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A closed-loop system for insulin infusion overnight uses a
model predictive control algorithm (“MPC”). Used with the
MPC is a glucose measurement error model which was
derived from actual glucose sensor error data. That sensor
error data included both a sensor artifacts component,
including dropouts, and a persistent error component,
including calibration error, all of which was obtained experi-
mentally from living subjects. The MPC algorithm advised
on insulin infusion every fifteen minutes. Sensor glucose
input to the MPC was obtained by combining model-
calculated, noise-free interstitial glucose with experimen-
tally-derived transient and persistent sensor artifacts asso-
ciated with the FreeStyle Navigator® Continuous Glucose
Monitor System (“FSN”). The incidence of severe and
significant hypoglycemia reduced 2300- and 200-fold,
respectively, during simulated overnight closed-loop control
with the MPC algorithm using the glucose measurement
error model suggesting that the continuous glucose moni-
toring technologies facilitate safe closed-loop insulin deliv-

ery.
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INTEGRATED CLOSED-LOOP MEDICATION
DELIVERY WITH ERROR MODEL AND
SAFETY CHECK

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] The present application is a continuation of U.S.
application Ser. No. 14/083,336 filed Nov. 18, 2013, which
is a continuation of U.S. application Ser. No. 13/240,855
filed Sep. 22, 2011, now U.S. Pat. No. 8,585,637, which is
a divisional of U.S. application Ser. No. 12/751,668 filed
Mar. 31, 2010, now U.S. Pat. No. 8,062,249, which claims
the benefit of U.S. Provisional Application No. 61/248,353,
filed Oct. 2, 2009, U.S. Provisional Application No. 61/173,
133, filed Apr. 27, 2009, and U.S. Provisional Application
No. 61/165,467, filed Mar. 31, 2009, all of which are
incorporated herein by reference in their entireties for all
purposes.

BACKGROUND

[0002] The invention is generally directed to an integrated
system of blood glucose level detection and use of that
information in setting insulin delivery parameters, and more
particularly, to the use of actual sensor data in characterizing
a sensor for use in performing preclinical closed-loop trial
studies in silico.

[0003] Diabetes is a metabolic disorder that afflicts tens of
millions of people throughout the world. Diabetes results
from the inability of the body to properly utilize and
metabolize carbohydrates, particularly glucose. Normally,
the finely-tuned balance between glucose in the blood and
glucose in bodily tissue cells is maintained by insulin, a
hormone produced by the pancreas which controls, among
other things, the transfer of glucose from blood into body
tissue cells. Upsetting this balance causes many complica-
tions and pathologies including heart disease, coronary and
peripheral artery sclerosis, peripheral neuropathies, retinal
damage, cataracts, hypertension, coma, and death from
hypoglycemic shock.

[0004] In patients with insulin-dependent diabetes, the
symptoms of the disease can be controlled by administering
additional insulin (or other agents that have similar effects)
by injection or by external or implantable insulin pumps.
The “correct” insulin dosage is a function of the level of
glucose in the blood. Ideally, insulin administration should
be continuously readjusted in response to changes in blood
glucose level. In diabetes management, “insulin” instructs
the body’s cells to take in glucose from the blood. “Gluca-
gon” acts opposite to insulin, and causes the liver to release
glucose into the blood stream. The “basal rate” is the rate of
continuous supply of insulin provided by an insulin delivery
device (pump). The “bolus” is the specific amount of insulin
that is given to raise blood concentration of the insulin to an
effective level when needed (as opposed to continuous).
[0005] Presently, systems are available for continuously
monitoring blood glucose levels by implanting a glucose
sensitive probe into the patient. Such probes measure vari-
ous properties of blood or other tissues, including optical
absorption, electrochemical potential, and enzymatic prod-
ucts. The output of such sensors can be communicated to a
hand held device that is used to calculate an appropriate
dosage of insulin to be delivered into the blood stream in
view of several factors, such as a patient’s present glucose
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level, insulin usage rate, carbohydrates consumed or to be
consumed, and exercise, among others. These calculations
can then be used to control a pump that delivers the insulin,
either at a controlled basal rate, or as a bolus. When provided
as an integrated system, the continuous glucose monitor,
controller, and pump work together to provide continuous
glucose monitoring and insulin pump control.

[0006] Such systems at present require intervention by a
patient to calculate and control the amount of insulin to be
delivered. However, there may be periods when the patient
is not able to adjust insulin delivery. For example, when the
patient is sleeping, he or she cannot intervene in the delivery
of insulin, yet control of a patient’s glucose level is still
necessary. A system capable of integrating and automating
the functions of glucose monitoring and controlled insulin
delivery would be useful in assisting patients in maintaining
their glucose levels, especially during periods of the day
when they are unable to intervene.

[0007] Since the year 2000, at least five continuous or
semi-continuous glucose monitors have received regulatory
approval.! In combination with continuous subcutaneous
insulin infusion (“CSII”),*> these devices have promoted
research toward closed-loop systems, which deliver insulin
according to real-time needs, as opposed to open-loop
systems which lack the real-time responsiveness to changing
glucose levels. A closed-loop system, also called the “arti-
ficial pancreas,” consists of three components: a glucose
monitoring device such as a continuous glucose monitor
(“CGM”) that measures subcutaneous glucose concentration
(“SC”); a titrating algorithm to compute the amount of
analyte such as insulin and/or glucagon to be delivered; and
one or more analyte pumps to deliver computed analyte
doses subcutaneously. So far, only a few prototypes have
been developed, and testing has been confined to clinical
settings.>® However, an aggressive concerted effort prom-
ises accelerated progress toward home testing of closed-loop
systems.

[0008] The development, evaluation, and testing of
closed-loop systems are time-consuming, costly, and con-
founded by ethical and regulatory issues. Apart from early
stage testing in animals such as the dog”'° or the swine,"!
testing in the computer (virtual) environment, also termed in
silico testing, is the only other alternative to evaluate and
optimize control algorithms outside human studies. Chassin
and colleagues have developed a simulation environment
and testing methodology'? using a glucoregulatory model
developed in a multitracer study’® and evaluated a glucose
controller developed within the Adicol Project.'* Another
simulator has been reported by Cobelli and associates,"’
building on model-independent quantification of glucose
fluxes occurring during a meal.' The latter simulator has
been accepted by the U.S. Food and Drug Administration to
replace animal testing. Patek and coworkers provided guide-
lines for preclinical testing of control algorithms.'”

[0009] However, such simulations have used mathemati-
cal models of glucose sensors in which random data is used
for simulating errors of the sensor. Random number gen-
erators are used to simulate random errors of such sensors
based on noise of the sensor. Such data are therefore not
based on the actual performance of any particular sensor and
are likely to have a significant level of inaccuracy.

[0010] Closed-loop systems may revolutionize manage-
ment of type 1 diabetes mellitus (“T1DM”), but their intro-
duction is likely to be gradual, starting from simpler appli-
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cations such as hypoglycemia prevention or overnight
glucose control and progressing to more complex
approaches such as twenty-four hours per day/seven days
per week (24/7) glucose control.® The main reason for
gradual deployment is the uncertain risk of hypoglycemia
and hyperglycemia, which may arise due to (1) intrinsic
overdosing and underdosing of insulin by a control algo-
rithm, and (2) persistent and transient differences between
plasma glucose (“PG”) and sensor glucose (“SG”). The
transient differences could be either of physiological origin
(SC glucose kinetics) or due to a temporal CGM device
artifact. The persistent differences result from the CGM
calibration error (“CE”). The relatively slow absorption of
subcutaneously administered “rapid-acting” insulin ana-
logues and other system imperfections such as pump deliv-
ery errors may exacerbate the hypoglycemia and hypergly-
cemia risks.

[0011] Hence, those of skill in the art have recognized a
need for an integrated, automated system combining con-
tinuous glucose monitoring and controlled insulin delivery.
Such a system would include various features to insure the
accuracy of the glucose monitor and to protect the user from
either under- or over-dosage of insulin. The system would
include various functions for improving the accuracy,
usability, control, and safety of the system, including a
variety of alarms which could be set by a user or a technician
to avoid false alarms while ensuring adequate sensitivity to
protect the user. Those skilled in the art have also recognized
aneed for a more accurate glucose measurement error model
for increasing the accuracy of closed-loop systems. The
present invention fulfills these, and other needs.

SUMMARY OF THE INVENTION

[0012] Briefly and in general terms, the present invention
is directed to a system for the delivery of insulin to a patient,
the system comprising a glucose sensor configured to pro-
vide a sensor glucose measurement signal representative of
sensed glucose, an insulin delivery device configured to
deliver insulin to a patient in response to control signals, and
a controller programmed to receive the sensor glucose
measurement signal and to provide a delivery control signal
to the delivery device as a function of the received sensor
glucose measurement signal in accordance with a control
model and a glucose measurement error model, wherein the
glucose measurement error model is derived from actual
glucose sensor measurement data.

[0013] In more detailed aspects, the glucose measurement
error model is derived solely from actual glucose sensor
measurement data. In another aspect, the glucose measure-
ment error model is derived solely from actual glucose
sensor error data, excluding sensor noise data. In another
aspect, the glucose measurement error model is derived
solely from actual glucose sensor measurement data to the
exclusion of randomly-generated variable data. In yet a
further aspect, the glucose measurement error model is
derived solely from a fixed time history of error data from
actual use of a glucose sensor of the same type as the sensor
of the system. And in yet another aspect, the glucose
measurement error model is derived from actual glucose
sensor measurement data from a glucose sensor of the same
type as the sensor of the system.

[0014] In more detailed aspects, the control model com-
prises a model predictive control and the controller is also
programmed to provide the delivery control signals to the
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delivery device as a function of a model predictive control.
The glucose measurement error model is derived from
calibration error of the glucose sensor, which comprises the
difference between a plasma glucose level and the sensor
glucose level signal of the glucose sensor. Further, the
glucose measurement error model is derived from a glucose
sensor dropout reading.

[0015] In other aspects, the controller is further pro-
grammed to recalibrate the system when the difference
between the received sensor glucose level signal and a
plasma glucose level exceeds a predetermined level. The
delivery control signal is also a function of the weight of a
patient, a total daily insulin dose, and a basal insulin profile,
and wherein the controller is also programmed to calculate
from the control model an accepted value, the controller is
also programmed to calculate from the glucose level signal
an inferred value, the controller is also programmed to
forecast a future plasma glucose level excursion based on
the accepted value and inferred value, and the controller is
also programmed to adjust the delivery control signal in
accordance with the forecast future plasma glucose level
excursion. In more detailed aspects, the accepted value
comprises an insulin sensitivity of the patient, a glucose
distribution volume, and an insulin distribution volume, and
the inferred value comprises glucose flux and a carbohydrate
bioavailability.

[0016] In yet further aspects, the controller is also pro-
grammed to adjust a value of the delivery control signal in
accordance with a safety check. Such safety check com-
prises at least one of imposing a maximum infusion rate
related to a basal rate depending on a current sensor glucose
level, time since a previous meal, and carbohydrate content
of a meal, shutting off insulin delivery at a predetermined
low sensor glucose value, reducing insulin delivery when
sensor glucose is decreasing rapidly, and capping the insulin
infusion to a pre-programmed basal rate if an insulin deliv-
ery pump occlusion is inferred.

[0017] In another aspect, the glucose sensor, the insulin
delivery device, and the controller are virtual devices, each
being programmed for in silico testing of a system for
delivery of insulin to a virtual patient.

[0018] The invention is also directed to a method for
delivering insulin to a patient, the method comprising sens-
ing a glucose level and providing a glucose measurement
signal representative of the sensed glucose, providing a
control signal as a function of the glucose measurement
signal in accordance with a control model and a glucose
measurement error model, wherein the glucose measure-
ment error model is derived from actual/experimental glu-
cose sensor data, and delivering insulin in response to the
control signal. In a more detailed aspect, providing the
control signal further comprises producing the control signal
in accordance with a model predictive control.

[0019] In more detailed aspects, the glucose measurement
error model used in the method is derived solely from actual
glucose sensor measurement data. In another aspect, the
glucose measurement error model is derived solely from
actual glucose sensor error data, excluding sensor noise data.
In another aspect, the glucose measurement error model is
derived solely from actual glucose sensor measurement data
to the exclusion of randomly-generated variable data. In yet
a further aspect, the glucose measurement error model is
derived solely from a fixed time history of error data from
actual use of a glucose sensor of the same type as the sensor
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of the system. And in yet another aspect, the glucose
measurement error model is derived from actual glucose
sensor measurement data from a glucose sensor of the same
type as the sensor of the system.

[0020] Further, more detailed aspects include determining
a calibration error of a glucose sensor from actual sensor
data, based on the difference between a plasma glucose level
and the glucose level signal and deriving the glucose mea-
surement error model therefrom. Deriving the glucose mea-
surement error model further comprises determining a glu-
cose sensor dropout reading from actual sensor data and
deriving the glucose measurement error model therefrom.
[0021] Other aspects include providing the control signal
as a function of the weight of a patient, a total daily insulin
dose, and a basal insulin profile, the method further com-
prising determining, based on the control model, at least one
accepted value, calculating from the glucose level signal at
least one inferred value, adjusting the control model in
accordance with the accepted value and inferred value, and
forecasting a future plasma glucose level excursion based on
the control model. Determining the accepted value com-
prises basing the determination on an insulin sensitivity of
the patient, a glucose distribution volume, and an insulin
distribution volume. Calculating the inferred value com-
prises calculating the inferred value also from glucose flux
and a carbohydrate bioavailability.

[0022] Inyet further aspects, the method further comprises
adjusting a value of the control signal in accordance with a
safety check, comprising at least one of imposing a maxi-
mum infusion rate related to a basal rate depending on a
current sensor glucose level, time since a previous meal, and
carbohydrate content of a meal, shutting off insulin delivery
at a sensor glucose of 77 mg/dl, reducing insulin delivery
when sensor glucose is decreasing rapidly, and capping the
insulin infusion to a pre-programmed basal rate if an insulin
delivery pump occlusion is inferred.

[0023] In another aspect, the sensing, providing a control
signal, and delivering insulin are performed virtually, each
occurring for in silico testing of a method for delivery of
insulin to a virtual patient.

[0024] The features and advantages of the invention will
be more readily understood from the following detailed
description that should be read in conjunction with the
accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

[0025] FIG. 1A presents a block diagram of a closed-loop
insulin infusion system using a model predictive controller;
[0026] FIG. 1B presents a block diagram of a closed-loop
insulin infusion system using a glucose measurement error
model in accordance with aspects of the invention;

[0027] FIG. 2 shows simulated sensor glucose traces from
the four quartiles of dropout severity alongside the under-
lying plasma glucose trace. Q1 represents negligible drop-
outs while Q4 represents the most severe dropouts;

[0028] FIG. 3 provides a protocol of a simulated overnight
closed-loop study showing a simulated study of fifteen hours
duration, starting at 17:00 and ending at 08:00 the next day;
[0029] FIG. 4 shows a sample simulation of overnight
closed-loop control adopting a +20% CGM system calibra-
tion error and a dropout trace from quartile two. The graph
presents plasma glucose, interstitial glucose, sensor glucose,
and insulin infusion;
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[0030] FIG. 5 is a graph showing plasma glucose and
sensor glucose (median [interquartile range]; N=720 at each
level) during simulated overnight closed-loop studies at
different levels of CGM system calibration errors, The CGM
system calibration error probability distribution function is
also shown;

[0031] FIG. 6 is a chart showing time spent in the glucose
target range (80 to 145 mg/dl) as quantified using plasma
glucose and sensor glucose (medial [interquartile range];
N=720 at each level) during simulated overnight closed-
loop studies at different levels of CGM system calibration
error. The CGM system calibration error distribution func-
tion is also shown;

[0032] FIG. 7 presents the incidence of severe hypogly-
cemia (<36 mg/dl) twenty minutes or shorter and longer than
twenty minutes during simulated overnight closed-loop
studies as a function of CGM system calibration error. At
each level of CGM system calibration error, 720 simulations
were run; the occurrence of one event in 720 simulations
corresponds to around fifty events per one-hundred person
years;

[0033] FIG. 8 presents the incidence of significant hypo-
glycemia (<45 mg/dl) sixty minutes or shorter and longer
than sixty minutes during simulated overnight closed-loop
studies as a function of CGM system calibration error. At
each level of CGM system calibration error, 720 simulations
were run; the occurrence of one event in 720 simulations
corresponds to around fifty events per one-hundred person
years;

[0034] FIG. 9 plots the incidence of significant hypergly-
cemia (>300 mg/dl) sixty minutes or shorter and longer than
sixty minutes during simulated overnight closed-loop stud-
ies as a function of CGM system calibration error. At each
level of CGM system calibration error, 720 simulations were
run; the occurrence of one event in 720 simulations corre-
sponds to around fifty events per one-hundred person years;
and

[0035] FIG. 10 provides a sample simulation showing
hypoglycemia due to prandial insulin overdosing.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

[0036] Referring now in more detail to the exemplary
drawings for purposes of illustrating embodiments of the
invention, wherein like reference numerals designate corre-
sponding or like elements among the several views, there is
shown in FIG. 1A a basic block diagram of a closed-loop
system 20 for continuous glucose monitoring and for con-
tinuous subcutaneous insulin infusion using a model predic-
tive controller 26. The patient receives exogenous inputs,
such as meals. The patient’s glucose is measured 24, evalu-
ated by the model predictive controller (MPC) and is used by
the MPC to control a delivery device, such as a pump 28, to
deliver medication to the patient to control blood glucose.

Glucose Control Algorithm

[0037] Referring now to FIG. 1B, a control algorithm was
used based on the model predictive control (“MPC”) para-
digm'® to deliver insulin in a closed-loop fashion. Interstitial
glucose measurement occurs and every fifteen minutes,
simulated real-time sensor glucose (“SG™) 24 was fed into
the MPC controller 26, which calculated subcutaneous glu-
cose concentration (“SC”) insulin infusion for the insulin
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pump 28. A dose calculator 45 is included in this embodi-
ment. The MPC controller 26 adopts a compartment model
of glucose kinetics describing the effect of (1) SC rapid-
acting insulin analogue and (2) the carbohydrate (“CHO”)
content of meals on SG excursions. A list of abbreviations
used in the specification and drawings and the items they
stand for is included at the end of the specification.

[0038] The glucoregulatory model is initialized using a
subject’s weight, total daily insulin dose, and the basal
insulin profile (patient parameters) 40. These values feed
into estimates of temporal insulin sensitivity and glucose
and insulin distribution volumes. Using a Kalman filter 46
approach, real-time SG measurements are used to update
two model parameters: (1) a glucose flux quantifying model
misspecification; and (2) CHO bioavailability. Several com-
peting models differing in the rate of SC insulin absorption
and action and the CHO absorption profile are run in
parallel. A computationally efficient, stochastic-based
approach is used to derive a combined control model 30 that
best explains observed SG excursions.'®

[0039] Following estimation of model parameters, the
combined control model 30 is used to forecast plasma
glucose (“PG”) 42 excursions over a two and one-half hour
prediction horizon. A sequence of standard deviation (“SD”)
insulin infusion rates is determined, which approximates the
desired PG trajectory, characterized by a slow decline from
hyperglycemia and a rapid recovery from hypoglycemia to
target glucose, which is set at minimum to 104 mg/dl but is
elevated up to 132 mg/dl to take into account inaccuracies of
model-based predictions. The first infusion rate from the
sequence of SC insulin infusion rates is delivered by the
insulin pump 28 subject to safety checks 44, which can
reduce the infusion rate to prevent insulin overdosing. These
checks include: (1) imposing a maximum infusion rate of
two to five times the preprogrammed basal rate, depending
on the current SG level, the time since the previous meal(s),
and CHO content of meal(s); (2) shutting off insulin delivery
at a SG of 77 mg/dl; (3) reducing insulin delivery when SG
is decreasing rapidly; and (iv) capping the insulin infusion to
the preprogrammed basal rate if a pump occlusion is inferred
by the MPC 26.%2

[0040] For the purposes of the present study, MPC algo-
rithm Version 0.02.02 was used. Earlier versions of the
algorithm were used in clinical studies for overnight closed-
loop insulin delivery in children and adolescents with
T1DM.20-22

Simulation Environment

[0041] A simulation environment designed to support the
development of closed-loop insulin delivery systems was
used.'? The simulation environment is flexible and allows
the following components to be defined: a model of glucose
regulation, an experimental protocol, a glucose sensing
model, an insulin pump model, and outcome metrics. A
model of glucose kinetics and insulin action described by
Hovorka and colleagues'*** was adopted. Other submodels
include the model of SC insulin kinetics, the model of gut
absorption, and the model of interstitial glucose (IG) kinet-
iCS.23’24

[0042] The simulator includes eighteen synthetic subjects
(virtual patients) with T1DM defined by eighteen parameter
sets, representing the virtual T1DM population. A subset of
parameters were estimated from experimental data collected
in subjects with TIDM,'* and the remaining parameters
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were drawn from informed probability distributions.'*>*?

The inter-subject variability is addressed through assigning
a unique set of parameter values to each individual synthetic
subject. The subjects vary, for instance, in their insulin
sensitivity to glucose distribution, disposal, and endogenous
glucose production.'*** The virtual subjects are character-
ized by their daily insulin requirements (0.35+0.14 U/day/
kg), insulin-to-CHO ratio (1.7+1.0 U/10 g CHO), and body
weight (74.9+14.4 kg). Intra-individual variability of the
gluco-regulatory system is represented by superimposing
oscillations on selected model parameters or adding random
inter-occasion variability to parameter values. Sinusoidal
oscillations with an amplitude of 5% and a three-hour period
were superimposed on nominal values of most model
parameters. Each parameter had a different phase generated
randomly from a uniform distribution U [0,3 h]. Bioavail-
ability of ingested CHO is characterized by 20% inter-
occasion variability.

[0043] For the purposes of the present study, the glucose
measurement error model 48 was derived from experimental
data. The SG concentration was obtained as SG(t)=IG(t)x
(1+4CE)+D(t) where IG(t) is noise-free interstitial glucose
(“IG”) concentration calculated by the glucoregulatory
model and normalized such that, at the steady-state, it is
identical to PG; CE is FreeStyle Navigator® Continuous
Glucose Monitor System (“FSN”) calibration error (“CE”),
and D(t) is the dropout trace of the FSN. The pump 28
delivery error model was assumed zero mean, uncorrelated,
with a constant 5% coefficient of variation for the continuous
insulin infusion and the insulin bolus. The simulation envi-
ronment is implemented in Matlab® (The Mathworks, Nat-
ick, Mass.).

FreeStyle Navigator CGM System—Dropouts

[0044] The FreeStyle Navigator® Continuous Glucose
Monitor system with TRUstart algorithm (Abbott Diabetes
Care, Alameda, Calif.) was used for the present study. The
FSN system occasionally exhibits a nonzero-mean signal
artifact referred to here as “dropout,” where certain
mechanical perturbation of the sensor results in a momen-
tarily attenuated glucose concentration.>®

[0045] Dropouts were quantified using data from a study
where fifty-eight living subjects with T1DM had simulta-
neously worn two sensors over the course of up to five
days.?® Values from the two sensors worn simultaneously on
each subject were paired every minute. The point-wise
difference between the paired glucose readings was com-
puted. To account for residual CE, a segment’s point-wise
difference was normalized by subtracting the median bias of
the segment.

[0046] From each pair, only time segments that overlap
the night-time period were used, resulting in 285 night time
segments. Segments with insufficient data, either due to a
sensor starting or sending in the middle of the night time
session or due to missing data, were excluded. In total,
ninety-one segments were excluded because they contained
less than 840 one-minute data points over the 900 minutes
night-time session span. As a result, 194 night-time seg-
ments were available for simulation purposes.

[0047] The mean absolute difference in each segment was
used to quantify dropout severity, and the 194 night-time
sessions were separated into four quartiles. Ten dropout
segments were chosen randomly from each quartile and used
in simulation studies. The simulation environment adds the
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selected dropout segment onto the modeled IG concentra-
tion. Simulated CGM traces incorporating dropout data from
each quartile are shown in FIG. 2.

[0048] FIG. 2 presents simulated sensor glucose traces
from the four quartiles of dropout severity alongside the
underlying plasma glucose trace. The first quartile Q1 rep-
resents negligible dropouts while the fourth quartile Q4
represents the most severe dropouts.

FreeStyle Navigator CGM System—Calibration Error

[0049] The FreeStyle Navigator System calibration error
(“CE”) is defined as CE=(SG-IG)/IG. In these simulations,
therefore, a +5% CE means that the reported SG value is
consistently 1.05 times higher than expected for a given IG
concentration.

[0050] The FSN System is designed for five-day wear,
with calibrations nominally scheduled at 1, 2, 10, 24, and 72
hours after sensor insertion. For the present study, a morning
CGM sensor insertion is assumed for the night-time only
closed-loop control. Thus, each night time, closed-loop
session is assumed not to include a scheduled calibration,
allowing CE to remain constant for the duration of the night
session.

[0051] One-hundred and sixteen (116) insertions used to
generate dropout signals in addition to 469 insertions from
other studies with living subjects were used to generate a
distribution of the FSN CE. The sensor data set comprised
248 living subjects with T1DM or type 2 diabetes mellitus
(“T2DM”) and were a combination of general sensor wear
and in-clinic wear that included periods of specific glucose
and insulin challenges.

[0052] As IG and PG are assumed to be identical at the
steady state, CE can be approximated using an alternative
definition: CE=(SG-PG)/PG. The CE for a single calibra-
tion session was calculated from pairs of SG-reference
glucose values where all the SG values were derived from a
single calibration and reference glucose used for calibration
were excluded from the calculations. Unlike the calculation
of dropouts, only reference glucose values measured from
finger sticks using the inbuilt blood glucose meter were
used. In addition, the real-time calibration of SG values used
the FSN system with TRUstart algorithm.

[0053] Excluding calibration sessions containing less than
ten SG-reference glucose pairs, 585 insertions yielded 1421
calibration sessions. The CE for each session was computed
by comparing the median value of the relative difference
between SG and reference glucose, and 1421 FSN CEs were
generated using 35,200 SG-reference glucose pairs, yielding
an average of 25 pairs for every calibration session.

Protocol of Simulation Studies

[0054] Asshown in FIG. 3, the simulated study was fifteen
hours long, starting at 17:00 and ending at 08:00 the next
day. Plasma glucose at the start of the simulated study was
drawn from a log-normal distribution, with a mean of 126
mg/dl constrained to a range from 72 to 180 mg/dl. A meal
consisting of 50 g CHO was planned at 18:00 and was
accompanied by a prandial insulin bolus. The insulin infu-
sion rate between 17:00 and 21:00 was calculated using the
simulation model of a particular virtual subject assuming
steady-state conditions at the start of the experiment. At
21:00, the closed-loop glucose control algorithm took over
the insulin delivery. The insulin infusion rate was calculated
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every fifteen minutes on the basis of CGM values, which
included the dropout and CE components. Closed-loop
control continued until the end of the simulated experiment
at 08:00. Rescue CHOs (15 g CHO) were administered at
SG values 63 mg/dl (3.5 mmol/liter) or below when con-
firmed by a PG value of 63 mg/dl or below, simulating a
confirmatory finger stick glucose measurement. Correction
insulin boluses were not administered at hyperglycemia.
[0055] The simulation studies were run in batches differ-
ing by the level of FSN CE. In total, 25 levels of FSN CEs
ranging from -80% to +100% were simulated. The range
covering 0% to 60% error was subdivided into 5% steps. The
remaining range was spaced 10% apart. Each of the eighteen
virtual subjects with T1DM was associated with one of forty
randomly selected CGM dropout traces (ten traces from
each of the four quartiles of increasing severity). This
resulted in 720 different combinations and formed a single
simulation batch. Each batch was run with all 25 levels of
FSN CE, totaling 18,000 simulated overnight studies.

Open Loop Studies

[0056] Within the Artificial Pancreas Project at Cambridge
(“APCam”), seventeen children and adolescents with T1DM
treated by CSII for at least three months participated in the
APCam01 study (monitoring study) and APCam03 (exercise
study) conducted at the Wellcome Trust Clinical Research
Centre, Addenbrooke’s Hospital, University of Cambridge,
UK. Informed consent was obtained from all study partici-
pants or their caregivers. The APCam01?° and APCam03%>
clinical studies were originally designed to compare over-
night closed-loop control against the standard CSII treat-
ment. In the present analysis, only results from the CSII
investigations are reported. The study protocols were
approved by the Cambridgeshire 3 Ethics Committee. The
subjects” demographic data are shown in TABLE 1. Four
subjects participated in both studies.

[0057] In APCamO1, on subject’s arrival at the Clinical
Research Facility at 16:00, a sampling cannula was inserted
in a vein of an arm and kept patent with sodium chloride. At
18:00, the subjects ate a self-selected meal (8723 g CHO)
accompanied by prandial insulin (9+5 U; 31% £9% of total
daily bolus amount) calculated according to the individual
insulin-to-CHO ratio and supplemented by correction dose.
Plasma glucose was determined every fifteen minutes from
17:00 to 08:00 the next day. At least two weeks before the
first study, the CSII treatment was optimized by a healthcare
professional by retrospectively analyzing seventy-two hours
of nonreal-time SG data.

[0058] In APCamO3, at least one week before the study,
the subjects attended the Clinical Research Facility and a
ramped treadmill protocol was used for the estimation of the
peak VO, as an indicator of the maximum exercise effort. As
used herein “VO,” refers to the maximal oxygen uptake,
which is widely accepted as a measure of cardiovascular
fitness and maximal aerobic power. Continuous recording of
VO, with breath-by-breath sampling was taken during the
treadmill test and for two minutes during recovery after
exercise test termination. Heart rate monitoring was main-
tained. On the study day, the subjects arrived at 15:00 at the
Clinical Research Facility. A sampling cannula was inserted
and kept patent with sodium chloride. At 16:00, subjects had
a light meal chosen from a list of standardized snacks
(4513 g CHO, 12+3 g fat, 14+4 g protein) accompanied by
prandial bolus (4+2 U). The subject exercised at 55% VO,
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max on the treadmill from 18:00 until 18:45, with a rest from
18:20 to 18:25. During exercise, basal insulin was left
unmodified or was reduced according to individual guide-
lines. During the night, the subject’s standard insulin pump
settings were applied. Plasma glucose was determined every
15 min from 16:00 to 08:00 the next day. If PG dropped
below 36 mg/dl, GlucoGel© (BBI Healthcare, UK) was
given and the study night terminated.

Data Analysis

[0059] Severe and significant hypoglycemia was declared
at PG=36 mg/dl (2.0 mmol/liter) and =45 mg/dl (2.5 mmol/
liter), respectively. These are levels when cognitive behav-
ioral defenses are compromised.?’ Significant hyperglyce-
mia was declared at PG=300 mg/dl (16.7 mmol/liter).
[0060] The empirical probability distribution function of
FSN CE was calculated from the 1421 calibration sessions
discussed above. During simulated closed-loop studies,
occurrence and duration of hypoglycemia and hyperglyce-
mia based on the simulated PG trace were recorded from
21:00 to 008:00. The probability of hypoglycemia and
hyperglycemia events occurring overnight at a given FSN
CE is obtained as a product of the probability, c,, of the given
FSN CE and the probability of overnight hypoglycemia and
hyperglycemia, h,, at the given FSN CE. The overall event
probability P is obtained as the sum of these products over
the 25 levels of FSN CE, i.e., P=2ch,. For APCam01 and
APCamO03 studies, the overall event probability is obtained
as the number of hypoglycemia and hyperglycemia events
divided by the number of overnight stays. The overall
incidence is obtained as reciprocal to the overall event
probability.

[0061] During simulated closed-loop studies, mean PG,
mean SG, and time-in-target 80-145 mg/dl were calculated
between 20:00 and 08:00 to assess the performance of the
MPC algorithm at different levels of FSN CE. Values are
shown as meansstandard deviation unless stated otherwise.

Simulated Closed-Loop Studies

[0062] A sample simulation study with +20% FSN CE
using dropout trace from quartile two is shown in FIG. 4.
Overall, 18,000 simulation studies were performed; 720
simulation studies were run for each of the 25 levels of FSN
CE. During simulations, the MPC algorithm was unaware of
FSN CE and the extent of the CGM dropout.

[0063] FIG. 5 shows PG and SG values obtained simul-
taneously during simulation studies at FSN CEs ranging
from -80% to +100%. As expected, increasing levels of FSN
CE result in progressively lower median PG. The MPC
algorithm steps up insulin delivery to limit the increase in
SG, unaware of progressively increasing gap between sensor
and PG. Employing the SG values, the MPC algorithm
performs less efficiently at high FSN CE (see FIG. 6, which
plots time-in-target values.) However, employing the PG
values, the MPC algorithm achieves 60% or higher time-
in-target for FSN CE ranging from -20% to +100%.
[0064] FIGS. 7 and 8 show the incidence of severe
(PG=36 mg/dl) and significant (PG=45 mg/dl) hypoglyce-
mia across FSN CE. Severe hypoglycemia did not occur at
FSN CE of 40% or lower. Significant hypoglycemia did not
occur at FSN CE of 5% or lower.

[0065] TABLE 2 breaks down severe hypoglycemia
events according to their duration, providing more detailed
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information. The longest duration of severe and significant
hypoglycemia occurred at the highest 100% FSN CE, lasting
for 79 and 178 min, respectively.

[0066] FIG. 9 plots the incidence of significant hypergly-
cemia (PG=300 mg/dl) for the different levels of FSN CE.
Significant hyperglycemia lasting sixty minutes or less was
present at most levels of FSN CE, while events lasting more
than sixty minutes occurred when FSN CE was below -40%
The longest duration of significant hyperglycemia occurred
at the —-80% FSN CE, lasting for 455 minutes.

FreeStyle Navigator Calibration Error Distribution

[0067] The probability distribution of FSN CE generated
from 1421 calibration sessions is shown in FIG. 5 and is
replicated in FIG. 6. Approximately three-fourths (3%4) of the
distribution resides within the —=10% to +10% range of FSN
CE; 35 out of 1421 (2.5% calibration sessions had FSN CE
of 30% or higher. Approximately the same number of
sessions (37 out of 1421) had a CE of -30% or lower. FIG.
5 presents plasma glucose and SG (median [interquartile
range]; N=720 at each level) during simulated overnight
closed-loop studies at different levels of FSN CE. The FSN
CE probability distribution function is also shown. FIG. 6
presents time spent in the glucose target range (80 to 145
mg/dl) as quantified using PG and SG (median [interquartile
range]; N=720 at each level) during simulated overnight
closed-loop studies at different levels of FSN CE. The FSN
CE probability distribution function is also shown.

[0068] FIG. 7 presents the incidence of severe hypogly-
cemia (=36 mg/dl) 20 min or shorter and longer than 20 min
during simulated overnight closed-loop studies as a function
of FSN CE. At each level of FSN CE, 720 simulations were
run; occurrence of one event in 720 simulations corresponds
to around 50 events per 100 person years.

[0069] FIG. 8 presents the incidence of significant hypo-
glycemia (=45 mg/dl) 60 min or shorter and longer than 60
min during simulated overnight closed-loop studies as a
function of FSN CE. At each level of FSN CE, 720 simu-
lations were run; occurrence of one event in 720 simulations
corresponds to around 50 events per 100 person years.

Open-Loop Studies

[0070] During APCam01 and APCamO3 studies, PG at
20:00 was 207 £97 mg/dl. Average overnight PG from 20:00
to 08:00 was 14665 mg/dl. Time spent in the target glucose
range from 20:00 to 08:00 was 40% (18-61%) (median
[interquartile range]).

[0071] During APCam03, one “severe” hypoglycemic
event was observed (PG=36 mg/dl). The subject was given
GlucoGel®, and the study night was terminated; thus the
duration of the untreated severe hypoglycemic event cannot
be ascertained. Two episodes of “significant” hypoglycemia
were observed (PG=45 mg/dl): one study APCam01 over
forty-five minutes in duration and another in APCam03 over
seventy-five minutes in duration, preceding the severe hypo-
glycemic event above.

Overall Incidence of Hypoglycemia and Hyperglycemia

[0072] The overall incident of hypoglycemia and hyper-
glycemia during closed-loop and open-loop studies is shown
in TABLE3.

[0073] FIG. 9 presents the incidence of significant hyper-
glycemia (=300 mg/dl) 60 min or shorter and longer than 60
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min during simulated overnight closed-loop studies as a
function of FSN CE. At each level of FSN CE, 720 simu-
lations were run; occurrence of one event in 720 simulations
corresponds to around 50 events per 100 person years.

Discussion

[0074] The present study suggests that overnight closed
loop combining an MPC algorithm and the FSN CGM
system is expected to reduce the risk of hypoglycemia and
hyperglycemia compared to the standard CSII therapy.
Overnight closed-loop insulin delivery is expected to reduce
the incidence of (1) severe hypoglycemia 2300-fold, (2)
significant hypoglycemia 200-fold, and (3) significant
hyperglycemia 200-fold.

[0075] These reductions are indicative rather than conclu-
sive given the differences in subject populations; the lower
incidence of hypoglycemia events, particularly those
observed clinically during the CSII treatment; and uncer-
tainties associated with in silico testing. It is important to
stress that simulated results need to be verified with clinical
data and that efforts should be made to assess true hypo-
glycemia incidence, which may not be indicated by SG
traces alone due to the possible presence of the kinds of
persistent and transient sensing errors described. In addition,
as average SG levels may be reduced during closed-loop
insulin delivery compared to the standard CSII treatment,
the presence of transient errors due to dropouts may erro-
neously suggest an increase in hypoglycemic events, i.e., SG
may temporarily drop below the hypoglycemic threshold
while PG remains about the threshold.

[0076] The incidence calculations are influenced by three
main components: 1) the persistent sensing error, 2) the
transient sensing error, and 3) insulin misdosing by the
control algorithm. In the present study, the assessment of the
first two components is based on large observational data
sets, providing solid foundations for the incidence calcula-
tions. The assessment of the last component is addressed by
in silico testing. These simulations are the least strong part
of our approach due to limitations of the glucose regulation
model but facilitate a rational way to assess performance of
a closed-loop system prior to its evaluation in larger clinical
studies.

[0077] It is argued that the persistent sensing error poses
a greater risk of hypoglycemia than the transient sensing
error. When SG consistently exceed PG levels, the risk of
undetected sustained hypoglycemia increases; for example,
a 100% persistent error translates a PG reading of 50 mg/dl
into a SG reading of 100 mg/dl. The persistent error reflects
primarily the SG CE. The present study suggests that severe
hypoglycemia arises only at an FSN CE of 45% and higher
with the study-specific MPC algorithm. This represents
0.845% of the calibration segments. Thus the characteriza-
tion of tails of the distribution of the SG CE is essential for
the correct quantification of the hypoglycemia risk, suggest-
ing that risk calculations can only be carried out once large
data sets characterizing the performance of any particular
CGM system are available.

[0078] From a closed-loop control perspective, transient
errors such as dropouts could trigger a momentary reduction
or cessation of insulin command due to the perceived
hypoglycemia event (present or near future). Such a
response might increase the risk of hyperglycemia. Closed-
loop systems with a strong predictive and/or derivative term
might generate a momentarily exaggerated insulin command
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when a rapid dropout recovery occurs. If PG is already low,
then this transient response could increase the risk of hypo-
glycemia. The effect of dropouts is illustrated in FIG. 2. Four
simulated SG traces with different levels of dropout severity
are shown alongside the underlying PG measurements.
[0079] In the present study, the transient error was
obtained by taking the difference of two SG traces and
correcting them for CE. Methodologically, this approach
overestimates the transient error as, by definition, when
subtracting two SG traces, the variances of the two transient
errors presented in the component SG traces add up. How-
ever, a visual inspection of simultaneously observed SG
traces in quartiles two to four indicates that the transient
error in one of the two SG ftraces typically dominates,
justifying our pragmatic approach, which preserves impor-
tant characteristics such as dropout clustering.

[0080] Prior investigation of the validity of the predictions
made by in silico testing increases the confidence in the
incidence calculations. We previously validated the virtual
population of 18 subjects with T1DM by simulating a fifteen
hour clinical study with an MPC algorithm.*® The protocol
of the simulated study reflected the APCamO1 study con-
ducted in twelve children and adolescents with T1DM.>°
Premeal PG during the simulated study was designed to
match that of the real study (177+56 versus 171+67 mg/dl,
p=not significant (“NS”); unpaired t test). Sensor glucose at
the start of closed-loop control (220+72 versus 191+54
mg/dl, p=NS) and mean overnight SG (137+22 versus
141+25 mg/dl, p=NS) were similar during simulated and
real studies. Time spent in the target glucose range 80 to 145
mg/dl was not significantly different at 69% (62-78%)
versus 63% (49-78%) (median [interquartile range], p=NS).
Kovatchev and associates’ low blood glucose index [0.5
(0.2-0.9) versus 0.3 (0.0-1.0), p=NS] and high blood glucose
index [3.4 (1.3-6.8) versus 3.7 (0.6-6.8), p=NS]*® were also
similar during the real and simulated studies, supporting the
validity of glucose predictions at low and high glucose
levels.

[0081] We further assessed the validity of in silico pre-
dictions by simulating open-loop studies. First, optimum
prandial and optimum basal insulin to achieve and maintain
PG at 108 mg/d]l were determined for the eighteen virtual
subjects during a fifteen hour simulated study commencing
at 17:00, with a 50 g CHO meal planned at 18:00. Then basal
insulin was increased by 20% and an identical study design
was simulated. Additional simulations were performed, with
basal insulin increased by 55% and 85%. These increases in
the basal insulin delivery corresponded to differences
between the average delivered insulin rate and the average
insulin rate preprogrammed on the insulin pump during
thirty-three overnight closed-loop studies in young people
with TIDM treated by CSIL>° In these thirty-three closed-
loop studies, a 20% overestimation of basal insulin was
observed in three studies, a 55% overestimation in four
studies, and an 85% overestimation in one study.

[0082] At the 20% overestimation of basal insulin, the
simulations yielded no severe hypoglycemia and one sig-
nificant hypoglycemia in the eighteen virtual subjects. At the
55% overestimation, five and three hypoglycemia events
were observed. At the 85% overestimation, eight and two
events occurred. This indicates the incidence of severe
hypoglycemia during simulated studies at 1720 per 100
person years, which tallies extremely well with a corre-
sponding incidence of 1739 per 100 person years recorded
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during “true” open loop studies (see Table 3). The incidence
of significant hypoglycemia during simulations was 1044
per 100 person years, which is less but still comparable to
that observed experimentally at 3479 per 100 person years;
the difference in the incidence rates corresponds to two
significant hypoglycemia events over thirty-three nights.
Overall, these results suggest that in silico simulations
provide acceptable predictions of hypoglycemia incidence
during open-loop studies, supporting the validity of in silico
predictions during closed-loop studies.

[0083] The MPC algorithm used in the present study has
important in-built safety features. It uses the pre-pro-
grammed insulin infusion rate as an initial estimate of the
insulin needed to achieve normoglycemia. If SG increases,
the MPC algorithm controller steps up insulin delivery but
does so cautiously and at the expense of suboptimal SG
levels. This is evident in FIGS. 5 and 6, which demonstrate
that, with increasing levels of FSN CE, the mean SG
concentration increases and the time-in-target assessed with
the use of SG decreases. This design feature of the MPC
algorithm reduces the impact of FSN CE on the risk of
hypoglycemia.

[0084] The simulation study design included a relatively
small evening meal compared to the body weight of the
virtual subjects. Additionally, pre-meal PG was constrained
to levels between 72 and 180 mg/dl. In combination, these
two study design aspects limit postprandial hyperglycemia
excursions, which are expected to be more pronounced after
larger meal sizes and at elevated premeal PG values. Con-
versely, prandial insulin overdosing due to overestimation of
the meal size may result in early postprandial hypoglycemia,
which cannot be prevented by closed-loop insulin delivery
even if insulin infusion is stopped. Some of the episodes of
hypoglycemia observed in the present study were directly
attributable to prandial insulin overdosing prior to the start
of closed-loop control. An example is shown in FIG. 10,
where the insulin overdelivery is confounded by a +30%
FSN CE. Hypoglycemia occurred prior to the start of the
closed-loop session. Although insulin delivery virtually
stopped at the start of closed loop, PG and SG continued to
decrease for another thirty minutes. The hypoglycemia event
remained undetected, as SG did not reach the hypoglycemia
threshold of 63 mg/dl.

[0085] The use of CGM alone is expected to reduce the
hypoglycemia and hyperglycemia risks as observed in the
Juvenile Diabetes Research Foundation CGM trial.** The
observed improvements are clinically important but lack the
scale offered by the overnight closed-loop approach. How-
ever, even the overnight closed-loop approach, the risk of
hypoglycemia and hyperglycemia is not eliminated. The
duration of significant and severe hypoglycemia during
simulation studies is limited to one and three hours, which
is slightly less than the two to four hours of SG-documented
hypoglycemia that has been reported prior to seizures.
[0086] FIG. 10 presents a sample simulation showing
hypoglycemia due to prandial insulin overdosing. Prandial
insulin accompanied the meal at 18:00. The closed loop
started at 21:00. Sensor glucose was obtained using a +30%
FSN CE and a dropout trace from quartile two. Hypogly-
cemia occurred before the start of the closed-loop session
and continued to worsen for another thirty minutes after the
start of closed loop although insulin delivery was virtually
turned off. Hypoglycemia was undetected, as SG did not
reach the hypoglycemia threshold of 63 mg/dl. FreeStyle
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Navigator CE at +30% or higher is estimated to occur 2.5%
of the time, assuming no recalibration is performed between
scheduled calibrations.

[0087] The FSN CE distribution shown in FIGS. 5 and 6
was constructed assuming that only the five FSN scheduled
calibrations are performed. If a manual recalibration was
performed to rectify excessive CEs that would have been
evident when SG was compared against a finger stick
reading, the risk of hypoglycemia and hyperglycemia during
overnight closed loop could be further reduced.

[0088] More detailed information about transient and per-
sistent sensing errors is required to determine if the present
results may be transferable to other commercially available
CGM systems.>® Transferability to other control algorithms
is uncertain given the wide range of control approaches.
[0089] Inconclusion, overnight closed loop using an MPC
algorithm and real-time glucose sensing by the FSN system
may offer a 200-2300-fold reduction of the hypoglycemia
and hyperglycemia incidence. This suggests that existing
continuous glucose sensing technologies facilitate safe
closed-loop insulin delivery, although confirmation in large
clinical studies is required.

Abbreviation List

Abbrev. Stands For:

AlC hemoglobin A1C

APCam Attificial Pancreas Cambridge

BMI body mass index

CE calibration error of FreeStyle Navigator System

CGM continuous glucose monitoring

CHO carbohydrate

CL closed loop

CSII continuous subcutaneous insulin infusion

dl deciliter

D(t) dropout trace of FreeStyle Navigator System

FSN FreeStyle Navigator Continuous Glucose Monitoring
System

g grams

1G interstitial glucose

1 liter

mg/dl milligrams per deciliter

MPC model predictive control

NS not significant

OL open loop

PG plasma glucose

SC subcutaneous glucose concentration

SD standard deviation

SG sensor glucose

T1DM type 1 diabetes mellitus

T2DM type 2 diabetes mellitus

VO, Maximal oxygen uptake, which is accepted as a measure
of cardiovascular fitness and maximal aerobic power.
Also referred to as maximal oxygen consumption,
maximal oxygen uptake, or aerobic capacity.

[0090] Table 4 includes a list of documents to which
reference is made by means of endnotes in the text above.
Each of those documents listed in Table 4 is hereby incor-
porated by reference.

[0091] While the invention has been described in connec-
tion with what is presently considered to be the most
practical and preferred embodiments, it is to be understood
that the invention is not to be limited to the disclosed
embodiments and elements, but, to the contrary, is intended
to cover various modifications, combinations of features,
equivalent arrangements, and equivalent elements included
within the spirit and scope of the appended claims.
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What is claimed is:

1. A system comprising:

a glucose sensor configured to provide a sensor glucose
measurement signal representative of sensed glucose
level; and

a controller programmed to receive the sensor glucose
measurement signal and to provide an insulin delivery
parameter as a function of the received sensor glucose
measurement signal in accordance with a model pre-
dictive control and a glucose measurement error model,
the glucose measurement error model derived from
actual glucose sensor measurement data.

2. The system of claim 1, wherein the model predictive

control is based on a glucoregulatory model.

3. The system of claim 1, wherein the glucose measure-
ment error model is derived from at least sensor dropout.

4. The system of claim 1, wherein the glucose measure-
ment error model is derived from at least sensor calibration
error.

5. The system of claim 4, wherein the sensor calibration
error comprises a difference between a plasma glucose level
and a sensor glucose level.

6. The system of claim 1, wherein the glucose measure-
ment error model is derived from at least a combination of
sensor dropout and sensor calibration error.

7. The system of claim 1, wherein the actual glucose
sensor measurement data excludes at least sensor noise data.

8. The system of claim 1, wherein the actual glucose
sensor measurement data excludes at least randomly gener-
ated variable data.

9. The system of claim 1, wherein the actual glucose
sensor measurement data excludes at least a combination of
sensor noise data and randomly generated variable data.

10. The system of claim 1, wherein the insulin delivery
parameter is at least an insulin basal rate.
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11. The system of claim 1, wherein the insulin delivery
parameter is at least an insulin bolus amount.
12. The system of claim 1, wherein the controller is
further programmed to adjust the insulin delivery parameter
in accordance with a safety check.
13. The system of claim 12, wherein the safety check is
a maximum basal rate.
14. The system of claim 12, wherein the safety check is
a rapidly decreasing sensed glucose level.
15. A method comprising:
sensing, with a glucose sensor, a glucose level and pro-
viding a sensor glucose measurement signal represen-
tative of the sensed glucose to a controller; and

providing, with the controller, an insulin delivery param-
eter as a function of the sensor glucose measurement
signal in accordance with a model predictive control
and a glucose measurement error model, the glucose
measurement error model derived from actual glucose
sensor measurement data.

16. The system of claim 1, wherein the model predictive
control is based on a glucoregulatory model.

17. The system of claim 1, wherein the glucose measure-
ment error model is derived from at least sensor dropout, at
least sensor calibration error, or at least a combination of
sensor dropout and sensor calibration error.

18. The system of claim 1, wherein the actual glucose
sensor measurement data excludes at least sensor noise data,
excludes at least randomly generated variable data, or
excludes at lease a combination of sensor noise data and
randomly generated variable data.

19. The system of claim 1, wherein the insulin delivery
parameter is at least an insulin basal rate.

20. The system of claim 1, wherein the insulin delivery
parameter is at least an insulin bolus amount.
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