This invention relates to holders for electric irons in which the iron may be placed while hot, and has more particular reference to a holder of this character adapted to be secured on a wall so as to be out of the way although supporting the iron in position for convenient use.

An object of the present invention is to provide a holder of the above kind which will positively prevent the iron from being upset or displaced, and which embodies efficient means to prevent scorching of the wall when the iron is inserted in the holder while hot.

Another object of the present invention is to provide a holder of the above kind embodying a support which includes a mounting plate and an insulating pad carried by said plate to be contacted by the bottom of the iron, the insulating pad being spaced from said mounting plate so as to effectively prevent scorching of the wall to which the holder is secured.

Another object of the invention is to provide means for vertically adjusting the insulating pad with respect to the mounting plate so as to satisfactorily accommodate the holder of irons of varying sizes.

The present invention further contemplates provision of means on the holder proper onto which the electric cord of the iron may be wound in a compact condition free of damaging influence.

With the above general objects in view, and others that will become apparent as the nature of the invention is better understood, such invention consists in the novel form, combination and arrangement of parts hereinafter more fully described, shown in the accompanying drawings and claimed.

In the drawings:

Figure 1 is a front elevational view of an electric iron holder constructed in accordance with the present invention.

Figure 2 is a side elevational view thereof.

Figure 3 is a rear elevational view of the same.

Figure 4 is an enlarged horizontal section on line 4—4 of Figure 1; and

Figure 5 is an enlarged perspective view of one of the iron retaining members which engage over the sides of the iron and constitute part of the device shown in the remaining figures.

Referring in detail to the drawings, the present iron holder includes a metallic mounting plate 5 which may be made in the general shape of a flatiron but slightly larger in size, and this supporting plate is provided at opposite ends with rearwardly offset ears 6 and 7 adapted to receive screws 8 or like fasteners by means of which the supporting plate 5 is rigidly secured to a vertical support or wall 9 in slightly spaced relation to the latter as indicated at 10. The supporting plate 5 is provided at its lower end with side arcuate flanges 11 and an intermediate downwardly curved flange 12 connecting said side flanges 11 and forming with the latter rest elements for the heel portion of the iron when placed in the holder as shown by dotted lines in Figure 2.

When so positioned, the corners of the heel of the iron have contact with the arcuate flanges 11, and the downwardly curved flange 12 is out of contact with the heel of the iron and simply engages the attachment cord socket of the iron at its forward edge as indicated at 13. This prevents upsetting of the iron and contact is presented between the iron and the flange 12 of the supporting plate 5 to minimize heating of the latter when the iron is placed in the holder while hot.

Carried by and arranged in front of the supporting plate 5 in spaced relation to the latter is an insulating pad 14 which preferably consists of a metallic casing formed of sheets of metal with a sheet 15 of asbestos placed and secured therebetween. The pad 14 has spaced bolts 16 rigid with and projecting rearwardly therefrom and arranged to be received in desired ones of longitudinally arranged holes 17 provided in the supporting plate 5, nuts 18 being threaded on these bolts to secure the pad in position and suitable spacers 19 being provided on the bolts between the pad 14 and the base plate 5 so that the pad 14 is disposed in front of and in spaced relation to said supporting plate 5 as shown clearly in several of the views. By reason of the bolts 16 and openings 17, the pad 14 may be adjusted vertically with respect to the supporting plate 5 so as to locate the pad 14 in the most advantageous position with respect to the supporting plate 5, according to the particular size of the iron to be held or supported. Also, the spaced relation of pad 14 to supporting plate 5 further minimizes transmission of heat to the supporting plate 5 when the iron is placed in the holder while hot. The front metal sheet of the pad 14 may be advantageously perforated to expose the intermediate sheet of asbestos 15 where the perforations occur, without unduly exposing the asbestos sheet to damage and mutilation.

In order to effectively prevent lateral displacement or tilting of the iron when engaged with the flanges 11 and 12 in the holder, the device includes side retaining members in the form...
of stiff wires or rods bent into general U-shape and then having the leg portions thereof bent at right angles to provide the legs with forwardly extending rear portions 20 laterally and inwardly extending front portions 21 and an intermediate portion 22 connecting the forward leg portions 21. The portions 21 and 22 of the side retaining members overlie the top of the iron at the sides of the latter and effectively hold the iron against the pad 14, while the rear or outer portions 20 of the legs engage the sides of the iron and effectively prevent lateral displacement of the latter. The leg portions 20 preferably have reduced free ends 23 threaded and passed through the base or supporting plate 5, nuts 24 being secured on these threaded ends to firmly fasten the side retaining members in place.

Rigid with and depending from the bottom of the supporting plate 5 at opposite sides of the latter are strips 25 having forwardly projecting hooks 26 rigid with their lower ends. The hooks 26 are thus disposed in spaced relation and horizontal alignment beneath the bottom of supporting plate 5 in convenient position to have the attachment cord of the iron wound thereon in an unkinked and compact condition as is most desirable when the iron is not in use.

From the foregoing description, it will be seen that I have provided an exceedingly simple and efficient holder of the kind described by means of which the stated objects of the invention may be effectively carried out. Minor changes in the specific construction and details illustrated and described are contemplated within the spirit and scope of the invention as claimed.

What I claim as new is:

1. An iron holder of the character described including a vertical supporting plate larger than and of a shape substantially conforming to the outline of the bottom of the iron to be held, means to facilitate fastening of said supporting plate to a vertical support or wall in spaced relation to the latter, side iron retaining elements carried by the supporting plate behind which the iron may be engaged, supporting elements at the bottom of the supporting plate forming a rest for the heel of the iron, an insulating plate secured to the front of said supporting plate in parallel spaced relation to the latter, and a downwardly curved flange on the lower edge of the supporting plate arranged to be out of contact with the heel of the iron and engage only the attachment cord socket of the latter at the forward edge of said flange, said supporting elements including arcuate flanges connected by said downwardly curved flange and provided on the sides of the lower portion of the supporting plate to be contacted only by the corners of the heel of the iron.

2. An iron holder of the character described including a vertical supporting plate larger than and of a shape substantially conforming to the outline of the bottom of the iron to be held, means to facilitate fastening of said supporting plate to a vertical support or wall in spaced relation to the latter, side iron retaining elements carried by the supporting plate in parallel spaced relation to the latter, and a downwardly curved flange on the lower edge of the supporting plate arranged to be out of contact with the heel of the iron and engage only the attachment cord socket of the latter at the forward edge of said flange, said supporting elements including arcuate flanges connected by said downwardly curved flange and provided on the sides of the lower portion of the supporting plate to be contacted only by the corners of the heel of the iron.