagaa	cagctaaagt	5280
gcaaggacca	gggttcgatt	ttgcacaagc	cataatgaag	aaaaataccg	tcattgcaag	5340
gactgaaaag	ggtgagttca	ccatgctggg	tgtatatgt	agggtagcgg	tcatccccac	5400
acacgcacatct	gttggagaaa	ccatttacat	taatgatgta	gagactaaag	tttagatgc	5460
gtgtgcactt	agagacttga	ctgatacaaa	cttagagata	accatagtca	aattagaccg	5520
taatcaaaaa	tttagagata	tcagacattt	tctgcccaga	tatgaggatg	attacaatga	5580
cgctgtgctt	agcgtacata	catcaaaatt	cccaaataatg	tatatcccag	ttggacaagt	5640
caccaattat	ggcttcttga	acctagggtgg	tacaccgacg	caccgcattt	taatgtataa	5700
cttcccaaca	agagctggcc	agtgtggtgg	tgtggtgaca	actacaggtt	aggtgatagg	5760
aatacatgta	ggtggaaatg	gagctcaagg	atttgcagca	atgctactac	actcttactt	5820
ttccgataca	caaggtgaga	tagtttagtag	tgaaaagagt	gggggtgtgca	ttaacgcacc	5880
ggcaaagact	aaactccaac	ctagtgtttt	ccatcaagtt	tttgaaggtt	caaaggaacc	5940
agcagttctc	aatccaaaag	atcctaggct	taaaacagat	ttcgaggagg	ccattttctc	6000
aaagtacaca	ggtaacaaaa	ttatgttaat	ggatgagttac	atggaagagg	cagtggatca	6060
ttatgtgggg	tgtttagaac	cattagacat	cagtgtggat	cccatcccc	tggaaagtgc	6120
catgtatgga	atggatggcc	ttgaggcatt	agacttaact	accagtgcag	gattccctta	6180
cttactacaa	gggaagaaga	aaagggatat	atttaataga	catactagag	acaccagtga	6240
aatgacaaaa	atgttagaga	aatatggagt	tgacctacct	ttttaacct	ttgtaaaaga	6300
tgagcttaga	tcaagagaaa	aagttgaaaa	aggaaatca	cgcctgattg	aggccagttc	6360
cttgaatgac	tcagttgcta	tgagagttgc	ctttggaaac	ctttacgcca	catttcacaa	6420

IEC170083PCT-seql.txt

caatccaggt acagcaactg gtagtgcagt tgggtgtat ccagatataat tttggtcaaa	6480
aatccctatt ttgttagatg gagaatctt tgctttgac tacactggtt atgatgctag	6540
tttgcacca gtgtggtttgc cctgcttaaa gaaagttcta attaagtttag gttacacaca	6600
tcaaacgtct tttatagatt atttgcgtca ttcaatcacat ttatataagg acaaaaaata	6660
catagttat ggtggaatgc cctctgggttc ttcaaggcacc agcatattca acactatgtat	6720
caacaatata atcataagaa ctttattat tagggtttac aaaggcatag acctggacca	6780
gttcaaaatg attgcctatg gggatgtatgt tattgcttagc tacccacata agattgtatcc	6840
aggtttgctg gcagaaggcag gtaaacagta tggatttagta atgacgccag cagacaaagg	6900
aaccagtttt attgacacaa attggggaaaa tgaactttc ttaaaaagat atttcagagc	6960
agatgatcaa tacccctttc tcatacatcc agtgcgtccat atgaaagaga tacatgaatc	7020
tattagatgg actaaagatc ccagaaacac acaggatcat gtttaggtctt tgtgtaccc	7080
cgcattggcat aatggagagg aggcttataa tgaattttgc agaaaaatca gaagtgtgcc	7140
tgtgggaaga gcattgacac tacctgcata ctctgtctt agacggaaat gtttagattc	7200
gttctagaca actctaattt aaacccaagt tatagttact ttcattttaga ggtaaatttt	7260
ggtcacttgg gggccaaaaa aaaaaaaaaa aaaaaaaaaa gtcgac	7306

<210> 9
<211> 7485
<212> DNA
<213> 人工序列

<220>
<223> EV-D68-miR133&206T的cDNA序列

taatacgtact cactataggt taaaacagcc ttgggggtgt tcccaactccca agggcccccacg	60
tggcggttag tactctggta cttcggtacc tttgtacgcc tgggttatct cccttcccaa	120
tgtacttag aagttcttaa atcaatgctc aataggtggg ggcacaaacca ggcgtctcat	180
gagcaagcac tcctgtctcc ccgggtgaggt tggataact gttccacgg ttgaaaacaa	240
cctatccgtt atccgctata gtacttcgag aaaccttagta ccaccttgg attgttgacg	300
cgttgcgctc agcacactaa cccgtgtgtat gcttgggtcg atgagtctgg acatacctca	360

IEC170083PCT-seql.txt

ctggcgacag	tggtccaggc	tgcgttggcg	gcctactcat	ggtgaaagcc	atgagacgct	420
agacatgaac	aaggtgtgaa	gagtctattg	agctactata	gagtcctccg	gcccctgaat	480
gcggctaattc	ctaaccatgg	agcaagtgc	cacaggccag	ttagttgctt	gtcgtaatgc	540
gcaaggccgt	ggcggaaaccg	actactttgg	gtgtccgtgt	ttcacttttt	acttttatga	600
ctgcttatgg	tgacaatttg	atattgttac	catttagctt	gtcaaataaa	ttgcaaaaga	660
tcctaaatct	tatttatcaa	cttgcattt	gataacttta	atttgaaaat	tttaacaatg	720
ggagctcagg	ttactagaca	acaaactggc	actcatgaaa	atgccaacat	tgccacaaat	780
ggatctcata	tcacatacaa	tcagataaac	ttttacaagg	atagctatgc	ggcttcagcc	840
agcaagcagg	atttttcaca	ggacccatca	aaattcactg	aaccagtagt	ggaaggttt	900
aaagcagggg	cggcagttt	gaaatctcct	agtgctgagg	catgtggcta	cagtgataga	960
gtattacagc	tcaaattagg	aaattcagct	attgtcaccc	aggaagcagc	gaactactgc	1020
tgcgttatg	gtgaatggcc	caattactta	ccagaccatg	aagcagtagc	cattgataaa	1080
cctacacaac	cagaaactgc	tacagataga	ttctacactt	tgaaatcagt	caaatggaa	1140
actggaagca	caggatggtg	gtggaaacta	cccgatgcac	tgaataatat	aggcatgttt	1200
ggacagaatg	tgcagcatca	ctacctata	agatctggtt	tcttgattca	tgtgcagtgt	1260
aatgccacaa	aattccatca	aggtgcctt	ttagtggtag	caattccaga	acatcagagg	1320
ggagcgcaca	acaccaacac	tagccaggg	tttgatgata	taatgaaagg	tgaagaagga	1380
gggaccttca	atcatccata	tgtccttgat	gatggaacat	cattggctt	tgcgacgata	1440
tttccacatc	agtggataaa	tctgagaacc	aacaattcag	caacaattgt	tcttccctgg	1500
atgaatgctg	ctccaatgga	tttcccactt	agacataatc	agtggacgct	agcaataata	1560
ccagtggtgc	cattaggtac	gcgtacaaca	tcaagtatgg	tcccaataac	agtttcaatc	1620
gctccaatgt	gttgtgagtt	taatggactt	agacacgcca	ttactcaagg	tgtcccaaca	1680
tacctttac	caggctcggg	acaattccta	acaactgatg	atcatagctc	tgcaccagct	1740
ctcccggttt	tcaacccaac	tccagaaatg	cataatcccag	ggcaggtccg	taacatgcta	1800
gaagtggtcc	aagtggaaatc	aatgatggag	attaataaca	cagaaagtgc	agttggcatg	1860
gagcgtctta	aggttgatat	atcagcattt	acagatgtcg	atcaattgtt	attcaacatt	1920

IEC170083PCT-seql.txt

ccactggaca tacagttgga tgggccactt agaaacacctt tggttaggaaa catatctaga	1980
tattacactc attggctctgg atccctagaa atgacgttta tggtttgtgg cagcttcatg	2040
gcaacggaa aattaatcct gtgctatact cctccaggtg gatcatgccccc gacaaccaga	2100
gagaccgcca tgttaggtac acatattgtt tgggatttt gattacaatc tagttaacc	2160
ctgataatac cttggattag tggatcccac tacaggatgt ttaataatga tgctaagtca	2220
actaatgccca acgttggcta tgtcacttgc tttatgcaga ccaatctgtat agtccccagt	2280
gaatcctctg acacgtgttc cttgataggg ttcatagcag caaaagatga tttctccctc	2340
agattaatga gagacagccc tgacattgga caactagacc atttacatgc agcagaggca	2400
gcctaccaga tcgagagcat catcaaaaaca gcgaccgaca ctgtgaaaag tgagattaat	2460
gctgaacttg gtgtggtccc tagcttaat gcagttgaaa caggtgcaac ttctaacact	2520
gaaccagaag aagccataca aactcgcaca gtgataaattc agcacgggtgt atccgagact	2580
ctagttggaga attttctcag tagagcagct ttggtatcaa agagaagttt tgaatacaaa	2640
gatcatactt cgtctgcagc acaaggcagac aagaactttt tcaaattggac aattaacacc	2700
agatcctttg tacagttaag aagaaaatta gaattattca cataccttag atttgatgct	2760
gagatcacta tactcacaac tgttagcagtg aatggtagtg gtaataatac atacgtgggt	2820
cttcctgact tgacactcca agcaatgttt gtacccactg gtgctttac cccagaaaaa	2880
caggactcat tccactggca gtcaggcagt aatgctagtg tattctttaa aatctccgac	2940
cccccagcca gaataaccat acctttatg tgcattaact cagcatactc agtttttat	3000
gatggctttg ccggatttga gaaaaacgggt ctgtatggaa taaatccagc tgacactatt	3060
ggtaacttat gtgttagaat agtgaatgaa caccaaccag ttggtttcac agtgaccggtt	3120
agggtttaca tgaaggctaa acacataaaa gcatgggcac cacgaccacc acgaactttg	3180
ccatatatga gtattgcaaa tgcaaattac aaaggtaaag aaagagcacc aaatgcgcctc	3240
aatgctataa ttggcaatag agacagtgtc aaaaccatgc ctcataatac agtgaacact	3300
ggtccaggct tcggaggagt tttttaggg tctttcaaaa taatcaacta tcacttggcc	3360
actacagaag agagacagtc agctatctat gtggattggc aatcagacgt cttggttacc	3420
cccatggctg ctcataggaaag gcaccaaata gcaagatgca agtgcacac aggggtttac	3480

IEC170083PCT-seql.txt

tattttaggc	acaaaaacag	aagttacccg	atttgcgg	aaggcccagg	gattcaatgg	3540
attgaacaaa	atgaatatta	cccagcaagg	taccagacca	atgtactatt	ggcagttgg	3600
cctgcggaag	caggagattg	cggtggttta	ctagttgtc	cacatggggt	aatcggtctt	3660
cttacagcag	gaggggggtgg	aattgttagct	ttcactgata	tcaggaattt	gctatggtta	3720
gatactgatg	ctatggaaca	aggcattact	gattatattc	aaaatcttgg	taatgcctt	3780
ggagcaggat	ttacagaaac	aatctcta	aaagccaagg	aagtgcaga	tatgctaatt	3840
ggagagagtt	cactattaga	aaaattgtta	aaagctctaa	tcaaaatcat	atcagcatta	3900
gtaattgtaa	tcagaaactc	agaagattt	gtcacagtca	cagccacact	agcattgtt	3960
ggatgccatg	attcaccatg	gagctactt	aaacagaagg	tatgttcata	cttaggtatt	4020
ccttatgtac	ctagacaggg	tgaatcgtgg	cttaagaat	tcacagaggc	atgcaatgct	4080
cttagaggtc	tggattggct	atcgcaaaag	atagataat	tcatcaactg	gctaaaacc	4140
aaaatattac	cagaagctag	ggagaaat	gaatttgc	aaaggctcaa	acagttaccg	4200
gtgatagaaa	accaagttag	tacaatcgag	catagctgcc	caacaacaga	acaacaacag	4260
gccttattca	acaacgtcca	atactattca	cactactgt	gaaagtacgc	accacttac	4320
gcagtggaag	caaagagggt	atgtactctt	gaaaagaaaa	taaacaacta	catccagttc	4380
aagtccaaat	ctcgcat	accgtttgt	ttaataatac	atggctctcc	aggaactggc	4440
aagtca	cttcaaattt	aattgccagg	gctatcacag	agaaattggg	gggggacatt	4500
tattccttgc	ctccagaccc	taaatat	gatggataca	aacagcaa	agtggcctc	4560
atggatgatt	taatgc	aaaatgggg	aatgacat	ctatgttctg	ccaaatgg	4620
tccactgtag	atttcataacc	cccaatggct	agttggagg	aaaaaggaac	tctatacacc	4680
agtccatttt	taatagctac	taccaatgct	ggctcaata	atgcaccaac	tgtatcagac	4740
tcaaaggctt	tgtcacgcag	atttaaat	gacgtggaca	ttgaagt	tcac agattcata	4800
aaggactcaa	ataaattgga	tatgtcaagg	gcagtcgaga	tgtgcaaacc	agatggctgt	4860
ccccccacca	attacaaaag	atgctgccca	ttgatctgt	gaaaggctat	ccaattcaga	4920
gatcgcagaa	ctaatgc	acactatt	gatatgctag	taactgata	tataaaggaa	4980
tatagaacca	gaaacagtac	acaggataag	ctggaagctc	tgtttcaggg	gcctccacag	5040

IEC170083PCT-seq1.txt

tttaaagaga tcaaaatttc agtcacccca gatacaccag ctcctgatgc tataaatgac 5100
cttcttaggt cagtggattc tcaagaagtt agggattatt gccaaaagaa aggatggatt 5160
gtagtagacc catcaaatga gctaatacata gaaaaacaca ttagtagagc ttttattact 5220
ctacaagcca ttgccacccctt tgtatcaata gctgggttag tttatgttat atacaaactt 5280
tttgctggca ttcagggtcc atacacagga atccccaaatc ctaaacctaa agtaccctct 5340
ctcagaacag ctaaagtgc aaggaccagg ttcgattttg cacaagccat aatgaagaaa 5400
aataccgtca ttgcaaggac tgaaaagggt gagttcacca tgctgggtgt atatgatagg 5460
gtagcggtca tccccacaca cgcacatgtt ggagaaacca tttacattaa ttagttagag 5520
actaaagttt tagatgcgtg tgcacttaga gacttgactg atacaaactt agagataacc 5580
atagtcaaat tagaccgtaa tcaaaaattt agagatatca gacattttct gcccagatata 5640
gaggatgatt acaatgacgc tgtgcttagc gtacatacat caaaattccc aaatatgtat 5700
atcccagttt gacaagtcac caattatggc ttcttgaacc tagtggtac accgacgcac 5760
cgcattttaa tgtataactt cccaacaaga gctggccagt gtgggtgtgt ggtgacaact 5820
acaggtaagg tgataggaat acatgttaggt ggaaatggag ctcaaggatt tgcagcaatg 5880
ctactacact cttaactttc cgatacacaa ggtgagatag ttagtagtga aaagagtggg 5940
gtgtgcatta acgcacccggc aaagactaaa ctccaaccta gtgtttcca tcaagtttt 6000
gaagggttcaa aggaaccagc agttctaat ccaaaagatc ctaggcttaa aacagatttc 6060
gaggaggcca ttttctcaaa gtacacaggt aacaaaatta tgttaatgga tgagtacatg 6120
gaagaggcag tggatcatta tgtgggtgt ttagaaccat tagacatcag tgtggatccc 6180
ataccctgg aaagtgccat gtatggaatg gatggccttg aggcatcaga cttaactacc 6240
agtgcaggat tcccttactt actacaaggg aagaagaaaa gggatatttt taatagacat 6300
actagagaca ccagtgaaat gacaaaaatg ttagagaaat atggagttga cctacccccc 6360
gtaacccccc taaaagatga gcttagatca agagaaaaag ttgaaaaagg gaaatcacgc 6420
ctgattgagg ccagttccctt gaatgactca gttgctatga gagttgcctt tggaaacccctt 6480
tacgccacat ttcacaacaa tccaggtaca gcaactggta gtgcagttgg ttgtgatcca 6540
gatataaaaa ggtcaaaaat ccctatccctt ttagatggag aaatcttgc ttttgactac 6600

IEC170083PCT-seql.txt

actggttatg atgcttagttt gtcaccagtg tggttgcct gcttaaagaa agttctaatt	6660
aagtttagtt acacacatca aacgtctttt atagattatt tgggtcattc agtacattta	6720
tataaggaca aaaaatacat agttaatggt ggaatgcct ctggttcttc aggcaccagc	6780
atattcaaca ctatgatcaa caatataatc ataagaactt tattaattag ggtttacaaa	6840
ggcatagacc tggaccagtt caaaatgatt gcctatgggg atgatgttat tgctagctac	6900
ccacataaga ttgatccagg tttgctggca gaagcaggtt aacagtatgg attagtaatg	6960
acgccagcag acaaaggaac cagttttatt gacacaaatt gggaaaatgt aactttctta	7020
aaaagatatt tcagagcaga tggatcaatac cccttctca tacatccagt gatgccaatg	7080
aaagagatac atgaatctat tagatggact aaagatccc gaaacacaca ggatcatgtt	7140
aggtcttgc gctacctcgc atggcataat ggagaggagg cttataatga atttgcaga	7200
aaaatcagaa gtgtgcctgt gggaaagagca ttgacactac ctgcatactc tagtcttgc	7260
cggaaatggt tagattcggtt ctagacaact ctaacagctg gttgaagggg accaacgata	7320
cagctggttg aaggggacca aaccggtcca cacacttcct tacattccat cacccacaca	7380
cttccttaca ttccaattga aacccaagtt atagttactt tcatttagag gtaaattttg	7440
gtcacttggg ggccaaaaaaaaaaaaaaaaaaag tcgac	7485

<210> 10
 <211> 7860
 <212> DNA
 <213> 人工序列

<220>
 <223> EV-D68-GM-CSF的cDNA序列

taatacact cactataggt taaaacagcc ttggggttgt tcccactcca agggcccacg	60
tggcggttag tactctggta cttcggtacc tttgtacgcc tgggttatct cccttccaa	120
tgtacttag aagttcttaa atcaatgctc aataggtggg gcgcaaaccg gcgctctcat	180
gagcaagcac tcctgtctcc ccggtgaggt tggataaact gttcccacgg ttgaaaacaa	240
cctatccgtt atccgctata gtacttcgag aaacctagta ccaccttgg attgttgacg	300
cgttgcgctc agcacactaa cccgtgtgt gcttgggtcg atgagtctgg acatacctca	360

IEC170083PCT-seql.txt

ctggcgacag	tggtccaggc	tgcgttggcg	gcctactcat	ggtgaaagcc	atgagacgct	420
agacatgaac	aaggtgtgaa	gagtctattg	agctactata	gagtcctccg	gcccctgaat	480
gcggctaattc	ctaaccatgg	agcaagtgc	cacaggccag	ttagttgctt	gtcgtaatgc	540
gcaaggccgt	ggcggAACCG	actactttgg	gtgtccgtgt	ttcacttttt	acttttatga	600
ctgcttatgg	tgacaatttg	atattgttac	catttagctt	gtcaaataaa	ttgcaaaaga	660
tcctaaatct	tatTTatcaa	cttgcattt	gataacttta	atttgaaaat	tttaacaatg	720
ggagctcagg	ttactagaca	acaaactggc	actcatgaaa	atgccaacat	tgccacaaat	780
ggatctcata	tcacatacaa	tcagataaac	ttttacaagg	atagctatgc	ggcttcagcc	840
agcaagcagg	atTTTcaca	ggacccatca	aaattcactg	aaccagtagt	ggaaggttt	900
aaagcagggg	cGCCAGTTT	gaaatctcct	agtgctgagg	catgtggcta	cagtgataga	960
gtattacagc	tcaaattagg	aaattcagct	attgtcaccc	aggaagcagc	gaactactgc	1020
tgcgttatg	gtgaatggcc	caattactta	ccagaccatg	aagcagtagc	cattgataaa	1080
cctacacaac	cagaaactgc	tacagataga	ttctacactt	tgaaatcagt	caaatggaa	1140
actggaagca	caggatggtg	gtggaaacta	cccgatgcac	tgaataatat	aggcatgttt	1200
ggacagaatg	tgcagcatca	ctacctata	agatctggtt	tcttgattca	tgtgcagtgt	1260
aatgccacaa	aattccatca	aggtgcctt	ttagtggtag	caattccaga	acatcagagg	1320
ggagcgcaca	acaccaacac	tagccaggg	tttgatgata	taatgaaagg	tgaagaagga	1380
gggaccttca	atcatccata	tgtccttgat	gatggaacat	cattggctt	tgcgacgata	1440
tttccacatc	agtggataaa	tctgagaacc	aacaattcg	caacaattgt	tctccctgg	1500
atgaatgctg	ctccaatgga	tttcccactt	agacataatc	agtggacgct	agcaataata	1560
ccagtggtgc	cattaggtac	gcgtacaaca	tcaagtatgg	tcccaataac	agtttcaatc	1620
gctccaatgt	gttgtgagtt	taatggactt	agacacgcca	ttactcaagg	tgtcccaaca	1680
tacctttac	caggctcggg	acaattccta	acaactgatg	atcatagctc	tgcaccagct	1740
ctcccggttt	tcaacccaac	tccagaaatg	catacccag	ggcaggtccg	taacatgcta	1800
gaagtggtcc	aagtggaaatc	aatgatggag	attaataaca	cagaaagtgc	agttggcatg	1860
gagcgtctta	aggttgatat	atcagcattt	acagatgtcg	atcaattgtt	attcaacatt	1920

IEC170083PCT-seql.txt

ccactggaca tacagttgga tgggccactt agaaacactt tggttaggaaa catatctaga	1980
tattacactc attggctctgg atccctagaa atgacgtta tggggatgtgg cagcttcatg	2040
gcaacggaa aattaatcct gtgctatact cctccaggtg gatcatgccccc gacaaccaga	2100
gagaccgcca tgttaggtac acatattgtt tgggattttggattacaatc tagttaacc	2160
ctgataatac cttggattag tggatcccac tacaggatgt ttaataatga tgctaagtca	2220
actaatgccca acgttggcta tgtcacttgtt tttatgcaga ccaatctgtat agtccccagt	2280
gaatcctctg acacgtgttc cttgataggg ttcatagcag caaaagatga tttctccctc	2340
agattaatga gagacagccc tgacattgga caactagacc atttacatgc agcagaggca	2400
gcctaccaga tcgagagcat catcaaaaaca gcgaccgaca ctgtgaaaag tgagattaat	2460
gctgaacttg gtgtggtccc tagcttaat gcagttgaaa caggtgcaac ttctaacact	2520
gaaccagaag aagccataca aactcgcaca gtgataaattc agcacgggt atccgagact	2580
ctagtgaga attttctcag tagagcagct ttggatcaa agagaagttt tgaataacaaa	2640
gatcatactt cgtctgcagc acaaggcagac aagaactttt tcaaattggac aattaacacc	2700
agatcctttg tacagttaag aagaaaatta gaattattca cataccttag atttgatgct	2760
gagatcacta tactcacaac tgttagcagtg aatggtagtg gtaataatac atacgtgggt	2820
cttcctgact tgacactcca agcaatgttt gtacccactg gtgctttac cccagaaaaa	2880
caggactcat tccactggca gtcaggcagt aatgctagtg tattctttaa aatctccgac	2940
cccccagcca gaataaccat acctttatg tgcattaact cagcatactc agtttttat	3000
gatggctttg ccggatttga gaaaaacgggt ctgtatggaa taaatccagc tgacactatt	3060
ggtaacttat gtgttagaat agtgaatgaa caccaaccag ttggtttcac agtgaccggtt	3120
agggtttaca tgaaggctaa acacataaaa gcatgggcac cacgaccacc acgaactttg	3180
ccatatatga gtattgcaaa tgcaaattac aaaggtaaag aaagagcacc aaatgcgcctc	3240
aatgctataa ttggcaatag agacagtgtc aaaaccatgc ctcataatac agtgaacact	3300
ggtccaggct tctggctgca gagcctgctg ctcttggca ctgtggcctg cagcatctct	3360
gcacccggcc gctcgcccaag ccccaagcacg cagccctggg agcatgtgaa tgccatccag	3420
gaggccccggc gtctcctgaa cctgagtaga gacactgctg ctgagatgaa tgaaacagta	3480

IEC170083PCT-seql.txt

gaagtcatct cagaaatgtt tgacctccag gagccgacct gcctacagac ccgcctggag	3540
ctgtacaagc agggcctgcg gggcagcctc accaagctca agggcccctt gaccatgatg	3600
gccagccact acaagcagca ctgccctcca accccggaaa cttcctgtgc aacccagatt	3660
atcaccttg aaagtttcaa agagaacctg aaggacttc tgcttgcata cccctttgac	3720
tgctgggagc cagtccagga gagtgcataa accatgcctc ataataatagt gaacactggt	3780
ccaggcttcg gaggagttt tgtagggtct ttcaaaataa tcaactatca cttggccact	3840
acagaagaga gacagtcagc tatctatgtg gattggcaat cagacgtctt gtttacccc	3900
attgctgctc atggaaggca ccaaatacgca agatgcaagt gcaacacagg gtttactat	3960
tgtaggcaca aaaacagaag ttacccgatt tgcttgaag gcccagggat tcaatggatt	4020
gaacaaaatg aatattaccc agcaaggtac cagaccaatg tactattggc agttggcct	4080
gcggaagcag gagattgcgg tggtttacta gtttgcac atgggtaat cggtttctt	4140
acagcaggag ggggtggaat ttagcttc actgatatca ggaatttgct atggtagat	4200
actgatgcta tggacaagg cattactgat tatattcaaa atcttggtaa tgccttgga	4260
gcaggattta cagaaacaat ctctaataaa gccaaggaag tgcaagatat gctaattgga	4320
gagagttcac tattagaaaa attgttaaaa gctctaatac aaatcatatc agcattagta	4380
attgtaatca gaaactcaga agatttagtc acagtcacag ccacactagc attgttgga	4440
tgccatgatt caccatggag ctacttgaaa cagaaggtat gttcatactt aggtattcct	4500
tatgtaccta gacagggtga atcgtggctt aagaaattca cagaggcatg caatgcttt	4560
agaggctgg attggctatc gcaaaagata gataaattca tcaactggct taaaaccaaa	4620
atattaccag aagcttaggaa gaaatatgaa tttgtgcaaa ggctcaaaca gttaccggtg	4680
atagaaaacc aagtttagtac aatcgagcat agctgccaa caacagaaca acaacaggcc	4740
ttattcaaca acgtccaata ctattcacac tactgttagaa agtacgcacc actttacgca	4800
gtgaaagcaa agaggtagt agctcttgaa aagaaaataa acaactacat ccagttcaag	4860
tccaaatctc gcattgaacc ggtttgttta ataatacatg gctctccagg aactggcaag	4920
tcagtggctt caaatttaat tgccaggct atcacagaga aattgggggg ggacatttat	4980
tccttgccctc cagaccctaa atatttgat ggatacaaac agcaaacagt ggtcctcatg	5040

IEC170083PCT-seql.txt

gatgatttaa tgcaaaatcc agatggaat gacatatcta tggctgcc aatggctcc	5100
actgttagatt tcataccccc aatggctagt ttggaggaaa aaggaactct atacaccagt	5160
ccattttaa tagctactac caatgctggc tcaatacatg caccaactgt atcagactca	5220
aaggcttgc cacgcagatt taaatttgcgttggacattt aagtcacaga ttcatacaag	5280
gactcaaata aattggatata tcaaggggca gtcgagatgt gcaaaccaga tggctgtgcc	5340
cccaccaatt acaaaagatg ctgcccattt atctgtggaa aggctatcca attcagagat	5400
cgcagaacta atgcaagatc cactattgtatgctatattaa ctgatattt aaaggaatata	5460
agaaccagaa acagtacaca ggataagctg gaagctctgt ttcaggggcc tccacagttt	5520
aaagagatca aaatttcagt cacccagat acaccagctc ctgatgctat aaatgacctt	5580
cttaggtcag tggattctca agaagttagg gattattgcc aaaagaaagg atggattgtat	5640
gtacacccat caaatgagct aatagtagaa aaacacatta gtagagcttt tattactcta	5700
caagccatttgc ccacccattt atcaatagct ggtgtatgtt atgttatata caaactttt	5760
gctggcatttcc agggccata cacaggaatc cccaaatccta aacctaaagt accctctctc	5820
agaacagcta aagtgcagg accagggttc gatttgcac aagccataat gaagaaaaat	5880
accgtcatttgc caaggactga aaagggttag ttcaccatgc tgggtgtata tgataggta	5940
gcggcatcc ccacacacgc atctgttgaa gaaaccattt acattaatga tgttagagact	6000
aaagtttttag atgcgtgtgc acttagagac ttgactgata caaacttaga gataaccata	6060
gtcaaatttgc accgtaatca aaaatttgcata gatatcagac atttctgcc cagatatgag	6120
gatgattaca atgacgctgt gcttagcgta catacatca aattccaaa tatgtatatc	6180
ccagttggac aagtcaccaaa ttatggcttc ttgaacctggtt gttttccatca gacgcaccgc	6240
attttaatgt ataacttccc aacaagagct ggccagtgtg gtgggtgtggt gacaactaca	6300
ggtaaggtga taggaataca tggatgtggaa aatggagctc aaggatttgc agcaatgcta	6360
ctacactctt acttttccga tacacaaggt gagatagttt gtgtgaaaa ggttgggtg	6420
tgcattaaacg caccggcaaa gactaaactc caaccttagt ttttccatca agttttgaa	6480
ggttcaaagg aaccagcagt tctcaatcca aaagatccta ggcttaaaac agatttcgag	6540
gaggccattt tctcaaagta cacaggttacaaaattatgttaatggatgtatggaa	6600

IEC170083PCT-seql.txt

gaggcagtgg atcattatgt	gggtgttta gaaccattag acatcagtgt	ggatcccata	6660
cccctggaaa gtgccatgta	tggaatggat ggcctgagg cattagactt	aactaccagt	6720
gcaggattcc cttacttact	acaagggaaag aagaaaaggg	atataattaa tagacatact	6780
agagacacca gtgaaatgac	aaaaatgtta gagaaatatg	gagttgacct acctttgt	6840
acctttgtaa aagatgagct	tagatcaaga gaaaaagttg	aaaaagggaa atcacgcctg	6900
attgaggcca gttccttcaa	tgactcagtt gctatgagag	ttgcctttgg aaacctttac	6960
gccacatttc acaacaatcc	aggtacagca actggtagtg	cagttggttg tgatccagat	7020
atattttggt caaaaatccc	tatTTTgtta gatggagaaa	tcttgcttt tgactacact	7080
ggttatgatg ctagttgtc	accagtgtgg tttgcctgct	taaagaaagt tctaattaag	7140
ttaggttaca cacatcaaac	gtctttata gattatttg	gtcattcagt acatttata	7200
aaggacaaaa aatacatagt	taatggtgga atgcctctg	gttcttcagg caccagcata	7260
ttcaacacta tgatcaacaa	tataatcata agaactttat	taatttagggt ttacaaaggc	7320
atagacctgg accagttcaa	aatgattgcc tatgggatg	atgttattgc tagtaccca	7380
cataagattg atccaggttt	gctggcagaa gcaggtaaac	agtatggatt agtaatgacg	7440
ccagcagaca aaggaaccag	ttttattgac acaaattggg	aaaatgtaac tttctaaaa	7500
agatatttca gagcagatga	tcaatacccc tttctcatac	atccagtgtat gccaatgaaa	7560
gagatacatg aatctattag	atggactaaa gatcccagaa	acacacagga tcatgttagg	7620
tctttgtgct acctcgcatg	gcataatgga gaggaggctt	ataatgaatt ttgcagaaaa	7680
atcagaagtg tgcctgtggg	aagagcattg acactacctg	catactctag tcttagacgg	7740
aatggtag attcggtcta	gacaactcta attgaaaccc	aagttatagt tactttcatt	7800
tagaggtaaa tttggtcac	ttgggggcca aaaaaaaaaa	aaaaaaaaaa aaaagtcgac	7860

<210> 11
<211> 8226
<212> DNA
<213> 人工序列

<220>
<223> EV-D68-Anti-PD1的cDNA序列

<400> 11

IEC170083PCT-seql.txt

taatacgact cactataggt taaaacagcc ttggggttgt tcccactcca agggcccacg	60
tggcggctag tactctggta cttcggtacc tttgtacgcc tgggttatct cccttccaa	120
tgttaacttag aagttcttaa atcaatgctc aatagggtggg gcgcaaacca gcgctctcat	180
gagcaagcac tcctgtctcc ccggtgaggt tgtataaact gttcccacgg ttgaaaacaa	240
cctatccgtt atccgctata gtacttcgag aaacctagta ccaccttgg attgttgacg	300
cgttgcgctc agcacactaa cccgtgtgt a cttgggtcg atgagtctgg acataacctca	360
ctggcgacag tggtccaggc tgcgttggcg gcctactcat ggtgaaagcc atgagacgct	420
agacatgaac aagggtgtgaa gagtctattt agctactata gagtcctccg gcccctgaat	480
gcggctaattc ctaaccatgg agcaagtgc t cagggccag tgagttgctt gtcgtaatgc	540
gcaagtccgt ggcggAACCG actactttgg gtgtccgtgt ttcactttt acttttatga	600
ctgcttatgg tgacaatttg atattgttac cattagctt gtcaa atcaa ttgcaaaaga	660
tcctaaatct tatttatcaa cttgcattt gataacttta atttggaaat tttaacaatg	720
ggagctcagg ttactagaca acaaactggc actcatgaaa atgccaacat tgccacaaat	780
ggatctcata tcacatacaa tcagataaac tt tacaagg atagctatgc ggcttcagcc	840
agcaaggcagg atttttcaca ggaccatca aaattcactg aaccagtagt ggaagg tta	900
aaaggcagggg cgccagttt gaaatctcct agtgctgagg catgtggcta cagtgataga	960
gtattacagc tcaaattagg aaattcagct attgtcaccc aggaaggcagc gaactactgc	1020
tgcgttatg gtgaatggcc caattactta ccagaccatg a a ctagtgc cattgataaa	1080
cctacacaac cagaaactgc tacagataga ttctacactt t gaaatcagt caaatggaa	1140
actggaaagca caggatggtg gtggaaacta cccgatgcac tgaataat aggcatttt	1200
ggacagaatg tgcagcatca ctacctata agatctggtt tcttgattca tgtcagtgt	1260
aatgccacaa aattccatca aggtgcctt ttagtggtag caattccaga acatcagagg	1320
ggagcgcaca acaccaacac tagcccaggg tttgatgata taatgaaagg tgaagaagga	1380
gggaccttca atcatccata tgccttgat gatggaaacat cattggcttgc gacgata	1440
tttccacatc agtggataaa tctgagaacc aacaattcag caacaattgt tcttccctgg	1500
atgaatgctg ctccaaatgga tttccactt agacataatc agtggacgct agcaataata	1560

IEC170083PCT-seql.txt

ccagtggtgc cattaggtac gcgtacaaca tcaagtatgg tcccaataac agtttcaatc	1620
gctccaatgt gttgtgagtt taatggactt agacacgcca ttactcaagg tgtcccaaca	1680
tacctttac caggctcggg acaattccta acaactgatg atcatagctc tgcaccagct	1740
ctcccggtt tcaacccaac tccagaaatg catatcccag ggcaggtccg taacatgcta	1800
gaagtggtcc aagtggaaatc aatgatggag attaataaca cagaaagtgc agttggcatg	1860
gagcgtctta aggttgatat atcagcattt acagatgtcg atcaattgtt attcaacatt	1920
ccactggaca tacagttgga tggccactt agaaacactt tggttaggaaa catatctaga	1980
tattacactc attggcttgg atccctagaa atgacgttta tggtttgtgg cagttcatg	2040
gcaacggaa aattaatcct gtgctatact cctccaggtg gatcatgcc gacaaccaga	2100
gagaccgcca tgtaggtac acatattgtt tgggatttt gattacaatc tagtgtaacc	2160
ctgataatac cttggatttag tggatcccac tacaggatgt ttaataatga tgctaagtca	2220
actaatgcca acgttggcta tgtcacttgt tttatgcaga ccaatctgat agtccccagt	2280
gaatcctctg acacgttgc cttgataggg ttcatagcag caaaagatga tttctccctc	2340
agattaatga gagacagccc tgacatttggaa caactagacc atttacatgc agcagaggca	2400
gcctaccaga tcgagagcat catcaaaaca gcgaccgaca ctgtgaaaag tgagattaat	2460
gctgaacttg gtgtggtccc tagcttaat gcagttgaaa caggtgcaac ttctaacact	2520
gaaccagaag aagccataca aactcgcaca gtgataaaatc agcacgggt atccgagact	2580
ctagtgaga attttctcag tagagcagct ttggtatcaa agagaagttt tgaatacaaa	2640
gatcatactt cgtctgcagc acaaggcagac aagaactttt tcaaatggac aattaacacc	2700
agatcctttg tacagttaag aagaaaatta gaattattca cataccttag atttgatgct	2760
gagatcacta tactcacaac tgttagcagt aatggtagtg gtaataatac atacgtgggt	2820
cttcctgact tgacactcca agcaatgttt gtacccactg gtgctttac cccagaaaaa	2880
caggactcat tccactggca gtcaggcagt aatgcttagtg tattctttaa aatctccgac	2940
cccccagcca gaataaccat acctttatg tgcattaact cagcatactc agttttttat	3000
gatggctttg ccggatttga gaaaaacggt ctgtatggaa taaatccagc tgacactatt	3060
ggtaacttat gtgttagaat agtgaatgaa caccaaccag ttggtttcac agtgaccggtt	3120

IEC170083PCT-seql.txt

agggtttaca	tgaagcctaa	acacataaaa	gcatggcac	cacgaccacc	acgaactttg	3180
ccatatatga	gtattgcaaa	tgcaaattac	aaaggtaaag	aaagagcacc	aatgcgctc	3240
aatgctataa	ttggcaatag	agacagtgtc	aaaaccatgc	ctcataatat	agtgaacact	3300
ggtccaggct	tcatgaagca	cctgtggttc	ttcctgctgc	tggtgccgc	tcctaggtgg	3360
gtgctgtccc	aggtgcagct	ggtgcagagc	ggcgtggagg	tgaagaagcc	cggcgcttcc	3420
gtgaaggtgt	cctgcaaggc	ctccggctac	accttcacca	actactacat	gtactgggtg	3480
aggcaggccc	ctggacaggg	actggagtgg	atggcggca	tcaacccttc	caacggcggc	3540
accaacttca	acgagaagtt	caagaaccgg	gtgaccctga	ccaccgactc	ctccaccacc	3600
accgcctaca	tggagctgaa	gtccctgcag	tttgacgaca	ccgccgtgta	ctactgcgcc	3660
aggagggact	accggggtcga	catgggcttc	gactactggg	gccagggcac	aaccgtgacc	3720
gtgtccagcg	gaggtggcgg	atctggaggg	ggtggtagcg	gtggaggcgg	gagtgagatc	3780
tgctgaccc	agtcccctgc	tacactgtcc	ctgtccccg	gcgagagggc	tacactgagc	3840
tgcagggcct	ccaagggcgt	gtccacctcc	ggctactcct	acctgcactg	gtaccagcag	3900
aagcctggac	aggctccag	gctgctgatc	tacctggcct	cctacctgga	gtccggcgtg	3960
cctgctaggt	tttccggcag	cggcagcggc	accgattca	ccctgaccat	ctcctccctg	4020
gagcccgagg	acttcgccgt	gtactactgc	cagcactcca	gggatctgcc	tctgacccctc	4080
ggcggcggca	ccaagggtgga	gatcaagagt	gtcaaaacca	tgcctcataa	tatagtgaac	4140
actggtccag	gcttcggagg	agttttgtta	gggtctttca	aaataatcaa	ctatcacttg	4200
gccactacag	aagagagaca	gtcagctatc	tatgtggatt	ggcaatcaga	cgtcttggtt	4260
accccccattg	ctgctcatgg	aaggcaccaa	atagcaagat	gcaagtgcaa	cacaggggtt	4320
tactattgt	ggcacaaaaa	cagaagttac	ccgatttgct	ttgaaggccc	agggattcaa	4380
tggattgaac	aaaatgaata	ttacccagca	aggtaccaga	ccaatgtact	attggcagtt	4440
ggcctgcgg	aagcaggaga	ttgcggtggt	ttactagtt	gtccacatgg	gtaatcggt	4500
cttcttacag	caggaggggg	tggattgtta	gctttcactg	atatcaggaa	tttgctatgg	4560
ttagatactg	atgctatgga	acaaggcatt	actgattata	ttcaaaatct	tggtaatgcc	4620
tttggagcag	gatttacaga	aacaatctct	aataaagcca	aggaagtgca	agatatgcta	4680

IEC170083PCT-seql.txt

attggagaga gttcactatt agaaaaattg ttaaaagctc taatcaaaat catatcagca	4740
ttagtaattg taatcagaaa ctcagaagat ttagtcacag tcacagccac actagcattg	4800
ttgggatgcc atgattcacc atggagctac ttgaaacaga aggtatgttc atacttaggt	4860
attccttatg tacctagaca gggtaatcg tggcttaaga aattcacaga ggcattgcaat	4920
gctcttagag gtctggattg gctatcgcaa aagatagata aattcatcaa ctggcttaaa	4980
accaaaatat taccagaagc tagggagaaa tatgaatttg tgcaaaggct caaacagttt	5040
ccggtgatag aaaaccaagt tagtacaatc gagcatagct gcccaacaac agaacaacaa	5100
caggccttat tcaacaacgt ccaatactat tcacactact gtagaaagta cgccaccactt	5160
tacgcagtgg aagcaaagag ggttagtagct cttgaaaaga aaataaaacaa ctacatccag	5220
ttcaagtcca aatctcgcat tgaaccggtt tggtaataa tacatggctc tccaggaact	5280
ggcaagtcag tggcttcaaa tttaattgcc agggctatca cagagaaatt ggggggggac	5340
atttattcct tgcctccaga ccctaaatat tttgatggat acaaacagca aacagtggtc	5400
ctcatggatg atttaatgca aaatccagat gggaaatgaca tatctatgtt ctgccaatg	5460
gtctccactg tagatttcat accccaatg gctagttgg agggaaaagg aactctatac	5520
accagtccat ttttaatagc tactaccaat gctggctcaa tacatgcacc aactgtatca	5580
gactcaaagg ctttgtcacg cagattaaa tttgacgtgg acattgaagt cacagattca	5640
tacaaggact caaataaaatt ggatatgtca agggcagtcg agatgtgcaa accagatggc	5700
tgtgccccca ccaattacaa aagatgctgc ccattgatct gtggaaaggc tatccaattc	5760
agagatcgca gaactaatgc aagatccact attgatatgc tagtaactga tattataaag	5820
gaatatagaa ccagaaacag tacacaggat aagctggaag ctctgtttca gggccctcca	5880
cagttaaag agatcaaaat ttcatgtcacc ccagatacac cagctcctga tgctataaat	5940
gaccttctta ggtcagtgga ttctcaagaa gtttagggatt attgccaaaa gaaaggatgg	6000
attgtatgtac acccatcaaa tgagctaata gtagaaaaac acatttagtag agcttttatt	6060
actctacaag ccattgccac cttgtatca atagctggtg tagtttatgt tatatacaa	6120
cttttgctg gcattcaggg tccatacaca ggaatccccca atcctaaacc taaagtaccc	6180
tctctcagaa cagctaaagt gcaaggacca gggttcgatt ttgcacaagc cataatgaag	6240

IEC170083PCT-seql.txt

aaaaataccg	tcattgcaag	gactgaaaag	ggtgagttca	ccatgctggg	tgtatatgtat	6300
agggttagcgg	tcatccccac	acacgcacatct	gttggagaaaa	ccatttacat	taatgatgtat	6360
gagactaaag	ttttagatgc	gtgtgcactt	agagacttga	ctgatacaaa	cttagagata	6420
accatagtca	aatttagaccg	taatcaaaaaa	tttagagata	tcagacattt	tctgcccaga	6480
tatgaggatg	attacaatga	cgctgtgctt	agcgtacata	catcaaaattt	cccaaataatg	6540
tatatcccag	ttggacaagt	caccaattat	ggcttcttga	accttaggtgg	tacaccgacg	6600
caccgcattt	taatgtataa	cttcccaaca	agagctggcc	agtgtggtgg	tgtggtgaca	6660
actacaggtt	aggtgatagg	aatacatgtt	ggtggaaatg	gagctcaagg	atttgcagca	6720
atgctactac	actcttactt	ttccgataca	caaggtgaga	tagtttagtag	tgaaaagagt	6780
ggggtgtgca	ttaacgcacc	ggcaaagact	aaactccaac	ctagtgtttt	ccatcaagtt	6840
tttgaaggtt	caaaggaacc	agcagttctc	aatccaaaag	atcctaggct	taaaacagat	6900
ttcgaggagg	ccatttctc	aaagtacaca	ggttaacaaaa	ttatgttaat	ggatgagtac	6960
atggaagagg	cagtggatca	ttatgtgggg	tgtttagaac	cattagacat	cagtgtggat	7020
cccatacccc	tggaaagtgc	catgtatgga	atggatggcc	ttgaggcatt	agacttaact	7080
accagtgcag	gattccctta	cttactacaa	gggaagaaga	aaagggatat	atthaataga	7140
catactagag	acaccagtga	aatgacaaaaa	atgttagaga	aatatggagt	tgacctacct	7200
tttctaacct	ttgtaaaaga	tgagcttaga	tcaagagaaaa	aagttgaaaaa	agggaaatca	7260
cgcctgattt	aggccagttc	cttgaatgac	tcagttgcta	tgagagttgc	ctttggaaac	7320
ctttacgcca	catttcacaa	caatccaggt	acagcaactg	gtagtgcagt	tggttgtgat	7380
ccagatataat	tttggtcaaa	aatccctatt	ttgttagatg	gagaaatctt	tgctttgac	7440
tacactggtt	atgatgctag	tttgcacca	gtgtggtttgc	cctgcttaaa	gaaagttcta	7500
attaagtttag	gttacacaca	tcaaacgtct	tttataagatt	atttgtgtca	ttcagtacat	7560
ttatataagg	acaaaaaata	catagttaat	ggtggaatgc	cctctggttc	ttcaggcacc	7620
agcatattca	acactatgtat	caacaatata	atcataagaa	ctttattaat	tagggtttac	7680
aaaggcatag	acctggacca	gttcaaaaatg	attgcctatg	gggatgtatgt	tattgctagc	7740
tacccacata	agattgatcc	aggtttgctg	gcagaagcag	gtaaacagta	tggatttagta	7800

IEC170083PCT-seql.txt

atgacgccag	cagacaaagg	aaccagttt	attgacacaa	attgggaaaa	tgtaacttc	7860
ttaaaaagat	attcagagc	agatgatcaa	taccccttc	tcatacatcc	agtgatgcc	7920
atgaaagaga	tacatgaatc	tattagatgg	actaaagatc	ccagaaacac	acaggatcat	7980
gttaggtctt	tgtgctacct	cgcattggcat	aatggagagg	aggcttataa	tgaattttgc	8040
agaaaaatca	gaagtgtgcc	tgtggagaaga	gcattgacac	tacctgcata	ctctagtctt	8100
agacggaaat	ggttagattc	gttctagaca	actctaattg	aaacccaagt	tatagttact	8160
ttcatttaga	ggtaaatttt	ggtcacttgg	gggccaaaaaa	aaaaaaaaaa	aaaaaaaaaa	8220
gtcgac						8226

<210> 12

<211> 7383

<212> RNA

<213> 人工序列

<220>

<223> EV-D68-WT的基因组序列

<400> 12

uaauacgacu	cacuauaggu	aaaaacagcc	uugggguugu	ucccacucca	agggcccacg	60
uggcggcuag	uacucuggua	cuucgguacc	uuuguacgcc	uguuuuaucu	ccuuucccaa	120
uguaacuuag	aaguucuuua	aucaaugcuc	aauagguggg	gcgcaaacc	gcgcucucau	180
gagcaagcac	uccugucucc	ccggugaggu	uguauaaacu	guucccacgg	uugaaaacaa	240
ccuauccguu	auccgcuaua	guacuucgag	aaaccuagua	ccaccuuugg	auuguugacg	300
cguugcgcuc	agcacacuaa	cccggugugua	gcuugggucg	augagucugg	acauaccuca	360
cuggcgacag	ugguccagggc	ugcguuggcg	gccuacucau	ggugaaagcc	augagacgcu	420
agacaugaac	aaggugugaa	gagucuauug	agcuacuua	gaguuccuccg	gccccugaaau	480
gcggcuauac	cuaaccaugg	agcaagugcu	cacaggccag	ugaguugcuu	gucguuaugc	540
gcaaguccgu	ggcggaaccg	acuacuuugg	guguccgugu	uucacuuuuu	acuuuuauuga	600
cugcuaugg	ugacaauuug	auauuguuac	cauuuagcuu	gucaaaucaa	uugcaaaaga	660
uccuaauacu	uaauuaucaa	cuugcaucuu	gauaacuuua	auuugaaaaau	uuuaacaauug	720
ggagcucagg	uuacuagaca	acaaacuggc	acucaugaaa	augccaaacau	ugccacaaau	780

IEC170083PCT-seql.txt

ggaucucaua ucacauacaa ucagauaaac uuuuacaagg auagcuaugc ggcuucagcc	840
agcaagcagg auuuuucaca ggacccauca aaauucacug aaccaguagu ggaagguuua	900
aaagcagggg cgccaguuuu gaaaucuccu agugcugagg cauguggcua cagugauaga	960
guauuacagc ucaaauuagg aaaucagcu auugucaccc aggaagcagc gaacuacugc	1020
ugcgcuuuug gugaauggcc caauuacuuu ccagaccaug aagcaguagc cauugauaaa	1080
ccuacacaac cagaaacugc uacagauaga uucuacacuu ugaaaucagu caaauggaa	1140
acuggaagca caggauggug guggaaacua cccgaugcac ugaauaaauu aggcauguuu	1200
ggacagaaug ugcagcauca cuaccuaua agaucugguu ucuugauuca ugugcagugu	1260
aaugccacaa aauuccauca aggugccuuu uuagugguag caauuccaga acaucagagg	1320
ggagcgcaca acaccaacac uagcccaggg uuugaugaua uaaugaaagg ugaagaagga	1380
gggaccuuca aucauccaua ugucuugau gauggaacau cauuggcuug ugcgacgaua	1440
uuuuccacau aguggauaaa ucugagaacc aacaauucag caacaauugu ucuuuccugg	1500
augaaugcug cuccaaugga uuucccacuu agacauaauc aguggacgcu agcaauaaaua	1560
ccaguggugc cauuagguac gcguacaaca ucaaguauugg ucccaauaac aguuucaauc	1620
gcuccaaugu guugugaguu uauggacuu agacacgcca uuacucaagg ugucccaaca	1680
uaccuuuac caggcucggg acaaauuccua acaacugaug aucauagcuc ugcaccagcu	1740
cucccuguu ucaacccaac uccagaaaug cauaucccag ggcagguccg uaacaugcua	1800
gaaguggucc aaguggaauc aaugauuggag auuaauaaca cagaaagugc aguuggcaug	1860
gagcgucuuua agguugauau aucagcauug acagaugucg aucaauuguu auucaacauu	1920
ccacuggaca uacaguugga ugcccacuu agaaacacuu ugguaggaaa cauaucuaga	1980
uauuacacuc auuggucugg aucccuagaa augacguuu uguuuugugg cagcuucaug	2040
gcaacggaa aauuaauccu gugcuauacu ccuccaggg gaucaugccc gacaaccaga	2100
gagaccgcca uguuagguac acaauuuguu uggaauuuug gauuacaauc uaguguaacc	2160
cugauuaauac cuuggauuag uggaucac uacaggaugu uuaauaauga ugcuaaguca	2220
acuaaugcua acguuggcua ugucacuugu uuuauugcaga ccaaucugau aguccccagu	2280
gaauccucug acacguguuc cuugauaggg uucauagcag caaaagauga uuucuccuc	2340

IEC170083PCT-seql.txt

agauuaauga gagacagccc ugacauugga caacuagacc auuuacaugc agcagaggca	2400
gccuaccaga ucgagagcau caucaaaaca gcgaccgaca cugugaaaag ugagauuaau	2460
gcugaacuug gugugguccc uagcuuuaau gcaguugaaa caggugcaac uucuaacacu	2520
gaaccagaag aagccauaca aacucgcaca gugauaaauc agcacggugu auccgagacu	2580
cuaguggaga auuuucucag uagagcagcu uugguaucaa agagaaguuu ugaaauacaaa	2640
gaucauacuu cgucugcagc acaagcagac aagaacuuuu ucaaauuggac aauuaacacc	2700
agauccuuug uacaguuaag aagaaaaauua gaauuaauca cauaccuuag auuugaugcu	2760
gagaucacua uacucacaac uguagcagug aaugguagug guaauuaauac auacgugggu	2820
cuuccugacu ugacacucca agcaauguuu guacccacug gugcucuuac cccagaaaaa	2880
caggacucau uccacuggca gucaggcagu aaugcuagug uauucuuuaa aaucuccgac	2940
cccccagcca gaauaaccuu accuuuuuaug ugcauuacu cagcauacuc aguuuuuuau	3000
gauggcuuug ccggauuuga gaaaaacggu cuguauggaa uaaauccagc ugacacuauu	3060
gguaacuuau guguuagaau agugaaugaa caccaaccag uugguuucac agugaccguu	3120
aggguuuuaca ugaagccuaa acacauaaaa gcaugggcac cacgaccacc acgaacuuug	3180
ccauauauga guauugcaaa ugcaaaauac aaagguaaag aaagagcacc aaaugcgcuc	3240
aaugcuauaa uuggcaauag agacaguguc aaaaccaugc cuauauau agugaacacu	3300
gguccaggcu ucggaggagu uuuuguaggg ucuuucaaaa uaaucacua ucacuuggcc	3360
acuacagaag agagacaguc agcuaucuau guggauuggc aaucagacgu cuugguuacc	3420
cccauugcug cuauuggaag gcaccaaaua gcaagaugca agugcaacac aggguuuac	3480
uuuuguaggc acaaaaacag aaguuacccg auuugcuuug aaggcccagg gauucaugg	3540
auugaacaaa augaaauua cccagcaagg uaccagacca auguacuauu ggcaguuggu	3600
ccugcggaaag caggagauug cggugguuua cuaguuguc cacauggggu aaucggucuu	3660
cuuacagcag gagggggugg aauuguagcu uucacugaua ucaggaauuu gcuaugguua	3720
gauacugaug cuauuggaaca aggcauuacu gauuauauuc aaaaucuugg uaaugccuuu	3780
ggagcaggau uuacagaaac aaucucuau aaagccaagg aagugcaaga uaugcuauu	3840
ggagagaguu cacauuuaga aaaauguua aaagcucuua ucaaaaucau aucagcauuu	3900

IEC170083PCT-seql.txt

guauuuguaa ucagaaacuc agaagauua gucacaguca cagccacacu agcauuguug	3960
ggaugccaug auucaccaug gagcuacuug aaacagaagg uauguucaua cuuagguauu	4020
ccuuauguac cuagacaggg ugaaucgugg cuuaagaaa ucacagaggg augcaauggcu	4080
cuuagagguc uggaugggcu aucgcaaaag auagauaaau ucaucaacug gcuuaaaacc	4140
aaaaauuuac cagaagcuag ggagaaaaua gaauuugugc aaaggcucaa acaguuaccg	4200
gugauagaaa accaaguuag uacaaucgag cauagcugcc caacaacaga acaacaacag	4260
gccuuauuca acaacgucca auacuauuca cacuacugua gaaaguacgc accacuuuac	4320
gcaguggaag caaagagggu aguagcucuu gaaaagaaaa uaaacaacua cauccaguuc	4380
aaguccaaau cucgcauuga accgguuugu uuaauaaauac auggcucucc aggaacuggc	4440
aagucagugg cuucaaauu aauugccagg gcuaucacag agaaauuggg gggggacauu	4500
uauuccuugc cuccagaccc uaaauuuuu gauggauaca aacagcaaac agugguccuc	4560
auggaugauu uaaugcaaaa uccagauggg aaugacauau cuauguucug ccaaugguc	4620
uccacuguag auuucauacc cccaauggcu aguuuggagg aaaaaggaac ucuauacacc	4680
aguccauuuu uaaugcuac uaccaauggcu ggcucaauac augcaccaac uguauucagac	4740
ucaaaggcuu ugucacgcag auuuuaauu gacguggaca uugaagucac agauucauac	4800
aaggacucaa auaauuugga uaugucaagg gcagucgaga ugugcaaacc agauggcugu	4860
ccccccacca auaacaaaag augcugccca uugaucugug gaaaggcuau ccaauucaga	4920
gaucgcagaa cuaaugcaag auccacuauu gauaugcuag uaacugauau uauaaaggaa	4980
uauagaacca gaaacaguac acaggauaag cuggaagcuc uguuuucaggg gccuccacag	5040
uuuuaagaga ucaaaauuuc agucacccca gauacaccag cuccugaugc uauaaugac	5100
cuucuuaggu caguggauuc ucaagaaguu agggauuauu gccaaaagaa aggauggauu	5160
guaguacacc caucaaauga gcuaauagua gaaaaacaca uuaguagagc uuuuauuacu	5220
cuacaagcca uugccaccuu uguaucauaa gcugguguag uuuuuguuuau auacaaacuu	5280
uuugcuggca uucagggucc auacacagga auccccaauc cuaaaccuaa aguacccucu	5340
cucagaacag cuaaagugca aggaccaggg uucgauuuug cacaagccau aaugaagaaa	5400
aauaccguca uugcaaggac ugaaaagggu gaguucacca ugcugggugu auaugauagg	5460

IEC170083PCT-seql.txt

guagcgguca	uccccacaca	cgcaucuguu	ggagaaaacca	uuuacauuaa	ugauguagag	5520
acuuaaguuu	uagaugcgug	ugcacuuaga	gacuugacug	auacaaacuu	agagauaacc	5580
auagucaaau	uagaccguaa	ucaaaaauuu	agagauauca	gacauuuucu	gcccgauau	5640
gaggaugauu	acaauugacgc	ugugcuuagc	guacauacau	caaaauuccc	aaauauguau	5700
aucccgauug	gacaagucac	caauuauggc	uucuugaacc	uaggugguac	accgacgcac	5760
cgcauuuuua	uguauaacuu	cccaacaaga	gcuggccagu	gugguggugu	ggugacaacu	5820
acagguaagg	ugauaggaau	acauguaggu	ggaaauggag	cucaaggauu	ugcagcaa	5880
cuacuacacu	cuuacuuuuc	cgauacacaa	ggugagauag	uuaguaguga	aaagaguggg	5940
gugugcauua	acgcacccggc	aaagacuaaa	cuccaaccua	guguuuucca	ucaaguuuuu	6000
gaagguucaa	aggaaccagc	aguucucaau	ccaaaagauc	cuaggcuuua	aacagauuuc	6060
gaggaggcca	uuuucucaa	guacacaggu	aacaaaauua	uguuuaugga	ugaguacaug	6120
gaagagggcag	uggaucuuua	uguggggugu	uuagaaccau	uagacaucag	uguggauccc	6180
auaccccugg	aaagugccau	guauuggaaug	gauggccuug	aggcauuaga	cuuaacuacc	6240
aguggcaggau	uccuuuacuu	acuacaaggg	aagaagaaaa	gggauauuu	uaauagacau	6300
acuagagaca	ccagugaaau	gacaaaaaug	uuagagaaaau	auggaguuga	ccuaccuuuu	6360
guaaccuuug	uaaaagauga	gcuuagauca	agagaaaaag	uugaaaaagg	gaaaucacgc	6420
cugauugagg	ccaguuccuu	gaaugacuca	guugcuau	gaguugccuu	uggaaaccuu	6480
uacgccacau	uucacaacaa	uccagguaca	gcaacuggua	gugcaguugg	uugugaucca	6540
gauauuuuuu	ggucaaaaa	cccuuuuug	uuagauggag	aaaucuuugc	uuuugacuac	6600
acugguuuug	augcuaguuu	gucaccagug	ugguuugccu	gcuuuaagaa	aguucuaauu	6660
aaguuagguu	acacacauca	aacgucuuuu	auagauuuuu	ugugucauuc	aguacauuuua	6720
uauaaggaca	aaaaauacau	aguuauggu	ggaaugccc	cugguucuuuc	aggcaccagc	6780
auauucaaca	cuaugaucaa	caauuaauac	auaagaacuu	uauuaauuag	gguuuacaaa	6840
ggcauagacc	uggaccaguu	caaaaugauu	gccuaugggg	augauguuau	ugcuagcuac	6900
ccacauaaga	uugauccagg	uuugcuggca	gaagcaggua	aacaguaugg	auuaguaaug	6960
acgccagcag	acaaaggaac	caguuuuauu	gacacaaauu	gggaaaaugu	aacuuucuuua	7020

IEC170083PCT-seql.txt

aaaagauauu ucagagcaga ugaucaauac cccuuucuca uacauccagu gaugccaaug	7080
aaagagauac augaaucuau uagauggacu aaagauccca gaaacacaca ggaucauguu	7140
aggucuuugu gcuaccucgc auggcauaau ggagagggagg cuuauaauga auuuugcaga	7200
aaaaucagaa gugugccugu gggaaagagca uugacacuac cugcauacuc uagucuuaga	7260
cggaaauggu uagauucguu cuagacaacu cuauugaaa cccaaguuau aguuacuuuc	7320
auuuagaggu aaauuuuggu cacuuggggg caaaaaaaaaaaaaaaaaaaaaaguc	7380
gac	7383

<210> 13

<211> 7306

<212> RNA

<213> 人工序列

<220>

<223> EV-D68-HRV2的基因组序列

<400> 13

uaauacgacu cacuauaggu uaaaacagcc uugggguugu ucacucca agggccacg	60
uggcggcuag uacucuggua cuucgguacc uuuguacgcc uguuuuaaucu cccuuccaa	120
uguaacuuag aagaacuuag aaguuuuuca caaagaccaa uagccgguaa ucagccagau	180
uacugaaggu caagcacuuc uguuuccccg gucaauguug auaugcucca acagggcaa	240
aacaacugcg aucguuaacc gcaaagcgcc uacgcaaagc uuaguagcau cuuugaauc	300
guuuggcugg ucgauccgccc auuucccug guagaccugg cagaugaggc uagaaauacc	360
ccacuggcga caguguucua gccugcgugg cugccugcac acccuaugg ugugaagcca	420
aacaauuggac aaggugugaa gagccccgug ugcucgcuuu gaguccuccg gccccugaa	480
guggcuaacc uuaacccugc agcuagagca cguacccaa uguguaucua gucguaua	540
gcaauugcgg gauggggacca acuacuuugg guguccgugu uucacuuuuu ccuuuaauu	600
ugcuuauggu gacaauauau acaauauaua uauuggcacc augggagcuc agguuacuag	660
acaacaaacu ggcacucaug aaaaugccaa cauugccaca aauggaucuc auaucacaua	720
caaucagaua aacuuuuaca aggauagcua ugcggcuuca gccagcaagc aggauuuuuc	780
acaggaccca ucaaaauuca cugaaccagu aguggaaggu uuaaaagcag gggcgccagu	840

IEC170083PCT-seql.txt

uuugaaaucu	ccuagugcug	aggcaugugg	cuacagugau	agaguauuac	agcucaaauu	900
aggaaaauuca	gcuaauuguca	cccaggaagc	agcgaacuac	ugcugcgcuu	auggugaaug	960
gcccaauuac	uuaccagacc	augaagcagu	agccauugau	aaaccuacac	aaccagaaac	1020
ugcuacagau	agauucuaca	cuuugaaauc	agucaaauugg	gaaacuggaa	gcacaggaug	1080
gugguggaaa	cuacccgaug	cacugaauaa	uauaggcaug	uuuggacaga	augugcagca	1140
ucacuaccua	uauagaucug	guuuucuugau	ucaugugcag	uguaauugcca	caaaauucca	1200
ucaaggugcc	uuauuagugg	uagcaauucc	agaacaucag	aggggagcgc	acaacaccaa	1260
cacuagccca	ggguuugaug	auauaaugaa	aggugaagaa	ggagggaccu	ucaaucaucc	1320
auauguccuu	gaugauggaa	caucauuggc	uugugcgacg	auauuuuccac	aucaguggau	1380
aaaucugaga	accaacaauu	cagcaacaau	uguucuuccc	uggaugaaug	cugcuccaaau	1440
ggauuuuccca	cuuagacaua	aucaguggac	gcuagcaaua	auaccagugg	ugccauuagg	1500
uacgcguaca	acaucaagua	uggucccaau	aacaguuuca	aucgcuccaa	uguguuguga	1560
guuuuaugga	cuuagacacg	ccauuacuca	agguguccca	acauaccuuu	uaccaggcuc	1620
gggacaauuc	cuaacaacug	augaucauag	cucugcacca	gcucucccgu	guuacaaccc	1680
aacuccagaa	augcauaucc	cagggcaggu	ccguaacaug	cuagaagugg	uccaagugga	1740
aucaaugaug	gagauuaaua	acacagaaag	ugcaguuggc	auggagcgc	uuaaggiuga	1800
uauaucagca	uugacagaug	ucgaucaauu	guuauuacaac	auuccacugg	acauacaguu	1860
ggauggggcca	cuuagaaaca	cuuugguagg	aaacauaucu	agauauuaca	cuauugguc	1920
uggaucccua	gaaaugacgu	uuauuuuug	uggcagcuuc	auggcaacgg	gaaaauuaau	1980
ccugugcuau	acuccuccag	guggaucaug	cccgacaacc	agagagaccg	ccauguuagg	2040
uacacauauu	guuugggauu	uuggauuaca	aucuagugua	acccugauaa	uaccuuggau	2100
uaguggaucc	cacuacagga	uguuuuauaa	ugaugcuaag	ucaacuaaug	ccaacguugg	2160
cuaugucacu	uguuuuuaugc	agaccaaauu	gauagucccc	agugaauccu	cugacacgug	2220
uuccuugaua	ggguucauag	cagcaaaaga	ugauuuucucc	cucagauuaa	ugagagacag	2280
cccugacauu	ggacaacuag	accuuuaca	ugcagcagag	gcagccuacc	agaucgagag	2340
caucaucaa	acagcgaccg	acacugugaa	aagugagauu	aaugcugaac	uugguguggu	2400

IEC170083PCT-seql.txt

cccuagcuua aaugcaguug aaacaggugc aacuucuaac acugaaccag aagaagccau	2460
acaaacucgc acagugauaa aucagcacgg uguauccgag acucuagugg agaaauuuucu	2520
caguagagca gcuuugguau caaagagaag uuuugaaauac aaagaucuaa cuucgucugc	2580
agcacaagca gacaagaacu uuuucaaauug gacaauuaac accagauccu uuguacaguu	2640
aagaagaaaa uuagaauuuau ucacauaccu uagauuugau gcugagauca cuauacucac	2700
aacuguagca gugaauggua gugguaauaa uacauacgug ggucuuccug acuugacacu	2760
ccaagcaaug uuuguaccca cuggugcucu uaccccagaa aaacaggacu cauuccacug	2820
gcagucagggc aguaaugcua guguauucuu uaaaaaucucc gaccccccag ccagaauaac	2880
cauaccuuuu augugcauua acucagcaua cucaguuuuu uaugauggcu uugccggauu	2940
ugagaaaaac ggucuguaug gaauaaaaucc agcugacacu auugguaacu uauguguuag	3000
aauagugaau gaacaccaac caguugguuu cacagugacc guuaggguuu acaugaagcc	3060
uaaacacaua aaagcauggg caccacgacc accacgaacu uugccauua ugaguauugc	3120
aaaugcaaau uacaaaggua aagaaagagc accaaaugcg cucaauggua uaauuggcaa	3180
uagagacagu gucaaaacca ugccucauaa uauagugaac acugguccag gcuucggagg	3240
aguuuuugua gggucuuuca aaauaaucaa cuaucacuug gccacuacag aagagagaca	3300
gucagcuauc uauguggauu ggcaaucaga cgucuugguu acccccuaug cugcucaugg	3360
aaggcaccaa auagcaagau gcaagugcaa cacagggguu uacuauugua ggcacaaaaa	3420
cagaaguuac ccgauuugcu uugaaggccc agggauucaa uggaugaaac aaaaugaaaua	3480
uuacccagca agguaccaga ccaauguacu auuggcaguu gguccugcgg aagcaggaga	3540
uugcgguggu uuacuaguuu guccacaugg gguuaucggu cuucuuacag caggaggggg	3600
uggaaauugua gcuuucacug auaucaggaa uuugcuaugg uuagauacug augcuaugga	3660
acaaggcauu acugauuuaa uucaaaaucu ugguaaugcc uuuggagcag gauuuacaga	3720
aacaauucu aauaaagcca aggaagugca agauauggua auuggagaga guucacauuu	3780
agaaaaauug uuaaaagcuc uaaucaaaaau cauaucagca uuaguaauug uaaucagaaa	3840
cucagaagau uuagucacag ucacagccac acuagcauug uugggaugcc augauucacc	3900
auggagcuac uugaaacaga agguauguuc auacuuaggu auuccuuuaug uaccuagaca	3960

IEC170083PCT-seql.txt

ggguguaucg	uggcuuaaga	aauucacaga	ggcaugcaau	gcucuuagag	gucuggauug	4020
gcuaucgcaa	aagauagaua	aauucaucaa	cuggcuuaaa	accaaaauau	uaccagaagc	4080
uagggagaaa	uaugaaauuug	ugcaaaggcu	caaacaguua	ccggugauag	aaaaccaagu	4140
uaguacaauc	gagcauagcu	gcccaacaac	agaacaacaa	caggccuuau	ucaacaacgu	4200
ccaaucuau	ucacacuacu	guagaaagua	cgcaccacuu	uacgcagugg	aagcaaagag	4260
gguaguagcu	cuugaaaaga	aaauaaacaa	cuacauccag	uucaagucca	aaucucgcau	4320
ugaaccgguu	uguuuaauaa	uacauggcuc	uccaggaacu	ggcaagucag	uggcuucaa	4380
uuuaauugcc	agggcuauca	cagagaaaauu	ggggggggac	auuuauuccu	ugccuccaga	4440
cccuuauau	uuugauggau	acaaacagca	aacagugguc	cucauggaug	auuuuaugca	4500
aaauccagau	gggaaugaca	uaucuauguu	cugccaaaug	gucuccacug	uagauuuucau	4560
acccccaau	gcuaguuugg	agaaaaagg	aacucuauac	accaguccau	uuuuauuagc	4620
uacuaccaau	gcuggcucaa	uacaugcacc	aacuguauc	gacucaaagg	cuuugucacg	4680
cagauuuuaaa	uuugacgugg	acauugaagu	cacagauuca	uacaaggacu	caaauaaauu	4740
ggauauguca	agggcagucg	agaugugcaa	accagauggc	ugugccccca	ccaaauuacaa	4800
aagaugcugc	ccauugaucu	guggaaaggc	uauccaauiuc	agagaucgca	gaacuaaugc	4860
aagauccacu	auugauaUGC	uaguaacuga	uauuauaaag	gaauauagaa	ccagaaacag	4920
uacacaggau	aagcuggaag	cucuguuuca	ggggccucca	caguuuaaag	agauaaaaau	4980
uucagucacc	ccagauacac	cagcuccuga	ugcuauaaa	gaccuucuu	ggucagugga	5040
uucucaagaa	guuagggauu	auugccaaaa	gaaaggaugg	auuguaguac	acccaucaaa	5100
ugagcuaaua	guagaaaaac	acauuaguag	agcuuuuauu	acucuacaag	ccauugccac	5160
cuuuguaauca	auagcuggug	uaguuuaugu	uaauauacaaa	cuuuuugcug	gcauucaggg	5220
uccauacaca	ggaaucccc	auccuaaacc	aaaaguaccc	ucucucagaa	cagcuaaagu	5280
gcaaggacca	ggguucgauu	uugcacaagc	cauaaugaag	aaaaauaccg	ucauugcaag	5340
gacugaaaag	ggugaguuca	ccaugcuggg	uguauaugau	aggguagcgg	ucauccccac	5400
acacgcaucu	guuggagaaa	ccauuuacau	uaaugaugua	gagacuaaag	uuuuagaugc	5460
gugugcacuu	agagacuuga	cugauacaaa	cuuagagaua	accauaguca	aauuagaccg	5520

IEC170083PCT-seql.txt

uaaucaaaaa	uuuagagaua	ucagacauuu	ucugcccaga	uaugaggaug	auuacaauga	5580
cgcugugcuu	agcguacaua	caucaaaauu	cccaaaua	uauauccag	uuggacaagu	5640
caccaauuuau	ggcuucuuga	accuaggugg	uacaccgacg	caccgcauuu	uaauguauaa	5700
cuuccaaca	agagcugggc	aguguggugg	uguggugaca	acuacaggua	aggugauagg	5760
aauacaugua	gguggaaaug	gagcucaagg	auuugcagca	augcuacuac	acucuuacuu	5820
uuccgauaca	caaggugaga	uaguuaguag	ugaaaagagu	ggggugugca	uuaacgcacc	5880
ggcaaagacu	aaacuccaac	cuaguguuuu	ccaucaaguu	uuugaagguu	caaaggaacc	5940
agcaguucuc	aauccaaaag	auccuaggcu	uaaaacagau	uucgaggagg	ccauuuucuc	6000
aaaguacaca	gguuacaaaa	uuauuuuaau	ggaugaguac	auggaagagg	caguggauca	6060
uuauugugggg	uguuuagaac	cauuagacau	caguguggau	cccauacccc	uggaaagugc	6120
cauguaugga	auggauggcc	uugaggcauu	agacuuuacu	accagugcag	gauuccuuua	6180
cuuacuacaa	gggaagaaga	aaagggauau	auuuuauaga	cauacuagag	acaccaguga	6240
aaugacaaaa	auguuagaga	aaauuggagu	ugaccuaccu	uuuguaaccu	uuguaaaaaga	6300
ugagcuuaga	ucaagagaaa	aaguugaaaa	agggaaaauca	cgcugauug	aggccaguuc	6360
cuugaaugac	ucaguugcua	ugagaguugc	cuuuggaaac	cuuuacgcc	cauuucacaa	6420
caauccaggu	acagcaacug	guagugcagu	ugguugugau	ccagauauau	uuuggucaa	6480
aaucccuuuu	uuguuagaug	gagaaaucuu	ugcuuuugac	uacacugguu	augaugcuag	6540
uuugucacca	gugugguuug	ccugcuuaaa	gaaaguucua	auuaaguuag	guuacacaca	6600
ucaaacgcu	uuuauagauu	auuuguguca	uucaguacau	uuauauaagg	acaaaaaaaua	6660
cauaguuaau	gguggaaugc	ccucugguuc	uucaggcacc	agcauauuca	acacuaugau	6720
caacaauua	aucauaagaa	cuuuauuaau	uaggguuuac	aaaggcauag	accuggacca	6780
guucaaaaug	auugccuaug	gggaugaugu	uaauugcuagc	uacccacaua	agauugaucc	6840
agguuugcug	gcagaaggcag	guaaacagua	uggauuagua	augacgccag	cagacaaagg	6900
aaccaguuuu	auugacacaa	auuggaaaa	uguaacuuuc	uuaaaaagau	auuucagagc	6960
agaugaucaa	uaccccuuuc	ucauacaucc	agugaugcca	augaaagaga	uacaugaauc	7020
uaauuagaugg	acuaaagauc	ccagaaacac	acaggaucau	guuaggucuu	ugugcuaccu	7080

IEC170083PCT-seql.txt

cgcauggcau	aauggagagg	aggcuuauaa	ugaauuuugc	agaaaaauca	gaagugugcc	7140
ugugggaaga	gcauugacac	uaccugcaua	cucuagucuu	agacggaaau	gguuagauuc	7200
guucuagaca	acucuaauug	aaacccaagu	uauaguuacu	uucauuuaga	gguaaauuuu	7260
ggucacuugg	gggccaaaaa	aaaaaaaaaa	aaaaaaaaaa	gucgac		7306

<210> 14

<211> 7485

<212> RNA

<213> 人工序列

<220>

<223> EV-D68-miR133&206T的基因组序列

<400> 14

uaauacgacu	cacuauaggu	uaaaacagcc	uugggguugu	ucccacucca	agggccccacg	60
uggcggcuag	uacucuggua	cuucgguacc	uuuguacgcc	uguuuuaucu	ccuuucccaa	120
uguaacuuag	aaguucuuaa	aucaaugcuc	aauagguggg	gcgcaaacca	gcgcucucau	180
gagcaagcac	uccugucucc	ccggugaggu	uguauaaacu	guucccacgg	uugaaaacaa	240
ccuauccguu	auccgcuaua	guacuucgag	aaaccuagua	ccaccuuugg	auuguugacg	300
cguugcgcuc	agcacacuaa	cccgugugua	gcuugggucg	augagucugg	acauaccuca	360
cuggcgacag	ugguccaggc	ugcguuggcg	gccuacucau	ggugaaagcc	augagacgcu	420
agacaugaac	aaggugugaa	gagcuauug	agcuacuaa	gaguuccuccg	gccccugaa	480
gcggcuuauc	cuaaccaagg	agcaagugcu	cacaggccag	ugaguugcuu	gucguuaugc	540
gcaaguccgu	ggcggAACG	acuacuuugg	guguccgugu	uucacuuuuu	acuuuuuauga	600
cugcuuaugg	ugacaauuug	auauuguuac	cauuuagcuu	gucaaaucaa	uugcaaaaga	660
uccuaaaucu	uauuuaucaa	cuugcaucuu	gauaacuuua	auuugaaaau	uuuaacaaug	720
ggagcucagg	uuacuagaca	acaaacuggc	acucaugaaa	augccaacau	ugccacaaau	780
ggaucucaua	ucacauacaa	ucagauaaac	uuuuacaagg	auagcuaugc	ggcuucagcc	840
agcaagcagg	aaaaaauacaca	ggacccauca	aaauucacug	aaccaguagu	ggaagguuua	900
aaagcaggggg	cggcaguuuu	gaaaucuccu	agugcugagg	cauguggcua	cagugauaga	960
guauuacagc	ucaaauuagg	aaauucagcu	auugucaccc	aggaagcagc	gaacuacugc	1020

IEC170083PCT-seql.txt

ugcgcuuuaug	gugaauggcc	caauuacuuua	ccagaccaug	aagcaguagc	cauugauaaa	1080
ccuacacaac	cagaaacugc	uacagauaga	uucuacacuu	ugaaaucagu	caaauuggaa	1140
acuggaagca	caggauggug	guggaaacua	cccgaugcac	ugaaauauau	aggcauguuu	1200
ggacagaaug	ugcagcauca	cuaccuauau	agaucugguu	ucuugauuca	ugugcagugu	1260
aaugccacaa	aauuccauca	aggugccuuua	uuagugguag	caauuccaga	acaucagagg	1320
ggagccgaca	acaccaacac	uagcccaggg	uuugaugaua	uaaugaaagg	ugaagaagga	1380
gggaccuuca	aucauccaua	uguccuugau	gauggaacau	cauuggcuug	ugcgacgaua	1440
uuuccacauc	aguggauaaa	ucugagaacc	aacaauucag	caacaauugu	ucuucccugg	1500
augaaugcug	cuccaaugga	uuucccacuu	agacauaauc	aguggacgcu	agcaauaaua	1560
ccaguggugc	cauuagguac	gcuacaaca	ucaaguaugg	ucccaauaac	aguuucaauc	1620
gcuccaaugu	guugugaguu	uauggacuu	agacacgcca	uuacucaagg	ugucccaaca	1680
uaccuuuuac	caggcucggg	acaauuccua	acaacugaug	aucauagcuc	ugcaccagcu	1740
cucccguguu	ucaacccaac	uccagaaaug	cauaucccag	ggcagguccg	uaacaugcua	1800
gaaguggucc	aaguggaauc	aaugauggag	auuaauaaca	cagaaagugc	aguuggcaug	1860
gagcgucuu	agguugauau	aucagcauug	acagaugucg	aucaauuguu	auucaacauu	1920
ccacuggaca	uacaguugga	ugggccacuu	agaaacacuu	ugguaggaaa	cauaucuaga	1980
uauuacacuc	auuggucugg	aucccuagaa	augacguuuua	uguuuugugg	cagcuucaug	2040
gcaacggaa	aauuaauccu	gugcuauacu	ccuccaggug	gaucaugccc	gacaaccaga	2100
gagaccgcca	uguuagguac	acauauuguu	ugggauuuug	gauuacaauc	uaguguaacc	2160
cugauaauc	cuuggauuag	uggaucacac	uacaggaugu	uuaauaauga	ugcuaaguca	2220
acuaaugccca	acguuggcua	ugucacuugu	uuuaugcaga	ccaaucugau	aguccccagu	2280
gaauccucug	acacguguuc	cuugauaggg	uucauagcag	caaaagauga	uuucuccuc	2340
agauuaauga	gagacagccc	ugacauugga	caacuagacc	auuuacaugc	agcagaggca	2400
gccuaccaga	ucgagagcau	caucaaaaca	gcgaccgaca	cugugaaaag	ugagauuaau	2460
gcugaacuug	gugugguccc	uagcuuuaau	gcaguugaaa	caggugcaac	uucuaacacu	2520
gaaccagaag	aagccauaca	aacucgcaca	gugauaaauc	agcacggugu	auccgagacu	2580

IEC170083PCT-seql.txt

cuaguggaga auuuucucag uagagcagcu uugguaucuu agagaaguuu ugaaucuuuu	2640
gaucauacuu cgucugcagc acaagcagac aagaacuuuu ucaaauuggac aauuaacacc	2700
agauccuuug uacaguuaag aagaaaauua gaauuaauuca cauaccuuag auuugaugcu	2760
gagaucacua uacucacaac uguagcagug aaugguagug guaauuaauac auacgugggu	2820
cuuccugacu ugacacucca agcaauguuu guacccacug gugcucuuac cccagaaaaa	2880
caggacuau uccacuggca gucaggcagu aaugcuagug uauucuuuaa aaucuccgac	2940
ccccagcca gaauaaccuu accuuuuuau ugcauuuacu cagcauacuc aguuuuuuau	3000
gauggcuuug ccggauuuga gaaaaacggu cuguauggaa uaaauccagc ugacacuauu	3060
gguaacuuau guguuagaau agugaaugaa caccaaccag uugguuucac agugaccuu	3120
aggguuuuaca ugaagccuaa acacauaaaa gcaugggcac cacgaccacc acgaacuuug	3180
ccauauauga guauugcaaa ugcaaauuac aaagguaaag aaagagcacc aaaugcgcuc	3240
aaugcuauaa uuggcaauag agacaguguc aaaaccaugc cuauuaauu agugaacacu	3300
gguccaggcu ucggaggagu uuuuguaggg ucuuucaaaa uaaucuacua ucacuuggcc	3360
acuacagaag agagacaguc agcuauuau guggauuggc aaucagacgu cuugguuacc	3420
cccauugcug cuauggaag gcacccaaaua gcaagaugca agugcaacac aggguuuuac	3480
uauuguaggc acaaaaacag aaguuacccg auuugcuuug aaggcccagg gauucauugg	3540
auugaacaaa augaaauua cccagcaagg uaccagacca auguacuauu ggcaguuggu	3600
ccugcggaag caggagauug cggugguuua cuaguuuguc cacauggggu aaucggucuu	3660
cuuacagcag gagggggugg aauuguagcu uucacugaua ucaggaauuu gcuaugguuua	3720
gauacugaug cuauggaaca aggcauuacu gauuauauuc aaaaucuugg uaaugccuuu	3780
ggagcaggau uuacagaaac aaucucuaau aaagccaagg aagugcaaga uaugcuauu	3840
ggagagaguu cacuauuaga aaaaauuguaa aaagcucuaa ucaaaaaucau aucagcauu	3900
guauuuguaa ucagaaacuc agaagauua gucacaguca cagccacacu agcauuguug	3960
ggaugccaug aauucaccaug gagcuacuug aaacagaagg uauguucaua cuuagguauu	4020
ccuuauuguac cuagacaggg ugaaucgugg cuuaagaaa ucacagaggc augcaauggu	4080
cuuagagguc ugguuuggcu aucgcaaaag auagauuaau ucaucaacug gcuuaaaacc	4140

IEC170083PCT-seql.txt

aaaaauuuac cagaagcuag ggagaaaaau gaauuugugc aaaggcucaa acaguuaccg	4200
gugauagaaa accaaguuag uacaaucgag cauagcugcc caacaacaga acaacaacag	4260
gccuuauuca acaacgucca auacuauuca cacuacugua gaaaguacgc accacuuuac	4320
gcaguggaag caaagagggu aguagcucuu gaaaagaaaa uaaaacaacua cauccaguuc	4380
aaguccaaau cucgcauuga accgguuugu uuaauuaauac auggcucucc aggaacuggc	4440
aagucagugg cuucaaauuu aauugccagg gcuaucacag agaaaauuggg gggggacauu	4500
uauuccuugc cuccagaccc uaaauauuuu gauggauaca aacagcaaac agugguccuc	4560
auggaugauu uaaugcaaaa uccagauggg aaugacauau cuauguucug ccaaauugguc	4620
uccacuguag auuucauacc cccaauggcu aguuuggagg aaaaaggaac ucuauacacc	4680
aguccauuuu uaaugcuac uaccaaugcu ggcucaaauac augcaccaac uguaucagac	4740
ucaaaggcuu ugucacgcag auuuuaauuuu gacguggaca uugaagucac agauucauac	4800
aaggacucaa auaaauugga uaugucaagg gcagucgaga ugugcaaacc agauggcugu	4860
ccccccacca auuacaaaag augcugccca uugaucugug gaaaggcuau ccaaauucaga	4920
gaucgcagaa cuaaugcaag auccacuauu gauaugcuag uaacugauau uauaaaggaa	4980
uauagaacca gaaacaguac acaggauaag cuggaagcuc uguuucaggg gccuccacag	5040
uuuuaagaga ucaaaaauuc agucacccca gauacaccag cuccugaugc uauaaaugac	5100
cuucuuaggu caguggauuc ucaagaaguu agggauuauu gccaaaagaa aggauggauu	5160
guaguacacc caucaauga gcuaauagua gaaaaacaca uuaguagagc uuuuauuacu	5220
cuacaagcca uugccaccuu uguaucaaua gcugguguag uuuauuuau auacaaacuu	5280
uuugcuggca uucagggucc auacacagga auccccaauc cuaaaccuaa aguaccucu	5340
cucagaacag cuaaagugca aggaccaggg uucgauuuug cacaagccau aaugaagaaa	5400
aauaccguca uugcaaggac ugaaaagggu gaguucacca ugcugggugu auaugauagg	5460
guagcgguca uccccacaca cgcaucuguu ggagaaacca uuuacauuaa ugauguagag	5520
acuaaaaguuu uagaugcugug ugcacuuaga gacuugacug auacaaacuu agagauaacc	5580
auagucaaau uagaccguaa ucaaaaauuu agagauauca gacauuuucu gcccagauau	5640
gaggaugauu acaaaugacgc ugugcuuagc guacauacau caaaaauuccc aaauauguau	5700

IEC170083PCT-seql.txt

aucccaguug gacaagucac caauuauggc uucuugaacc uaggugguac accgacgcac	5760
cgcauuuuua uguauaacuu cccacaaga gcuggccagu gugguggugu ggugacaacu	5820
acagguaagg ugauaggaau acauguaggu ggaaauuggag cucaaggauu ugcagcaa	5880
cuacuacacu cuuacuuuuc cgauacacaa ggugagauag uuaguaguga aaagaguggg	5940
gugugcauuu acgcaccggc aaagacuaaa cuccaaccua guguuuucca ucaaguuuu	6000
gaagguucaa aggaaccagc aguuucuau ccaaaagauc cuaggcuuua aacagauuu	6060
gaggaggcca uuuucuaaa guacacaggu aacaaaauu uguuaugga ugaguacaug	6120
gaagaggcag ugaucauuu uguggggugu uuagaaccau uagacaucag uguggaucc	6180
auaccccugg aaagugccau guauggaaug gauggccuug aggcauuaga cuuaacuacc	6240
agugcaggau uccuuacuu acuacaaggg aagaagaaaa gggauauuu uaauagacau	6300
acuagagaca ccagugaaau gacaaaaaug uuagagaaaau auggaguuga ccuacuuuu	6360
guaaccuuug uaaaagauga gcuuagauca agagaaaaag uugaaaaagg gaaaucacgc	6420
cugauugagg ccaguuccuu gaaugacuca guugcuauga gaguugccuu ugaaaccuu	6480
uacgccacau uucacaacaa uccagguaca gcaacuggua gugcaguugg uugugaucca	6540
gauauuuuu gguaaaaau cccuuuuug uuagauggag aaaucuuugc uuuugacuac	6600
acugguuau gugcuaguuu gucaccagug ugguuugccu gcuuaagaa aguucuaauu	6660
aaguuagguu acacacauca aacgucuuuu auagauuuuu ugugucauuc aguacauuu	6720
uauaaggaca aaaaauacau aguuauggu ggaugccc cugguucuuc aggcaccagc	6780
auauucaaca cuaugaucaa caauuaauc auagaacuu uauuaauuag gguuuacaaa	6840
ggcauagacc ugaccaguu caaaaugauu gccuaugggg augauguuau ugcuagcuac	6900
ccacauaaga ugauccagg uuugcuggca gaagcaggua aacaguauugg auuaguuaug	6960
acgccagcag acaaaggaac caguuuuauu gacacaaauu gggaaaaugu aacuuucuu	7020
aaaagauauu ucagagcaga ugaucaauac cccuuucuca uacauccagu gaugccaaug	7080
aaagagauac augaaucuau uagauggacu aaagauccc gaaacacaca ggaucauguu	7140
aggucuuugu gcuaccucgc auggcauaau ggagaggagg cuuauaauga auuuugcaga	7200
aaaaucagaa gugugccugu gggaaagagca uugacacuac cugcauacuc uagucuuaga	7260

IEC170083PCT-seql.txt

cggaaauggu uagauucguu cuagacaacu cuaacagcug guugaagggg accaacgaua	7320
cagcugguug aaggggacca aaccggucca cacacuuuccu uacauuccau cacccacaca	7380
cuuccuuaca uuccaaauuga aacccaaguu auaguuacuu ucauuuagag guaaauuuug	7440
gucacuuggg ggccaaaaaaaaaaaaaaaaaaag ucgac	7485

<210> 15

<211> 7860

<212> RNA

<213> 人工序列

<220>

<223> EV-D68-GM-CSF的基因组序列

<400> 15

uaauacgacu cacuauaggu uaaaacagcc uugggguugu ucccacucca agggcccacg	60
uggcggcuag uacucuggua cuucgguacc uuuguacgcc uguuuuaucu cccuucccaa	120
uguaacuuag aaguucuuua aucaaugcuc aauagguggg gcgcaaacca ggcgcucucau	180
gagcaagcac uccugucucc ccggugaggu uguauaaacu guuuccacgg uugaaaacaa	240
ccuauccguu auccgcuaua guacuucgag aaaccuagua ccaccuuugg auuguugacg	300
cguugcgcuc agcacacuaa cccgugugua gcuugggucg augagucugg acauaccuca	360
cuggcgacag ugguccaggg ugcguuggcg gccuacucau ggugaaagcc augagacgcu	420
agacaugaac aaggugugaa gagcuauug agcuacuua gaguccuccg gccccugaa	480
gcggcuauac cuaaccaugg agcaagugcu cacaggccag ugaguugcuu gucguauugc	540
gcaaguccgu ggcggAACCG acuacuuugg guguccgugu uucacuuuuu acuuuuuauga	600
cugcuuauugg ugacaauuug auauuguuac cauuuagcuu gucaaaucaa uugcaaaaga	660
uccuaauacu uauuuaucaa cuugcaucuu gauaacuuua auuugaaaaau uuuuacaaug	720
ggagcucagg uuacuagaca acaaacuggc acucaugaaa augccaaacau ugccacaaau	780
ggaucucaua ucacauacaa ucagauaaac uuuuacaagg auagcuaugc ggcuucagcc	840
agcaagcagg auuuuuucaca ggaccacauca aaaaucacug aaccaguagu ggaagguuua	900
aaagcagggg cgccaguuuu gaaaucuccu agugcugagg cauguggcua cagugauaga	960
guauuacagc ucaaauuagg aauucagcu auugucaccc aggaagcagc gaacuacugc	1020

IEC170083PCT-seql.txt

ugcgcuuuaug	gugaauggcc	caauuacuuua	ccagaccaug	aagcaguagc	cauugauaaa	1080
ccuacacaac	cagaaacugc	uacagauaga	uucuacacuu	ugaaaucagu	caaauuggaa	1140
acuggaagca	caggauggug	guggaaacua	cccgaugcac	ugaaauauau	aggcauguuu	1200
ggacagaaug	ugcagcauca	cuaccuauau	agaucugguu	ucuugauuca	ugugcagugu	1260
aaugccacaa	aauuccauca	aggugccuuua	uuagugguag	caauuccaga	acaucagagg	1320
ggagccgaca	acaccaacac	uagcccaggg	uuugaugaua	uaaugaaagg	ugaagaagga	1380
gggaccuuca	aucauccaua	uguccuugau	gauggaacau	cauuggcuug	ugcgacgaua	1440
uuuccacauc	aguggauaaa	ucugagaacc	aacaauucag	caacaauugu	ucuucccugg	1500
augaaugcug	cuccaaugga	uuucccacuu	agacauaauc	aguggacgcu	agcaauaaua	1560
ccaguggugc	cauuagguac	gcuacaaca	ucaaguaugg	ucccaauaac	aguuucaauc	1620
gcuccaaugu	guugugaguu	uauggacuu	agacacgcca	uuacucaagg	ugucccaaca	1680
uaccuuuuac	caggcucggg	acaauuccua	acaacugaug	aucauagcuc	ugcaccagcu	1740
cucccguguu	ucaacccaac	uccagaaaug	cauaucccag	ggcagguccg	uaacaugcua	1800
gaaguggucc	aaguggaauc	aaugauggag	auuaauaaca	cagaaagugc	aguuggcaug	1860
gagcgucuu	agguugauau	aucagcauug	acagaugucg	aucaauuguu	auucaacauu	1920
ccacuggaca	uacaguugga	ugggccacuu	agaaacacuu	ugguaggaaa	cauaucuaga	1980
uauuacacuc	auuggucugg	aucccuagaa	augacguuuua	uguuuugugg	cagcuucaug	2040
gcaacggaa	aauuaauccu	gugcuauacu	ccuccaggug	gaucaugccc	gacaaccaga	2100
gagaccgcca	uguuagguac	acauauuguu	ugggauuuug	gauuacaauc	uaguguaacc	2160
cugauuaauac	cuuggauuag	uggaucacac	uacaggaugu	uuaauaauga	ugcuaaguca	2220
acuaauggca	acguuggcua	ugucacuugu	uuuaugcaga	ccaaucugau	aguccccagu	2280
gaauccucug	acacguguuc	cuugauaggg	uucauagcag	caaaagauga	uuucuccuc	2340
agauuaauga	gagacagccc	ugacauugga	caacuagacc	auuuacaugc	agcagaggca	2400
gccuaccaga	ucgagagcau	caucaaaaca	gcgaccgaca	cugugaaaag	ugagauuaau	2460
gcugaacuug	gugugguccc	uagcuuuaau	gcaguugaaa	caggugcaac	uucuaacacu	2520
gaaccagaag	aagccauaca	aacucgcaca	gugauaaauc	agcacggugu	auccgagacu	2580

IEC170083PCT-seql.txt

cuaguggaga auuuucucag uagagcagcu uugguaucuu agagaaguuu ugaaauacaaa	2640
gaucauacuu cgucugcagc acaagcagac aagaacuuuu ucaaauggac aauuaacacc	2700
agaauccuuug uacaguuaag aagaaaauua gaauuaauuca cauaccuuag auuugaugcu	2760
gagaucacua uacucacaac uguagcagug aaugguagug guaauuaauac auacgugggu	2820
cuuccugacu ugacacucca agcaauguuu guacccacug gugcucuuac cccagaaaaa	2880
caggacuau uccacuggca gucaggcagu aaugcuagug uauucuuuaa aaucuccgac	2940
cccccagcca gaauaaccuu accuuuuuauug ugcauuuacu cagcauacuc aguuuuuuau	3000
gauggcuuug ccggauuuga gaaaaacggu cuguauggaa uaaauccagc ugacacuauu	3060
gguaacuuau guguuagaau agugaaugaa caccaaccag uugguuucac agugaccuu	3120
aggguuuuaca ugaagccuaa acacauaaaa gcaugggcac cacgaccacc acgaacuuug	3180
ccauauauga guauugcaaa ugcaaauuac aaagguaaag aaagagcacc aaaugcgcuc	3240
aaugcuauaa uuggcaauag agacaguguc aaaaccaugc cuauauau agugaacacu	3300
gguccaggcu ucuggcugca gagccugcug cucuugggca cuguggccug cagcaucu	3360
gcacccgccc gcucgcccag ccccagcacf cagcccuggg agcaugugaa ugccauccag	3420
gaggcccggc gucuccugaa ccugaguaga gacacugcug cugagauugaa ugaaacagua	3480
gaagucaucu cagaaauguu ugaccuccag gagccgaccu gccuacagac ccgcccuggag	3540
cuguacaagc agggccugcg gggcagccuc accaagcuca agggccccuu gaccaugau	3600
gccagccacu acaagcagca cugccucca accccggaaa cuuccugugc aacccagauu	3660
aucaccuuug aaaguuucaa agagaaccug aaggacuuuc ugcuugucau cccuuugac	3720
ugcugggagc caguccagga gagugucaa accauggcuc auauauauagu gaacacuggu	3780
ccaggcuucg gagaguuuu uguagggucu uucaaaaauua ucaacuaucu cuuggccacu	3840
acagaagaga gacagucagc uaucuaugug gauuggcaau cagacgucuu gguuaccccc	3900
auugcugcuc auggaaggca ccaaauagca agaugcaagu gcaacacagg gguuuacuuau	3960
uguaggcaca aaaacagaag uuacccgauu ugcuuugaag gcccagggau ucauuggauu	4020
gaacaaaaug aauauuaccc agcaagguac cagaccaaug uacuauuggc aguugguccu	4080
gcggaagcag gagauugcgg ugguuuacua guuuguccac augggguaau cggucuucuu	4140

IEC170083PCT-seql.txt

acagcaggag ggggugggaau uguagcuuuc acugauauca ggaauuugcu augguuagau	4200
acugaugcua uggaacaagg cauuacugau uauauucaaa aucuugguaa ugccuuugga	4260
gcaggauuuu cagaaacaau cucuaauaaa gccaaaggaag ugcaagauau gcuaauugga	4320
gagaguucac uauuagaaaa auuguuaaaa gcucuaauca aaaucauauc agcauuagua	4380
auuguaauca gaaacucaga agauuuaguc acagucacag ccacacuagc auuguuggga	4440
ugccaugauu caccauggag cuacuugaaa cagaagguaau guucauacuu agguauuccu	4500
uauguaccua gacaggguga aucguggcuu aagaaauuca cagaggcaug caaugcucuu	4560
agaggucugg auuggcuauc gcaaaagaua gauaaauuca ucaacuggcu uaaaacccaa	4620
auauuaccag aagcuagggaa gaaauaugaa uuugugcaaa ggcucaaaca guuaccggug	4680
auagaaaacc aaguuaguac aaucgagcau agcugcccaa caacagaaca acaacaggcc	4740
uuauucaaca acguccaaua cuauucacac uacuguagaa aguacgcacc acuuuacgca	4800
guggaagcaa agaggguagu agcucuugaa aagaaaaauaa acaacuacau ccaguucaag	4860
uccaaaucuc gcauugaacc gguuuguuua auuaauacaug gcucuccagg aacuggcaag	4920
ucaguggcuu caaauuuuau ugccagggcu aucacagaga aauugggggg ggacauuuau	4980
uccuugccuc cagaccuuaa auauuuugau ggauacaaac agcaaacagu gguccucaug	5040
gaugauuuua ugcaaaaucc agaugggaau gacauaucua uguucugcca auggucucc	5100
acuguagauu ucauaccccc auggcuagu uuggaggaaa aaggaacucu auacaccagu	5160
ccauuuuuua uagcuacuac caaugcuggc ucaauacaug caccaacugu aucagacuca	5220
aaggcuuugu cacgcagauu uaaauuugac guggacauug aagucacaga uucauacaag	5280
gacucaaaua aauuggauau gucaagggca gucgagaugu gcaaaccaga ugugcugugcc	5340
cccaccaauu acaaaagaug cugccauug aucuguggaa aggcuaucca auucagagau	5400
cgcagaacua augcaagauc cacuauugau augcuaguua cugauuuau aaaggaauau	5460
agaaccagaa acaguacaca ggauaagcug gaagcucugu uucaggggcc uccacaguuu	5520
aaagagauca aaauuuucagu cacccagau acaccagcuc cugaugcuau aaaugaccuu	5580
cuuaggucag uggaucuca agaaguuagg gauuauugcc aaaagaaagg auggauugua	5640
guacacccau caaaugagcu aauaguagaa aaacacauua guagagcuum uauuacucua	5700

IEC170083PCT-seql.txt

caagccauug ccaccuuugu aucaauagcu gguguaguuu auguuauua caaacuuuuu	5760
gcuggcauuc aggguccaua cacaggaauc cccaauccua aaccuaaagu acccucucuc	5820
agaacagcua aagugcaagg accaggguuc gauuuugcac aagccauaau gaagaaaaau	5880
accgucauug caaggacuga aaagggugag uucaccaugc ugugugua ua ugauagggua	5940
gcggucaucc ccacacacgc aucuguugga gaaaccauuu acuuuaauga uguagagacu	6000
aaaguuuuag augcgugugc acuuuagagac uugacugaua caaacuuaga gauaaccua	6060
gucaaauuag accguauca aaaaauuaga gauaucagac auuuucugcc cagauauggag	6120
gaugauuaca augacgcugu gcuuagcua cauacaucaa aauuuccaaa uauguaaua	6180
ccaguuggac aagucaccaa uuauuggcuuc uugaaccuag gugguacacc gacgcaccgc	6240
auuuuaaugu auaacuuuccc aacaagagcu ggccagugug gugguguggu gacaacuaca	6300
gguaagguga uaggaauaca uguaggugga aauggagcuc aaggauuugc agcaauggua	6360
cuacacucuu acuuuuccga uacacaaggu gagauaguua guagugaaaa gaguggggug	6420
ugcauuaacg caccggcaaa gacuaaacuc caaccuagug uuuuccauca aguuuuugaa	6480
gguucaaagg aaccagcagu ucuaaucca aaagauccua ggcuuaaaac agauuucgag	6540
gaggccauuu ucucaaagua cacagguaac aaaaauuauug uaauggauga guacauggaa	6600
gaggcagugg aucauuauug gggguguuua gaaccauuag acaucagugu ggaucccaua	6660
ccccuggaaa gugccaugua uggauggau ggccuugagg cauuagacuu aacuaccagu	6720
gcaggauucc cuuacuuacu acaagggaag aagaaaaggg auauuuuua uagacauacu	6780
agagacacca gugaaaugac aaaaauguua gagaaaauug gaguugaccu accuuuugua	6840
accuuuugua aagaugagcu uagaucaaga gaaaaaguug aaaaagggaa aucacgcccug	6900
auugaggcca guuccuugaa ugacucaguu gcuaugagag uugccuuugg aaaccuuuac	6960
gccacauuuc acaacaaucc agguacagca acugguagug caguugguug ugauccagau	7020
auauuuuggu caaaaauccc uauuuuguuua gauggagaaa ucuuugcuuu ugacuacacu	7080
gguuauguaug cuaguuuguc accagugugg uuugccugcu uaaagaaagu ucuaauuaag	7140
uuagguuaca cacaucaaac gucuuuuuaa gauuaauugu gucauucagu acuuuuaau	7200
aaggacaaaa aauacauagu uauggugga augcccucug guucuucagg caccagcaua	7260

IEC170083PCT-seql.txt

uucaacacua ugaucaacaa uauaaucuaa agaacuuuaau uaauuagggu uuacaaaggc	7320
auagaccugg accaguucaa aaugauugcc uauggggaug auguuauugc uagcuaccca	7380
cauaagauug auccagguuu gcuggcagaa gcagguaaac aguauggauu aguaaugacg	7440
ccagcagaca aaggaaccag uuuuauugac acaaauuggg aaaauguaac uuuuuuuu	7500
agauauuuca gagcagauga ucaauacccc uuucucauac auccagugau gccaaugaaa	7560
gagauacaug aaucuauuag auggacuaaa gaucccagaa acacacagga ucauguuagg	7620
ucuuugugcu accucgcaug gcauaauugga gaggaggcuu auuaugaaau uugcagaaaa	7680
aucagaagug ugccuguggg aagagcauug acacuaccug cauacucuag ucuuagacgg	7740
aaaugguuag auucguucua gacaacucua auugaaaccc aaguuaauagu uacuuucauu	7800
uagagguaaa uuuuggucac uugggggcca aaaaaaaaaa aaaaaaaaaa aaaagucgac	7860

<210> 16

<211> 8226

<212> RNA

<213> 人工序列

<220>

<223> EV-D68-Anti-PD1的基因组序列

<400> 16

uaauacgacu cacuauaggu uaaaacagcc uugggguugu ucccacucca agggccccacg	60
uggcggcuag uacucuggua cuucgguacc uuuguacgcc uguuuuaucu cccuuuccaa	120
uguaacuuag aaguucuuua aucaaugcuc aauagguggg gcgcaaacca ggcgcucucau	180
gagcaagcac uccugucucc ccggugaggu uguauaaacu guuucccacgg uugaaaacaa	240
ccuauccguu auccgcuaua guacuucgag aaaccuagua ccaccuuugg auuguugacg	300
cguugcgcuc agcacacuaa cccgugugua gcuuggguug augagucugg acauaccau	360
cuggcgacag ugguccagggc ugcuugggugc gcuacucuau ggugaaagcc augagacgcu	420
agacaugaac aaggugugaa gagucuauug agcuacuaua gaguccuccg gccccugaa	480
gcggcuuauc cuaaccaugg agcaagugcu cacaggccag ugaguugcui gucguauugc	540
gcaaguccgu ggcggaaaccg acuacuuugg guguccgugu uucacuuuuu acuuuuuuga	600
cugcuaugg ugacaauuug auauuguuac cauuuagcui gucaaaucaa uugcaaaaga	660

IEC170083PCT-seql.txt

uccuaaaucu uauuuaucaa cuugcaucuu gauaacuuua auuugaaaau uuuuacaaug	720
ggagcucagg uuacuagaca acaaacuggc acucaugaaa augccaacau ugccacaaau	780
ggaucucaua ucacauacaa ucagauaaac uuuuacaagg auagcuaugc ggcuucagcc	840
agcaaggcagg auuuuuucaca ggacccauca aaauucacug aaccaguagu ggaagguuua	900
aaagcagggg cgccaguuuu gaaaucuccu agugcugagg cauguggcua cagugauaga	960
guauuacagc ucaaauuagg aaauucagcu auugucaccc aggaagcagc gaacuacugc	1020
ugcgcuuau gugaauggcc caauuacuuu ccagaccaug aagcaguagc cauugauaaa	1080
ccuacacaac cagaaacugc uacagauaga uucuacacuu ugaaaucagu caaauggaa	1140
acuggaagca caggauggug guggaaacua cccgaugcac ugaauaaauu aggcauguuu	1200
ggacagaaug ugcagcauca cuaccuauau agaucugguu ucuugauuca ugugcagugu	1260
aaugccacaa aauuccauca aggugccuuu uuagugguag caauuccaga acaucagagg	1320
ggagcgcaca acaccaacac uagcccaggg uuugaugaua uaaugaaagg ugaagaagga	1380
gggaccuuca aucauccaua ugucuuugau gauggaacau cauuggcuug ugcfacgaua	1440
uuuccacauc aguggauaaa ucugagaacc aacaauucag caacaauugu ucuuuccugg	1500
augaaugcug cuccaaugga uuucccacuu agacauaauc aguggacgcu agcaauaaaua	1560
ccaguggugc cauuagguac gcguacaaca ucaaguaugg ucccaauaac aguuucaauc	1620
gcuccaaugu guugugaguu uaauggacuu agacacgcca uuacucaagg ugucccaaca	1680
uaccuuuac caggcucggg acaaauuccua acaacugaug aucauagcuc ugcaccagcu	1740
cucccguguu ucaacccaac uccagaaaug cauaucccag ggcagguccg uaacaugcua	1800
gaaguggucc aaguggaauc aaugauggag auuaauaaca cagaaagugc aguuggcaug	1860
gagcgucuuu agguugauau aucagcauug acagaugucg aucaauuguu auucaacauu	1920
ccacuggaca uacaguugga ugcccacuu agaaacacuu ugguagggaaa cauaucuaga	1980
uauuacacuc auuggucugg aucccuagaa augacguuuu uguuuugugg cagcuucaug	2040
gcaacggaa aauuaauccu gugcuauacu ccuccaggug gaucaugccc gacaaccaga	2100
gagaccgcca uguuagguac acaauuuguu uggaauuuug gauuacaauc uaguguaacc	2160
cugauaauac cuuggauuag uggaucac uacaggaugu uuaauaauga ugcuaaguca	2220

IEC170083PCT-seql.txt

acuaaugcca acguuggcua ugucacuugu uuuuaugcaga ccaaucugau aguccccagu	2280
gaauccucug acacguguuc cuugauaggg uucauagcag caaaagauga uuucucccuc	2340
agauuaauga gagacagccc ugacauugga caacuagacc auuuacaugc agcagaggca	2400
gccuaccaga ucgagagcau caucaaaaca gcgaccgaca cugugaaaag ugagauuaau	2460
gcugaacuug gugugguccc uagcuuuaau gcaguugaaa caggugcaac uucuaacacu	2520
gaaccagaag aagccauaca aacucgcaca gugauaaauc agcacggugu auccgagacu	2580
cuaguggaga auuuucucag uagagcagcu uugguaucaa agagaaguu ugaaauacaaa	2640
gaucauacuu cgucugcagc acaagcagac aagaacuuuu ucaaauuggac auuuaacacc	2700
agauccuuug uacaguuaag aagaaaaauua gaauuaauuca cauaccuuag auuugaugcu	2760
gagaucacua uacucacaac uguagcagug aaugguagug guaauuaauac auacgugggu	2820
cuuccugacu ugacacucca agcaauguuu guacccacug gugcucuuac cccagaaaaa	2880
caggacucau uccacuggca gucaggcagu aaugcuagug uauucuuuuaa aaucuccgac	2940
cccccagcca gaauaaccuu accuuuuuaug ugcauuuacu cagcauacuc aguuuuuuau	3000
gauggcuuug ccggauuuga gaaaaacggu cuguauggaa uaaauccagc ugacacuauu	3060
gguaacuuau guguuagaau agugaaugaa caccaaccag uugguuucac agugaccguu	3120
aggguuuaca ugaagccuaa acacauaaaa gcaugggcac cacgaccacc acgaacuuug	3180
ccauauauga guauugcaaa ugcaaauuac aaagguaag aaagagcacc aaaugcgcuc	3240
aaugcuauaa uuggcaauag agacaguguc aaaaccaugc cucauaauau agugaacacu	3300
gguccaggcu ucaugaagca ccugugguuc uuuccugcugc ugugggccgc uccuaggugg	3360
gugcuguccc aggugcagcu ggugcagagc ggcgugggagg ugaagaagcc cggcgcuucc	3420
gugaaggugu ccugcaaggc cuccggcuac accuucacca acuacuacau guacugggug	3480
aggcaggccc cuggacaggg acuggagugg auggggcggca ucaacccuuc caacggcggc	3540
accaacuuca acgagaaguu caagaaccgg gugacccuga ccaccgacuc cuccaccacc	3600
accgccuaca uggagcugaa gucccugcag uuugacgaca ccgcccugua cuacugcgcc	3660
aggagggacu accgguucga caugggcuuc gacuacuggg gccagggcac aaccgugacc	3720
guguccagcg gagguggcgg aucuggaggg ggugguagcg guggaggcgg gagugagau	3780

IEC170083PCT-seql.txt

gugcugaccc	aguccccugc	uacacugucc	cugcccccg	gcgagagggc	uacacugagc	3840
ugcagggccu	ccaagggcgu	guccaccucc	ggcuacuccu	accugcacug	guaccagcag	3900
aagccuggac	aggcucccag	gcugcugauc	uaccuggccu	ccuaccugga	guccggcgug	3960
ccugcuaggu	uuuccggcag	cggcagcggc	accgauuuca	cccugaccau	cuccucccug	4020
gagcccgagg	acuucgccgu	guacuacugc	cagcacucca	gggaucugcc	ucugaccuuc	4080
ggcggcggca	ccaaggugga	gaucaagagu	guaaaaacca	ugccucauaa	uauagugaac	4140
acugguccag	gcuucggagg	aguuuuugua	gggucuuuca	aaaaauucaa	cuaucacuug	4200
gccacuacag	aagagagaca	gucagcuauc	uauguggauu	ggcaaucaga	cgucuugguu	4260
accccauug	cugcucaugg	aaggcaccaa	auagcaagau	gcaagugcaa	cacagggguu	4320
uacuauugua	ggcacaaaaaa	cagaaguuac	ccgauuugcu	uugaaggccc	agggauucaa	4380
uggauugaac	aaaaaugaaua	uuacccagca	agguaccaga	ccaauguacu	auuggcaguu	4440
gguccugcgg	aagcaggaga	uugcgguggu	uuacuaguuu	guccacaugg	gguaauucggu	4500
cuucuuacag	caggaggggg	uggaauugua	gcuuucacug	auaucagggaa	uuugcuaugg	4560
uuagauacug	augcuauugga	acaaggcauu	acugauuuaa	uucaaaaucu	ugguaaugcc	4620
uuuggagcag	gauuuuacaga	aacaauucu	aauaaagcca	aggaagugca	agauaaugcua	4680
auuggagaga	guucacuauu	agaaaaauug	uuaaaagcuc	uaaucaaaaau	cauaucagca	4740
uuaguaauug	uaaucagaaa	cucagaagau	uuagucacag	ucacagccac	acuagcauug	4800
uugggaugcc	augauucacc	auggagcuac	uugaaacaga	agguauuguic	auacuuaggu	4860
auuuccuuau	uaccuagaca	gggugaaucg	uggcuuaaga	aaucacacaga	ggcaugcaau	4920
gcucuuagag	gucuggauug	gcuaucgcaa	aagauagaua	aaucacauaa	cuggcuuaaa	4980
accaaaaaau	uaccagaagc	uagggagaaa	uaugaauuug	ugcaaaggcu	caaacaguua	5040
ccggugauag	aaaaccaagu	uaguacaauc	gagcauagcu	gcccaacaac	agaacaacaa	5100
caggccuuau	ucaacaacgu	ccaaucuau	ucacacuacu	guagaaagua	cgcaccacuu	5160
uacgcagugg	aagcaaagag	gguaguagcu	cuugaaaaga	aaauaaacaa	cuacauccag	5220
uucaagucca	aaucucgcau	ugaaccgguu	uguuuaauaa	uacauggcuc	uccaggaacu	5280
ggcaagucag	uggcuucaaa	uuuaauugcc	agggcuauc	cagagaaauu	gggggggggac	5340

IEC170083PCT-seql.txt

auuuauuccu ugccuccaga cccuaauau uuugauuggau acaaacagca aacagugguc	5400
cucauggaug auuuaaugca aaaucagau gggaaugaca uaucuauguu cugccaaug	5460
gucuccacug uagauuucau accccaaug gcuaguuugg agggaaaagg aacucuauac	5520
accaguccau uuuuaauagc uacuaccaau gcuggcucaa uacaugcacc aacuguauc	5580
gacucaaagg cuuugucacg cagauuuaaa uuugacgugg acauugaagu cacagauua	5640
uacaaggacu caaaauaaau ggauuauguca agggcagucg agaugugcaa accagauggc	5700
ugugccccca ccaauuacaa aagaugcugc ccauugaucu guggaaaggc uauccaauc	5760
agagaucgca gaacuaaugc aagauccacu auugauaugg uaguaacuga uauuauaag	5820
gaaauauagaa ccagaaacag uacacaggau aagcuggaag cucuguuuca ggggccucca	5880
caguuuaag agauaaaaau uucagucacc ccagauacac cagcuccuga ugcuauaau	5940
gaccuucuua ggcagugga uucucaagaa guuagggauu auugccaaaa gaaaggaugg	6000
auuguaguac acccaucaa ugagcuauua guagaaaaac acauuaguag agcuuuuau	6060
acucuacaag ccauugccac cuuuguaucu auagcuggug uaguuuaugu uauauacaa	6120
cuuuuugcug gcauucaggg uccauacaca ggaaucccc auccuaaacc uaaaguaccc	6180
ucucucagaa cagcuuaagu gcaaggacca ggguiucgauu uugcacaagc cauaaugaag	6240
aaaaauaccg ucauugcaag gacugaaaag ggugaguuca ccaugcuggg uguauaugau	6300
aggguagcgg ucauccccac acacgcaucu guuggagaaa ccauuuacau uaaugaugua	6360
gagacuuaag uuuuagaugc gugugcacuu agagacuuga cugauacaaa cuuagagaua	6420
accauaguca auuuagaccc uaucaaaaa uuuagagaua ucagacauu ucugcccaga	6480
uaugaggaug auuacaauga cgcugugcuu agcguacaua caucaaaa cccaaauaug	6540
uauauccag uuggacaagu caccaauuau ggcuucuuga accuaggugg uacaccgacg	6600
caccgcauuu uaauguaaua cuuuccaaca agagcuggcc aguguggugg uguggugaca	6660
acuacaggua aggugauagg aauacaugua gguggaaaug gagcucaagg auuugcagca	6720
augcuacuac acucuuacuu uccgauaca caaggugaga uaguauagu ugaaaagagu	6780
ggggugugca uuaacgcacc ggcaaagacu aaacuccaac cuaguguuu ccaucaaguu	6840
uuugaagguu caaaggaacc agcaguucuc aauccaaag auccuaggcu uaaaacagau	6900

IEC170083PCT-seql.txt

uucgaggagg ccauuuucuc aaaguacaca gguuacaaaa uuauuuuaau ggaugaguac	6960
auggaagagg caguggauca uuauuggggg uguuuagaac cauuagacau caguguggau	7020
cccauacccc ugaaagugc cauguaugga auggauggcc uugaggcauu agacuuuacu	7080
accagugcag gauuccuuua cuuacuacaa gggaaagaaga aaagggauau auuuaauuaga	7140
cauacuagag acaccaguga aaugacaaaa auguuagaga aauauggagu ugaccuaccu	7200
uuuguaaccu uuguaaaaga ugagcuuaga ucaagagaaa aaguugaaaa agggaaaauca	7260
cggcugauug aggcaguuuc cuugaaugac ucaguugcua ugagaguugc cuuuggaaac	7320
cuuuacgcca cauuucacaa caauccaggu acagcaacug guagugcagu ugguugugau	7380
ccagauauau uuuggucaaa aaucuuauu uuguuagaug gagaaaucuu ugcuuuugac	7440
uacacugguu augauggcuag uuugucacca gugugguuug ccugcuuaaa gaaaguucua	7500
auuaaguuag guuacacaca ucaaacgucu uuuauagauu auuuguguca uucaguacau	7560
uuauauaagg acaaaaaaua cauaguuaau gguggaaugc ccucugguuc uucaggcacc	7620
agcauauuca acacuaugau caacaauaua aucauaagaa cuuuauuaau uaggguuuac	7680
aaaggcauag accuggacca guucaaaaug auugccuaug gggauugau uauugcuagc	7740
uacccacaua agauugaucc agguuugcug gcagaagcag guaaacagua uggaauuagua	7800
augacgccag cagacaaagg aaccaguuu auugacacaa auuggggaaaa uguaacuuuc	7860
uuaaaaagau auuucagagc agaugaucaa uacccuuuuc ucauacaucc agugaugcca	7920
augaaagaga uacaugaauc uauuagaugg acuuaagauc ccagaaacac acaggaucau	7980
guuaggucuu ugugcuaccu cgcauggcau aauggagagg aggcuuuaau ugaauuuugc	8040
agaaaaauca gaagugugcc ugugggaaga gcauugacac uaccugcaua cucuagucuu	8100
agacggaaau gguuagauuc guucuagaca acucuaauug aaacccaagu uauaguuacu	8160
uucauuuaga gguuaauuuu ggucacuugg gggccaaaaaa aaaaaaaaaa aaaaaaaaaa	8220
gucgac	8226

<210> 17
 <211> 22
 <212> DNA
 <213> 人工序列

IEC170083PCT-seql.txt

<220>

<223> miR-133靶序列的DNA序列

<400> 17

acagctggtt gaaggggacc aa

22

<210> 18

<211> 22

<212> DNA

<213> 人工序列

<220>

<223> miR-206靶序列的DNA序列

<400> 18

ccacacactt cttacattc ca

22

<210> 19

<211> 102

<212> DNA

<213> 人工序列

<220>

<223> miR-133靶序列与miR-206靶序列的串联序列的DNA序列

<400> 19

acagctggtt gaaggggacc aacgatacag ctgggtgaag gggaccaaac cggtccacac

60

acttccttac attccatcac ccacacactt cttacattc ca

102

<210> 20

<211> 507

<212> DNA

<213> 人工序列

<220>

<223> HRV2的内部核糖体进入位点序列的DNA序列

<400> 20

aacttagaag ttttcacaa agaccaatag ccggtaatca gccagattac tgaaggtaa

60

gcacttctgt ttccccggtc aatgttgata tgctccaaca gggaaaaac aactgcgatc

120

gttaaccgca aagcgctac gcaaagctta gtagcatctt tggatcggtt tggctggcgt

180

atccgccatt tcccctggta gacctggcag atgaggctag aaataccca ctggcgacag

240

tgttctagcc tgcgtggctg cctgcacacc ctatgggtgt gaagccaaac aatggacaag

300

IEC170083PCT-seql.txt

gtgtgaagag ccccggtgtc tcgcgtttag cctccggcc cctgaatgtg gctaaccctta	360
accctgcagc tagagcacgt aacccaatgt gtagtctagtc gtaatgagca attgcgggat	420
gggaccaact actttgggtg tccgtgtttc acttttcct ttatatttgc ttatggtgac	480
aatatataca atatatatatat tggcacc	507