发明名称
一种大型无筋地坪地基的建造方法

摘要
一种大型无筋地坪地基的建造方法，包括：
(1) 将原场地土方处理压实，得到原土层，要求达到 $E2 \geq 45 \text{MN/m}^2$，$E2/Ev1 < 2.5$；
(2) 在原土层上铺设 2/56 级配碎石，并处理压实，得到 2/56 级配碎石层，要求达到压实系数 ≥ 0.97，$E2 \geq 100 \text{MN/m}^2$，$E2/Ev1 < 2.5$；
(3) 在 2/56 级配碎石层上铺设 0/45 级配碎石，并处理压实，得到 0/45 级配碎石层，要求达到压实系数 ≥ 0.97，$E2 \geq 120 \text{MN/m}^2$，$E2/Ev1 < 2.5$；
(4) 在 0/45 级配碎石层上铺设高分子 PE 防水膜，高分子 PE 防水膜的厚度 $\geq 0.6 \text{mm}$；
(5) 在所述高分子 PE 防水膜上设置 C30 混凝土层。本发明施工速度快，降低成本。
1. 一种大型无筋地坪地基的建造方法，其特征在于：所述大型无筋地坪地基自下而上依次包括压实原土层、2/56 级配碎石层、0/45 级配碎石层、高分子 PE 防水膜、C30 素混凝土层；所述建造方法包括：

 (1) 将原有场地土方处理压实，得到原土层，采用 Ev 测试技术和压实度试验测试，要求达到 Ev2 ≥ 45MN/m², Ev2/Ev1 < 2.5；

 (2) 在原土层上铺设 2/56 级配碎石，并处理压实，得到 2/56 级配碎石层，采用 Ev 测试技术和压实度试验测试 2/56 级配碎石层，要求达到压实系数 ≥ 0.97, Ev2 ≥ 100MN/m², Ev2/Ev1 < 2.5；

 (3) 在 2/56 级配碎石层上铺设 0/45 级配碎石，并处理压实，得到 0/45 级配碎石层，采用 Ev 测试技术和压实度试验测试 0/45 级配碎石层，要求达到压实系数 ≥ 0.97, Ev2 ≥ 120MN/m², Ev2/Ev1 < 2.5；

 (4) 在 0/45 级配碎石层上铺设高分子 PE 防水膜，高分子 PE 防水膜的厚度 ≥ 0.6mm；

 (5) 在所述高分子 PE 防水膜上设置 C30 素混凝土层。

2. 如权利要求 1 所述的大型无筋地坪地基的建造方法，其特征在于：所述 0/45 级配碎石层与高分子 PE 防水膜之间还设有 C15 素混凝土层；所述步骤 (4) 中，在 0/45 级配碎石层上铺设 C15 素混凝土层，所述 C15 素混凝土层上铺设高分子 PE 防水膜。

3. 如权利要求 1 或 2 所述的大型无筋地坪地基的建造方法，其特征在于：所述步骤 (3) 中，0/45 级配碎石层采用两层结构。

4. 如权利要求 1 或 2 所述的大型无筋地坪地基的建造方法，其特征在于：所述步骤 (4) 中，高分子 PE 防水膜采用两层结构，每层膜厚度 ≥ 0.3mm。
一种大型无筋地坪地基的建造方法

技术领域
[0001] 本发明涉及一种大型无筋地坪地基的建造方法。

背景技术
[0002] 目前，随着经济的发展，很多大型场合需要用到地坪地基，例如工业场合或物流场合，为了满足承栽力，通常需要铺设钢筋，存在的缺陷是：施工速度较慢，成本较高等。

发明内容
[0003] 为了克服已有地坪地基的建造方法的施工速度较慢，成本较高的不足，本发明提供一种施工速度较快、降低成本的大型无筋地坪地基的建造方法。
[0004] 本发明解决其技术问题所采用的技术方案是：
[0005] 一种大型无筋地坪地基的建造方法，所述大型无筋地坪地基自下而上依次包括压实原土层，2/56级配碎石层，0/45级配碎石层、高分子 PE 防水膜，C30素混凝土层；所述建造方法包括：
[0006] (1) 将原有场地土方处理压实，得到原土层，采用 Ev 测试技术测试原土层，要求达到 Ev2 ≥ 45MN/m²，Ev2/Ev1 < 2.5；
[0007] (2) 在原土层上铺设 2/56 级配碎石，并处理压实，得到 2/56 级配碎石层，采用 Ev 测试技术和压实度试验测试 2/56 级配碎石层，要求达到压实系数 ≥ 0.97，Ev2 ≥ 100MN/m²，Ev2/Ev1 < 2.5；
[0008] (3) 在 2/56 级配碎石层上铺设 0/45 级配碎石，并处理压实，得到 0/45 级配碎石层，采用 Ev 测试技术和压实度试验测试 0/45 级配碎石层，要求达到压实系数 ≥ 0.97，Ev2 ≥ 120MN/m²，Ev2/Ev1 < 2.5；
[0009] (4) 在 0/45 级配碎石层上铺设高分子 PE 防水膜，高分子 PE 防水膜的厚度 ≥ 0.6mm；
[0010] (5) 在所述高分子 PE 防水膜上设置 C30素混凝土层。
[0011] 进一步，所述 0/45 级配碎石层与高分子 PE 防水膜之间还设有 C15素混凝土垫层；所述步骤 (4) 中，在 0/45 级配碎石层上铺设 C15素混凝土垫层，所述 C15素混凝土垫层上铺设高分子 PE 防水膜。
[0012] 再进一步，所述步骤 (3) 中，0/45 级配碎石层采用两层结构。
[0013] 所述步骤 (4) 中，高分子 PE 防水膜采用两层结构，每层膜厚度 ≥ 0.3mm。
[0014] 本发明的技术构思为：大面积无筋工业地坪的发展也日益加强，为确保无钢筋地坪的后期使用质量，其相应的可靠实用的地基处理技术运用而生。
[0015] 通过自上而下的每层回填材料的不同要求的压实，平衡地面传力途径，解决后期使用由于使用荷载不均引起的不均匀沉降及大面积开裂等。其重点是利用 Ev 测试技术，严格控制每层回填材料的回填压实质量，通过回填厚度及压实要求的修改，可以满足不同的地面要求。
[0016] Ev 测试技术：即通过承载板和加载装置，测得地基的应力及沉降间的关系的技术。一次变形模量 Ev1；用第一次加载测得的承载板下应力与之对应的承载板中心沉降量 S 计算的变形模量。二次变形模量 Ev2；用第二次加载测得的承载板下应力与之对应的承载板中心沉降量 S 计算的变形模量。

[0017] 压实度试验：先取压实前的土样送实验室测定其最佳含水量时的干密度，此为试验干密度。再取由击打压实试验后所得的试样最大干密度，用实际干密度除以最大干密度即是土的压实度，即压实系数。

[0018] 本发明的有益效果主要表现在：(1) 地坪承载能力大；(2) 无大范围裂缝；(3) 无整体或不均匀沉降风险；(4) 无须绑扎钢筋，施工速度快；(5) 检测方便简单，易于控制；(6) 经济性好。

附图说明

[0019] 图 1 是无筋地坪地基的横向断面图。

具体实施方式

[0020] 下面结合附图对本发明作进一步描述。

[0021] 参照图 1，一种大型无筋地坪地基的建造方法，所述大型无筋地坪地基自下而上依次包括压实原土层、2/56 级配碎石层、0/45 级配碎石层、高分子 PE 防水膜、C30 素混凝土层；所述建造方法包括：

[0022] (1) 将原有场地土方处理压实，得到原土层，采用 Ev 测试技术测试原土层，要求达到 Ev2 ≥ 45MN/m²，Ev2/Ev1 < 2.5；

[0023] (2) 在原土层上铺设 2/56 级配碎石，并处理压实，得到 2/56 级配碎石层，采用 Ev 测试技术和压实度试验测试 2/56 级配碎石层，要求达到压实系数 ≥ 0.97，Ev2 ≥ 100MN/m²，Ev2/Ev1 < 2.5；

[0024] (3) 在 2/56 级配碎石层上铺设 0/45 级配碎石，并处理压实，得到 0/45 级配碎石层，采用 Ev 测试技术和压实度试验测试 0/45 级配碎石层，要求达到压实系数 ≥ 0.97，Ev2 ≥ 120MN/m²，Ev2/Ev1 < 2.5；

[0025] (4) 在 0/45 级配碎石层上铺设高分子 PE 防水膜，高分子 PE 防水膜的厚度 ≥ 0.6mm；

[0026] (5) 在所述高分子 PE 防水膜上设置 C30 素混凝土层。

[0027] 所述 0/45 级配碎石层 3 与高分子 PE 防水膜 5 之间还设有 C15 素混凝土垫层 4；所述步骤 (4) 中，在 0/45 级配碎石层上铺设 C15 素混凝土垫层，所述 C15 素混凝土垫层上铺设高分子 PE 防水膜。

[0028] 所述步骤 (3) 中，0/45 级配碎石层采用两层结构。当然，也可以采用三层结构等其他形式。

[0029] 所述步骤 (4) 中，高分子 PE 防水膜采用两层结构，每层膜厚度 ≥ 0.3mm。

[0030] 本实施例通过自下而上的每层回填材料的不同要求的压实，平衡地面传力途径，解决后期使用由于使用荷载不均引起的不均匀沉降及大面积开裂等。其优点是利用 Ev 测试技术，严格控制每层回填材料的回填压实质量，通过回填厚度及压实要求的修改，可以满
满足不同的地面要求。

【0031】本实施例适用于大型厂房，物流中心的大面积室内地坪的地基处理。
图 1