The invention provides methods for intraoperatively determining the location of nerves by use of fluorescent dyes. The methods are particularly useful for locating the cavernous nerves innervating the penis.
FIGURE 5A

Excised Cavemous Nerve with R LED Illumination

FIGURE 5B

ICG Fluorescence Only
INTRAOPERATIVE DETERMINATION OF NERVE LOCATION

CROSS-REFERENCES TO RELATED APPLICATIONS

STATEMENT AS TO RIGHTS TO INVENTIONS MADE UNDER FEDERALLY SPONSORED RESEARCH AND DEVELOPMENT

[0002] Not Applicable

REFERENCE TO A “SEQUENCE LISTING,” A TABLE, OR A COMPUTER PROGRAM LISTING APPENDIX SUBMITTED ON A COMPACT DISK.

[0003] Not Applicable

BACKGROUND OF THE INVENTION

[0004] A variety of medical techniques suitable for imaging biological tissues and organs are known. These include traditional x-rays, ultra-sound, magnetic resonance imaging, and computerized tomography.

[0005] A variety of dyes useful for medical imaging have been described, including radio opaque dyes, fluorescent dyes, and calorimetric dyes (see e.g., U.S. Pat. Nos. 5,699,798; 5,279,298; 6,351,653). Imaging techniques and systems using fluorescent dyes have been described for the heart and eye (see, e.g., U.S. Pat. No. 5,279,298). Some dyes can serve both an imaging function and a therapeutic function (see, e.g., U.S. Pat. No. 6,840,933). Some specific neuronal imaging agents have been used to visualize tissue in the central nervous system. Tracer uptake and transport has been demonstrated in different studies using various routes of administration including antegrade, retrograde and combined routes (Jones et al. 1978, Annu Rev Neurosci.; 1:215; Rosina A., 1982, Neurosci. Lett. 33(3):217; Illes RB, et al., 1985, Neuroscience 14(2):455; Sloniewski P, et al., 1985, Neurosci. Lett. 60(2):189; and Schmued et al., 1986, Brain Res. 377(1):147). After appropriate time for endo/pancytosis, perineural lymphatic and axonal transport, which generally measures 0.5-2 mm per hour, tracers were visually detected using ultraviolet or visible light (Bentiniglio et al., 1980, Neurosci. Lett. 18(1):19; Minicacah D et al., 1991, J Neurosci. Methods. 38(2-3):183). Non-toxic tracers such as indocyanine Green, Fast Blue, and Fluorogold, have been used in mammals without evidence of neuronal toxicity several months after the treatment (Thielert et al., 1993, J Comp Neurol. 337(1):113; Yeterian et al., 1994, Exp Brain Res. 99(3):383; Vogt Weisenhorn et al., 1995, J Comp Neurol. 362(2):233). Marangos et al. labeled the auditory nerve using Fluorogold and Fast Blue in rats and monkeys by suctioning out perilymph and filling the cochlea with neuronal tracers to identify the nerve and cochlear brain stem nucleus for the positioning of electrodes for an auditory neuroprosthesis (Marangos N, et al., 2001, Hear Res. 162(1-2):48).

[0006] The prostate is an accessory sex gland in men. It is about the size of a walnut, and surrounds the neck of the bladder and the urethra, the tube that carries urine from the bladder. It is partly muscular and partly glandular, with ducts opening into the prostatic portion of the urethra. It is made up of three lobes: a center lobe with one lobe on each side. The prostate gland secretes a slightly alkaline fluid that forms part of the seminal fluid.

[0007] Prostate cancer is the most common type of cancer (excluding skin cancer) among American men. It is found most often in men aged 50 and over, with an especially high prevalence rate among African Americans. In men, it is second only to lung cancer as a cause of cancer-related death. The American Cancer Society has estimated that 220,900 new cases of prostate cancer will be diagnosed annually and that 28,900 men annually will die of the disease (Cancer Facts and Figures, American Cancer Society, 2003). Treatment options include hormonal therapy aimed at lowering testosterone levels, radiation therapy, chemo therapy and surgery.

[0008] Surgical removal of the entire prostate gland is called radical prostatectomy (“RP”). The aim of radical prostatectomy is removal of the entire prostate cancer, one that has not yet spread locally or to distant organs. Radical prostatectomy complications include incontinence and impotence. Most men experience urinary incontinence after surgery. Many continue to have intermittent problems with dribbling caused by coughing or exertion. Damage to nerves which innervate both the prostate and the penis plays a significant part in these unwanted side effects. Approximately 40 to 60% of men undergoing RP are impotent due to injury to the cavernous nerves during the surgery.

[0009] Topographically, cavernous nerves are part of the neurovascular bundle, which travels at the posterolateral border of the prostate, outside the prostatic capsule and on the anterolateral surface of the rectum. McNeal described large superior and small inferior pedicles innervating the base and the apex of the prostate respectively (McNeal J E., 1988, Am J Surg Pathol.; 12(8):619.). After reaching the apex at the 5 and 7-oclock positions, nerves travel posterolaterally to the urethra. At the level of membranous urethra they divide into more superficial branches to the suburethral muscle and finally at the level of the hilum of the penis, together with the arteries, the nerves pierce the cavernous bodies and innervate erectile tissue diffusely (Lue et al., 1983, J Urol.; 130(6):1237; Breza et al., 1989, J Urol. 141(2):437).

[0010] The risk of impotence may be reduced by avoiding cutting or stretching bundles of nerves and blood vessels that run along the surface of the prostate gland and are needed for an erection. Successful nerve sparing surgery, however, is often difficult to achieve because of the difficulty in distinguishing between the prostate tissue, in particular the cancerous prostate tissue, and the innervating nerve tissue. Appropriate mapping of the nerves can also lead to better understanding of cavernous nerves topography and penile accessory innervation. Accordingly, a need exists for improved methods of imaging peripheral nerves, such as the nerves which innervate the prostate. The present invention fills these and other needs.
BRIEF SUMMARY OF THE INVENTION

[0011] The invention provides methods of determining the location of a nerve or portion of a nerve of interest in a subject during a surgical operation. The methods comprise, prior to the surgical operation, administering to an organ or area of the subject innervated by the nerve or portion of a nerve of interest a dye which fluoresces at an emission wavelength when the dye is contacted with an excitation wavelength, whereby the dye is taken up by or proceeds along the path of the nerve; exposing the nerve or portion of nerve during said operation to illumination comprising said excitation wavelength, thereby causing the fluorescent dye in or along the nerve or portion thereof to fluoresce; and detecting the fluorescence of the dye, thereby determining the location of said nerve or portion of nerve during said surgical operation. In some embodiments, the dye is injected into a cavernous body of the penis. In some embodiments, the injection into the cavernous body is into a crus of said cavernous body. In some embodiments, said dye is injected into a cavernous body of the clitoris, into the vaginal wall, or into both. In some embodiments, the dye is injected by epidural injection. In some embodiments, the nerve is transected during the surgical operation, creating two ends, and the detection of fluorescence of step is used to determine the location of the two ends. In some embodiments, the determination of the location of the two ends of the transected nerve is used to guide resection of nerve tissue between the ends or to reconnect them. In some embodiments, the determination of the location of the nerve is used to avoid transecting said nerve. In some embodiments, the surgical operation is a radical prostatectomy. In some embodiments, the surgical operation is a radical hysterectomy. In some embodiments, the nerve is a cavernous nerve. In some embodiments, the nerve or portion of the nerve is visualized on a image display, thereby permitting determination of the location of the nerve or portion of the nerve. In some embodiments, the exposing of the nerve or portion of nerve to excitation wavelength is by a laparoscopic instrument. In some embodiments, the dye is a dye which fluoresces when exposed to near infrared light. In some embodiments, the dye is a triacarbocyanine dye or an analog thereof. In some embodiments, the triacarbocyanine dye is indocyanine green. In some embodiments, the subject is a human. In some embodiments, the dye is administered between 1 hour and 30 hours before the surgical operation. In some embodiments, the dye is administered between about 18 hours and about 24 hours before the surgical operation. In some embodiments, the dye is administered between about 6 hours and about 24 hours before the surgical operation. In some embodiments, the nerve is the small cavernous nerve. In some embodiments, the nerve is the large cavernous nerve.

BRIEF DESCRIPTION OF THE DRAWINGS

[0012] FIGS. 1a-d. FIG. 1a shows the exposing of the penis of a rat. FIGS. 1b and 1c show the injection of ICG into the crura of the left and right cavernous bodies, respectively. FIG. 1d shows the exposed penile crura and cavernous nerves under near infrared (NIRF) illumination following injection of ICG. Arrows show the location of the cavernous nerves.

[0013] FIG. 2. FIG. 2 shows a cavernous nerve under NIRF illumination following injection of ICG into the crura of the cavernous bodies. The white arrow points to the nerve.

[0014] FIG. 3. FIG. 3 shows a hook electrode (arrow) hooked around a cavernous nerve under NIRF illumination, after ICG injection into the crura of the cavernous bodies.

[0015] FIG. 4. FIG. 4 shows NIRF illumination of a cavernous nerve (arrow) from an animal injected with ICG as described above.

[0016] FIGS. 5a and 5b. FIGS. 5a and 5b are photographs of a cavernous nerve excised from an animal whose penile crura were injected with ICG. FIG. 5a shows the nerve under infrared and LED illumination. FIG. 5b shows the same nerve under NIRF alone.

DETAILED DESCRIPTION OF THE INVENTION

[0017] As set forth in the Background, some dyes and other agents have been used to image nerve cells in the eye and nerves connecting the ear to the central nervous system. Surprisingly, dyes can also be used to image (that is, to permit visualization) of nerves elsewhere in the body and can be used either to reduce the chance that nerves will inadvertently be transected during surgical procedures or to help guide neural grafts when unintended transactions occur or when they cannot otherwise be avoided.

[0018] The original surgical treatment for prostate cancer was radical perineal prostatectomy, which was followed, in the 1940's, by radical retropubic prostatectomy. Both forms of surgery not only typically led to incontinence and to impotence, but also resulted in extensive bleeding, which made it difficult to detect and preserve associated structures. The severity of the side effects from these surgical procedures made radiation therapy for prostate cancer a popular alternative once it was developed in the 1960's. The development of less bloody surgical techniques in the 1970's, however, resulted in the preservation of more structure and less inadvertent damage to blood vessels and to nerves. In the early 1980's, Drs. Patrick Walsh and Pieter Donker were able for the first time to determine that the nerves for the penis did not go through the prostate. In 1982, Dr. Walsh showed it was possible to remove the prostate without severing the nerves innervating the penis. This so-called “nerve sparing” surgery, medically termed “anatomic radical prostatectomy,” properly done, permits retention of potency in many patients. Nonetheless, surgeons still sever the nerves in some patients, leading to loss of potency in those patients. Thus, visualizing the nerves during surgery is highly desirable.

[0019] In particular, the methods of the invention provide for the visualization of cavernous nerve cells during radical prostatectomy (“RP”) and other surgical procedures. The recovery of erectile function is a significant concern for patients undergoing treatment for localized prostate cancer. As noted in the Background, impotence is a common side effect of RP resulting from damage to the cavernous nerves that innervate the penis. Damage to the nerve tissue surrounding the prostate usually results from the surgeon’s inability to distinguish between prostate tissue and nerve tissue. The present invention increases the ability of the surgeon to identify and avoid the cavernous nerves as they traverse the area surrounding the prostate and other abdominal organs and thus to reduce or to prevent damage to those nerves tissue during the course of surgery.
The methods are useful not only to reduce the inadvertent transection of these nerves during prostate surgery, but also to aid in grafting the ends of the nerves if they are transected. In the event of transection, genitofemoral or saphenous nerve grafts can be applied directly to the ends to facilitate sprouting of regenerative neural fibers. In this case, the light visible from the fluorescence of the ends of transected nerves provides a target to guide the anastomosis of the nerves by the nerve graft. The methods can further be used to identify the cavernous nerves in patients undergoing radical pelvic surgeries, such as low anterior resection or abdominal perineal resection.

In the methods of the invention, a fluorescent dye that can be taken up by nerve cells and that has low toxicity is injected into the corpora cavernosa or one corpus cavernosum of the penis (as persons of skill are aware, “corpora cavernosa” is the plural form and “corpus cavernosum” is the singular form. Thus, the practitioner may choose to inject the dye into one corpus cavernosum or into both, depending on whether the practitioner wishes to be able to image one or both of the subject’s cavernous nerves.) For convenience, the corpora cavernosa will sometimes be referred to herein as the “cavernous bodies.”

The injections may be made into the cavernous bodies as they run parallel to each other along the length of the penis, or at the base or root of the penis into the crura, which is the area where the two corpora cavernosa diverge within the subject’s body and anchor to bone. (If the intention is to visualize just one of the cavernous nerves, the injection will be made into the appropriate crus of penis, “crus” being the singular form of “crura.”) In studies underlying the present invention, injections into the cavernous bodies closer to the glans of the penis, and therefore more distal from the body, resulted in less favorable visualization of the nerves than did injections into the crura. Accordingly, injection into the crura is preferred.

In humans, the injections are easily made by pulsating the pubic bone and making the injection about 1 cm distal (along the penis, away from the body) from the pubic bone. This location is the same as that at which patients are taught to self-inject erectile dysfunction drugs to cause erections, so it is well known and relatively easy to find even for the layperson.

Following injection, the dye is transported along the nerves supplying the organ, permitting visualization of the nerve and determination of their location. Without wishing to be bound by theory, it is surmised that at least some of the flow of the dye is in lymphatic channels around the nerve rather than in the nerve itself. This belief arises because, in studies underlying the invention, it was noted that the periphery of the nerve fluoresced more strongly than the middle of the nerve that the speed at which the dye moved along the nerve seemed faster than might be expected from retrograde transport alone.

Since there are two sets of cavernous nerves, which run on the left and right sides of the prostate, the surgeon will generally choose to inject the dye into both the left and the right cavernous bodies of the penis so that both sets of nerves can be visualized. The dye is then transported along the cavernous nerves. Helpfully, accessory nerves may also be visualized by this procedure. Since these nerves can also play some role in achieving erections, the visualization of these nerves and consequent ability to avoid transecting them, or to reconnect them if they are transected, further improves the prospect that the patient will not be impotent following the operation.

In some instances, which are expected to be relatively uncommon, the surgeon may wish to visualize only one cavernous nerve. In these instances, the surgeon may inject dye only into the cavernous body innervated by the cavernous nerve whose visualization is desired. It is contemplated, however, that the surgeon will usually want the ability to visualize and thereby locate, the nerves around both sides of the prostate, in part because visualizing the transected ends will permit the nerves to be bridged (interpositioned) with genitofemoral or saphenous nerve. Additionally, in some prostate cancers, it is difficult for the surgeon to determine where the prostate tissue ends. In such cases, visualization of the nerves through the methods of the invention will assist the surgeon determine the margin between prostate and non-prostate tissue. Accordingly, injection of dye into both cavernous bodies is preferred.

Imaging of the nerves can also be made by injecting the dye by an epidural injection in the area of S2-S4 of the spinal cord level to allow antegrade flow of the dye along the nerve. Tens of thousands of epidural injections are made every year, for example, to women undergoing childbirth, and techniques for making such injections, and for positioning them at desired levels are well known in the art. It is expected that dye injected by epidural injection will undergo transport along the nerves from the spine towards the penis, and will permit visualization of the nerves in a manner like that seen from injections of dye into the cavernous bodies.

In recent years, it has also been recognized that women undergoing gynecological operations, such as hysterectomies, can suffer damage to nerves controlling vaginal erectile tissue in a manner similar to that sustained by men under radical prostatectomy. Nerve damage in the course of radical hysterectomies can also result in post-operative bladder dysfunction due to damage to the pelvic autonomic nerves during surgical resection, as well as other pelvic morbidity. This recognition has led to attempts to develop nerve-sparing techniques for gynecological procedures. See, e.g., Possover, Gynecol Oncol. 2003; 90(2):245-7; Ito and Saito, Eur J Surg Oncol. (2004), 30(10):1137-40; Butler-Manuel et al., (2000), Cancer, 89(4):834-841; Trimpos et al., Int J Gynecol Cancer (2001), 11:180-186.

Based on the results seen in visualizing the cavernous nerves in male animals, it is expected that the same procedures can be used to visualize the nerves innervating homologous structures in women, thereby improving the ability to visualize and locate the nerves during gynecological operations, such as simple and radical hysterectomies. The clitoris contains a glans, shaft, and crura containing cavernous bodies homologous to the structures of the penis. The dye can be injected into the cavernous bodies in the clitoris in a like manner to the injections described above with regard to the penis. Specifically, the dye is injected into the clitoris or into the anterior wall of the vagina just below the clitoris or, preferably, both. Alternatively, or in addition, the dye is administered as an epidural injection at the S2-S4 spinal cord level, at the start of the parasympathetic outflow. It is expected that the improved ability to visualize the
nerves will help the surgeon avoid transecting the nerves or, if the nerves are transected, will help the surgeon identify the cut ends and assist in bridging the gap with a nerve graft or, where possible, reattaching the cut ends.

[0030] Based on the results seen in visualizing the cavernous nerves following injection of dye into the tissue of the organ that they innervate, it is believed that injection of dye into the tissue of other organs will result in the uptake of dye by nerves innervating those organs and will result in the ability to image those nerves. It is not expected, however, that this method will be useful in imaging the brain.

[0031] It is understood that fluorescent dyes have a particular excitation wavelength which causes the dye to fluoresce and emit light of a particular emission wavelength. As persons of skill are aware, there is a considerable literature on the characteristics of different dyes, including their excitation wavelength and emission wavelength.

[0032] The methods described herein are suitable for use in mammals. Examples of mammals for which the techniques can be used include, but are not limited to, non-human primates, dogs, cats, sheep, cows, pigs, horses, mice, rats, rabbits, and guinea pigs. The methods are particularly useful in visualizing nerves in humans, and particularly the cavernous nerves in humans.

Penile Anatomy

[0033] It is assumed that urologic surgeons and other persons of skill are well familiar with the anatomy of the penis, the prostate, and the surrounding areas, and that no detailed discussion is needed here. For purposes of the present discussion, it is noted that the penis can be thought of as comprising three cylinders. Two, the corpora cavernosa, are disposed on either side of the penis, and make up the bulk of the penis. The third, the corpus spongiosum, which contains the urethra, is disposed in the middle of the penis, in a cleft between the undersides of the corpora cavernosa.

A “deep artery” runs down the center of each corpus cavernosum and provides blood to sinusoidal spaces in the respective corpus. During erection, the deep artery is expanded and the sinusoidal spaces are swollen, while the emissary veins that drain blood from the corpus cavernosa are compressed. The sinusoidal spaces within each corpus cavernosum communicate, permitting a common intracavernosal pressure and a common penile rigidity.

[0034] Preganglionic parasympathetic neurons originate from the sacral spinal nuclei at levels S2-S4. The axons travel from the anterior sacral roots and end as cavernous nerves giving innervation to the cavernous bodies. Stimulation of pelvic and cavernous nerves has been shown to result in an erection in animals as well as in humans. Complete loss of erection is observed after bilateral cavernous nerve resection. The sympathetic contribution to the cavernous bodies originates at the T11-L2 level of the spinal cord, and travels through the prevertebral pathway, consisting of lumbar splanchnic nerves, hypogastric nerves, pelvic plexus and cavernous nerves and through the paravertebral chain, leading to the pelvic nerves, pelvic plexus, cavernous and pudendal nerves.

[0035] Stimulation of the paravertebral sympathetic chain results in detumescence. Topographically, cavernous nerves are part of the neurovascular bundle, which travels at the posteroslateral border of the prostate, outside the prostatic capsule and on the anterolateral surface of the rectum. Large superior and small inferior pedicles innervate the base and the apex of the prostate, respectively. After reaching the apex at the 5 and 7 o’clock positions, nerves travel posteroslateral to the urethra. At the level of membranous urethra, they divide into more superficial branches to the sphincter muscle and finally at the level of the hilum of the penis, together with the arteries, the nerves pierce the cavernous bodies and innervate erectile tissue diffusely. A description of the prostatic plexus and associated nerves, including the cavernous nerves, can be found on-line by entering “http://” followed by “edcation.yahoo.com/reference/gray/subjects/subjec
t?id=220”.

Instrumentation

[0036] For convenience, the following discussion will refer to instrumentation optimized for use with the exemplar dye ICG. Persons of skill are, of course, aware of the excitation and emission frequencies of other fluorescent dyes and can adjust the device as needed for use with respect to other dyes as desired.

[0037] Conveniently, the device used for visualization of the nerves in the area of interest comprises both a laser and a camera. For use with ICG, the laser preferably consists of a laser diode providing a maximum of 3W output at 806 nm. For other dyes, the laser diode is selected to provide a light with a wavelength at an excitation frequency appropriate for the dye selected. For convenience of reference, the discussion below refers to an exemplar dye ICG. Persons of skill will recognize that the other dyes mentioned herein as suitable for use in the inventive methods and procedures could be substituted for ICG, with the light source selected or adjusted to provide illumination optimized for the excitation frequency suitable for the particular dye chosen and the device for capturing the light emitted by the dye being selected or adjusted to be able to receive light of the appropriate frequency.

[0038] The laser output is decollimated (i.e., optics are used to spread out the laser light from a tight beam) to provide even illumination over a field of view, for example, 7.6 cm by 7.6 cm at a working distance of 30 cm. The unit typically contains a charge-coupled device (“CCD”) video camera sensitive into the near infrared spectrum and, for use with ICG, is equipped with an 815 nm edge filter. An articulated arm, connected to a wheeled base, supports the laser/camera device. This allows the imaging head to be moved into close proximity to the surgical table and for vertical movement of the head to attain the correct focal distance above the area of interest. The imaging head and extension arm that protrudes over the surgical field is typically covered with an optically transparent sterile drape. The laser can be activated by means of a computer command or by foot pedal. Such laser/camera devices are commercially available. Laser/camera devices suitable for intraoperative imaging are commercially available. In a preferred embodiment, the laser/camera device is a SPY® Intraoperative Imaging System (Novadaq Technologies, Inc., Mississauga, Ontario, Canada).

[0039] For visualizing the cavernous nerves, the ICG is administered by injection into one of the corpus cavernosum of interest, preferably into the crus, permitting the dye to be taken up by the nerve serving that corpus cavernosum, and transported by retrograde transport back towards the pelvic
plexus. Generally, the practitioner will want to visualize both cavernous nerves and will inject the dye into both cavernous bodies. Following an interval sufficient for the dye to be transported throughout the area in which the nerve is to be visualized, a 806 nm excitation light causes the dye to fluoresce, emitting light at 830 nm. The emitted light can then be imaged directly or, preferably, is captured using an imaging system. Typically, the capture system is a charge-coupled device (CCD) camera or CMOS (complementary symmetry metal oxide semiconductor) image sensor, which feeds the image to a monitor so that the surgeon can visualize the fluorescence of the dye in the nerves in the area of interest in real time. Optionally, the camera is also attached to a computer and the image is saved, which not only permits documentation of the nerve’s location and path in the area of interest, but also can be used for training urologic surgeons, nurses, and other medical staff. Typically, the time required for positioning the device is 2 minutes, while the total time that the nerve or nerves are illuminated with laser light is 30 seconds.

[0040] The methods described herein are suitable for use in mammals. Examples of suitable mammals include, but are not limited to, humans, non-human primates, dogs, cats, sheep, cows, pigs, horses, mice, rats, rabbits, and guinea pigs. Use in humans is primates, and particularly in humans, is preferred.

Dyes for imaging

[0041] As persons of skill are aware, fluorescent dyes have a particular excitation wavelength which causes the dye to fluoresce and emit light of a particular emission wavelength. Persons of skill will appreciate that a considerable literature is available in the art on the characteristics of different dyes, including their excitation wavelength and emission wavelength. This literature is well known, and will not be set forth in detail herein.

[0043] Fluorescent dyes suitable for use in the methods of the invention are non-toxic dyes which fluoresce when exposed to radiant energy, e.g., light. Preferably, the dyes are near infrared fluorochromes, or “NIRF” that emit light in the near infra red spectrum. In some embodiments, the dye is a tricarbocyanine dye, and in particularly preferred embodiments, is indocyanine green (“ICG”). ICG is commercially available from, for example, Akom, Inc. (Buffalo Grove, Ill.), which sells it under the name IC-GREEN™. In other embodiments the dye is selected from fluorescein isothiocyanate, rhodamine, phycocerythrin, phycocyanin, allophycocyanin, o-phthaldialdehyde, fluoresceine, Rose Bengal, trypan blue, and fluoro-gold. The dyes may be mixed or combined. In some embodiments, dyes analogs may be used. A “dye analog” is a dye that has been chemically modified, but still retains its ability to fluoresce when exposed to radiant energy of an appropriate wavelength. ICG, Fast Blue and Fluorogold have all been used in mammals with low evidence of neuronal toxicity and are preferred.

[0044] ICG is particularly preferred because it has low toxicity and because it has been approved by the Food and Drug Administration for several diagnostic purposes in humans. Its absorption (excitation) and emission peaks (805 and 835 nm, respectively) lie within the “optical window” of tissue, where absorption due to endogenous chromophores is low. Near infrared light can therefore penetrate tissue to a depth of several millimeters to a few centimeters. After intravenous injection, ICG is bound within 1 to 2 seconds, mainly to globulins (1-lipoproteins), and remains intravascular, with normal vascular permeability. ICG is not metabolized in the body and is excreted exclusively by the liver, with a plasma half-life of 3 to 4 minutes. It is not reabsorbed from the intestine and does not undergo enterohepatic recirculation. Commercially available ICG contains iodine and should not be administered to persons with a history of reaction to iodine. The recommended dose for ICG video angiography is 0.2 to 0.5 mg/kg; the maximum daily dose should not exceed 5 mg/kg.

[0045] For intraoperatively visualizing the cavernous nerves, the surgical field, or the portion of the surgical field in which imaging is desired, is illuminated with a light of the excitation wavelength or wavelengths suitable for the dye or dyes used. Since the nerves are quite thin (accounting in part for the difficulty in discerning them with the unaided eye), ambient light may need to be dimmed to permit the fluorescence to be seen. Observation will typically also require magnification. Where the excitation wavelength is outside of the visible range (where, for example, the excitation wavelength is in the ultraviolet or near infrared range), the light source may be designed to permit switching or “toggling” between the excitation wavelength and visible light. This permits the practitioner to note the position of the nerves using the fluorescent property in relation to the rest of the surgical field and surrounding (but non-fluorescent) structures.

[0046] In some embodiments, an instrument having an optical configuration similar to a fluorescence microscope may be used, in which a dichroic mirror is used to split the paths of the illumination (the excitation light). The excitation light reflects off the surface of the dichroic mirror into the objective, while the fluorescence emission passes through the dichroic mirror to the eyepiece or is converted into a signal to be presented on a screen. The instrument may
further have an excitation filter or an emission filter, or both, to select the wavelengths appropriate for each function. Conveniently, the filters are interference filters, which block transmission of frequencies out of their bandpass.

[0047] The dye is typically administered by an injection into one or both of the corpora cavernosa. Typically, the dye will be administered some hours preoperatively, to permit the dye to be taken up by the nerves and transported throughout the area of interest prior to commencing the radical prostatectomy or other surgical operation.

[0048] Conveniently, the dye may be administered in the patient’s room. Typically, the dye is administered sufficiently before the intended surgery to permit the nerves to take up the dye and to transport it over the length of their axons, but not so long before the surgery that the dye has been transported in large part to the cell body. Preferably, the dye is administered more than 2 hours, but less than 48 hours, before the intended surgery. More preferably, the dye is administered at least about 5 hours but not more than 40 hours before the intended surgery. In some embodiments, the dye is administered at least about 10 hours but not more than 36 hours before the intended surgery. In other embodiments, the dye is administered at least about 14 hours but not more than 50 hours before the intended surgery. In preferred embodiments, the dye is administered between about 16 hours to 26 hours before the intended surgery. In still preferred embodiments, the dye is administered between about 18 hours to about 24 hours before the intended surgery, with “about” meaning an hour on either side.

[0049] The maximum daily dosage of ICG for adults is 2 mg/kg. There is no data available describing the signs, symptoms, or laboratory findings accompanying an overdose of ICG. The LD50 after IV administration ranges between 60 and 80 mg/kg in mice, 50 and 70 mg/kg in rats, and 50 to 80 mg/kg in rabbits.

EXAMPLES

Example 1

[0050] Intraoperative video angiography is performed with a laser-fluorescence imaging device (Novadaq Technologies, Inc., Mississauga, Ontario, Canada) consisting of a near infrared (NIR) laser light source and a NIR-sensitive digital camcorder. For measurements, the unit is positioned 30 to 40 cm from the area of interest. ICG, dissolved in water, is then injected as a bolus. The NIR light emitted by the laser light source induces ICG fluorescence. The fluorescence is recorded by a digital video camera, with optical filtering to block ambient and laser light so that, when desired, only ICG fluorescence is captured. Images can be observed on screen in real time (25 images/sec). The images can be reviewed and stored on the digital video camera or transferred to a computer or to storage media.

Example 2

[0051] The rat cavernous nerve model is well-recognized as a model for radical retropubic prostatectomy-associated neurogenic erectile dysfunction and has distinctive advantages over the other animal models. The rat cavernous nerves are single neural bundles that run alongside the prostate on either side. They are easily identified and are ideal neural bundles to evaluate the ability of neuro tracer to highlight pelvic nerves. Further, electrical stimulation is easily accomplished and yields reliable and reproducible results. Additionally, neurophysiological studies are feasible, and animal purchase, housing, and maintenance costs are low. The medical literature describes the successful use of Sprague-Dawley rats for the assessment of erectile dysfunction after cavernous nerve injury.

[0052] The animals are divided into three groups: Group I, placebo injection; group II intracavernous ICG injection; group III Fluorogold injection. Groups I-III are subdivided into 3 sub-groups, according to the timing for intraoperative evaluation of axonal fluorescent staining in cavernous nerves. Retrograde injection of placebo (distilled water) or fluorochromes, ICG or Fluorogold, is administered by intraperitoneal sub-albugineal injection of 25 µl of ICG diluted in 100 µl of water for injection, per cavernous body.

[0053] Sprague-Dawley rats, 60 to 100 days old, weighing 275-325 grams are used. All animals are anesthetized using intraperitoneal injection of Ketamine/Xylazine (40-80 mg/kg and 5/10 mg/kg, respectively). No pre-anesthetic medications are used. When appropriate depth of anesthesia is reached, positioning of the animal takes place. All animals are fastened to a padded rack in the supine position using gauze knots to fix all four extremities to the rack equipped with heating device. Depth of anesthesia, regularity of respirations, and heart beat palpation are repeatedly checked. A pulse oximeter is used to monitor the animal.

[0054] Surgery/Procedure starts after appropriate preparation of surgical field by Povidone-Iodine scrub, 70% Isopropyl Alcohol and Povidone-Iodine solution. The surgical field includes the genital area, lower abdomen and perineum. The penis is squeezed out from prepuce, then stretched using finger grip at the glans and, when maximally stretched, a clamp used for traumatic clamping in neurosurgical operation on brain aneurysms is placed at the root of the penis. This allows blood to pool inside cavernous bodies, an erection, and easier application of a 27 Gauge butterfly needle to sub-albugineal space bilaterally. Adequate placement is assured when blood is easily aspirated. 0.5 mg/kg of ICG and 1 mg/kg of Fluorogold diluted in distilled water to total volume of 50 µl is injected, 25 µl per cavernous body. A placebo group is injected using 251/ of distilled water per cavernous body. Animals in all groups have an exploratory laparotomy through midline lower incision, with intraoperative identification of cavernous nerves. Midline incisions are made from umbilicus to pubis. Bowels and testiciles, after their release from scrotal attachments, are packed back to upper abdomen. For better visualization of the pelvic structures, surgical loops with 3.8x magnification are used. In all animals, pelvic ganglion and cavernous nerves are identified bilaterally. The pressure at the level of penile base is held for 15 minutes to allow better penetration of injected fluorochromes into neural endings in cavernous bodies. After release of the clamps, the 27 Gauge needles are removed, but a slight pressure by fingers at the injection sites is maintained for 3-5 minutes to prevent extravasation. Buprenorphine (0.01-0.05 mg/kg) is administered intraoperatively and then as needed to control pain.

[0055] Post-procedurally, optimal recovery is routinely performed in all animals: animals are kept warm using warming packs, pads and lamps, the animals are placed on a paper towel, and are rotated from side to side every 15
minutes until they are able to maintain sternal recumbence. 3-4 ml of Lactated Ringer solution, warmed to 37° C., is administered subcutaneously, unilaterally in the flank region. This prevents postoperative dehydration of the animal. Animals are attended at all times during postoperative recovery. The animals are then returned to cages, and hydration is assessed on a daily basis with desired volume of 60-80 ml/kg/day, which translates to approximately 30 ml of fluids per 300 g animal, per day. Similarly, a 300 gram rat which is estimated to be 10% dehydrated would need to have 300 g × 0.10 × 30 ml of fluids replaced per day. Analgesia is used for all animals for postoperative pain. Animals are checked for signs of pain every 6 hours during first 24 hours post-surgery and then every 12 hours until sacrifice surgery. Signs of acute pain are guarding (protecting the painful area), vocalization, especially when the animal moves or the painful area is touched, licking, biting, scratching or shaking a particular area, restlessness, such as pacing and repeatedly lying down and getting up again (sativistic behavior), lack of mobility as seen with joint, colic or gut pain or an unusual gait posture during movement, failure to groom, causing an unkempt appearance (rats accumulate red porphyrin around the eyes when they fail to groom properly), abnormal resting postures in which the animal appears to be sleeping or is hunched up and cannot get comfortable, failure to show normal patterns of inquisitiveness or alertness, loss of appetite or reduction in water consumption, and changes in behavior or signs of aggression.

To perform neurostimulation and harvesting of cavernous nerves and cavernous bodies, the rats undergo a second surgery (non-survival) and postmortem harvesting at chosen timepoints after fluorochrome injection.

Anesthesia identical to the first procedure is administered and then appropriate skin preparation for surgery is performed. The same level of incision is used in second surgery/harvesting procedure. The bladder and prostate are exposed as in the first surgery. The penis is demided of skin and then prep circumscribed. Cavernous nerves, located lateral to urethra and prostate bilaterally, are identified using the SPY® Imaging System (Novadaq Technologies, Inc. Toronto, Canada) and isolated for electrode placement. A stainless-steel bipolar electrode with parallel hooks (1 mm apart) is placed around a cavernous nerve and positioned by micromanipulator. The electrode cable is attached to a Grass S48 stimulator (Quincy, Mass.), with stimulation parameters 16 Hz, 5 msec duration, 0.5 to 4 volts. To monitor the intracavernous pressure (ICP), a heparinized (100 units per 1 ml NS) 24 gauge angiocath (Infyte-N, Becton Dickinson Vascular Access, Sandy, Utah), attached to polyethylene-50 tubing, is inserted in the rat's right cavernous body. A cannula inserted to the right cavernous body is connected to a pressure transducer and an amplifier unit (Harvard Apparatus, Holliston, Mass). The amplifier is connected to a data acquisition module (DI-190, Dataq Instruments, Akron, Ohio). The data is recorded on a computer with Windaq/Lite recording software (Dataq). Similarly, Central Arterial Pressure (CAP) is measured after appropriate placement of silicone tube into common carotid artery identified just lateral to the trachea. This allows measurement of the cavernous/central arterial pressure ratio and accurate assessment of erection in animal after cavernous nerve stimulation. When ICP measurements are completed, the animal is euthanized by performing elongation of abdominal incision with opening of the chest and use of large vascular clip to ligate aorta and vena cava at the exit/entrance from/to the heart. Death of the animal is confirmed using pulse oximeter and observation of complete absence of heart contractions. Both cavernous nerves are harvested in full length after appropriate exposure of the pelvic structures bilaterally, close to the pubis. Nerves are transected and an excised segment is fixed in 1.5 ml, 5% formalin, and contralateral segment is frozen in liquid nitrogen for further analysis.

Already demulated cavernous bodies are transected close to their roots and divided tangentially. Identical fixation and storage are used for cavernous bodies as for cavernous nerves. At the end of non-survival surgery cavernous nerves are harvested as well as cavernous bodies using NS and 10% Formaldehyde adequately marked tubes. Half of the specimen is placed into Formalin Aldehyde and half into NS. These are sent for pathologic assessment of the structures for presence of fluorochrome in cavernous bodies and presence of axonal trace in cavernous nerves. Electronic microscopy is used to assess subcellular integrity of the neural and myovascular structures.

Example 3

To determine whether crural injections of dye would also result in the ability to image the cavernous nerves, 0.22 ml f 0.25 mg/ml of ICG was injected subcutaneously into both crura of 22 rats. The area was scanned for retrograde axonal transport at different time points, using a NIRF intraoperative imaging system (SPY®, Novadaq Technologies Inc., Mississauga, Ontario, Canada) that illuminates tissues with a 805 nm laser and captures images with a camera sensitive to infrared fluorescence. Near infrared microscopy and conventional histology were used to confirm the macroscopically identified fluorescent structures.

Intracavernous injection of ICG permitted identification of the nerves at 6, 8, 12, 18, 24 and 36 hours post-operatively. (These were specific time points at which examinations were made. It can be assumed that the nerves would have also fluoresced and therefore permitted identification of the nerves at times, such as 20 hours and 30 hours, between those at which the nerves were examined.) Although other penile structures fluoresced for extended periods, fluorescence of the cavernous nerves was not detectable at longer post-injection periods (e.g., 30 days). The highest intensity was achieved at 18 and at 24 hours post-injection. NIRF and hematoxylin and eosin (H&E) staining was used to confirm that the fluorescence observed macroscopically coincided with the cavernous nerves.

Example 4

The cavernous nerves of rats were imaged using ICG following the protocol set forth in the preceding Examples. FIGS. 1a, b, and e show the exposing of the penis and injection of ICG into the crura of the cavernous bodies. FIG. 1f shows the penile crura and cavernous nerves under near infrared (NIRF) illumination following injection of ICG.

FIG. 2 shows a cavernous nerve under NIRF. The white arrow points to the nerve. In a series of studies, nerves were identified in situ at 6, 8, 12, 18, 24, and 36 hours post ICG injection. The highest fluorescent intensity was noted at
18 and at 24 hours post injection. The fluorescent nerves were then excised. NIRF and hematoxylin and eosin (H&E) staining were used to confirm that the fluorescence observed macroscopically coincided with the cavernous nerves. FIG. 3 shows a hook electrode hooked around a cavernous nerve under NIRF, after ICG injection as described above. FIG. 4 shows NIRF illumination of a cavernous nerve (arrow) from an animal injected with ICG as described above.

[0063] FIGS. 5a and 5b are photographs of a cavernous nerve excised from an animal injected with ICG as described above. FIG. 5a shows the nerve under infrared and LED illumination. FIG. 5b shows the same nerve under NIRF alone. The surgeon can alternate at will between visualizing the nerve under normal illumination (with or without infrared illumination) and by fluorescence induced by NIRF illumination.

[0064] It is understood that the examples and embodiments described herein are for illustrative purposes only and that various modifications or changes in light thereof will be suggested to persons skilled in the art and are to be included within the spirit and purview of this application and scope of the appended claims. All publications, patents, and patent applications cited herein are hereby incorporated by reference in their entirety for all purposes.

What is claimed is:

1. A method of determining the location of a nerve or portion of a nerve of interest in a subject during a surgical operation, comprising:
 a) prior to said surgical operation, administering to an organ or area of said subject innervated by said nerve or portion of a nerve of interest a dye which fluoresces at an emission wavelength when said dye is contacted with an excitation wavelength, whereby said dye is taken up by or proceeds along the path of said nerve;
 b) exposing said nerve or portion of nerve during said operation to illumination comprising said excitation wavelength, thereby causing said fluorescent dye in or along the nerve or portion thereof to fluoresce;
 c) detecting the fluorescence of said dye, thereby determining the location of said nerve or portion of nerve during said surgical operation.

2. A method of claim 1, wherein said dye is injected into a cavernous body of the penis.

3. A method of claim 2, wherein said injection into said cavernous body is into a crus of said cavernous body.

4. A method of claim 1, wherein said dye is injected into a cavernous body of the clitoris, into the vaginal wall, or into both.

5. A method of claim 1, wherein said dye is injected by epidural injection.

6. A method of claim 1, wherein said nerve is transected during the surgical operation, creating two ends, and the detection of fluorescence of step (c) is used to determine the location of the two ends.

7. A method of claim 6, wherein said determination of the location of the two ends is used to guide grafting of nerve tissue between the ends or to reconnect them.

8. A method of claim 1, wherein said determination of the location of said nerve is used to avoid transecting said nerve.

9. A method of claim 1, wherein said surgical operation is a radical prostatectomy.

10. A method of claim 1, wherein said surgical operation is a radical hysterectomy.

11. A method of claim 8, wherein said nerve is a cavernous nerve.

12. A method of claim 1, wherein said nerve or said portion of said nerve is visualized on an image display, thereby permitting determination of the location of said nerve or portion of said nerve.

13. A method of claim 1, wherein said exposing of said nerve to excitation wavelength is by a laparoscopic instrument.

14. A method of claim 1 wherein said dye is a dye which fluoresces when exposed to near infrared light.

15. A method of claim 1, wherein said dye is a tricarbocyanine dye or an analog thereof.

16. A method of claim 15, wherein the tricarbocyanine dye is indocyanine green.

17. A method of claim 1, wherein the subject is a human.

18. A method of claim 1, wherein said dye is administered between 1 hour and 30 hours before said surgical operation.

19. A method of claim 1, wherein said dye is administered between about 18 hours and about 24 hours before said surgical operation.

20. A method of claim 1, wherein said dye is administered between about 6 hours and about 24 hours before said surgical operation.

21. A method of claim 8, wherein the nerve is the small cavernous nerve.

22. A method of claim 8, wherein the nerve is the large cavernous nerve.