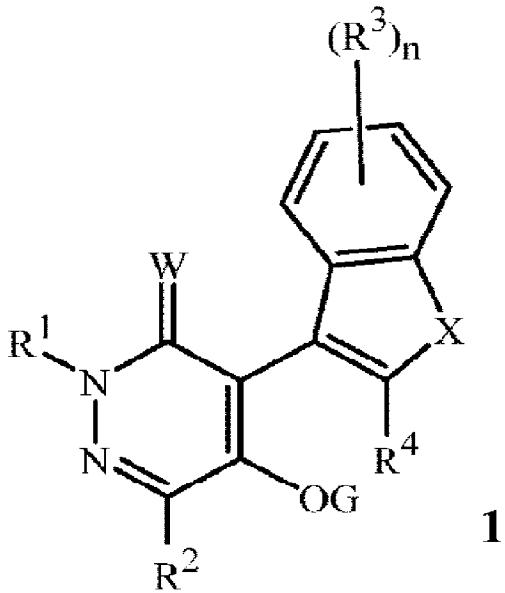


(86) Date de dépôt PCT/PCT Filing Date: 2015/04/27
(87) Date publication PCT/PCT Publication Date: 2015/11/05
(45) Date de délivrance/Issue Date: 2021/07/20
(85) Entrée phase nationale/National Entry: 2016/10/17
(86) N° demande PCT/PCT Application No.: US 2015/027776
(87) N° publication PCT/PCT Publication No.: 2015/168010
(30) Priorités/Priorities: 2014/04/29 (US61/985,895);
2014/05/28 (US62/004,006); 2014/11/17 (US62/071,949)

(51) Cl.Int./Int.Cl. C07D 409/04 (2006.01),
A01N 43/58 (2006.01), A01P 13/00 (2006.01)


(72) Inventeurs/Inventors:
SELBY, THOMAS PAUL, US;
DEPREZ, NICHOLAS RYAN, US;
STEVENSON, THOMAS MARTIN, US;
DEBERGH, JOHN ROBBINS, US;
TAGGI, ANDREW EDMUND, US

(73) Propriétaire/Owner:
FMC CORPORATION, US

(74) Agent: TORYS LLP

(54) Titre : HERBICIDES A BASE DE PYRIDAZINONE

(54) Title: PYRIDAZINONE HERBICIDES

(57) Abrégé/Abstract:

Disclosed are compounds of Formula 1, including all stereoisomers, N-oxides, and salts thereof, wherein X is O, S or NR⁵; or X is C(R⁶)=C(R⁷), wherein the carbon atom bonded to R⁶ is also bonded to the carbon atom bonded to R⁴, and the carbon atom bonded to R⁷ is also bonded to the phenyl ring moiety in Formula 1; and R¹, R², R³, R⁴, R⁵, R⁶, R⁷, G and W are as defined in the disclosure. Also disclosed are compositions containing the compounds of Formula 1 and methods for controlling undesired vegetation comprising contacting the undesired vegetation or its environment with an effective amount of a compound or a composition of the invention.

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(10) International Publication Number
WO 2015/168010 A1

(43) International Publication Date
5 November 2015 (05.11.2015)

(51) International Patent Classification:
C07D 403/04 (2006.01) *C07D 237/16* (2006.01)
A01N 43/58 (2006.01) *C07D 237/18* (2006.01)
C07D 237/14 (2006.01) *C07D 409/04* (2006.01)

(21) International Application Number:
PCT/US2015/027776

(22) International Filing Date:
27 April 2015 (27.04.2015)

(25) Filing Language: English

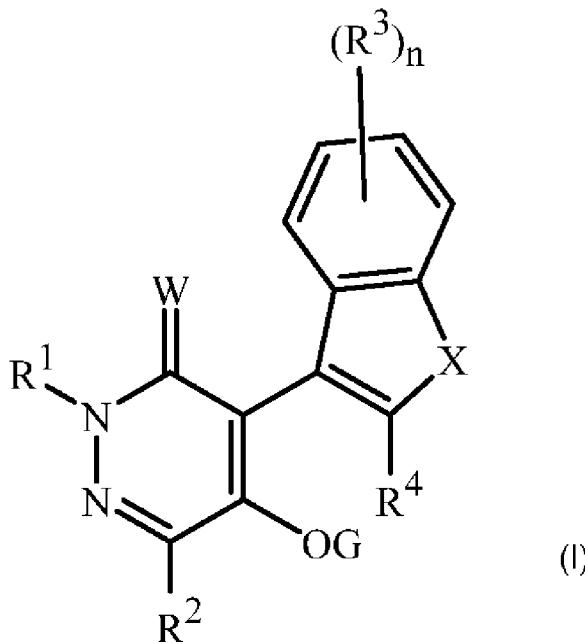
(26) Publication Language: English

(30) Priority Data:
 61/985,895 29 April 2014 (29.04.2014) US
 62/004,006 28 May 2014 (28.05.2014) US
 62/071,949 17 November 2014 (17.11.2014) US

(71) Applicant: **E. I. DU PONT DE NEMOURS AND COMPANY** [US/US]; 1007 Market Street, Wilmington, Delaware 19898 (US).

(72) Inventors: **SELBY, Thomas Paul**; 820 Benge Road, Hockessin, Delaware 19707 (US). **DEPREZ, Nicholas**

Ryan; 3903 Cindy Drive, Newark, Delaware 19701 (US). STEVENSON, Thomas Martin; 103 Iroquois Court, Newark, Delaware 19702 (US).


(74) Agent: **COATS, Reed A.**; E. I. du Pont de Nemours and Company, Legal Patent Records Center, Chestnut Run Plaza 721/2340, 974 Centre Road, PO Box 2915 Wilmington, Delaware 19805 (US).

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ,

[Continued on next page]

(54) Title: PYRIDAZINONE HERBICIDES

(57) Abstract: Disclosed are compounds of Formula 1, including all stereoisomers, *N*-oxides, and salts thereof, wherein X is O, S or NR⁵; or X is C(R⁶)=C(R⁷), wherein the carbon atom bonded to R⁶ is also bonded to the carbon atom bonded to R⁴, and the carbon atom bonded to R⁷ is also bonded to the phenyl ring moiety in Formula 1; and R¹, R², R³, R⁴, R⁵, R⁶, R⁷, G and W are as defined in the disclosure. Also disclosed are compositions containing the compounds of Formula 1 and methods for controlling undesired vegetation comprising contacting the undesired vegetation or its environment with an effective amount of a compound or a composition of the invention.

WO 2015/168010 A1

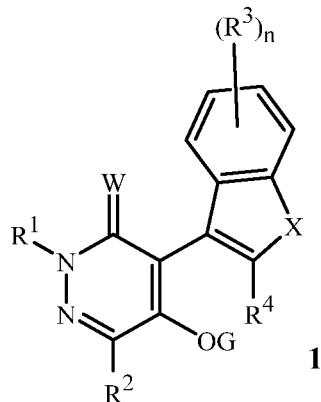
Published:

TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

— *with international search report (Art. 21(3))*
— *with amended claims (Art. 19(1))*

TITLE
PYRIDAZINONE HERBICIDES

FIELD OF THE INVENTION


This invention relates to certain pyridazinones, their *N*-oxides, salts and compositions, 5 and methods of their use for controlling undesirable vegetation.

BACKGROUND OF THE INVENTION

The control of undesired vegetation is extremely important in achieving high crop efficiency. Achievement of selective control of the growth of weeds especially in such useful crops as rice, soybean, sugar beet, maize, potato, wheat, barley, tomato and plantation 10 crops, among others, is very desirable. Unchecked weed growth in such useful crops can cause significant reduction in productivity and thereby result in increased costs to the consumer. The control of undesired vegetation in noncrop areas is also important. Many products are commercially available for these purposes, but the need continues for new compounds that are more effective, less costly, less toxic, environmentally safer or have 15 different sites of action.

SUMMARY OF THE INVENTION

This invention is directed to compounds of Formula 1 (including all stereoisomers), *N*-oxides, and salts thereof, agricultural compositions containing them and their use as herbicides:

20

wherein

W is O or S;

R¹ is H, C₁–C₇ alkyl, C₃–C₈ alkylcarbonylalkyl, C₃–C₈ alkoxy carbonylalkyl, C₄–C₇ alkylcycloalkyl, C₃–C₇ alkenyl, C₃–C₇ alkynyl, C₃–C₇ cycloalkyl, C₄–C₇ cycloalkylalkyl, C₂–C₃ cyanoalkyl, C₁–C₄ nitroalkyl, C₂–C₇ haloalkoxyalkyl, 25 C₁–C₇ haloalkyl, C₃–C₇ haloalkenyl, C₂–C₇ alkoxyalkyl, C₃–C₇ alkylthioalkyl,

C_1-C_7 alkoxy, benzyl or phenyl; or a 5-, or 6-membered saturated or partially saturated heterocyclic ring containing ring members selected from carbon and up to 1 O and 1 S;

5 R^2 is H, halogen, -CN, -CHO, C_1-C_7 alkyl, C_3-C_8 alkylcarbonylalkyl, C_3-C_8 alkoxy carbonylalkyl, C_1-C_4 alkylcarbonyl, C_2-C_7 alkylcarbonyloxy, C_4-C_7 alkylcycloalkyl, C_3-C_7 alkenyl, C_3-C_7 alkynyl, C_1-C_4 alkylsulfinyl, C_1-C_4 alkylsulfonyl, C_1-C_4 alkylamino, C_2-C_8 dialkylamino, C_3-C_7 cycloalkyl, C_4-C_7 cycloalkylalkyl, C_2-C_3 cyanoalkyl, C_1-C_4 nitroalkyl, C_2-C_7 haloalkoxyalkyl, C_1-C_7 haloalkyl, C_3-C_7 haloalkenyl, C_2-C_7 alkoxyalkyl, C_1-C_7 alkoxy, C_1-C_5 alkylthio, C_2-C_3 alkoxy carbonyl; or phenyl optionally substituted by halogen, C_1-C_4 alkyl or C_1-C_4 haloalkyl;

10 X is O, S or NR^5 ; or

15 X is $-C(R^6)=C(R^7)-$, wherein the carbon atom bonded to R^6 is also bonded to the carbon atom bonded to R^4 , and the carbon atom bonded to R^7 is also bonded to the phenyl ring moiety in Formula 1;

each R^3 is independently halogen, -CN, nitro, C_1-C_5 alkyl, C_2-C_5 alkenyl, C_2-C_5 alkynyl, C_3-C_5 cycloalkyl, C_4-C_5 cycloalkylalkyl, C_1-C_5 haloalkyl, C_3-C_5 haloalkenyl, C_3-C_5 haloalkynyl, C_2-C_5 alkoxyalkyl, C_1-C_5 alkoxy, C_1-C_5 haloalkoxy, C_1-C_5 alkylthio, C_1-C_5 haloalkylthio or C_2-C_5 alkoxy carbonyl;

20 R^4 , R^6 and R^7 are independently H, halogen, nitro, -CN, C_1-C_5 alkyl, C_2-C_5 alkenyl, C_2-C_5 alkynyl, C_3-C_5 cycloalkyl, C_4-C_5 cycloalkylalkyl, C_1-C_5 haloalkyl, C_3-C_5 haloalkenyl, C_3-C_5 haloalkynyl, C_2-C_5 alkoxyalkyl, C_1-C_5 alkoxy, C_1-C_5 haloalkoxy, C_1-C_5 alkylthio, C_1-C_4 alkylsulfinyl, C_1-C_4 alkylsulfonyl, C_1-C_5 haloalkylthio or C_2-C_5 alkoxy carbonyl;

25 R^5 is H, C_1-C_3 alkyl or C_1-C_3 haloalkyl;

G is G^1 or W^1G^1 ;

G^1 is H, $-C(=O)R^8$, $-C(=S)R^8$, $-CO_2R^9$, $-C(=O)SR^9$, $-S(O)_2R^8$, $-CONR^{10}R^{11}$, $-S(O)_2NR^{10}R^{11}$, or $P(=O)R^{12}$; or C_1-C_4 alkyl, C_2-C_4 alkenyl, C_2-C_4 alkynyl, C_1-C_4 haloalkyl, C_2-C_4 haloalkenyl, C_2-C_4 haloalkynyl, C_1-C_4 alkoxyalkyl, C_3-C_6 cycloalkyl or C_4-C_7 cycloalkylalkyl; or a 5- or 6-membered heterocyclic ring;

30 W^1 is C_1-C_4 alkanediyl or C_2-C_4 alkenediyl;

R^8 and R^{10} are independently C_1-C_7 alkyl, C_3-C_7 alkenyl, C_3-C_7 alkynyl, C_3-C_7 cycloalkyl, C_1-C_7 haloalkyl, C_3-C_7 haloalkenyl, C_2-C_7 alkoxyalkyl, C_4-C_7 cycloalkylalkyl; or phenyl, benzyl, or a 5- to 6-membered heterocyclic ring, each

phenyl, benzyl or heterocyclic ring optionally substituted by halogen, C₁–C₄ alkyl or C₁–C₄ haloalkyl;

R⁹ is C₁–C₇ alkyl, C₃–C₇ alkenyl, C₃–C₇ alkynyl, C₃–C₇ cycloalkyl, C₂–C₇ haloalkyl, C₃–C₇ haloalkenyl, C₂–C₇ alkoxyalkyl, C₄–C₇ cycloalkylalkyl; or phenyl, benzyl or a 5- to 6-membered heterocyclic ring, each phenyl, benzyl or heterocycling ring optionally substituted by halogen, C₁–C₄ alkyl or C₁–C₄ haloalkyl;

R¹¹ is H, C₁–C₇ alkyl, C₂–C₇ alkenyl, C₂–C₇ alkynyl, C₃–C₇ cycloalkyl, C₄–C₇ cycloalkylalkyl, C₁–C₇ haloalkyl or C₂–C₇ alkoxyalkyl;

R¹² is C₁–C₇ alkyl or C₁–C₇ alkoxy; and

n is 0, 1, 2, 3 or 4;

provided that when R⁴ is H, then X is -C(R⁶)=C(R⁷)-.

More particularly, this invention pertains to a compound of Formula 1 (including all stereoisomers), an N-oxide or a salt thereof. This invention also relates to a herbicidal composition comprising a compound of the invention (i.e. in a herbicidally effective amount) and at least one component selected from the group consisting of surfactants, solid diluents and liquid diluents. This invention further relates to a method for controlling the growth of undesired vegetation comprising contacting the vegetation or its environment with a herbicidally effective amount of a compound of the invention (e.g., as a composition described herein).

This invention also includes a herbicidal mixture comprising (a) a compound selected from Formula 1, N-oxides, and salts thereof, and (b) at least one additional active ingredient selected from (b1) through (b16); and salts of compounds of (b1) through (b16), as described below.

25 DETAILS OF THE INVENTION

As used herein, the terms “comprises,” “comprising,” “includes,” “including,” “has,” “having,” “contains”, “containing,” “characterized by” or any other variation thereof, are intended to cover a non-exclusive inclusion, subject to any limitation explicitly indicated. For example, a composition, mixture, process or method that comprises a list of elements is not necessarily limited to only those elements but may include other elements not expressly listed or inherent to such composition, mixture, process or method.

The transitional phrase “consisting of” excludes any element, step, or ingredient not specified. If in the claim, such would close the claim to the inclusion of materials other than those recited except for impurities ordinarily associated therewith. When the phrase “consisting of” appears in a clause of the body of a claim, rather than immediately following

the preamble, it limits only the element set forth in that clause; other elements are not excluded from the claim as a whole.

The transitional phrase “consisting essentially of” is used to define a composition or method that includes materials, steps, features, components, or elements, in addition to those literally disclosed, provided that these additional materials, steps, features, components, or elements do not materially affect the basic and novel characteristic(s) of the claimed invention. The term “consisting essentially of” occupies a middle ground between “comprising” and “consisting of”.

Where applicants have defined an invention or a portion thereof with an open-ended term such as “comprising,” it should be readily understood that (unless otherwise stated) the description should be interpreted to also describe such an invention using the terms “consisting essentially of” or “consisting of.”

Further, unless expressly stated to the contrary, “or” refers to an inclusive or and not to an exclusive or. For example, a condition A or B is satisfied by any one of the following: A is true (or present) and B is false (or not present), A is false (or not present) and B is true (or present), and both A and B are true (or present).

Also, the indefinite articles “a” and “an” preceding an element or component of the invention are intended to be nonrestrictive regarding the number of instances (i.e. occurrences) of the element or component. Therefore “a” or “an” should be read to include one or at least one, and the singular word form of the element or component also includes the plural unless the number is obviously meant to be singular.

As referred to herein, the term “seedling”, used either alone or in a combination of words means a young plant developing from the embryo of a seed.

As referred to herein, the term “broadleaf” used either alone or in words such as “broadleaf weed” means dicot or dicotyledon, a term used to describe a group of angiosperms characterized by embryos having two cotyledons.

As used herein, the term “alkylating” refers reaction in which nucleophile displaces a leaving group such as halide or sulfonate from a carbon-containing radical. Unless otherwise indicated, the term “alkylating” does not limit the carbon-containing radical to alkyl.

In the above recitations, the term “alkyl”, used either alone or in compound words such as “alkylthio” or “haloalkyl” includes straight-chain or branched alkyl, such as, methyl, ethyl, *n*-propyl, *i*-propyl, or the different butyl, pentyl or hexyl isomers. “Alkenyl” includes straight-chain or branched alkenes such as ethenyl, 1-propenyl, 2-propenyl, and the different butenyl, pentenyl and hexenyl isomers. “Alkenyl” also includes polyenes such as 1,2-propadienyl and 2,4-hexadienyl. “Alkynyl” includes straight-chain or branched alkynes

such as ethynyl, 1-propynyl, 2-propynyl and the different butynyl, pentynyl and hexynyl isomers. “Alkynyl” can also include moieties comprised of multiple triple bonds such as 2,5-hexadiynyl.

“Alkoxy” includes, for example, methoxy, ethoxy, *n*-propyloxy, isopropyloxy and the different butoxy, pentoxy and hexyloxy isomers. “Alkoxyalkyl” denotes alkoxy substitution on alkyl. Examples of “alkoxyalkyl” include CH_3OCH_2 , $\text{CH}_3\text{OCH}_2\text{CH}_2$, $\text{CH}_3\text{CH}_2\text{OCH}_2$, $\text{CH}_3\text{CH}_2\text{CH}_2\text{OCH}_2$ and $\text{CH}_3\text{CH}_2\text{OCH}_2\text{CH}_2$. “Alkoxyalkoxy” denotes alkoxy substitution on alkoxy. “Alkylthio” includes branched or straight-chain alkylthio moieties such as methylthio, ethylthio, and the different propylthio, butylthio, pentylthio and hexylthio isomers. “Alkylthioalkyl” denotes alkylthio substitution on alkyl. Examples of “alkylthioalkyl” include CH_3SCH_2 , $\text{CH}_3\text{SCH}_2\text{CH}_2$, $\text{CH}_3\text{CH}_2\text{SCH}_2$, $\text{CH}_3\text{CH}_2\text{CH}_2\text{CH}_2\text{SCH}_2$ and $\text{CH}_3\text{CH}_2\text{SCH}_2\text{CH}_2$. “Cyanoalkyl” denotes an alkyl group substituted with one cyano group. Examples of “cyanoalkyl” include NCCH_2 and NCCH_2CH_2 (alternatively identified as $\text{CH}_2\text{CH}_2\text{CN}$).

“Cycloalkyl” includes, for example, cyclopropyl, cyclobutyl, cyclopentyl and cyclohexyl. The term “cycloalkylalkyl” denotes cycloalkyl substitution on an alkyl moiety. Examples of “cycloalkylalkyl” include cyclopropylmethyl, cyclopentylethyl, and other cycloalkyl moieties bonded to straight-chain or branched alkyl groups.

The term “halogen”, either alone or in compound words such as “haloalkyl”, or when used in descriptions such as “alkyl substituted with halogen” includes fluorine, chlorine, bromine or iodine. Further, when used in compound words such as “haloalkyl”, or when used in descriptions such as “alkyl substituted with halogen” said alkyl may be partially or fully substituted with halogen atoms which may be the same or different. Examples of “haloalkyl” or “alkyl substituted with halogen” include F_3C , ClCH_2 , CF_3CH_2 and CF_3CCl_2 . The terms “haloalkoxy”, “haloalkylthio”, “haloalkenyl”, “haloalkynyl”, and the like, are defined analogously to the term “haloalkyl”. Examples of “haloalkoxy” include CF_3O^- , $\text{CCl}_3\text{CH}_2\text{O}^-$, $\text{HCF}_2\text{CH}_2\text{CH}_2\text{O}^-$ and $\text{CF}_3\text{CH}_2\text{O}^-$. Examples of “haloalkylthio” include CCl_3S^- , CF_3S^- , $\text{CCl}_3\text{CH}_2\text{S}^-$ and $\text{ClCH}_2\text{CH}_2\text{CH}_2\text{S}^-$. Examples of “haloalkenyl” include $(\text{Cl})_2\text{C}=\text{CHCH}_2^-$ and $\text{CF}_3\text{CH}_2\text{CH}=\text{CHCH}_2^-$. Examples of “haloalkynyl” include $\text{HC}\equiv\text{CCHCl}^-$, $\text{CF}_3\text{C}\equiv\text{C}^-$, $\text{CCl}_3\text{C}\equiv\text{C}^-$ and $\text{FCH}_2\text{C}\equiv\text{CCH}_2^-$.

“Alkoxycarbonyl” denotes a straight-chain or branched alkoxy moieties bonded to a $\text{C}(\text{=O})$ moiety. Examples of “aloxycarbonyl” include $\text{CH}_3\text{OC}(\text{=O})^-$, $\text{CH}_3\text{CH}_2\text{OC}(\text{=O})^-$, $\text{CH}_3\text{CH}_2\text{CH}_2\text{OC}(\text{=O})^-$, $(\text{CH}_3)_2\text{CHOC}(\text{=O})^-$ and the different butoxy- or pentoxy carbonyl isomers.

The total number of carbon atoms in a substituent group is indicated by the “ $\text{C}_i\text{--C}_j$ ” prefix where i and j are numbers from 1 to 7. For example, $\text{C}_1\text{--C}_4$ alkylsulfonyl designates

methylsulfonyl through butylsulfonyl; C₂ alkoxyalkyl designates CH₃OCH₂-; C₃ alkoxyalkyl designates, for example, CH₃CH(OCH₃)-, CH₃OCH₂CH₂- or CH₃CH₂OCH₂-; and C₄ alkoxyalkyl designates the various isomers of an alkyl group substituted with an alkoxy group containing a total of four carbon atoms, examples including 5 CH₃CH₂CH₂OCH₂- and CH₃CH₂OCH₂CH₂-.

When a compound is substituted with a substituent bearing a subscript that indicates the number of said substituents can exceed 1, said substituents (when they exceed 1) are independently selected from the group of defined substituents, e.g., (R³)_n, wherein n is 1, 2, 10 3 or 4. When a group contains a substituent which can be hydrogen, for example R² or R⁴, then when this substituent is taken as hydrogen, it is recognized that this is equivalent to said group being unsubstituted. When a variable group is shown to be optionally attached to a position, for example (R³)_n wherein n may be 0, then hydrogen may be at the position even if not recited in the variable group definition. When one or more positions on a group are said to be "not substituted" or "unsubstituted", then hydrogen atoms are attached to take up 15 any free valency.

The compounds of Formula 1 wherein G is H (i.e. a hydroxy function) are believed to be the compounds that bind to an active site on a plant enzyme or receptor causing herbicidal effect on the plant. Other compounds of Formula 1 wherein the substituent G is a group that can be transformed within plants or the environment to the hydroxy moiety provide similar 20 herbicidal effects and are within the scope of the present invention. Therefore, G can be any derivative known in the art which does not extinguish the herbicidal activity of the compound of Formula 1 and is or can be hydrolyzed, oxidized, reduced or otherwise metabolized in plants or soil to provide the carboxylic acid function, which depending upon pH, is in the dissociated or the undissociated form. The term "ring system" denotes two or 25 more fused rings. The term "bicyclic ring system" denotes a ring system consisting of two fused rings.

Compounds of this invention can exist as one or more stereoisomers. The various stereoisomers include enantiomers, diastereomers, atropisomers and geometric isomers. Stereoisomers are isomers of identical constitution but differing in the arrangement of their 30 atoms in space and include enantiomers, diastereomers, cis-trans isomers (also known as geometric isomers) and atropisomers. Atropisomers result from restricted rotation about single bonds where the rotational barrier is high enough to permit isolation of the isomeric species. One skilled in the art will appreciate that one stereoisomer may be more active and/or may exhibit beneficial effects when enriched relative to the other stereoisomer(s) or 35 when separated from the other stereoisomer(s). Additionally, the skilled artisan knows how to separate, enrich, and/or to selectively prepare said stereoisomers. The compounds of the

invention may be present as a mixture of stereoisomers, individual stereoisomers or as an optically active form.

Compounds of Formula 1 typically exist in more than one form, and Formula 1 thus include all crystalline and non-crystalline forms of the compounds they represent. Non-crystalline forms include embodiments which are solids such as waxes and gums as well as embodiments which are liquids such as solutions and melts. Crystalline forms include embodiments which represent essentially a single crystal type and embodiments which represent a mixture of polymorphs (i.e. different crystalline types). The term "polymorph" refers to a particular crystalline form of a chemical compound that can crystallize in different crystalline forms, these forms having different arrangements and/or conformations of the molecules in the crystal lattice. Although polymorphs can have the same chemical composition, they can also differ in composition due the presence or absence of co-crystallized water or other molecules, which can be weakly or strongly bound in the lattice. Polymorphs can differ in such chemical, physical and biological properties as crystal shape, density, hardness, color, chemical stability, melting point, hygroscopicity, suspensibility, dissolution rate and biological availability. One skilled in the art will appreciate that a polymorph of a compound of Formula 1 can exhibit beneficial effects (e.g., suitability for preparation of useful formulations, improved biological performance) relative to another polymorph or a mixture of polymorphs of the same compound of Formula 1. Preparation and isolation of a particular polymorph of a compound of Formula 1 can be achieved by methods known to those skilled in the art including, for example, crystallization using selected solvents and temperatures. For a comprehensive discussion of polymorphism see R. Hilfiker, Ed., *Polymorphism in the Pharmaceutical Industry*, Wiley-VCH, Weinheim, 2006.

One skilled in the art will appreciate that not all nitrogen-containing heterocycles can form *N*-oxides since the nitrogen requires an available lone pair for oxidation to the oxide; one skilled in the art will recognize those nitrogen-containing heterocycles which can form *N*-oxides. One skilled in the art will also recognize that tertiary amines can form *N*-oxides. Synthetic methods for the preparation of *N*-oxides of heterocycles and tertiary amines are very well known by one skilled in the art including the oxidation of heterocycles and tertiary amines with peroxy acids such as peracetic and *m*-chloroperbenzoic acid (MCPBA), hydrogen peroxide, alkyl hydroperoxides such as *t*-butyl hydroperoxide, sodium perborate, and dioxiranes such as dimethyldioxirane. These methods for the preparation of *N*-oxides have been extensively described and reviewed in the literature, see for example: T. L. Gilchrist in *Comprehensive Organic Synthesis*, vol. 7, pp 748–750, S. V. Ley, Ed., Pergamon Press; M. Tisler and B. Stanovnik in *Comprehensive Heterocyclic Chemistry*, vol. 3, pp 18–20, A. J. Boulton and A. McKillop, Eds., Pergamon Press; M. R. Grimmett and

B. R. T. Keene in *Advances in Heterocyclic Chemistry*, vol. 43, pp 149–161, A. R. Katritzky, Ed., Academic Press; M. Tisler and B. Stanovnik in *Advances in Heterocyclic Chemistry*, vol. 9, pp 285–291, A. R. Katritzky and A. J. Boulton, Eds., Academic Press; and G. W. H. Cheeseman and E. S. G. Werstiuk in *Advances in Heterocyclic Chemistry*, vol. 22, pp 390–392, A. R. Katritzky and A. J. Boulton, Eds., Academic Press.

One skilled in the art recognizes that because in the environment and under physiological conditions salts of chemical compounds are in equilibrium with their corresponding nonsalt forms, salts share the biological utility of the nonsalt forms. Thus a wide variety of salts of a compound of Formula 1 are useful for control of undesired vegetation (i.e. are agriculturally suitable). The salts of a compound of Formula 1 include acid-addition salts with inorganic or organic acids such as hydrobromic, hydrochloric, nitric, phosphoric, sulfuric, acetic, butyric, fumaric, lactic, maleic, malonic, oxalic, propionic, salicylic, tartaric, 4-toluenesulfonic or valeric acids. When a compound of Formula 1 contains an acidic moiety such as an enolic function (e.g., when G is H), salts also include those formed with organic or inorganic bases such as pyridine, triethylamine or ammonia, or amides, hydrides, hydroxides or carbonates of sodium, potassium, lithium, calcium, magnesium or barium. Accordingly, the present invention comprises compounds selected from Formula 1, *N*-oxides and agriculturally suitable salts thereof.

Embodiments of the present invention as described in the Summary of the Invention include (where Formula 1 as used in the following Embodiments includes *N*-oxides and salts thereof):

Embodiment 1. A compound of Formula 1 wherein W is O.

Embodiment 2. A compound of Formula 1 or Embodiment 1 wherein X is O, S or $-C(R^6)=C(R^7)-$.

Embodiment 3. A compound of Embodiment 2 wherein X is O or S.

Embodiment 4. A compound of Embodiment 3 wherein X is O.

Embodiment 5. A compound of Embodiment 3 wherein X is S.

Embodiment 6. A compound of Embodiment 2 wherein X is $-C(R^6)=C(R^7)-$.

Embodiment 7. A compound of Formula 1 or Embodiment 1 wherein X is NR^5 .

Embodiment 7a. A compound of Embodiment 2 wherein X is O, S, $-CH=CH-$, $-C(CH_3)=CH-$, $-CH=CF-$, $-CH=CCl-$ or $-CH=C(CH_3)-$.

Embodiment 7b. A compound of Embodiment 2 wherein X is $-CH=CH-$, $-C(CH_3)=CH-$, $-CH=CF-$, $-CH=CCl-$ or $-CH=C(CH_3)-$.

Embodiment 7c. A compound of Embodiment 2 wherein X is $-CH=CH-$, $-CH=CF-$, $-CH=CCl-$ or $-CH=C(CH_3)-$.

Embodiment 7d. A compound of Formula **1** or any one of Embodiments 1 through 7a wherein R¹ is H, C₁–C₇ alkyl, C₃–C₈ alkylcarbonylalkyl, C₃–C₈ alkoxy carbonylalkyl, C₄–C₇ alkylcycloalkyl, C₃–C₇ alkenyl, C₃–C₇ alkynyl, C₃–C₇ cycloalkyl, C₄–C₇ cycloalkylalkyl, C₂–C₃ cyanoalkyl, C₁–C₄ nitroalkyl, C₂–C₇ haloalkoxyalkyl, C₁–C₇ haloalkyl, C₃–C₇ haloalkenyl, C₂–C₇ alkoxyalkyl, C₃–C₇ alkylthioalkyl, C₁–C₇ alkoxy, benzyl or phenyl.

Embodiment 7e. A compound of Formula **1** or any one of Embodiments 1 through 7a wherein R¹ is H, C₁–C₇ alkyl, C₃–C₈ alkoxy carbonylalkyl, C₄–C₇ alkylcycloalkyl, C₃–C₇ cycloalkyl, C₄–C₇ cycloalkylalkyl, C₂–C₃ cyanoalkyl, C₁–C₄ nitroalkyl, C₂–C₇ haloalkoxyalkyl, C₁–C₇ haloalkyl, C₂–C₇ alkoxyalkyl, C₃–C₇ alkylthioalkyl, C₁–C₇ alkoxy or benzyl.

Embodiment 8. A compound of Formula **1** or any one of Embodiments 1 through 7 wherein R¹ is C₁–C₄ alkyl, C₃–C₄ alkenyl, C₃–C₄ alkynyl, C₃–C₄ cycloalkyl, C₂–C₃ cyanoalkyl, C₁–C₃ haloalkyl or C₂–C₄ alkoxyalkyl.

Embodiment 9. A compound of Embodiment 8 wherein R¹ is C₁–C₃ alkyl, allyl, propargyl, CH₂CH₂CN, C₁–C₂ haloalkyl or 2-methoxyethyl.

Embodiment 10. A compound of Embodiment 9 wherein R¹ is methyl, ethyl, *n*-propyl or 2-methoxyethyl.

Embodiment 11. A compound of Embodiment 10 wherein R¹ is methyl or ethyl.

Embodiment 12. A compound of Embodiment 11 wherein R¹ is methyl.

Embodiment 12a. A compound of Formula **1** wherein R¹ is other than H.

Embodiment 12b. A compound of Formula **1** wherein R¹ is other than phenyl.

Embodiment 12c. A compound of Formula **1** wherein R² is H, halogen, -CN, -CHO, C₁–C₇ alkyl, C₃–C₈ alkylcarbonylalkyl, C₃–C₈ alkoxy carbonylalkyl, C₁–C₄ alkylcarbonyl, C₂–C₇ alkylcarbonyloxy, C₄–C₇ alkylcycloalkyl, C₃–C₇ alkenyl, C₃–C₇ alkynyl, C₁–C₄ alkylsulfinyl, C₁–C₄ alkylsulfonyl, C₁–C₄ alkylamino, C₂–C₈ dialkylamino, C₃–C₇ cycloalkyl, C₄–C₇ cycloalkylalkyl, C₂–C₃ cyanoalkyl, C₁–C₄ nitroalkyl, C₂–C₇ haloalkoxyalkyl, C₁–C₇ haloalkyl, C₃–C₇ haloalkenyl, C₂–C₇ alkoxyalkyl, C₁–C₇ alkoxy or C₁–C₅ alkylthio.

Embodiment 12d. A compound of Formula **1** wherein R² is H, halogen, -CN, -CHO, C₁–C₇ alkyl, C₁–C₄ alkylcarbonyl, C₂–C₇ alkylcarbonyloxy, C₄–C₇ alkylcycloalkyl, C₁–C₄ alkylsulfinyl, C₁–C₄ alkylsulfonyl, C₁–C₄ alkylamino, C₃–C₇ cycloalkyl, C₄–C₇ cycloalkylalkyl, C₂–C₃ cyanoalkyl, C₁–C₄ nitroalkyl, C₂–C₇ haloalkoxyalkyl, C₁–C₇ haloalkyl, C₂–C₇ alkoxyalkyl or C₁–C₇ alkoxy.

Embodiment 13. A compound of Formula **1** or any one of Embodiments 1 through 12 wherein R² is H, halogen, -CN, C₁–C₄ alkyl, C₃–C₅ cycloalkyl, C₁–C₃ haloalkyl, C₂–C₄ alkoxyalkyl or C₁–C₃ alkoxy.

Embodiment 14. A compound of Embodiment 13 wherein R² is H, halogen, C₁–C₃ alkyl, cyclopropyl, C₁–C₂ haloalkyl, methoxy or ethoxy.

Embodiment 15. A compound of Embodiment 14 wherein R² is H, methyl, ethyl, *n*-propyl, CF₃ or methoxy.

Embodiment 16. A compound of Embodiment 15 wherein R² is methyl or ethyl.

Embodiment 17. A compound of Embodiment 16 wherein R² is methyl.

Embodiment 17a. A compound of Formula **1** wherein R² is other than phenyl.

Embodiment 18. A compound of Formula **1** or any one of Embodiments 1 through 17 wherein each R³ is independently halogen, -CN, C₁–C₃ alkyl, C₂–C₄ alkenyl, C₂–C₄ alkynyl, C₃–C₄ cycloalkyl, C₁–C₃ haloalkyl, C₁–C₃ alkoxy, C₁–C₂ haloalkoxy, C₁–C₂ alkylthio or C₁–C₂ haloalkylthio.

Embodiment 19. A compound of Embodiment 18 wherein each R³ is independently halogen, -CN, C₁–C₂ alkyl, -CH=CH₂, -C≡CH, cyclopropyl, C₁–C₂ haloalkyl or C₁–C₂ alkoxy.

Embodiment 20. A compound of Embodiment 19 wherein each R³ is independently halogen, -CN, methyl, ethyl, -CH=CH₂, -C≡CH, cyclopropyl, CF₃, methoxy or ethoxy.

Embodiment 21. A compound of Embodiment 20 wherein each R³ is independently halogen, -CN, methyl, ethyl, methoxy or ethoxy.

Embodiment 22. A compound of Embodiment 21 wherein each R³ is independently F, Cl, Br, methyl, ethyl or methoxy.

Embodiment 23. A compound of Formula **1** or any one of Embodiments 1 through 22 wherein R⁴ is halogen, -CN, C₁–C₃ alkyl, C₂–C₄ alkenyl, C₂–C₄ alkynyl, C₃–C₄ cycloalkyl, C₁–C₃ haloalkyl, C₁–C₃ alkoxy, C₁–C₂ haloalkoxy, C₁–C₂ alkylthio or C₁–C₂ haloalkylthio.

Embodiment 24. A compound of Embodiment 23 wherein R⁴ is halogen, -CN, C₁–C₂ alkyl, -CH=CH₂, -C≡CH, cyclopropyl, C₁–C₂ haloalkyl or C₁–C₂ alkoxy.

Embodiment 25. A compound of Embodiment 24 wherein R⁴ is halogen, -CN, methyl, ethyl, -CH=CH₂, -C≡CH, cyclopropyl, CF₃, methoxy or ethoxy.

Embodiment 26. A compound of Embodiment 25 wherein R⁴ is methyl or ethyl.

Embodiment 27. A compound of Embodiment 26 wherein R⁴ is methyl.

Embodiment 28. A compound of Formula **1** or any one of Embodiments 1 through 27 wherein R⁵ is C₁–C₂ alkyl.

Embodiment 29. A compound of Embodiment 28 wherein R⁵ is methyl.

Embodiment 30. A compound of Formula 1 or any one of Embodiments 1 through 29
 wherein independently, R⁶ and R⁷ are H, halogen, -CN, C₁–C₃ alkyl, C₂–C₄
 alkenyl, C₂–C₄ alkynyl, C₃–C₄ cycloalkyl, C₁–C₃ haloalkyl, C₁–C₃ alkoxy, C₁–
 5 C₂ haloalkoxy, C₁–C₂ alkylthio or C₁–C₂ haloalkylthio.

Embodiment 31. A compound of Formula 1 or any one of Embodiments 1 through 30
 wherein independently, R⁶ and R⁷ are H, halogen, -CN, C₁–C₂
 alkyl, -CH=CH₂, -C≡CH, cyclopropyl, C₁–C₂ haloalkyl or C₁–C₂ alkoxy.

Embodiment 32. A compound of Formula 1 or any one of Embodiments 1 through 31
 10 wherein independently, R⁶ and R⁷ are H, halogen, -CN, methyl,
 ethyl, -CH=CH₂, -C≡CH, cyclopropyl, CF₃, methoxy or ethoxy.

Embodiment 34a. A compound of Formula 1 or any one of Embodiments 1 through 32
 wherein independently, R⁶ and R⁷ are H, halogen or C₁–C₂ alkyl.

Embodiment 34b. A compound of Formula 1 or any one of Embodiments 1 through 32
 15 wherein independently, R⁶ and R⁷ are H or halogen.

Embodiment 34c. A compound of Formula 1 or any one of Embodiments 1 through 32
 wherein R⁶ is H and R⁷ is halogen.

Embodiment 34d. A compound of Formula 1 or any one of Embodiments 1 through 32
 wherein R⁶ is halogen and R⁷ is H.

Embodiment 33. A compound of Formula 1 or any one of Embodiments 1 through 32
 20 wherein independently, R⁶ and R⁷ are H or C₁–C₂ alkyl.

Embodiment 34. A compound of Formula 1 or any one of Embodiments 1 through 33
 wherein R⁶ is H or methyl (i.e. CH₃).

Embodiment 35. A compound of Formula 1 or any one of Embodiments 1 through 34
 25 wherein R⁷ is H or methyl (i.e. CH₃).

Embodiment 36. A compound of Embodiment 34 or 35 wherein R⁶ is H and R⁷ is H, or
 R⁶ is H and R⁷ is CH₃, or R⁶ is CH₃ and R⁷ is H.

Embodiment 37. A compound of Embodiment 36 wherein R⁶ is H and R⁷ is H.

Embodiment 37a. A compound of Formula 1 or any one of Embodiments 1 through 37
 30 wherein G is G¹.

Embodiment 37b. A compound of Formula 1 or any one of Embodiments 1 through 37a
 wherein G¹ is H, -C(=O)R⁸, -C(=S)R⁸, -CO₂R⁹, -C(=O)SR⁹, -S(O)₂R⁸, -
 CONR¹⁰R¹¹, -S(O)₂NR¹⁰R¹¹ or P(=O)R¹²; or C₃–C₆ cycloalkyl or C₄–C₇
 cycloalkylalkyl.

Embodiment 37b. A compound of Formula 1 or any one of Embodiments 1 through 37a wherein G¹ is H, -C(=O)R⁸, -C(=S)R⁸, -CO₂R⁹, -C(=O)SR⁹, -S(O)₂R⁸, -CONR¹⁰R¹¹, -S(O)₂NR¹⁰R¹¹ or P(=O)R¹²; or C₄–C₇ cycloalkylalkyl.

Embodiment 38. A compound of Formula 1 or any one of Embodiments 1 through 37
5 wherein G¹ is H, -C(=O)R⁸, -CO₂R⁹, -S(O)₂R⁸, -CONR¹⁰R¹¹, -S(O)₂NR¹⁰R¹¹ or P(=O)R¹².

Embodiment 39. A compound of Embodiment 38 wherein G¹ is H, -C(=O)R⁸, -CO₂R⁹, -S(O)₂R⁸ or P(=O)R¹².

Embodiment 39a. A compound of Embodiment 39 wherein G¹ is H.

10 Embodiment 39b. A compound of Embodiment 39 wherein G¹ is -C(=O)R⁸.

Embodiment 39c. A compound of Embodiment 39 wherein G¹ is -CO₂R⁹.

Embodiment 39d. A compound of Embodiment 39 wherein G¹ -S(O)₂R⁸.

Embodiment 39e. A compound of Embodiment 39 or P(=O)R¹²

15 Embodiment 40. A compound of Formula 1 or any one of Embodiments 1 through 39e wherein R⁸ and R¹⁰ are independently H, C₁–C₇ alkyl, C₃–C₇ cycloalkyl, C₁–C₃ haloalkyl or C₂–C₇ alkoxyalkyl.

Embodiment 41. A compound of Embodiment 40 wherein R⁸ and R¹⁰ are independently H, C₁–C₇ alkyl, C₃–C₇ cycloalkyl or C₂–C₇ alkoxyalkyl.

20 Embodiment 42. A compound of Embodiment 41 wherein R⁸ and R¹⁰ are independently C₁–C₇ alkyl or C₂–C₇ alkoxyalkyl.

Embodiment 42a. A compound of any one of Embodiments 1 through 40 wherein R⁸ is C₁–C₇ alkyl, C₃–C₇ cycloalkyl or C₂–C₇ alkoxyalkyl.

25 Embodiment 42b. A compound of Embodiment 41 wherein R⁸ is independently C₁–C₃ alkyl or C₂–C₄ alkoxyalkyl.

Embodiment 42c. A compound of Formula 1 or any one of Embodiments 1 through 37 wherein G is WG¹.

30 Embodiment 42d. A compound of Formula 1 or any one of Embodiments 1 through 42a wherein W¹ is C₁–C₂ alkanediyl or C₂–C₃ alkenediyl.

Embodiment 42e. A compound of Embodiment 42b wherein W¹ is -CH₂– or -CH=CH-.

Embodiment 42f. A compound of Embodiment 42c wherein W¹ is -CH₂–.

Embodiment 43. A compound of Formula 1 or any one of Embodiments 1 through 42 wherein R⁹ is H, C₁–C₇ alkyl, C₃–C₇ cycloalkyl, C₂–C₃ haloalkyl or C₂–C₇ alkoxyalkyl.

35 Embodiment 44. A compound of Embodiment 43 wherein R⁹ is H, C₁–C₇ alkyl, C₃–C₇ cycloalkyl or C₂–C₇ alkoxyalkyl.

Embodiment 45. A compound of Embodiment 44 wherein R⁹ is C₁–C₇ alkyl or C₂–C₇ alkoxyalkyl.

Embodiment 46. A compound of Formula 1 or any one of Embodiments 1 through 45 wherein R¹¹ is H, C₁–C₇ alkyl, C₃–C₇ cycloalkyl, C₁–C₃ haloalkyl or C₂–C₇ alkoxyalkyl.

5

Embodiment 47. A compound of Embodiment 46 wherein R¹¹ is H, C₁–C₇ alkyl, C₃–C₇ cycloalkyl or C₂–C₇ alkoxyalkyl.

Embodiment 48. A compound of any one of Embodiments 1 through 47 wherein R¹² is C₁–C₃ alkyl or C₁–C₃ alkoxy.

10

Embodiment 49. A compound of Embodiment 48 wherein R¹² is CH₃ or OCH₃.

Embodiment 48. A compound of Formula 1 or any one of Embodiments 1 through 47 wherein n is 0, 1, 2 or 3.

Embodiment 49. A compound of Embodiment 48 wherein n is 0, 1 or 2.

Embodiment 50. A compound of Embodiment 48 wherein n is 1, 2 or 3.

15

Embodiment 51. A compound of Embodiment 49 or 50 wherein n is 1 or 2.

Embodiments of this invention, including Embodiments 1–51 above as well as any other embodiments described herein, can be combined in any manner, and the descriptions of variables in the embodiments pertain not only to the compounds of Formula 1 but also to the starting compounds and intermediate compounds useful for preparing the compounds of

20

Formula 1. In addition, embodiments of this invention, including Embodiments 1–51 above as well as any other embodiments described herein, and any combination thereof, pertain to the compositions and methods of the present invention.

Combinations of Embodiments 1–51 are illustrated by:

Embodiment A. A compound of Formula 1 wherein

25

W is O;

X is O, S, -CH=CH-, -C(CH₃)=CH-, -CH=CF-, -CH=CCl- or -CH=C(CH₃)-;

R¹ is H, C₁–C₇ alkyl, C₃–C₈ alkylcarbonylalkyl, C₃–C₈ alkoxy carbonylalkyl, C₄–C₇ alkylcycloalkyl, C₃–C₇ alkenyl, C₃–C₇ alkynyl, C₃–C₇ cycloalkyl, C₄–C₇ cycloalkylalkyl, C₂–C₃ cyanoalkyl, C₁–C₄ nitroalkyl, C₂–C₇

30

haloalkoxyalkyl, C₁–C₇ haloalkyl, C₃–C₇ haloalkenyl, C₂–C₇ alkoxyalkyl, C₃–C₇ alkylthioalkyl, C₁–C₇ alkoxy, benzyl or phenyl;

R² is H, halogen, -CN, -CHO, C₁–C₇ alkyl, C₃–C₈ alkylcarbonylalkyl, C₃–C₈ alkoxy carbonylalkyl, C₁–C₄ alkylcarbonyl, C₂–C₇ alkylcarbonyloxy, C₄–C₇ alkylcycloalkyl, C₃–C₇ alkenyl, C₃–C₇ alkynyl, C₁–C₄ alkylsulfinyl, C₁–C₄ alkylsulfonyl, C₁–C₄ alkylamino, C₂–C₈ dialkylamino, C₃–C₇ cycloalkyl, C₄–C₇ cycloalkylalkyl, C₂–C₃ cyanoalkyl, C₁–C₄ nitroalkyl, C₂–C₇

35

haloalkoxyalkyl, C₁–C₇ haloalkyl, C₃–C₇ haloalkenyl, C₂–C₇ alkoxyalkyl, C₁–C₇ alkoxy or C₁–C₅ alkylthio;

each R³ is independently halogen, -CN, C₁–C₃ alkyl, C₂–C₄ alkenyl, C₂–C₄ alkynyl, C₃–C₄ cycloalkyl, C₁–C₃ haloalkyl, C₁–C₃ alkoxy, C₁–C₂ haloalkoxy, C₁–C₂ alkylthio or C₁–C₂ haloalkylthio;

5 R⁴ is halogen, -CN, C₁–C₃ alkyl, C₂–C₄ alkenyl, C₂–C₄ alkynyl, C₃–C₄ cycloalkyl, C₁–C₃ haloalkyl, C₁–C₃ alkoxy, C₁–C₂ haloalkoxy, C₁–C₂ alkylthio or C₁–C₂ haloalkylthio;

G is G¹;

10 G¹ is H, -C(=O)R⁸, -C(=S)R⁸, -CO₂R⁹, -C(=O)SR⁹, -S(O)₂R⁸, -CONR¹⁰R¹¹, -S(O)₂NR¹⁰R¹¹ or P(=O)R¹²; or C₃–C₆ cycloalkyl or C₄–C₇ cycloalkylalkyl;

R⁸ and R¹⁰ are independently H, C₁–C₇ alkyl, C₃–C₇ cycloalkyl, C₁–C₃ haloalkyl or C₂–C₇ alkoxyalkyl;

15 R⁹ is H, C₁–C₇ alkyl, C₃–C₇ cycloalkyl, C₂–C₃ haloalkyl or C₂–C₇ alkoxyalkyl;

R¹¹ is H, C₁–C₇ alkyl, C₃–C₇ cycloalkyl, C₁–C₃ haloalkyl or C₂–C₇ alkoxyalkyl;

R¹² is C₁–C₃ alkyl or C₁–C₃ alkoxy;

and

n is 0, 1, 2 or 3.

20 Embodiment B. A compound of Embodiment A wherein

X is -CH=CH-, -C(CH₃)=CH-, -CH=CF-, -CH=CCl- or -CH=C(CH₃)-;

R¹ is H, C₁–C₇ alkyl, C₃–C₈ alkoxy carbonylalkyl, C₄–C₇ alkylcycloalkyl, C₃–C₇ cycloalkyl, C₄–C₇ cycloalkylalkyl, C₂–C₃ cyanoalkyl, C₁–C₄ nitroalkyl, C₂–C₇ haloalkoxyalkyl, C₁–C₇ haloalkyl, C₂–C₇ alkoxyalkyl, C₃–C₇ alkylthioalkyl, C₁–C₇ alkoxy or benzyl;

25

R² is H, halogen, -CN, -CHO, C₁–C₇ alkyl, C₁–C₄ alkylcarbonyl, C₂–C₇ alkylcarbonyloxy, C₄–C₇ alkylcycloalkyl, C₁–C₄ alkylsulfinyl, C₁–C₄ alkylsulfonyl, C₁–C₄ alkylamino, C₃–C₇ cycloalkyl, C₄–C₇ cycloalkylalkyl, C₂–C₃ cyanoalkyl, C₁–C₄ nitroalkyl, C₂–C₇ haloalkoxyalkyl, C₁–C₇ haloalkyl, C₂–C₇ alkoxyalkyl or C₁–C₇ alkoxy;

30

each R³ is independently halogen, -CN, C₁–C₂ alkyl, -CH=CH₂, -C≡CH, cyclopropyl, C₁–C₂ haloalkyl or C₁–C₂ alkoxy;

R⁴ is halogen, -CN, C₁–C₂ alkyl, -CH=CH₂, -C≡CH, cyclopropyl, C₁–C₂ haloalkyl or C₁–C₂ alkoxy;

35

G¹ is H, -C(=O)R⁸, -CO₂R⁹, -S(O)₂R⁸, -CONR¹⁰R¹¹, -S(O)₂NR¹⁰R¹¹ or P(=O)R¹²;

R⁸, R⁹ and R¹⁰ are independently H, C₁–C₇ alkyl, C₃–C₇ cycloalkyl or C₂–C₇ alkoxyalkyl;

R¹¹ is H, C₁–C₇ alkyl, C₃–C₇ cycloalkyl or C₂–C₇ alkoxyalkyl; and
R¹² is CH₃ or OCH₃.

5 Embodiment C. A compound of Embodiment B wherein
X is -CH=CH-, -CH=CF-, -CH=CCl- or -CH=C(CH₃)-
R¹ is methyl, ethyl, *n*-propyl or 2-methoxyethyl;
R² is H, methyl, ethyl, *n*-propyl, CF₃ or methoxy;
each R³ is independently halogen, -CN, methyl, ethyl, -CH=CH₂, -C≡CH,
10 cyclopropyl, CF₃, methoxy or ethoxy;
R⁴ is halogen, -CN, methyl, ethyl, -CH=CH₂, -C≡CH, cyclopropyl, CF₃, methoxy
or ethoxy;
G¹ is H, -C(=O)R⁸, -CO₂R⁹, -S(O)₂R⁸ or P(=O)R¹²;
R⁸ and R⁹ are independently C₁–C₇ alkyl or C₂–C₇ alkoxyalkyl; and
15 n is 1 or 2.

Specific embodiments include compounds of Formula 1 selected from the group consisting of:

20 4-(2,5-dimethylbenzo[b]thien-3-yl)-5-hydroxy-2,6-dimethyl-3(2*H*)-pyridazinone
(Compound 1),
5-hydroxy-2,6-dimethyl-4-(2,5,7-trimethylbenzo[b]thien-3-yl)-3(2*H*)-pyridazinone
(Compound 2),
5-hydroxy-2,6-dimethyl-4-(2,4,6-trimethylbenzo[b]thien-3-yl)-3(2*H*)-pyridazinone
(Compound 3),
5-hydroxy-2,6-dimethyl-4-(2-methyl-3-benzofuranyl)-3(2*H*)-pyridazinone (Compound
25 4),
5-hydroxy-4-(5-methoxy-3-benzofuranyl)-2,6-dimethyl-3(2*H*)-pyridazinone
(Compound 5),
4-(5-chloro-2-methyl-3-benzofuranyl)-5-hydroxy-2,6-dimethyl-3(2*H*)-pyridazinone
(Compound 6),
30 4-(2,5-dimethyl-3-benzofuranyl)-5-hydroxy-2,6-dimethyl-3(2*H*)-pyridazinone
(Compound 7),
4-(2,4-dimethyl-3-benzofuranyl)-5-hydroxy-2,6-dimethyl-3(2*H*)-pyridazinone
(Compound 8),
4-(2,7-dimethyl-3-benzofuranyl)-5-hydroxy-2,6-dimethyl-3(2*H*)-pyridazinone
35 (Compound 9),

4-(2-ethyl-5-methyl-3-benzofuranyl)-5-hydroxy-2,6-dimethyl-3(2*H*)-pyridazinone (Compound 10),

5-hydroxy-2,6-dimethyl-4-(1-naphthalenyl)-3(2*H*)-pyridazinone (Compound 11),

5-hydroxy-2,6-dimethyl-4-(2,5,7-trimethyl-3-benzofuranyl)-3(2*H*)-pyridazinone

5 (Compound 12),

4-(5-ethyl-2-methyl-3-benzofuranyl)-5-hydroxy-2,6-dimethyl-3(2*H*)-pyridazinone

(Compound 13),

5-(acetoxy)-4-(2,5-dimethyl-3-benzofuranyl)-2,6-dimethyl-3(2*H*)-pyridazinone

(Compound 14),

10 5-(acetoxy)-4-(2,7-dimethyl-3-benzofuranyl)-2,6-dimethyl-3(2*H*)-pyridazinone

(Compound 15),

5-(acetoxy)-2,6-dimethyl-4-(2,5,7-trimethyl-3-benzofuranyl)-3(2*H*)-pyridazinone

(Compound 16),

5-(2,5-dimethyl-3-benzofuranyl)-1,6-dihydro-1,3-dimethyl-6-oxo-4-pyridazinyl

15 2,2-dimethylpropanoate (Compound 17),

1,6-dihydro-1,3-dimethyl-6-oxo-5-(2,5,7-trimethyl-3-benzofuranyl)-4-pyridazinyl

2,2-dimethylpropanoate (Compound 18), and

4-(2-ethyl-4,6-dimethylbenzo[b]thien-3-yl)-5-hydroxy-2,6-dimethyl-3(2*H*)-pyridazinone (Compound 19).

20 Specific embodiments also include compounds of Formula 1 selected from the group consisting of: compound numbers 1, 3, 11, 23, 25, 27, 28, 29, 32, 42, 47, 57, 59 and 60. Compound numbers refer to compounds in Index Table A.

This invention also relates to a method for controlling undesired vegetation comprising applying to the locus of the vegetation herbicidally effective amounts of the compounds of 25 the invention (e.g., as a composition described herein). Of note as embodiments relating to methods of use are those involving the compounds of embodiments described above.

Compounds of the invention can be used for weed control in a variety of crops such as wheat, barley, maize, soybean, sunflower, cotton, oilseed rape and rice, and specialty crops such as sugarcane, citrus, fruit and nut crops. Compounds of the invention are particularly 30 useful for selective control of weeds in cereal crops in the Family Poaceae such as maize, rice and wheat.

Embodiments of the present invention as described in the Summary of the Invention include (where Formula 1 as used in the following Embodiments includes *N*-oxides and salts thereof):

35 Embodiment P1. A compound of Formula 1 wherein W is O.

Embodiment P2. A compound of Formula **1** or Embodiment P1 wherein X is O, S or -C(R⁶)=C(R⁷)-.

Embodiment P3. A compound of Embodiment P2 wherein X is O or S.

Embodiment P4. A compound of Embodiment P3 wherein X is O.

5 Embodiment P5. A compound of Embodiment P3 wherein X is S.

Embodiment P6. A compound of Embodiment P2 wherein X is -C(R⁶)=C(R⁷)-.

Embodiment P7. A compound of Formula **1** or Embodiment P1 wherein X is NR⁵.

10 Embodiment P8. A compound of Formula **1** or any one of Embodiments P1 through P7 wherein R¹ is C₁–C₄ alkyl, C₃–C₄ alkenyl, C₃–C₄ alkynyl, C₃–C₄ cycloalkyl, C₂–C₃ cyanoalkyl, C₁–C₃ haloalkyl or C₂–C₄ alkoxyalkyl.

Embodiment P9. A compound of Embodiment P8 wherein R¹ is C₁–C₃ alkyl, allyl, propargyl, CH₂CH₂CN, C₁–C₂ haloalkyl or 2-methoxyethyl.

Embodiment P10. A compound of Embodiment P9 wherein R¹ is methyl, ethyl, *n*-propyl or 2-methoxyethyl.

15 Embodiment P11. A compound of Embodiment P10 wherein R¹ is methyl or ethyl.

Embodiment P12. A compound of Embodiment P11 wherein R¹ is methyl.

Embodiment P13. A compound of Formula **1** or any one of Embodiments P1 through P12 wherein R² is H, halogen, -CN, C₁–C₄ alkyl, C₃–C₅ cycloalkyl, C₁–C₃ haloalkyl, C₂–C₄ alkoxyalkyl or C₁–C₃ alkoxy.

20 Embodiment P14. A compound of Embodiment P13 wherein R² is H, halogen, C₁–C₃ alkyl, cyclopropyl, C₁–C₂ haloalkyl, methoxy or ethoxy.

Embodiment P15. A compound of Embodiment P14 wherein R² is H, methyl, ethyl, *n*-propyl, CF₃ or methoxy.

Embodiment P16. A compound of Embodiment P15 wherein R² is methyl or ethyl.

25 Embodiment P17. A compound of Embodiment P16 wherein R² is methyl.

Embodiment P18. A compound of Formula **1** or any one of Embodiments P1 through P17 wherein each R³ is independently halogen, -CN, C₁–C₃ alkyl, C₂–C₄ alkenyl, C₂–C₄ alkynyl, C₃–C₄ cycloalkyl, C₁–C₃ haloalkyl, C₁–C₃ alkoxy, C₁–C₂ haloalkoxy, C₁–C₂ alkylthio or C₁–C₂ haloalkylthio.

30 Embodiment P19. A compound of Embodiment P18 wherein each R³ is independently halogen, -CN, C₁–C₂ alkyl, -CH=CH₂, -C≡CH, cyclopropyl, C₁–C₂ haloalkyl or C₁–C₂ alkoxy.

Embodiment P20. A compound of Embodiment P19 wherein each R³ is independently halogen, -CN, methyl, ethyl, -CH=CH₂, -C≡CH, cyclopropyl, CF₃, methoxy or ethoxy.

Embodiment P21. A compound of Embodiment P20 wherein each R³ is independently halogen, -CN, methyl, ethyl, methoxy or ethoxy.

Embodiment P22. A compound of Embodiment P21 wherein each R³ is independently F, Cl, Br, methyl, ethyl or methoxy.

5 Embodiment P23. A compound of Formula 1 or any one of Embodiments P1 through P22 wherein R⁴ is halogen, -CN, C₁–C₃ alkyl, C₂–C₄ alkenyl, C₂–C₄ alkynyl, C₃–C₄ cycloalkyl, C₁–C₃ haloalkyl, C₁–C₃ alkoxy, C₁–C₂ haloalkoxy, C₁–C₂ alkylthio or C₁–C₂ haloalkylthio.

10 Embodiment P24. A compound of Embodiment P23 wherein R⁴ is halogen, -CN, C₁–C₂ alkyl, -CH=CH₂, -C≡CH, cyclopropyl, C₁–C₂ haloalkyl or C₁–C₂ alkoxy.

Embodiment P25. A compound of Embodiment P24 wherein R⁴ is halogen, -CN, methyl, ethyl, -CH=CH₂, -C≡CH, cyclopropyl, CF₃, methoxy or ethoxy.

Embodiment P26. A compound of Embodiment P25 wherein R⁴ is methyl or ethyl.

15 Embodiment P27. A compound of Embodiment P26 wherein R⁴ is methyl.

Embodiment P28. A compound of Formula 1 or any one of Embodiments P1 through P27 wherein R⁵ is C₁–C₂ alkyl.

Embodiment P29. A compound of Embodiment P28 wherein R⁵ is methyl.

20 Embodiment P30. A compound of Formula 1 or any one of Embodiments P1 through P29 wherein independently, R⁶ and R⁷ are H, halogen, -CN, C₁–C₃ alkyl, C₂–C₄ alkenyl, C₂–C₄ alkynyl, C₃–C₄ cycloalkyl, C₁–C₃ haloalkyl, C₁–C₃ alkoxy, C₁–C₂ haloalkoxy, C₁–C₂ alkylthio or C₁–C₂ haloalkylthio.

Embodiment P31. A compound of Formula 1 or any one of Embodiments P1 through P30 wherein independently, R⁶ and R⁷ are H, halogen, -CN, C₁–C₂ alkyl, -CH=CH₂, -C≡CH, cyclopropyl, C₁–C₂ haloalkyl or C₁–C₂ alkoxy.

25 Embodiment P32. A compound of Formula 1 or any one of Embodiments P1 through P31 wherein independently, R⁶ and R⁷ are H, halogen, -CN, methyl, ethyl, -CH=CH₂, -C≡CH, cyclopropyl, CF₃, methoxy or ethoxy.

Embodiment P33. A compound of Formula 1 or any one of Embodiments P1 through P32 wherein independently, R⁶ and R⁷ are H or C₁–C₂ alkyl.

30 Embodiment P34. A compound of Formula 1 or any one of Embodiments P1 through P33 wherein R⁶ is H or methyl (i.e. CH₃).

Embodiment P35. A compound of Formula 1 or any one of Embodiments P1 through P34 wherein R⁷ is H or methyl (i.e. CH₃).

35 Embodiment P36. A compound of Embodiment P34 or 35 wherein R⁶ is H and R⁷ is H, or R⁶ is H and R⁷ is CH₃, or R⁶ is CH₃ and R⁷ is H.

Embodiment P37. A compound of Embodiment P36 wherein R⁶ is H and R⁷ is H.

Embodiment P38. A compound of Formula **1** or any one of Embodiments P1 through P37 wherein G is H, -C(=O)R⁸, -CO₂R⁹, -S(O)₂R⁸, -CONR¹⁰R¹¹ or -S(O)₂NR¹⁰R¹¹.

Embodiment P39. A compound of Embodiment P38 wherein G is H, -C(=O)R⁸, -CO₂R⁹ or -S(O)₂R⁸.

Embodiment P40. A compound of Formula **1** or any one of Embodiments P1 through P39 wherein R⁸ and R¹⁰ are independently H, C₁-C₇ alkyl, C₃-C₇ cycloalkyl, C₁-C₃ haloalkyl or C₂-C₇ alkoxyalkyl.

Embodiment P41. A compound of Embodiment P40 wherein R⁸ and R¹⁰ are independently H, C₁-C₇ alkyl, C₃-C₇ cycloalkyl or C₂-C₇ alkoxyalkyl.

Embodiment P42. A compound of Embodiment P41 wherein R⁸ and R¹⁰ are independently C₁-C₇ alkyl or C₂-C₇ alkoxyalkyl.

Embodiment P43. A compound of Formula **1** or any one of Embodiments 1 through 42 wherein R⁹ is H, C₁-C₇ alkyl, C₃-C₇ cycloalkyl, C₂-C₃ haloalkyl or C₂-C₇ alkoxyalkyl.

Embodiment P44. A compound of Embodiment P43 wherein R⁹ is H, C₁-C₇ alkyl, C₃-C₇ cycloalkyl or C₂-C₇ alkoxyalkyl.

Embodiment P45. A compound of Embodiment P44 wherein R⁹ is C₁-C₇ alkyl or C₂-C₇ alkoxyalkyl.

Embodiment P46. A compound of Formula **1** or any one of Embodiments P1 through P45 wherein R¹¹ is H, C₁-C₇ alkyl, C₃-C₇ cycloalkyl, C₁-C₃ haloalkyl or C₂-C₇ alkoxyalkyl.

Embodiment P47. A compound of Embodiment P46 wherein R¹¹ is H, C₁-C₇ alkyl, C₃-C₇ cycloalkyl or C₂-C₇ alkoxyalkyl.

Embodiment P48. A compound of Formula **1** or any one of Embodiments P1 through P47 wherein n is 0, 1, 2 or 3.

Embodiment P49. A compound of Embodiment P48 wherein n is 0, 1 or 2.

Embodiment P50. A compound of Embodiment P48 wherein n is 1, 2 or 3.

Embodiment P51. A compound of Embodiment P49 or P50 wherein n is 1 or 2.

Embodiments of this invention, including Embodiments P1-P51 above as well as any other embodiments described herein, can be combined in any manner, and the descriptions of variables in the embodiments pertain not only to the compounds of Formula **1** but also to the starting compounds and intermediate compounds useful for preparing the compounds of Formula **1**. In addition, embodiments of this invention, including Embodiments P1-P51 above as well as any other embodiments described herein, and any combination thereof, pertain to the compositions and methods of the present invention.

Combinations of Embodiments P1–P51 are illustrated by:

Embodiment PA. A compound of Formula 1 wherein

W is O;

X is O, S, -CH=CH-, -C(CH₃)=CH- or -CH=C(CH₃)-;

5 R¹ is C₁–C₄ alkyl, C₃–C₄ alkenyl, C₃–C₄ alkynyl, C₃–C₄ cycloalkyl, C₂–C₃ cyanoalkyl, C₁–C₃ haloalkyl or C₂–C₄ alkoxyalkyl;

R² is H, halogen, -CN, C₁–C₄ alkyl, C₃–C₅ cycloalkyl, C₁–C₃ haloalkyl, C₂–C₄ alkoxyalkyl or C₁–C₃ alkoxy;

10 each R³ is independently halogen, -CN, C₁–C₃ alkyl, C₂–C₄ alkenyl, C₂–C₄ alkynyl, C₃–C₄ cycloalkyl, C₁–C₃ haloalkyl, C₁–C₃ alkoxy, C₁–C₂ haloalkoxy, C₁–C₂ alkylthio or C₁–C₂ haloalkylthio;

R⁴ is halogen, -CN, C₁–C₃ alkyl, C₂–C₄ alkenyl, C₂–C₄ alkynyl, C₃–C₄ cycloalkyl, C₁–C₃ haloalkyl, C₁–C₃ alkoxy, C₁–C₂ haloalkoxy, C₁–C₂ alkylthio or C₁–C₂ haloalkylthio;

15 G is H, -C(=O)R⁸, -CO₂R⁹, -S(O)₂R⁸, -CONR¹⁰R¹¹ or -S(O)₂NR¹⁰R¹¹;

R⁸ and R¹⁰ are independently H, C₁–C₇ alkyl, C₃–C₇ cycloalkyl, C₁–C₃ haloalkyl or C₂–C₇ alkoxyalkyl;

R⁹ is H, C₁–C₇ alkyl, C₃–C₇ cycloalkyl, C₂–C₃ haloalkyl or C₂–C₇ alkoxyalkyl;

R¹¹ is H, C₁–C₇ alkyl, C₃–C₇ cycloalkyl, C₁–C₃ haloalkyl or C₂–C₇ alkoxyalkyl;

20 and

n is 0, 1, 2 or 3.

Embodiment PB. A compound of Embodiment PA wherein

R¹ is C₁–C₃ alkyl, allyl, propargyl, CH₂CH₂CN, C₁–C₂ haloalkyl or 2-methoxyethyl;

25 R² is H, halogen, C₁–C₃ alkyl, cyclopropyl, C₁–C₂ haloalkyl, methoxy or ethoxy; each R³ is independently halogen, -CN, C₁–C₂ alkyl, -CH=CH₂, -C≡CH,

cyclopropyl, C₁–C₂ haloalkyl or C₁–C₂ alkoxy;

R⁴ is halogen, -CN, C₁–C₂ alkyl, -CH=CH₂, -C≡CH, cyclopropyl, C₁–C₂ haloalkyl or C₁–C₂ alkoxy;

30 R⁸, R⁹ and R¹⁰ are independently H, C₁–C₇ alkyl, C₃–C₇ cycloalkyl or C₂–C₇ alkoxyalkyl; and

R¹¹ is H, C₁–C₇ alkyl, C₃–C₇ cycloalkyl or C₂–C₇ alkoxyalkyl.

Embodiment PC. A compound of Embodiment PB wherein

R¹ is methyl, ethyl, n-propyl or 2-methoxyethyl;

35 R² is H, methyl, ethyl, n-propyl, CF₃ or methoxy;

each R³ is independently halogen, -CN, methyl, ethyl, -CH=CH₂, -C≡CH, cyclopropyl, CF₃, methoxy or ethoxy;

R⁴ is halogen, -CN, methyl, ethyl, -CH=CH₂, -C≡CH, cyclopropyl, CF₃, methoxy or ethoxy;

5 G is H, -C(=O)R⁸, -CO₂R⁹ or -S(O)₂R⁸;

R⁸ and R⁹ are independently C₁-C₇ alkyl or C₂-C₇ alkoxyalkyl; and

n is 1 or 2.

Also noteworthy as embodiments are herbicidal compositions of the present invention comprising the compounds of embodiments described above.

10 This invention also includes a herbicidal mixture comprising (a) a compound selected from Formula 1, N-oxides, and salts thereof, and (b) at least one additional active ingredient selected from (b1) photosystem II inhibitors, (b2) acetohydroxy acid synthase (AHAS) inhibitors, (b3) acetyl-CoA carboxylase (ACCase) inhibitors, (b4) auxin mimics and (b5) 5-enol-pyruvylshikimate-3-phosphate (EPSP) synthase inhibitors, (b6) photosystem I 15 electron diverters, (b7) protoporphyrinogen oxidase (PPO) inhibitors, (b8) glutamine synthetase (GS) inhibitors, (b9) very long chain fatty acid (VLCFA) elongase inhibitors, (b10) auxin transport inhibitors, (b11) phytoene desaturase (PDS) inhibitors, (b12) 4-hydroxyphenyl-pyruvate dioxygenase (HPPD) inhibitors, (b13) homogentisate solenesyltransferase (HST) inhibitors, (b14) cellulose biosynthesis inhibitors, (b15) other 20 herbicides including mitotic disruptors, organic arsenicals, asulam, bromobutide, cinmethylin, cumyluron, dazomet, difenzoquat, dymron, etobenzanid, flurenol, fosamine, fosamine-ammonium, metam, methyldymron, oleic acid, oxaziclofene, pelargonic acid and pyributicarb, and (b16) herbicide safeners; and salts of compounds of (b1) through (b16).

25 "Photosystem II inhibitors" (b1) are chemical compounds that bind to the D-1 protein at the Q_B-binding niche and thus block electron transport from Q_A to Q_B in the chloroplast thylakoid membranes. The electrons blocked from passing through photosystem II are transferred through a series of reactions to form toxic compounds that disrupt cell membranes and cause chloroplast swelling, membrane leakage, and ultimately cellular 30 destruction. The Q_B-binding niche has three different binding sites: binding site A binds the triazines such as atrazine, triazinones such as hexazinone, and uracils such as bromacil, binding site B binds the phenylureas such as diuron, and binding site C binds benzothiadiazoles such as bentazon, nitriles such as bromoxynil and phenyl-pyridazines such as pyridate. Examples of photosystem II inhibitors include ametryn, amicarbazone, atrazine, 35 bentazon, bromacil, bromofenoxim, bromoxynil, chlorbromuron, chloridazon, chlorotoluron, chloroxuron, cumyluron, cyanazine, daimuron, desmedipham, desmetryn, dimefuron,

dimethametryn, diuron, ethidimuron, fenuron, fluometuron, hexazinone, ioxynil, isoproturon, isouron, lenacil, linuron, metamitron, methabenzthiazuron, metobromuron, metoxuron, metribuzin, monolinuron, neburon, pentanochlor, phenmedipham, prometon, prometryn, propanil, propazine, pyridafol, pyridate, siduron, simazine, simetryn, tebuthiuron, 5 terbacil, terbumeton, terbutylazine, terbutryl and trietazine. Of note is a compound of the invention mixed with atrazine, bromoxynil or bentazon. Also of note is a compound of the invention mixed with atrazine, bromoxynil or metribuzin.

“AHAS inhibitors” (b2) are chemical compounds that inhibit acetohydroxy acid synthase (AHAS), also known as acetolactate synthase (ALS), and thus kill plants by 10 inhibiting the production of the branched-chain aliphatic amino acids such as valine, leucine and isoleucine, which are required for protein synthesis and cell growth. Examples of AHAS inhibitors include amidosulfuron, azimsulfuron, bensulfuron-methyl, bispyribac-sodium, cloransulam-methyl, chlorimuron-ethyl, chlorsulfuron, cinosulfuron, cyclosulfamuron, diclosulam, ethametsulfuron-methyl, ethoxysulfuron, flazasulfuron, 15 florasulam, flucarbazone-sodium, flumetsulam, flupyrifluron-methyl, flupyrifluron-sodium, foramsulfuron, halosulfuron-methyl, imazamethabenz-methyl, imazamox, imazapic, imazapyr, imazaquin, imazethapyr, imazosulfuron, iodosulfuron-methyl (including sodium salt), iofensulfuron (2-iodo-N-[(4-methoxy-6-methyl-1,3,5-triazin-2-yl)amino]carbonyl]-benzenesulfonamide), mesosulfuron-methyl, metazosulfuron (3-chloro-4-(5,6-dihydro-5-20 methyl-1,4,2-dioxazin-3-yl)-N-[(4,6-dimethoxy-2-pyrimidinyl)amino]carbonyl]-1-methyl-1*H*-pyrazole-5-sulfonamide), metosulam, metsulfuron-methyl, nicosulfuron, oxasulfuron, penoxsulam, primisulfuron-methyl, propoxycarbazone-sodium, propyrisulfuron (2-chloro-N-[(4,6-dimethoxy-2-pyrimidinyl)amino]carbonyl]-6-propylimidazo[1,2-*b*]pyridazine-3-sulfonamide), prosulfuron, pyrazosulfuron-ethyl, pyribenzoxim, pyriflatalid, 25 pyriminobac-methyl, pyrithiobac-sodium, rimsulfuron, sulfometuron-methyl, sulfosulfuron, thiencarbazone, thifensulfuron-methyl, triafamone (N-[2-[(4,6-dimethoxy-1,3,5-triazin-2-yl)carbonyl]-6-fluorophenyl]-1,1-difluoro-N-methylmethanesulfonamide), triasulfuron, tribenuron-methyl, trifloxysulfuron (including sodium salt), triflusulfuron-methyl and tritosulfuron. Of note is a compound of the invention mixed with rimsulfuron, 30 thifensulfuron-methyl, tribenuron, nicosulfuron, metsulfuron-methyl, flupyrifluron-methyl, cloransulam-methyl, pyroxslam or florasulam. Also of note is a compound of the invention mixed with nicosulfuron, flupyrifluron or chlorimuron.

“ACCase inhibitors” (b3) are chemical compounds that inhibit the acetyl-CoA carboxylase enzyme, which is responsible for catalyzing an early step in lipid and fatty acid synthesis in plants. Lipids are essential components of cell membranes, and without them, new cells cannot be produced. The inhibition of acetyl CoA carboxylase and the subsequent

lack of lipid production leads to losses in cell membrane integrity, especially in regions of active growth such as meristems. Eventually shoot and rhizome growth ceases, and shoot meristems and rhizome buds begin to die back. Examples of ACCase inhibitors include aloxydim, butoxydim, clethodim, clodinafop, cycloxydim, cyhalofop, diclofop, 5 fenoxaprop, fluazifop, haloxyfop, pinoxaden, profoxydim, propaquizafop, quizalofop, sethoxydim, tepraloxydim and tralkoxydim, including resolved forms such as fenoxaprop-P, fluazifop-P, haloxyfop-P and quizalofop-P and ester forms such as clodinafop-propargyl, cyhalofop-butyl, diclofop-methyl and fenoxaprop-P-ethyl. Of note is a compound of the invention mixed with pinoxaden or quizalofop.

10 Auxin is a plant hormone that regulates growth in many plant tissues. "Auxin mimics" (b4) are chemical compounds mimicking the plant growth hormone auxin, thus causing uncontrolled and disorganized growth leading to plant death in susceptible species. Examples of auxin mimics include aminocyclopyrachlor (6-amino-5-chloro-2-cyclopropyl-4-pyrimidinecarboxylic acid) and its methyl and ethyl esters and its sodium and potassium 15 salts, aminopyralid, benazolin-ethyl, chloramben, clacyfos, clomeprop, clopyralid, dicamba, 2,4-D, 2,4-DB, dichlorprop, fluroxypyr, halauxifen (4-amino-3-chloro-6-(4-chloro-2-fluoro-3-methoxyphenyl)-2-pyridinecarboxylic acid), halauxifen-methyl (methyl 4-amino-3-chloro-6-(4-chloro-2-fluoro-3-methoxyphenyl)-2-pyridinecarboxylate), MCPA, MCPB, mecoprop, 20 picloram, quinclorac, quinmerac, 2,3,6-TBA, triclopyr, and methyl 4-amino-3-chloro-6-(4-chloro-2-fluoro-3-methoxyphenyl)-5-fluoro-2-pyridinecarboxylate. Of particular note is a compound of the invention mixed with dicamba, fluroxypyr-methyl, 2,4-D, halauxifen-methyl or MCPA. Also of note is a compound of the invention mixed with dicamba.

25 "EPSP synthase inhibitors" (b5) are chemical compounds that inhibit the enzyme, 5-enol-pyruvylshikimate-3-phosphate synthase, which is involved in the synthesis of aromatic amino acids such as tyrosine, tryptophan and phenylalanine. EPSP inhibitor herbicides are readily absorbed through plant foliage and translocated in the phloem to the growing points. Glyphosate is a relatively nonselective postemergence herbicide that 30 belongs to this group. Glyphosate includes esters and salts such as ammonium, isopropylammonium, potassium, sodium (including sesquisodium) and trimesium (alternatively named sulfosate).

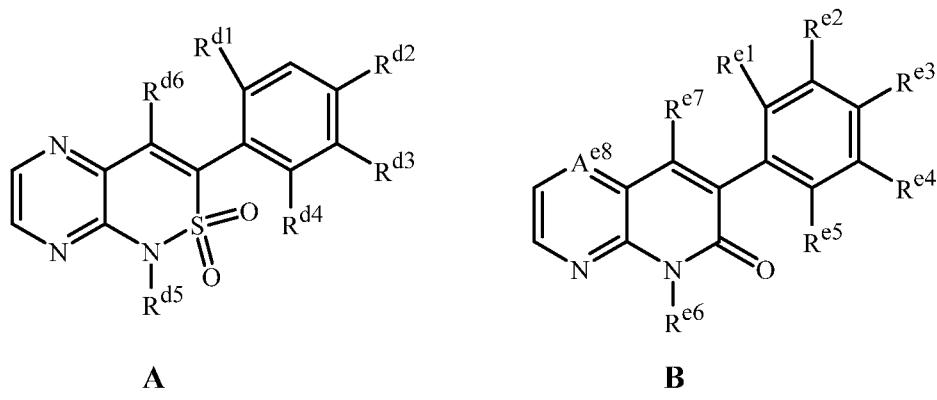
35 "Photosystem I electron diverters" (b6) are chemical compounds that accept electrons from Photosystem I, and after several cycles, generate hydroxyl radicals. These radicals are extremely reactive and readily destroy unsaturated lipids, including membrane fatty acids and chlorophyll. This destroys cell membrane integrity, so that cells and organelles "leak", leading to rapid leaf wilting and desiccation, and eventually to plant death. Examples of this second type of photosynthesis inhibitor include diquat and paraquat.

“PPO inhibitors” (b7) are chemical compounds that inhibit the enzyme protoporphyrinogen oxidase, quickly resulting in formation of highly reactive compounds in plants that rupture cell membranes, causing cell fluids to leak out. Examples of PPO inhibitors include acifluorfen-sodium, azafenidin, benzfendizone, bifenox, butafenacil, 5 carfentrazone, carfentrazone-ethyl, chlomethoxyfen, cinidon-ethyl, fluazolate, flufenpyr-ethyl, flumiclorac-pentyl, flumioxazin, fluoroglycofen-ethyl, fluthiacet-methyl, fomesafen, halosafen, lactofen, oxadiargyl, oxadiazon, oxyfluorfen, pentozazone, profluazol, pyraclonil, pyraflufen-ethyl, saflufenacil, sulfentrazone, thidiazimin, tiafenacil (methyl *N*-[2-[[2-chloro-5-[3,6-dihydro-3-methyl-2,6-dioxo-4-(trifluoromethyl)-1(2*H*)-pyrimidinyl]-4-fluorophenyl]thio]-1-oxopropyl]- β -alaninate) and 3-[7-fluoro-3,4-dihydro-3-oxo-4-(2-propyn-1-yl)-2*H*-1,4-benzoxazin-6-yl]dihydro-1,5-dimethyl-6-thioxo-1,3,5-triazine-2,4(1*H*,3*H*)-dione. Of note is a compound of the invention mixed with saflufenacil, flumioxazin or carfentrazone-ethyl.

“GS inhibitors” (b8) are chemical compounds that inhibit the activity of the glutamine synthetase enzyme, which plants use to convert ammonia into glutamine. Consequently, ammonia accumulates and glutamine levels decrease. Plant damage probably occurs due to the combined effects of ammonia toxicity and deficiency of amino acids required for other metabolic processes. The GS inhibitors include glufosinate and its esters and salts such as glufosinate-ammonium and other phosphinothrinicin derivatives, glufosinate-P ((2*S*)-2-amino-20 4-(hydroxymethylphosphinyl)butanoic acid) and bilanaphos.

“VLCFA elongase inhibitors” (b9) are herbicides having a wide variety of chemical structures, which inhibit the elongase. Elongase is one of the enzymes located in or near chloroplasts which are involved in biosynthesis of VLCFAs. In plants, very-long-chain fatty acids are the main constituents of hydrophobic polymers that prevent desiccation at the leaf 25 surface and provide stability to pollen grains. Such herbicides include acetochlor, alachlor, anilofos, butachlor, cafenstrole, dimethachlor, dimethenamid, diphenamid, fenoxasulfone (3-[[2,5-dichloro-4-ethoxyphenyl)methyl]sulfonyl]-4,5-dihydro-5,5-dimethylisoxazole), fentrazamide, flufenacet, indanofan, mefenacet, metazachlor, metolachlor, naproanilide, napropamide, napropamide-M ((2*R*)-*N,N*-diethyl-2-(1-naphthalenyl)propanamide), 30 pethoxamid, piperophos, pretilachlor, propachlor, propisochlor, pyroxasulfone, and thenylchlor, including resolved forms such as S-metolachlor and chloroacetamides and oxyacetamides. Of note is a compound of the invention mixed with pyroxasulfone, metolachlor, acetochlor, dimethenamid, alachlor or flufenacet. Also of note is a compound of the invention mixed with flufenacet.

35 “Auxin transport inhibitors” (b10) are chemical substances that inhibit auxin transport in plants, such as by binding with an auxin-carrier protein. Examples of auxin transport


inhibitors include diflufenenzopyr, naptalam (also known as *N*-(1-naphthyl)phthalamic acid and 2-[(1-naphthalenylamino)carbonyl]benzoic acid).

“PDS inhibitors” (b11) are chemical compounds that inhibit carotenoid biosynthesis pathway at the phytoene desaturase step. Examples of PDS inhibitors include beflubutamid, 5 diflufenican, fluridone, flurochloridone, flurtamone norflurzon and picolinafen.

“HPPD inhibitors” (b12) are chemical substances that inhibit the biosynthesis of synthesis of 4-hydroxyphenyl-pyruvate dioxygenase. Examples of HPPD inhibitors include benzobicyclon, benzofenap, bicyclopyprone (4-hydroxy-3-[[2-[(2-methoxyethoxy)methyl]-6-(trifluoromethyl)-3-pyridinyl]carbonyl]bicyclo[3.2.1]oct-3-en-2-one), fenquinotrione (2-[[8-10 chloro-3,4-dihydro-4-(4-methoxyphenyl)-3-oxo-2-quinoxalinyl]carbonyl]-1,3-cyclohexanedione), isoxachlortole, isoxaflutole, mesotrione, pyrasulfotole, pyrazolynate, pyrazoxyfen, sulcotrione, tefuryltrione, tembotrione, topramezone, 5-chloro-3-[(2-hydroxy-6-oxo-1-cyclohexen-1-yl)carbonyl]-1-(4-methoxyphenyl)-2(1*H*)-quinoxalinone, 4-(2,6-diethyl-4-methylphenyl)-5-hydroxy-2,6-dimethyl-3(2*H*)-pyridazinone, 4-(4-fluorophenyl)-6-15 [(2-hydroxy-6-oxo-1-cyclohexen-1-yl)carbonyl]-2-methyl-1,2,4-triazine-3,5(2*H,4H*)-dione, 5-[(2-hydroxy-6-oxo-1-cyclohexen-1-yl)carbonyl]-2-(3-methoxyphenyl)-3-(3-methoxypropyl)-4(3*H*)-pyrimidinone, 2-methyl-*N*-(4-methyl-1,2,5-oxadiazol-3-yl)-3-(methylsulfinyl)-4-(trifluoromethyl)benzamide and 2-methyl-3-(methylsulfonyl)-*N*-(1-methyl-1*H*-tetrazol-5-yl)-4-(trifluoromethyl)benzamide. Of note is a mixture of a compound 20 of the invention with mesotrione, isoxaflutole, tembotrione, bicyclopyprone, topramazone or pyrasulfotole. Also of note is a compound of the invention mixed with mesotrione or pyrasulfatole.

HST (homogentisate solenyltransererase) inhibitors (b13) disrupt a plant’s ability to convert homogentisate to 2-methyl-6-solanyl-1,4-benzoquinone, thereby disrupting 25 carotenoid biosynthesis. Examples of HST inhibitors include haloxydine, pyriclor, 3-(2-chloro-3,6-difluorophenyl)-4-hydroxy-1-methyl-1,5-naphthyridin-2(1*H*)-one, 7-(3,5-dichloro-4-pyridinyl)-5-(2,2-difluoroethyl)-8-hydroxypyrido[2,3-*b*]pyrazin-6(5*H*)-one and 4-(2,6-diethyl-4-methylphenyl)-5-hydroxy-2,6-dimethyl-3(2*H*)-pyridazinone.

HST inhibitors also include compounds of Formulae **A** and **B**.

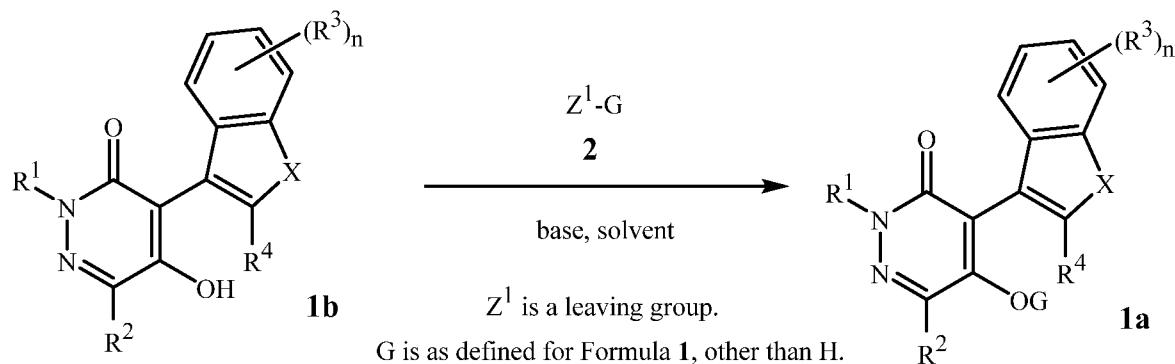
wherein R^{d1} is H, Cl or CF₃; R^{d2} is H, Cl or Br; R^{d3} is H or Cl; R^{d4} is H, Cl or CF₃; R^{d5} is CH₃, CH₂CH₃ or CH₂CHF₂; and R^{d6} is OH, or -OC(=O)-i-Pr; and R^{e1} is H, F, Cl, CH₃ or CH₂CH₃; R^{e2} is H or CF₃; R^{e3} is H, CH₃ or CH₂CH₃; R^{e4} is H, F or Br; R^{e5} is Cl, CH₃, CF₃, OCF₃ or CH₂CH₃; R^{e6} is H, CH₃, CH₂CHF₂ or C≡CH; R^{e7} is OH, -OC(=O)Et, -OC(=O)-i-Pr or -OC(=O)-t-Bu; and A^{e8} is N or CH.

Cellulose biosynthesis inhibitors (b14) inhibit the biosynthesis of cellulose in certain plants. They are most effective when applied preemergence or early postemergence on young or rapidly growing plants. Examples of cellulose biosynthesis inhibitors include chlorthiamid, dichlobenil, flupoxam, indaziflam (*N*²-[(1*R*,2*S*)-2,3-dihydro-2,6-dimethyl-1*H*-inden-1-yl]-6-(1-fluoroethyl)-1,3,5-triazine-2,4-diamine), isoxaben and triaziflam.

Other herbicides (b15) include herbicides that act through a variety of different modes of action such as mitotic disruptors (e.g., flamprop-M-methyl and flamprop-M-isopropyl) organic arsenicals (e.g., DSMA, and MSMA), 7,8-dihydropteroate synthase inhibitors, chloroplast isoprenoid synthesis inhibitors and cell-wall biosynthesis inhibitors. Other herbicides include those herbicides having unknown modes of action or do not fall into a specific category listed in (b1) through (b14) or act through a combination of modes of action listed above. Examples of other herbicides include aclonifen, asulam, amitrole, bromobutide, cinmethylin, clomazone, cumyluron, cyclopyrimorate (6-chloro-3-(2-cyclopropyl-6-methylphenoxy)-4-pyridazinyl 4-morpholinecarboxylate), daimuron, difenzoquat, etobenzanid, fluometuron, flurenol, fosamine, fosamine-ammonium, dazomet, dymron, ipfencarbazone (1-(2,4-dichlorophenyl)-*N*-(2,4-difluorophenyl)-1,5-dihydro-*N*-(1-methylethyl)-5-oxo-4*H*-1,2,4-triazole-4-carboxamide), metam, methyldymron, oleic acid, oxaziclolomefone, pelargonic acid, pyributicarb and 5-[[2,6-difluorophenyl)methoxy]methyl]-4,5-dihydro-5-methyl-3-(3-methyl-2-thienyl)isoxazole.

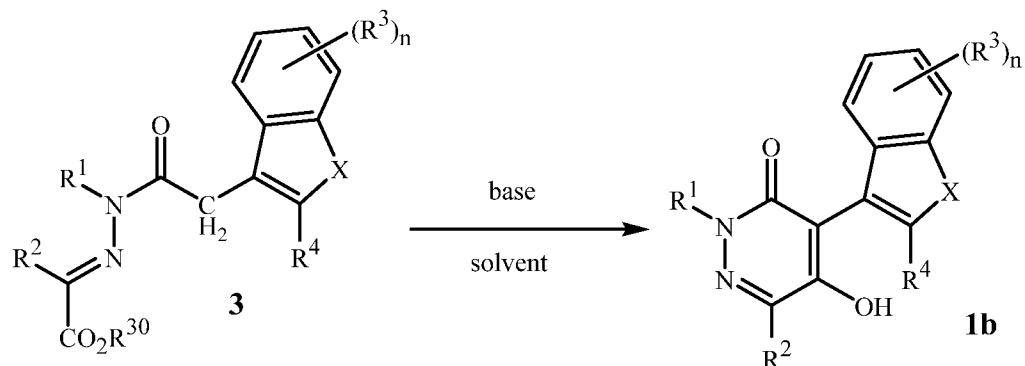
“Herbicide safeners” (b16) are substances added to a herbicide formulation to eliminate or reduce phytotoxic effects of the herbicide to certain crops. These compounds protect crops from injury by herbicides but typically do not prevent the herbicide from

controlling undesired vegetation. Examples of herbicide safeners include but are not limited to benoxacor, cloquintocet-mexyl, cumyluron, cyometrinil, cyprosulfamide, daimuron, dichlormid, dicycloron, dimepiperate, fenchlorazole-ethyl, fenclorim, flurazole, fluxofenim, furilazole, isoxadifen-ethyl, mefenpyr-diethyl, mephenate, methoxyphenone, naphthalic anhydride, oxabetrinil, *N*-(aminocarbonyl)-2-methylbenzenesulfonamide and *N*-(aminocarbonyl)-2-fluorobenzenesulfonamide, 1-bromo-4-[(chloromethyl)sulfonyl]benzene, 2-(dichloromethyl)-2-methyl-1,3-dioxolane (MG 191), 4-(dichloroacetyl)-1-oxa-4-azospiro-[4.5]decane (MON 4660).

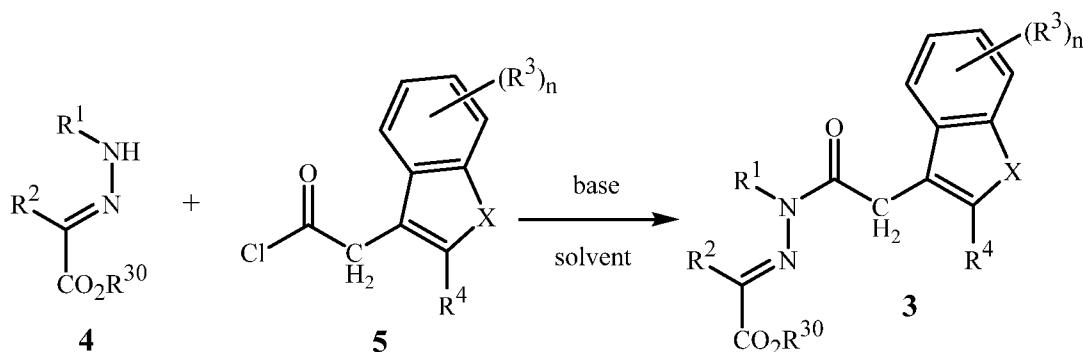

The compounds of Formula 1 can be prepared by general methods known in the art of synthetic organic chemistry. A wide variety of synthetic methods are known in the art to enable preparation of aromatic and nonaromatic heterocyclic rings and ring systems; for extensive reviews see the eight volume set of *Comprehensive Heterocyclic Chemistry*, A. R. Katritzky and C. W. Rees editors-in-chief, Pergamon Press, Oxford, 1984 and the twelve volume set of *Comprehensive Heterocyclic Chemistry II*, A. R. Katritzky, C. W. Rees and E. F. V. Scriven editors-in-chief, Pergamon Press, Oxford, 1996.

One or more of the following methods and variations as described in Schemes 1–22 can be used to prepare compounds of Formula 1. The definitions of groups R¹, R², R³, R⁴, W, X and G in the compounds of Formulae 1–35 are as defined above in the Summary of the Invention unless otherwise noted. Formulae 1a, 1b and 1c are subsets of compounds of Formula 1, and all substituents for Formulae 1a–1c are as defined above for Formula 1 unless otherwise noted. Formulae 6a, 6b and 6c are subsets of compounds of Formula 6, and all substituents for Formulae 6a–6c are as defined for Formula 6 unless otherwise noted.

As shown in Scheme 1, pyridazinones of Formula 1a (a subset of compounds of Formula 1 where W is O, and G is as defined above, but other than hydrogen) can be made by reacting substituted 5-hydroxy-3(2H)-pyridazinones of Formula 1b (i.e. Formula 1 wherein W is O and G is H) with a suitable electrophilic reagent of Formula 2 (i.e. Z¹-G where Z¹ is a leaving group, alternatively known as a nucleofuge, such as a halogen) in the presence of base in an appropriate solvent. Some examples of reagent classes representing Formula 2 wherein Z¹ is Cl include acid chlorides (G is -(C=O)R⁸), chloroformates (G is -CO₂R⁹), carbamoyl chlorides (G is -CONR¹⁰R¹¹), sulfonyl chlorides (G is -S(O)₂R⁸) and chlorosulfonamides (G is -S(O)₂NR¹⁰R¹¹). Examples of suitable bases for this reaction include, but are not limited to, potassium carbonate, sodium hydroxide, potassium hydroxide, sodium hydride or potassium *tert*-butoxide and, depending on the specific base used, appropriate solvents can be protic or aprotic and used anhydrous or as aqueous mixtures. Preferred solvents for this reaction include acetonitrile, methanol, ethanol, tetrahydrofuran, diethyl ether, 1,2-dimethoxyethane, dioxane, dichloromethane or

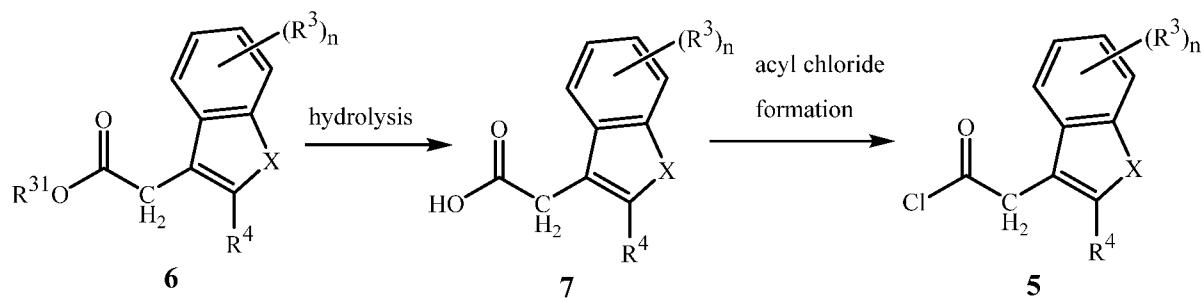

N,N-dimethylformamide. The reaction can be run under a range of temperatures, with temperatures typically ranging from 0 °C to the reflux temperature of the solvent.

Scheme 1

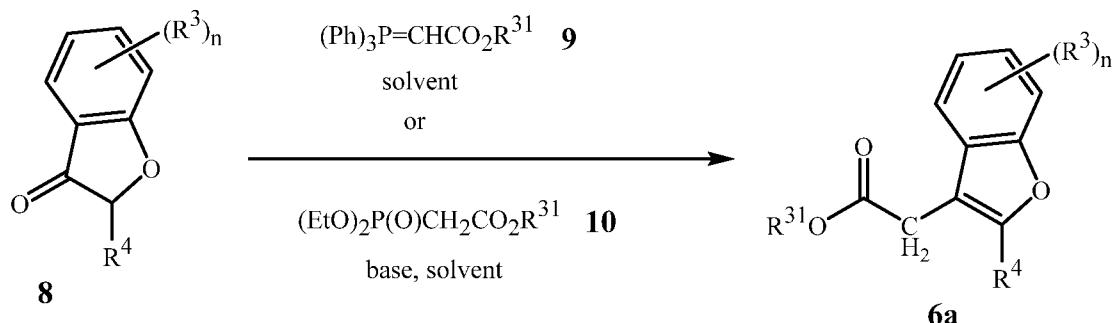

5 Substituted 5-hydroxy-3(2*H*)-pyridazinones of Formula **1b** can be prepared as outlined in Scheme 2 by cyclization of hydrazide esters of Formula **3** (where R³⁰ is alkyl, typically methyl or ethyl) in the presence of base and solvent. Suitable bases for this reaction include but are not limited to potassium carbonate, sodium hydroxide, potassium hydroxide, sodium hydride, potassium *t*-butoxide or 1,8-diazabicyclo[5.4.0]undec-7-ene. Depending on the 10 specific base used, appropriate solvents can be protic or aprotic and used anhydrous or as aqueous mixtures. Solvents for this cyclization include acetonitrile, methanol, ethanol, tetrahydrofuran, diethyl ether, dioxane, 1,2-dimethoxyethane, dichloromethane or *N,N*-dimethylformamide. Temperatures for this cyclization generally range from 0 °C to the reflux temperature of the solvent. Literature methods for cyclizing hydrazide ester 15 intermediates of formula $\text{CH}_3(\text{CO}_2\text{C}_2\text{H}_5)\text{C}=\text{NNCH}_3\text{C}(=\text{O})\text{CH}_2\text{Ar}$ (where Ar is a substituted phenyl instead of the bicyclic ring system shown in Formula **3**) to the corresponding 4-aryl-5-hydroxy-pyridazinones are disclosed in U.S. Patents 8541414 and 8470738. The same conditions reported in these patents are applicable to cyclizing hydrazone esters of Formula **3** to pyridazinones of Formula **1b**. The method of Scheme 2 is illustrated by Step F of 20 Synthesis Example 1, Step H of Synthesis Example 2 and Step H of Synthesis Example 3.

Scheme 2

Substituted hydrazide esters of Formula 3 can be prepared as outlined in Scheme 3 by coupling a hydrazone ester of Formula 4 (where R³⁰ is alkyl, typically methyl or ethyl) with an acid chloride of Formula 5 in the presence of base and solvent. Preferred bases for this reaction are usually tertiary amines such as triethylamine or Hunig's base, but other bases can also be used, including *N,N*-dimethylaminopyridine, potassium carbonate, sodium hydroxide, potassium hydroxide, sodium hydride or potassium *t*-butoxide. Depending on the specific base used, appropriate solvents can be protic or aprotic where the reaction takes place under anhydrous conditions or as aqueous mixtures under Schotten-Baumann conditions. Solvents that are used for this acylation on nitrogen include acetonitrile, tetrahydrofuran, diethyl ether, dioxane, toluene, 1,2-dimethoxyethane, dichloromethane or *N,N*-dimethylformamide. Temperatures for this reaction can range from 0 °C to the reflux temperature of the solvent. Methods to make related hydrazide ester intermediates of formula CH₃(CO₂C₂H₅)C=NNCH₃C(=O)Ar (where Ar is a substituted phenyl) have been published in the patent literature, see U.S. Patents 8541414 and 8470738, and U.S. Patent Application Publication 2010/0267561. The procedures disclosed in these patent publications are directly applicable to making intermediates useful for preparing the present compounds as depicted in Scheme 3. The method of Scheme 3 is illustrated by Step E of Synthesis Example 1, Step G of Synthesis Example 2 and Step G of Synthesis Example 3.

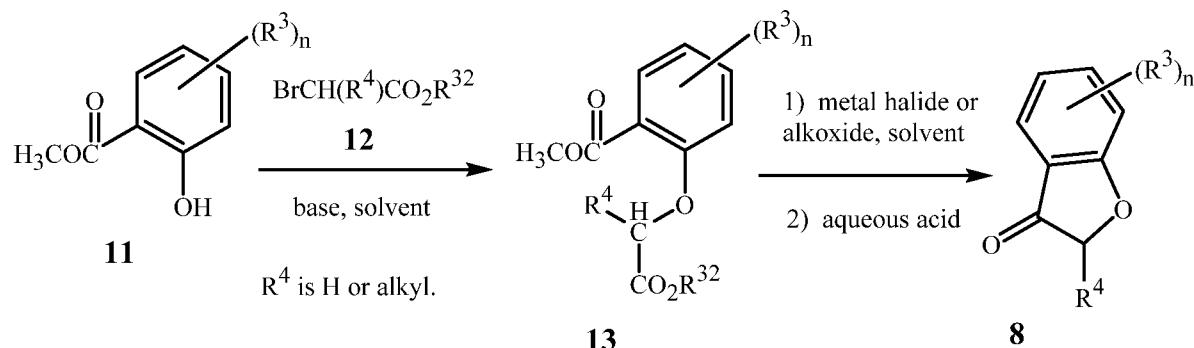

Scheme 3

Hydrazone esters of Formula 4 are readily accessible by reaction of an appropriately substituted hydrazine of formula R¹NHNH₂ with a ketone or aldehyde ester of formula R²(C=O)CO₂R³⁰ (where R³⁰ is typically methyl or ethyl) in a suitable solvent such as ethanol, methanol, acetonitrile or dioxane or dichloromethane at temperatures generally ranging from 0 to 80 °C. U.S. Patent Application Publications 2007/0112038 and 2005/0256123 disclose procedures for forming the hydrazone from methylhydrazine and the keto ester CH₃(C=O)CO₂C₂H₅. Preparation of hydrazone esters of Formula 4 is illustrated by Step D of Synthesis Example 1.


As shown in Scheme 4, bicyclic acetyl chlorides of Formula 5 can be prepared from the corresponding bicyclic acetic acid esters of Formula 6 wherein R³¹ is typically methyl or ethyl via ester hydrolysis and acid chloride formation. Standard methods for this transformation are known in the literature. For example, ester hydrolysis can be achieved by heating an alcoholic solution of an ester of Formula 6 with an aqueous solution of an alkali metal hydroxide, following by acidification with a mineral acid. The carboxylic acid of Formula 7 formed can then be converted to the corresponding acyl chloride of Formula 5 by treatment with oxalyl chloride and a catalytic amount of N,N-dimethylformamide in an inert solvent such as dichloromethane. *J. Heterocyclic Chem.* **1983**, 20(6), 1697–1703; *J. Med. Chem.* **2007**, 50(1), 40–64; and PCT Patent Publications WO 2005/012291, WO 98/49141 and WO 98/49158 disclose hydrolysis of benzofuran- and benzothiophene-acetate esters to the corresponding acetic acids. *Monatshefte für Chemie* **1968**, 99(2) 715–720 and patent publications WO 2004046122, WO 2009/038974 and JP09077767 disclose conversion of benzofuran- and benzothiophene-acetic acids to the corresponding acid chlorides. The hydrolysis step of Scheme 4 is illustrated by Step C of Synthesis Example 1, Step F of Synthesis Example 2 and Step F of Synthesis Example 3. The acyl chloride formation step of Scheme 4 is illustrated by Step E of Synthesis Example 1, Step G of Synthesis Example 2 and Step G of Synthesis Example 3.

Scheme 4

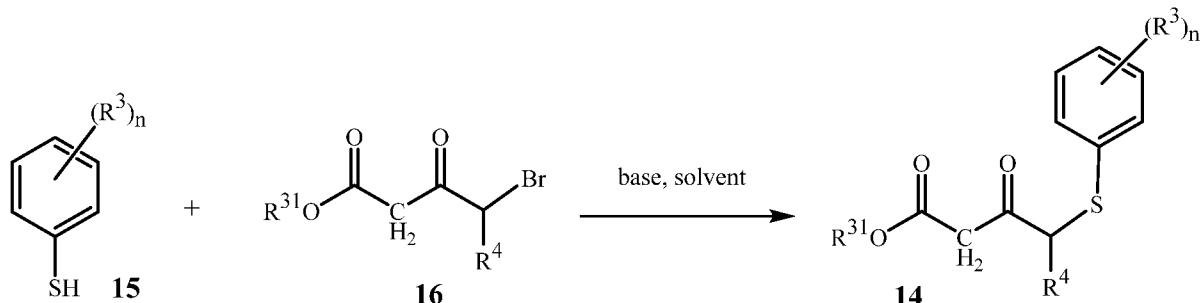
As shown in Scheme 5, benzofuran acetates of Formula **6a** (i.e. Formula **6** wherein X is O) can be made from benzofuran-3-ones of Formula **8** via either a Wittig reaction with a (triphenylphosphoranylidine)acetate of Formula **9** wherein R³¹ is typically methyl or ethyl in an inert solvent such as tetrahydrofuran or toluene or by a Wadsworth-Emmons reaction using a phosphonate acetate of Formula **10** wherein R³¹ is typically methyl or ethyl in the presence of a base such as sodium hydride or potassium *tert*-butoxide in a suitable solvent that is generally anhydrous tetrahydrofuran or dioxane. This reaction involves migration of an initially formed exocyclic double bond (formation of a dihydrobenzofuran substituted unsaturated ester) to inside the benzofuran ring system, thereby giving rise to a benzofuran acetate of Formula **6a**. Experimental conditions for a Wittig transformation are provided in PCT Patent Publication WO 2008/074752. Temperatures typically range from 0 °C to the reflux temperature of the solvent. In some cases, longer heating is required to drive migration of the exocyclic double bond in conjugation with the ester to the endocyclic position within the fully benzofuran ring system. The method of Scheme 5 is illustrated by Step E of Synthesis Example 2 and Step E of Synthesis Example 3.


Scheme 5

As shown in Scheme 6, substituted benzofuran-3-ones of Formula **8** where R⁴ is hydrogen or alkyl can be made by first alkylating a salicylate of Formula **11** with an α -bromo ester of Formula **12** (wherein R³² is typically methyl or ethyl) in the presence of a

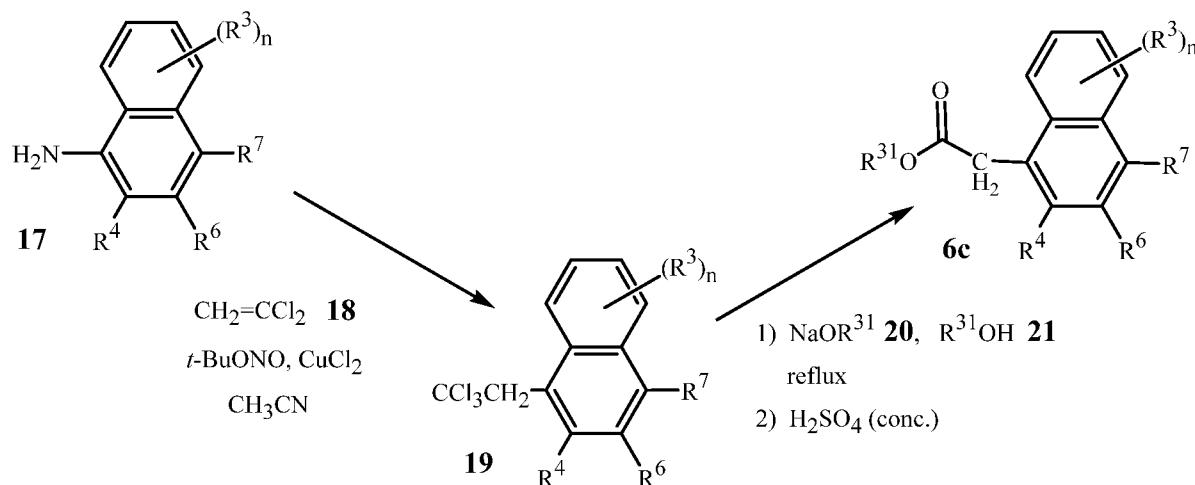
base such as potassium carbonate or sodium hydride in an appropriate solvent, e.g., acetonitrile, methanol, ethanol, tetrahydrofuran, diethyl ether, 1,2-dimethoxyethane, dioxane or *N,N*-dimethylformamide, at temperatures ranging from 0 °C to the reflux temperature of the solvent. Next, the bis-ester of Formula 13 is treated with a metal halide or alkoxide, e.g., 5 sodium hydride or potassium *tert*-butoxide, in an inert solvent such as tetrahydrofuran, dioxane, 1,2-dimethoxyethane or *N,N*-dimethylformamide to form the corresponding benzofuran-3-one of Formula 8. An alternative more stepwise process for converting diesters of Formula 13 to benzofuran-3-ones of Formula 8 has been reported in PCT Patent 10 Publication WO 2008/074752 whereas the method in Scheme 5 allows for cyclization of diesters of Formula 13 followed by ester hydrolysis and decarboxylation to provide benzofuran-3-ones of Formula 8 in one convenient step. The first step of the method of Scheme 6 is illustrated by Step A of Synthesis Example 2.

Scheme 6


As illustrated in Scheme 7, substituted benzothiophenes of Formula **6b** (i.e. Formula **6** wherein X is S) where R⁴ is hydrogen or alkyl are readily accessible by cyclization of appropriately substituted phenylthio ketoesters of Formula **14**, generally under acidic conditions and preferably with polyphosphoric acid (PPA) neat or in an inert generally high boiling solvent, e.g., chlorobenzene, xylene or toluene. Chlorobenzene is usually the solvent of choice and for a literature example of this cyclization using PPA in chlorobenzene, see *J. Heterocyclic Chem.* **1988**, 25, 1271–1272. Also see U.S. Patent 5376677 for published experimental detail for making benzothiophene acetates using this PPA-mediated cyclization. The method of Scheme 7 is illustrated by Step B of Synthesis Example 1.

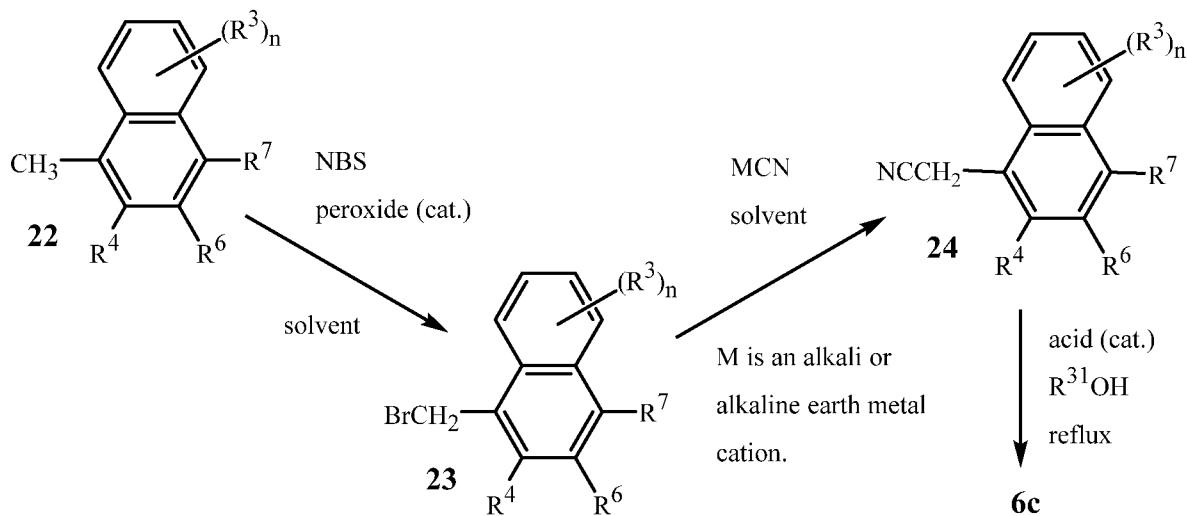
Scheme 7

As shown in Scheme 8, by methods also taught in *J. Heterocyclic Chem.* **1988**, 25, 1271–1272 and U.S. Patent 5376677, substituted 4-phenylthio-1,3-ketoesters of Formula **14**, 5 can be readily made by alkylation of thiophenols of Formula **15** with 4-bromo-1,3-ketoesters of Formula **16** (i.e. $R^4CHBr(C=O)CH_2CO_2R$ where R is generally methyl or ethyl) in the presence of base in solvent. Alkylation with an alkali or alkaline carbonate such as potassium carbonate in a polar aprotic solvent such as acetonitrile or *N,N*-dimethylformamide is generally preferred. The method of Scheme 8 is illustrated by Step A 10 of Synthesis Example 1.

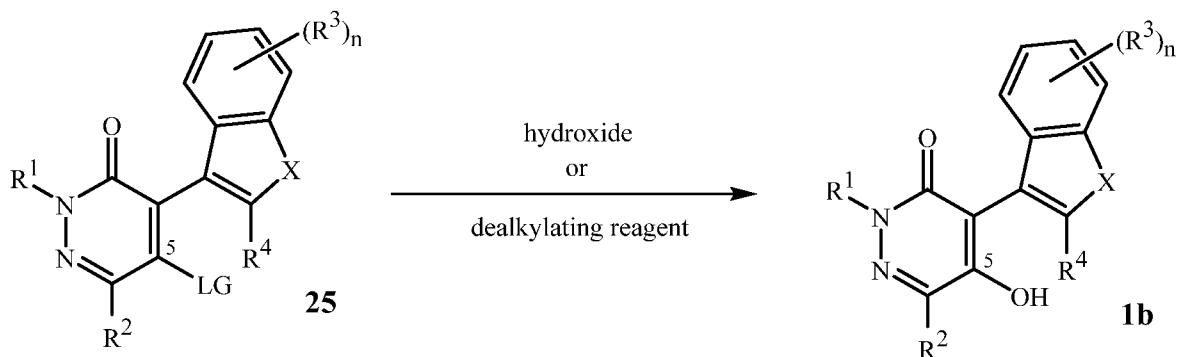

Scheme 8

As shown in Scheme 9, naphthalene acetic acid esters of Formula **6c** (i.e. Formula **6** 15 wherein X is $-C(R^6)=C(R^7)-$) can be prepared from appropriately substituted naphthalene amines of Formula **17**. According to this method, amines of Formula **17** are diazotized (preferably with *t*-butyl nitrite in the presence of cupric chloride in acetonitrile) in the presence of 1,1-dichloroethene (**18**) to give the corresponding trichloroethyl naphthalenes of Formula **19**. The trichloroethyl naphthalenes of Formula **19** are then heated with an appropriate alkali or alkaline earth alkoxide such as a sodium alkoxide of Formula **20**, in a suitable solvent such as an alcohol of Formula **21**, followed by acidification such as with

concentrated sulfuric acid to provide the naphthalene acetic acid esters of Formula **6c**. This method is taught in *Pest. Manag. Sci.* **2011**, *67*, 1499–1521 and U.S. Patent 5376677.


Scheme 9

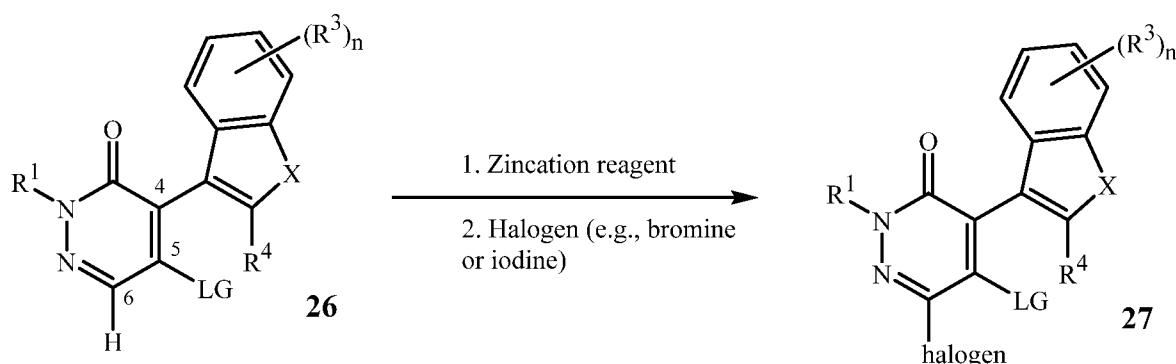
5 An alternative method for making naphthalene acetic acid esters of Formula **6c** is outlined in Scheme 10. As taught by the method in *Pest. Manag. Sci.* **2011**, *67*, 1499–1521, methyl naphthalenes of Formula **22** can be brominated with *N*-bromosuccinimide (NBS) under free radical conditions (e.g., benzoyl peroxide as catalyst) in an inert solvent such as dichloromethane, dichloromethane or tetrachloromethane to give naphthalene methyl bromides of Formula **23**. Displacement of the bromine with cyanide by reacting compounds of Formula **23** with an alkali or alkaline cyanide (e.g., potassium cyanide) affords the naphthalene acetonitriles of Formula **24** that can be hydrolyzed with esterification to the acetates of Formula **6c** by heating in acidic alcohol (e.g., HCl in methanol or ethanol), generally at reflux.


10

Scheme 10

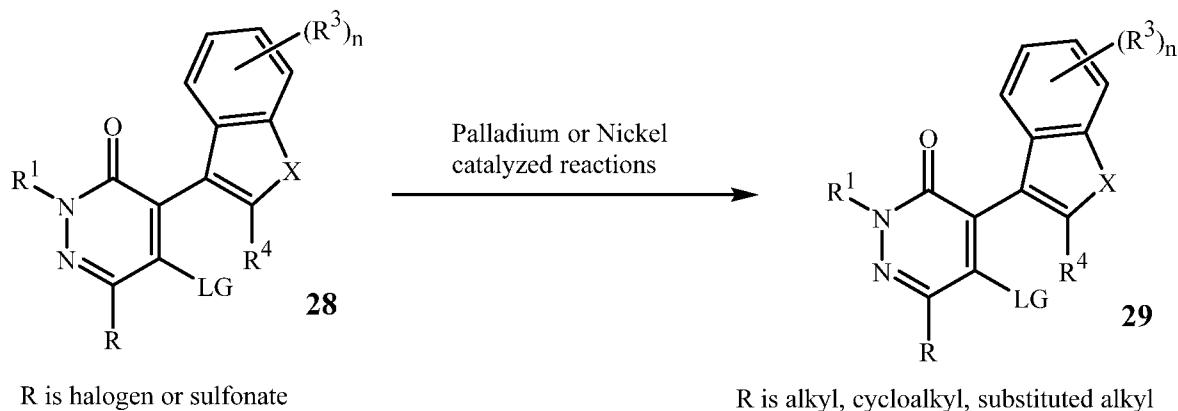
Hydrolysis of leaving groups at the 5-position of the pyridazinone ring can be accomplished as shown in Scheme 11. When the LG group is lower alkoxy, lower 5 alkylsulfide (sulfoxide or sulfone), halide or *N*-linked azole, it can be removed by hydrolysis with basic reagents such as tetrabutylammonium hydroxide in solvents such as tetrahydrofuran, dimethoxyethane or dioxane at temperatures from 0 to 120 °C. Other hydroxide reagents useful for this hydrolysis include potassium, lithium and sodium hydroxide (see, for example, WO 2009/086041). When the LG group is lower alkoxy, 10 hydrolysis of the LG group can also be accomplished with dealkylation reagents such as boron tribromide or morpholine (see, for example, WO 2009/086041, WO 2013/160126 and WO 2013/050421).

Scheme 11



15 Introduction of a halogen at the 6-position of the pyridazinone can be accomplished by zirconation followed by halogenation. For conditions, reagents and examples of zirconation of pyridazinones, see Verhelst, T., Ph.D. thesis, University of Antwerp, 2012. Typically the pyridazinone of Formula 26 is treated in tetrahydrofuran with a solution of $Zn(TMP)-LiCl$ or

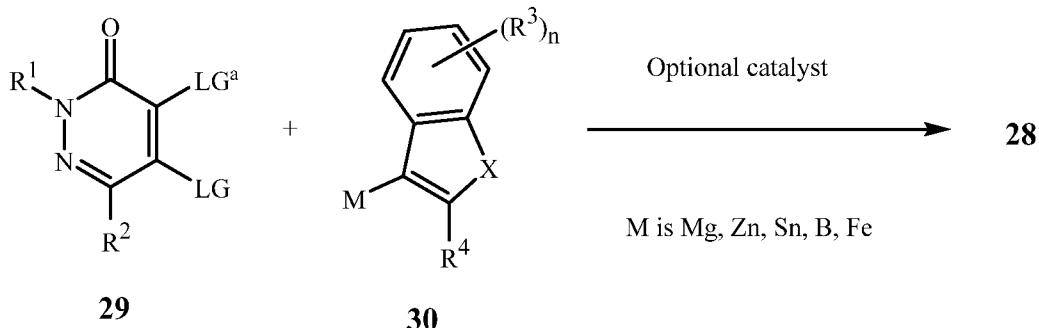
Zn(TMP)₂-MgCl₂-LiCl (commercially available) at -20 to 30 °C to form a zinc reagent. Subsequent addition of bromine or iodine provides compounds of Formula **27** (wherein R² is Br or I, respectively). This method is shown in Scheme 12. For preparation of a variety of appropriate zincation reagents, see Wunderlich, S. Ph.D. thesis, University of Munich, 2010 and references cited therein, as well as WO 2008/138946 and WO 2010/092096. Zincation at the 6-position of the pyridazinone ring can be accomplished in the presence of aromatic/heteroaromatic substituents, alkoxy substituents or halogen at the 4-position of the pyridazinone ring, or in the presence of halogen or alkoxy substituents at the 5-position of the pyridazinone ring.


10

Scheme 12

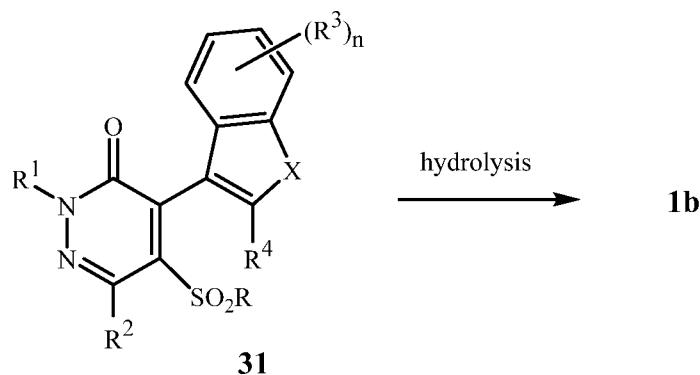
The R² substituent of compounds of Formula **28** (wherein R² is halogen or sulfonate) can be further transformed into other functional groups. Compounds wherein R² is alkyl, cycloalkyl or substituted alkyl can be prepared by transition metal catalyzed reactions of compounds of Formula **28** as shown in Scheme 13. For reviews of these types of reactions, see: E. Negishi, *Handbook of Organopalladium Chemistry for Organic Synthesis*, John Wiley and Sons, Inc., New York, 2002, N. Miyaura, *Cross-Coupling Reactions: A Practical Guide*, Springer, New York, 2002, H. C. Brown et al., *Organic Synthesis via Boranes*, Aldrich Chemical Co., Milwaukee, Vol. 3, 2002, Suzuki et al., *Chemical Reviews* 1995, 95, 2457-2483 and Molander et al., *Accounts of Chemical Research* 2007, 40, 275-286. Also see Gribble and Li editors *Palladium in Heterocyclic Chemistry Volume 1*, Pergamon Press, Amsterdam, 2000 and Gribble and Li editors *Palladium in Heterocyclic Chemistry Volume 2*, Pergamon Press, Amsterdam, 2007. For a review of Buchwald-Hartwig chemistry see Yudin and Hartwig, *Catalyzed Carbon-Heteroatom Bond Formation*, 2010, Wiley, New York.

Scheme 13



Related synthetic methods for the introduction of other functional groups at the R-position of Formula 29 are known in the art. Copper catalyzed reactions are useful for introducing the CF₃ group. For a comprehensive recent review of reagents for this reaction see Wu, Neumann and Beller in *Chemistry: An Asian Journal*, 2012, ASAP, and references cited therein. For introduction of a sulfur containing substituent at this position, see methods disclosed in WO 2013/160126. For introduction of a cyano group, see WO 2014/031971. For introduction of a nitro group, see *J. Am. Chem. Soc.*, 2009, 12898. For introduction of a fluoro substituent, see *J. Am. Chem. Soc.*, 2014, 3792.

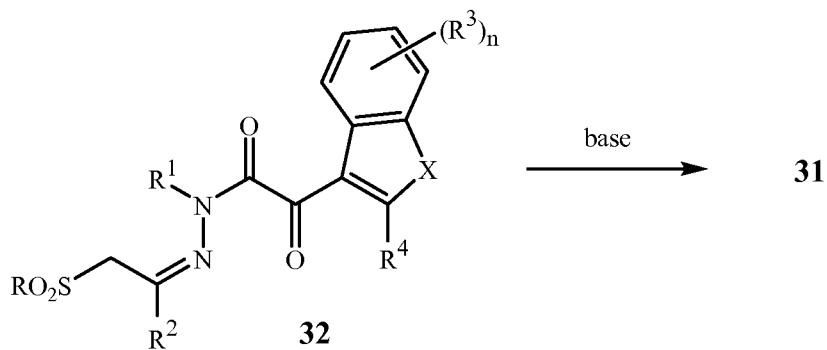
Compounds of Formula **28** can be prepared by reaction of organometallic reagents with pyridazinones of Formula **29** with a reactive group at the 4-position, as shown in Scheme 14. Depending upon the leaving group a transition metal catalyst may be desirable. When the leaving group is lower alkoxy, *N*-linked azole (such as pyrazole or triazole) or sulfonate, no catalyst is required, and reaction directly with a magnesium reagent can take place at the 4-position. This reaction can be done in a variety of solvents which do not react with organomagnesium reagents. Typical reaction conditions include tetrahydrofuran as the solvent, a reaction temperature of -20 to 65 °C, and an excess of the organomagnesium reagent. When the reactive group at the 4-position is halogen, a transition metal catalyst and ligand are helpful. A variety of different coupling partners can be used, including boron (Suzuki Reaction), tin (Stille Reaction), and zinc (Negishi reaction); these reactions can be catalyzed by palladium and nickel catalysts with a wide variety of ligands. Conditions for these reactions are known in the art; see, for example, *Palladium-Catalyzed Coupling Reactions: Practical Aspects and Future Development* Edited by Arpad Molnar, Wiley, 2013 and references cited within. The organomagnesium reagents used in the non-catalyzed process can be prepared by direct insertion of magnesium into a carbon-halogen bond (optionally in the presence of a lithium halide), by a Grignard exchange reaction with an *i*-propylmagnesium halide (optionally in the presence of a lithium halide), or by


transformation of an organolithium reagent by reaction with a magnesium salt such as magnesium bromide etherate. A variety of groups which are inert toward the organomagnesium reagents can be present at R² and at the 5-position of the pyridazinone in these reactions.

5

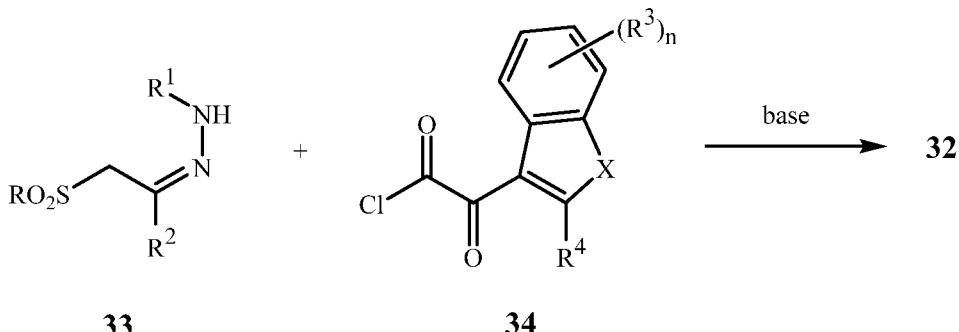
Scheme 14

Compounds of Formula **29** are known in the art or can be prepared by methods described by Maes and Lemiere in *Comprehensive Heterocyclic Chemistry III Volume 8*, Katritzky, Ramsden, Scriven and Taylor editors and references cited therein. See also 10 Verhelst, Ph.D. thesis University of Antwerp and references cited therein. Functional group transformations on pyridazinones are also described in Stevenson et. al. *J. Heterocyclic Chem.* **2005**, 42, 427; U.S. Pat. No. 6,077,953; WO 2009/086041 and references cited therein; U.S. Pat. No. 2,782,195; WO 2013/160126; and WO 2013/050421.


Compounds of Formula **1b** can also be prepared by hydrolysis of sulfonates of 15 Formula **31** in aqueous base. Suitable bases include sodium, potassium or tetrabutylammonium hydroxide. Typical reaction temperatures range from 0 to 80 °C, and typical reaction times are 1–12 hours. This method is shown in Scheme 15.

Scheme 15

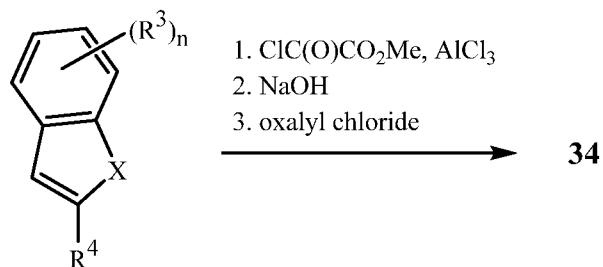
Compounds of Formula **31** can be prepared by the cyclization of compounds of 20 Formula **32** by treatment with base. Typical bases useful in this method include potassium,


sodium or cesium carbonate. Typical solvents include acetonitrile, tetrahydrofuran or *N,N*-dimethylformamide. This method is shown in Scheme 16.

Scheme 16

5 Compounds of Formula **32** can be prepared by the method shown in Scheme 17. In this method, compounds of Formula **33** are coupled with compounds of Formula **34** in the presence of a base. Bases useful in this method include triethylamine, sodium or potassium carbonate, pyridine or diisopropylethylamine.

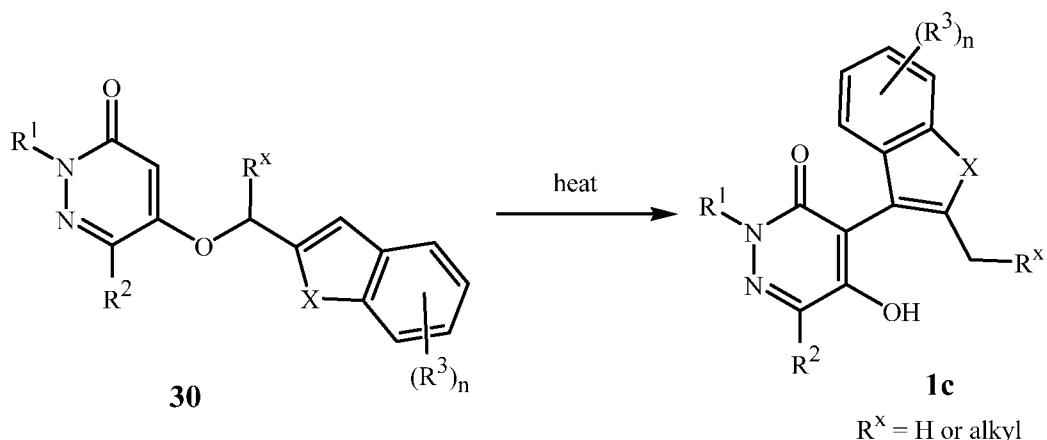
Scheme 17

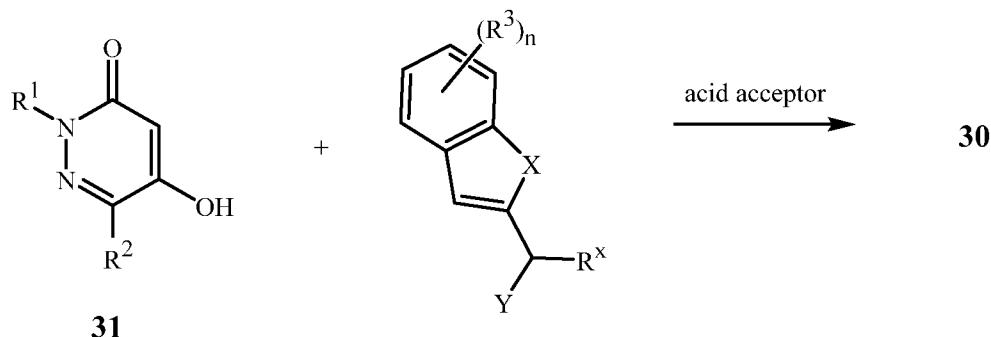


10

Compounds of Formula 33 can be prepared by methods known in the art.

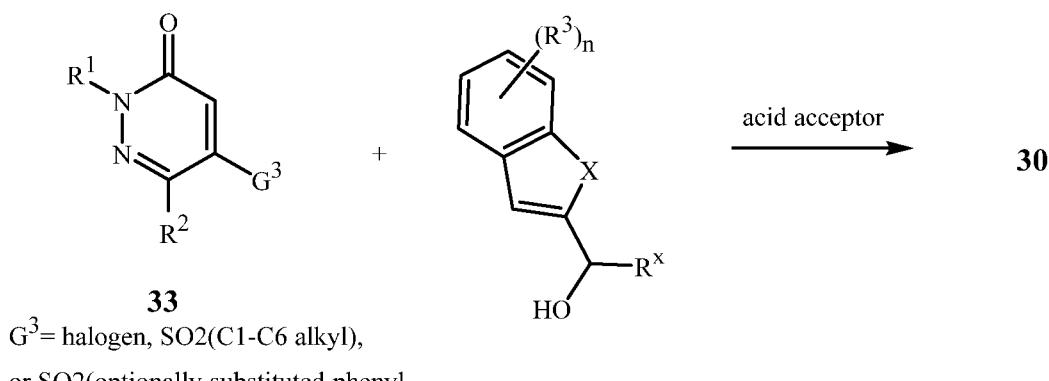
Compounds of Formula **34** can be prepared by several methods. In one method shown in Scheme 18, compounds of Formula **35** are first treated with $\text{ClC(O)CO}_2\text{Me}$ in the presence of aluminum trichloride. Subsequent hydrolysis to the carboxylic acid, followed by treatment with oxalyl chloride, provides the acyl chlorides of Formula **34**.


Scheme 18


Compounds of Formula **35** are commercially available or can be prepared by methods known in the art.

As shown in Scheme 20 compounds of formula **1c** can be made by rearrangement of compounds of Formula **30**. This rearrangement may be carried out at temperatures between 110 and 300 °C. Suitable solvents include, but are not limited to, aromatic hydrocarbons such as xylenes, diethylbenzene, and mesitylene as well as halogenated aromatics such as dichlorobenzene. Other high boiling solvents such as Dowtherm A and diglyme may be successfully employed. Many other solvents with lower boiling points can be used in conjunction with microwave heating especially when ionic liquids are added to the medium.

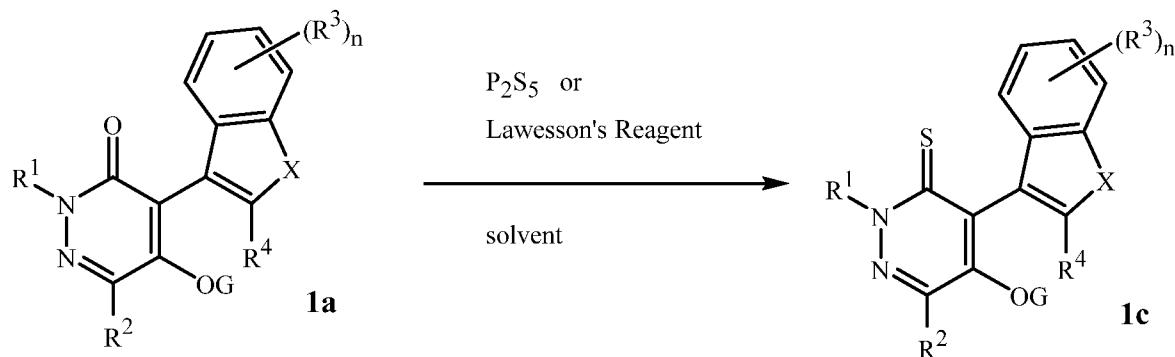
Scheme 20



Compounds of Formula **30** can be prepared as shown in Scheme 21 by alkylation of pyridazinones of Formula **31** with alkyl halides of Formula **32**. The reaction can be carried out in a variety of solvents such as acetone, 2-butanone, acetonitrile, dimethylacetamide, N-methylpyrrolidinone, dimethylsulfoxide and dimethylformamide. The presence of an acid acceptor such as, but not limited to, cesium carbonate, potassium carbonate, sodium carbonate, potassium hydroxide or sodium hydroxide is preferred. The leaving group Y can be halogen or sulfonate.

Scheme 21

Compounds of Formula **30** may also be prepared as shown in Scheme 22 by the nucleophilic displacement reaction of pyridazinones of Formula **33** with alcohols of Formula **33**. Suitable solvents include dioxanes, dimethoxyethane, tetrahydrofuran, dimethylacetamide, N-methylpyrrolidinone, dimethylsulfoxide and dimethylformamide. Suitable acid acceptors include, but are not limited to, sodium hydride, potassium hydride, potassium *t*-butoxide, sodium hexamethyldisilazide, potassium hexamethyldisilazide, and lithium hexamethyldisilazide.

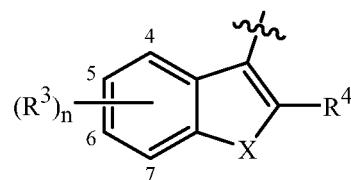

10

Scheme 22

G^3 = halogen, $SO_2(C_1-C_6$ alkyl),
or SO_2 (optionally substituted phenyl
or optionally substituted 5- or
6-membered ring)

As shown in Scheme 23, pyridazinones of Formula **1a** (a subset of compounds of Formula **1** where W is O) can be thionated to give the corresponding thiones of Formula **1c** (i.e. Formula **1** wherein W is S) with a thionation reagent that is generally phosphorus pentasulfide in pyridine or Lawesson's reagent (2,4-bis-(4-methoxyphenyl)-1,3-dithia-2,4-diphosphetane 2,4-disulfide) in an appropriate solvent (e.g., toluene, tetrahydrofuran or dioxane) at temperatures generally ranging 0 °C to room temperature.

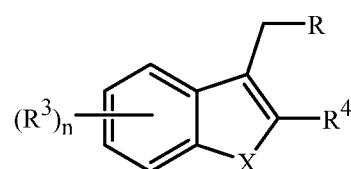
Scheme 23


It is recognized by one skilled in the art that various functional groups can be converted into others to provide different compounds of Formula 1. For a valuable resource that illustrates the interconversion of functional groups in a simple and straightforward fashion, see Larock, R. C., *Comprehensive Organic Transformations: A Guide to Functional Group Preparations*, 2nd Ed., Wiley-VCH, New York, 1999.

It is recognized that some reagents and reaction conditions described above for preparing compounds of Formula 1 may not be compatible with certain functionalities present in the intermediates. In these instances, the incorporation of protection/deprotection sequences or functional group interconversions into the synthesis will aid in obtaining the desired products. The use and choice of the protecting groups will be apparent to one skilled in chemical synthesis (see, for example, Greene, T. W.; Wuts, P. G. M. *Protective Groups in Organic Synthesis*, 2nd ed.; Wiley: New York, 1991). One skilled in the art will recognize that, in some cases, after the introduction of a given reagent as depicted in any individual scheme, it may be necessary to perform additional routine synthetic steps not described in detail to complete the synthesis of compounds of Formula 1. One skilled in the art will also recognize that it may be necessary to perform a combination of the steps illustrated in the above schemes in an order other than that implied by the particular presented to prepare the compounds of Formula 1.

One skilled in the art will also recognize that compounds of Formula 1 and the intermediates described herein can be subjected to various electrophilic, nucleophilic, radical, organometallic, oxidation, and reduction reactions to add substituents or modify existing substituents.

25 Examples of intermediates useful in the preparation of compounds of this invention are shown in Tables I-1a through I-3d. The position(s) of the R³ group(s) in Tables I-1a through I-3d is(are) based on the locant numbering shown below.


43

The following abbreviations are used in the Tables which follow: Me means methyl, Et means ethyl, Pr means propyl, and Ph means phenyl.

5

TABLE I-1a

X is S, and R is CO₂Me.

(R ³) _n	R ⁴	(R ³) _n	R ⁴	(R ³) _n	R ⁴
—	H	—	Me	—	Et
5-Me	H	5-Me	Me	5-Me	Et
4,6-di-Me	H	4,6-di-Me	Me	4,6-di-Me	Et
5,7-di-Me	H	5,7-di-Me	Me	5,7-di-Me	Et

10

X is S, and R is CO₂Et.

(R ³) _n	R ⁴	(R ³) _n	R ⁴	(R ³) _n	R ⁴
—	H	—	Me	—	Et
5-Me	H	5-Me	Me	5-Me	Et
4,6-di-Me	H	4,6-di-Me	Me	4,6-di-Me	Et
5,7-di-Me	H	5,7-di-Me	Me	5,7-di-Me	Et

X is S, and R is CO₂H.

(R ³) _n	R ⁴	(R ³) _n	R ⁴	(R ³) _n	R ⁴
—	H	—	Me	—	Et
5-Me	H	5-Me	Me	5-Me	Et
4,6-di-Me	H	4,6-di-Me	Me	4,6-di-Me	Et
5,7-di-Me	H	5,7-di-Me	Me	5,7-di-Me	Et

X is S, and R is C(O)Cl.

(R ³) _n	R ⁴	(R ³) _n	R ⁴	(R ³) _n	R ⁴
—	H	—	Me	—	Et
5-Me	H	5-Me	Me	5-Me	Et
4,6-di-Me	H	4,6-di-Me	Me	4,6-di-Me	Et
5,7-di-Me	H	5,7-di-Me	Me	5,7-di-Me	Et

X is -CH=CH-, and R is CO₂Me.

(R ³) _n	R ⁴	(R ³) _n	R ⁴	(R ³) _n	R ⁴
—	H	—	Me	—	Et
5-Me	H	5-Me	Me	5-Me	Et
4,6-di-Me	H	4,6-di-Me	Me	4,6-di-Me	Et
5,7-di-Me	H	5,7-di-Me	Me	5,7-di-Me	Et

5

X is -CH=CH-, and R is CO₂Et.

(R ³) _n	R ⁴	(R ³) _n	R ⁴	(R ³) _n	R ⁴
—	H	—	Me	—	Et
5-Me	H	5-Me	Me	5-Me	Et
4,6-di-Me	H	4,6-di-Me	Me	4,6-di-Me	Et
5,7-di-Me	H	5,7-di-Me	Me	5,7-di-Me	Et

X is -CH=CH-, and R is CO₂H.

(R ³) _n	R ⁴	(R ³) _n	R ⁴	(R ³) _n	R ⁴
—	H	—	Me	—	Et
5-Me	H	5-Me	Me	5-Me	Et
4,6-di-Me	H	4,6-di-Me	Me	4,6-di-Me	Et
5,7-di-Me	H	5,7-di-Me	Me	5,7-di-Me	Et

X is -CH=CH-, and R is C(O)Cl.

(R ³) _n	R ⁴	(R ³) _n	R ⁴	(R ³) _n	R ⁴
—	H	—	Me	—	Et
5-Me	H	5-Me	Me	5-Me	Et
4,6-di-Me	H	4,6-di-Me	Me	4,6-di-Me	Et
5,7-di-Me	H	5,7-di-Me	Me	5,7-di-Me	Et

X is -CH=CF-, and R is CO₂Me.

(R ³) _n	R ⁴	(R ³) _n	R ⁴	(R ³) _n	R ⁴
—	H	—	Me	—	Et
5-Me	H	5-Me	Me	5-Me	Et
4,6-di-Me	H	4,6-di-Me	Me	4,6-di-Me	Et
5,7-di-Me	H	5,7-di-Me	Me	5,7-di-Me	Et

X is -CH=CF-, and R is CO₂Et.

(R ³) _n	R ⁴	(R ³) _n	R ⁴	(R ³) _n	R ⁴
—	H	—	Me	—	Et
5-Me	H	5-Me	Me	5-Me	Et
4,6-di-Me	H	4,6-di-Me	Me	4,6-di-Me	Et
5,7-di-Me	H	5,7-di-Me	Me	5,7-di-Me	Et

5

X is -CH=CF-, and R is CO₂H.

(R ³) _n	R ⁴	(R ³) _n	R ⁴	(R ³) _n	R ⁴
—	H	—	Me	—	Et
5-Me	H	5-Me	Me	5-Me	Et
4,6-di-Me	H	4,6-di-Me	Me	4,6-di-Me	Et
5,7-di-Me	H	5,7-di-Me	Me	5,7-di-Me	Et

X is -CH=CF-, and R is C(O)Cl.

(R ³) _n	R ⁴	(R ³) _n	R ⁴	(R ³) _n	R ⁴
—	H	—	Me	—	Et
5-Me	H	5-Me	Me	5-Me	Et
4,6-di-Me	H	4,6-di-Me	Me	4,6-di-Me	Et
5,7-di-Me	H	5,7-di-Me	Me	5,7-di-Me	Et

TABLE I-1b

X is S, R¹ is Me, and R² is Me.

(R ³) _n	R ⁴	(R ³) _n	R ⁴	(R ³) _n	R ⁴
—	H	—	Me	—	Et
5-Me	H	5-Me	Me	5-Me	Et
4,6-di-Me	H	4,6-di-Me	Me	4,6-di-Me	Et
5,7-di-Me	H	5,7-di-Me	Me	5,7-di-Me	Et

5 X is S, R¹ is Me, and R² is Et.

(R ³) _n	R ⁴	(R ³) _n	R ⁴	(R ³) _n	R ⁴
—	H	—	Me	—	Et
5-Me	H	5-Me	Me	5-Me	Et
4,6-di-Me	H	4,6-di-Me	Me	4,6-di-Me	Et
5,7-di-Me	H	5,7-di-Me	Me	5,7-di-Me	Et

X is S, R¹ is Me, and R² is Br.

(R ³) _n	R ⁴	(R ³) _n	R ⁴	(R ³) _n	R ⁴
—	H	—	Me	—	Et
5-Me	H	5-Me	Me	5-Me	Et
4,6-di-Me	H	4,6-di-Me	Me	4,6-di-Me	Et
5,7-di-Me	H	5,7-di-Me	Me	5,7-di-Me	Et

X is S, R¹ is Me, and R² is I.

(R ³) _n	R ⁴	(R ³) _n	R ⁴	(R ³) _n	R ⁴
—	H	—	Me	—	Et
5-Me	H	5-Me	Me	5-Me	Et
4,6-di-Me	H	4,6-di-Me	Me	4,6-di-Me	Et
5,7-di-Me	H	5,7-di-Me	Me	5,7-di-Me	Et

X is S, R¹ is Me, and R² is Cl.

(R ³) _n	R ⁴	(R ³) _n	R ⁴	(R ³) _n	R ⁴
—	H	—	Me	—	Et
5-Me	H	5-Me	Me	5-Me	Et
4,6-di-Me	H	4,6-di-Me	Me	4,6-di-Me	Et
5,7-di-Me	H	5,7-di-Me	Me	5,7-di-Me	Et

X is S, R¹ is Me, and R² is OMe.

(R ³) _n	R ⁴	(R ³) _n	R ⁴	(R ³) _n	R ⁴
—	H	—	Me	—	Et
5-Me	H	5-Me	Me	5-Me	Et
4,6-di-Me	H	4,6-di-Me	Me	4,6-di-Me	Et
5,7-di-Me	H	5,7-di-Me	Me	5,7-di-Me	Et

5

X is S, R¹ is Et, and R² is Me.

(R ³) _n	R ⁴	(R ³) _n	R ⁴	(R ³) _n	R ⁴
—	H	—	Me	—	Et
5-Me	H	5-Me	Me	5-Me	Et
4,6-di-Me	H	4,6-di-Me	Me	4,6-di-Me	Et
5,7-di-Me	H	5,7-di-Me	Me	5,7-di-Me	Et

X is S, R¹ is Et, and R² is Et.

(R ³) _n	R ⁴	(R ³) _n	R ⁴	(R ³) _n	R ⁴
—	H	—	Me	—	Et
5-Me	H	5-Me	Me	5-Me	Et
4,6-di-Me	H	4,6-di-Me	Me	4,6-di-Me	Et
5,7-di-Me	H	5,7-di-Me	Me	5,7-di-Me	Et

10

X is S, R¹ is Et, and R² is Br.

(R ³) _n	R ⁴	(R ³) _n	R ⁴	(R ³) _n	R ⁴
—	H	—	Me	—	Et
5-Me	H	5-Me	Me	5-Me	Et
4,6-di-Me	H	4,6-di-Me	Me	4,6-di-Me	Et
5,7-di-Me	H	5,7-di-Me	Me	5,7-di-Me	Et

X is S, R¹ is Et, and R² is I.

(R ³) _n	R ⁴	(R ³) _n	R ⁴	(R ³) _n	R ⁴
—	H	—	Me	—	Et
5-Me	H	5-Me	Me	5-Me	Et
4,6-di-Me	H	4,6-di-Me	Me	4,6-di-Me	Et
5,7-di-Me	H	5,7-di-Me	Me	5,7-di-Me	Et

X is S, R¹ is Et, and R² is Cl.

(R ³) _n	R ⁴	(R ³) _n	R ⁴	(R ³) _n	R ⁴
—	H	—	Me	—	Et
5-Me	H	5-Me	Me	5-Me	Et
4,6-di-Me	H	4,6-di-Me	Me	4,6-di-Me	Et
5,7-di-Me	H	5,7-di-Me	Me	5,7-di-Me	Et

5

X is S, R¹ is Et, and R² is OMe.

(R ³) _n	R ⁴	(R ³) _n	R ⁴	(R ³) _n	R ⁴
—	H	—	Me	—	Et
5-Me	H	5-Me	Me	5-Me	Et
4,6-di-Me	H	4,6-di-Me	Me	4,6-di-Me	Et
5,7-di-Me	H	5,7-di-Me	Me	5,7-di-Me	Et

X is -CH=CH-, R¹ is Me, and R² is Me.

(R ³) _n	R ⁴	(R ³) _n	R ⁴	(R ³) _n	R ⁴
—	H	—	Me	—	Et
5-Me	H	5-Me	Me	5-Me	Et
4,6-di-Me	H	4,6-di-Me	Me	4,6-di-Me	Et
5,7-di-Me	H	5,7-di-Me	Me	5,7-di-Me	Et

10

X is -CH=CH-, R¹ is Me, and R² is Et.

(R ³) _n	R ⁴	(R ³) _n	R ⁴	(R ³) _n	R ⁴
—	H	—	Me	—	Et
5-Me	H	5-Me	Me	5-Me	Et
4,6-di-Me	H	4,6-di-Me	Me	4,6-di-Me	Et
5,7-di-Me	H	5,7-di-Me	Me	5,7-di-Me	Et

X is -CH=CH-, R¹ is Me, and R² is Br.

(R ³) _n	R ⁴	(R ³) _n	R ⁴	(R ³) _n	R ⁴
—	H	—	Me	—	Et
5-Me	H	5-Me	Me	5-Me	Et
4,6-di-Me	H	4,6-di-Me	Me	4,6-di-Me	Et
5,7-di-Me	H	5,7-di-Me	Me	5,7-di-Me	Et

X is -CH=CH-, R¹ is Me, and R² is I.

(R ³) _n	R ⁴	(R ³) _n	R ⁴	(R ³) _n	R ⁴
—	H	—	Me	—	Et
5-Me	H	5-Me	Me	5-Me	Et
4,6-di-Me	H	4,6-di-Me	Me	4,6-di-Me	Et
5,7-di-Me	H	5,7-di-Me	Me	5,7-di-Me	Et

5

X is -CH=CH-, R¹ is Me, and R² is Cl.

(R ³) _n	R ⁴	(R ³) _n	R ⁴	(R ³) _n	R ⁴
—	H	—	Me	—	Et
5-Me	H	5-Me	Me	5-Me	Et
4,6-di-Me	H	4,6-di-Me	Me	4,6-di-Me	Et
5,7-di-Me	H	5,7-di-Me	Me	5,7-di-Me	Et

X is -CH=CH-, R¹ is Me, and R² is OMe.

(R ³) _n	R ⁴	(R ³) _n	R ⁴	(R ³) _n	R ⁴
—	H	—	Me	—	Et
5-Me	H	5-Me	Me	5-Me	Et
4,6-di-Me	H	4,6-di-Me	Me	4,6-di-Me	Et
5,7-di-Me	H	5,7-di-Me	Me	5,7-di-Me	Et

10

X is -CH=CH-, R¹ is Et, and R² is Me.

(R ³) _n	R ⁴	(R ³) _n	R ⁴	(R ³) _n	R ⁴
—	H	—	Me	—	Et
5-Me	H	5-Me	Me	5-Me	Et
4,6-di-Me	H	4,6-di-Me	Me	4,6-di-Me	Et
5,7-di-Me	H	5,7-di-Me	Me	5,7-di-Me	Et

X is -CH=CH-, R¹ is Et, and R² is Et.

(R ³) _n	R ⁴	(R ³) _n	R ⁴	(R ³) _n	R ⁴
—	H	—	Me	—	Et
5-Me	H	5-Me	Me	5-Me	Et
4,6-di-Me	H	4,6-di-Me	Me	4,6-di-Me	Et
5,7-di-Me	H	5,7-di-Me	Me	5,7-di-Me	Et

X is -CH=CH-, R¹ is Et, and R² is Br.

(R ³) _n	R ⁴	(R ³) _n	R ⁴	(R ³) _n	R ⁴
—	H	—	Me	—	Et
5-Me	H	5-Me	Me	5-Me	Et
4,6-di-Me	H	4,6-di-Me	Me	4,6-di-Me	Et
5,7-di-Me	H	5,7-di-Me	Me	5,7-di-Me	Et

5

X is -CH=CH-, R¹ is Et, and R² is I.

(R ³) _n	R ⁴	(R ³) _n	R ⁴	(R ³) _n	R ⁴
—	H	—	Me	—	Et
5-Me	H	5-Me	Me	5-Me	Et
4,6-di-Me	H	4,6-di-Me	Me	4,6-di-Me	Et
5,7-di-Me	H	5,7-di-Me	Me	5,7-di-Me	Et

X is -CH=CH-, R¹ is Et, and R² is Cl.

(R ³) _n	R ⁴	(R ³) _n	R ⁴	(R ³) _n	R ⁴
—	H	—	Me	—	Et
5-Me	H	5-Me	Me	5-Me	Et
4,6-di-Me	H	4,6-di-Me	Me	4,6-di-Me	Et
5,7-di-Me	H	5,7-di-Me	Me	5,7-di-Me	Et

10

X is -CH=CH-, R¹ is Et, and R² is OMe.

(R ³) _n	R ⁴	(R ³) _n	R ⁴	(R ³) _n	R ⁴
—	H	—	Me	—	Et
5-Me	H	5-Me	Me	5-Me	Et
4,6-di-Me	H	4,6-di-Me	Me	4,6-di-Me	Et
5,7-di-Me	H	5,7-di-Me	Me	5,7-di-Me	Et

X is -CH=CCl-, R¹ is Et, and R² is Me.

(R ³) _n	R ⁴	(R ³) _n	R ⁴	(R ³) _n	R ⁴
—	H	—	Me	—	Et
5-Me	H	5-Me	Me	5-Me	Et
4,6-di-Me	H	4,6-di-Me	Me	4,6-di-Me	Et
5,7-di-Me	H	5,7-di-Me	Me	5,7-di-Me	Et

X is -CH=CCl-, R¹ is Et, and R² is Et.

(R ³) _n	R ⁴	(R ³) _n	R ⁴	(R ³) _n	R ⁴
—	H	—	Me	—	Et
5-Me	H	5-Me	Me	5-Me	Et
4,6-di-Me	H	4,6-di-Me	Me	4,6-di-Me	Et
5,7-di-Me	H	5,7-di-Me	Me	5,7-di-Me	Et

5

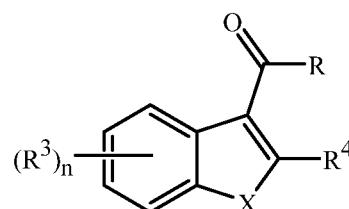
X is -CH=CCl-, R¹ is Et, and R² is Br.

(R ³) _n	R ⁴	(R ³) _n	R ⁴	(R ³) _n	R ⁴
—	H	—	Me	—	Et
5-Me	H	5-Me	Me	5-Me	Et
4,6-di-Me	H	4,6-di-Me	Me	4,6-di-Me	Et
5,7-di-Me	H	5,7-di-Me	Me	5,7-di-Me	Et

X is -CH=CCl-, R¹ is Et, and R² is I.

(R ³) _n	R ⁴	(R ³) _n	R ⁴	(R ³) _n	R ⁴
—	H	—	Me	—	Et
5-Me	H	5-Me	Me	5-Me	Et
4,6-di-Me	H	4,6-di-Me	Me	4,6-di-Me	Et
5,7-di-Me	H	5,7-di-Me	Me	5,7-di-Me	Et

10


X is -CH=CCl-, R¹ is Et, and R² is Cl.

(R ³) _n	R ⁴	(R ³) _n	R ⁴	(R ³) _n	R ⁴
—	H	—	Me	—	Et
5-Me	H	5-Me	Me	5-Me	Et
4,6-di-Me	H	4,6-di-Me	Me	4,6-di-Me	Et
5,7-di-Me	H	5,7-di-Me	Me	5,7-di-Me	Et

X is -CH=CCl-, R¹ is Et, and R² is OMe.

(R ³) _n	R ⁴	(R ³) _n	R ⁴	(R ³) _n	R ⁴
—	H	—	Me	—	Et
5-Me	H	5-Me	Me	5-Me	Et
4,6-di-Me	H	4,6-di-Me	Me	4,6-di-Me	Et
5,7-di-Me	H	5,7-di-Me	Me	5,7-di-Me	Et

TABLE I-2a

5

X is S, and R is CO₂Na.

(R ³) _n	R ⁴	(R ³) _n	R ⁴	(R ³) _n	R ⁴
—	H	—	Me	—	Et
5-Me	H	5-Me	Me	5-Me	Et
4,6-di-Me	H	4,6-di-Me	Me	4,6-di-Me	Et
5,7-di-Me	H	5,7-di-Me	Me	5,7-di-Me	Et

X is S, and R is CO₂K.

(R ³) _n	R ⁴	(R ³) _n	R ⁴	(R ³) _n	R ⁴
—	H	—	Me	—	Et
5-Me	H	5-Me	Me	5-Me	Et
4,6-di-Me	H	4,6-di-Me	Me	4,6-di-Me	Et
5,7-di-Me	H	5,7-di-Me	Me	5,7-di-Me	Et

10

X is S, and R is CO₂H.

(R ³) _n	R ⁴	(R ³) _n	R ⁴	(R ³) _n	R ⁴
—	H	—	Me	—	Et
5-Me	H	5-Me	Me	5-Me	Et
4,6-di-Me	H	4,6-di-Me	Me	4,6-di-Me	Et
5,7-di-Me	H	5,7-di-Me	Me	5,7-di-Me	Et

X is S, and R is C(O)Cl.

$(R^3)_n$	R^4	$(R^3)_n$	R^4	$(R^3)_n$	R^4
—	H	—	Me	—	Et
5-Me	H	5-Me	Me	5-Me	Et
4,6-di-Me	H	4,6-di-Me	Me	4,6-di-Me	Et
5,7-di-Me	H	5,7-di-Me	Me	5,7-di-Me	Et

X is -CH=CH-, and R is CO₂Na.

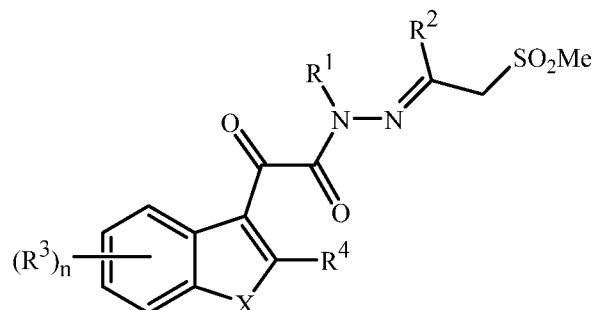
$(R^3)_n$	R^4	$(R^3)_n$	R^4	$(R^3)_n$	R^4
—	H	—	Me	—	Et
5-Me	H	5-Me	Me	5-Me	Et
4,6-di-Me	H	4,6-di-Me	Me	4,6-di-Me	Et
5,7-di-Me	H	5,7-di-Me	Me	5,7-di-Me	Et

5

X is -CH=CH-, and R is CO₂K.

$(R^3)_n$	R^4	$(R^3)_n$	R^4	$(R^3)_n$	R^4
—	H	—	Me	—	Et
5-Me	H	5-Me	Me	5-Me	Et
4,6-di-Me	H	4,6-di-Me	Me	4,6-di-Me	Et
5,7-di-Me	H	5,7-di-Me	Me	5,7-di-Me	Et

X is -CH=CH-, and R is CO₂H.


$(R^3)_n$	R^4	$(R^3)_n$	R^4	$(R^3)_n$	R^4
—	H	—	Me	—	Et
5-Me	H	5-Me	Me	5-Me	Et
4,6-di-Me	H	4,6-di-Me	Me	4,6-di-Me	Et
5,7-di-Me	H	5,7-di-Me	Me	5,7-di-Me	Et

10

X is -CH=CH-, and R is C(O)Cl.

$(R^3)_n$	R^4	$(R^3)_n$	R^4	$(R^3)_n$	R^4
—	H	—	Me	—	Et
5-Me	H	5-Me	Me	5-Me	Et
4,6-di-Me	H	4,6-di-Me	Me	4,6-di-Me	Et
5,7-di-Me	H	5,7-di-Me	Me	5,7-di-Me	Et

TABLE I-2b

X is S, R¹ is Me, and R² is Me.

(R ³) _n	R ⁴	(R ³) _n	R ⁴	(R ³) _n	R ⁴
—	H	—	Me	—	Et
5-Me	H	5-Me	Me	5-Me	Et
4,6-di-Me	H	4,6-di-Me	Me	4,6-di-Me	Et
5,7-di-Me	H	5,7-di-Me	Me	5,7-di-Me	Et

5

X is S, R¹ is Me, and R² is Et.

(R ³) _n	R ⁴	(R ³) _n	R ⁴	(R ³) _n	R ⁴
—	H	—	Me	—	Et
5-Me	H	5-Me	Me	5-Me	Et
4,6-di-Me	H	4,6-di-Me	Me	4,6-di-Me	Et
5,7-di-Me	H	5,7-di-Me	Me	5,7-di-Me	Et

X is S, R¹ is Me, and R² is Br.

(R ³) _n	R ⁴	(R ³) _n	R ⁴	(R ³) _n	R ⁴
—	H	—	Me	—	Et
5-Me	H	5-Me	Me	5-Me	Et
4,6-di-Me	H	4,6-di-Me	Me	4,6-di-Me	Et
5,7-di-Me	H	5,7-di-Me	Me	5,7-di-Me	Et

X is S, R¹ is Me, and R² is I.

(R ³) _n	R ⁴	(R ³) _n	R ⁴	(R ³) _n	R ⁴
—	H	—	Me	—	Et
5-Me	H	5-Me	Me	5-Me	Et
4,6-di-Me	H	4,6-di-Me	Me	4,6-di-Me	Et
5,7-di-Me	H	5,7-di-Me	Me	5,7-di-Me	Et

X is S, R¹ is Me, and R² is Cl.

(R ³) _n	R ⁴	(R ³) _n	R ⁴	(R ³) _n	R ⁴
—	H	—	Me	—	Et
5-Me	H	5-Me	Me	5-Me	Et
4,6-di-Me	H	4,6-di-Me	Me	4,6-di-Me	Et
5,7-di-Me	H	5,7-di-Me	Me	5,7-di-Me	Et

X is S, R¹ is Me, and R² is OMe.

(R ³) _n	R ⁴	(R ³) _n	R ⁴	(R ³) _n	R ⁴
—	H	—	Me	—	Et
5-Me	H	5-Me	Me	5-Me	Et
4,6-di-Me	H	4,6-di-Me	Me	4,6-di-Me	Et
5,7-di-Me	H	5,7-di-Me	Me	5,7-di-Me	Et

5

X is S, R¹ is Et, and R² is Me.

(R ³) _n	R ⁴	(R ³) _n	R ⁴	(R ³) _n	R ⁴
—	H	—	Me	—	Et
5-Me	H	5-Me	Me	5-Me	Et
4,6-di-Me	H	4,6-di-Me	Me	4,6-di-Me	Et
5,7-di-Me	H	5,7-di-Me	Me	5,7-di-Me	Et

X is S, R¹ is Et, and R² is Et.

(R ³) _n	R ⁴	(R ³) _n	R ⁴	(R ³) _n	R ⁴
—	H	—	Me	—	Et
5-Me	H	5-Me	Me	5-Me	Et
4,6-di-Me	H	4,6-di-Me	Me	4,6-di-Me	Et
5,7-di-Me	H	5,7-di-Me	Me	5,7-di-Me	Et

10

X is S, R¹ is Et, and R² is Br.

(R ³) _n	R ⁴	(R ³) _n	R ⁴	(R ³) _n	R ⁴
—	H	—	Me	—	Et
5-Me	H	5-Me	Me	5-Me	Et
4,6-di-Me	H	4,6-di-Me	Me	4,6-di-Me	Et
5,7-di-Me	H	5,7-di-Me	Me	5,7-di-Me	Et

X is S, R¹ is Et, and R² is I.

(R ³) _n	R ⁴	(R ³) _n	R ⁴	(R ³) _n	R ⁴
—	H	—	Me	—	Et
5-Me	H	5-Me	Me	5-Me	Et
4,6-di-Me	H	4,6-di-Me	Me	4,6-di-Me	Et
5,7-di-Me	H	5,7-di-Me	Me	5,7-di-Me	Et

X is S, R¹ is Et, and R² is Cl.

(R ³) _n	R ⁴	(R ³) _n	R ⁴	(R ³) _n	R ⁴
—	H	—	Me	—	Et
5-Me	H	5-Me	Me	5-Me	Et
4,6-di-Me	H	4,6-di-Me	Me	4,6-di-Me	Et
5,7-di-Me	H	5,7-di-Me	Me	5,7-di-Me	Et

5

X is S, R¹ is Et, and R² is OMe.

(R ³) _n	R ⁴	(R ³) _n	R ⁴	(R ³) _n	R ⁴
—	H	—	Me	—	Et
5-Me	H	5-Me	Me	5-Me	Et
4,6-di-Me	H	4,6-di-Me	Me	4,6-di-Me	Et
5,7-di-Me	H	5,7-di-Me	Me	5,7-di-Me	Et

X is -CH=CH-, R¹ is Me, and R² is Me.

(R ³) _n	R ⁴	(R ³) _n	R ⁴	(R ³) _n	R ⁴
—	H	—	Me	—	Et
5-Me	H	5-Me	Me	5-Me	Et
4,6-di-Me	H	4,6-di-Me	Me	4,6-di-Me	Et
5,7-di-Me	H	5,7-di-Me	Me	5,7-di-Me	Et

10

X is -CH=CH-, R¹ is Me, and R² is Et.

(R ³) _n	R ⁴	(R ³) _n	R ⁴	(R ³) _n	R ⁴
—	H	—	Me	—	Et
5-Me	H	5-Me	Me	5-Me	Et
4,6-di-Me	H	4,6-di-Me	Me	4,6-di-Me	Et
5,7-di-Me	H	5,7-di-Me	Me	5,7-di-Me	Et

X is -CH=CH-, R¹ is Me, and R² is Br.

(R ³) _n	R ⁴	(R ³) _n	R ⁴	(R ³) _n	R ⁴
—	H	—	Me	—	Et
5-Me	H	5-Me	Me	5-Me	Et
4,6-di-Me	H	4,6-di-Me	Me	4,6-di-Me	Et
5,7-di-Me	H	5,7-di-Me	Me	5,7-di-Me	Et

X is -CH=CH-, R¹ is Me, and R² is I.

(R ³) _n	R ⁴	(R ³) _n	R ⁴	(R ³) _n	R ⁴
—	H	—	Me	—	Et
5-Me	H	5-Me	Me	5-Me	Et
4,6-di-Me	H	4,6-di-Me	Me	4,6-di-Me	Et
5,7-di-Me	H	5,7-di-Me	Me	5,7-di-Me	Et

5

X is -CH=CH-, R¹ is Me, and R² is Cl.

(R ³) _n	R ⁴	(R ³) _n	R ⁴	(R ³) _n	R ⁴
—	H	—	Me	—	Et
5-Me	H	5-Me	Me	5-Me	Et
4,6-di-Me	H	4,6-di-Me	Me	4,6-di-Me	Et
5,7-di-Me	H	5,7-di-Me	Me	5,7-di-Me	Et

X is -CH=CH-, R¹ is Me, and R² is OMe.

(R ³) _n	R ⁴	(R ³) _n	R ⁴	(R ³) _n	R ⁴
—	H	—	Me	—	Et
5-Me	H	5-Me	Me	5-Me	Et
4,6-di-Me	H	4,6-di-Me	Me	4,6-di-Me	Et
5,7-di-Me	H	5,7-di-Me	Me	5,7-di-Me	Et

10

X is -CH=CH-, R¹ is Et, and R² is Me.

(R ³) _n	R ⁴	(R ³) _n	R ⁴	(R ³) _n	R ⁴
—	H	—	Me	—	Et
5-Me	H	5-Me	Me	5-Me	Et
4,6-di-Me	H	4,6-di-Me	Me	4,6-di-Me	Et
5,7-di-Me	H	5,7-di-Me	Me	5,7-di-Me	Et

X is -CH=CH-, R¹ is Et, and R² is Et.

(R ³) _n	R ⁴	(R ³) _n	R ⁴	(R ³) _n	R ⁴
—	H	—	Me	—	Et
5-Me	H	5-Me	Me	5-Me	Et
4,6-di-Me	H	4,6-di-Me	Me	4,6-di-Me	Et
5,7-di-Me	H	5,7-di-Me	Me	5,7-di-Me	Et

X is -CH=CH-, R¹ is Et, and R² is Br.

(R ³) _n	R ⁴	(R ³) _n	R ⁴	(R ³) _n	R ⁴
—	H	—	Me	—	Et
5-Me	H	5-Me	Me	5-Me	Et
4,6-di-Me	H	4,6-di-Me	Me	4,6-di-Me	Et
5,7-di-Me	H	5,7-di-Me	Me	5,7-di-Me	Et

5

X is -CH=CH-, R¹ is Et, and R² is I.

(R ³) _n	R ⁴	(R ³) _n	R ⁴	(R ³) _n	R ⁴
—	H	—	Me	—	Et
5-Me	H	5-Me	Me	5-Me	Et
4,6-di-Me	H	4,6-di-Me	Me	4,6-di-Me	Et
5,7-di-Me	H	5,7-di-Me	Me	5,7-di-Me	Et

X is -CH=CH-, R¹ is Et, and R² is Cl.

(R ³) _n	R ⁴	(R ³) _n	R ⁴	(R ³) _n	R ⁴
—	H	—	Me	—	Et
5-Me	H	5-Me	Me	5-Me	Et
4,6-di-Me	H	4,6-di-Me	Me	4,6-di-Me	Et
5,7-di-Me	H	5,7-di-Me	Me	5,7-di-Me	Et

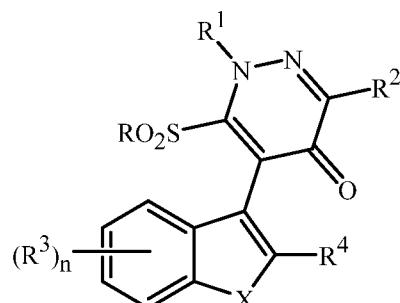
10

X is -CH=CH-, R¹ is Et, and R² is OMe.

(R ³) _n	R ⁴	(R ³) _n	R ⁴	(R ³) _n	R ⁴
—	H	—	Me	—	Et
5-Me	H	5-Me	Me	5-Me	Et
4,6-di-Me	H	4,6-di-Me	Me	4,6-di-Me	Et
5,7-di-Me	H	5,7-di-Me	Me	5,7-di-Me	Et

TABLE I-2c

Table I-2c is identical to Table I-2b, except that R¹ is -SO₂Ph.


TABLE I-2d

5 Table I-2d is identical to Table I-2b, except that R¹ is -SO₂(4-methylphenyl).

TABLE I-2e

Table I-2e is identical to Table I-2b, except that R¹ is -SO₂(4-chlorophenyl).

10

TABLE I-3a

X is S, R is Me, R¹ is Me, and R² is Me.

(R ³) _n	R ⁴	(R ³) _n	R ⁴	(R ³) _n	R ⁴
—	H	—	Me	—	Et
5-Me	H	5-Me	Me	5-Me	Et
4,6-di-Me	H	4,6-di-Me	Me	4,6-di-Me	Et
5,7-di-Me	H	5,7-di-Me	Me	5,7-di-Me	Et

15

X is S, R is Me, R¹ is Me, and R² is Et.

(R ³) _n	R ⁴	(R ³) _n	R ⁴	(R ³) _n	R ⁴
—	H	—	Me	—	Et
5-Me	H	5-Me	Me	5-Me	Et
4,6-di-Me	H	4,6-di-Me	Me	4,6-di-Me	Et
5,7-di-Me	H	5,7-di-Me	Me	5,7-di-Me	Et

X is S, R is Me, R¹ is Me, and R² is Br.

(R ³) _n	R ⁴	(R ³) _n	R ⁴	(R ³) _n	R ⁴
—	H	—	Me	—	Et
5-Me	H	5-Me	Me	5-Me	Et
4,6-di-Me	H	4,6-di-Me	Me	4,6-di-Me	Et
5,7-di-Me	H	5,7-di-Me	Me	5,7-di-Me	Et

X is S, R is Me, R¹ is Me, and R² is I.

(R ³) _n	R ⁴	(R ³) _n	R ⁴	(R ³) _n	R ⁴
—	H	—	Me	—	Et
5-Me	H	5-Me	Me	5-Me	Et
4,6-di-Me	H	4,6-di-Me	Me	4,6-di-Me	Et
5,7-di-Me	H	5,7-di-Me	Me	5,7-di-Me	Et

5

X is S, R is Me, R¹ is Me, and R² is Cl.

(R ³) _n	R ⁴	(R ³) _n	R ⁴	(R ³) _n	R ⁴
—	H	—	Me	—	Et
5-Me	H	5-Me	Me	5-Me	Et
4,6-di-Me	H	4,6-di-Me	Me	4,6-di-Me	Et
5,7-di-Me	H	5,7-di-Me	Me	5,7-di-Me	Et

X is S, R is Me, R¹ is Me, and R² is OMe.

(R ³) _n	R ⁴	(R ³) _n	R ⁴	(R ³) _n	R ⁴
—	H	—	Me	—	Et
5-Me	H	5-Me	Me	5-Me	Et
4,6-di-Me	H	4,6-di-Me	Me	4,6-di-Me	Et
5,7-di-Me	H	5,7-di-Me	Me	5,7-di-Me	Et

X is S, R is Me, R¹ is Et, and R² is Me.

(R ³) _n	R ⁴	(R ³) _n	R ⁴	(R ³) _n	R ⁴
—	H	—	Me	—	Et
5-Me	H	5-Me	Me	5-Me	Et
4,6-di-Me	H	4,6-di-Me	Me	4,6-di-Me	Et
5,7-di-Me	H	5,7-di-Me	Me	5,7-di-Me	Et

X is S, R is Me, R¹ is Et, and R² is Et.

(R ³) _n	R ⁴	(R ³) _n	R ⁴	(R ³) _n	R ⁴
—	H	—	Me	—	Et
5-Me	H	5-Me	Me	5-Me	Et
4,6-di-Me	H	4,6-di-Me	Me	4,6-di-Me	Et
5,7-di-Me	H	5,7-di-Me	Me	5,7-di-Me	Et

X is S, R is Me, R¹ is Et, and R² is Br.

(R ³) _n	R ⁴	(R ³) _n	R ⁴	(R ³) _n	R ⁴
—	H	—	Me	—	Et
5-Me	H	5-Me	Me	5-Me	Et
4,6-di-Me	H	4,6-di-Me	Me	4,6-di-Me	Et
5,7-di-Me	H	5,7-di-Me	Me	5,7-di-Me	Et

5

X is S, R is Me, R¹ is Et, and R² is I.

(R ³) _n	R ⁴	(R ³) _n	R ⁴	(R ³) _n	R ⁴
—	H	—	Me	—	Et
5-Me	H	5-Me	Me	5-Me	Et
4,6-di-Me	H	4,6-di-Me	Me	4,6-di-Me	Et
5,7-di-Me	H	5,7-di-Me	Me	5,7-di-Me	Et

X is S, R is Me, R¹ is Et, and R² is Cl.

(R ³) _n	R ⁴	(R ³) _n	R ⁴	(R ³) _n	R ⁴
—	H	—	Me	—	Et
5-Me	H	5-Me	Me	5-Me	Et
4,6-di-Me	H	4,6-di-Me	Me	4,6-di-Me	Et
5,7-di-Me	H	5,7-di-Me	Me	5,7-di-Me	Et

X is S, R is Me, R¹ is Et, and R² is OMe.

(R ³) _n	R ⁴	(R ³) _n	R ⁴	(R ³) _n	R ⁴
—	H	—	Me	—	Et
5-Me	H	5-Me	Me	5-Me	Et
4,6-di-Me	H	4,6-di-Me	Me	4,6-di-Me	Et
5,7-di-Me	H	5,7-di-Me	Me	5,7-di-Me	Et

X is -CH=CH-, R is Me, R¹ is Me, and R² is Me.

(R ³) _n	R ⁴	(R ³) _n	R ⁴	(R ³) _n	R ⁴
—	H	—	Me	—	Et
5-Me	H	5-Me	Me	5-Me	Et
4,6-di-Me	H	4,6-di-Me	Me	4,6-di-Me	Et
5,7-di-Me	H	5,7-di-Me	Me	5,7-di-Me	Et

X is -CH=CH-, R is Me, R¹ is Me, and R² is Et.

(R ³) _n	R ⁴	(R ³) _n	R ⁴	(R ³) _n	R ⁴
—	H	—	Me	—	Et
5-Me	H	5-Me	Me	5-Me	Et
4,6-di-Me	H	4,6-di-Me	Me	4,6-di-Me	Et
5,7-di-Me	H	5,7-di-Me	Me	5,7-di-Me	Et

5

X is -CH=CH-, R is Me, R¹ is Me, and R² is Br.

(R ³) _n	R ⁴	(R ³) _n	R ⁴	(R ³) _n	R ⁴
—	H	—	Me	—	Et
5-Me	H	5-Me	Me	5-Me	Et
4,6-di-Me	H	4,6-di-Me	Me	4,6-di-Me	Et
5,7-di-Me	H	5,7-di-Me	Me	5,7-di-Me	Et

X is -CH=CH-, R is Me, R¹ is Me, and R² is I.

(R ³) _n	R ⁴	(R ³) _n	R ⁴	(R ³) _n	R ⁴
—	H	—	Me	—	Et
5-Me	H	5-Me	Me	5-Me	Et
4,6-di-Me	H	4,6-di-Me	Me	4,6-di-Me	Et
5,7-di-Me	H	5,7-di-Me	Me	5,7-di-Me	Et

X is -CH=CH-, R is Me, R¹ is Me, and R² is Cl.

(R ³) _n	R ⁴	(R ³) _n	R ⁴	(R ³) _n	R ⁴
—	H	—	Me	—	Et
5-Me	H	5-Me	Me	5-Me	Et
4,6-di-Me	H	4,6-di-Me	Me	4,6-di-Me	Et
5,7-di-Me	H	5,7-di-Me	Me	5,7-di-Me	Et

X is -CH=CH-, R is Me, R¹ is Me, and R² is OMe.

(R ³) _n	R ⁴	(R ³) _n	R ⁴	(R ³) _n	R ⁴
—	H	—	Me	—	Et
5-Me	H	5-Me	Me	5-Me	Et
4,6-di-Me	H	4,6-di-Me	Me	4,6-di-Me	Et
5,7-di-Me	H	5,7-di-Me	Me	5,7-di-Me	Et

X is -CH=CH-, R is Me, R¹ is Et, and R² is Me.

(R ³) _n	R ⁴	(R ³) _n	R ⁴	(R ³) _n	R ⁴
—	H	—	Me	—	Et
5-Me	H	5-Me	Me	5-Me	Et
4,6-di-Me	H	4,6-di-Me	Me	4,6-di-Me	Et
5,7-di-Me	H	5,7-di-Me	Me	5,7-di-Me	Et

5

X is -CH=CH-, R is Me, R¹ is Et, and R² is Et.

(R ³) _n	R ⁴	(R ³) _n	R ⁴	(R ³) _n	R ⁴
—	H	—	Me	—	Et
5-Me	H	5-Me	Me	5-Me	Et
4,6-di-Me	H	4,6-di-Me	Me	4,6-di-Me	Et
5,7-di-Me	H	5,7-di-Me	Me	5,7-di-Me	Et

X is -CH=CH-, R is Me, R¹ is Et, and R² is Br.

(R ³) _n	R ⁴	(R ³) _n	R ⁴	(R ³) _n	R ⁴
—	H	—	Me	—	Et
5-Me	H	5-Me	Me	5-Me	Et
4,6-di-Me	H	4,6-di-Me	Me	4,6-di-Me	Et
5,7-di-Me	H	5,7-di-Me	Me	5,7-di-Me	Et

X is -CH=CH-, R is Me, R¹ is Et, and R² is I.

(R ³) _n	R ⁴	(R ³) _n	R ⁴	(R ³) _n	R ⁴
—	H	—	Me	—	Et
5-Me	H	5-Me	Me	5-Me	Et
4,6-di-Me	H	4,6-di-Me	Me	4,6-di-Me	Et
5,7-di-Me	H	5,7-di-Me	Me	5,7-di-Me	Et

X is -CH=CH-, R is Me, R¹ is Et, and R² is Cl.

(R ³) _n	R ⁴	(R ³) _n	R ⁴	(R ³) _n	R ⁴
—	H	—	Me	—	Et
5-Me	H	5-Me	Me	5-Me	Et
4,6-di-Me	H	4,6-di-Me	Me	4,6-di-Me	Et
5,7-di-Me	H	5,7-di-Me	Me	5,7-di-Me	Et

X is -CH=CH-, R is Me, R¹ is Et, and R² is OMe.

(R ³) _n	R ⁴	(R ³) _n	R ⁴	(R ³) _n	R ⁴
—	H	—	Me	—	Et
5-Me	H	5-Me	Me	5-Me	Et
4,6-di-Me	H	4,6-di-Me	Me	4,6-di-Me	Et
5,7-di-Me	H	5,7-di-Me	Me	5,7-di-Me	Et

TABLE I-3b

5 Table I-3b is identical to Table I-3a, except that R is phenyl.

TABLE I-3c

Table I-3c is identical to Table I-3a, except that R is 4-methylphenyl.

TABLE I-3d

Table I-3d is identical to Table I-3a, except that R is 4-chlorophenyl.

10

Without further elaboration, it is believed that one skilled in the art using the preceding description can utilize the present invention to its fullest extent. The following non-limiting Examples are illustrative of the invention. Steps in the following Examples illustrate a procedure for each step in an overall synthetic transformation, and the starting material for 15 each step may not have necessarily been prepared by a particular preparative run whose procedure is described in other Examples or Steps. Percentages are by weight except for chromatographic solvent mixtures or where otherwise indicated. Parts and percentages for chromatographic solvent mixtures are by volume unless otherwise indicated. ¹H NMR spectra are reported in ppm downfield from tetramethylsilane in CDCl₃ solution unless indicated otherwise; “s” means singlet, “d” means doublet, “t” means triplet, “q” means 20 quartet, “m” means multiplet, and “br s” means broad singlet.

SYNTHESIS EXAMPLE 1

Preparation of 4-(2,5-dimethylbenzo[b]thien-3-yl)-5-hydroxy-2,6-dimethyl-3(2H)-pyridazinone (Compound 1)

Step A: Preparation of ethyl 4-[(4-methylphenyl)thio]-3-oxopentanoate

To a mixture of potassium carbonate (1.11 g, 8.03 mmol) in *N,N*-dimethylformamide (DMF) (27 mL) at room temperature under nitrogen (i.e. under a nitrogen atmosphere) was added 4-methylbenzenethiol (0.626 g, 5.04 mmol). The mixture was cooled to 0 °C, and 5 then ethyl 4-bromo-3-oxopentanoate (1.25 g, 5.04 mmol) was added dropwise by syringe over 10 minutes. The mixture was allowed to warm to room temperature while being stirred for 16 h. Then the mixture was poured into aqueous hydrochloric acid (0.2 M, 80 mL) and extracted with diethyl ether (3 × 50 mL). The combined extracts were dried (MgSO_4) and concentrated. The crude residue was purified by flash chromatography (gradient of 0 to 10 10 % of ethyl acetate in hexanes) to yield the title product as a yellow oil (0.82 g).

^1H NMR δ 7.27–7.31 (m, 2H), 7.12 (m, 2H), 4.18 (m, 2H), 3.82 (q, 1H), 3.64–3.77 (m, 2H), 2.33 (s, 3H), 1.38 (d, 3H), 1.24–1.30 (m, 3H).

Step B: Preparation of ethyl 2,5-dimethylbenzo[b]thiophene-3-acetate

Polyphosphoric acid (1 mL) was added to chlorobenzene (anhydrous, 20 mL), and the 15 mixture was heated to reflux under nitrogen. To the mixture was added ethyl 4-[(4-methylphenyl)thio]-3-oxopentanoate (i.e. the product of Step A) (0.82 g, 3.08 mmol) dropwise via syringe over about 30 minutes. The mixture was held at reflux for 16 h. The mixture was then cooled to room temperature, and the upper, chlorobenzene layer was 20 decanted to a separate flask and concentrated. The crude residue was purified by flash chromatography (gradient of 0 to 10 % ethyl acetate in hexanes) to yield the title product as a white solid (0.33 g).

^1H NMR δ 7.61 (d, 1H), 7.46 (s, 1H), 7.10–7.12 (m, 1H), 4.10–4.17 (m, 2H), 3.74 (s, 2H), 2.53 (s, 3H), 2.46 (s, 3H), 1.22–1.25 (m, 3H).

Step C: Preparation of 2,5-dimethylbenzo[b]thiophene-3-acetic acid

Ethyl 2,5-dimethylbenzo[b]thiophene-3-acetate (i.e. the product of Step B) (0.33 g, 25 1.33 mmol) was dissolved in methanol (50 mL), and aqueous sodium hydroxide (2 M, 5 mL, 10 mmol) was added. The mixture was heated to reflux for 3 h. The mixture was then cooled, and the solvent was removed by rotary evaporation. To the residue was added water (50 mL), and the pH was brought to ~1 by the careful addition of concentrated hydrochloric 30 acid. The mixture was then extracted with dichloromethane (3 × 50 mL), and the combined organic extracts were dried (MgSO_4), filtered and concentrated by rotary evaporation to yield the title product as a white solid (0.26 g).

^1H NMR δ 7.62 (d, 1H), 7.43 (s, 1H), 7.11 (m, 1H), 3.78 (s, 2H), 2.53 (s, 3H), 2.46 (s, 3H).

Step D: Preparation of methyl 2-(2-methylhydrazinylidene)propanoate

To a suspension of methyl 2-oxopropanoate (17.0 mL, 169 mmol) and magnesium sulfate (20.46 g, 170 mmol) in trichloromethane (250 mL) chilled to 0 °C was added a solution of methylhydrazine (9.0 mL, 166 mmol) in trichloromethane (50 mL). The reaction mixture was then warmed to room temperature. After stirring for 24 h at room temperature, the reaction mixture was filtered. The filtrate was concentrated under reduced pressure to give the title product as a yellow solid (21.16 g) that was used directly in the next step without further purification. A portion of this sample was later purified by flash chromatography to provide an off-white solid.

10 ^1H NMR δ 5.63 (br s, 1H), 3.82 (s, 3H), 3.22–3.24 (m, 3H), 1.93 (s, 3H).

Step E: Preparation of methyl 2-[2-[2-(2,5-dimethylbenzo[b]thien-3-yl)acetyl]-2-methylhydrazinylidene]propanoate

To a solution of 2,5-dimethylbenzo[b]thiophene-3-acetic acid (i.e. the product of Step C) (0.26 g, 1.2 mmol) in dichloromethane (40 mL) was added oxalyl chloride (0.25 mL, 3.0 mmol) followed by a catalytic amount of DMF (3 drops). This mixture is allowed to stir for 2 h under nitrogen and then concentrated by rotary evaporation. The residue, comprising the acid chloride, was dissolved in acetonitrile (25 mL) and added dropwise over 15 min. to a mixture of methyl 2-(2-methylhydrazinylidene)propanoate (i.e. the product of Step D) (0.20 g, 1.5 mmol) and potassium carbonate (0.28 g, 2.0 mmol) in acetonitrile (20 mL) cooled to 0 °C under nitrogen. The reaction mixture was then allowed to warm to room temperature and stirred for 64 h. The solvent was removed by rotary evaporation, and water (50 mL) was added to the residue. The aqueous phase was extracted with ethyl acetate (3×50 mL), and the combined organic extracts were washed with brine (i.e. saturated aqueous sodium chloride) (50 mL), dried (MgSO_4), filtered and concentrated by rotary evaporation. The residue was purified by flash chromatography (gradient of 10 to 50 % ethyl acetate in hexanes) to yield a white solid (0.23 g).

11 ^1H NMR δ 7.55–7.61 (m, 1H), 7.45–7.46 (m, 1H), 7.04–7.09 (m, 1H), 4.08–4.17 (m, 2H), 3.88 (s, 3H), 3.34 (s, 3H), 2.51 (s, 3H), 2.42 (s, 3H), 2.20 (s, 3H).

Step F: Preparation of 4-(2,5-dimethylbenzo[b]thien-3-yl)-5-hydroxy-2,6-dimethyl-3(2H)-pyridazinone

A solution of methyl 2-[2-[2-(2,5-dimethylbenzo[b]thien-3-yl)acetyl]-2-methylhydrazinylidene]propanoate (i.e. the product of Step E) (0.23 g, 0.69 mmol) in DMF (anhydrous, 3 mL) was added via syringe pump over a period of 30 minutes to a tetrahydrofuran solution of potassium *tert*-butoxide (3.0 mL, 3 mmol) cooled to 0 °C under nitrogen. The reaction mixture was then allowed to warm to room temperature while being

stirred for 1 h. The reaction mixture was poured into aqueous hydrochloric acid (0.5 M, 100 mL) and extracted with ethyl acetate (3 × 50 mL). The combined organic extracts were washed with brine (50 mL), dried (MgSO_4), filtered and concentrated by rotary evaporation to yield a crude residue (0.40 g), which was purified by flash chromatography (gradient of 0 to 40 % ethyl acetate in hexanes) to yield the title product, a compound of the present invention, as a white solid (118 mg).

5 ^1H NMR δ 7.60 (d, 1H), 7.09 (m, 1H), 7.02 (s, 1H), 6.91 (br s, 1H), 3.52 (s, 3H), 2.39 (s, 3H), 2.21 (s, 3H), 2.17 (s, 3H).

SYNTHESIS EXAMPLE 2

10 Preparation of 4-(2,5-dimethyl-3-benzofuranyl)-5-hydroxy-2,6-dimethyl-3(2*H*)-pyridazinone (Compound 7)

Step A: Preparation of methyl 2-(2-methoxy-1-methyl-2-oxoethoxy)-5-methylbenzoate

15 A mixture of methyl 2-hydroxy-5-methylbenzoate (11.89 g, 71.5 mmol), methyl 2-bromopropanoate (13.03 g, 78.0 mmol) and potassium carbonate (29.71 g, 215 mmol) in acetone (300 mL) was heated under reflux for 18 h. The reaction mixture was then filtered, and the filtrate was concentrated by rotary evaporation to yield the title product as a white solid (18.9 g).

20 ^1H NMR δ 7.61 (s, 1H), 7.15–7.24 (m, 1H), 6.70–6.84 (m, 1H), 4.73 (m, 1H), 3.89 (s, 3H), 3.74 (s, 3H), 2.30 (s, 3H), 1.63–1.65 (d, 3H).

Step B: Preparation of 2-(1-carboxyethoxy)-5-methylbenzoic acid

25 A solution of methyl 2-(2-methoxy-1-methyl-2-oxoethoxy)-5-methylbenzoate (i.e. the product of Step A) (18.9 g, 71.5 mmol) in a mixture of tetrahydrofuran (100 mL), methanol (100 mL) and aqueous NaOH solution (6 M, 100 mL) was heated to reflux for 16 h. Then the reaction mixture was cooled and concentrated by rotary evaporation. The residue was dissolved in water (150 mL) and acidified with aqueous concentrated hydrochloric acid to pH < 2. The aqueous phase was extracted with ethyl acetate (2 × 125 mL). The combined organic extracts were washed with brine, dried (MgSO_4), filtered and concentrated by rotary evaporation to yield the title product as a yellow solid (16.31 g), which was used in Step C without further purification.

30 ^1H NMR δ 7.91 (d, 1H), 7.36 (m, 1H), 6.90 (d, 1H), 4.99 (m, 1H), 2.34 (s, 3H), 1.75–1.80 (m, 3H).

Step C: Preparation of 2,5-dimethyl-3-benzofuranyl acetate

35 A mixture of 2-(1-carboxyethoxy)-5-methylbenzoic acid (i.e. the product of Step B) (16.3 g, 71 mmol), acetic anhydride (145 mL) and sodium acetate (11.93 g, 145 mmol) was

heated at reflux for 3 h. After cooling, the mixture was added to water (300 mL) and extracted with dichloromethane (2×150 mL). The organic extracts were dried (MgSO_4) and filtered, and the filtrate was concentrated by rotary evaporation to yield the title product as a light brown oil (14.43 g), which was used in Step D without further purification.

5 ^1H NMR δ 7.22–7.25 (m, 1H), 7.07–7.11 (m, 1H), 7.01–7.04 (m, 1H), 2.41 (s, 3H), 2.37 (s, 3H), 2.34 (s, 3H).

Step D: Preparation of 2,5-dimethyl-3(2*H*)-benzofuranone

10 A mixture of 2,5-dimethyl-3-benzofuranyl acetate (i.e. the product of Step C) (14.40 g, 70.5 mmol), methanol (150 mL) and aqueous hydrochloric acid (1.0 M, 40 mL, 40 mmol) was heated at reflux under nitrogen. The reaction mixture was then concentrated by rotary evaporation. The residue was diluted with water and extracted with diethyl ether (2×100 mL). The combined organic extracts were washed with water and brine, dried (MgSO_4), filtered and concentrated. The residue was purified by flash chromatography (gradient of 0 to 15 % ethyl acetate in hexanes) to yield the title product as a white solid (7.47 g).

15 ^1H NMR δ 7.41–7.46 (m, 2H), 6.99–7.02 (m, 1H), 4.60–4.64 (q, 1H), 2.35 (s, 3H), 1.50–1.54 (d, 3H).

Step E: Preparation of methyl 2,5-dimethyl-3-benzofuranacetate

20 A mixture of 2,5-dimethyl-3(2*H*)-benzofuranone (i.e. the product of Step D) (7.45 g, 45.9 mmol), methyl 2-(triphenylphosphoranylidine)acetate (20.43 g, 61.1 mmol) and toluene (300 mL) were heated at reflux for 66 h. The reaction mixture was then concentrated by rotary evaporation, and diethyl ether (200 mL) was added to the crude residue. This mixture was filtered to remove solids, and the filtrate was concentrated by rotary evaporation to leave an oily mixture (18 g). To this residue were added methanol (40 mL) and a methanolic hydrogen chloride solution (0.5 M, 60 mL, 30 mmol), and the mixture is heated to reflux for 25 16 h. Then the reaction mixture was cooled and concentrated by rotary evaporation. The residue was purified by flash chromatography (gradient of 0 to 10 % ethyl acetate in hexanes) to provide the title product as a yellow oil (6.75 g).

^1H NMR δ 7.19–7.27 (m, 2H), 6.98–7.05 (m, 1H), 3.693 (s, 3H), 3.584 (s, 2H), 2.40–2.45 (m, 6H).

30 **Step F: Preparation of 2,5-dimethyl-3-benzofuranacetic acid**

35 Aqueous sodium hydroxide (5 M, 33 mL, 165 mmol) was added to a solution of methyl 2,5-dimethyl-3-benzofuranacetate (i.e. the product of Step E) (6.75 g, 30.9 mmol) in methanol (120 mL). The mixture was heated to reflux for 16 h and then cooled. The solvent was removed by rotary evaporation. To the residue was added diethyl ether (100 mL), and the resultant mixture was extracted with aqueous sodium hydroxide (1 N, 2×100 mL). The

ether layer is discarded, and the combined aqueous extracts were acidified with concentrated aqueous hydrochloric acid to pH 1. The acidic aqueous mixture obtained was extracted with dichloromethane (2 × 125 mL). The combined organic extracts were washed with brine (100 mL), dried (MgSO_4), filtered and concentrated by rotary evaporation to yield the title product as a yellow solid (4.93 g), which was used in Step G without further purification.

5 ^1H NMR δ 7.22–7.28 (m, 2H), 6.99–7.05 (m, 1H), 3.61 (s, 2H), 2.42 (s, 3H), 2.41 (s, 3H).

Step G: Preparation of methyl 2-[2-[2-(2,5-dimethyl-3-benzofuranyl)acetyl]-2-methylhydrazinylidene]propanoate

To a solution of 2,5-dimethyl-3-benzofuranacetic acid (i.e. the product of Step F) (4.14 g, 20.2 mmol) in dichloromethane (120 mL) was added oxalyl chloride (2.56 mL, 30.0 mmol) followed by a catalytic amount of DMF (5 drops). The resultant mixture was allowed to stir for 2 h under nitrogen and was then concentrated by rotary evaporation to leave a residue comprising the acid chloride. The residue was dissolved in acetonitrile (50 mL) and added dropwise over 25 min from an addition funnel to a mixture of methyl 2-(2-methylhydrazinylidene)propanoate (2.81 g, 21.6 mmol) and potassium carbonate (3.18 g, 23.0 mmol) in acetonitrile (30 mL) cooled to 0 °C under nitrogen. The reaction mixture was then allowed to warm to room temperature and stirred for 64 h. The solvent was removed by rotary evaporation, and water (150 mL) was added to the residue. The resultant mixture was extracted with ethyl acetate (3 × 80 mL), and the combined organic extracts were washed with brine (50 mL), dried (MgSO_4), filtered and concentrated by rotary evaporation. The residue was purified by flash chromatography (gradient of 10 to 100 % ethyl acetate in hexanes) to yield the title product as a white solid (3.08 g).

10 ^1H NMR δ 7.32 (m, 1H), 7.22–7.24 (m, 1H), 6.98–6.99 (m, 1H), 3.96 (s, 2H), 3.90 (s, 3H), 3.35 (s, 3H), 2.40 (m, 6H), 2.20 (s, 3H).

15 Step H: Preparation of 4-(2,5-dimethyl-3-benzofuranyl)-5-hydroxy-2,6-dimethyl-3(2H)-pyridazinone

A solution of methyl 2-[2-[2-(2,5-dimethyl-3-benzofuranyl)acetyl]-2-methylhydrazinylidene]propanoate (i.e. the product of Step G) (2.97 g, 9.39 mmol) anhydrous DMF (25 mL) was added over 30 min from an addition funnel to a tetrahydrofuran solution of potassium *tert*-butoxide (25.0 mL, 25.0 mmol) cooled to 0 °C under nitrogen. The reaction mixture was then allowed to warm to room temperature and stirred for 1 h. The reaction mixture was poured into aqueous hydrochloric acid (0.5 M, 150 mL) and extracted with ethyl acetate (3 × 90 mL). The combined organic extracts were washed with brine (100 mL), dried (MgSO_4), filtered and concentrated by rotary evaporation. The residue was purified by

flash chromatography (gradient of 10 to 75 % ethyl acetate in hexanes) to yield the title product, a compound of the present invention, as a white solid (790 mg).

¹H NMR (DMSO-*d*₆) δ 10.29 (s, 1H), 7.39 (m, 1H), 7.04 (m, 1H), 6.95–7.01 (m, 1H), 3.60 (s, 3H), 2.32 (s, 3H), 2.25 (m, 6H).

5 SYNTHESES EXAMPLE 3

Preparation of 5-hydroxy-2,6-dimethyl-4-(2,5,7-trimethyl-3-benzofuranyl)-3(2*H*)-pyridazinone (Compound 12)

Step A: Preparation of 2,4-dimethylphenyl propanoate

Propanoyl chloride (2.44 g, 26.4 mmol) was added dropwise to a mixture of 10 2,4-dimethylphenol (3.26 g, 24 mmol) and triethylamine (3.51 mL, 25 mmol) in dichloromethane (35 mL) cooled to 0 °C under nitrogen. The mixture was stirred for 16 h, and then aqueous hydrochloric acid (0.2 M, 50 mL) was added. The organic phase was separated, and the aqueous phase was extracted with dichloromethane (50 mL). The combined organic phases were washed with brine, dried (MgSO₄), filtered and concentrated 15 to yield the title product as a yellow oil (3.91 g), which was used directly in the next step without further purification.

¹H NMR δ 7.03 (s, 1H), 6.99 (d, 1H), 6.87 (d, 1H), 2.56–2.62 (m, 2H), 2.30 (s, 3H), 2.14 (s, 3H), 1.26–1.31 (m, 3H).

Step B: Preparation of 1-(2-hydroxy-3,5-dimethylphenyl)-1-propanone

20 Aluminum chloride (3.10 g, 23.2 mmol) was added to 2,4-dimethylphenyl propanoate (i.e. the product of Step A) (3.91 g, 21.9 mmol), and the mixture formed was heated to 130 °C for 2 h. The mixture was then cooled to room temperature, and aqueous hydrochloric acid (1.0 M, 100 mL) was added, followed by diethyl ether (100 mL). The organic phase was separated, and the aqueous phase was extracted with diethyl ether 25 (50 mL). The combined organic extracts were dried (MgSO₄), filtered and concentrated to yield the title product as a yellow crystalline solid (3.71 g), which was used directly in the next step without further purification.

¹H NMR δ 12.49 (s, 1H), 7.40 (s, 1H), 7.16 (s, 1H), 3.03 (m, 2H), 2.29 (s, 3H), 2.23 (s, 3H), 1.22–1.25 (m, 3H).

30 Step C: Preparation of 2-bromo-1-(2-hydroxy-3,5-dimethylphenyl)-1-propanone

To mixture of copper(II) bromide (9.30 g, 41.6 mmol) in ethyl acetate (30 mL) was added dropwise from an addition funnel a solution of 1-(2-hydroxy-3,5-dimethylphenyl)-1-propanone (i.e. the product of Step B) (3.71 g, 20.8 mmol) dissolved in trichloromethane (24 mL). The resultant mixture was heated to reflux for 16 h, then cooled to room 35 temperature and filtered through a filter funnel packed with Celite® diatomaceous filter aid.

The filtrate was concentrated, and the residue was diluted with diethyl ether (100 mL) and washed with saturated aqueous ethylenediaminetetraacetic acid disodium salt solution (100 mL). The organic phase was dried (MgSO_4), filtered and concentrated by rotary evaporation to yield the title product as a brown oil (5.33 g), which was used directly in the next step without further purification.

^1H NMR δ 12.09 (s, 1H), 7.39–7.44 (m, 1H), 7.18–7.23 (m, 1H), 5.31–5.40 (m, 1H), 2.29 (s, 3H), 2.24 (s, 3H), 1.90 (d, 3H).

Step D: Preparation of 2,5,7-trimethyl-3(2*H*)-benzofuranone

N,N -dimethylformamide (25 mL) and potassium carbonate (4.15 g, 30 mmol) were added to 2-bromo-1-(2-hydroxy-3,5-methylphenyl)-1-propanone (i.e. the product of Step C) (5.33 g, 20.7 mmol), and the resultant mixture was stirred at room temperature for 18 h. Then water (150 mL) was added, and the mixture was extracted with diethyl ether (3×80 mL). The combined organic extracts were washed with water, followed by brine, dried (MgSO_4), filtered and concentrated. The residue was purified by flash chromatography (eluted with gradient of 0 to 10 % ethyl acetate in hexanes) to yield the title product as a yellow oil (2.13 g).

^1H NMR δ 7.26–7.28 (m, 1H), 7.24–7.26 (m, 1H), 4.59–4.64 (m, 1H), 2.32 (s, 3H), 2.29 (s, 3H), 1.52 (d, 3H).

Step E: Preparation of methyl 2,5,7-trimethyl-3-benzofuranacetate

A mixture of 2,5,7-trimethyl-3(2*H*)-benzofuranone (i.e. the product of Step D) (2.07 g, 11.7 mmol), methyl 2-(triphenylphosphoranylidene)acetate (5.89 g, 17.6 mmol) and toluene (120 mL) were heated at reflux for 66 h. The reaction mixture was then concentrated by rotary evaporation, and to the residue was added diethyl ether (150 mL). The resultant mixture was filtered to remove solids, and the filtrate was concentrated by rotary evaporation to leave an oily mixture (6 g). To this residue were added methanol (100 mL) and a methanol solution of hydrogen chloride (0.5 M, 30 mL, 15 mmol). The resultant mixture was heated to reflux for 16 h and then cooled. The mixture was concentrated by rotary evaporation to leave a residue which was purified by flash chromatography (gradient of 0 to 5 % ethyl acetate in hexanes) to yield the title product as a yellow oil (0.59 g), which was used without further purification in the next step.

^1H NMR δ 7.06 (s, 1H), 6.83 (s, 1H), 3.68 (s, 3H), 3.57 (s, 2H), 2.44 (s, 3H), 2.42 (s, 3H), 2.39 (s, 3H).

Step F: Preparation of 2,5,7-trimethyl-3-benzofuranacetic acid

To a solution of methyl 2,5,7-trimethyl-3-benzofuranacetate (i.e. the product of Step E) (0.55 g, 2.37 mmol) in methanol (50 mL) was added aqueous sodium hydroxide (5 M, 2 mL,

10 mmol). The resultant mixture was heated to reflux for 16 h and then cooled. The solvent was removed by rotary evaporation. To the residue was added diethyl ether (100 mL), and the resultant mixture was extracted with aqueous sodium hydroxide (1 N, 2 × 100 mL). The ether layer was discarded, and the combined basic extracts were acidified with concentrated aqueous hydrochloric acid to a pH of 1. The acidic aqueous mixture was then extracted with dichloromethane (2 × 125 mL). The combined organic extracts were dried (MgSO_4), filtered and concentrated by rotary evaporation to yield the title product as a yellow solid (0.52 g), which was used in the next step without further purification.

5 ^1H NMR δ 7.05 (s, 1H), 6.84 (s, 1H), 3.60 (s, 2H), 2.43 (s, 3H), 2.41 (s, 3H), 2.38 (s, 3H).

10 Step G: Preparation of 2,5,7-trimethyl-3-benzofuranacetic acid 2-(2-methoxy-1-methyl-2-oxoethylidene)-1-methylhydrazide

15 To a solution of 2,5,7-trimethyl-3-benzofuranacetic acid (i.e. the product of Step F) (0.52 g, 2.38 mmol) in dichloromethane (80 mL) was added oxalyl chloride (0.5 mL, 6.0 mmol), followed by a catalytic amount of DMF (3 drops). The resultant mixture was allowed to stir for 2 h under nitrogen and then was concentrated by rotary evaporation. The residue, which contained 2,5,7-trimethyl-3-benzofuranacetyl chloride, was dissolved in acetonitrile (50 mL) and added dropwise over 25 min from an addition funnel to a mixture of methyl 2-(2-methylhydrazinylidene)propanoate (0.35 g, 2.7 mmol) and potassium carbonate (0.69 g, 5.0 mmol) in acetonitrile (30 mL) cooled to 0 °C under nitrogen. Then the reaction mixture was allowed to warm to room temperature and stir for 18 h. The solvent was removed by rotary evaporation, and to the residue was added water (90 mL). The resultant mixture was extracted with ethyl acetate (3 × 50 mL), and the combined organic extracts were washed with brine (50 mL), dried (MgSO_4), filtered and concentrated by rotary evaporation. The residue was purified by flash chromatography (gradient of 5 to 50 % ethyl acetate in hexanes) to yield the title product as a yellow solid (0.32 g).

20 ^1H NMR δ 7.14 (s, 1H), 6.80 (s, 1H), 3.95 (s, 2H), 3.90 (s, 3H), 3.35 (s, 3H), 2.42 (s, 3H), 2.41 (s, 3H), 2.36 (s, 3H), 2.19 (s, 3H).

Step H: Preparation of 5-hydroxy-2,6-dimethyl-4-(2,5,7-trimethyl-3-benzofuranyl)-3(2H)-pyridazinone

30 A solution of 2,5,7-trimethyl-3-benzofuranacetic acid 2-(2-methoxy-1-methyl-2-oxoethylidene)-1-methylhydrazide (i.e. the product of Step G) (0.31 g, 1.0 mmol) in *N,N*-dimethylformamide (anhydrous, 5 mL) was added by syringe pump over 1 h to a tetrahydrofuran solution of potassium *tert*-butoxide (1 M, 5.0 mL, 5.0 mmol) cooled to 0 °C under nitrogen. The reaction mixture was allowed to warm to room temperature and stirred for 1 h. The mixture was then poured into aqueous hydrochloric acid (0.5 M, 60 mL) and

extracted with ethyl acetate (3×50 mL). The combined organic extracts were washed with brine (60 mL), dried (MgSO_4), filtered and concentrated by rotary evaporation. The resultant residue was purified by flash chromatography (gradient of 5 to 100 % ethyl acetate in hexanes) to yield the title product, a compound of the present invention, as a white solid

5 (72.3 mg).

^1H NMR δ 6.88 (s, 1H), 6.84 (s, 1H), 5.86 (br s, 1H), 3.74 (s, 3H), 2.48 (s, 3H), 2.38 (s, 3H), 2.36 (s, 3H), 2.34 (s, 3H).

SYNTHESIS EXAMPLE 4

Preparation of 4-(2,3-dimethyl-1-naphthalenyl)-5-hydroxy-6-methoxy-2-methyl-3(2H)-pyridazinone (Compound 46)

10 Step A: Preparation of 5-chloro-4,6-dimethoxy-2-methyl-3(2H)-pyridazinone

4,5-Dichloro-6-methoxy-2-methyl-3(2H)-pyridazinone (2.00 g, 9.57 mmol) and sodium methoxide (2.00 mL of a 25 wt% solution in MeOH) were combined in 1, 4-dioxane (20 mL) and stirred at room temperature overnight. The solution was then concentrated to 15 50% volume and partitioned between water (100 mL) and ethyl acetate (100 mL). The aqueous layer was extracted with ethyl acetate (3×100 mL). The organic layers were combined, washed with brine, dried over MgSO_4 and concentrated. The resulting residue was absorbed onto silica gel (1 g) and purified by MPLC with a 0-100% ethyl acetate/hexane gradient through a pre-packed 40 g silica gel column. The fractions containing pure desired 20 product were concentrated in vacuo to yield 1.78 g of the title compound as a white solid.

Step B: Preparation of 5-chloro-4-(2,3-dimethyl-1-naphthalenyl)-6-methoxy-2-methyl-3(2H)-pyridazinone

In a 2-neck 100 mL RB flask flushed with nitrogen fitted with a thermometer, 1-bromo-2,3-dimethylnaphthalene (1.41 g, 6.01 mmol) was dissolved in anhydrous 25 tetrahydrofuran (15 mL) and cooled over a dry ice/acetone bath to -78 °C. *N*-Butyllithium (2.4 mL of a 2.5M solution in hexane) was added dropwise over 15 minutes, and the reaction mixture was stirred at -78 °C for 5 minutes. The cooling bath was then removed and the solution was allowed to warm to -50 °C. Magnesium bromide etherate (1.55 g, 6.01 mmol) was then added in one portion, and the reaction mixture was stirred and warmed to -20 °C.

30 The product of Step A (0.700 g, 4.00 mmol) was then added in one portion, and the reaction mixture was stirred and warmed to room temperature. After 1 h, the resulting green colored solution was poured into saturated aqueous NH_4Cl (100 mL) and extracted into ethyl acetate (4×50 mL). The organic layers were combined, dried over MgSO_4 and concentrated in vacuo. The resulting residue was dissolved in dichloromethane, absorbed onto silica gel 35 (1 g) and purified by MPLC with a gradient of 0-100% ethyl acetate/hexane through a 40 g

silica gel column. The fractions containing pure desired product were combined and concentrated in vacuo to yield 0.290 g of the title compound.

Step C: Preparation of 4-(2,3-dimethyl-1-naphthalenyl)-5-hydroxy-6-methoxy-2-methyl-3(2H)-pyridazinone

5 The product of Step B (0.200 g, 0.608 mmol) was dissolved in 1,4-dioxane (10 mL) and treated with tetrabutylammonium hydroxide (0.800 mL of a 40 wt% solution in water). The resulting solution was heated to reflux and stirred for 2 h. The reaction mixture was then cooled to room temperature and poured into 1N HCl (50 mL) and extracted into ethyl acetate (4 \times 20 mL). The organic layers were combined, dried over MgSO₄ and 10 concentrated under reduced pressure. The crude solid was dissolved in dichloromethane and absorbed onto silica gel (1 g). Purification was performed by MPLC with a 40 to 100% ethyl acetate/hexane gradient through a 40 g silica gel column. The fractions containing desired product were combined and concentrated in vacuo to yield 0.130 g of the title compound, a compound of the invention, as a white solid.

15 **SYNTHESIS EXAMPLE 5**

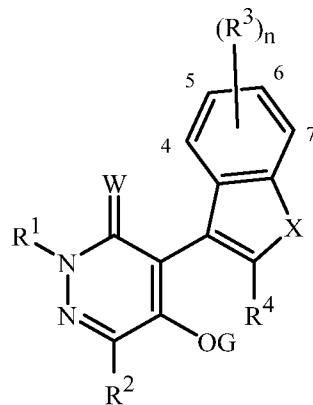
Preparation of 6-chloro-4-(5-chloro-2-methylbenzo[b]thiene-2-yl)-5-hydroxy-2-methylpyridazin-3(2H)-one (Compound 91)

Step A: Preparation of 6-chloro-5-[(5-chlorobenzo[b]thien-2-yl)methoxy]-2-methylpyridazin-3(2H)-one

20 A slurry of *N,N*-dimethylformamide (20 mL) and sodium hydride (0.335 g, 8.37 mmol) was cooled over ice for 15 min under nitrogen. 5-Chloro-[*b*]thiophene-2-methanol (1.33 g, 6.7 mmol) was added portionwise under a blanket of nitrogen and stirred over ice for 15 min. 5,6-Dichloro-2-methyl-3(2H)-pyridazinone (1.00 g, 5.58 mol) was then added under a blanket of nitrogen. The ice bath was removed and the reaction mixture was allowed 25 to stir at room temperature overnight. The resulting reaction mixture was then poured into a solution of saturated ammonium chloride and ice (200 mL) and extracted into diethyl ether (3x 40 mL). The resulting organic layers were combined, dried over MgSO₄ and absorbed onto silica gel (4 g). Chromatography using a 40 g silica gel column eluting with a gradient of 0 to 100% ethyl acetate in hexanes gradient afforded the title compound as a yellow 30 solid. (1.00 g, 53% yield).

¹H NMR (500MHz) δ 7.78–7.71 (m, 2H), 7.37–7.32 (m, 2H), 5.35 (s, 2H), 3.74 (s, 3H).

Step B: Preparation 6-chloro-4-(5-chloro-2-methylbenzo[b]thiene-2-yl)-5-hydroxy-2-methylpyridazin-3(2H)-one


35 6-Chloro-5-[(5-chlorobenzo[b]thien-2-yl)methoxy]-2-methylpyridazin-3(2H)-one (i.e. the product obtained in Step A above, 0.250 g, 0.700 mmol) was dissolved in 5 mL xylenes

in a 40 mL scintillation vial and stirred at 175 °C overnight. The reaction mixture was then cooled to room temperature and 40 mL of hexane was added. The resulting precipitate was filtered, washed with hexane and dried to give the desired product as an orange solid (0.100 g).

5 ^1H NMR (500MHz) δ 7.71–7.69 (m, 1H), 7.30–7.27 (m, 1H), 7.26–7.24 (m, 1H), 3.80 (s, 3H), 2.43 (s, 3H).

By the procedures described herein together with methods known in the art, the following compounds of Tables 1 to 619 can be prepared. The following abbreviations are used in the Tables which follow: *t* means tertiary, *s* means secondary, *n* means normal, 10 *i* means iso, Me means methyl, Et means ethyl, Pr means propyl, Bu means butyl, Bu means butyl, OMe means methoxy, CN means cyano, S(O)₂Me means methylsulfonyl, and “–” means no substitution with R³.

TABLE 1

15 W is O, X is S, R¹ is Me, R² is Me, and G is H.

(R ³) _n	R ⁴	(R ³) _n	R ⁴	(R ³) _n	R ⁴
—	H	—	Me	—	Et
4-Me	H	4-Me	Me	4-Me	Et
5-Me	H	5-Me	Me	5-Me	Et
6-Me	H	6-Me	Me	6-Me	Et
7-Me	H	7-Me	Me	7-Me	Et
4-Et	H	4-Et	Me	4-Et	Et
5-Et	H	5-Et	Me	5-Et	Et
6-Et	H	6-Et	Me	6-Et	Et
7-Et	H	7-Et	Me	7-Et	Et
4-Pr	H	4-Pr	Me	4-Pr	Et
5-Pr	H	5-Pr	Me	5-Pr	Et

(R ³) _n	R ⁴	(R ³) _n	R ⁴	(R ³) _n	R ⁴
6-Pr	H	6-Pr	Me	6-Pr	Et
7-Pr	H	7-Pr	Me	7-Pr	Et
4-OMe	H	4-OMe	Me	4-OMe	Et
5-OMe	H	5-OMe	Me	5-OMe	Et
6-OMe	H	6-OMe	Me	6-OMe	Et
7-OMe	H	7-OMe	Me	7-OMe	Et
4-CN	H	4-CN	Me	4-CN	Et
5-CN	H	5-CN	Me	5-CN	Et
6-CN	H	6-CN	Me	6-CN	Et
7-CN	H	7-CN	Me	7-CN	Et
4-CF ₃	H	4-CF ₃	Me	4-CF ₃	Et
5-CF ₃	H	5-CF ₃	Me	5-CF ₃	Et
6-CF ₃	H	6-CF ₃	Me	6-CF ₃	Et
7-CF ₃	H	7-CF ₃	Me	7-CF ₃	Et
4-F	H	4-F	Me	4-F	Et
5-F	H	5-F	Me	5-F	Et
6-F	H	6-F	Me	6-F	Et
7-F	H	7-F	Me	7-F	Et
4-Cl	H	4-Cl	Me	4-Cl	Et
5-Cl	H	5-Cl	Me	5-Cl	Et
6-Cl	H	6-Cl	Me	6-Cl	Et
7-Cl	H	7-Cl	Me	7-Cl	Et
4-Br	H	4-Br	Me	4-Br	Et
5-Br	H	5-Br	Me	5-Br	Et
6-Br	H	6-Br	Me	6-Br	Et
7-Br	H	7-Br	Me	7-Br	Et
4-OCHF ₂	H	4-OCHF ₂	Me	4-OCHF ₂	Et
5OCHF ₂	H	5OCHF ₂	Me	5OCHF ₂	Et
6-OCHF ₂	H	6-OCHF ₂	Me	6-OCHF ₂	Et
7-OCHF ₂	H	7-OCHF ₂	Me	7-OCHF ₂	Et
4-(C≡CH)	H	4-(C≡CH)	Me	4-(C≡CH)	Et
5-(C≡CH)	H	5-(C≡CH)	Me	5-(C≡CH)	Et
6-(C≡CH)	H	6-(C≡CH)	Me	6-(C≡CH)	Et
7-(C≡CH)	H	7-(C≡CH)	Me	7-(C≡CH)	Et

(R ³) _n	R ⁴	(R ³) _n	R ⁴	(R ³) _n	R ⁴
4,5-di-Me	H	4,5-di-Me	Me	4,5-di-Me	Et
4,6-di-Me	H	4,6-di-Me	Me	4,6-di-Me	Et
4,7-di-Me	H	4,7-di-Me	Me	4,7-di-Me	Et
5,6-di-Me	H	5,6-di-Me	Me	5,6-di-Me	Et
5,7-di-Me	H	5,7-di-Me	Me	5,7-di-Me	Et
5-Cl, 7-Me	H	5-Cl, 7-Me	Me	5-Cl, 7-Me	Et
5-Cl, 7-OMe	H	5-Cl, 7-OMe	Me	5-Cl, 7-OMe	Et
5-F, 7-Me	H	5-F, 7-Me	Me	5-F, 7-Me	Et
5-Me, 7-F	H	5-Me, 7-F	Me	5-Me, 7-F	Et
5-Me, 7-Cl	H	5-Me, 7-Cl	Me	5-Me, 7-Cl	Et
5-Me, 7-CN	H	5-Me, 7-CN	Me	5-Me, 7-CN	Et
5-Me, 7-OMe	H	5-Me, 7-OMe	Me	5-Me, 7-OMe	Et
5-(C≡CH), 7-Me	H	5-(C≡CH), 7-Me	Me	5-(C≡CH), 7-Me	Et
5,7-di-F	H	5,7-di-F	Me	5,7-di-F	Et
5,7-di-Cl	H	5,7-di-Cl	Me	5,7-di-Cl	Et
5,7-di-Br	H	5,7-di-Br	Me	5,7-di-Br	Et
—	Pr	—	F	—	Cl
4-Me	Pr	4-Me	F	4-Me	Cl
5-Me	Pr	5-Me	F	5-Me	Cl
6-Me	Pr	6-Me	F	6-Me	Cl
7-Me	Pr	7-Me	F	7-Me	Cl
4-Et	Pr	4-Et	F	4-Et	Cl
5-Et	Pr	5-Et	F	5-Et	Cl
6-Et	Pr	6-Et	F	6-Et	Cl
7-Et	Pr	7-Et	F	7-Et	Cl
4-Pr	Pr	4-Pr	F	4-Pr	Cl
5-Pr	Pr	5-Pr	F	5-Pr	Cl
6-Pr	Pr	6-Pr	F	6-Pr	Cl
7-Pr	Pr	7-Pr	F	7-Pr	Cl
4-OMe	Pr	4-OMe	F	4-OMe	Cl
5-OMe	Pr	5-OMe	F	5-OMe	Cl
6-OMe	Pr	6-OMe	F	6-OMe	Cl
7-OMe	Pr	7-OMe	F	7-OMe	Cl

(R ³) _n	R ⁴	(R ³) _n	R ⁴	(R ³) _n	R ⁴
4-CN	Pr	4-CN	F	4-CN	Cl
5-CN	Pr	5-CN	F	5-CN	Cl
6-CN	Pr	6-CN	F	6-CN	Cl
7-CN	Pr	7-CN	F	7-CN	Cl
4-CF ₃	Pr	4-CF ₃	F	4-CF ₃	Cl
5-CF ₃	Pr	5-CF ₃	F	5-CF ₃	Cl
6-CF ₃	Pr	6-CF ₃	F	6-CF ₃	Cl
7-CF ₃	Pr	7-CF ₃	F	7-CF ₃	Cl
4-F	Pr	4-F	F	4-F	Cl
5-F	Pr	5-F	F	5-F	Cl
6-F	Pr	6-F	F	6-F	Cl
7-F	Pr	7-F	F	7-F	Cl
4-Cl	Pr	4-Cl	F	4-Cl	Cl
5-Cl	Pr	5-Cl	F	5-Cl	Cl
6-Cl	Pr	6-Cl	F	6-Cl	Cl
7-Cl	Pr	7-Cl	F	7-Cl	Cl
4-Br	Pr	4-Br	F	4-Br	Cl
5-Br	Pr	5-Br	F	5-Br	Cl
6-Br	Pr	6-Br	F	6-Br	Cl
7-Br	Pr	7-Br	F	7-Br	Cl
4-OCHF ₂	Pr	4-OCHF ₂	F	4-OCHF ₂	Cl
5OCHF ₂	Pr	5OCHF ₂	F	5OCHF ₂	Cl
6-OCHF ₂	Pr	6-OCHF ₂	F	6-OCHF ₂	Cl
7-OCHF ₂	Pr	7-OCHF ₂	F	7-OCHF ₂	Cl
4-(C≡CH)	Pr	4-(C≡CH)	F	4-(C≡CH)	Cl
5-(C≡CH)	Pr	5-(C≡CH)	F	5-(C≡CH)	Cl
6-(C≡CH)	Pr	6-(C≡CH)	F	6-(C≡CH)	Cl
7-(C≡CH)	Pr	7-(C≡CH)	F	7-(C≡CH)	Cl
4,5-di-Me	Pr	4,5-di-Me	F	4,5-di-Me	Cl
4,6-di-Me	Pr	4,6-di-Me	F	4,6-di-Me	Cl
4,7-di-Me	Pr	4,7-di-Me	F	4,7-di-Me	Cl
5,6-di-Me	Pr	5,6-di-Me	F	5,6-di-Me	Cl
5,7-di-Me	Pr	5,7-di-Me	F	5,7-di-Me	Cl
5-Cl, 7-Me	Pr	5-Cl, 7-Me	F	5-Cl, 7-Me	Cl

(R ³) _n	R ⁴	(R ³) _n	R ⁴	(R ³) _n	R ⁴
5-Cl, 7-OMe	Pr	5-Cl, 7-OMe	F	5-Cl, 7-OMe	Cl
5-F, 7-Me	Pr	5-F, 7-Me	F	5-F, 7-Me	Cl
5-Me, 7-F	Pr	5-Me, 7-F	F	5-Me, 7-F	Cl
5-Me, 7-Cl	Pr	5-Me, 7-Cl	F	5-Me, 7-Cl	Cl
5-Me, 7-CN	Pr	5-Me, 7-CN	F	5-Me, 7-CN	Cl
5-Me, 7-OMe	Pr	5-Me, 7-OMe	F	5-Me, 7-OMe	Cl
5-(C≡CH), 7-Me	Pr	5-(C≡CH), 7-Me	F	5-(C≡CH), 7-Me	Cl
5,7-di-F	Pr	5,7-di-F	F	5,7-di-F	Cl
5,7-di-Cl	Pr	5,7-di-Cl	F	5,7-di-Cl	Cl
5,7-di-Br	Pr	5,7-di-Br	F	5,7-di-Br	Cl
—	Br	—	CN	—	C≡CH
4-Me	Br	4-Me	CN	4-Me	C≡CH
5-Me	Br	5-Me	CN	5-Me	C≡CH
6-Me	Br	6-Me	CN	6-Me	C≡CH
7-Me	Br	7-Me	CN	7-Me	C≡CH
4-Et	Br	4-Et	CN	4-Et	C≡CH
5-Et	Br	5-Et	CN	5-Et	C≡CH
6-Et	Br	6-Et	CN	6-Et	C≡CH
7-Et	Br	7-Et	CN	7-Et	C≡CH
4-Pr	Br	4-Pr	CN	4-Pr	C≡CH
5-Pr	Br	5-Pr	CN	5-Pr	C≡CH
6-Pr	Br	6-Pr	CN	6-Pr	C≡CH
7-Pr	Br	7-Pr	CN	7-Pr	C≡CH
4-OMe	Br	4-OMe	CN	4-OMe	C≡CH
5-OMe	Br	5-OMe	CN	5-OMe	C≡CH
6-OMe	Br	6-OMe	CN	6-OMe	C≡CH
7-OMe	Br	7-OMe	CN	7-OMe	C≡CH
4-CN	Br	4-CN	CN	4-CN	C≡CH
5-CN	Br	5-CN	CN	5-CN	C≡CH
6-CN	Br	6-CN	CN	6-CN	C≡CH
7-CN	Br	7-CN	CN	7-CN	C≡CH
4-CF ₃	Br	4-CF ₃	CN	4-CF ₃	C≡CH
5-CF ₃	Br	5-CF ₃	CN	5-CF ₃	C≡CH

(R ³) _n	R ⁴	(R ³) _n	R ⁴	(R ³) _n	R ⁴
6-CF ₃	Br	6-CF ₃	CN	6-CF ₃	C≡CH
7-CF ₃	Br	7-CF ₃	CN	7-CF ₃	C≡CH
4-F	Br	4-F	CN	4-F	C≡CH
5-F	Br	5-F	CN	5-F	C≡CH
6-F	Br	6-F	CN	6-F	C≡CH
7-F	Br	7-F	CN	7-F	C≡CH
4-Cl	Br	4-Cl	CN	4-Cl	C≡CH
5-Cl	Br	5-Cl	CN	5-Cl	C≡CH
6-Cl	Br	6-Cl	CN	6-Cl	C≡CH
7-Cl	Br	7-Cl	CN	7-Cl	C≡CH
4-Br	Br	4-Br	CN	4-Br	C≡CH
5-Br	Br	5-Br	CN	5-Br	C≡CH
6-Br	Br	6-Br	CN	6-Br	C≡CH
7-Br	Br	7-Br	CN	7-Br	C≡CH
4-OCHF ₂	Br	4-OCHF ₂	CN	4-OCHF ₂	C≡CH
5-OCHF ₂	Br	5-OCHF ₂	CN	5-OCHF ₂	C≡CH
6-OCHF ₂	Br	6-OCHF ₂	CN	6-OCHF ₂	C≡CH
7-OCHF ₂	Br	7-OCHF ₂	CN	7-OCHF ₂	C≡CH
4-(C≡CH)	Br	4-(C≡CH)	CN	4-(C≡CH)	C≡CH
5-(C≡CH)	Br	5-(C≡CH)	CN	5-(C≡CH)	C≡CH
6-(C≡CH)	Br	6-(C≡CH)	CN	6-(C≡CH)	C≡CH
7-(C≡CH)	Br	7-(C≡CH)	CN	7-(C≡CH)	C≡CH
4,5-di-Me	Br	4,5-di-Me	CN	4,5-di-Me	C≡CH
4,6-di-Me	Br	4,6-di-Me	CN	4,6-di-Me	C≡CH
4,7-di-Me	Br	4,7-di-Me	CN	4,7-di-Me	C≡CH
5,6-di-Me	Br	5,6-di-Me	CN	5,6-di-Me	C≡CH
5,7-di-Me	Br	5,7-di-Me	CN	5,7-di-Me	C≡CH
5-Cl, 7-Me	Br	5-Cl, 7-Me	CN	5-Cl, 7-Me	C≡CH
5-Cl, 7-OMe	Br	5-Cl, 7-OMe	CN	5-Cl, 7-OMe	C≡CH
5-F, 7-Me	Br	5-F, 7-Me	CN	5-F, 7-Me	C≡CH
5-Me, 7-F	Br	5-Me, 7-F	CN	5-Me, 7-F	C≡CH
5-Me, 7-Cl	Br	5-Me, 7-Cl	CN	5-Me, 7-Cl	C≡CH
5-Me, 7-CN	Br	5-Me, 7-CN	CN	5-Me, 7-CN	C≡CH
5-Me, 7-OMe	Br	5-Me, 7-OMe	CN	5-Me, 7-OMe	C≡CH

(R ³) _n	R ⁴	(R ³) _n	R ⁴	(R ³) _n	R ⁴
5-(C≡CH), 7-Me	Br	5-(C≡CH), 7-Me	CN	5-(C≡CH), 7-Me	C≡CH
5,7-di-F	Br	5,7-di-F	CN	5,7-di-F	C≡CH
5,7-di-Cl	Br	5,7-di-Cl	CN	5,7-di-Cl	C≡CH
5,7-di-Br	Br	5,7-di-Br	CN	5,7-di-Br	C≡CH
—	OMe	—	OCHF ₂	—	SMe
4-Me	OMe	4-Me	OCHF ₂	4-Me	SMe
5-Me	OMe	5-Me	OCHF ₂	5-Me	SMe
6-Me	OMe	6-Me	OCHF ₂	6-Me	SMe
7-Me	OMe	7-Me	OCHF ₂	7-Me	SMe
4-Et	OMe	4-Et	OCHF ₂	4-Et	SMe
5-Et	OMe	5-Et	OCHF ₂	5-Et	SMe
6-Et	OMe	6-Et	OCHF ₂	6-Et	SMe
7-Et	OMe	7-Et	OCHF ₂	7-Et	SMe
4-Pr	OMe	4-Pr	OCHF ₂	4-Pr	SMe
5-Pr	OMe	5-Pr	OCHF ₂	5-Pr	SMe
6-Pr	OMe	6-Pr	OCHF ₂	6-Pr	SMe
7-Pr	OMe	7-Pr	OCHF ₂	7-Pr	SMe
4-OMe	OMe	4-OMe	OCHF ₂	4-OMe	SMe
5-OMe	OMe	5-OMe	OCHF ₂	5-OMe	SMe
6-OMe	OMe	6-OMe	OCHF ₂	6-OMe	SMe
7-OMe	OMe	7-OMe	OCHF ₂	7-OMe	SMe
4-CN	OMe	4-CN	OCHF ₂	4-CN	SMe
5-CN	OMe	5-CN	OCHF ₂	5-CN	SMe
6-CN	OMe	6-CN	OCHF ₂	6-CN	SMe
7-CN	OMe	7-CN	OCHF ₂	7-CN	SMe
4-CF ₃	OMe	4-CF ₃	OCHF ₂	4-CF ₃	SMe
5-CF ₃	OMe	5-CF ₃	OCHF ₂	5-CF ₃	SMe
6-CF ₃	OMe	6-CF ₃	OCHF ₂	6-CF ₃	SMe
7-CF ₃	OMe	7-CF ₃	OCHF ₂	7-CF ₃	SMe
4-F	OMe	4-F	OCHF ₂	4-F	SMe
5-F	OMe	5-F	OCHF ₂	5-F	SMe
6-F	OMe	6-F	OCHF ₂	6-F	SMe
7-F	OMe	7-F	OCHF ₂	7-F	SMe

(R ³) _n	R ⁴	(R ³) _n	R ⁴	(R ³) _n	R ⁴
4-Cl	OMe	4-Cl	OCHF ₂	4-Cl	SMe
5-Cl	OMe	5-Cl	OCHF ₂	5-Cl	SMe
6-Cl	OMe	6-Cl	OCHF ₂	6-Cl	SMe
7-Cl	OMe	7-Cl	OCHF ₂	7-Cl	SMe
4-Br	OMe	4-Br	OCHF ₂	4-Br	SMe
5-Br	OMe	5-Br	OCHF ₂	5-Br	SMe
6-Br	OMe	6-Br	OCHF ₂	6-Br	SMe
7-Br	OMe	7-Br	OCHF ₂	7-Br	SMe
4-OCHF ₂	OMe	4-OCHF ₂	OCHF ₂	4-OCHF ₂	SMe
5OCHF ₂	OMe	5OCHF ₂	OCHF ₂	5OCHF ₂	SMe
6-OCHF ₂	OMe	6-OCHF ₂	OCHF ₂	6-OCHF ₂	SMe
7-OCHF ₂	OMe	7-OCHF ₂	OCHF ₂	7-OCHF ₂	SMe
4-(C≡CH)	OMe	4-(C≡CH)	OCHF ₂	4-(C≡CH)	SMe
5-(C≡CH)	OMe	5-(C≡CH)	OCHF ₂	5-(C≡CH)	SMe
6-(C≡CH)	OMe	6-(C≡CH)	OCHF ₂	6-(C≡CH)	SMe
7-(C≡CH)	OMe	7-(C≡CH)	OCHF ₂	7-(C≡CH)	SMe
4,5-di-Me	OMe	4,5-di-Me	OCHF ₂	4,5-di-Me	SMe
4,6-di-Me	OMe	4,6-di-Me	OCHF ₂	4,6-di-Me	SMe
4,7-di-Me	OMe	4,7-di-Me	OCHF ₂	4,7-di-Me	SMe
5,6-di-Me	OMe	5,6-di-Me	OCHF ₂	5,6-di-Me	SMe
5,7-di-Me	OMe	5,7-di-Me	OCHF ₂	5,7-di-Me	SMe
5-Cl, 7-Me	OMe	5-Cl, 7-Me	OCHF ₂	5-Cl, 7-Me	SMe
5-Cl, 7-OMe	OMe	5-Cl, 7-OMe	OCHF ₂	5-Cl, 7-OMe	SMe
5-F, 7-Me	OMe	5-F, 7-Me	OCHF ₂	5-F, 7-Me	SMe
5-Me, 7-F	OMe	5-Me, 7-F	OCHF ₂	5-Me, 7-F	SMe
5-Me, 7-Cl	OMe	5-Me, 7-Cl	OCHF ₂	5-Me, 7-Cl	SMe
5-Me, 7-CN	OMe	5-Me, 7-CN	OCHF ₂	5-Me, 7-CN	SMe
5-Me, 7-OMe	OMe	5-Me, 7-OMe	OCHF ₂	5-Me, 7-OMe	SMe
5-(C≡CH), 7-Me	OMe	5-(C≡CH), 7-Me	OCHF ₂	5-(C≡CH), 7-Me	SMe
5,7-di-F	OMe	5,7-di-F	OCHF ₂	5,7-di-F	SMe
5,7-di-Cl	OMe	5,7-di-Cl	OCHF ₂	5,7-di-Cl	SMe
5,7-di-Br	OMe	5,7-di-Br	OCHF ₂	5,7-di-Br	SMe
—	SCHF ₂	—	SCF ₃		

$(R^3)_n$	R^4	$(R^3)_n$	R^4	$(R^3)_n$	R^4
4-Me	SCHF ₂	4-Me	SCF ₃		
5-Me	SCHF ₂	5-Me	SCF ₃		
6-Me	SCHF ₂	6-Me	SCF ₃		
7-Me	SCHF ₂	7-Me	SCF ₃		
4-Et	SCHF ₂	4-Et	SCF ₃		
5-Et	SCHF ₂	5-Et	SCF ₃		
6-Et	SCHF ₂	6-Et	SCF ₃		
7-Et	SCHF ₂	7-Et	SCF ₃		
4-Pr	SCHF ₂	4-Pr	SCF ₃		
5-Pr	SCHF ₂	5-Pr	SCF ₃		
6-Pr	SCHF ₂	6-Pr	SCF ₃		
7-Pr	SCHF ₂	7-Pr	SCF ₃		
4-OMe	SCHF ₂	4-OMe	SCF ₃		
5-OMe	SCHF ₂	5-OMe	SCF ₃		
6-OMe	SCHF ₂	6-OMe	SCF ₃		
7-OMe	SCHF ₂	7-OMe	SCF ₃		
4-CN	SCHF ₂	4-CN	SCF ₃		
5-CN	SCHF ₂	5-CN	SCF ₃		
6-CN	SCHF ₂	6-CN	SCF ₃		
7-CN	SCHF ₂	7-CN	SCF ₃		
4-CF ₃	SCHF ₂	4-CF ₃	SCF ₃		
5-CF ₃	SCHF ₂	5-CF ₃	SCF ₃		
6-CF ₃	SCHF ₂	6-CF ₃	SCF ₃		
7-CF ₃	SCHF ₂	7-CF ₃	SCF ₃		
4-F	SCHF ₂	4-F	SCF ₃		
5-F	SCHF ₂	5-F	SCF ₃		
6-F	SCHF ₂	6-F	SCF ₃		
7-F	SCHF ₂	7-F	SCF ₃		
4-Cl	SCHF ₂	4-Cl	SCF ₃		
5-Cl	SCHF ₂	5-Cl	SCF ₃		
6-Cl	SCHF ₂	6-Cl	SCF ₃		
7-Cl	SCHF ₂	7-Cl	SCF ₃		
4-Br	SCHF ₂	4-Br	SCF ₃		
5-Br	SCHF ₂	5-Br	SCF ₃		

$(R^3)_n$	R^4	$(R^3)_n$	R^4	$(R^3)_n$	R^4
6-Br	SCHF ₂	6-Br	SCF ₃		
7-Br	SCHF ₂	7-Br	SCF ₃		
4-OCHF ₂	SCHF ₂	4-OCHF ₂	SCF ₃		
5OCHF ₂	SCHF ₂	5OCHF ₂	SCF ₃		
6-OCHF ₂	SCHF ₂	6-OCHF ₂	SCF ₃		
7-OCHF ₂	SCHF ₂	7-OCHF ₂	SCF ₃		
4-(C≡CH)	SCHF ₂	4-(C≡CH)	SCF ₃		
5-(C≡CH)	SCHF ₂	5-(C≡CH)	SCF ₃		
6-(C≡CH)	SCHF ₂	6-(C≡CH)	SCF ₃		
7-(C≡CH)	SCHF ₂	7-(C≡CH)	SCF ₃		
4,5-di-Me	SCHF ₂	4,5-di-Me	SCF ₃		
4,6-di-Me	SCHF ₂	4,6-di-Me	SCF ₃		
4,7-di-Me	SCHF ₂	4,7-di-Me	SCF ₃		
5,6-di-Me	SCHF ₂	5,6-di-Me	SCF ₃		
5,7-di-Me	SCHF ₂	5,7-di-Me	SCF ₃		
5-Cl, 7-Me	SCHF ₂	5-Cl, 7-Me	SCF ₃		
5-Cl, 7-OMe	SCHF ₂	5-Cl, 7-OMe	SCF ₃		
5-F, 7-Me	SCHF ₂	5-F, 7-Me	SCF ₃		
5-Me, 7-F	SCHF ₂	5-Me, 7-F	SCF ₃		
5-Me, 7-Cl	SCHF ₂	5-Me, 7-Cl	SCF ₃		
5-Me, 7-CN	SCHF ₂	5-Me, 7-CN	SCF ₃		
5-Me, 7-OMe	SCHF ₂	5-Me, 7-OMe	SCF ₃		
5-(C≡CH), 7-Me	SCHF ₂	5-(C≡CH), 7-Me	SCF ₃		
5,7-di-F	SCHF ₂	5,7-di-F	SCF ₃		
5,7-di-Cl	SCHF ₂	5,7-di-Cl	SCF ₃		
5,7-di-Br	SCHF ₂	5,7-di-Br	SCF ₃		

Table 2 is constructed in the same manner except that the Row Heading “W is O, X is S, R¹ is Me, R² is Me, and G is H.” is replaced with the Row Heading listed for Table 2 below (i.e. “W is O, X is S, R¹ is Me, R² is Me, and G is C(O)Me.”). Therefore the first entry in Table 2 is a compound of Formula 1 wherein W is O, X is S, R¹ is Me, R² is Me, (R³)_n is “-” (i.e. n is 0; no substitution with R³), R⁴ is H, and G is C(O)Me. Tables 3 through 627 are constructed similarly.

Table	Row Heading
2	W is O, X is S, R ¹ is Me, R ² is Me, and G is C(O)Me.
3	W is O, X is S, R ¹ is Me, R ² is Me, and G is C(O)Et.
4	W is O, X is S, R ¹ is Me, R ² is Me, and G is C(O)-i-Pr.
5	W is O, X is S, R ¹ is Me, R ² is Me, and G is C(O)-t-Bu.
6	W is O, X is S, R ¹ is Me, R ² is Me, and G is CO ₂ Me.
7	W is O, X is S, R ¹ is Me, R ² is Me, and G is CO ₂ Et.
8	W is O, X is S, R ¹ is Me, R ² is Me, and G is CO ₂ -i-Pr.
9	W is O, X is S, R ¹ is Me, R ² is Me, and G is CO ₂ -t-Bu.
10	W is O, X is S, R ¹ is Me, R ² is Me, and G is SO ₂ Me.
11	W is O, X is S, R ¹ is Me, R ² is H, and G is C(O)Me.
12	W is O, X is S, R ¹ is Me, R ² is H, and G is C(O)Et.
13	W is O, X is S, R ¹ is Me, R ² is H, and G is C(O)-i-Pr.
14	W is O, X is S, R ¹ is Me, R ² is H, and G is C(O)-t-Bu.
15	W is O, X is S, R ¹ is Me, R ² is H, and G is CO ₂ Me.
16	W is O, X is S, R ¹ is Me, R ² is H, and G is CO ₂ Et.
17	W is O, X is S, R ¹ is Me, R ² is H, and G is CO ₂ -i-Pr.
18	W is O, X is S, R ¹ is Me, R ² is H, and G is CO ₂ -t-Bu.
19	W is O, X is S, R ¹ is Me, R ² is H, and G is SO ₂ Me.
20	W is O, X is S, R ¹ is Me, R ² is Et, and G is C(O)Me.
21	W is O, X is S, R ¹ is Me, R ² is Et, and G is C(O)Et.
22	W is O, X is S, R ¹ is Me, R ² is Et, and G is C(O)-i-Pr.
23	W is O, X is S, R ¹ is Me, R ² is Et, and G is C(O)-t-Bu.
24	W is O, X is S, R ¹ is Me, R ² is Et, and G is CO ₂ Me.
25	W is O, X is S, R ¹ is Me, R ² is Et, and G is CO ₂ Et.
26	W is O, X is S, R ¹ is Me, R ² is Et, and G is CO ₂ -i-Pr.
27	W is O, X is S, R ¹ is Me, R ² is Et, and G is CO ₂ -t-Bu.
28	W is O, X is S, R ¹ is Me, R ² is Et, and G is SO ₂ Me.
29	W is O, X is S, R ¹ is Me, R ² is Pr, and G is C(O)Me.
30	W is O, X is S, R ¹ is Me, R ² is Pr, and G is C(O)Et.
31	W is O, X is S, R ¹ is Me, R ² is Pr, and G is C(O)-i-Pr.
32	W is O, X is S, R ¹ is Me, R ² is Pr, and G is C(O)-t-Bu.
33	W is O, X is S, R ¹ is Me, R ² is Pr, and G is CO ₂ Me.
34	W is O, X is S, R ¹ is Me, R ² is Pr, and G is CO ₂ Et.
35	W is O, X is S, R ¹ is Me, R ² is Pr, and G is CO ₂ -i-Pr.

36	W is O, X is S, R ¹ is Me, R ² is Pr, and G is CO ₂ - <i>t</i> -Bu.
37	W is O, X is S, R ¹ is Me, R ² is Pr, and G is SO ₂ Me.
38	W is O, X is S, R ¹ is Me, R ² is CF ₃ , and G is C(O)Me.
39	W is O, X is S, R ¹ is Me, R ² is CF ₃ , and G is C(O)Et.
40	W is O, X is S, R ¹ is Me, R ² is CF ₃ , and G is C(O)- <i>i</i> -Pr.
41	W is O, X is S, R ¹ is Me, R ² is CF ₃ , and G is C(O)- <i>t</i> -Bu.
42	W is O, X is S, R ¹ is Me, R ² is CF ₃ , and G is CO ₂ Me.
43	W is O, X is S, R ¹ is Me, R ² is CF ₃ , and G is CO ₂ Et.
44	W is O, X is S, R ¹ is Me, R ² is CF ₃ , and G is CO ₂ - <i>i</i> -Pr.
45	W is O, X is S, R ¹ is Me, R ² is CF ₃ , and G is CO ₂ - <i>t</i> -Bu.
46	W is O, X is S, R ¹ is Me, R ² is CF ₃ , and G is SO ₂ Me.
47	W is O, X is S, R ¹ is Me, R ² is Cl, and G is C(O)Me.
48	W is O, X is S, R ¹ is Me, R ² is Cl, and G is C(O)Et.
49	W is O, X is S, R ¹ is Me, R ² is Cl, and G is C(O)- <i>i</i> -Pr.
50	W is O, X is S, R ¹ is Me, R ² is Cl, and G is C(O)- <i>t</i> -Bu.
51	W is O, X is S, R ¹ is Me, R ² is Cl, and G is CO ₂ Me.
52	W is O, X is S, R ¹ is Me, R ² is Cl, and G is CO ₂ Et.
53	W is O, X is S, R ¹ is Me, R ² is Cl, and G is CO ₂ - <i>i</i> -Pr.
54	W is O, X is S, R ¹ is Me, R ² is Cl, and G is CO ₂ - <i>t</i> -Bu.
55	W is O, X is S, R ¹ is Me, R ² is Cl, and G is SO ₂ Me.
56	W is O, X is S, R ¹ is Me, R ² is Br, and G is C(O)Me.
57	W is O, X is S, R ¹ is Me, R ² is Br, and G is C(O)Et.
58	W is O, X is S, R ¹ is Me, R ² is Br, and G is C(O)- <i>i</i> -Pr.
59	W is O, X is S, R ¹ is Me, R ² is Br, and G is C(O)- <i>t</i> -Bu.
60	W is O, X is S, R ¹ is Me, R ² is Br, and G is CO ₂ Me.
61	W is O, X is S, R ¹ is Me, R ² is Br, and G is CO ₂ Et.
62	W is O, X is S, R ¹ is Me, R ² is Br, and G is CO ₂ - <i>i</i> -Pr.
63	W is O, X is S, R ¹ is Me, R ² is Br, and G is CO ₂ - <i>t</i> -Bu.
64	W is O, X is S, R ¹ is Me, R ² is Br, and G is SO ₂ Me.
65	W is O, X is S, R ¹ is Me, R ² is I, and G is C(O)Me.
66	W is O, X is S, R ¹ is Me, R ² is I, and G is C(O)Et.
67	W is O, X is S, R ¹ is Me, R ² is I, and G is C(O)- <i>i</i> -Pr.
68	W is O, X is S, R ¹ is Me, R ² is I, and G is C(O)- <i>t</i> -Bu.
69	W is O, X is S, R ¹ is Me, R ² is I, and G is CO ₂ Me.
70	W is O, X is S, R ¹ is Me, R ² is I, and G is CO ₂ Et.

71	W is O, X is S, R ¹ is Me, R ² is I, and G is CO ₂ - <i>i</i> -Pr.
72	W is O, X is S, R ¹ is Me, R ² is I, and G is CO ₂ - <i>t</i> -Bu.
73	W is O, X is S, R ¹ is Me, R ² is I, and G is SO ₂ Me.
74	W is O, X is S, R ¹ is Me, R ² is OMe, and G is C(O)Me.
75	W is O, X is S, R ¹ is Me, R ² is OMe, and G is C(O)Et.
76	W is O, X is S, R ¹ is Me, R ² is OMe, and G is C(O)- <i>i</i> -Pr.
77	W is O, X is S, R ¹ is Me, R ² is OMe, and G is C(O)- <i>t</i> -Bu.
78	W is O, X is S, R ¹ is Me, R ² is OMe, and G is CO ₂ Me.
79	W is O, X is S, R ¹ is Me, R ² is OMe, and G is CO ₂ Et.
80	W is O, X is S, R ¹ is Me, R ² is OMe, and G is CO ₂ - <i>i</i> -Pr.
81	W is O, X is S, R ¹ is Me, R ² is OMe, and G is CO ₂ - <i>t</i> -Bu.
82	W is O, X is S, R ¹ is Me, R ² is OMe, and G is SO ₂ Me.
83	W is O, X is S, R ¹ is Me, R ² is OEt, and G is C(O)Me.
84	W is O, X is S, R ¹ is Me, R ² is OEt, and G is C(O)Et.
85	W is O, X is S, R ¹ is Me, R ² is OEt, and G is C(O)- <i>i</i> -Pr.
86	W is O, X is S, R ¹ is Me, R ² is OEt, and G is C(O)- <i>t</i> -Bu.
87	W is O, X is S, R ¹ is Me, R ² is OEt, and G is CO ₂ Me.
88	W is O, X is S, R ¹ is Me, R ² is OEt, and G is CO ₂ Et.
89	W is O, X is S, R ¹ is Me, R ² is OEt, and G is CO ₂ - <i>i</i> -Pr.
90	W is O, X is S, R ¹ is Me, R ² is OEt, and G is CO ₂ - <i>t</i> -Bu.
91	W is O, X is S, R ¹ is Me, R ² is OEt, and G is SO ₂ Me.
92	W is O, X is S, R ¹ is Et, R ² is Me, and G is C(O)Me.
93	W is O, X is S, R ¹ is Et, R ² is Me, and G is C(O)Et.
94	W is O, X is S, R ¹ is Et, R ² is Me, and G is C(O)- <i>i</i> -Pr.
95	W is O, X is S, R ¹ is Et, R ² is Me, and G is C(O)- <i>t</i> -Bu.
96	W is O, X is S, R ¹ is Et, R ² is Me, and G is CO ₂ Me.
97	W is O, X is S, R ¹ is Et, R ² is Me, and G is CO ₂ Et.
98	W is O, X is S, R ¹ is Et, R ² is Me, and G is CO ₂ - <i>i</i> -Pr.
99	W is O, X is S, R ¹ is Et, R ² is Me, and G is CO ₂ - <i>t</i> -Bu.
100	W is O, X is S, R ¹ is Et, R ² is Me, and G is SO ₂ Me.
101	W is O, X is S, R ¹ is Et, R ² is H, and G is C(O)Me.
102	W is O, X is S, R ¹ is Et, R ² is H, and G is C(O)Et.
103	W is O, X is S, R ¹ is Et, R ² is H, and G is C(O)- <i>i</i> -Pr.
104	W is O, X is S, R ¹ is Et, R ² is H, and G is C(O)- <i>t</i> -Bu.

105	W is O, X is S, R ¹ is Et, R ² is H, and G is CO ₂ Me.
106	W is O, X is S, R ¹ is Et, R ² is H, and G is CO ₂ Et.
107	W is O, X is S, R ¹ is Et, R ² is H, and G is CO ₂ -i-Pr.
108	W is O, X is S, R ¹ is Et, R ² is H, and G is CO ₂ -t-Bu.
109	W is O, X is S, R ¹ is Et, R ² is H, and G is SO ₂ Me.
110	W is O, X is S, R ¹ is Et, R ² is Et, and G is C(O)Me.
111	W is O, X is S, R ¹ is Et, R ² is Et, and G is C(O)Et.
112	W is O, X is S, R ¹ is Et, R ² is Et, and G is C(O)-i-Pr.
113	W is O, X is S, R ¹ is Et, R ² is Et, and G is C(O)-t-Bu.
114	W is O, X is S, R ¹ is Et, R ² is Et, and G is CO ₂ Me.
115	W is O, X is S, R ¹ is Et, R ² is Et, and G is CO ₂ Et.
116	W is O, X is S, R ¹ is Et, R ² is Et, and G is CO ₂ -i-Pr.
117	W is O, X is S, R ¹ is Et, R ² is Et, and G is CO ₂ -t-Bu.
118	W is O, X is S, R ¹ is Et, R ² is Et, and G is SO ₂ Me.
119	W is O, X is S, R ¹ is Et, R ² is Pr, and G is C(O)Me.
120	W is O, X is S, R ¹ is Et, R ² is Pr, and G is C(O)Et.
121	W is O, X is S, R ¹ is Et, R ² is Pr, and G is C(O)-i-Pr.
122	W is O, X is S, R ¹ is Et, R ² is Pr, and G is C(O)-t-Bu.
123	W is O, X is S, R ¹ is Et, R ² is Pr, and G is CO ₂ Me.
124	W is O, X is S, R ¹ is Et, R ² is Pr, and G is CO ₂ Et.
125	W is O, X is S, R ¹ is Et, R ² is Pr, and G is CO ₂ -i-Pr.
126	W is O, X is S, R ¹ is Et, R ² is Pr, and G is CO ₂ -t-Bu.
127	W is O, X is S, R ¹ is Et, R ² is Pr, and G is SO ₂ Me.
128	W is O, X is S, R ¹ is Et, R ² is CF ₃ , and G is C(O)Me.
129	W is O, X is S, R ¹ is Et, R ² is CF ₃ , and G is C(O)Et.
130	W is O, X is S, R ¹ is Et, R ² is CF ₃ , and G is C(O)-i-Pr.
131	W is O, X is S, R ¹ is Et, R ² is CF ₃ , and G is C(O)-t-Bu.
132	W is O, X is S, R ¹ is Et, R ² is CF ₃ , and G is CO ₂ Me.
133	W is O, X is S, R ¹ is Et, R ² is CF ₃ , and G is CO ₂ Et.
134	W is O, X is S, R ¹ is Et, R ² is CF ₃ , and G is CO ₂ -i-Pr.
135	W is O, X is S, R ¹ is Et, R ² is CF ₃ , and G is CO ₂ -t-Bu.
136	W is O, X is S, R ¹ is Et, R ² is CF ₃ , and G is SO ₂ Me.
137	W is O, X is S, R ¹ is Et, R ² is Cl, and G is C(O)Me.
138	W is O, X is S, R ¹ is Et, R ² is Cl, and G is C(O)Et.
139	W is O, X is S, R ¹ is Et, R ² is Cl, and G is C(O)-i-Pr.

140	W is O, X is S, R ¹ is Et, R ² is Cl, and G is C(O)- <i>t</i> -Bu.
141	W is O, X is S, R ¹ is Et, R ² is Cl, and G is CO ₂ Me.
142	W is O, X is S, R ¹ is Et, R ² is Cl, and G is CO ₂ Et.
143	W is O, X is S, R ¹ is Et, R ² is Cl, and G is CO ₂ - <i>i</i> -Pr.
144	W is O, X is S, R ¹ is Et, R ² is Cl, and G is CO ₂ - <i>t</i> -Bu.
145	W is O, X is S, R ¹ is Et, R ² is Cl, and G is SO ₂ Me.
146	W is O, X is S, R ¹ is Et, R ² is Br, and G is C(O)Me.
147	W is O, X is S, R ¹ is Et, R ² is Br, and G is C(O)Et.
148	W is O, X is S, R ¹ is Et, R ² is Br, and G is C(O)- <i>i</i> -Pr.
149	W is O, X is S, R ¹ is Et, R ² is Br, and G is C(O)- <i>t</i> -Bu.
150	W is O, X is S, R ¹ is Et, R ² is Br, and G is CO ₂ Me.
151	W is O, X is S, R ¹ is Et, R ² is Br, and G is CO ₂ Et.
152	W is O, X is S, R ¹ is Et, R ² is Br, and G is CO ₂ - <i>i</i> -Pr.
153	W is O, X is S, R ¹ is Et, R ² is Br, and G is CO ₂ - <i>t</i> -Bu.
154	W is O, X is S, R ¹ is Et, R ² is Br, and G is SO ₂ Me.
155	W is O, X is S, R ¹ is Et, R ² is I, and G is C(O)Me.
156	W is O, X is S, R ¹ is Et, R ² is I, and G is C(O)Et.
157	W is O, X is S, R ¹ is Et, R ² is I, and G is C(O)- <i>i</i> -Pr.
158	W is O, X is S, R ¹ is Et, R ² is I, and G is C(O)- <i>t</i> -Bu.
159	W is O, X is S, R ¹ is Et, R ² is I, and G is CO ₂ Me.
160	W is O, X is S, R ¹ is Et, R ² is I, and G is CO ₂ Et.
161	W is O, X is S, R ¹ is Et, R ² is I, and G is CO ₂ - <i>i</i> -Pr.
162	W is O, X is S, R ¹ is Et, R ² is I, and G is CO ₂ - <i>t</i> -Bu.
163	W is O, X is S, R ¹ is Et, R ² is I, and G is SO ₂ Me.
164	W is O, X is S, R ¹ is Et, R ² is OMe, and G is C(O)Me.
165	W is O, X is S, R ¹ is Et, R ² is OMe, and G is C(O)Et.
166	W is O, X is S, R ¹ is Et, R ² is OMe, and G is C(O)- <i>i</i> -Pr.
167	W is O, X is S, R ¹ is Et, R ² is OMe, and G is C(O)- <i>t</i> -Bu.
168	W is O, X is S, R ¹ is Et, R ² is OMe, and G is CO ₂ Me.
169	W is O, X is S, R ¹ is Et, R ² is OMe, and G is CO ₂ Et.
170	W is O, X is S, R ¹ is Et, R ² is OMe, and G is CO ₂ - <i>i</i> -Pr.
171	W is O, X is S, R ¹ is Et, R ² is OMe, and G is CO ₂ - <i>t</i> -Bu.
172	W is O, X is S, R ¹ is Et, R ² is OMe, and G is SO ₂ Me.
173	W is O, X is S, R ¹ is Et, R ² is OEt, and G is C(O)Me.
174	W is O, X is S, R ¹ is Et, R ² is OEt, and G is C(O)Et.

175	W is O, X is S, R ¹ is Et, R ² is OEt, and G is C(O)- <i>i</i> -Pr.
176	W is O, X is S, R ¹ is Et, R ² is OEt, and G is C(O)- <i>t</i> -Bu.
177	W is O, X is S, R ¹ is Et, R ² is OEt, and G is CO ₂ Me.
178	W is O, X is S, R ¹ is Et, R ² is OEt, and G is CO ₂ Et.
179	W is O, X is S, R ¹ is Et, R ² is OEt, and G is CO ₂ - <i>i</i> -Pr.
180	W is O, X is S, R ¹ is Et, R ² is OEt, and G is CO ₂ - <i>t</i> -Bu.
181	W is O, X is S, R ¹ is Et, R ² is OEt, and G is SO ₂ Me.
182	W is O, X is S, R ¹ is Pr, R ² is Me, and G is C(O)Me.
183	W is O, X is S, R ¹ is Pr, R ² is Me, and G is C(O)Et.
184	W is O, X is S, R ¹ is Pr, R ² is Me, and G is C(O)- <i>i</i> -Pr.
185	W is O, X is S, R ¹ is Pr, R ² is Me, and G is C(O)- <i>t</i> -Bu.
186	W is O, X is S, R ¹ is Pr, R ² is Me, and G is CO ₂ Me.
187	W is O, X is S, R ¹ is Pr, R ² is Me, and G is CO ₂ Et.
188	W is O, X is S, R ¹ is Pr, R ² is Me, and G is CO ₂ - <i>i</i> -Pr.
189	W is O, X is S, R ¹ is Pr, R ² is Me, and G is CO ₂ - <i>t</i> -Bu.
190	W is O, X is S, R ¹ is Pr, R ² is Me, and G is SO ₂ Me.
191	W is O, X is S, R ¹ is Pr, R ² is H, and G is C(O)Me.
192	W is O, X is S, R ¹ is Pr, R ² is H, and G is C(O)Et.
193	W is O, X is S, R ¹ is Pr, R ² is H, and G is C(O)- <i>i</i> -Pr.
194	W is O, X is S, R ¹ is Pr, R ² is H, and G is C(O)- <i>t</i> -Bu.
195	W is O, X is S, R ¹ is Pr, R ² is H, and G is CO ₂ Me.
196	W is O, X is S, R ¹ is Pr, R ² is H, and G is CO ₂ Et.
197	W is O, X is S, R ¹ is Pr, R ² is H, and G is CO ₂ - <i>i</i> -Pr.
198	W is O, X is S, R ¹ is Pr, R ² is H, and G is CO ₂ - <i>t</i> -Bu.
199	W is O, X is S, R ¹ is Pr, R ² is H, and G is SO ₂ Me.
200	W is O, X is S, R ¹ is Pr, R ² is Et, and G is C(O)Me.
201	W is O, X is S, R ¹ is Pr, R ² is Et, and G is C(O)Et.
202	W is O, X is S, R ¹ is Pr, R ² is Et, and G is C(O)- <i>i</i> -Pr.
203	W is O, X is S, R ¹ is Pr, R ² is Et, and G is C(O)- <i>t</i> -Bu.
204	W is O, X is S, R ¹ is Pr, R ² is Et, and G is CO ₂ Me.
205	W is O, X is S, R ¹ is Pr, R ² is Et, and G is CO ₂ Et.
206	W is O, X is S, R ¹ is Pr, R ² is Et, and G is CO ₂ - <i>i</i> -Pr.
207	W is O, X is S, R ¹ is Pr, R ² is Et, and G is CO ₂ - <i>t</i> -Bu.
208	W is O, X is S, R ¹ is Pr, R ² is Et, and G is SO ₂ Me.

209	W is O, X is S, R ¹ is Pr, R ² is Pr, and G is C(O)Me.
210	W is O, X is S, R ¹ is Pr, R ² is Pr, and G is C(O)Et.
211	W is O, X is S, R ¹ is Pr, R ² is Pr, and G is C(O)-i-Pr.
212	W is O, X is S, R ¹ is Pr, R ² is Pr, and G is C(O)-t-Bu.
213	W is O, X is S, R ¹ is Pr, R ² is Pr, and G is CO ₂ Me.
214	W is O, X is S, R ¹ is Pr, R ² is Pr, and G is CO ₂ Et.
215	W is O, X is S, R ¹ is Pr, R ² is Pr, and G is CO ₂ -i-Pr.
216	W is O, X is S, R ¹ is Pr, R ² is Pr, and G is CO ₂ -t-Bu.
217	W is O, X is S, R ¹ is Pr, R ² is Pr, and G is SO ₂ Me.
218	W is O, X is S, R ¹ is Pr, R ² is CF ₃ , and G is C(O)Me.
219	W is O, X is S, R ¹ is Pr, R ² is CF ₃ , and G is C(O)Et.
220	W is O, X is S, R ¹ is Pr, R ² is CF ₃ , and G is C(O)-i-Pr.
221	W is O, X is S, R ¹ is Pr, R ² is CF ₃ , and G is C(O)-t-Bu.
222	W is O, X is S, R ¹ is Pr, R ² is CF ₃ , and G is CO ₂ Me.
223	W is O, X is S, R ¹ is Pr, R ² is CF ₃ , and G is CO ₂ Et.
224	W is O, X is S, R ¹ is Pr, R ² is CF ₃ , and G is CO ₂ -i-Pr.
225	W is O, X is S, R ¹ is Pr, R ² is CF ₃ , and G is CO ₂ -t-Bu.
226	W is O, X is S, R ¹ is Pr, R ² is CF ₃ , and G is SO ₂ Me.
227	W is O, X is S, R ¹ is Pr, R ² is Cl, and G is C(O)Me.
228	W is O, X is S, R ¹ is Pr, R ² is Cl, and G is C(O)Et.
229	W is O, X is S, R ¹ is Pr, R ² is Cl, and G is C(O)-i-Pr.
230	W is O, X is S, R ¹ is Pr, R ² is Cl, and G is C(O)-t-Bu.
231	W is O, X is S, R ¹ is Pr, R ² is Cl, and G is CO ₂ Me.
232	W is O, X is S, R ¹ is Pr, R ² is Cl, and G is CO ₂ Et.
233	W is O, X is S, R ¹ is Pr, R ² is Cl, and G is CO ₂ -i-Pr.
234	W is O, X is S, R ¹ is Pr, R ² is Cl, and G is CO ₂ -t-Bu.
235	W is O, X is S, R ¹ is Pr, R ² is Cl, and G is SO ₂ Me.
236	W is O, X is S, R ¹ is Pr, R ² is Br, and G is C(O)Me.
237	W is O, X is S, R ¹ is Pr, R ² is Br, and G is C(O)Et.
238	W is O, X is S, R ¹ is Pr, R ² is Br, and G is C(O)-i-Pr.
239	W is O, X is S, R ¹ is Pr, R ² is Br, and G is C(O)-t-Bu.
240	W is O, X is S, R ¹ is Pr, R ² is Br, and G is CO ₂ Me.
241	W is O, X is S, R ¹ is Pr, R ² is Br, and G is CO ₂ Et.
242	W is O, X is S, R ¹ is Pr, R ² is Br, and G is CO ₂ -i-Pr.
243	W is O, X is S, R ¹ is Pr, R ² is Br, and G is CO ₂ -t-Bu.

244	W is O, X is S, R ¹ is Pr, R ² is Br, and G is SO ₂ Me.
245	W is O, X is S, R ¹ is Pr, R ² is I, and G is C(O)Me.
246	W is O, X is S, R ¹ is Pr, R ² is I, and G is C(O)Et.
247	W is O, X is S, R ¹ is Pr, R ² is I, and G is C(O)-i-Pr.
248	W is O, X is S, R ¹ is Pr, R ² is I, and G is C(O)-t-Bu.
249	W is O, X is S, R ¹ is Pr, R ² is I, and G is CO ₂ Me.
250	W is O, X is S, R ¹ is Pr, R ² is I, and G is CO ₂ Et.
251	W is O, X is S, R ¹ is Pr, R ² is I, and G is CO ₂ -i-Pr.
252	W is O, X is S, R ¹ is Pr, R ² is I, and G is CO ₂ -t-Bu.
253	W is O, X is S, R ¹ is Pr, R ² is I, and G is SO ₂ Me.
254	W is O, X is S, R ¹ is Pr, R ² is OMe, and G is C(O)Me.
255	W is O, X is S, R ¹ is Pr, R ² is OMe, and G is C(O)Et.
256	W is O, X is S, R ¹ is Pr, R ² is OMe, and G is C(O)-i-Pr.
257	W is O, X is S, R ¹ is Pr, R ² is OMe, and G is C(O)-t-Bu.
258	W is O, X is S, R ¹ is Pr, R ² is OMe, and G is CO ₂ Me.
259	W is O, X is S, R ¹ is Pr, R ² is OMe, and G is CO ₂ Et.
260	W is O, X is S, R ¹ is Pr, R ² is OMe, and G is CO ₂ -i-Pr.
261	W is O, X is S, R ¹ is Pr, R ² is OMe, and G is CO ₂ -t-Bu.
262	W is O, X is S, R ¹ is Pr, R ² is OMe, and G is SO ₂ Me.
263	W is O, X is S, R ¹ is Pr, R ² is OEt, and G is C(O)Me.
264	W is O, X is S, R ¹ is Pr, R ² is OEt, and G is C(O)Et.
265	W is O, X is S, R ¹ is Pr, R ² is OEt, and G is C(O)-i-Pr.
266	W is O, X is S, R ¹ is Pr, R ² is OEt, and G is C(O)-t-Bu.
267	W is O, X is S, R ¹ is Pr, R ² is OEt, and G is CO ₂ Me.
268	W is O, X is S, R ¹ is Pr, R ² is OEt, and G is CO ₂ Et.
269	W is O, X is S, R ¹ is Pr, R ² is OEt, and G is CO ₂ -i-Pr.
270	W is O, X is S, R ¹ is Pr, R ² is OEt, and G is CO ₂ -t-Bu.
271	W is O, X is S, R ¹ is Pr, R ² is OEt, and G is SO ₂ Me.
272	W is O, X is -CH=CH-, R ¹ is Me, R ² is Me, and G is C(O)Me.
273	W is O, X is -CH=CH-, R ¹ is Me, R ² is Me, and G is C(O)Et.
274	W is O, X is -CH=CH-, R ¹ is Me, R ² is Me, and G is C(O)-i-Pr.
275	W is O, X is -CH=CH-, R ¹ is Me, R ² is Me, and G is C(O)-t-Bu.
276	W is O, X is -CH=CH-, R ¹ is Me, R ² is Me, and G is CO ₂ Me.
277	W is O, X is -CH=CH-, R ¹ is Me, R ² is Me, and G is CO ₂ Et.

278	W is O, X is -CH=CH-, R ¹ is Me, R ² is Me, and G is CO ₂ -i-Pr.
279	W is O, X is -CH=CH-, R ¹ is Me, R ² is Me, and G is CO ₂ -t-Bu.
280	W is O, X is -CH=CH-, R ¹ is Me, R ² is Me, and G is SO ₂ Me.
281	W is O, X is -CH=CH-, R ¹ is Me, R ² is H, and G is C(O)Me.
282	W is O, X is -CH=CH-, R ¹ is Me, R ² is H, and G is C(O)Et.
283	W is O, X is -CH=CH-, R ¹ is Me, R ² is H, and G is C(O)-i-Pr.
284	W is O, X is -CH=CH-, R ¹ is Me, R ² is H, and G is C(O)-t-Bu.
285	W is O, X is -CH=CH-, R ¹ is Me, R ² is H, and G is CO ₂ Me.
286	W is O, X is -CH=CH-, R ¹ is Me, R ² is H, and G is CO ₂ Et.
287	W is O, X is -CH=CH-, R ¹ is Me, R ² is H, and G is CO ₂ -i-Pr.
288	W is O, X is -CH=CH-, R ¹ is Me, R ² is H, and G is CO ₂ -t-Bu.
289	W is O, X is -CH=CH-, R ¹ is Me, R ² is H, and G is SO ₂ Me.
290	W is O, X is -CH=CH-, R ¹ is Me, R ² is Et, and G is C(O)Me.
291	W is O, X is -CH=CH-, R ¹ is Me, R ² is Et, and G is C(O)Et.
292	W is O, X is -CH=CH-, R ¹ is Me, R ² is Et, and G is C(O)-i-Pr.
293	W is O, X is -CH=CH-, R ¹ is Me, R ² is Et, and G is C(O)-t-Bu.
294	W is O, X is -CH=CH-, R ¹ is Me, R ² is Et, and G is CO ₂ Me.
295	W is O, X is -CH=CH-, R ¹ is Me, R ² is Et, and G is CO ₂ Et.
296	W is O, X is -CH=CH-, R ¹ is Me, R ² is Et, and G is CO ₂ -i-Pr.
297	W is O, X is -CH=CH-, R ¹ is Me, R ² is Et, and G is CO ₂ -t-Bu.
298	W is O, X is -CH=CH-, R ¹ is Me, R ² is Et, and G is SO ₂ Me.
299	W is O, X is -CH=CH-, R ¹ is Me, R ² is Pr, and G is C(O)Me.
300	W is O, X is -CH=CH-, R ¹ is Me, R ² is Pr, and G is C(O)Et.
301	W is O, X is -CH=CH-, R ¹ is Me, R ² is Pr, and G is C(O)-i-Pr.
302	W is O, X is -CH=CH-, R ¹ is Me, R ² is Pr, and G is C(O)-t-Bu.
303	W is O, X is -CH=CH-, R ¹ is Me, R ² is Pr, and G is CO ₂ Me.
304	W is O, X is -CH=CH-, R ¹ is Me, R ² is Pr, and G is CO ₂ Et.
305	W is O, X is -CH=CH-, R ¹ is Me, R ² is Pr, and G is CO ₂ -i-Pr.
306	W is O, X is -CH=CH-, R ¹ is Me, R ² is Pr, and G is CO ₂ -t-Bu.
307	W is O, X is -CH=CH-, R ¹ is Me, R ² is Pr, and G is SO ₂ Me.
308	W is O, X is -CH=CH-, R ¹ is Me, R ² is CF ₃ , and G is C(O)Me.
309	W is O, X is -CH=CH-, R ¹ is Me, R ² is CF ₃ , and G is C(O)Et.
310	W is O, X is -CH=CH-, R ¹ is Me, R ² is CF ₃ , and G is C(O)-i-Pr.
311	W is O, X is -CH=CH-, R ¹ is Me, R ² is CF ₃ , and G is C(O)-t-Bu.
312	W is O, X is -CH=CH-, R ¹ is Me, R ² is CF ₃ , and G is CO ₂ Me.

313	W is O, X is -CH=CH-, R ¹ is Me, R ² is CF ₃ , and G is CO ₂ Et.
314	W is O, X is -CH=CH-, R ¹ is Me, R ² is CF ₃ , and G is CO ₂ -i-Pr.
315	W is O, X is -CH=CH-, R ¹ is Me, R ² is CF ₃ , and G is CO ₂ -t-Bu.
316	W is O, X is -CH=CH-, R ¹ is Me, R ² is CF ₃ , and G is SO ₂ Me.
317	W is O, X is -CH=CH-, R ¹ is Me, R ² is Cl, and G is C(O)Me.
318	W is O, X is -CH=CH-, R ¹ is Me, R ² is Cl, and G is C(O)Et.
319	W is O, X is -CH=CH-, R ¹ is Me, R ² is Cl, and G is C(O)-i-Pr.
320	W is O, X is -CH=CH-, R ¹ is Me, R ² is Cl, and G is C(O)-t-Bu.
321	W is O, X is -CH=CH-, R ¹ is Me, R ² is Cl, and G is CO ₂ Me.
322	W is O, X is -CH=CH-, R ¹ is Me, R ² is Cl, and G is CO ₂ Et.
323	W is O, X is -CH=CH-, R ¹ is Me, R ² is Cl, and G is CO ₂ -i-Pr.
324	W is O, X is -CH=CH-, R ¹ is Me, R ² is Cl, and G is CO ₂ -t-Bu.
325	W is O, X is -CH=CH-, R ¹ is Me, R ² is Cl, and G is SO ₂ Me.
326	W is O, X is -CH=CH-, R ¹ is Me, R ² is Br, and G is C(O)Me.
327	W is O, X is -CH=CH-, R ¹ is Me, R ² is Br, and G is C(O)Et.
328	W is O, X is -CH=CH-, R ¹ is Me, R ² is Br, and G is C(O)-i-Pr.
329	W is O, X is -CH=CH-, R ¹ is Me, R ² is Br, and G is C(O)-t-Bu.
330	W is O, X is -CH=CH-, R ¹ is Me, R ² is Br, and G is CO ₂ Me.
331	W is O, X is -CH=CH-, R ¹ is Me, R ² is Br, and G is CO ₂ Et.
332	W is O, X is -CH=CH-, R ¹ is Me, R ² is Br, and G is CO ₂ -i-Pr.
333	W is O, X is -CH=CH-, R ¹ is Me, R ² is Br, and G is CO ₂ -t-Bu.
334	W is O, X is -CH=CH-, R ¹ is Me, R ² is Br, and G is SO ₂ Me.
335	W is O, X is -CH=CH-, R ¹ is Me, R ² is I, and G is C(O)Me.
336	W is O, X is -CH=CH-, R ¹ is Me, R ² is I, and G is C(O)Et.
337	W is O, X is -CH=CH-, R ¹ is Me, R ² is I, and G is C(O)-i-Pr.
338	W is O, X is -CH=CH-, R ¹ is Me, R ² is I, and G is C(O)-t-Bu.
339	W is O, X is -CH=CH-, R ¹ is Me, R ² is I, and G is CO ₂ Me.
340	W is O, X is -CH=CH-, R ¹ is Me, R ² is I, and G is CO ₂ Et.
341	W is O, X is -CH=CH-, R ¹ is Me, R ² is I, and G is CO ₂ -i-Pr.
342	W is O, X is -CH=CH-, R ¹ is Me, R ² is I, and G is CO ₂ -t-Bu.
343	W is O, X is -CH=CH-, R ¹ is Me, R ² is I, and G is SO ₂ Me.
344	W is O, X is -CH=CH-, R ¹ is Me, R ² is OMe, and G is C(O)Me.
345	W is O, X is -CH=CH-, R ¹ is Me, R ² is OMe, and G is C(O)Et.
346	W is O, X is -CH=CH-, R ¹ is Me, R ² is OMe, and G is C(O)-i-Pr.
347	W is O, X is -CH=CH-, R ¹ is Me, R ² is OMe, and G is C(O)-t-Bu.

348	W is O, X is -CH=CH-, R ¹ is Me, R ² is OMe, and G is CO ₂ Me.
349	W is O, X is -CH=CH-, R ¹ is Me, R ² is OMe, and G is CO ₂ Et.
350	W is O, X is -CH=CH-, R ¹ is Me, R ² is OMe, and G is CO ₂ -i-Pr.
351	W is O, X is -CH=CH-, R ¹ is Me, R ² is OMe, and G is CO ₂ -t-Bu.
352	W is O, X is -CH=CH-, R ¹ is Me, R ² is OMe, and G is SO ₂ Me.
353	W is O, X is -CH=CH-, R ¹ is Me, R ² is OEt, and G is C(O)Me.
354	W is O, X is -CH=CH-, R ¹ is Me, R ² is OEt, and G is C(O)Et.
355	W is O, X is -CH=CH-, R ¹ is Me, R ² is OEt, and G is C(O)-i-Pr.
356	W is O, X is -CH=CH-, R ¹ is Me, R ² is OEt, and G is C(O)-t-Bu.
357	W is O, X is -CH=CH-, R ¹ is Me, R ² is OEt, and G is CO ₂ Me.
358	W is O, X is -CH=CH-, R ¹ is Me, R ² is OEt, and G is CO ₂ Et.
359	W is O, X is -CH=CH-, R ¹ is Me, R ² is OEt, and G is CO ₂ -i-Pr.
360	W is O, X is -CH=CH-, R ¹ is Me, R ² is OEt, and G is CO ₂ -t-Bu.
361	W is O, X is -CH=CH-, R ¹ is Me, R ² is OEt, and G is SO ₂ Me.
362	W is O, X is -CH=CH-, R ¹ is Et, R ² is Me, and G is C(O)Me.
363	W is O, X is -CH=CH-, R ¹ is Et, R ² is Me, and G is C(O)Et.
364	W is O, X is -CH=CH-, R ¹ is Et, R ² is Me, and G is C(O)-i-Pr.
365	W is O, X is -CH=CH-, R ¹ is Et, R ² is Me, and G is C(O)-t-Bu.
366	W is O, X is -CH=CH-, R ¹ is Et, R ² is Me, and G is CO ₂ Me.
367	W is O, X is -CH=CH-, R ¹ is Et, R ² is Me, and G is CO ₂ Et.
368	W is O, X is -CH=CH-, R ¹ is Et, R ² is Me, and G is CO ₂ -i-Pr.
369	W is O, X is -CH=CH-, R ¹ is Et, R ² is Me, and G is CO ₂ -t-Bu.
370	W is O, X is -CH=CH-, R ¹ is Et, R ² is Me, and G is SO ₂ Me.
371	W is O, X is -CH=CH-, R ¹ is Et, R ² is H, and G is C(O)Me.
372	W is O, X is -CH=CH-, R ¹ is Et, R ² is H, and G is C(O)Et.
373	W is O, X is -CH=CH-, R ¹ is Et, R ² is H, and G is C(O)-i-Pr.
374	W is O, X is -CH=CH-, R ¹ is Et, R ² is H, and G is C(O)-t-Bu.
375	W is O, X is -CH=CH-, R ¹ is Et, R ² is H, and G is CO ₂ Me.
376	W is O, X is -CH=CH-, R ¹ is Et, R ² is H, and G is CO ₂ Et.
377	W is O, X is -CH=CH-, R ¹ is Et, R ² is H, and G is CO ₂ -i-Pr.
378	W is O, X is -CH=CH-, R ¹ is Et, R ² is H, and G is CO ₂ -t-Bu.
379	W is O, X is -CH=CH-, R ¹ is Et, R ² is H, and G is SO ₂ Me.
380	W is O, X is -CH=CH-, R ¹ is Et, R ² is Et, and G is C(O)Me.
381	W is O, X is -CH=CH-, R ¹ is Et, R ² is Et, and G is C(O)Et.

382	W is O, X is -CH=CH-, R ¹ is Et, R ² is Et, and G is C(O)- <i>i</i> -Pr.
383	W is O, X is -CH=CH-, R ¹ is Et, R ² is Et, and G is C(O)- <i>t</i> -Bu.
384	W is O, X is -CH=CH-, R ¹ is Et, R ² is Et, and G is CO ₂ Me.
385	W is O, X is -CH=CH-, R ¹ is Et, R ² is Et, and G is CO ₂ Et.
386	W is O, X is -CH=CH-, R ¹ is Et, R ² is Et, and G is CO ₂ - <i>i</i> -Pr.
387	W is O, X is -CH=CH-, R ¹ is Et, R ² is Et, and G is CO ₂ - <i>t</i> -Bu.
388	W is O, X is -CH=CH-, R ¹ is Et, R ² is Et, and G is SO ₂ Me.
389	W is O, X is -CH=CH-, R ¹ is Et, R ² is Pr, and G is C(O)Me.
390	W is O, X is -CH=CH-, R ¹ is Et, R ² is Pr, and G is C(O)Et.
391	W is O, X is -CH=CH-, R ¹ is Et, R ² is Pr, and G is C(O)- <i>i</i> -Pr.
392	W is O, X is -CH=CH-, R ¹ is Et, R ² is Pr, and G is C(O)- <i>t</i> -Bu.
393	W is O, X is -CH=CH-, R ¹ is Et, R ² is Pr, and G is CO ₂ Me.
394	W is O, X is -CH=CH-, R ¹ is Et, R ² is Pr, and G is CO ₂ Et.
395	W is O, X is -CH=CH-, R ¹ is Et, R ² is Pr, and G is CO ₂ - <i>i</i> -Pr.
396	W is O, X is -CH=CH-, R ¹ is Et, R ² is Pr, and G is CO ₂ - <i>t</i> -Bu.
397	W is O, X is -CH=CH-, R ¹ is Et, R ² is Pr, and G is SO ₂ Me.
398	W is O, X is -CH=CH-, R ¹ is Et, R ² is CF ₃ , and G is C(O)Me.
399	W is O, X is -CH=CH-, R ¹ is Et, R ² is CF ₃ , and G is C(O)Et.
400	W is O, X is -CH=CH-, R ¹ is Et, R ² is CF ₃ , and G is C(O)- <i>i</i> -Pr.
401	W is O, X is -CH=CH-, R ¹ is Et, R ² is CF ₃ , and G is C(O)- <i>t</i> -Bu.
402	W is O, X is -CH=CH-, R ¹ is Et, R ² is CF ₃ , and G is CO ₂ Me.
403	W is O, X is -CH=CH-, R ¹ is Et, R ² is CF ₃ , and G is CO ₂ Et.
404	W is O, X is -CH=CH-, R ¹ is Et, R ² is CF ₃ , and G is CO ₂ - <i>i</i> -Pr.
405	W is O, X is -CH=CH-, R ¹ is Et, R ² is CF ₃ , and G is CO ₂ - <i>t</i> -Bu.
406	W is O, X is -CH=CH-, R ¹ is Et, R ² is CF ₃ , and G is SO ₂ Me.
407	W is O, X is -CH=CH-, R ¹ is Et, R ² is Cl, and G is C(O)Me.
408	W is O, X is -CH=CH-, R ¹ is Et, R ² is Cl, and G is C(O)Et.
409	W is O, X is -CH=CH-, R ¹ is Et, R ² is Cl, and G is C(O)- <i>i</i> -Pr.
410	W is O, X is -CH=CH-, R ¹ is Et, R ² is Cl, and G is C(O)- <i>t</i> -Bu.
411	W is O, X is -CH=CH-, R ¹ is Et, R ² is Cl, and G is CO ₂ Me.
412	W is O, X is -CH=CH-, R ¹ is Et, R ² is Cl, and G is CO ₂ Et.
413	W is O, X is -CH=CH-, R ¹ is Et, R ² is Cl, and G is CO ₂ - <i>i</i> -Pr.
414	W is O, X is -CH=CH-, R ¹ is Et, R ² is Cl, and G is CO ₂ - <i>t</i> -Bu.
415	W is O, X is -CH=CH-, R ¹ is Et, R ² is Cl, and G is SO ₂ Me.
416	W is O, X is -CH=CH-, R ¹ is Et, R ² is Br, and G is C(O)Me.

417	W is O, X is -CH=CH-, R ¹ is Et, R ² is Br, and G is C(O)Et.
418	W is O, X is -CH=CH-, R ¹ is Et, R ² is Br, and G is C(O)-i-Pr.
419	W is O, X is -CH=CH-, R ¹ is Et, R ² is Br, and G is C(O)-t-Bu.
420	W is O, X is -CH=CH-, R ¹ is Et, R ² is Br, and G is CO ₂ Me.
421	W is O, X is -CH=CH-, R ¹ is Et, R ² is Br, and G is CO ₂ Et.
422	W is O, X is -CH=CH-, R ¹ is Et, R ² is Br, and G is CO ₂ -i-Pr.
423	W is O, X is -CH=CH-, R ¹ is Et, R ² is Br, and G is CO ₂ -t-Bu.
424	W is O, X is -CH=CH-, R ¹ is Et, R ² is Br, and G is SO ₂ Me.
425	W is O, X is -CH=CH-, R ¹ is Et, R ² is I, and G is C(O)Me.
426	W is O, X is -CH=CH-, R ¹ is Et, R ² is I, and G is C(O)Et.
427	W is O, X is -CH=CH-, R ¹ is Et, R ² is I, and G is C(O)-i-Pr.
428	W is O, X is -CH=CH-, R ¹ is Et, R ² is I, and G is C(O)-t-Bu.
429	W is O, X is -CH=CH-, R ¹ is Et, R ² is I, and G is CO ₂ Me.
430	W is O, X is -CH=CH-, R ¹ is Et, R ² is I, and G is CO ₂ Et.
431	W is O, X is -CH=CH-, R ¹ is Et, R ² is I, and G is CO ₂ -i-Pr.
432	W is O, X is -CH=CH-, R ¹ is Et, R ² is I, and G is CO ₂ -t-Bu.
433	W is O, X is -CH=CH-, R ¹ is Et, R ² is I, and G is SO ₂ Me.
434	W is O, X is -CH=CH-, R ¹ is Et, R ² is OMe, and G is C(O)Me.
435	W is O, X is -CH=CH-, R ¹ is Et, R ² is OMe, and G is C(O)Et.
436	W is O, X is -CH=CH-, R ¹ is Et, R ² is OMe, and G is C(O)-i-Pr.
437	W is O, X is -CH=CH-, R ¹ is Et, R ² is OMe, and G is C(O)-t-Bu.
438	W is O, X is -CH=CH-, R ¹ is Et, R ² is OMe, and G is CO ₂ Me.
439	W is O, X is -CH=CH-, R ¹ is Et, R ² is OMe, and G is CO ₂ Et.
440	W is O, X is -CH=CH-, R ¹ is Et, R ² is OMe, and G is CO ₂ -i-Pr.
441	W is O, X is -CH=CH-, R ¹ is Et, R ² is OMe, and G is CO ₂ -t-Bu.
442	W is O, X is -CH=CH-, R ¹ is Et, R ² is OMe, and G is SO ₂ Me.
443	W is O, X is -CH=CH-, R ¹ is Et, R ² is OEt, and G is C(O)Me.
444	W is O, X is -CH=CH-, R ¹ is Et, R ² is OEt, and G is C(O)Et.
445	W is O, X is -CH=CH-, R ¹ is Et, R ² is OEt, and G is C(O)-i-Pr.
446	W is O, X is -CH=CH-, R ¹ is Et, R ² is OEt, and G is C(O)-t-Bu.
447	W is O, X is -CH=CH-, R ¹ is Et, R ² is OEt, and G is CO ₂ Me.
448	W is O, X is -CH=CH-, R ¹ is Et, R ² is OEt, and G is CO ₂ Et.
449	W is O, X is -CH=CH-, R ¹ is Et, R ² is OEt, and G is CO ₂ -i-Pr.
450	W is O, X is -CH=CH-, R ¹ is Et, R ² is OEt, and G is CO ₂ -t-Bu.
451	W is O, X is -CH=CH-, R ¹ is Et, R ² is OEt, and G is SO ₂ Me.

452	W is O, X is -CH=CH-, R ¹ is Pr, R ² is Me, and G is C(O)Me.
453	W is O, X is -CH=CH-, R ¹ is Pr, R ² is Me, and G is C(O)Et.
454	W is O, X is -CH=CH-, R ¹ is Pr, R ² is Me, and G is C(O)-i-Pr.
455	W is O, X is -CH=CH-, R ¹ is Pr, R ² is Me, and G is C(O)-t-Bu.
456	W is O, X is -CH=CH-, R ¹ is Pr, R ² is Me, and G is CO ₂ Me.
457	W is O, X is -CH=CH-, R ¹ is Pr, R ² is Me, and G is CO ₂ Et.
458	W is O, X is -CH=CH-, R ¹ is Pr, R ² is Me, and G is CO ₂ -i-Pr.
459	W is O, X is -CH=CH-, R ¹ is Pr, R ² is Me, and G is CO ₂ -t-Bu.
460	W is O, X is -CH=CH-, R ¹ is Pr, R ² is Me, and G is SO ₂ Me.
461	W is O, X is -CH=CH-, R ¹ is Pr, R ² is H, and G is C(O)Me.
462	W is O, X is -CH=CH-, R ¹ is Pr, R ² is H, and G is C(O)Et.
463	W is O, X is -CH=CH-, R ¹ is Pr, R ² is H, and G is C(O)-i-Pr.
464	W is O, X is -CH=CH-, R ¹ is Pr, R ² is H, and G is C(O)-t-Bu.
465	W is O, X is -CH=CH-, R ¹ is Pr, R ² is H, and G is CO ₂ Me.
466	W is O, X is -CH=CH-, R ¹ is Pr, R ² is H, and G is CO ₂ Et.
467	W is O, X is -CH=CH-, R ¹ is Pr, R ² is H, and G is CO ₂ -i-Pr.
468	W is O, X is -CH=CH-, R ¹ is Pr, R ² is H, and G is CO ₂ -t-Bu.
469	W is O, X is -CH=CH-, R ¹ is Pr, R ² is H, and G is SO ₂ Me.
470	W is O, X is -CH=CH-, R ¹ is Pr, R ² is Et, and G is C(O)Me.
471	W is O, X is -CH=CH-, R ¹ is Pr, R ² is Et, and G is C(O)Et.
472	W is O, X is -CH=CH-, R ¹ is Pr, R ² is Et, and G is C(O)-i-Pr.
473	W is O, X is -CH=CH-, R ¹ is Pr, R ² is Et, and G is C(O)-t-Bu.
474	W is O, X is -CH=CH-, R ¹ is Pr, R ² is Et, and G is CO ₂ Me.
475	W is O, X is -CH=CH-, R ¹ is Pr, R ² is Et, and G is CO ₂ Et.
476	W is O, X is -CH=CH-, R ¹ is Pr, R ² is Et, and G is CO ₂ -i-Pr.
477	W is O, X is -CH=CH-, R ¹ is Pr, R ² is Et, and G is CO ₂ -t-Bu.
478	W is O, X is -CH=CH-, R ¹ is Pr, R ² is Et, and G is SO ₂ Me.
479	W is O, X is -CH=CH-, R ¹ is Pr, R ² is Pr, and G is C(O)Me.
480	W is O, X is -CH=CH-, R ¹ is Pr, R ² is Pr, and G is C(O)Et.
481	W is O, X is -CH=CH-, R ¹ is Pr, R ² is Pr, and G is C(O)-i-Pr.
482	W is O, X is -CH=CH-, R ¹ is Pr, R ² is Pr, and G is C(O)-t-Bu.
483	W is O, X is -CH=CH-, R ¹ is Pr, R ² is Pr, and G is CO ₂ Me.
484	W is O, X is -CH=CH-, R ¹ is Pr, R ² is Pr, and G is CO ₂ Et.
485	W is O, X is -CH=CH-, R ¹ is Pr, R ² is Pr, and G is CO ₂ -i-Pr.

486	W is O, X is -CH=CH-, R ¹ is Pr, R ² is Pr, and G is CO ₂ - <i>t</i> -Bu.
487	W is O, X is -CH=CH-, R ¹ is Pr, R ² is Pr, and G is SO ₂ Me.
488	W is O, X is -CH=CH-, R ¹ is Pr, R ² is CF ₃ , and G is C(O)Me.
489	W is O, X is -CH=CH-, R ¹ is Pr, R ² is CF ₃ , and G is C(O)Et.
490	W is O, X is -CH=CH-, R ¹ is Pr, R ² is CF ₃ , and G is C(O)- <i>i</i> -Pr.
491	W is O, X is -CH=CH-, R ¹ is Pr, R ² is CF ₃ , and G is C(O)- <i>t</i> -Bu.
492	W is O, X is -CH=CH-, R ¹ is Pr, R ² is CF ₃ , and G is CO ₂ Me.
493	W is O, X is -CH=CH-, R ¹ is Pr, R ² is CF ₃ , and G is CO ₂ Et.
494	W is O, X is -CH=CH-, R ¹ is Pr, R ² is CF ₃ , and G is CO ₂ - <i>i</i> -Pr.
495	W is O, X is -CH=CH-, R ¹ is Pr, R ² is CF ₃ , and G is CO ₂ - <i>t</i> -Bu.
496	W is O, X is -CH=CH-, R ¹ is Pr, R ² is CF ₃ , and G is SO ₂ Me.
497	W is O, X is -CH=CH-, R ¹ is Pr, R ² is Cl, and G is C(O)Me.
498	W is O, X is -CH=CH-, R ¹ is Pr, R ² is Cl, and G is C(O)Et.
499	W is O, X is -CH=CH-, R ¹ is Pr, R ² is Cl, and G is C(O)- <i>i</i> -Pr.
500	W is O, X is -CH=CH-, R ¹ is Pr, R ² is Cl, and G is C(O)- <i>t</i> -Bu.
501	W is O, X is -CH=CH-, R ¹ is Pr, R ² is Cl, and G is CO ₂ Me.
502	W is O, X is -CH=CH-, R ¹ is Pr, R ² is Cl, and G is CO ₂ Et.
503	W is O, X is -CH=CH-, R ¹ is Pr, R ² is Cl, and G is CO ₂ - <i>i</i> -Pr.
504	W is O, X is -CH=CH-, R ¹ is Pr, R ² is Cl, and G is CO ₂ - <i>t</i> -Bu.
505	W is O, X is -CH=CH-, R ¹ is Pr, R ² is Cl, and G is SO ₂ Me.
506	W is O, X is -CH=CH-, R ¹ is Pr, R ² is Br, and G is C(O)Me.
507	W is O, X is -CH=CH-, R ¹ is Pr, R ² is Br, and G is C(O)Et.
508	W is O, X is -CH=CH-, R ¹ is Pr, R ² is Br, and G is C(O)- <i>i</i> -Pr.
509	W is O, X is -CH=CH-, R ¹ is Pr, R ² is Br, and G is C(O)- <i>t</i> -Bu.
510	W is O, X is -CH=CH-, R ¹ is Pr, R ² is Br, and G is CO ₂ Me.
511	W is O, X is -CH=CH-, R ¹ is Pr, R ² is Br, and G is CO ₂ Et.
512	W is O, X is -CH=CH-, R ¹ is Pr, R ² is Br, and G is CO ₂ - <i>i</i> -Pr.
513	W is O, X is -CH=CH-, R ¹ is Pr, R ² is Br, and G is CO ₂ - <i>t</i> -Bu.
514	W is O, X is -CH=CH-, R ¹ is Pr, R ² is Br, and G is SO ₂ Me.
515	W is O, X is -CH=CH-, R ¹ is Pr, R ² is I, and G is C(O)Me.
516	W is O, X is -CH=CH-, R ¹ is Pr, R ² is I, and G is C(O)Et.
517	W is O, X is -CH=CH-, R ¹ is Pr, R ² is I, and G is C(O)- <i>i</i> -Pr.
518	W is O, X is -CH=CH-, R ¹ is Pr, R ² is I, and G is C(O)- <i>t</i> -Bu.
519	W is O, X is -CH=CH-, R ¹ is Pr, R ² is I, and G is CO ₂ Me.
520	W is O, X is -CH=CH-, R ¹ is Pr, R ² is I, and G is CO ₂ Et.

521	W is O, X is -CH=CH-, R ¹ is Pr, R ² is I, and G is CO ₂ -i-Pr.
522	W is O, X is -CH=CH-, R ¹ is Pr, R ² is I, and G is CO ₂ -t-Bu.
523	W is O, X is -CH=CH-, R ¹ is Pr, R ² is I, and G is SO ₂ Me.
524	W is O, X is -CH=CH-, R ¹ is Pr, R ² is OMe, and G is C(O)Me.
525	W is O, X is -CH=CH-, R ¹ is Pr, R ² is OMe, and G is C(O)Et.
526	W is O, X is -CH=CH-, R ¹ is Pr, R ² is OMe, and G is C(O)-i-Pr.
527	W is O, X is -CH=CH-, R ¹ is Pr, R ² is OMe, and G is C(O)-t-Bu.
528	W is O, X is -CH=CH-, R ¹ is Pr, R ² is OMe, and G is CO ₂ Me.
529	W is O, X is -CH=CH-, R ¹ is Pr, R ² is OMe, and G is CO ₂ Et.
530	W is O, X is -CH=CH-, R ¹ is Pr, R ² is OMe, and G is CO ₂ -i-Pr.
531	W is O, X is -CH=CH-, R ¹ is Pr, R ² is OMe, and G is CO ₂ -t-Bu.
532	W is O, X is -CH=CH-, R ¹ is Pr, R ² is OMe, and G is SO ₂ Me.
533	W is O, X is -CH=CH-, R ¹ is Pr, R ² is OEt, and G is C(O)Me.
534	W is O, X is -CH=CH-, R ¹ is Pr, R ² is OEt, and G is C(O)Et.
535	W is O, X is -CH=CH-, R ¹ is Pr, R ² is OEt, and G is C(O)-i-Pr.
536	W is O, X is -CH=CH-, R ¹ is Pr, R ² is OEt, and G is C(O)-t-Bu.
537	W is O, X is -CH=CH-, R ¹ is Pr, R ² is OEt, and G is CO ₂ Me.
538	W is O, X is -CH=CH-, R ¹ is Pr, R ² is OEt, and G is CO ₂ Et.
539	W is O, X is -CH=CH-, R ¹ is Pr, R ² is OEt, and G is CO ₂ -i-Pr.
540	W is O, X is -CH=CH-, R ¹ is Pr, R ² is OEt, and G is CO ₂ -t-Bu.
541	W is O, X is -CH=CH-, R ¹ is Pr, R ² is OEt, and G is SO ₂ Me.
542	W is O, X is S, R ¹ is CH ₂ CF ₃ , R ² is Me, and G is H.
543	W is O, X is S, R ¹ is CH ₂ CF ₃ , R ² is Me, and G is C(O)Me.
544	W is O, X is S, R ¹ is CH ₂ CF ₃ , R ² is Me, and G is CO ₂ Me.
545	W is O, X is S, R ¹ is CH ₂ CF ₃ , R ² is Br, and G is H.
546	W is O, X is S, R ¹ is CH ₂ CF ₃ , R ² is Br, and G is C(O)Me.
547	W is O, X is S, R ¹ is CH ₂ CF ₃ , R ² is Br, and G is CO ₂ Me.
548	W is O, X is S, R ¹ is CH ₂ CH ₂ CN, R ² is Me, and G is H.
549	W is O, X is S, R ¹ is CH ₂ CH ₂ CN, R ² is Me, and G is C(O)Me.
550	W is O, X is S, R ¹ is CH ₂ CH ₂ CN, R ² is Me, and G is CO ₂ Me.
551	W is O, X is S, R ¹ is CH ₂ CH ₂ CN, R ² is Br, and G is H.
552	W is O, X is S, R ¹ is CH ₂ CH ₂ CN, R ² is Br, and G is C(O)Me.
553	W is O, X is S, R ¹ is CH ₂ CH ₂ CN, R ² is Br, and G is CO ₂ Me.

554	W is O, X is -CH=CH-, R ¹ is CH ₂ CF ₃ , R ² is Me, and G is H.
555	W is O, X is -CH=CH-, R ¹ is CH ₂ CF ₃ , R ² is Me, and G is C(O)Me.
556	W is O, X is -CH=CH-, R ¹ is CH ₂ CF ₃ , R ² is Me, and G is CO ₂ Me.
557	W is O, X is -CH=CH-, R ¹ is CH ₂ CF ₃ , R ² is Br, and G is H.
558	W is O, X is -CH=CH-, R ¹ is CH ₂ CF ₃ , R ² is Br, and G is C(O)Me.
559	W is O, X is -CH=CH-, R ¹ is CH ₂ CF ₃ , R ² is Br, and G is CO ₂ Me.
560	W is O, X is -CH=CH-, R ¹ is CH ₂ CH ₂ CN, R ² is Me, and G is H.
561	W is O, X is -CH=CH-, R ¹ is CH ₂ CH ₂ CN, R ² is Me, and G is C(O)Me.
562	W is O, X is -CH=CH-, R ¹ is CH ₂ CH ₂ CN, R ² is Me, and G is CO ₂ Me.
563	W is O, X is -CH=CH-, R ¹ is CH ₂ CH ₂ CN, R ² is Br, and G is H.
564	W is O, X is -CH=CH-, R ¹ is CH ₂ CH ₂ CN, R ² is Br, and G is C(O)Me.
565	W is O, X is -CH=CH-, R ¹ is CH ₂ CH ₂ CN, R ² is Br, and G is CO ₂ Me.
566	W is O, X is O, R ¹ is Me, R ² is Me, and G is H.
567	W is O, X is O, R ¹ is Me, R ² is Me, and G is C(O)Me.
568	W is O, X is O, R ¹ is Me, R ² is Me, and G is CO ₂ Me.
569	W is O, X is O, R ¹ is Me, R ² is Br, and G is H.
570	W is O, X is O, R ¹ is Me, R ² is Br, and G is C(O)Me.
571	W is O, X is O, R ¹ is Me, R ² is Br, and G is CO ₂ Me.
572	W is O, X is -CH=C(Me)-, R ¹ is Me, R ² is Me, and G is H.
573	W is O, X is -CH=C(Me)-, R ¹ is Me, R ² is Me, and G is C(O)Me.
574	W is O, X is -CH=C(Me)-, R ¹ is Me, R ² is Me, and G is CO ₂ Me.
575	W is O, X is -CH=C(Me)-, R ¹ is Me, R ² is Br, and G is H.
576	W is O, X is -CH=C(Me)-, R ¹ is Me, R ² is Br, and G is C(O)Me.
577	W is O, X is -CH=C(Me)-, R ¹ is Me, R ² is Br, and G is CO ₂ Me.
578	W is O, X is N(Me), R ¹ is Me, R ² is Me, and G is H.
579	W is O, X is N(Me), R ¹ is Me, R ² is Me, and G is C(O)Me.
580	W is O, X is N(Me), R ¹ is Me, R ² is Me, and G is CO ₂ Me.
581	W is O, X is N(Me), R ¹ is Me, R ² is Br, and G is H.
582	W is O, X is N(Me), R ¹ is Me, R ² is Br, and G is C(O)Me.
583	W is O, X is N(Me), R ¹ is Me, R ² is Br, and G is CO ₂ Me.
584	W is O, X is -CH=C(F)-, R ¹ is Me, R ² is Me, and G is H.
585	W is O, X is -CH=C(F)-, R ¹ is Me, R ² is Me, and G is C(O)Me.
586	W is O, X is -CH=C(F)-, R ¹ is Me, R ² is Me, and G is CO ₂ Me.
587	W is O, X is -CH=C(F)-, R ¹ is Me, R ² is Br, and G is H.

588	W is O, X is -CH=C(F)-, R ¹ is Me, R ² is Br, and G is C(O)Me.
589	W is O, X is -CH=C(F)-, R ¹ is Me, R ² is Br, and G is CO ₂ Me.
590	W is O, X is -CH=C(Cl)-, R ¹ is Me, R ² is Me, and G is H.
591	W is O, X is -CH=C(Cl)-, R ¹ is Me, R ² is Me, and G is C(O)Me.
592	W is O, X is -CH=C(Cl)-, R ¹ is Me, R ² is Me, and G is CO ₂ Me.
593	W is O, X is -CH=C(Cl)-, R ¹ is Me, R ² is Br, and G is H.
594	W is O, X is -CH=C(Cl)-, R ¹ is Me, R ² is Br, and G is C(O)Me.
595	W is O, X is -CH=C(Cl)-, R ¹ is Me, R ² is Br, and G is CO ₂ Me.
596	W is O, X is -CH=C(OMe)-, R ¹ is Me, R ² is Me, and G is H.
597	W is O, X is -CH=C(OMe)-, R ¹ is Me, R ² is Me, and G is C(O)Me.
598	W is O, X is -CH=C(OMe)-, R ¹ is Me, R ² is Me, and G is CO ₂ Me.
599	W is O, X is -CH=C(OMe)-, R ¹ is Me, R ² is Br, and G is H.
600	W is O, X is -CH=C(OMe)-, R ¹ is Me, R ² is Br, and G is C(O)Me.
601	W is O, X is -CH=C(OMe)-, R ¹ is Me, R ² is Br, and G is CO ₂ Me.
602	W is O, X is -CH=C(CN)-, R ¹ is Me, R ² is Me, and G is H.
603	W is O, X is -CH=C(CN)-, R ¹ is Me, R ² is Me, and G is C(O)Me.
604	W is O, X is -CH=C(CN)-, R ¹ is Me, R ² is Me, and G is CO ₂ Me.
605	W is O, X is -CH=C(CN)-, R ¹ is Me, R ² is Br, and G is H.
606	W is O, X is -CH=C(CN)-, R ¹ is Me, R ² is Br, and G is C(O)Me.
607	W is O, X is -CH=C(CN)-, R ¹ is Me, R ² is Br, and G is CO ₂ Me.
608	W is S, X is S, R ¹ is Me, R ² is Me, and G is H.
609	W is S, X is S, R ¹ is Me, R ² is Me, and G is C(O)Me.
610	W is S, X is S, R ¹ is Me, R ² is Me, and G is CO ₂ Me.
611	W is S, X is S, R ¹ is Me, R ² is Br, and G is H.
612	W is S, X is S, R ¹ is Me, R ² is Br, and G is C(O)Me.
613	W is S, X is S, R ¹ is Me, R ² is Br, and G is CO ₂ Me.
614	W is S, X is -CH=CH-, R ¹ is Me, R ² is Me, and G is H.
615	W is S, X is -CH=CH-, R ¹ is Me, R ² is Me, and G is C(O)Me.
616	W is S, X is -CH=CH-, R ¹ is Me, R ² is Me, and G is CO ₂ Me.
617	W is S, X is -CH=CH-, R ¹ is Me, R ² is Br, and G is H.
618	W is S, X is -CH=CH-, R ¹ is Me, R ² is Br, and G is C(O)Me.
619	W is S, X is -CH=CH-, R ¹ is Me, R ² is Br, and G is CO ₂ Me.
620	W is O, X is -CH=CH-, R ¹ is CH ₃ , R ² is Me, and G is H.

621	W is S, X is -CH=CH-, R ¹ is CH ₃ , R ² is Me, and G is H.
622	W is O, X is -CH=CH-, R ¹ is CH ₂ CH ₃ , R ² is Me, and G is H.
623	W is S, X is -CH=CH-, R ¹ is CH ₂ CH ₃ , R ² is Me, and G is H.
624	W is O, X is -CH=CH-, R ¹ is CH ₃ , R ² is Et, and G is H.
625	W is S, X is -CH=CH-, R ¹ is CH ₃ , R ² is Et, and G is H.
626	W is O, X is -CH=CH-, R ¹ is CH ₂ CH ₃ , R ² is Et, and G is H.
627	W is S, X is -CH=CH-, R ¹ is CH ₂ CH ₃ , R ² is Et, and G is H.

Formulation/Utility

A compound of this invention will generally be used as a herbicidal active ingredient in a composition, i.e. formulation, with at least one additional component selected from the group consisting of surfactants, solid diluents and liquid diluents, which serves as a carrier.

5 The formulation or composition ingredients are selected to be consistent with the physical properties of the active ingredient, mode of application and environmental factors such as soil type, moisture and temperature.

Useful formulations include both liquid and solid compositions. Liquid compositions include solutions (including emulsifiable concentrates), suspensions, emulsions (including 10 microemulsions, oil-in -water emulsions, flowable concentrates and/or suspoemulsions) and the like, which optionally can be thickened into gels. The general types of aqueous liquid compositions are soluble concentrate, suspension concentrate, capsule suspension, concentrated emulsion, microemulsion, oil-in-water emulsion, flowable concentrate and suspo-emulsion. The general types of nonaqueous liquid compositions are emulsifiable 15 concentrate, microemulsifiable concentrate, dispersible concentrate and oil dispersion.

The general types of solid compositions are dusts, powders, granules, pellets, prills, pastilles, tablets, filled films (including seed coatings) and the like, which can be water-dispersible (“wettable”) or water-soluble. Films and coatings formed from film-forming solutions or flowable suspensions are particularly useful for seed treatment. Active 20 ingredient can be (micro)encapsulated and further formed into a suspension or solid formulation; alternatively the entire formulation of active ingredient can be encapsulated (or “overcoated”). Encapsulation can control or delay release of the active ingredient. An emulsifiable granule combines the advantages of both an emulsifiable concentrate formulation and a dry granular formulation. High-strength compositions are primarily used 25 as intermediates for further formulation.

Sprayable formulations are typically extended in a suitable medium before spraying. Such liquid and solid formulations are formulated to be readily diluted in the spray medium, usually water, but occasionally another suitable medium like an aromatic or paraffinic

hydrocarbon or vegetable oil. Spray volumes can range from about one to several thousand liters per hectare, but more typically are in the range from about ten to several hundred liters per hectare. Sprayable formulations can be tank mixed with water or another suitable medium for foliar treatment by aerial or ground application, or for application to the growing medium of the plant. Liquid and dry formulations can be metered directly into drip irrigation systems or metered into the furrow during planting.

The formulations will typically contain effective amounts of active ingredient, diluent and surfactant within the following approximate ranges which add up to 100 percent by weight.

	Weight Percent		
	<u>Active Ingredient</u>	<u>Diluent</u>	<u>Surfactant</u>
Water-Dispersible and Water-soluble Granules, Tablets and Powders	0.001-90	0-99.999	0-15
Oil Dispersions, Suspensions, Emulsions, Solutions (including Emulsifiable Concentrates)	1-50	40-99	0-50
Dusts	1-25	70-99	0-5
Granules and Pellets	0.001-99	5-99.999	0-15
High Strength Compositions	90-99	0-10	0-2

10 Solid diluents include, for example, clays such as bentonite, montmorillonite, attapulgite and kaolin, gypsum, cellulose, titanium dioxide, zinc oxide, starch, dextrin, sugars (e.g., lactose, sucrose), silica, talc, mica, diatomaceous earth, urea, calcium carbonate, sodium carbonate and bicarbonate, and sodium sulfate. Typical solid diluents are described in Watkins et al., *Handbook of Insecticide Dust Diluents and Carriers*, 2nd Ed., Dorland Books, Caldwell, New Jersey.

15 Liquid diluents include, for example, water, *N,N*-dimethylalkanamides (e.g., *N,N*-dimethylformamide), limonene, dimethyl sulfoxide, *N*-alkylpyrrolidones (e.g., *N*-methylpyrrolidinone), alkyl phosphates (e.g., triethyl phosphate), ethylene glycol, triethylene glycol, propylene glycol, dipropylene glycol, polypropylene glycol, propylene 20 carbonate, butylene carbonate, paraffins (e.g., white mineral oils, normal paraffins, isoparaffins), alkylbenzenes, alkylnaphthalenes, glycerine, glycerol triacetate, sorbitol, aromatic hydrocarbons, dearomatized aliphatics, alkylbenzenes, alkylnaphthalenes, ketones such as cyclohexanone, 2-heptanone, isophorone and 4-hydroxy-4-methyl-2-pentanone, acetates such as isoamyl acetate, hexyl acetate, heptyl acetate, octyl acetate, nonyl acetate, 25 tridecyl acetate and isobornyl acetate, other esters such as alkylated lactate esters, dibasic

esters, alkyl and aryl benzoates and γ -butyrolactone, and alcohols, which can be linear, branched, saturated or unsaturated, such as methanol, ethanol, *n*-propanol, isopropyl alcohol, *n*-butanol, isobutyl alcohol, *n*-hexanol, 2-ethylhexanol, *n*-octanol, decanol, isodecyl alcohol, isooctadecanol, cetyl alcohol, lauryl alcohol, tridecyl alcohol, oleyl alcohol, cyclohexanol, 5 tetrahydrofurfuryl alcohol, diacetone alcohol, cresol and benzyl alcohol. Liquid diluents also include glycerol esters of saturated and unsaturated fatty acids (typically C₆–C₂₂), such as plant seed and fruit oils (e.g., oils of olive, castor, linseed, sesame, corn (maize), peanut, sunflower, grapeseed, safflower, cottonseed, soybean, rapeseed, coconut and palm kernel), animal-sourced fats (e.g., beef tallow, pork tallow, lard, cod liver oil, fish 10 oil), and mixtures thereof. Liquid diluents also include alkylated fatty acids (e.g., methylated, ethylated, butylated) wherein the fatty acids may be obtained by hydrolysis of glycerol esters from plant and animal sources, and can be purified by distillation. Typical 15 liquid diluents are described in Marsden, *Solvents Guide*, 2nd Ed., Interscience, New York, 1950.

15 The solid and liquid compositions of the present invention often include one or more surfactants. When added to a liquid, surfactants (also known as “surface-active agents”) generally modify, most often reduce, the surface tension of the liquid. Depending on the nature of the hydrophilic and lipophilic groups in a surfactant molecule, surfactants can be useful as wetting agents, dispersants, emulsifiers or defoaming agents.

20 Surfactants can be classified as nonionic, anionic or cationic. Nonionic surfactants useful for the present compositions include, but are not limited to: alcohol alkoxylates such as alcohol alkoxylates based on natural and synthetic alcohols (which may be branched or linear) and prepared from the alcohols and ethylene oxide, propylene oxide, butylene oxide or mixtures thereof; amine ethoxylates, alkanolamides and ethoxylated alkanolamides; 25 alkoxyated triglycerides such as ethoxylated soybean, castor and rapeseed oils; alkylphenol alkoxylates such as octylphenol ethoxylates, nonylphenol ethoxylates, dinonyl phenol ethoxylates and dodecyl phenol ethoxylates (prepared from the phenols and ethylene oxide, propylene oxide, butylene oxide or mixtures thereof); block polymers prepared from ethylene oxide or propylene oxide and reverse block polymers where the terminal blocks are 30 prepared from propylene oxide; ethoxylated fatty acids; ethoxylated fatty esters and oils; ethoxylated methyl esters; ethoxylated tristyrylphenol (including those prepared from ethylene oxide, propylene oxide, butylene oxide or mixtures thereof); fatty acid esters, glycerol esters, lanolin-based derivatives, polyethoxylate esters such as polyethoxylated sorbitan fatty acid esters, polyethoxylated sorbitol fatty acid esters and polyethoxylated 35 glycerol fatty acid esters; other sorbitan derivatives such as sorbitan esters; polymeric surfactants such as random copolymers, block copolymers, alkyd peg (polyethylene glycol)

resins, graft or comb polymers and star polymers; polyethylene glycols (pegs); polyethylene glycol fatty acid esters; silicone-based surfactants; and sugar-derivatives such as sucrose esters, alkyl polyglycosides and alkyl polysaccharides.

Useful anionic surfactants include, but are not limited to: alkylaryl sulfonic acids and 5 their salts; carboxylated alcohol or alkylphenol ethoxylates; diphenyl sulfonate derivatives; lignin and lignin derivatives such as lignosulfonates; maleic or succinic acids or their anhydrides; olefin sulfonates; phosphate esters such as phosphate esters of alcohol alkoxylates, phosphate esters of alkylphenol alkoxylates and phosphate esters of styryl phenol ethoxylates; protein-based surfactants; sarcosine derivatives; styryl phenol ether 10 sulfate; sulfates and sulfonates of oils and fatty acids; sulfates and sulfonates of ethoxylated alkylphenols; sulfates of alcohols; sulfates of ethoxylated alcohols; sulfonates of amines and amides such as *N,N*-alkyltaurates; sulfonates of benzene, cumene, toluene, xylene, and dodecyl and tridecylbenzenes; sulfonates of condensed naphthalenes; sulfonates of naphthalene and alkyl naphthalene; sulfonates of fractionated petroleum; sulfosuccinamates; 15 and sulfosuccinates and their derivatives such as dialkyl sulfosuccinate salts.

Useful cationic surfactants include, but are not limited to: amides and ethoxylated amides; amines such as *N*-alkyl propanediamines, tripropylenetriamines and dipropylenetetramines, and ethoxylated amines, ethoxylated diamines and propoxylated amines (prepared from the amines and ethylene oxide, propylene oxide, butylene oxide or 20 mixtures thereof); amine salts such as amine acetates and diamine salts; quaternary ammonium salts such as quaternary salts, ethoxylated quaternary salts and diquaternary salts; and amine oxides such as alkyldimethylamine oxides and bis-(2-hydroxyethyl)-alkylamine oxides.

Also useful for the present compositions are mixtures of nonionic and anionic 25 surfactants or mixtures of nonionic and cationic surfactants. Nonionic, anionic and cationic surfactants and their recommended uses are disclosed in a variety of published references including *McCutcheon's Emulsifiers and Detergents*, annual American and International Editions published by McCutcheon's Division, The Manufacturing Confectioner Publishing Co.; Sisely and Wood, *Encyclopedia of Surface Active Agents*, Chemical Publ. Co., Inc., 30 New York, 1964; and A. S. Davidson and B. Milwidsky, *Synthetic Detergents*, Seventh Edition, John Wiley and Sons, New York, 1987.

Compositions of this invention may also contain formulation auxiliaries and additives, known to those skilled in the art as formulation aids (some of which may be considered to 35 also function as solid diluents, liquid diluents or surfactants). Such formulation auxiliaries and additives may control: pH (buffers), foaming during processing (antifoams such polyorganosiloxanes), sedimentation of active ingredients (suspending agents), viscosity

(thixotropic thickeners), in-container microbial growth (antimicrobials), product freezing (antifreezes), color (dyes/pigment dispersions), wash-off (film formers or stickers), evaporation (evaporation retardants), and other formulation attributes. Film formers include, for example, polyvinyl acetates, polyvinyl acetate copolymers, polyvinylpyrrolidone-vinyl acetate copolymer, polyvinyl alcohols, polyvinyl alcohol copolymers and waxes. Examples of formulation auxiliaries and additives include those listed in *McCutcheon's Volume 2: Functional Materials*, annual International and North American editions published by McCutcheon's Division, The Manufacturing Confectioner Publishing Co.; and PCT Publication WO 03/024222.

The compound of Formula 1 and any other active ingredients are typically incorporated into the present compositions by dissolving the active ingredient in a solvent or by grinding in a liquid or dry diluent. Solutions, including emulsifiable concentrates, can be prepared by simply mixing the ingredients. If the solvent of a liquid composition intended for use as an emulsifiable concentrate is water-immiscible, an emulsifier is typically added to emulsify the active-containing solvent upon dilution with water. Active ingredient slurries, with particle diameters of up to 2,000 μm can be wet milled using media mills to obtain particles with average diameters below 3 μm . Aqueous slurries can be made into finished suspension concentrates (see, for example, U.S. 3,060,084) or further processed by spray drying to form water-dispersible granules. Dry formulations usually require dry milling processes, which produce average particle diameters in the 2 to 10 μm range. Dusts and powders can be prepared by blending and usually grinding (such as with a hammer mill or fluid-energy mill). Granules and pellets can be prepared by spraying the active material upon preformed granular carriers or by agglomeration techniques. See Browning, "Agglomeration", *Chemical Engineering*, December 4, 1967, pp 147-48, *Perry's Chemical Engineer's Handbook*, 4th Ed., McGraw-Hill, New York, 1963, pages 8-57 and following, and WO 91/13546. Pellets can be prepared as described in U.S. 4,172,714. Water-dispersible and water-soluble granules can be prepared as taught in U.S. 4,144,050, U.S. 3,920,442 and DE 3,246,493. Tablets can be prepared as taught in U.S. 5,180,587, U.S. 5,232,701 and U.S. 5,208,030. Films can be prepared as taught in GB 2,095,558 and U.S. 3,299,566.

For further information regarding the art of formulation, see T. S. Woods, "The Formulator's Toolbox – Product Forms for Modern Agriculture" in *Pesticide Chemistry and Bioscience, The Food-Environment Challenge*, T. Brooks and T. R. Roberts, Eds., Proceedings of the 9th International Congress on Pesticide Chemistry, The Royal Society of Chemistry, Cambridge, 1999, pp. 120-133. See also U.S. 3,235,361, Col. 6, line 16 through Col. 7, line 19 and Examples 10-41; U.S. 3,309,192, Col. 5, line 43 through Col. 7, line 62

and Examples 8, 12, 15, 39, 41, 52, 53, 58, 132, 138–140, 162–164, 166, 167 and 169–182; U.S. 2,891,855, Col. 3, line 66 through Col. 5, line 17 and Examples 1–4; Klingman, *Weed Control as a Science*, John Wiley and Sons, Inc., New York, 1961, pp 81–96; Hance et al., *Weed Control Handbook*, 8th Ed., Blackwell Scientific Publications, Oxford, 1989; and

5 *Developments in formulation technology*, PJB Publications, Richmond, UK, 2000.

In the following Examples, all percentages are by weight and all formulations are prepared in conventional ways. Compound numbers refer to compounds in Index Table A. Without further elaboration, it is believed that one skilled in the art using the preceding description can utilize the present invention to its fullest extent. The following non-limiting
10 Examples are illustrative of the invention. Percentages are by weight except where otherwise indicated.

Example A

High Strength Concentrate

Compound 1	98.5%
silica aerogel	0.5%
synthetic amorphous fine silica	1.0%

Example B

Wettable Powder

Compound 1	65.0%
dodecylphenol polyethylene glycol ether	2.0%
sodium ligninsulfonate	4.0%
sodium silicoaluminate	6.0%
montmorillonite (calcined)	23.0%

Example C

Granule

Compound 1	10.0%
attapulgite granules (low volatile matter, 0.71/0.30 mm; U.S.S. No. 25–50 sieves)	90.0%

15

Example D

Extruded Pellet

Compound 1	25.0%
anhydrous sodium sulfate	10.0%
crude calcium ligninsulfonate	5.0%
sodium alkylnaphthalenesulfonate	1.0%
calcium/magnesium bentonite	59.0%

Example EEmulsifiable Concentrate

Compound 1	10.0%
polyoxyethylene sorbitol hexoleate	20.0%
C ₆ –C ₁₀ fatty acid methyl ester	70.0%

Example FMicroemulsion

Compound 1	5.0%
polyvinylpyrrolidone-vinyl acetate copolymer	30.0%
alkylpolyglycoside	30.0%
glyceryl monooleate	15.0%
water	20.0%

Example GSuspension Concentrate

Compound 1	35%
butyl polyoxyethylene/polypropylene block copolymer	4.0%
stearic acid/polyethylene glycol copolymer	1.0%
styrene acrylic polymer	1.0%
xanthan gum	0.1%
propylene glycol	5.0%
silicone based defoamer	0.1%
1,2-benzisothiazolin-3-one	0.1%
water	53.7%

Example HEmulsion in Water

Compound 1	10.0%
butyl polyoxyethylene/polypropylene block copolymer	4.0%
stearic acid/polyethylene glycol copolymer	1.0%
styrene acrylic polymer	1.0%
xanthan gum	0.1%
propylene glycol	5.0%
silicone based defoamer	0.1%
1,2-benzisothiazolin-3-one	0.1%
aromatic petroleum based hydrocarbon	20.0
water	58.7%

Example IOil Dispersion

Compound 1	25%
polyoxyethylene sorbitol hexaoleate	15%
organically modified bentonite clay	2.5%
fatty acid methyl ester	57.5%

The present disclosure also includes Examples A through I above except the “Compound 1” is replaced with “Compound 2”, “Compound 3”, “Compound 4”, “Compound 5”, “Compound 6”, “Compound 7”, “Compound 8”, “Compound 9”, 5 “Compound 10”, “Compound 11”, “Compound 12”, “Compound 13”, “Compound 14”, “Compound 15”, “Compound 16”, “Compound 17”, “Compound 18”, “Compound 19”, “Compound 20”, “Compound 21”, “Compound 22”, “Compound 23”, “Compound 24”, “Compound 25”, “Compound 26”, “Compound 27”, “Compound 28”, “Compound 29”, 10 “Compound 30”, “Compound 31”, “Compound 32”, “Compound 33”, “Compound 34”, “Compound 35”, “Compound 36”, “Compound 37”, “Compound 38”, “Compound 39”, “Compound 40”, “Compound 41”, “Compound 42”, “Compound 43”, “Compound 44”, “Compound 45”, “Compound 46”, “Compound 47”, “Compound 48”, “Compound 49”, “Compound 50”, “Compound 51”, “Compound 52”, “Compound 53”, “Compound 54”, “Compound 55”, “Compound 56”, “Compound 57”, “Compound 58”, “Compound 59”, 15 “Compound 60”, “Compound 61”, “Compound 62”, “Compound 63”, “Compound 64”, “Compound 65”, “Compound 66”, “Compound 67”, “Compound 68”, “Compound 69”, “Compound 70”, “Compound 71”, “Compound 72”, “Compound 73”, “Compound 74”, “Compound 75”, “Compound 76”, “Compound 77”, “Compound 78”, “Compound 79”, “Compound 80”, “Compound 81”, “Compound 82”, “Compound 83”, “Compound 84”, 20 “Compound 85”, “Compound 86”, “Compound 87”, “Compound 88”, “Compound 89”, “Compound 90”, “Compound 91”, “Compound 92”, “Compound 93”, “Compound 94”, “Compound 95”, “Compound 96”, “Compound 97”, “Compound 98”, “Compound 99”, “Compound 100”, “Compound 101”, “Compound 102”, “Compound 103”, “Compound 104”, “Compound 105”, “Compound 106”, “Compound 107”, “Compound 108”, 25 “Compound 109”, “Compound 110”, “Compound 111”, “Compound 112”, “Compound 113”, “Compound 114”, “Compound 115”, “Compound 116”, “Compound 117”, “Compound 118”, “Compound 119”, “Compound 120”, “Compound 121”, “Compound 122”, “Compound 123”, “Compound 124”, “Compound 125”, “Compound 126”, “Compound 127”, “Compound 128”, “Compound 129”, “Compound 130”, “Compound 30 131”, “Compound 132”, “Compound 133”, “Compound 134”, “Compound 135”, “Compound 136”, “Compound 137”, “Compound 138”, “Compound 139”, “Compound

140”, “Compound 141”, “Compound 142”, “Compound 143”, “Compound 144”,
“Compound 145”, “Compound 146”, “Compound 147”, “Compound 148”, “Compound
149”, “Compound 150”, “Compound 151”, “Compound 152”, “Compound 153”,
“Compound 154”, “Compound 155”, “Compound 156”, “Compound 157”, “Compound
5 158”, “Compound 159”, “Compound 160”, “Compound 161”, “Compound 162”,
“Compound 163”, “Compound 164”, “Compound 165”, “Compound 166”, “Compound
167”, “Compound 168”, “Compound 169”, “Compound 170”, “Compound 171”,
“Compound 172”, “Compound 173”, “Compound 174”, “Compound 175”, “Compound
10 176”, “Compound 177”, “Compound 178”, “Compound 179”, “Compound 180”,
“Compound 181”, “Compound 182”, “Compound 183”, “Compound 184”, “Compound
185”, “Compound 186”, “Compound 187” or “Compound 188”.

Test results indicate that the compounds of the present invention are highly active preemergent and/or postemergent herbicides and/or plant growth regulants. The compounds of the invention generally show highest activity for postemergence weed control (i.e. applied
15 after weed seedlings emerge from the soil) and preemergence weed control (i.e. applied before weed seedlings emerge from the soil). Many of them have utility for broad-spectrum pre- and/or postemergence weed control in areas where complete control of all vegetation is desired such as around fuel storage tanks, industrial storage areas, parking lots, drive-in theaters, air fields, river banks, irrigation and other waterways, around billboards and
20 highway and railroad structures. Many of the compounds of this invention, by virtue of selective metabolism in crops versus weeds, or by selective activity at the locus of physiological inhibition in crops and weeds, or by selective placement on or within the environment of a mixture of crops and weeds, are useful for the selective control of grass and broadleaf weeds within a crop/weed mixture. One skilled in the art will recognize that
25 the preferred combination of these selectivity factors within a compound or group of compounds can readily be determined by performing routine biological and/or biochemical assays. Compounds of this invention may show tolerance to important agronomic crops including, but is not limited to, alfalfa, barley, cotton, wheat, rape, sugar beets, corn (maize), sorghum, soybeans, rice, oats, peanuts, vegetables, tomato, potato, perennial plantation crops
30 including coffee, cocoa, oil palm, rubber, sugarcane, citrus, grapes, fruit trees, nut trees, banana, plantain, pineapple, hops, tea and forests such as eucalyptus and conifers (e.g., loblolly pine), and turf species (e.g., Kentucky bluegrass, St. Augustine grass, Kentucky fescue and Bermuda grass). Compounds of this invention can be used in crops genetically transformed or bred to incorporate resistance to herbicides, express proteins toxic to
35 invertebrate pests (such as *Bacillus thuringiensis* toxin), and/or express other useful traits.

Those skilled in the art will appreciate that not all compounds are equally effective against all weeds. Alternatively, the subject compounds are useful to modify plant growth.

As the compounds of the invention have both preemergent and postemergent herbicidal activity, to control undesired vegetation by killing or injuring the vegetation or 5 reducing its growth, the compounds can be usefully applied by a variety of methods involving contacting a herbicidally effective amount of a compound of the invention, or a composition comprising said compound and at least one of a surfactant, a solid diluent or a liquid diluent, to the foliage or other part of the undesired vegetation or to the environment of the undesired vegetation such as the soil or water in which the undesired vegetation is 10 growing or which surrounds the seed or other propagule of the undesired vegetation.

A herbicidally effective amount of the compounds of this invention is determined by a number of factors. These factors include: formulation selected, method of application, amount and type of vegetation present, growing conditions, etc. In general, a herbicidally effective amount of compounds of this invention is about 0.001 to 20 kg/ha with a preferred 15 range of about 0.004 to 1 kg/ha. One skilled in the art can easily determine the herbicidally effective amount necessary for the desired level of weed control.

In one common embodiment, a compound of the invention is applied, typically in a formulated composition, to a locus comprising desired vegetation (e.g., crops) and undesired vegetation (i.e. weeds), both of which may be seeds, seedlings and/or larger plants, in 20 contact with a growth medium (e.g., soil). In this locus, a composition comprising a compound of the invention can be directly applied to a plant or a part thereof, particularly of the undesired vegetation, and/or to the growth medium in contact with the plant.

Plant varieties and cultivars of the desired vegetation in the locus treated with a compound of the invention can be obtained by conventional propagation and breeding 25 methods or by genetic engineering methods. Genetically modified plants (transgenic plants) are those in which a heterologous gene (transgene) has been stably integrated into the plant's genome. A transgene that is defined by its particular location in the plant genome is called a transformation or transgenic event.

Genetically modified plant cultivars in the locus which can be treated according to the 30 invention include those that are resistant against one or more biotic stresses (pests such as nematodes, insects, mites, fungi, etc.) or abiotic stresses (drought, cold temperature, soil salinity, etc.), or that contain other desirable characteristics. Plants can be genetically modified to exhibit traits of, for example, herbicide tolerance, insect-resistance, modified oil profiles or drought tolerance. Useful genetically modified plants containing single gene 35 transformation events or combinations of transformation events are listed in Exhibit C. Additional information for the genetic modifications listed in Exhibit C can be obtained from

publicly available databases maintained, for example, by the U.S. Department of Agriculture.

The following abbreviations, T1 through T37, are used in Exhibit C for traits. “tol.” means “tolerance”. A hyphen “-” means the entry is not available.

Trait	Description	Trait	Description	Trait	Description
T1	Glyphosate tolerance	T15	Cold tolerance	T27	High tryptophan
T2	High lauric acid oil	T16	Imidazolinone herbicide tol.	T28	Erect leaves semidwarf
T3	Glufosinate tolerance	T17	Modified alpha-amylase	T29	Semidwarf
T4	Phytate breakdown	T18	Pollination control	T30	Low iron tolerance
T5	Oxynil tolerance	T19	2,4-D tolerance	T31	Modified oil/fatty acid
T6	Disease resistance	T20	Increased lysine	T32	HPPD tolerance
T7	Insect resistance	T21	Drought tolerance	T33	High oil
T9	Modified flower color	T22	Delayed ripening/senescence	T34	Aryloxyalkanoate tol.
T11	ALS herbicide tol.	T23	Modified product quality	T35	Mesotrione tolerance
T12	Dicamba tolerance	T24	High cellulose	T36	Reduced nicotine
T13	Anti-allergy	T25	Modified starch/carbohydrate	T37	Modified product
T14	Salt tolerance	T26	Insect & disease resistance		

5

Exhibit C

Crop	Event Name	Event Code	Trait(s)	Gene(s)
Alfalfa	J101	MON-00101-8	T1	cp4 epsps (aroA:CP4)
Alfalfa	J163	MON-00163-7	T1	cp4 epsps (aroA:CP4)
Canola*	23-18-17 (Event 18)	CGN-89465-2	T2	te
Canola*	23-198 (Event 23)	CGN-89465-2	T2	te
Canola*	61061	DP-061061-7	T1	gat4621
Canola*	73496	DP-073496-4	T1	gat4621
Canola*	GT200 (RT200)	MON-89249-2	T1	cp4 epsps (aroA:CP4); goxv247
Canola*	GT73 (RT73)	MON-00073-7	T1	cp4 epsps (aroA:CP4); goxv247
Canola*	HCN10 (Topas 19/2)	-	T3	bar
Canola*	HCN28 (T45)	ACS-BN008-2	T3	pat (syn)
Canola*	HCN92 (Topas 19/2)	ACS-BN007-1	T3	bar
Canola*	MON88302	MON-88302-9	T1	cp4 epsps (aroA:CP4)
Canola*	MPS961	-	T4	phyA
Canola*	MPS962	-	T4	phyA
Canola*	MPS963	-	T4	phyA
Canola*	MPS964	-	T4	phyA
Canola*	MPS965	-	T4	phyA

Canola*	MS1 (B91-4)	ACS-BNØØ4-7	T3	bar
Canola*	MS8	ACS-BNØØ5-8	T3	bar
Canola*	OXY-235	ACS-BNØ11-5	T5	bxn
Canola*	PHY14	-	T3	bar
Canola*	PHY23	-	T3	bar
Canola*	PHY35	-	T3	bar
Canola*	PHY36	-	T3	bar
Canola*	RF1 (B93-101)	ACS-BNØØ1-4	T3	bar
Canola*	RF2 (B94-2)	ACS-BNØØ2-5	T3	bar
Canola*	RF3	ACS-BNØØ3-6	T3	bar
Bean	EMBRAPA 5.1	EMB-PV051-1	T6	ac1 (sense and antisense)
Brinjal #	EE-1	-	T7	cry1Ac
Cotton	19-51a	DD-Ø1951A-7	T11	S4-HrA
Cotton	281-24-236	DAS-24236-5	T3,T7	pat (syn); cry1F
Cotton	3006-210-23	DAS-21Ø23-5	T3,T7	pat (syn); cry1Ac
Cotton	31707	-	T5,T7	bxn; cry1Ac
Cotton	31803	-	T5,T7	bxn; cry1Ac
Cotton	31807	-	T5,T7	bxn; cry1Ac
Cotton	31808	-	T5,T7	bxn; cry1Ac
Cotton	42317	-	T5,T7	bxn; cry1Ac
Cotton	BNLA-601	-	T7	cry1Ac
Cotton	BXN10211	BXN10211-9	T5	bxn; cry1Ac
Cotton	BXN10215	BXN10215-4	T5	bxn; cry1Ac
Cotton	BXN10222	BXN10222-2	T5	bxn; cry1Ac
Cotton	BXN10224	BXN10224-4	T5	bxn; cry1Ac
Cotton	COT102	SYN-IR102-7	T7	vip3A(a)
Cotton	COT67B	SYN-IR67B-1	T7	cry1Ab
Cotton	COT202	-	T7	vip3A
Cotton	Event 1	-	T7	cry1Ac
Cotton	GMF Cry1A	GTL-GMF311-7	T7	cry1Ab-Ac
Cotton	GHB119	BCS-GH005-8	T7	cry2Ae
Cotton	GHB614	BCS-GH002-5	T1	2mepsps
Cotton	GK12	-	T7	cry1Ab-Ac
Cotton	LLCotton25	ACS-GH001-3	T3	bar
Cotton	MLS 9124	-	T7	cry1C
Cotton	MON1076	MON-89924-2	T7	cry1Ac

Cotton	MON1445	MON-01445-2	T1	cp4 epsps (aroA:CP4)
Cotton	MON15985	MON-15985-7	T7	cry1Ac; cry2Ab2
Cotton	MON1698	MON-89383-1	T7	cp4 epsps (aroA:CP4)
Cotton	MON531	MON-00531-6	T7	cry1Ac
Cotton	MON757	MON-00757-7	T7	cry1Ac
Cotton	MON88913	MON-88913-8	T1	cp4 epsps (aroA:CP4)
Cotton	Nqwe Chi 6 Bt	-	T7	-
Cotton	SKG321	-	T7	cry1A; CpTI
Cotton	T303-3	BCS-GH003-6	T3,T7	cry1Ab; bar
Cotton	T304-40	BCS-GH004-7	T3,T7	cry1Ab; bar
Cotton	CE43-67B	-	T7	cry1Ab
Cotton	CE46-02A	-	T7	cry1Ab
Cotton	CE44-69D	-	T7	cry1Ab
Cotton	1143-14A	-	T7	cry1Ab
Cotton	1143-51B	-	T7	cry1Ab
Cotton	T342-142	-	T7	cry1Ab
Cotton	PV-GHGT07 (1445)	-	T1	cp4 epsps (aroA:CP4)
Cotton	EE-GH3	-	T1	mepsps
Cotton	EE-GH5	-	T7	cry1Ab
Cotton	MON88701	MON-88701-3	T3,T12	Modified dmo; bar
Cotton	OsCr11	-	T13	Modified Cry j
Flax	FP967	CDC-FL001-2	T11	als
Lentil	RH44	-	T16	als
Maize	3272	SYN-E3272-5	T17	amy797E
Maize	5307	SYN-05307-1	T7	ecry3.1Ab
Maize	59122	DAS-59122-7	T3,T7	cry34Ab1; cry35Ab1; pat
Maize	676	PH-000676-7	T3,T18	pat; dam
Maize	678	PH-000678-9	T3,T18	pat; dam
Maize	680	PH-000680-2	T3,T18	pat; dam
Maize	98140	DP-098140-6	T1,T11	gat4621; zm-hra
Maize	Bt10	-	T3,T7	cry1Ab; pat
Maize	Bt176 (176)	SYN-EV176-9	T3,T7	cry1Ab; bar
Maize	BVLA430101	-	T4	phyA2
Maize	CBH-351	ACS-ZM004-3	T3,T7	cry9C; bar
Maize	DAS40278-9	DAS40278-9	T19	aad-1
Maize	DBT418	DKB-89614-9	T3,T7	cry1Ac; pinII; bar
Maize	DLL25 (B16)	DKB-89790-5	T3	bar
Maize	GA21	MON-00021-9	T1	mepsps
Maize	GG25	-	T1	mepsps

Maize	GJ11	-	T1	mepsps
Maize	Fl117	-	T1	mepsps
Maize	GAT-ZM1	-	T3	pat
Maize	LY038	REN-00038-3	T20	cordapA
Maize	MIR162	SYN-IR162-4	T7	vip3Aa20
Maize	MIR604	SYN-IR604-5	T7	mcry3A
Maize	MON801 (MON80100)	MON801	T1,T7	cry1Ab; cp4 epsps (aroA:CP4); goxv247
Maize	MON802	MON-80200-7	T1,T7	cry1Ab; cp4 epsps (aroA:CP4); goxv247
Maize	MON809	PH-MON-809-2	T1,T7	cry1Ab; cp4 epsps (aroA:CP4); goxv247
Maize	MON810	MON-00810-6	T1,T7	cry1Ab; cp4 epsps (aroA:CP4); goxv247
Maize	MON832	-	T1	cp4 epsps (aroA:CP4); goxv247
Maize	MON863	MON-00863-5	T7	cry3Bb1
Maize	MON87427	MON-87427-7	T1	cp4 epsps (aroA:CP4)
Maize	MON87460	MON-87460-4	T21	cspB
Maize	MON88017	MON-88017-3	T1,T7	cry3Bb1; cp4 epsps (aroA:CP4)
Maize	MON89034	MON-89034-3	T7	cry2Ab2; cry1A.105
Maize	MS3	ACS-ZM001-9	T3,T18	bar; barnase
Maize	MS6	ACS-ZM005-4	T3,T18	bar; barnase
Maize	NK603	MON-00603-6	T1	cp4 epsps (aroA:CP4)
Maize	T14	ACS-ZM002-1	T3	pat (syn)
Maize	T25	ACS-ZM003-2	T3	pat (syn)
Maize	TC1507	DAS-01507-1	T3,T7	cry1Fa2; pat
Maize	TC6275	DAS-06275-8	T3,T7	mocry1F; bar
Maize	VIP1034	-	T3,T7	vip3A; pat
Maize	43A47	DP-043A47-3	T3,T7	cry1F; cry34Ab1; cry35Ab1; pat
Maize	40416	DP-040416-8	T3,T7	cry1F; cry34Ab1; cry35Ab1; pat
Maize	32316	DP-032316-8	T3,T7	cry1F; cry34Ab1; cry35Ab1; pat
Maize	4114	DP-004114-3	T3,T7	cry1F; cry34Ab1; cry35Ab1; pat
Melon	Melon A	-	T22	sam-k
Melon	Melon B	-	T22	sam-k
Papaya	55-1	CUH-CP551-8	T6	prsv cp
Papaya	63-1	CUH-CP631-7	T6	prsv cp
Papaya	Huanong No. 1	-	T6	prsv rep
Papaya	X17-2	UFL-X17CP-6	T6	prsv cp
Plum	C-5	ARS-PLMC5-6	T6	ppv cp
Canola**	ZSR500	-	T1	cp4 epsps (aroA:CP4); goxv247
Canola**	ZSR502	-	T1	cp4 epsps (aroA:CP4); goxv247

Canola**	ZSR503	-	T1	cp4 epsps (aroA:CP4); goxv247
Rice	7Crp#242-95-7	-	T13	7crp
Rice	7Crp#10	-	T13	7crp
Rice	GM Shanyou 63	-	T7	cry1Ab; cry1Ac
Rice	Huahui-1/TT51-1	-	T7	cry1Ab; cry1Ac
Rice	LLRICE06	ACS-OS001-4	T3	bar
Rice	LLRICE601	BCS-OS003-7	T3	bar
Rice	LLRICE62	ACS-OS002-5	T3	bar
Rice	Tarom molaii + cry1Ab	-	T7	cry1Ab (truncated)
Rice	GAT-OS2	-	T3	bar
Rice	GAT-OS3	-	T3	bar
Rice	PE-7	-	T7	Cry1Ac
Rice	7Crp#10	-	T13	7crp
Rice	KPD627-8	-	T27	OASA1D
Rice	KPD722-4	-	T27	OASA1D
Rice	KA317	-	T27	OASA1D
Rice	HW5	-	T27	OASA1D
Rice	HW1	-	T27	OASA1D
Rice	B-4-1-18	-	T28	Δ OsBRI1
Rice	G-3-3-22	-	T29	OSGA2ox1
Rice	AD77	-	T6	DEF
Rice	AD51	-	T6	DEF
Rice	AD48	-	T6	DEF
Rice	AD41	-	T6	DEF
Rice	13pNasNa800725atAprt1	-	T30	HvNAS1; HvNAAT-A; APRT
Rice	13pAprt1	-	T30	APRT
Rice	gHvNAS1-gHvNAAT-1	-	T30	HvNAS1; HvNAAT-A; HvNAAT-B
Rice	gHvIDS3-1	-	T30	HvIDS3
Rice	gHvNAAT1	-	T30	HvNAAT-A; HvNAAT-B
Rice	gHvNAS1-1	-	T30	HvNAS1
Rice	NIA-OS006-4	-	T6	WRKY45
Rice	NIA-OS005-3	-	T6	WRKY45
Rice	NIA-OS004-2	-	T6	WRKY45
Rice	NIA-OS003-1	-	T6	WRKY45
Rice	NIA-OS002-9	-	T6	WRKY45
Rice	NIA-OS001-8	-	T6	WRKY45
Rice	OsCr11	-	T13	Modified Cry j
Rice	17053	-	T1	cp4 epsps (aroA:CP4)
Rice	17314	-	T1	cp4 epsps (aroA:CP4)

Rose	WKS82 / 130-4-1	IFD-52401-4	T9	5AT; bp40 (f3'5'h)
Rose	WKS92 / 130-9-1	IFD-52901-9	T9	5AT; bp40 (f3'5'h)
Soybean	260-05 (G94-1, G94-19, G168)	-	T9	gm-fad2-1 (silencing locus)
Soybean	A2704-12	ACS-GM005-3	T3	pat
Soybean	A2704-21	ACS-GM004-2	T3	pat
Soybean	A5547-127	ACS-GM006-4	T3	pat
Soybean	A5547-35	ACS-GM008-6	T3	pat
Soybean	CV127	BPS-CV127-9	T16	csr1-2
Soybean	DAS68416-4	DAS68416-4	T3	pat
Soybean	DP305423	DP-305423-1	T11,T31	gm-fad2-1 (silencing locus); gm-hra
Soybean	DP356043	DP-356043-5	T1,T31	gm-fad2-1 (silencing locus); gat4601
Soybean	FG72	MST-FG072-3	T32,T1	2mepsps; hppdPF W336
Soybean	GTS 40-3-2 (40-3-2)	MON-04032-6	T1	cp4 epsps (aroA:CP4)
Soybean	GU262	ACS-GM003-1	T3	pat
Soybean	MON87701	MON-87701-2	T7	cry1Ac
Soybean	MON87705	MON-87705-6	T1,T31	fatb1-A (sense & antisense); fad2-1A (sense & antisense); cp4 epsps (aroA:CP4)
Soybean	MON87708	MON-87708-9	T1,T12	dmo; cp4 epsps (aroA:CP4)
Soybean	MON87769	MON-87769-7	T1,T31	Pj.D6D; Nc.Fad3; cp4 epsps (aroA:CP4)
Soybean	MON89788	MON-89788-1	T1	cp4 epsps (aroA:CP4)
Soybean	W62	ACS-GM002-9	T3	bar
Soybean	W98	ACS-GM001-8	T3	bar
Soybean	MON87754	MON-87754-1	T33	dgat2A
Soybean	DAS21606	DAS-21606	T34,T3	Modified aad-12; pat
Soybean	DAS44406	DAS-44406-6	T1,T3,T34	Modified aad-12; 2mepsps; pat
Soybean	SYHT04R	SYN-0004R-8	T35	Modified avhppd
Soybean	9582.814.19.1	-	T3,T7	cry1Ac, cry1F, PAT
Squash	CZW3	SEM-ØCZW3-2	T6	cmv cp, zymv cp, wmv cp
Squash	ZW20	SEM-0ZW20-7	T6	zymv cp, wmv cp
Sugar Beet	GTSB77 (T9100152)	SY-GTSB77-8	T1	cp4 epsps (aroA:CP4); goxv247
Sugar Beet	H7-1	KM-000H71-4	T1	cp4 epsps (aroA:CP4)
Sugar Beet	T120-7	ACS-BV001-3	T3	pat
Sugar Beet	T227-1	-	T1	cp4 epsps (aroA:CP4)
Sugarcane	NXI-1T	-	T21	EcbetA

Sunflower	X81359	-	T16	als
Pepper	PK-SP01	-	T6	cmv cp
Tobacco	C/F/93/08-02	-	T5	bxn
Tobacco	Vector 21-41	-	T36	NtQPT1 (antisense)
Sunflower	X81359	-	T16	als
Wheat	MON71800	MON-71800-3	T1	cp4 epsps (aroA:CP4)

* Argentine (*Brassica napus*), ** Polish (*B. rapa*), # Eggplant

Although most typically, compounds of the invention are used to control undesired vegetation, contact of desired vegetation in the treated locus with compounds of the invention may result in super-additive or synergistic effects with genetic traits in the desired vegetation, including traits incorporated through genetic modification. For example, 5 resistance to phytophagous insect pests or plant diseases, tolerance to biotic/abiotic stresses or storage stability may be greater than expected from the genetic traits in the desired vegetation.

Compounds of this invention can also be mixed with one or more other biologically 10 active compounds or agents including herbicides, herbicide safeners, fungicides, insecticides, nematocides, bactericides, acaricides, growth regulators such as insect molting inhibitors and rooting stimulants, chemosterilants, semiochemicals, repellents, attractants, pheromones, feeding stimulants, plant nutrients, other biologically active compounds or entomopathogenic bacteria, virus or fungi to form a multi-component pesticide giving an 15 even broader spectrum of agricultural protection. Mixtures of the compounds of the invention with other herbicides can broaden the spectrum of activity against additional weed species, and suppress the proliferation of any resistant biotypes. Thus the present invention also pertains to a composition comprising a compound of Formula 1 (in a herbicidally effective amount) and at least one additional biologically active compound or agent (in a 20 biologically effective amount) and can further comprise at least one of a surfactant, a solid diluent or a liquid diluent. The other biologically active compounds or agents can be formulated in compositions comprising at least one of a surfactant, solid or liquid diluent. For mixtures of the present invention, one or more other biologically active compounds or 25 agents can be formulated together with a compound of Formula 1, to form a premix, or one or more other biologically active compounds or agents can be formulated separately from the compound of Formula 1, and the formulations combined together before application (e.g., in a spray tank) or, alternatively, applied in succession.

A mixture of one or more of the following herbicides with a compound of this invention may be particularly useful for weed control: acetochlor, acifluorfen and its sodium 30 salt, aclonifen, acrolein (2-propenal), alachlor, aloxydim, ametryn, amicarbazone,

amidosulfuron, aminocyclopyrachlor and its esters (e.g., methyl, ethyl) and salts (e.g., sodium, potassium), aminopyralid, amitrole, ammonium sulfamate, anilofos, asulam, atrazine, azimsulfuron, beflubutamid, benazolin, benazolin-ethyl, bencarbazone, benfluralin, benfuresate, bensulfuron-methyl, bensulide, bentazone, benzobicyclon, benzofenap, 5 bicyclopyrone, bifenoxy, bilanafos, bispyribac and its sodium salt, bromacil, bromobutide, bromofenoxim, bromoxynil, bromoxynil octanoate, butachlor, butafenacil, butamifos, butralin, butroxydim, butylate, cafenstrole, carbetamide, carfentrazone-ethyl, catechin, chlomethoxyfen, chloramben, chlorbromuron, chlorflurenol-methyl, chloridazon, chlorimuron-ethyl, chlorotoluron, chlorpropham, chlorsulfuron, chlorthal-dimethyl, 10 chlorthiamid, cinidon-ethyl, cinmethylin, cinosulfuron, clacyfos, clefoxydim, clethodim, clodinafop-propargyl, clomazone, clomeprop, clopyralid, clopyralid-olamine, cloransulam-methyl, cumyluron, cyanazine, cycloate, cyclopyrimorate, cyclosulfamuron, cycloxydim, cyhalofop-butyl, 2,4-D and its butotyl, butyl, isooctyl and isopropyl esters and its dimethylammonium, diolamine and trolamine salts, daimuron, dalapon, dalapon-sodium, 15 dazomet, 2,4-DB and its dimethylammonium, potassium and sodium salts, desmedipham, desmetryn, dicamba and its diglycolammonium, dimethylammonium, potassium and sodium salts, dichlobenil, dichlorprop, diclofop-methyl, diclosulam, difenzoquat metilsulfate, diflufenican, diflufenzopyr, dimefuron, dimepiperate, dimethachlor, dimethametryn, dimethenamid, dimethenamid-P, dimethipin, dimethylarsinic acid and its sodium salt, 20 dinitramine, dinoterb, diphenamid, diquat dibromide, dithiopyr, diuron, DNOC, endothal, EPTC, esprocarb, ethalfluralin, ethametsulfuron-methyl, ethiozin, ethofumesate, ethoxyfen, ethoxysulfuron, etobenzanid, fenoxaprop-ethyl, fenoxaprop-P-ethyl, fenoxasulfone, fenquinotrione, fentrazamide, fenuron, fenuron-TCA, flamprop-methyl, flamprop-M-isopropyl, flamprop-M-methyl, flazasulfuron, florasulam, fluazifop-butyl, 25 fluazifop-P-butyl, fluazolate, flucarbazone, flucetosulfuron, fluchloralin, flufenacet, flufenpyr, flufenpyr-ethyl, flumetsulam, flumiclorac-pentyl, flumioxazin, fluometuron, fluoroglycofen-ethyl, flupoxam, flupyrifos-methyl and its sodium salt, flurenol, flurenol-butyl, fluridone, flurochloridone, fluroxypyr, flurtamone, fluthiacet-methyl, fomesafen, foramsulfuron, fosamine-ammonium, glufosinate, glufosinate-ammonium, 30 glufosinate-P, glyphosate and its salts such as ammonium, isopropylammonium, potassium, sodium (including sesquisodium) and trimesium (alternatively named sulfosate), halauxifen, halauxifen-methyl, halosulfuron-methyl, haloxyfop-ethyl, haloxyfop-methyl, hexazinone, imazamethabenz-methyl, imazamox, imazapic, imazapyr, imazaquin, imazaquin-ammonium, imazethapyr, imazethapyr-ammonium, imazosulfuron, indanofan, indaziflam, iofensulfuron, 35 iodosulfuron-methyl, ioxynil, ioxynil octanoate, ioxynil-sodium, ipfencarbazone, isoproturon, isouron, isoxaben, isoxaflutole, isoxachlortole, lactofen, lenacil, linuron, maleic

hydrazide, MCPA and its salts (e.g., MCPA-dimethylammonium, MCPA-potassium and MCPA-sodium, esters (e.g., MCPA-2-ethylhexyl, MCPA-butyl) and thioesters (e.g., MCPA-thioethyl), MCPB and its salts (e.g., MCPB-sodium) and esters (e.g., MCPB-ethyl), mecoprop, mecoprop-P, mefenacet, mefluidide, mesosulfuron-methyl, mesotrione, 5 metam-sodium, metamifop, metamitron, metazachlor, metazosulfuron, methabenzthiazuron, methylarsonic acid and its calcium, monoammonium, monosodium and disodium salts, methyldymron, metobenzuron, metabromuron, metolachlor, S-metolachlor, metosulam, metoxuron, metribuzin, metsulfuron-methyl, molinate, monolinuron, naproanilide, napropamide, napropamide-M, naptalam, neburon, nicosulfuron, norflurazon, orbencarb, 10 orthosulfamuron, oryzalin, oxadiargyl, oxadiazon, oxasulfuron, oxaziclofone, oxyfluorfen, paraquat dichloride, pebulate, pelargonic acid, pendimethalin, penoxsulam, pentanochlor, pentozacone, perfluidone, pethoxamid, pethoxyamid, phenmedipham, picloram, picloram-potassium, picolinafen, pinoxaden, piperophos, pretilachlor, primisulfuron-methyl, prodiamine, profoxydim, prometon, prometryn, propachlor, propanil, 15 propaquazafop, propazine, propham, propisochlor, propoxycarbazone, propyrisulfuron, propyzamide, prosulfocarb, prosulfuron, pyraclonil, pyraflufen-ethyl, pyrasulfotole, pyrazogyl, pyrazolynate, pyrazoxyfen, pyrazosulfuron-ethyl, pyribenzoxim, pyributicarb, pyridate, pyriftalid, pyriminobac-methyl, pyrimisulfan, pyrithiobac, pyrithiobac-sodium, pyroxasulfone, pyroxsulam, quinclorac, quinmerac, quinoclamine, quizalofop-ethyl, 20 quinalofop-P-ethyl, quinalofop-P-tefuryl, rimsulfuron, saflufenacil, sethoxydim, siduron, simazine, simetryn, sulcotrione, sulfentrazone, sulfometuron-methyl, sulfosulfuron, 2,3,6-TBA, TCA, TCA-sodium, tebutam, tebuthiuron, tefuryltrione, tembotrione, tepraloxydim, terbacil, terbumeton, terbutylazine, terbutryn, thenylchlor, thiazopyr, thiencarbazone, thifensulfuron-methyl, thiobencarb, tiafenacil, tiocarbazil, topramezone, tralkoxydim, 25 tri-allate, triafamone, triasulfuron, triaziflam, tribenuron-methyl, triclopyr, triclopyr-butyl, triclopyr-triethylammonium, tridiphane, trietazine, trifloxysulfuron, trifluralin, triflusulfuron-methyl, tritosulfuron, vernolate, 3-(2-chloro-3,6-difluorophenyl)-4-hydroxy-1-methyl-1,5-naphthyridin-2(1*H*)-one, 5-chloro-3-[(2-hydroxy-6-oxo-1-cyclohexen-1-yl)carbonyl]-1-(4-methoxyphenyl)-2(1*H*)-quinoxalinone, 2-chloro-N-(1-methyl-1*H*-tetrazol-5-yl)-6-(trifluoromethyl)-3-pyridinecarboxamide, 7-(3,5-dichloro-4-pyridinyl)-5-(2,2-difluoroethyl)-8-hydroxypyrido[2,3-*b*]pyrazin-6(5*H*)-one, 4-(2,6-diethyl-4-methylphenyl)-5-hydroxy-2,6-dimethyl-3(2*H*)-pyridazinone), 5-[[2,6-difluorophenyl)methoxy]methyl]-4,5-dihydro-5-methyl-3-(3-methyl-2-thienyl)isoxazole (previously methioxolin), 3-[7-fluoro-3,4-dihydro-3-oxo-4-(2-propyn-1-yl)-2*H*-1,4-benzoxazin-6-yl]dihydro-1,5-dimethyl-6-thioxo-30 1,3,5-triazine-2,4(1*H*,3*H*)-dione, 4-(4-fluorophenyl)-6-[(2-hydroxy-6-oxo-1-cyclohexen-1-yl)carbonyl]-2-methyl-1,2,4-triazine-3,5(2*H*,4*H*)-dione, methyl 4-amino-3-chloro-6-(4-

chloro-2-fluoro-3-methoxyphenyl)-5-fluoro-2-pyridinecarboxylate, 2-methyl-3-(methylsulfonyl)-N-(1-methyl-1*H*-tetrazol-5-yl)-4-(trifluoromethyl)benzamide and 2-methyl-N-(4-methyl-1,2,5-oxadiazol-3-yl)-3-(methylsulfinyl)-4-(trifluoromethyl)benzamide. Other herbicides also include bioherbicides such as *Alternaria destruens* Simmons, *Colletotrichum gloeosporioides* (Penz.) Penz. & Sacc., *Drechsiera monoceras* (MTB-951), *Myrothecium verrucaria* (Albertini & Schweinitz) Ditmar: Fries, *Phytophthora palmivora* (Butl.) Butl. and *Puccinia thlaspeos* Schub.

Compounds of this invention can also be used in combination with plant growth regulators such as aviglycine, *N*-(phenylmethyl)-1*H*-purin-6-amine, epocholeone, gibberellic acid, gibberellin A₄ and A₇, harpin protein, mepiquat chloride, prohexadione calcium, prohydrojasmon, sodium nitrophenolate and trinexapac-methyl, and plant growth modifying organisms such as *Bacillus cereus* strain BP01.

General references for agricultural protectants (i.e. herbicides, herbicide safeners, insecticides, fungicides, nematocides, acaricides and biological agents) include *The Pesticide Manual, 13th Edition*, C. D. S. Tomlin, Ed., British Crop Protection Council, Farnham, Surrey, U.K., 2003 and *The BioPesticide Manual, 2nd Edition*, L. G. Copping, Ed., British Crop Protection Council, Farnham, Surrey, U.K., 2001.

For embodiments where one or more of these various mixing partners are used, the mixing partners are typically used in the amounts similar to amounts customary when the mixture partners are used alone. More particularly in mixtures, active ingredients are often applied at an application rate between one-half and the full application rate specified on product labels for use of active ingredient alone. These amounts are listed in references such as *The Pesticide Manual* and *The BioPesticide Manual*. The weight ratio of these various mixing partners (in total) to the compound of Formula 1 is generally between about 1:3000 and about 3000:1. Of note are weight ratios between about 1:300 and about 300:1 (for example ratios between about 1:30 and about 30:1). One skilled in the art can easily determine through simple experimentation the biologically effective amounts of active ingredients necessary for the desired spectrum of biological activity. It will be evident that including these additional components may expand the spectrum of weeds controlled beyond the spectrum controlled by the compound of Formula 1 alone.

In certain instances, combinations of a compound of this invention with other biologically active (particularly herbicidal) compounds or agents (i.e. active ingredients) can result in a greater-than-additive (i.e. synergistic) effect on weeds and/or a less-than-additive effect (i.e. safening) on crops or other desirable plants. Reducing the quantity of active ingredients released in the environment while ensuring effective pest control is always desirable. Ability to use greater amounts of active ingredients to provide more effective

weed control without excessive crop injury is also desirable. When synergism of herbicidal active ingredients occurs on weeds at application rates giving agronomically satisfactory levels of weed control, such combinations can be advantageous for reducing crop production cost and decreasing environmental load. When safening of herbicidal active ingredients 5 occurs on crops, such combinations can be advantageous for increasing crop protection by reducing weed competition.

Of note is a combination of a compound of the invention with at least one other herbicidal active ingredient. Of particular note is such a combination where the other herbicidal active ingredient has different site of action from the compound of the invention.

10 In certain instances, a combination with at least one other herbicidal active ingredient having a similar spectrum of control but a different site of action will be particularly advantageous for resistance management. Thus, a composition of the present invention can further comprise (in a herbicidally effective amount) at least one additional herbicidal active ingredient having a similar spectrum of control but a different site of action.

15 Compounds of this invention can also be used in combination with herbicide safeners such as allidochlor, benoxacor, cloquintocet-mexyl, cumyluron, cyometrinil, cyprosulfamide, daimuron, dichlormid, dicyclonon, dietholate, dimepiperate, fenchlorazole-ethyl, fenclorim, flurazole, fluxofenim, furilazole, isoxadifen-ethyl, mefenpyrdiethyl, mephenate, methoxyphenone naphthalic anhydride (1,8-naphthalic anhydride), 20 oxabetrinil, *N*-(aminocarbonyl)-2-methylbenzenesulfonamide, *N*-(aminocarbonyl)-2-fluorobenzenesulfonamide, 1-bromo-4-[(chloromethyl)sulfonyl]benzene (BCS), 4-(dichloroacetyl)-1-oxa-4-azospiro[4.5]decane (MON 4660), 2-(dichloromethyl)-2-methyl-1,3-dioxolane (MG 191), ethyl 1,6-dihydro-1-(2-methoxyphenyl)-6-oxo-2-phenyl-5-pyrimidinecarboxylate, 2-hydroxy-*N,N*-dimethyl-6-(trifluoromethyl)pyridine-25 3-carboxamide, and 3-oxo-1-cyclohexen-1-yl 1-(3,4-dimethylphenyl)-1,6-dihydro-6-oxo-2-phenyl-5-pyrimidinecarboxylate to increase safety to certain crops. Antidotally effective amounts of the herbicide safeners can be applied at the same time as the compounds of this invention, or applied as seed treatments. Therefore an aspect of the present invention relates to a herbicidal mixture comprising a compound of this invention and an antidotally effective 30 amount of a herbicide safener. Seed treatment is particularly useful for selective weed control, because it physically restricts antidoting to the crop plants. Therefore a particularly useful embodiment of the present invention is a method for selectively controlling the growth of undesired vegetation in a crop comprising contacting the locus of the crop with a herbicidally effective amount of a compound of this invention wherein seed from which the 35 crop is grown is treated with an antidotally effective amount of safener. Antidotally

effective amounts of safeners can be easily determined by one skilled in the art through simple experimentation.

Of note is a composition comprising a compound of the invention (in a herbicidally effective amount), at least one additional active ingredient selected from the group consisting of other herbicides and herbicide safeners (in an effective amount), and at least one component selected from the group consisting of surfactants, solid diluents and liquid diluents.

Table A1 lists specific combinations of a Component (a) with Component (b) illustrative of the mixtures, compositions and methods of the present invention. Compound No. (Compound Number) (i.e. Compound 1) in the Component (a) column is identified in Index Table A. The second column of Table A1 lists the specific Component (b) compound (e.g., "2,4-D" in the first line). The third, fourth and fifth columns of Table A1 lists ranges of weight ratios for rates at which the Component (a) compound is typically applied to a field-grown crop relative to Component (b) (i.e. (a):(b)). Thus, for example, the first line of Table A1 specifically discloses the combination of Component (a) (i.e. Compound 1 in Index Table A) with 2,4-D is typically applied in a weight ratio between 1:384 – 6:1. The remaining lines of Table A1 are to be construed similarly.

TABLE A1

Component (a) (Compound No.)	Component (b)	Typical Weight Ratio	More Typical Weight Ratio	Most Typical Weight Ratio
1	2,4-D	1:384 – 6:1	1:128 – 2:1	1:12 – 1:2
1	Acetochlor	1:1536 – 2:1	1:512 – 1:2	1:48 – 1:6
1	Acifluorfen	1:192 – 12:1	1:64 – 4:1	1:6 – 2:1
1	Aclonifen	1:1714 – 2:1	1:571 – 1:3	1:53 – 1:6
1	Alachlor	1:1536 – 2:1	1:512 – 1:2	1:48 – 1:6
1	Ametryn	1:768 – 3:1	1:256 – 1:1	1:24 – 1:3
1	Amicarbazone	1:384 – 6:1	1:128 – 2:1	1:12 – 1:2
1	Amidosulfuron	1:13 – 168:1	1:4 – 56:1	2:1 – 21:1
1	Aminocyclopyrachlor	1:96 – 24:1	1:32 – 8:1	1:3 – 3:1
1	Aminopyralid	1:41 – 56:1	1:13 – 19:1	1:1 – 7:1
1	Amitrole	1:1536 – 2:1	1:512 – 1:2	1:48 – 1:6
1	Anilofos	1:192 – 12:1	1:64 – 4:1	1:6 – 2:1
1	Asulam	1:1920 – 2:1	1:640 – 1:3	1:60 – 1:7
1	Atrazine	1:384 – 6:1	1:128 – 2:1	1:12 – 1:2
1	Azimsulfuron	1:13 – 168:1	1:4 – 56:1	2:1 – 21:1

Component (a) (Compound No.)	Component (b)	Typical Weight Ratio	More Typical Weight Ratio	Most Typical Weight Ratio
1	Beflubutamid	1:685 – 4:1	1:228 – 2:1	1:21 – 1:3
1	Benfuresate	1:1234 – 2:1	1:411 – 1:2	1:38 – 1:5
1	Bensulfuron-methyl	1:51 – 45:1	1:17 – 15:1	1:1 – 6:1
1	Bentazone	1:384 – 6:1	1:128 – 2:1	1:12 – 1:2
1	Benzobicyclon	1:171 – 14:1	1:57 – 5:1	1:5 – 2:1
1	Benzofenap	1:514 – 5:1	1:171 – 2:1	1:16 – 1:2
1	Bicyclyrone	1:85 – 27:1	1:28 – 9:1	1:2 – 4:1
1	Bifenox	1:514 – 5:1	1:171 – 2:1	1:16 – 1:2
1	Bispyribac-sodium	1:20 – 112:1	1:6 – 38:1	1:1 – 14:1
1	Bromacil	1:768 – 3:1	1:256 – 1:1	1:24 – 1:3
1	Bromobutide	1:768 – 3:1	1:256 – 1:1	1:24 – 1:3
1	Bromoxynil	1:192 – 12:1	1:64 – 4:1	1:6 – 2:1
1	Butachlor	1:1536 – 2:1	1:512 – 1:2	1:48 – 1:6
1	Butafenacil	1:85 – 27:1	1:28 – 9:1	1:2 – 4:1
1	Butylate	1:3085 – 1:2	1:1028 – 1:5	1:96 – 1:11
1	Carfenstrole	1:384 – 6:1	1:128 – 2:1	1:12 – 1:2
1	Carfentrazone-ethyl	1:257 – 9:1	1:85 – 3:1	1:8 – 2:1
1	Chlorimuron-ethyl	1:17 – 135:1	1:5 – 45:1	1:1 – 17:1
1	Chlorotoluron	1:1536 – 2:1	1:512 – 1:2	1:48 – 1:6
1	Chlorsulfuron	1:13 – 168:1	1:4 – 56:1	2:1 – 21:1
1	Cincosulfuron	1:34 – 68:1	1:11 – 23:1	1:1 – 9:1
1	Cinidon-ethyl	1:768 – 3:1	1:256 – 1:1	1:24 – 1:3
1	Cinmethylin	1:68 – 34:1	1:22 – 12:1	1:2 – 5:1
1	Clacyfos	1:384 – 6:1	1:128 – 2:1	1:12 – 1:2
1	Clethodim	1:96 – 24:1	1:32 – 8:1	1:3 – 3:1
1	Clodinafop-propargyl	1:41 – 56:1	1:13 – 19:1	1:1 – 7:1
1	Clomazone	1:768 – 3:1	1:256 – 1:1	1:24 – 1:3
1	Clomeprop	1:342 – 7:1	1:114 – 3:1	1:10 – 1:2
1	Clopyralid	1:384 – 6:1	1:128 – 2:1	1:12 – 1:2
1	Cloransulam-methyl	1:24 – 96:1	1:8 – 32:1	1:1 – 12:1
1	Cumyluron	1:768 – 3:1	1:256 – 1:1	1:24 – 1:3
1	Cyanazine	1:768 – 3:1	1:256 – 1:1	1:24 – 1:3
1	Cyclopyrimorate	1:34 – 68:1	1:11 – 23:1	1:1 – 9:1

Component (a) (Compound No.)	Component (b)	Typical Weight Ratio	More Typical Weight Ratio	Most Typical Weight Ratio
1	Cyclosulfamuron	1:34 – 68:1	1:11 – 23:1	1:1 – 9:1
1	Cycloxydim	1:192 – 12:1	1:64 – 4:1	1:6 – 2:1
1	Cyhalofop	1:51 – 45:1	1:17 – 15:1	1:1 – 6:1
1	Daimuron	1:384 – 6:1	1:128 – 2:1	1:12 – 1:2
1	Desmedipham	1:644 – 4:1	1:214 – 2:1	1:20 – 1:3
1	Dicamba	1:384 – 6:1	1:128 – 2:1	1:12 – 1:2
1	Dichlobenil	1:2742 – 1:2	1:914 – 1:4	1:85 – 1:10
1	Dichlorprop	1:1851 – 2:1	1:617 – 1:3	1:57 – 1:7
1	Diclofop-methyl	1:768 – 3:1	1:256 – 1:1	1:24 – 1:3
1	Diclosulam	1:20 – 112:1	1:6 – 38:1	1:1 – 14:1
1	Difenoquat	1:576 – 4:1	1:192 – 2:1	1:18 – 1:2
1	Diflufenican	1:1714 – 2:1	1:571 – 1:3	1:53 – 1:6
1	Diflufenzopyr	1:24 – 96:1	1:8 – 32:1	1:1 – 12:1
1	Dimethachlor	1:1536 – 2:1	1:512 – 1:2	1:48 – 1:6
1	Dimethametryn	1:384 – 6:1	1:128 – 2:1	1:12 – 1:2
1	Dimethenamid-P	1:768 – 3:1	1:256 – 1:1	1:24 – 1:3
1	Dithiopyr	1:384 – 6:1	1:128 – 2:1	1:12 – 1:2
1	Diuron	1:768 – 3:1	1:256 – 1:1	1:24 – 1:3
1	EPTC	1:1536 – 2:1	1:512 – 1:2	1:48 – 1:6
1	Esprocarb	1:2742 – 1:2	1:914 – 1:4	1:85 – 1:10
1	Ethalfluralin	1:768 – 3:1	1:256 – 1:1	1:24 – 1:3
1	Ethametsulfuron-methyl	1:34 – 68:1	1:11 – 23:1	1:1 – 9:1
1	Ethoxyfen	1:17 – 135:1	1:5 – 45:1	1:1 – 17:1
1	Ethoxysulfuron	1:41 – 56:1	1:13 – 19:1	1:1 – 7:1
1	Etobenzanid	1:514 – 5:1	1:171 – 2:1	1:16 – 1:2
1	Fenoxaprop-ethyl	1:240 – 10:1	1:80 – 4:1	1:7 – 2:1
1	Fenoxyasulfone	1:171 – 14:1	1:57 – 5:1	1:5 – 2:1
1	Fenquinotrione	1:85 – 27:1	1:28 – 9:1	1:2 – 4:1
1	Fentrazamide	1:34 – 68:1	1:11 – 23:1	1:1 – 9:1
1	Flazasulfuron	1:34 – 68:1	1:11 – 23:1	1:1 – 9:1
1	Florasulam	1:5 – 420:1	1:1 – 140:1	5:1 – 53:1
1	Fluazifop-butyl	1:384 – 6:1	1:128 – 2:1	1:12 – 1:2
1	Flucarbazone	1:17 – 135:1	1:5 – 45:1	1:1 – 17:1

Component (a) (Compound No.)	Component (b)	Typical Weight Ratio	More Typical Weight Ratio	Most Typical Weight Ratio
1	Flucetsulfuron	1:17 – 135:1	1:5 – 45:1	1:1 – 17:1
1	Flufenacet	1:514 – 5:1	1:171 – 2:1	1:16 – 1:2
1	Flumetsulam	1:48 – 48:1	1:16 – 16:1	1:1 – 6:1
1	Flumiclorac-pentyl	1:20 – 112:1	1:6 – 38:1	1:1 – 14:1
1	Flumioxazin	1:51 – 45:1	1:17 – 15:1	1:1 – 6:1
1	Fluometuron	1:768 – 3:1	1:256 – 1:1	1:24 – 1:3
1	Fluprysulfuron-methyl	1:6 – 336:1	1:2 – 112:1	4:1 – 42:1
1	Fluridone	1:768 – 3:1	1:256 – 1:1	1:24 – 1:3
1	Fluroxypyrr	1:192 – 12:1	1:64 – 4:1	1:6 – 2:1
1	Flurtamone	1:1714 – 2:1	1:571 – 1:3	1:53 – 1:6
1	Fluthiacet-methyl	1:96 – 42:1	1:32 – 14:1	1:1 – 6:1
1	Fomesafen	1:192 – 12:1	1:64 – 4:1	1:6 – 2:1
1	Foramsulfuron	1:27 – 84:1	1:9 – 28:1	1:1 – 11:1
1	Glufosinate	1:576 – 4:1	1:192 – 2:1	1:18 – 1:2
1	Glyphosate	1:576 – 4:1	1:192 – 2:1	1:18 – 1:2
1	Halosulfuron-methyl	1:34 – 68:1	1:11 – 23:1	1:1 – 9:1
1	Halauxifen	1:41 – 56:1	1:13 – 19:1	1:1 – 7:1
1	Halauxifen methyl	1:41 – 56:1	1:13 – 19:1	1:1 – 7:1
1	Haloxyfop-methyl	1:68 – 34:1	1:22 – 12:1	1:2 – 5:1
1	Hexazinone	1:384 – 6:1	1:128 – 2:1	1:12 – 1:2
1	Imazamox	1:27 – 84:1	1:9 – 28:1	1:1 – 11:1
1	Imazapic	1:41 – 56:1	1:13 – 19:1	1:1 – 7:1
1	Imazapyr	1:171 – 14:1	1:57 – 5:1	1:5 – 2:1
1	Imazaquin	1:68 – 34:1	1:22 – 12:1	1:2 – 5:1
1	Imazethabenz-methyl	1:342 – 7:1	1:114 – 3:1	1:10 – 1:2
1	Imazethapyr	1:48 – 48:1	1:16 – 16:1	1:1 – 6:1
1	Imazosulfuron	1:54 – 42:1	1:18 – 14:1	1:1 – 6:1
1	Indanofan	1:685 – 4:1	1:228 – 2:1	1:21 – 1:3
1	Indaziflam	1:51 – 45:1	1:17 – 15:1	1:1 – 6:1
1	Iodosulfuron-methyl	1:6 – 336:1	1:2 – 112:1	4:1 – 42:1
1	Ioxynil	1:384 – 6:1	1:128 – 2:1	1:12 – 1:2
1	Ipfencarbazone	1:171 – 14:1	1:57 – 5:1	1:5 – 2:1
1	Isoproturon	1:768 – 3:1	1:256 – 1:1	1:24 – 1:3

Component (a) (Compound No.)	Component (b)	Typical Weight Ratio	More Typical Weight Ratio	Most Typical Weight Ratio
1	Isoxaben	1:576 – 4:1	1:192 – 2:1	1:18 – 1:2
1	Isoxaflutole	1:120 – 20:1	1:40 – 7:1	1:3 – 3:1
1	Lactofen	1:85 – 27:1	1:28 – 9:1	1:2 – 4:1
1	Lenacil	1:768 – 3:1	1:256 – 1:1	1:24 – 1:3
1	Linuron	1:768 – 3:1	1:256 – 1:1	1:24 – 1:3
1	MCPA	1:384 – 6:1	1:128 – 2:1	1:12 – 1:2
1	MCPB	1:576 – 4:1	1:192 – 2:1	1:18 – 1:2
1	Mecoprop	1:1536 – 2:1	1:512 – 1:2	1:48 – 1:6
1	Mefenacet	1:768 – 3:1	1:256 – 1:1	1:24 – 1:3
1	Mefluidide	1:384 – 6:1	1:128 – 2:1	1:12 – 1:2
1	Mesosulfuron-methyl	1:10 – 224:1	1:3 – 75:1	3:1 – 28:1
1	Mesotriione	1:85 – 27:1	1:28 – 9:1	1:2 – 4:1
1	Metamifop	1:85 – 27:1	1:28 – 9:1	1:2 – 4:1
1	Metazachlor	1:768 – 3:1	1:256 – 1:1	1:24 – 1:3
1	Metazosulfuron	1:51 – 45:1	1:17 – 15:1	1:1 – 6:1
1	Methabenzthiazuron	1:1536 – 2:1	1:512 – 1:2	1:48 – 1:6
1	Metolachlor	1:1536 – 2:1	1:512 – 1:2	1:48 – 1:6
1	Metosulam	1:17 – 135:1	1:5 – 45:1	1:1 – 17:1
1	Metribuzin	1:384 – 6:1	1:128 – 2:1	1:12 – 1:2
1	Metsulfuron-methyl	1:4 – 560:1	1:1 – 187:1	7:1 – 70:1
1	Molinate	1:2057 – 2:1	1:685 – 1:3	1:64 – 1:8
1	Napropamide	1:768 – 3:1	1:256 – 1:1	1:24 – 1:3
1	Napropamide-M	1:384 – 6:1	1:128 – 2:1	1:12 – 1:2
1	Naptalam	1:384 – 6:1	1:128 – 2:1	1:12 – 1:2
1	Nicosulfuron	1:24 – 96:1	1:8 – 32:1	1:1 – 12:1
1	Norflurazon	1:2304 – 1:1	1:768 – 1:3	1:72 – 1:8
1	Orbencarb	1:2742 – 1:2	1:914 – 1:4	1:85 – 1:10
1	Orthosulfamuron	1:41 – 56:1	1:13 – 19:1	1:1 – 7:1
1	Oryzalin	1:1028 – 3:1	1:342 – 1:2	1:32 – 1:4
1	Oxadiargyl	1:768 – 3:1	1:256 – 1:1	1:24 – 1:3
1	Oxadiazon	1:1097 – 3:1	1:365 – 1:2	1:34 – 1:4
1	Oxasulfuron	1:54 – 42:1	1:18 – 14:1	1:1 – 6:1
1	Oxaziclomefone	1:85 – 27:1	1:28 – 9:1	1:2 – 4:1

Component (a) (Compound No.)	Component (b)	Typical Weight Ratio	More Typical Weight Ratio	Most Typical Weight Ratio
1	Oxyfluorfen	1:768 – 3:1	1:256 – 1:1	1:24 – 1:3
1	Paraquat	1:384 – 6:1	1:128 – 2:1	1:12 – 1:2
1	Pendimethalin	1:768 – 3:1	1:256 – 1:1	1:24 – 1:3
1	Penoxsulam	1:20 – 112:1	1:6 – 38:1	1:1 – 14:1
1	Penthoxamid	1:768 – 3:1	1:256 – 1:1	1:24 – 1:3
1	Pentoxazone	1:205 – 12:1	1:68 – 4:1	1:6 – 2:1
1	Phenmedipham	1:205 – 12:1	1:68 – 4:1	1:6 – 2:1
1	Picloram	1:192 – 12:1	1:64 – 4:1	1:6 – 2:1
1	Picolinafen	1:68 – 34:1	1:22 – 12:1	1:2 – 5:1
1	Pinoxaden	1:51 – 45:1	1:17 – 15:1	1:1 – 6:1
1	Pretilachlor	1:384 – 6:1	1:128 – 2:1	1:12 – 1:2
1	Primsulfuron-methyl	1:17 – 135:1	1:5 – 45:1	1:1 – 17:1
1	Prodiamine	1:768 – 3:1	1:256 – 1:1	1:24 – 1:3
1	Profoxydim	1:85 – 27:1	1:28 – 9:1	1:2 – 4:1
1	Prometryn	1:768 – 3:1	1:256 – 1:1	1:24 – 1:3
1	Propachlor	1:2304 – 1:1	1:768 – 1:3	1:72 – 1:8
1	Propanil	1:768 – 3:1	1:256 – 1:1	1:24 – 1:3
1	Propaquizafop	1:96 – 24:1	1:32 – 8:1	1:3 – 3:1
1	Propoxycarbazone	1:34 – 68:1	1:11 – 23:1	1:1 – 9:1
1	Propyrisulfuron	1:34 – 68:1	1:11 – 23:1	1:1 – 9:1
1	Propyzamide	1:768 – 3:1	1:256 – 1:1	1:24 – 1:3
1	Prosulfocarb	1:2400 – 1:2	1:800 – 1:4	1:75 – 1:9
1	Prosulfuron	1:13 – 168:1	1:4 – 56:1	2:1 – 21:1
1	Pyraclonil	1:85 – 27:1	1:28 – 9:1	1:2 – 4:1
1	Pyraflufen-ethyl	1:10 – 224:1	1:3 – 75:1	3:1 – 28:1
1	Pyrasulfotole	1:27 – 84:1	1:9 – 28:1	1:1 – 11:1
1	Pyrazolynate	1:1714 – 2:1	1:571 – 1:3	1:53 – 1:6
1	Pyrazosulfuron-ethyl	1:20 – 112:1	1:6 – 38:1	1:1 – 14:1
1	Pyrazoxyfen	1:10 – 224:1	1:3 – 75:1	3:1 – 28:1
1	Pyribenzoxim	1:20 – 112:1	1:6 – 38:1	1:1 – 14:1
1	Pyributicarb	1:768 – 3:1	1:256 – 1:1	1:24 – 1:3
1	Pyridate	1:576 – 4:1	1:192 – 2:1	1:18 – 1:2
1	Pyriftalid	1:20 – 112:1	1:6 – 38:1	1:1 – 14:1

Component (a) (Compound No.)	Component (b)	Typical Weight Ratio	More Typical Weight Ratio	Most Typical Weight Ratio
1	Pyriminobac-methyl	1:41 – 56:1	1:13 – 19:1	1:1 – 7:1
1	Pyrimisulfan	1:34 – 68:1	1:11 – 23:1	1:1 – 9:1
1	Pyrithiobac	1:48 – 48:1	1:16 – 16:1	1:1 – 6:1
1	Pyroxasulfone	1:171 – 14:1	1:57 – 5:1	1:5 – 2:1
1	Pyroxsulam	1:10 – 224:1	1:3 – 75:1	3:1 – 28:1
1	Quinclorac	1:384 – 6:1	1:128 – 2:1	1:12 – 1:2
1	Quizalofop-ethyl	1:85 – 27:1	1:28 – 9:1	1:2 – 4:1
1	Rimsulfuron	1:27 – 84:1	1:9 – 28:1	1:1 – 11:1
1	Saflufenacil	1:51 – 45:1	1:17 – 15:1	1:1 – 6:1
1	Sethoxydim	1:192 – 12:1	1:64 – 4:1	1:6 – 2:1
1	Simazine	1:768 – 3:1	1:256 – 1:1	1:24 – 1:3
1	Sulcotriione	1:240 – 10:1	1:80 – 4:1	1:7 – 2:1
1	Sulfentrazone	1:294 – 8:1	1:98 – 3:1	1:9 – 1:2
1	Sulfometuron-methyl	1:68 – 34:1	1:22 – 12:1	1:2 – 5:1
1	Sulfosulfuron	1:17 – 135:1	1:5 – 45:1	1:1 – 17:1
1	Tebuthiuron	1:768 – 3:1	1:256 – 1:1	1:24 – 1:3
1	Tefuryltrione	1:85 – 27:1	1:28 – 9:1	1:2 – 4:1
1	Tembotrione	1:63 – 37:1	1:21 – 13:1	1:1 – 5:1
1	Tepraloxymid	1:51 – 45:1	1:17 – 15:1	1:1 – 6:1
1	Terbacil	1:576 – 4:1	1:192 – 2:1	1:18 – 1:2
1	Terbutylazine	1:1714 – 2:1	1:571 – 1:3	1:53 – 1:6
1	Terbutryn	1:384 – 6:1	1:128 – 2:1	1:12 – 1:2
1	Thenylchlor	1:171 – 14:1	1:57 – 5:1	1:5 – 2:1
1	Thiazopyr	1:768 – 3:1	1:256 – 1:1	1:24 – 1:3
1	Thiencarbazone	1:6 – 336:1	1:2 – 112:1	4:1 – 42:1
1	Thifensulfuron-methyl	1:10 – 224:1	1:3 – 75:1	3:1 – 28:1
1	Tiafenacil	1:85 – 27:1	1:28 – 9:1	1:2 – 4:1
1	Thiobencarb	1:1536 – 2:1	1:512 – 1:2	1:48 – 1:6
1	Topramezone	1:13 – 168:1	1:4 – 56:1	2:1 – 21:1
1	Tralkoxydim	1:137 – 17:1	1:45 – 6:1	1:4 – 3:1
1	Triallate	1:1536 – 2:1	1:512 – 1:2	1:48 – 1:6
1	Triasulfuron	1:10 – 224:1	1:3 – 75:1	3:1 – 28:1
1	Triaziflam	1:342 – 7:1	1:114 – 3:1	1:10 – 1:2

Component (a) (Compound No.)	Component (b)	Typical Weight Ratio	More Typical Weight Ratio	Most Typical Weight Ratio
1	Tribenuron-methyl	1:6 – 336:1	1:2 – 112:1	4:1 – 42:1
1	Triclopyr	1:384 – 6:1	1:128 – 2:1	1:12 – 1:2
1	Trifloxsulfuron	1:5 – 420:1	1:1 – 140:1	5:1 – 53:1
1	Trifluralin	1:576 – 4:1	1:192 – 2:1	1:18 – 1:2
1	Triflusulfuron-methyl	1:34 – 68:1	1:11 – 23:1	1:1 – 9:1
1	Tritosulfuron	1:27 – 84:1	1:9 – 28:1	1:1 – 11:1

Table A2 is constructed the same as Table A1 above except that entries below the “Component (a)” column heading are replaced with the respective Component (a) Column Entry shown below. Compound No. in the Component (a) column is identified in Index Table A. Thus, for example, in Table A2 the entries below the “Component (a)” column heading all recite “Compound 2” (i.e. Compound 2 identified in Index Table A), and the first line below the column headings in Table A2 specifically discloses a mixture of Compound 2 with 2,4-D. Tables A3 through A60 are constructed similarly.

<u>Table Number</u>	<u>Component (a) Column Entries</u>
A2	Compound 2
A3	Compound 3
A4	Compound 4
A5	Compound 5
A6	Compound 6
A7	Compound 7
A8	Compound 8
A9	Compound 9
A10	Compound 10
A11	Compound 11
A12	Compound 12
A13	Compound 13
A14	Compound 14
A15	Compound 15
A16	Compound 16
A17	Compound 17
A18	Compound 18
A19	Compound 19

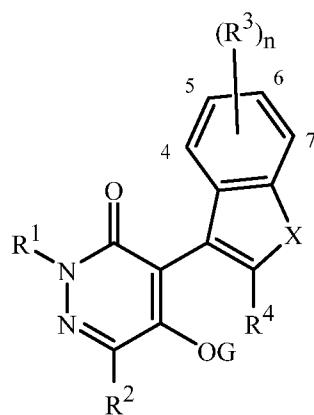
<u>Table Number</u>	<u>Component (a) Column Entries</u>
A20	Compound 20
A21	Compound 21
A22	Compound 22
A23	Compound 23
A24	Compound 24
A25	Compound 25
A26	Compound 26
A27	Compound 27
A28	Compound 28
A29	Compound 29
A30	Compound 30
A31	Compound 31
A32	Compound 32
A33	Compound 33
A34	Compound 34
A35	Compound 35
A36	Compound 36
A37	Compound 37

<u>Table Number</u>	<u>Component (a) Column Entries</u>
A38	Compound 38
A39	Compound 39
A40	Compound 40
A41	Compound 41
A42	Compound 42
A43	Compound 43
A44	Compound 44
A45	Compound 45
A46	Compound 46
A47	Compound 47
A48	Compound 48
A49	Compound 49
A50	Compound 50
A51	Compound 51
A52	Compound 52
A53	Compound 53
A54	Compound 54
A55	Compound 55

<u>Table</u> <u>Number</u>	<u>Component (a)</u> <u>Column Entries</u>
A56	Compound 56
A57	Compound 57
A58	Compound 58
A59	Compound 59
A60	Compound 60
A61	Compound 61
A62	Compound 62
A63	Compound 63
A64	Compound 64
A65	Compound 65
A66	Compound 66
A67	Compound 67
A68	Compound 68
A69	Compound 69
A70	Compound 70
A71	Compound 71
A72	Compound 72
A73	Compound 73
A74	Compound 74
A75	Compound 75
A76	Compound 76
A77	Compound 77
A78	Compound 78
A79	Compound 79
A80	Compound 80
A81	Compound 81
A82	Compound 82
A83	Compound 83
A84	Compound 84
A85	Compound 85
A86	Compound 86
A87	Compound 87
A88	Compound 88

<u>Table</u> <u>Number</u>	<u>Component (a)</u> <u>Column Entries</u>
A89	Compound 89
A90	Compound 90
A91	Compound 91
A92	Compound 92
A93	Compound 93
A94	Compound 94
A95	Compound 95
A96	Compound 96
A97	Compound 97
A98	Compound 98
A99	Compound 99
A100	Compound 100
A101	Compound 101
A102	Compound 102
A103	Compound 103
A104	Compound 104
A105	Compound 105
A106	Compound 106
A107	Compound 107
A108	Compound 108
A109	Compound 109
A110	Compound 110
A111	Compound 111
A112	Compound 112
A113	Compound 113
A114	Compound 114
A115	Compound 115
A116	Compound 116
A117	Compound 117
A118	Compound 118
A119	Compound 119
A120	Compound 120
A121	Compound 121

<u>Table</u> <u>Number</u>	<u>Component (a)</u> <u>Column Entries</u>
A122	Compound 122
A123	Compound 123
A124	Compound 124
A125	Compound 125
A126	Compound 126
A127	Compound 127
A128	Compound 128
A129	Compound 129
A130	Compound 130
A131	Compound 131
A132	Compound 132
A133	Compound 133
A134	Compound 134
A135	Compound 135
A136	Compound 136
A137	Compound 137
A138	Compound 138
A139	Compound 139
A140	Compound 140
A141	Compound 141
A142	Compound 142
A143	Compound 143
A144	Compound 144
A145	Compound 145
A146	Compound 146
A147	Compound 147
A148	Compound 148
A149	Compound 149
A150	Compound 150
A151	Compound 151
A152	Compound 152
A153	Compound 153
A154	Compound 154


<u>Table Number</u>	<u>Component (a) Column Entries</u>
A155	Compound 155
A156	Compound 156
A157	Compound 157
A158	Compound 158
A159	Compound 159
A160	Compound 160
A161	Compound 161
A162	Compound 162
A163	Compound 163
A164	Compound 164
A165	Compound 165
A166	Compound 166

<u>Table Number</u>	<u>Component (a) Column Entries</u>
A167	Compound 167
A168	Compound 168
A169	Compound 169
A170	Compound 170
A171	Compound 171
A172	Compound 172
A173	Compound 173
A174	Compound 174
A175	Compound 175
A176	Compound 176
A177	Compound 177
A178	Compound 178

<u>Table Number</u>	<u>Component (a) Column Entries</u>
A179	Compound 179
A180	Compound 180
A181	Compound 181
A182	Compound 182
A183	Compound 183
A184	Compound 184
A185	Compound 185
A186	Compound 186
A187	Compound 187
A188	Compound 188

The following Tests demonstrate the control efficacy of the compounds of this invention against specific weeds. The weed control afforded by the compounds is not limited, however, to these species. See Index Table A for compound descriptions. The following abbreviations are used in the Index Table which follows: *t* is tertiary, Me is methyl, morph is morpholinyl, Bn is benzyl and Bu is butyl. The abbreviation "Cmpd. No." stands for "Compound Number". The abbreviation "Ex." stands for "Example" and is followed by a number indicating in which example the compound is prepared. Mass spectra are reported with an estimated precision within ± 0.5 Da as the molecular weight of the highest isotopic abundance parent ion ($M+1$) formed by addition of H^+ (molecular weight of 1) to the molecule observed by using atmospheric pressure chemical ionization (AP+).

INDEX TABLE A

Cmpd. No.	R ¹	R ²	X	(R ³) _n	R ⁴	G	m.p. (°C)	M+1	NMR
1 (Ex. 1)	Me	Me	S	5-Me	Me	H		301.5	**
2	Me	Me	S	5,7-di-Me	Me	H			*
3	Me	Me	S	4,6-di-Me	Me	H	224– 227	315.5	*
4	Me	Me	O	–	Me	H	238– 240	271.5	*
5	Me	Me	O	5-OMe	Me	H		301.5	*
6	Me	Me	O	5-Cl	Me	H			*
7 (Ex. 2)	Me	Me	O	5-Me	Me	H			**
8	Me	Me	O	4-Me	Me	H			*
9	Me	Me	O	7-Me	Me	H		285.5	*
10	Me	Me	O	5-Me	Et	H		299.5	*
11	Me	Me	-CH=CH-	–	H	H		267	*
12 (Ex. 3)	Me	Me	O	5,7-di-Me	Me	H			**
13	Me	Me	O	5-Et	Me	H			*
14	Me	Me	O	5-Me	Me	-C(=O)Me			*
15	Me	Me	O	7-Me	Me	-C(=O)Me			*
16	Me	Me	O	5,7-di-Me	Me	-C(=O)Me		341.0	*
17	Me	Me	O	5-Me	Me	-C(=O)- <i>t</i> -Bu		369.0	*
18	Me	Me	O	5,7-di-Me	Me	-C(=O)- <i>t</i> -Bu		383.0	*
19	Me	Me	S	4,6-di-Me	Et	H			*
20	Me	Br	-CH=CH-	–	H	H		332	
21	Me	Me	-CH=C(Me)-	–	Me	H			*
22	Me	Me	S	5-Br	Me	H		367	
23	Me	Br	-CH=CH-	–	Me	H		343	
24	Me	H	-CH=CF-	–	H	H			*
25	Me	Me	S	5-Me	Me	-C(=O)Me			*
26	Me	Me	S	5-Me	Me	-C(=O)- <i>t</i> -Bu		385.4	

Cmpd. No.	R ¹	R ²	X	(R ³) _n	R ⁴	G	m.p. (°C)	M+1	NMR
27	Me	Me	S	5,7-di-Me	Me	-C(=O)Me	140– 145		
28	Me	Me	S	5,7-di-Me	Me	-C(=O)Et	134– 137		
29	Me	I	-CH=CH-	–	Me	H		393	
30	Me	OMe	-CH=CH-	5-Me	Me	H		311	
31	Me	Me	N(Me)	5-Me	Me	H	94–98		
32	Me	Me	-CH=CH-	–	Et	H	226– 229		
33	Me	OMe	S	–	Me	H		303	
34	Me	Me	-C(Me)=CH-	–	Me	H		295	
35	Me	Me	S	5-Cl, 7-Me	Me	H		335	
36	Me	OMe	-CH=CH-	–	Me	-C(=O)O- <i>i</i> -Pr			*
37	Me	Me	-CH=CH-	–	Et	-C(=O)OEt		367.6	
38	Me	Me	-CH=CH-	–	Et	-C(=O)- <i>c</i> -Pr		363.6	
39	Me	Me	-CH=CH-	–	Et	-C(=O)O- <i>i</i> -Pr	112– 116		
40	Me	Me	-CH=CH-	–	OMe	H		297	
41	Me	Me	-CH=CF-	–	H	H			*
42	Me	Me	S	5-Me	Me	-C(=O)Et	125– 130		
43	Me	Me	S	5,7-di-Me	Me	-C(=O)- <i>t</i> -Bu		399.4	
44	Me	Me	S	4,6-di-Me	Me	-C(=O)Me		357	
45	Me	Me	S	4,6-di-Me	Me	-C(=O)- <i>t</i> -Bu		399	
46 (Ex. 4)	Me	OMe	-C(Me)=CH-	–	Me	H		311	
47	Me	Me	S	5-Me	Et	H	203– 205		
48	Me	H	S	–	Me	H		273	
49	Me	H	-CH=CH-	–	H	H		251.5 [#]	

Cmpd. No.	R ¹	R ²	X	(R ³) _n	R ⁴	G	m.p. (°C)	M+1	NMR
50	Me	H	-CH=C(Me)-	—	H	H		267	
51	Me	H	-CH=C(Me)-	—	Me	H			*
52	Me	Br	-CH=C(Me)-	—	H	H		347.4	
53	Me	Me	S	5-OMe	Me	H	187– 189		
54	Me	OMe	-CH=CH-	—	Me	H		297	
55	Me	OMe	-CH=CH-	—	H	H		283	
56	Me	H	-CH=CH-	—	Me	H	249– 251		
57	Me	Me	S	5,7-di-Me	Et	H	200– 202		
58	Me	Me	- CH=C(OMe)-	—	H	H		297	
59	Me	Me	-CH=CH-	—	Me	H	269– 273		
60	Me	Me	-CH=CH-	5-Me	Me	H	230– 233		
61	Me	Ph	O	5-Me	Me	H	259– 263		
62	Me	Me	-CH=C(Cl)-	—	H	-C(=O)Et			*
63	Me	Me	-CH=C(Cl)-	—	H	-C(=O)OMe		359	
64	Et	Et	O	5-Me	Me	H	215– 219		
65	Me	Me	S	—	Me	H	225– 228		
66	Me	Me	S	5-Me	Me	-C(=O)O- <i>i</i> -Pr	128– 129		
67	Me	Me	S	5,7-di-Me	Me	-C(=O)O- <i>i</i> -Pr	123– 125		
68	Me	Me	O	5-OEt	Et	H	170– 174		

Cmpd. No.	R ¹	R ²	X	(R ³) _n	R ⁴	G	m.p. (°C)	M+1	NMR
69	Me	Me	-CH=CH-	5-Me	H	H		282	
70	Me	Me	-CH=CH-	5-I	H	H		393	
71	Me	Me	-CH=CH-	5-c-Pr	H	H		307	
72	Me	Me	-CH=CH-	—	Me	-C(=O)O- <i>i</i> -Pr	230– 235		
73	Me	Me	-CH=CH-	—	Me	-C(=O)OEt	146– 150		
74	Me	Me	N(Me)	5-Cl	Me	H	314– 318		
75	Me	Me	-CH=C(Br)-	—	H	H	285– 289		
76	Me	Me	-CH=CH-	—	Me	-C(=O)- <i>c</i> -Pr		349	
77	Me	Et	O	5-Cl	Me	H	242– 248		
78	Me	Me	-CH=CH-	—	Me	-C(=O)Et			*
79	Me	Me	S	5-Me	Br	H		367.2	
80	Me	Me	S	5-Me	Me	-C(=O)OMe		359.5	
81	Me	Me	S	5,7-di-Me	Me	-C(=O)OMe		373.5	
82	Me	Me	S	5-Me	Me	-C(=O)OEt		373.5	
83	Me	Me	S	5,7-di-Me	Me	-C(=O)OEt		387.5	
84	Me	Me	S	5-Me	Me	- C(=O)OCH ₂ CH ₂ Cl		407.4	
85	Me	Me	S	5,7-di-Me	Me	- C(=O)OCH ₂ CH ₂ Cl		421.4	
86	Me	OMe	-CH=CH-	—	CF ₂ H	H		331#	
87	Me	Me	S	5-Me	Me	- C(=O)OCH ₂ C≡CH		383.3	
88	Me	Me	S	5,7-di-Me	Me	- C(=O)OCH ₂ C≡CH		397.3	
89	Me	Cl	S	—	Me	H		307	
90	Me	Me	-CH=CF-	—	H	-C(=O)Me			*

Cmpd. No.	R ¹	R ²	X	(R ³) _n	R ⁴	G	m.p. (°C)	M+1	NMR
91 (Ex. 5)	Me	Cl	S	5-Cl	Me	H			**
92	Me	Me	-CH=CH-	5-OEt	H	H		309	
93	Me	Me	-CH=CH-	5-OCF ₂ H	H	H		333	
94	Me	Cl	S	—	Me	-C(=O)O- <i>i</i> -Pr			*
95	Me	Me	NMe	—	Cl	H	237– 239		
96	Me	Me	-CH=CH-	5-OEt	H	H		297	
97	Me	H	S	—	Me	-C(=O)OMe		331	
98	Me	CN	-CH=CH-	—	Me	-C(=O)Me			*
99	Me	Me	-CH=CMe-	—	Me	-C(=O)Me			*
100	Me	OMe	S	5-Cl	Me	H		337	
101	Me	Cl	S	5-Cl	Me	-C(=O)OMe			*
102	Me	CF ₃	-CH=CH-	—	Me	H		335	
103	Me	Me	-CH=CH-	5-Me	Et	H	186– 189		
104	Me	Me	S	5-Cl	Me	H	254– 257		
105	Me	Me	S	5-Me	Me	-C(=O)- <i>n</i> -Pr	115– 117		
106	Me	Me	S	5,7-di-Me	Me	-C(=O)- <i>n</i> -Pr	113– 115		
107	Me	Me	S	5-Me	Et	-C(=O)- <i>n</i> -Pr	80–82		
108	Me	Me	S	5-Cl	Me	-C(=O)Me	203– 206		
109	Me	Me	S	5-Cl	Me	-C(=O)Et	125– 127		
110	Me	Me	-CH=CH-	6-Me	Me	H		295	
111	Me	Cl	S	5-Cl	Me	-C(=O)Et			*
112	Me	OMe	S	5-Cl	Me	-C(=O)OMe		395	
113	Me	Me	-CH=CF-	—	H	-C(=O)Et-			*

Cmpd. No.	R ¹	R ²	X	(R ³) _n	R ⁴	G	m.p. (°C)	M+1	NMR
114	Me	Cl	S	5-Cl	Me	-SO ₂ Me			*
115	Me	Me	-CF=CH-	—	H	-SO ₂ Me		363	
116	Me	Cl	S	5-Cl	Me	-C(=O)Me			*
117	Me	Et	O	—	Me	H	210– 215		
118	Me	Et	O	5-Me	Me	H	334– 338		
119	Me	<i>i</i> -Pr	O	5-Me	Me	H	245– 250		
120	Me	H	S	—	Me	-C(=O)Me			*
121	Me	Me	S	5-CF ₃	Me	H		355	
122	Me	OMe	S	5-Cl	Me	-C(=O)Me			*
123	Me	Me	-CH=CF-	—	H	-C(=O)CH ₂ CF ₃			*
124	Me	Me	-CH=CH-	5- OC(=O)Me	H	-C(=O)Me			*
125	Me	Cl	-CH=CH-	—	Me	H		301	
126	Me	Me	-CH=CH-	5-Br	H	H		347	
127	Me	Me	-CH=CH-	5-CN	H	H		292	
128	Me	CN	-CH=CH-	—	Me	-C(=O)- <i>t</i> -Bu			*
129	Me	Br	-CH=CH-	—	Me	-C(=O)Me			*
130	Me	Me	-CH=CF-	—	H	-C(=O)OMe			*
131	Me	OMe	S	5-Cl	Me	-C(=O)Et			*
132	Me	Me	S	5-CF ₃	Me	-C(=O)Me			*
133	Me	Me	-CH=CBr-	—	H	-C(=O)OEt	117– 120		
134	Me	Me	-CH=CBr-	—	H	-C(=O)Et	120– 124		
135	Me	OMe	S	5-Cl	Me	-SO ₂ Me		415	
136	Me	OMe	-CH=CH-	—	Me	-C(=O)OMe		355	
137	Me	Br	-CH=CH-	—	Me	-C(=O)OMe			*

Cmpd. No.	R ¹	R ²	X	(R ³) _n	R ⁴	G	m.p. (°C)	M+1	NMR
138	Me	OMe	-CH=CH-	—	Me	-C(=O)Me			*
139	Me	Me	-CH=CCl-	—	H	H		301	
140	Me	Cl	S	5-CF ₃	Me	H		375	
141	Me	OMe	S	—	Me	-C(=O)Me			*
142	Me	H	-CH=CH-	—	Me	-SO ₂ Me		345	
143	Me	H	-CH=CH-	—	Me	-C(=O)OMe		325	
144	Me	Me	-CH=CH-	5-Cl	Me	H	280– 284		
145	Me	Me	-CH=CBr-	—	H	-C(=O)OMe		403	
146	Me	Me	-CH=CH-	—	CF ₃	-C(=O)OEt	115– 118		
147	Me	Me	-CH=CH-	—	CF ₃	-C(=O)Et	132– 135		
148	Me	Me	-CH=CH-	—	CF ₃	-C(=O)Me	181– 184		
149	Me	Me	-CH=CH-	—	CF ₃	-C(=O)OMe	130– 133		
150	Me	Me	-CH=CH-	5-C≡CH	H	H		291	
151	Me	Me	-CH=CH-	5-F,7-Me	Me	H		319.1	
152	Me	Cl	S	5-CF ₃	Me	-C(=O)Me			*
153	Me	Me	-CH=CMe-	—	Me	-C(=O)Me			*
154	Me	Me	-CH=CMe-	—	Me	-SO ₂ Me		373	
155	Me	Br	-CH=CH-	—	Me	-SO ₂ Me			*
156	Me	Br	-CH=CH-	—	Me	-C(=O)Et			*
157	Me	Me	-CH=CCl-	—	H	-C(=O)Me		343	
158	Me	Me	-CH=CCl-	—	H	-SO ₂ CF ₃	?	433	
159	Me	Me	-CH=CCl-	—	H	-C(=O)CF ₃			*
160	Me	Me	S	5-Me	Me	-CH ₂ CN		340	
161	Me	Me	-CH=CH-	5-NO ₂	Me	H		312	

Cmpd. No.	R ¹	R ²	X	(R ³) _n	R ⁴	G	m.p. (°C)	M+1	NMR
162	Me	Me	-CH=CH-	—	NO ₂	-C(=O)OMe	162– 166		
163	Me	Me	-CH=CH-	—	NO ₂	-C(=O)- <i>t</i> -Bu	239– 243		
164	Me	Me	-CH=CH-	—	NO ₂	-C(=O)Me	189– 193		
165	Me	Me	-CH=CH-	—	NO ₂	H	264– 268		
166	Me	Me	-CH=CH-	—	NO ₂	-C(=O)OEt	147– 150		
167	Me	Me	-CH=CH-	—	NO ₂	-C(=O)- <i>c</i> -Pr	165– 170		
168	Bn	Me	-CH=CH-	—	H	H		343	
169	H	Me	-CH=CH-	—	H	H		253	
170	Me	Me	S	—	Me	-C(=O)-N-morph	168– 171		
171	Me	Me	-CH=CH-	—	H	-C(=O)CH ₂ SMe			*
172	CH ₂ CO ₂ Me	Me	-CH=CH-	—	H	H		325	
173	H	Me	-CH=CH-	—	H	-CH ₂ CF ₂ H		317	
174	Me	Me	S	5,7-di-Me	Me	-C(=O)-N-morph		428	
175	H	Me	-CH=CH-	—	H	-CF ₂ H		303	
176	Me	Br	-CH=CH-	—	Me	-C(=O)-N-morph			*
177	Me	NO ₂	-CH=CH-	—	Me	H		312	
178	Me	Me	-CH=CH-	—	H	-CH ₂ C(=O)Me		323	
179	Me	Me	-CH=CH-	—	H	-CH ₂ C≡CH		305	
180	Me	Me	-CH=CH-	—	H	-CH ₂ CH=CHPh		383	
181	Me	Me	-CH=CH-	—	H	-CH ₂ C(=O)- <i>c</i> -Pr		349	
182	Me	Me	-CH=CH-	—	H	-CH ₂ C(=O)OMe		339	
183	Me	Me	-CH=CH-	—	H	-C(=O)CH=CHPh		397	
184	Me	Me	-CH=CH-	—	H	-CH ₂ C(=O)Ph		385	

Cmpd. No.	R ¹	R ²	X	(R ³) _n	R ⁴	G	m.p. (°C)	M+1	NMR
185	Me	Me	-CH=CCl-	—	H	-SO ₂ N(Me) ₂		408	
186	Me	Me	-CH=CCl-	—	H	-P(=O)(OMe) ₂		410	
187	Me	Me	-CH=CCl-	—	H	-P(=O)(Me) ₂		377	
188	Me	Me	S	5,7-di-Me	Me	-CH ₂ CN		354	

* See Index Table B for ¹H NMR data.

** See Synthesis Example for ¹H NMR data.

M-1 peak.

INDEX TABLE B

Cmpd. No.	¹ H NMR Data (CDCl ₃ solution unless indicated otherwise) ^a
2	δ 6.93 (s, 1H), 6.90 (s, 1H), 6.41 (br s, 1H), 3.60 (s, 3H), 2.47 (s, 3H), 2.36 (s, 3H), 2.25–2.29 (m, 6H)
3	δ 7.40 (s, 1H), 6.83 (s, 1H), 6.10 (br s, 1H), 3.66 (s, 3H), 2.38 (s, 3H), 2.28 (s, 3H), 2.21 (s, 3H), 2.13 (s, 3H).
4	(DMSO- <i>d</i> ₆) δ 10.33 (s, 1H), 7.52 (d, 1H), 7.14–7.27 (m, 3H), 3.60 (s, 3H), 2.28 (s, 3H), 2.25 (s, 3H).
5	δ 7.34 (d, 1H), 6.84–6.87 (m, 1H), 6.65–6.66 (d, 1H), 3.79 (s, 3H), 3.75 (s, 3H), 2.36 (s, 3H), 2.35 (s, 3H).
6	δ 7.35–7.39 (m, 1H), 7.20–7.24 (m, 2H), 6.08 (br s, 1H), 3.72 (s, 3H), 2.36 (s, 3H), 2.32 (s, 3H).
8	δ 7.28–7.30 (d, 1H), 7.13–7.16 (m, 1H), 6.93–6.96 (m, 1H), 5.65–5.80 (br s, 1H), 3.77 (s, 3H), 2.35 (s, 3H), 2.31 (s, 3H), 2.23 (s, 3H).
9	(DMSO- <i>d</i> ₆) δ 10.26 (s, 1H), 6.99–7.07 (m, 3H), 3.60 (s, 3H), 2.48 (s, 3H), 2.28 (s, 3H), 2.25 (s, 3H).
10	(DMSO- <i>d</i> ₆) δ 10.28–10.30 (br s, 1H), 7.39–7.42 (m, 1H), 7.03–7.07 (m, 1H), 6.96–6.98 (m, 1H), 3.60 (s, 3H), 2.55–2.62 (m, 2H), 2.34 (s, 3H), 2.25 (s, 3H), 1.18–1.23 (m, 3H).
11	(DMSO- <i>d</i> ₆) δ 10.11 (br s, 1H), 8.10–7.93 (m, 2H), 7.58–7.40 (m, 4H), 7.35–7.31 (m, 1H), 3.60 (s, 3H), 2.27 (s, 3H).
13	δ 7.35 (d, 1H), 7.08–7.13 (m, 1H), 7.00–7.05 (m, 1H), 5.99–6.03 (m, 1H), 3.72 (s, 3H), 2.70 (m, 2H), 2.35 (s, 3H), 2.32 (s, 3H), 1.17–1.29 (m, 3H).
14	δ 7.27–7.29 (m, 1H), 7.06–7.07 (m, 1H), 7.01 (m, 1H), 3.83 (s, 3H), 2.38–2.40 (m, 6H), 2.29 (s, 3H), 1.89 (s, 3H).
15	δ 7.07–7.11 (m, 2H), 7.00–7.02 (m, 1H), 3.84 (s, 3H), 2.50 (s, 3H), 2.42 (s, 3H), 2.29 (s, 3H), 1.89 (s, 3H).

16 δ 6.88 (s, 1H), 6.83 (s, 1H), 3.84 (s, 3H), 2.45 (s, 3H), 2.39 (s, 3H), 2.35 (s, 3H), 2.29 (s, 3H), 1.91 (s, 3H).

17 δ 7.26 (d, 1H), 7.02 (d, 1H), 7.00 (d, 1H), 3.84 (s, 3H), 2.37 (d, 6H), 2.26 (s, 3H) 0.93 (br s, 9H).

18 δ 6.83 (s, 1H), 6.81 (s, 1H), 3.83 (s, 3H), 2.44 (s, 3H), 2.37 (s, 3H), 2.34 (s, 3H), 2.25 (s, 3H), 0.94 (br s, 9H).

19 δ 7.45 (s, 1H), 6.86 (s, 1H), 5.62 (s, 1H), 3.74 (s, 3H), 2.55–2.71 (m, 2H), 2.39 (s, 3H), 2.32 (s, 3H), 2.18 (s, 3H), 1.20–1.29 (m, 3H).

21 δ 8.03 (m, 1H), 7.61–7.49 (m, 3H), 7.32 (s, 1H), 5.23 (br s, 1H), 3.79 (s, 1H), 2.71 (s, 1H), 2.36 (s, 3H), 2.26 (s, 3H).

24 δ 8.17 (m, 1H), 7.75 (s, 1H), 7.62–7.52 (m, 3H), 7.38 (m, 1H), 7.25 (m, 1H), 5.69 (br s, 1H), 3.81 (s, 3H).

25 δ 8.17 (m, 1H), 7.62–7.52 (m, 3H), 7.37 (m, 1H), 7.26 (m, 1H) 5.49 (s, 1H), 3.77 (s, 3H), 2.36 (s, 3H).

36 δ 7.82–7.78 (m, 2H), 7.45–7.35 (m, 4H), 4.72–4.64 (m, 1H), 3.97 (s, 3H), 3.78 (s, 3H), 2.30 (s, 3H), 1.10 (m, 3H), 1.03 (m, 3H).

41 δ 8.18 (m, 1H), 7.62–7.54 (m, 3H), 7.36 (m, 1H), 7.25 (m, 2H), 5.48 (s, 1H), 3.77 (s, 3H), 2.36 (s, 3H).

51 δ 8.04 (m, 2H), 7.73 (s, 1H), 7.53–7.45 (m, 2H), 7.31 (s, 1H), 5.60 (br s, 1H) 3.83 (s, 3H), 2.70 (s, 3H), 2.26 (s, 3H).

62 δ 8.28–8.35 (m, 1H), 7.57–7.65 (m, 2H), 7.47–7.56 (m, 2H), 7.20–7.29 (m, 1H), 3.85 (s, 3H), 2.29 (s, 3H), 1.96–2.19 (m, 2H), 0.62–0.85 (m, 3H).

78 (500MHz) δ 7.88 (s, 1H), 7.81 (s, 1H), 7.79 (s, 1H), 7.44–7.33 (m, 4H), 3.91–3.88 (m, 3H), 2.29 (s, 3H), 2.02 (m, 2H), 0.76 (s, 1H), 0.64 (m, 3H).

90 (500MHz) δ 8.15–8.14 (m, 1H), 7.65–7.51 (m, 4H), 7.29–7.27 (m, 1H), 7.20–7.16 (m, 1H), 3.85 (s, 3H), 2.31 (s, 3H), 1.84 (s, 3H).

95 (500MHz) δ 7.75–7.72 (m, 1H), 7.33–7.26 (m, 3H), 4.66–4.63 (m, 1H), 3.87 (s, 3H), 2.43 (s, 3H), 1.07–1.00 (m, 6H).

99 δ 7.81–7.87 (m, 2H), 7.38–7.45 (m, 3H), 7.30–7.34 (m, 1H), 3.96 (s, 3H), 2.28 (s, 3H), 1.85 (s, 3H).

100 (500MHz) δ 7.78–7.76 (m, 1H), 7.71 (s, 1H), 7.42–7.31 (m, 2H), 7.23–7.22 (m, 1H), 3.84 (s, 3H), 2.52 (s, 3H), 2.48 (s, 3H), 2.18 (s, 3H).

102 (500MHz) δ 7.67–7.66 (m, 1H), 7.27–7.24 (m, 2H), 3.88 (s, 3H), 3.69 (s, 3H), 2.43 (s, 3H).

112 (500MHz) δ 7.67–7.65 (m, 1H), 7.46–7.27 (m, 2H), 3.87 (s, 3H), 2.42 (s, 3H), 2.35–2.13 (m, 2H), 0.86–0.83 (m, 3H).

114 (500MHz) δ 8.15–8.13 (m, 1H), 7.60–7.49 (m, 3H), 7.33–7.27 (m, 1H), 7.21–7.16 (m, 1H),
 3.85 (s, 3H), 2.29 (s, 3H), 2.13–2.02 (m, 2H), 0.78–0.75 (m, 3H).
 115 (500MHz) δ 7.69–7.68 (m, 1H), 7.31–7.27 (m, 2H), 3.88 (s, 3H), 2.58 (s, 3H), 2.48 (s, 3H).
 117 (500MHz) δ 7.67–7.65 (m, 1H), 7.26–7.24 (m, 2H), 3.87 (s, 3H), 2.42 (s, 3H), 1.96 (s, 3H).
 121 (500MHz) δ 7.84 (s, 1H), 7.79–7.69 (m, 1H), 7.30–7.26 (m, 3H), 3.88 (s, 3H), 2.43 (s, 3H),
 1.90 (s, 3H).
 123 (500MHz) δ 7.65–7.64 (m, 1H), 7.28–7.27 (m, 1H), 7.24–7.22 (m, 1H), 3.93 (s, 3H), 3.77 (s,
 3H), 2.42 (s, 3H), 1.98 (s, 3H).
 124 (500MHz) δ 8.16–8.15 (m, 1H), 7.60–7.45 (m, 3H), 7.29–7.26 (m, 2H), 7.20–7.17 (m, 1H),
 3.87 (s, 3H), 3.00–2.82 (m, 2H), 2.31 (s, 3H).
 125 δ 7.84–7.94 (m, 2H), 7.46–7.55 (m, 1H), 7.33–7.40 (m, 1H), 7.23–7.30 (m, 1H), 7.16–7.21 (m,
 1H), 3.85 (s, 3H), 2.31 (s, 3H), 2.29 (s, 3H), 1.82 (s, 3H).
 129 δ 7.78–7.85 (m, 2H), 7.36–7.45 (m, 3H), 7.29–7.35 (m, 1H), 3.98 (s, 3H), 2.29 (s, 3H), 0.72 (s,
 9H).
 130 δ 7.82, (m, 2H), 7.29 (m, 4H), 3.88 (s, 1H), 2.30 (s, 3H) 1.80 (s, 3H).
 131 (500MHz) δ 8.24–8.13 (m, 1H), 7.60–7.52 (m, 3H), 7.34–7.30 (m, 1H), 7.26–7.18 (m, 1H),
 3.88 (s, 3H), 3.61 (s, 3H), 2.37 (s, 3H).
 132 (500MHz) δ 7.65–7.63 (m, 1H), 7.35–7.27 (m, 1H), 7.26–7.19 (m, 1H), 3.93 (s, 3H), 3.77 (s,
 3H), 2.42 (s, 3H), 2.29–2.19 (m, 2H), 0.89–0.86 (m, 3H).
 133 (500MHz) δ 7.89–7.83 (m, 1H), 7.54–7.48 (m, 2H), 3.86 (s, 3H), 2.45 (s, 3H), 2.32 (s, 3H),
 1.81 (s, 3H).
 138 (500MHz) δ 7.84–7.82 (m, 2H), 7.45–7.35 (m, 4H), 3.90 (s, 3H), 3.58 (s, 3H), 2.30 (s, 3H).
 139 (500MHz) δ 7.81–7.79 (m, 2H), 7.44–7.36 (m, 4H), 3.95 (s, 3H), 3.78 (s, 3H), 2.30 (s, 3H),
 1.85 (s, 3H).
 142 (500MHz) δ 7.75–7.73 (m, 1H), 7.29–7.23 (m, 3H), 3.93 (s, 3H), 3.76 (s, 3H), 2.42 (s, 3H),
 1.94 (s, 3H).
 153 (500MHz) δ 7.93–7.83 (m, 1H), 7.53–7.52 (m, 2H), 3.88 (s, 3H), 2.46 (s, 3H), 1.93 (s, 3H).
 154 (500MHz) δ 7.97–7.95 (m, 1H), 7.48–7.34 (m, 3H), 7.29–7.26 (m, 1H), 3.85 (s, 3H), 2.74 (s,
 3H), 2.30 (s, 3H), 2.24 (s, 3H), 1.71 (s, 3H).
 156 (500MHz) δ 7.89–7.87 (m, 2H), 7.48–7.38 (m, 4H), 3.90 (s, 3H), 2.37 (s, 3H), 2.07 (s, 3H).
 157 (500MHz) δ 7.86–7.76 (m, 2H), 7.44–7.35 (m, 4H), 3.90 (s, 3H), 2.30 (s, 3H), 2.09–2.03 (m,
 2H), 0.65–0.62 (m, 3H).
 160 δ 8.31–8.37 (m, 1H), 7.59–7.68 (m, 2H), 7.49–7.56 (m, 1H), 7.42–7.48 (m, 1H), 7.19–7.25 (m,
 1H), 3.93 (s, 3H), 2.37 (s, 3H).

175 (500MHz) δ 8.17–8.10 (m, 1H), 7.59–7.45 (m, 3H), 7.31–7.27 (m, 1H), 7.23–7.14 (m, 1H),
3.86 (s, 3H), 2.95–2.88 (m, 2H), 2.33 (s, 3H), 1.67 (s, 3H).

180 (500MHz) δ 7.89–7.77 (m, 2H), 7.50–7.33 (m, 4H), 3.90 (s, 3H), 3.26–2.86 (m, 6H), 2.33 (s, 3H).

^a ¹H NMR data are in ppm downfield from tetramethylsilane. Couplings are designated by (s)-singlet, (d)-doublet, (t)-triplet, (m)-multiplet, (br s)-broad singlet.

BIOLOGICAL EXAMPLES OF THE INVENTION

TEST A

5 Seeds of plant species selected from barnyardgrass (*Echinochloa crus-galli*), kochia (*Kochia scoparia*), ragweed (common ragweed, *Ambrosia elatior*), ryegrass, Italian (Italian ryegrass, *Lolium multiflorum*), crabgrass, large (large crabgrass, *Digitaria sanguinalis*), foxtail, giant (giant foxtail, *Setaria faberii*), morningglory (*Ipomoea* spp.), pigweed (*Amaranthus retroflexus*), velvetleaf (*Abutilon theophrasti*), wheat (*Triticum aestivum*), and
10 corn (*Zea mays*) were planted into a blend of loam soil and sand and treated preemergence with a directed soil spray using test chemicals formulated in a non-phytotoxic solvent mixture which included a surfactant.

At the same time, plants selected from these crop and weed species and also blackgrass (*Alopecurus myosuroides*), and galium (catchweed bedstraw, *Galium aparine*) were planted
15 in pots containing the same blend of loam soil and sand and treated with postemergence applications of test chemicals formulated in the same manner. Plants ranged in height from 2 to 10 cm and were in the one- to two-leaf stage for the postemergence treatment. Treated plants and untreated controls were maintained in a greenhouse for approximately 10 d, after
20 which time all treated plants were compared to untreated controls and visually evaluated for injury. Plant response ratings, summarized in Table A, are based on a 0 to 100 scale where 0 is no effect and 100 is complete control. A dash (–) response means no test result.

Table A

	1000 g ai/ha	Compounds													
		1	3	4	5	6	7	10	11	13	32	60	178	179	180
Postemergence															
25	Barnyardgrass	90	50	70	40	70	90	90	80	80	90	90	0	10	0
	Blackgrass	–	–	–	–	–	–	–	–	30	90	90	30	40	30
	Corn	40	0	0	0	0	10	20	50	20	50	50	0	10	0
	Crabgrass, Large	90	10	50	80	50	50	70	70	–	–	–	–	–	–
	Foxtail, Giant	80	10	80	80	70	90	80	90	80	90	90	0	10	0
30	Galium	–	–	–	–	–	–	–	–	70	100	100	70	90	80
	Kochia	–	–	–	–	–	–	–	–	30	100	100	10	10	40

146

	Morningglory	100	90	70	70	40	100	100	90	-	-	-	-	-	-
	Pigweed	100	0	50	10	50	100	90	90	20	100	100	70	0	50
	Ragweed	-	-	-	-	-	-	-	-	30	100	100	60	40	0
	Ryegrass, Italian	-	-	-	-	-	-	-	-	70	100	100	70	70	70
5	Velvetleaf	100	70	60	-	-	100	100	100	-	-	-	-	-	-
	Wheat	0	0	0	0	20	20	0	60	20	100	70	0	0	0
	Table A	Compounds													
	1000 g ai/ha	181	182	183	184										
	Postemergence														
10	Barnyardgrass	0	0	40	20										
	Blackgrass	20	10	80	30										
	Corn	0	0	10	0										
	Crabgrass, Large	-	-	-	-										
	Foxtail, Giant	0	0	70	20										
15	Galium	80	50	90	90										
	Kochia	0	0	90	80										
	Morningglory	-	-	-	-										
	Pigweed	30	0	90	80										
	Ragweed	30	30	70	30										
20	Ryegrass, Italian	80	0	100	80										
	Velvetleaf	-	-	-	-										
	Wheat	0	0	0	0										
	Table A	Compounds													
	500 g ai/ha	2	8	9	12	14	15	16	17	18	19	20	21	22	23
25	Postemergence														
	Barnyardgrass	80	0	90	40	70	90	90	0	40	80	100	90	50	90
	Blackgrass	-	-	-	50	30	50	30	40	20	0	40	90	70	80
	Corn	20	0	0	0	20	20	0	0	20	0	30	60	0	50
	Crabgrass, Large	70	30	50	-	-	-	-	-	-	-	-	-	-	-
30	Foxtail, Giant	90	30	90	70	70	90	80	0	20	60	100	100	90	90
	Galium	-	-	-	90	90	90	100	60	60	80	100	100	100	100
	Kochia	-	-	-	60	90	50	60	0	0	0	100	100	100	100
	Morningglory	100	10	80	-	-	-	-	-	-	-	-	-	-	-
	Pigweed	100	80	0	50	80	0	40	0	0	0	100	100	100	100
35	Ragweed	-	-	-	70	90	50	70	0	0	0	100	100	100	100

147

	Ryegrass, Italian	-	-	-	70	80	90	80	60	50	0	100	100	100	100
	Velvetleaf	100	60	10	-	-	-	-	-	-	-	-	-	-	-
	Wheat	20	0	0	0	0	0	0	0	0	0	30	60	0	80
Table A															
5	500 g ai/ha	24	25	26	27	28	29	30	31	33	34	35	36	37	38
	Postemergence														
	Barnyardgrass	50	90	30	90	90	80	30	10	90	90	90	80	90	40
	Blackgrass	50	90	70	90	90	80	60	20	40	90	80	80	100	60
	Corn	0	20	0	20	20	40	0	0	10	0	30	40	40	10
10	Crabgrass, Large	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Foxtail, Giant	60	90	60	90	90	90	60	10	90	90	90	90	90	50
	Galium	100	100	90	100	100	90	90	70	100	100	100	100	100	100
	Kochia	80	100	90	90	90	90	80	0	100	80	100	100	90	80
	Morningglory	-	-	-	-	-	-	-	-	-	-	-	-	-	-
15	Pigweed	90	100	90	100	90	100	90	40	70	90	90	90	100	50
	Ragweed	60	100	90	100	100	100	70	20	90	100	80	90	90	70
	Ryegrass, Italian	90	100	90	100	100	100	60	0	70	100	100	80	100	50
	Velvetleaf	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Wheat	70	0	0	0	0	60	10	0	0	40	40	30	80	20
20	Table A														
	500 g ai/ha	39	40	41	42	43	44	45	46	47	48	49	50	51	52
	Postemergence														
	Barnyardgrass	10	60	90	90	30	0	0	80	80	50	20	0	80	50
	Blackgrass	70	80	90	90	80	0	0	70	70	30	30	10	60	30
25	Corn	0	10	70	20	0	0	0	0	10	0	0	0	0	20
	Crabgrass, Large	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Foxtail, Giant	60	80	100	100	70	0	0	80	80	60	20	0	80	50
	Galium	100	100	100	100	90	70	0	90	100	90	80	80	100	100
	Kochia	30	90	100	100	10	0	0	40	90	80	10	20	90	100
30	Morningglory	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Pigweed	80	100	90	100	10	0	0	90	100	70	40	50	90	30
	Ragweed	90	90	100	100	0	0	0	90	100	20	10	20	70	100
	Ryegrass, Italian	60	90	100	100	60	0	0	80	80	60	50	40	90	80
	Velvetleaf	-	-	-	-	-	-	-	-	-	-	-	-	-	-
35	Wheat	10	50	80	20	0	0	0	20	0	0	0	0	0	0

149

	Barnyardgrass	50	90	40	80	10	80	90	80	100	90	0	20	40	10
	Blackgrass	70	100	80	90	30	80	90	60	90	60	20	0	30	10
	Corn	0	0	0	0	0	0	0	0	30	30	0	30	0	0
	Crabgrass, Large	-	-	-	-	-	-	-	-	-	-	-	-	-	-
5	Foxtail, Giant	70	100	80	90	70	80	100	80	100	100	0	10	50	0
	Galium	90	100	90	100	100	90	100	90	100	100	30	90	90	60
	Kochia	80	100	80	70	80	90	100	90	100	90	70	30	60	10
	Morningglory	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Pigweed	80	100	90	100	90	90	100	90	100	100	30	60	70	0
10	Ragweed	70	100	90	90	80	90	100	90	100	100	0	50	60	10
	Ryegrass, Italian	80	100	80	90	50	80	100	90	100	100	0	90	50	50
	Velvetleaf	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Wheat	0	20	0	0	0	0	0	0	30	30	0	20	20	0

	Table A	Compounds													
15	500 g ai/ha	96	97	98	99	100	101	102	103	104	105	106	107	108	109
	Postemergence														
	Barnyardgrass	20	90	90	90	30	30	90	90	100	90	90	100	90	90
	Blackgrass	20	90	30	80	70	40	70	90	90	90	90	90	90	90
	Corn	0	70	20	40	20	20	20	60	20	30	20	30	0	30
20	Crabgrass, Large	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Foxtail, Giant	20	100	100	90	80	50	90	90	100	90	90	90	90	90
	Galium	50	100	100	100	100	90	100	100	100	100	100	100	100	100
	Kochia	70	100	60	70	100	30	40	90	100	90	90	90	100	90
	Morningglory	-	-	-	-	-	-	-	-	-	-	-	-	-	-
25	Pigweed	70	100	100	90	90	70	90	100	90	90	90	90	100	90
	Ragweed	50	100	100	100	90	80	100	100	100	100	90	90	100	100
	Ryegrass, Italian	60	100	100	100	100	50	80	100	100	100	100	90	100	100
	Velvetleaf	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Wheat	0	80	30	30	20	20	20	20	20	20	20	20	20	30

30	Table A	Compounds													
	500 g ai/ha	110	111	112	113	114	115	116	117	118	119	120	121	122	123
	Postemergence														
	Barnyardgrass	10	90	20	90	90	90	90	40	0	0	10	50	30	70
	Blackgrass	60	70	80	90	60	70	70	0	0	0	10	50	40	50
35	Corn	20	20	30	70	30	20	30	0	0	0	0	20	20	20

150

	Crabgrass, Large	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Foxtail, Giant	10	100	50	90	90	90	100	20	0	0	10	80	60	60
	Galium	90	100	90	100	100	100	100	0	0	0	70	90	70	90
	Kochia	70	90	30	100	60	90	60	10	0	0	30	80	70	70
5	Morningglory	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Pigweed	90	100	30	100	90	90	100	20	0	0	50	90	70	70
	Ragweed	100	100	80	100	80	100	100	0	0	0	10	90	60	90
	Ryegrass, Italian	90	100	100	100	90	100	100	0	0	0	80	100	70	100
	Velvetleaf	-	-	-	-	-	-	-	-	-	-	-	-	-	-
10	Wheat	40	30	30	70	40	30	50	0	0	0	0	20	0	20

Table A

Compounds

	500 g ai/ha	124	125	126	127	128	129	130	131	132	133	134	135	136	137
Postemergence															
	Barnyardgrass	30	90	60	50	80	100	90	20	30	90	60	0	100	100
15	Blackgrass	0	80	70	50	20	100	70	50	50	60	70	30	90	100
	Corn	0	30	20	10	0	80	30	10	10	50	50	20	30	70
	Crabgrass, Large	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Foxtail, Giant	0	90	60	60	70	100	90	80	80	90	80	0	100	100
	Galium	30	90	100	100	70	100	100	100	100	100	100	90	100	100
20	Kochia	0	100	90	80	0	90	100	80	80	100	100	0	100	100
	Morningglory	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Pigweed	0	100	100	100	90	100	100	90	90	100	100	20	100	100
	Ragweed	0	100	90	80	30	100	100	90	100	100	100	60	100	100
	Ryegrass, Italian	0	100	100	90	50	100	100	90	100	100	100	70	100	100
25	Velvetleaf	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Wheat	0	80	20	20	0	80	30	20	20	30	30	0	30	90

Table A

Compounds

	500 g ai/ha	138	139	140	141	142	143	144	145	146	147	148	149	150	151
Postemergence															
30	Barnyardgrass	100	100	90	50	20	60	100	90	30	40	30	20	30	90
	Blackgrass	90	90	50	50	20	60	100	80	70	90	80	70	50	90
	Corn	20	40	30	0	0	20	90	60	30	0	0	30	0	30
	Crabgrass, Large	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Foxtail, Giant	100	100	90	70	20	60	100	80	70	80	70	80	30	90
35	Galium	100	100	90	90	80	100	100	100	90	100	90	100	80	100

151

	Kochia	100	100	70	30	20	90	100	100	100	100	90	100	70	100
	Morningglory	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Pigweed	100	100	90	30	50	90	100	100	90	90	90	100	80	100
	Ragweed	100	100	100	40	20	70	100	100	100	90	90	90	30	90
5	Ryegrass, Italian	100	100	100	90	90	100	100	100	100	90	100	90	100	90
	Velvetleaf	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Wheat	20	30	70	0	0	50	100	30	70	80	60	70	20	20

	Table A	Compounds													
	500 g ai/ha	152 153 154 155 156 157 158 159 160 161 162 163 164 165													

10	Postemergence	Barnyardgrass	40	90	90	80	90	80	50	80	20	80	50	0	20	30
	Blackgrass	30	90	90	70	90	70	60	70	20	90	40	20	40	50	
	Corn	0	80	40	20	30	40	0	40	0	0	30	0	20	20	
	Crabgrass, Large	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
15	Foxtail, Giant	50	90	90	90	90	80	60	80	20	80	40	0	30	50	
	Galium	70	100	100	90	100	100	90	100	90	100	100	60	100	100	
	Kochia	40	90	50	80	100	100	100	100	60	90	90	20	90	90	
	Morningglory	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
	Pigweed	60	100	90	100	100	100	100	100	80	90	90	20	80	80	
20	Ragweed	90	90	80	100	100	100	100	100	80	90	100	0	100	90	
	Ryegrass, Italian	90	100	100	90	100	100	100	100	90	100	90	70	90	90	
	Velvetleaf	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
	Wheat	50	30	20	50	60	50	0	30	0	20	20	0	0	0	

25	Table A	500 g ai/ha	Compounds													
	Postemergence	500 g ai/ha	166	167	168	169	170	171	172	173	174	175	176	177	185	186
	Barnyardgrass	20	20	40	20	10	90	70	0	10	0	10	0	30	100	
	Blackgrass	30	40	30	20	10	90	30	0	0	20	30	0	20	80	
	Corn	20	20	20	30	0	40	0	0	0	20	0	0	30	30	
30	Crabgrass, Large	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
	Foxtail, Giant	40	40	40	30	10	90	80	0	10	0	10	0	20	90	
	Galium	90	90	30	70	80	100	40	0	80	0	100	0	90	100	
	Kochia	70	70	20	100	70	100	20	0	0	0	70	0	100	100	
	Morningglory	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
35	Pigweed	80	80	40	70	80	100	30	0	60	0	90	0	90	100	

152

Ragweed	70	70	0	80	80	100	0	0	20	0	100	0	50	100
Ryegrass, Italian	90	80	60	100	50	100	60	0	40	30	100	0	80	100
Velvetleaf	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Wheat	20	0	20	30	0	70	20	0	0	20	0	0	0	40

Table A	Compounds		Table A	Compounds	
500 g ai/ha	187 188		500 g ai/ha	187 188	
Postemergence			Postemergence		
Barnyardgrass	80	20	Morningglory	-	-
Blackgrass	70	60	Pigweed	90	80
Corn	30	0	Ragweed	100	50
Crabgrass, Large	-	-	Ryegrass, Italian	100	80
Foxtail, Giant	80	80	Velvetleaf	-	-
Galium	100	90	Wheat	30	0
Kochia	100	20			

5	Table A	Compounds													
	125 g ai/ha	2	8	9	12	14	15	16	17	18	19	20	21	22	23
	Postemergence														
	Barnyardgrass	30	0	10	0	10	70	20	0	0	20	30	90	30	80
	Blackgrass	-	-	-	20	20	0	10	10	0	0	30	90	50	70
10	Corn	0	0	0	0	0	0	0	0	0	0	20	50	0	40
	Crabgrass, Large	50	0	10	-	-	-	-	-	-	-	-	-	-	-
	Foxtail, Giant	80	0	10	10	10	70	20	0	0	20	30	100	60	90
	Galium	-	-	-	60	80	70	90	50	40	30	90	100	90	100
	Kochia	-	-	-	0	80	50	50	0	0	0	90	100	100	100
15	Morningglory	100	0	40	-	-	-	-	-	-	-	-	-	-	-
	Pigweed	100	70	0	30	60	0	30	0	0	0	100	100	100	100
	Ragweed	-	-	-	10	70	50	30	0	0	0	80	100	90	90
	Ryegrass, Italian	-	-	-	60	60	50	50	50	10	0	100	100	80	100
	Velvetleaf	100	60	0	-	-	-	-	-	-	-	-	-	-	-
20	Wheat	20	0	0	0	0	0	0	0	0	0	20	10	0	50
	Table A	Compounds													
	125 g ai/ha	24	25	26	27	28	29	30	31	33	34	35	36	37	38
	Postemergence														
	Barnyardgrass	40	20	10	90	80	70	0	0	40	30	50	50	60	0
25	Blackgrass	30	60	30	90	90	70	20	0	10	80	70	60	60	50

153

	Corn	0	0	0	0	0	10	0	0	0	0	0	20	0	0
	Crabgrass, Large	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Foxtail, Giant	10	90	10	90	90	80	0	0	40	30	90	80	80	0
	Galium	80	100	70	100	100	90	70	20	90	90	100	100	100	80
5	Kochia	70	100	80	70	70	80	60	0	90	70	80	90	60	30
	Morningglory	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Pigweed	70	90	80	90	90	90	90	20	40	90	80	90	100	50
	Ragweed	30	100	60	100	80	90	40	0	90	90	50	90	90	40
	Ryegrass, Italian	70	100	60	100	90	90	70	0	50	100	80	70	90	0
	Velvetleaf	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Wheat	30	0	0	0	0	40	10	0	0	20	20	20	40	10
	Table A														Compounds
	125 g ai/ha	39	40	41	42	43	44	45	46	47	48	49	50	51	52
	Postemergence														
15	Barnyardgrass	0	10	30	30	0	0	0	20	40	10	0	0	20	10
	Blackgrass	30	60	70	80	30	0	0	20	60	0	10	0	30	20
	Corn	0	0	20	0	0	0	0	0	0	0	0	0	0	0
	Crabgrass, Large	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Foxtail, Giant	0	60	70	90	0	0	0	50	80	50	0	0	50	40
	Galium	90	90	80	100	50	30	0	70	90	90	50	60	90	100
	Kochia	30	80	100	100	0	0	0	30	90	70	0	0	70	40
	Morningglory	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Pigweed	50	80	60	90	0	0	0	70	100	60	20	20	70	10
	Ragweed	50	70	70	100	0	0	0	80	100	0	0	0	70	90
25	Ryegrass, Italian	90	90	100	100	40	0	0	30	70	50	30	20	60	70
	Velvetleaf	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Wheat	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Table A														Compounds
	125 g ai/ha	53	54	55	56	57	58	59	61	62	63	64	65	66	67
30	Postemergence														
	Barnyardgrass	0	30	60	10	90	0	80	0	70	60	0	20	20	20
	Blackgrass	0	20	70	30	30	20	90	0	70	70	0	20	60	70
	Corn	0	20	0	0	20	0	20	0	10	0	0	0	0	0
	Crabgrass, Large	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Foxtail, Giant	0	60	70	20	80	0	90	0	80	70	0	20	70	80

154

155

Pigweed	60	100	80	90	90	80	100	80	100	90	20	30	30	0
Ragweed	70	90	80	90	80	80	90	80	100	100	0	0	10	0
Ryegrass, Italian	70	90	70	90	0	80	100	80	100	90	0	40	30	10
Velvetleaf	-	-	-	-	-	-	-	-	-	-	-	-	-	-
5 Wheat	0	0	0	0	0	0	0	0	20	20	0	0	0	0

Table A Compounds

125 g ai/ha	96	97	98	99	100	101	102	103	104	105	106	107	108	109
Postemergence														
Barnyardgrass	0	30	90	20	30	0	40	40	70	50	70	60	30	30
10 Blackgrass	0	90	30	60	40	20	20	70	90	80	90	80	80	80
Corn	0	10	20	20	0	0	20	20	0	0	0	0	0	0
Crabgrass, Large	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Foxtail, Giant	0	80	90	40	80	30	70	90	80	70	90	70	60	70
Galium	20	100	100	100	90	70	100	100	100	100	100	100	100	100
15 Kochia	60	90	30	30	70	20	20	50	90	90	70	80	90	90
Morningglory	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Pigweed	60	90	100	70	80	30	90	90	90	90	90	90	90	90
Ragweed	0	90	100	100	90	60	100	100	100	90	90	90	70	80
Ryegrass, Italian	20	100	90	100	90	30	20	100	100	100	90	60	100	100
20 Velvetleaf	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Wheat	0	20	30	20	0	0	20	0	20	0	0	30	0	20

Table A Compounds

125 g ai/ha	110	111	112	113	114	115	116	117	118	119	120	121	122	123
Postemergence														
Barnyardgrass	0	40	20	40	20	20	20	0	0	0	0	30	20	40
Blackgrass	20	30	40	90	20	20	30	0	0	0	0	20	30	30
Corn	0	0	0	20	0	0	0	0	0	0	0	20	0	0
Crabgrass, Large	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Foxtail, Giant	0	70	20	40	70	20	70	0	0	0	0	60	40	50
30 Galium	70	90	70	100	90	80	70	0	0	0	40	70	60	80
Kochia	50	40	20	100	30	70	30	0	0	0	0	70	40	70
Morningglory	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Pigweed	70	100	20	90	90	70	70	0	0	0	20	90	30	60
Ragweed	60	70	60	90	70	80	70	0	0	0	0	90	50	50
35 Ryegrass, Italian	70	90	80	100	90	100	90	0	0	0	20	90	50	90

157

	125 g ai/ha	152	153	154	155	156	157	158	159	160	161	162	163	164	165
Postemergence															
	Barnyardgrass	20	90	90	30	70	50	10	40	10	20	20	0	20	20
	Blackgrass	20	90	70	60	60	60	50	70	10	80	20	0	20	20
5	Corn	0	0	0	0	0	0	0	20	0	0	20	0	0	0
	Crabgrass, Large	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Foxtail, Giant	30	90	90	80	90	60	30	50	10	80	20	0	20	20
	Galium	60	100	100	90	100	100	80	100	70	80	90	30	80	100
	Kochia	30	40	20	70	80	100	90	100	30	60	70	0	60	60
10	Morningglory	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Pigweed	50	80	90	90	90	90	80	60	80	50	80	0	80	80
	Ragweed	70	80	80	100	90	100	90	100	70	80	80	0	70	90
	Ryegrass, Italian	30	100	90	90	90	100	90	100	30	100	60	20	70	80
	Velvetleaf	-	-	-	-	-	-	-	-	-	-	-	-	-	-
15	Wheat	30	0	0	30	30	0	0	0	0	0	0	0	0	0

	Table A	Compounds
	125 g ai/ha	166 167 168 169 170 171 172 173 174 175 176 177 185 186
Postemergence		
	Barnyardgrass	10 20 0 0 0 40 40 0 0 0 0 0 0 10 70
20	Blackgrass	10 20 20 10 0 80 20 0 0 0 30 0 0 0 40
	Corn	20 0 0 0 0 20 0 0 0 0 0 0 0 0 20
	Crabgrass, Large	- - - - - - - - - - - - - - - -
	Foxtail, Giant	10 20 30 0 0 40 40 0 0 0 0 0 0 0 70
	Galium	70 70 0 30 40 90 20 0 30 0 90 0 70 100
25	Kochia	50 50 20 40 0 100 0 0 0 0 30 0 70 100
	Morningglory	- - - - - - - - - - - - - - - -
	Pigweed	40 70 0 20 70 90 0 0 40 0 30 0 50 100
	Ragweed	30 60 0 0 40 100 0 0 20 0 40 0 10 100
	Ryegrass, Italian	40 70 60 70 0 100 20 0 10 20 30 0 70 100
30	Velvetleaf	- - - - - - - - - - - - - - - -
	Wheat	0 0 0 0 0 30 20 0 0 0 0 0 0 0 0

	Table A	Compounds	Table A	Compounds
	125 g ai/ha	187 188	1000 g ai/ha	181 182 183 184
Postemergence		Preemergence		
	Barnyardgrass	30 10	Barnyardgrass	0 0 40 10

158

Blackgrass	40	10	Corn	-	-	-	-
Corn	0	0	Crabgrass, Large	-	-	-	-
Crabgrass, Large	-	-	Foxtail, Giant	0	0	60	30
Foxtail, Giant	50	20	Kochia	10	0	70	20
Galium	90	70	Morningglory	-	-	-	-
Kochia	90	10	Pigweed	30	0	90	90
Morningglory	-	-	Ragweed	10	0	80	70
Pigweed	70	50	Ryegrass, Italian	60	0	90	90
Ragweed	100	20	Velvetleaf	-	-	-	-
Ryegrass, Italian	100	20	Wheat	-	-	-	-
Velvetleaf	-	-					
Wheat	0	0					

Table A

Compounds

1000 q ai/ha 1 3 4 5 6 7 10 11 13 32 60 178 179 180

Preemergence

Barnyardgrass	90	80	100	90	100	100	100	90	60	100	80	0	0	0
---------------	----	----	-----	----	-----	-----	-----	----	----	-----	----	---	---	---

5	Corn	0	0	10	0	30	30	10	20	-	-	-	-	-
	Crabgrass, Large	90	80	80	90	-	90	90	80	-	-	-	-	-
	Foxtail, Giant	100	60	80	80	50	90	100	90	50	100	90	0	30
	Kochia	-	-	-	-	-	-	-	-	20	100	80	0	30
	Morningglory	90	80	60	0	10	80	90	90	-	-	-	-	-
10	Pigweed	100	0	70	0	-	100	100	100	0	100	100	0	80
	Ragweed	-	-	-	-	-	-	-	-	0	90	100	0	50
	Ryegrass, Italian	-	-	-	-	-	-	-	-	60	100	100	60	30
	Velvetleaf	100	70	40	0	20	80	90	80	-	-	-	-	-
	Wheat	0	0	0	0	0	0	0	50	-	-	-	-	-

15 Table A

Compounds

500 g ai/ha 2 8 9 12 14 15 16 17 18 19 20 21 22 23

Preemergence

Barnyardgrass 80 0 100 80 40 90 70 0 0 90 90 100 70 90

159

	Pigweed	100	100	0	60	90	0	70	0	0	0	100	100	100	100
	Ragweed	-	-	-	30	30	30	0	10	0	20	90	100	90	90
	Ryegrass, Italian	-	-	-	50	-	100	80	40	20	0	100	100	100	90
	Velvetleaf	90	30	0	-	-	-	-	-	-	-	-	-	-	-
5	Wheat	0	0	0	-	-	-	-	-	-	-	-	-	-	-
	Table A											Compounds			
	500 g ai/ha	24	25	26	27	28	29	30	31	33	34	35	36	37	38
	Preemergence														
	Barnyardgrass	60	90	10	100	90	90	10	0	90	80	90	30	90	10
10	Corn	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Crabgrass, Large	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Foxtail, Giant	80	90	50	100	100	90	60	0	70	90	100	90	90	40
	Kochia	50	100	30	90	90	100	40	0	80	60	70	80	80	40
	Morningglory	-	-	-	-	-	-	-	-	-	-	-	-	-	-
15	Pigweed	90	100	100	100	100	100	90	0	20	100	90	100	100	80
	Ragweed	0	100	40	100	90	90	70	30	100	90	80	90	90	70
	Ryegrass, Italian	80	100	70	100	100	90	50	0	60	100	90	70	100	70
	Velvetleaf	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Wheat	-	-	-	-	-	-	-	-	-	-	-	-	-	-
20	Table A											Compounds			
	500 g ai/ha	39	40	41	42	43	44	45	46	47	48	49	50	51	52
	Preemergence														
	Barnyardgrass	10	50	90	100	10	0	0	60	90	0	0	0	90	70
	Corn	-	-	-	-	-	-	-	-	-	-	-	-	-	-
25	Crabgrass, Large	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Foxtail, Giant	60	70	90	100	50	0	0	90	80	10	10	0	90	60
	Kochia	0	80	100	100	20	0	0	30	90	10	0	0	30	80
	Morningglory	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Pigweed	80	100	100	100	10	0	0	100	100	30	40	0	100	60
30	Ragweed	70	80	90	100	10	10	0	80	90	60	10	0	80	80
	Ryegrass, Italian	50	100	100	100	70	0	0	50	90	60	30	10	90	80
	Velvetleaf	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Wheat	-	-	-	-	-	-	-	-	-	-	-	-	-	-
35	Table A											Compounds			
	500 g ai/ha	53	54	55	56	57	58	59	61	62	63	64	65	66	67

160

161

Pigweed	100	100	90	100	100	100	100	100	100	100	0	90	90	20
Ragweed	80	100	90	90	90	80	90	90	100	90	0	20	80	20
Ryegrass, Italian	90	100	90	100	40	100	100	90	100	90	0	40	50	60
Velvetleaf	-	-	-	-	-	-	-	-	-	-	-	-	-	-
5 Wheat	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Table A	Compounds													
500 g ai/ha	96	97	98	99	100	101	102	103	104	105	106	107	108	109
Preemergence														
Barnyardgrass	0	100	100	90	20	30	60	90	100	100	100	100	100	100
10 Corn	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Crabgrass, Large	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Foxtail, Giant	0	100	100	80	90	60	90	100	100	100	100	100	100	100
Kochia	30	100	40	70	70	40	30	40	100	100	90	90	100	100
Morningglory	-	-	-	-	-	-	-	-	-	-	-	-	-	-
15 Pigweed	90	100	100	100	100	90	100	100	100	100	100	100	100	100
Ragweed	0	100	90	80	80	40	90	100	100	100	100	100	100	100
Ryegrass, Italian	40	100	90	100	100	100	60	100	100	100	100	100	100	100
Velvetleaf	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Wheat	-	-	-	-	-	-	-	-	-	-	-	-	-	-

20 Table A	Compounds													
500 g ai/ha	110	111	112	113	114	115	116	117	118	119	120	121	122	123
Preemergence														
Barnyardgrass	20	100	20	100	80	50	100	50	30	0	30	50	30	80
Corn	-	-	-	-	-	-	-	-	-	-	-	-	-	-
25 Crabgrass, Large	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Foxtail, Giant	40	100	60	100	90	50	100	30	20	0	20	80	70	70
Kochia	100	100	80	100	100	90	100	0	0	0	0	30	70	100
Morningglory	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Pigweed	100	100	100	100	100	100	90	30	10	0	70	100	100	100
30 Ragweed	40	90	80	90	90	90	90	0	0	0	30	80	80	70
Ryegrass, Italian	80	100	100	100	90	100	100	0	0	0	30	90	90	100
Velvetleaf	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Wheat	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Table A	Compounds													
35 500 g ai/ha	124	125	126	127	128	129	130	131	132	133	134	135	136	137

162

163

Pigweed	90	100	100	100	100	100	100	100	100	100	90	70	100	90
Ragweed	100	90	90	90	90	90	80	80	80	90	90	0	90	90
Ryegrass, Italian	100	100	100	90	100	100	80	100	80	100	100	50	100	100
Velvetleaf	-	-	-	-	-	-	-	-	-	-	-	-	-	-
5 Wheat	-	-	-	-	-	-	-	-	-	-	-	-	-	-

		Table A Compounds														
		500 g ai/ha 166 167 168 169 170 171 172 173 174 175 176 177 185 186														
Preemergence																
10 Barnyardgrass		10	20	20	30	0	100	50	0	0	0	10	0	50	80	
10 Corn		-	-	-	-	-	-	-	-	-	-	-	-	-	-	
10 Crabgrass, Large		-	-	-	-	-	-	-	-	-	-	-	-	-	-	
10 Foxtail, Giant		30	20	40	30	0	100	90	0	10	0	10	0	30	70	
10 Kochia		90	100	0	90	0	100	0	0	0	20	20	0	10	100	
10 Morningglory		-	-	-	-	-	-	-	-	-	-	-	-	-	-	
15 Pigweed		90	100	0	100	100	100	0	0	20	60	90	0	60	100	
15 Ragweed		90	80	0	20	20	90	0	0	0	20	70	0	40	80	
15 Ryegrass, Italian		90	100	40	100	40	100	20	0	0	20	90	0	40	100	
15 Velvetleaf		-	-	-	-	-	-	-	-	-	-	-	-	-	-	
15 Wheat		-	-	-	-	-	-	-	-	-	-	-	-	-	-	

		Table A Compounds				Table A Compounds				Table A Compounds	
		500 g ai/ha 187 188				125 g ai/ha 187 188				125 g ai/ha 187 188	
Preemergence											
Barnyardgrass		90	30			Barnyardgrass		70	10		
Corn		-	-			Corn		-	-		
Crabgrass, Large		-	-			Crabgrass, Large		-	-		
Foxtail, Giant		70	90			Foxtail, Giant		20	10		
Kochia		100	20			Kochia		60	20		
Morningglory		-	-			Morningglory		-	-		
Pigweed		100	90			Pigweed		90	60		
Ragweed		80	30			Ragweed		70	10		
Ryegrass, Italian		100	80			Ryegrass, Italian		100	20		
Velvetleaf		-	-			Velvetleaf		-	-		
Wheat		-	-			Wheat		-	-		

		Table A Compounds													
		125 g ai/ha 2 8 9 12 14 15 16 17 18 19 20 21 22 23													
20															
20	Table A														
20	125 g ai/ha	2	8	9	12	14	15	16	17	18	19	20	21	22	23

164

Preemergence															
Barnyardgrass	50	0	50	20	0	20	10	0	0	30	30	90	10	90	
Corn	0	0	0	-	-	-	-	-	-	-	-	-	-	-	
Crabgrass, Large	90	10	20	-	-	-	-	-	-	-	-	-	-	-	
5	Foxtail, Giant	100	40	70	20	0	10	0	0	0	40	90	70	90	
	Kochia	-	-	-	0	10	0	0	0	0	80	30	70	80	
	Morningglory	80	0	0	-	-	-	-	-	-	-	-	-	-	
	Pigweed	100	70	0	10	70	0	0	0	0	80	100	100	100	
	Ragweed	-	-	-	0	0	0	0	0	0	30	100	90	90	
	Ryegrass, Italian	-	-	-	20	30	50	30	10	0	0	90	100	100	80
10	Velvetleaf	80	0	0	-	-	-	-	-	-	-	-	-	-	
	Wheat	0	0	0	-	-	-	-	-	-	-	-	-	-	
	Table A	Compounds													
15	125 g ai/ha	24	25	26	27	28	29	30	31	33	34	35	36	37	38
	Preemergence														
	Barnyardgrass	30	30	0	90	90	70	0	0	20	20	60	0	30	0
	Corn	-	-	-	-	-	-	-	-	-	-	-	-	-	
	Crabgrass, Large	-	-	-	-	-	-	-	-	-	-	-	-	-	
	Foxtail, Giant	60	90	30	90	100	80	0	0	50	40	90	80	70	0
20	Kochia	30	90	30	40	50	60	0	0	30	30	40	10	30	40
	Morningglory	-	-	-	-	-	-	-	-	-	-	-	-	-	
	Pigweed	70	100	80	100	100	100	80	0	20	90	60	100	100	0
	Ragweed	0	90	20	90	90	90	0	0	80	80	70	80	80	0
	Ryegrass, Italian	80	100	30	100	100	80	30	0	20	100	90	70	90	40
	Velvetleaf	-	-	-	-	-	-	-	-	-	-	-	-	-	
25	Wheat	-	-	-	-	-	-	-	-	-	-	-	-	-	
	Table A	Compounds													
	125 g ai/ha	39	40	41	42	43	44	45	46	47	48	49	50	51	52
	Preemergence														
	Barnyardgrass	0	10	20	80	0	0	0	20	70	0	0	0	30	50
	Corn	-	-	-	-	-	-	-	-	-	-	-	-	-	
30	Crabgrass, Large	-	-	-	-	-	-	-	-	-	-	-	-	-	
	Foxtail, Giant	0	40	70	80	0	0	0	50	70	0	0	0	50	40
	Kochia	0	50	90	80	50	0	0	30	10	0	0	0	0	0
	Morningglory	-	-	-	-	-	-	-	-	-	-	-	-	-	
	Table A	Compounds													
	125 g ai/ha	39	40	41	42	43	44	45	46	47	48	49	50	51	52
35	Preemergence														
	Barnyardgrass	0	10	20	80	0	0	0	20	70	0	0	0	30	50
	Corn	-	-	-	-	-	-	-	-	-	-	-	-	-	
	Crabgrass, Large	-	-	-	-	-	-	-	-	-	-	-	-	-	
	Foxtail, Giant	0	40	70	80	0	0	0	50	70	0	0	0	50	40
	Kochia	0	50	90	80	50	0	0	30	10	0	0	0	0	0

165

	Pigweed	80	90	100	100	0	0	0	30	70	30	0	0	70	10
	Ragweed	10	30	80	90	0	0	0	50	80	10	0	0	30	20
	Ryegrass, Italian	40	60	100	100	10	0	0	30	60	20	0	0	50	80
	Velvetleaf	-	-	-	-	-	-	-	-	-	-	-	-	-	-
5	Wheat	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Table A														Compounds
	125 g ai/ha	53	54	55	56	57	58	59	61	62	63	64	65	66	67
	Preemergence														
	Barnyardgrass	0	40	90	10	100	0	80	0	50	80	0	60	20	30
10	Corn	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Crabgrass, Large	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Foxtail, Giant	50	60	80	30	100	0	90	0	50	40	0	60	60	80
	Kochia	50	50	70	40	100	20	90	0	90	100	0	60	60	20
	Morningglory	-	-	-	-	-	-	-	-	-	-	-	-	-	-
15	Pigweed	50	100	70	60	100	0	100	0	100	100	0	100	100	90
	Ragweed	0	90	90	80	90	70	90	0	70	80	0	70	80	80
	Ryegrass, Italian	10	30	100	100	90	70	90	0	100	100	0	90	90	90
	Velvetleaf	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Wheat	-	-	-	-	-	-	-	-	-	-	-	-	-	-
20	Table A														Compounds
	125 g ai/ha	68	69	70	71	72	73	74	75	76	77	78	79	80	81
	Preemergence														
	Barnyardgrass	10	10	0	0	10	40	0	40	0	0	0	50	70	90
	Corn	-	-	-	-	-	-	-	-	-	-	-	-	-	-
25	Crabgrass, Large	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Foxtail, Giant	10	10	0	0	70	90	0	50	0	0	20	90	80	100
	Kochia	0	20	10	0	50	50	0	80	0	0	20	70	90	30
	Morningglory	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Pigweed	0	90	60	30	100	100	30	100	20	0	60	100	90	100
30	Ragweed	0	80	70	0	90	90	0	70	0	0	60	80	80	90
	Ryegrass, Italian	0	70	60	0	100	100	0	100	50	10	100	80	90	100
	Velvetleaf	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Wheat	-	-	-	-	-	-	-	-	-	-	-	-	-	-
35	Table A														Compounds
	125 g ai/ha	82	83	84	85	86	87	88	89	90	91	92	93	94	95

166

167

Pigweed	90	90	90	100	100	70	90	0	0	0	0	100	100	100
Ragweed	30	80	40	70	80	40	90	0	0	0	0	60	-	60
Ryegrass, Italian	20	90	90	100	80	100	80	0	0	0	30	80	70	90
Velvetleaf	-	-	-	-	-	-	-	-	-	-	-	-	-	-
5 Wheat	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Table A Compounds

125 g ai/ha	124	125	126	127	128	129	130	131	132	133	134	135	136	137
Preemergence														
Barnyardgrass	0	70	40	10	50	90	30	0	0	20	20	0	10	90
10 Corn	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Crabgrass, Large	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Foxtail, Giant	0	90	10	50	80	90	30	80	70	40	50	20	80	90
Kochia	0	60	50	0	0	70	60	0	60	40	70	0	60	30
Morningglory	-	-	-	-	-	-	-	-	-	-	-	-	-	-
15 Pigweed	0	100	100	70	90	100	90	80	90	80	100	30	100	100
Ragweed	0	80	70	30	70	90	60	40	80	90	80	30	80	90
Ryegrass, Italian	0	100	90	60	10	100	100	90	90	100	100	20	90	100
Velvetleaf	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Wheat	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Table A Compounds

125 g ai/ha	138	139	140	141	142	143	144	145	146	147	148	149	150	151
Preemergence														
Barnyardgrass	10	20	50	50	10	20	90	20	0	30	10	0	0	90
Corn	-	-	-	-	-	-	-	-	-	-	-	-	-	-
25 Crabgrass, Large	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Foxtail, Giant	90	60	50	30	10	20	100	30	0	10	20	30	0	90
Kochia	40	100	0	0	0	10	100	90	20	50	30	40	0	30
Morningglory	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Pigweed	100	100	50	40	60	80	100	90	100	90	100	100	80	100
30 Ragweed	90	90	70	60	20	10	90	80	80	80	80	80	0	90
Ryegrass, Italian	100	100	70	70	50	70	100	100	80	70	80	90	20	100
Velvetleaf	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Wheat	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Table A Compounds

35 125 g ai/ha	152	153	154	155	156	157	158	159	160	161	162	163	164	165
----------------	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----

Preemergence

	Barnyardgrass	40	100	70	50	70	70	10	50	10	10	10	0	10	10
	Corn	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Crabgrass, Large	-	-	-	-	-	-	-	-	-	-	-	-	-	-
5	Foxtail, Giant	40	100	90	60	80	50	10	60	10	10	10	0	10	10
	Kochia	30	80	0	20	50	100	30	100	20	0	60	0	60	60
	Morningglory	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Pigweed	90	100	100	100	100	100	10	100	50	100	80	30	80	100
	Ragweed	80	80	80	90	90	60	50	80	30	90	50	0	50	50
10	Ryegrass, Italian	90	100	90	70	90	100	80	100	20	100	40	10	60	40
	Velvetleaf	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Wheat	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Table A

Compounds

125 g ai/ha	166	167	168	169	170	171	172	173	174	175	176	177	185	186
-------------	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----

Preemergence

	Barnyardgrass	10	10	0	0	0	70	20	0	0	0	0	0	0	40
	Corn	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Crabgrass, Large	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Foxtail, Giant	10	10	0	0	0	50	60	0	0	0	0	0	0	50
20	Kochia	30	60	0	20	0	100	0	0	0	0	0	0	0	80
	Morningglory	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Pigweed	80	100	0	50	30	90	0	0	0	0	0	0	0	100
	Ragweed	70	70	0	0	0	70	0	0	0	0	20	0	0	70
	Ryegrass, Italian	40	80	0	80	0	100	0	0	0	20	0	0	0	100
25	Velvetleaf	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Wheat	-	-	-	-	-	-	-	-	-	-	-	-	-	-

TEST B

Plant species in the flooded paddy test selected from rice (*Oryza sativa*), sedge, umbrella (small-flower umbrella sedge, *Cyperus difformis*), ducksalad (*Heteranthera limosa*), and barnyardgrass (*Echinochloa crus-galli*) were grown to the 2-leaf stage for testing. At time of treatment, test pots were flooded to 3 cm above the soil surface, treated by application of test compounds directly to the paddy water, and then maintained at that water depth for the duration of the test. Treated plants and controls were maintained in a greenhouse for 13 to 15 d, after which time all species were compared to controls and visually evaluated. Plant response ratings, summarized in Table B, are based on a scale of 0

to 100 where 0 is no effect and 100 is complete control. A dash (-) response means no test result.

Table B		Compounds													
250 g ai/ha		1	2	3	4	5	7	8	9	10	11	12	13	14	15
5	Flood														
	Barnyardgrass	0	30	0	0	0	20	30	0	0	0	0	0	0	
	Ducksalad	20	80	20	0	45	60	20	0	30	0	30	0	20	
	Rice	0	35	0	0	0	0	0	0	0	0	0	0	0	
	Sedge, Umbrella	0	85	0	0	75	60	70	0	0	0	0	0	0	
10	Table B														
	250 g ai/ha	16	17	18	19	20	21	22	23	24	25	26	27	28	29
	Flood														
	Barnyardgrass	0	0	0	0	0	70	0	0	0	30	0	30	60	0
	Ducksalad	30	0	30	0	50	0	0	75	0	20	0	30	80	55
15	Rice	0	0	0	0	0	55	0	0	0	0	0	40	40	0
	Sedge, Umbrella	0	0	0	0	50	65	0	95	0	60	0	80	95	60
	Table B														
	250 g ai/ha	31	32	33	34	35	36	41	42	43	44	45	46	47	48
	Flood														
20	Barnyardgrass	0	0	0	0	0	0	30	0	0	0	0	0	0	0
	Ducksalad	0	0	0	0	75	30	40	0	0	0	0	0	0	0
	Rice	0	0	0	0	0	20	0	0	0	0	0	0	0	0
	Sedge, Umbrella	0	0	0	0	65	70	40	0	0	0	0	0	0	0
	Table B														
25	250 g ai/ha	49	50	51	53	54	55	56	57	58	59	60	62	63	65
	Flood														
	Barnyardgrass	0	0	0	0	0	0	0	0	0	0	35	20	0	0
	Ducksalad	0	0	0	0	0	0	0	0	0	0	20	20	30	0
	Rice	0	0	0	0	0	0	0	0	0	0	35	0	0	0
30	Sedge, Umbrella	0	0	0	0	0	0	0	0	0	0	30	75	65	0
	Table B														
	250 g ai/ha	66	67	68	72	73	74	75	79	81	82	83	84	85	86
	Flood														
	Barnyardgrass	0	0	0	0	0	0	0	0	60	0	60	0	50	0

Barnyardgrass	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Ducksalad	0	0	0	0	0	0	0	0	40	0	0	0	0	0
Rice	20	0	0	0	0	0	0	0	0	0	0	0	0	0
Sedge, Umbrella	65	50	0	0	0	0	0	0	0	0	60	60	60	0

5 Table B Compounds

250 g ai/ha	173	174	175	176	177	179	180	181	183	184	185	186	187	188
Flood														
Barnyardgrass	0	0	0	0	0	0	0	0	0	0	0	15	0	0
Ducksalad	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Rice	0	0	0	0	0	0	0	0	0	0	0	0	20	0
Sedge, Umbrella	0	0	0	0	0	0	0	0	0	0	40	0	0	0

TEST C

15 Seeds of plant species selected from blackgrass (*Alopecurus myosuroides*), ryegrass, Italian (Italian ryegrass, *Lolium multiflorum*), wheat (winter wheat, *Triticum aestivum*), galium (catchweed bedstraw, *Galium aparine*), corn (*Zea mays*), large crabgrass, large (large crabgrass, *Digitaria sanguinalis*), foxtail, giant (giant foxtail, *Setaria faberii*), johnsongrass (*Sorghum halepense*), lambsquarters (*Chenopodium album*), morningglory (*Ipomoea coccinea*), nutsedge, yellow (yellow nutsedge, *Cyperus esculentus*), pigweed (*Amaranthus retroflexus*), ragweed (common ragweed, *Ambrosia elatior*), soybean (*Glycine max*), barnyardgrass (*Echinochloa crus-galli*), oilseed rape (*Brassica napus*), waterhemp (common waterhemp, *Amaranthus rudis*), and velvetleaf (*Abutilon theophrasti*) were planted into a blend of loam soil and sand and treated preemergence with test chemicals formulated in a non-phytotoxic solvent mixture which included a surfactant.

25 At the same time, plants selected from these crop and weed species and also chickweed (common chickweed, *Stellaria media*), kochia (*Kochia scoparia*), and oat, wild (wild oat, *Avena fatua*), were planted in pots containing Redi-Earth® planting medium (Scotts Company, 14111 Scottslawn Road, Marysville, Ohio 43041) comprising sphagnum peat moss, vermiculite, wetting agent and starter nutrients and treated with postemergence 30 applications of test chemicals formulated in the same manner. Plants ranged in height from 2 to 18 cm (1- to 4-leaf stage) for postemergence treatments. Treated plants and controls were maintained in a greenhouse for 13 to 15 d, after which time all species were compared to controls and visually evaluated. Plant response ratings, summarized in Table C, are based on a scale of 0 to 100 where 0 is no effect and 100 is complete control. A dash (-) response 35 means no test result.

172

Table C

Compounds

250 g ai/ha

1 2 10 11 14 16 20 21 22 23 25 26 27 28

Postemergence

Barnyardgrass

5 20 98 15 60 90 45 90 15 85 25 35 50 40

5 Blackgrass

75 80 15 75 20 40 45 95 20 85 80 75 90 90

Chickweed

100 98 90 90 90 90 100 100 98 100 100 100 100 95

Corn

40 10 5 0 5 0 10 20 5 25 10 5 15 15

Crabgrass, Large

35 10 75 10 35 30 30 55 5 45 20 25 45 45

Foxtail, Giant

90 95 90 30 50 80 80 95 35 90 85 65 95 95

10 Galium

95 98 85 90 90 80 100 100 95 100 95 95 100 100

Johnsongrass

15 5 25 5 5 5 10 35 5 40 10 5 10 30

Kochia

100 75 95 100 90 25 100 100 95 100 100 100 90 100

Lambsquarters

100 100 98 90 90 20 100 98 90 98 98 98 98 100

Morningglory

100 100 100 98 100 40 100 100 100 100 100 100 100 100

15 Nutsedge, Yellow

- 98 - 45 - - 95 90 65 85 90 25 95 90

Oat, Wild

100 85 25 70 45 40 40 100 80 100 95 90 100 100

Oilseed Rape

40 75 0 0 0 0 25 100 75 10 5 5 70 70

Pigweed

100 98 95 95 90 50 100 98 98 98 98 95 90 90

Ragweed

95 98 98 95 98 30 100 95 100 98 95 90 90 90

20 Ryegrass, Italian

98 90 55 90 85 70 90 95 90 95 95 90 90 95

Soybean

5 5 0 0 5 0 0 20 0 15 10 10 0 5

Velvetleaf

100 100 70 80 40 35 100 90 80 90 98 70 95 90

Waterhemp

100 100 90 95 40 5 90 80 90 98 98 95 90 85

Wheat

15 5 0 5 5 0 0 35 0 30 5 5 5 5

25 Table C

Compounds

250 g ai/ha

29 32 33 34 36 37 41 42 47 51 52 54 56 57

Postemergence

Barnyardgrass

40 90 80 35 40 90 60 40 90 20 10 20 10 98

Blackgrass

75 80 10 60 20 85 60 70 30 10 30 40 40 25

30 Chickweed

100 100 95 95 95 95 100 100 98 90 100 100 70 100

Corn

20 40 20 5 5 30 20 5 5 0 0 10 0 10

Crabgrass, Large

40 70 25 25 35 35 35 20 35 10 10 55 20 35

Foxtail, Giant

80 90 70 35 80 85 65 80 85 35 35 90 50 95

Galium

100 100 95 95 95 95 100 95 90 95 100 98 90 100

35 Johnsongrass

25 35 40 5 5 35 35 25 25 0 15 10 10 10

Kochia

85 95 50 85 90 80 100 100 98 75 70 95 100 95

173

	Lambsquarters	90	100	100	100	100	100	98	98	85	-	98	100	85	90
	Morningglory	100	100	98	98	100	98	98	100	100	75	100	100	50	100
	Nutsedge, Yellow	75	85	65	85	65	60	80	95	90	90	95	70	60	90
	Oat, Wild	95	100	45	90	85	90	95	95	50	10	0	85	40	60
5	Oilseed Rape	0	90	50	20	90	50	0	0	10	5	0	70	0	5
	Pigweed	98	95	80	98	100	95	95	98	98	85	55	100	90	100
	Ragweed	95	98	98	95	95	98	100	100	100	25	98	98	60	95
	Ryegrass, Italian	95	95	75	90	80	90	90	95	30	70	60	80	90	60
	Soybean	25	35	0	5	15	25	15	15	15	0	0	10	0	5
	Velvetleaf	90	85	85	90	95	90	90	95	95	70	100	100	70	100
10	Waterhemp	98	98	75	98	98	98	85	95	100	-	55	95	90	100
	Wheat	10	40	0	0	5	35	5	0	0	0	0	0	5	5
	Table C														Compounds
	250 g ai/ha	59	60	65	66	67	69	72	73	75	78	79	80	81	82
15	Postemergence														
	Barnyardgrass	70	65	50	35	45	55	65	60	20	25	40	35	60	30
	Blackgrass	90	90	40	60	80	70	90	90	35	30	50	50	90	40
	Chickweed	98	98	90	95	95	100	90	95	95	80	90	98	95	98
	Corn	50	35	5	25	20	10	25	60	10	0	35	5	0	5
	Crabgrass, Large	60	65	25	45	40	30	60	75	20	10	35	35	55	30
20	Foxtail, Giant	90	90	60	80	85	25	85	85	10	25	90	90	90	80
	Galium	98	100	90	95	90	98	95	95	90	95	95	95	95	95
	Johnsongrass	35	45	5	15	10	15	45	50	10	5	10	15	70	10
	Kochia	90	100	100	98	80	98	90	100	95	90	90	80	90	
	Lambsquarters	98	100	100	100	100	98	95	98	100	100	100	100	100	100
25	Morningglory	100	100	95	100	100	98	100	95	75	65	98	98	98	100
	Nutsedge, Yellow	95	95	65	85	85	65	85	90	70	60	85	95	90	85
	Oat, Wild	98	95	70	90	100	85	95	95	35	60	90	95	95	90
	Oilseed Rape	55	80	5	0	75	0	85	85	80	5	80	80	45	75
	Pigweed	98	98	100	100	85	95	98	98	98	80	98	95	90	90
30	Ragweed	98	100	90	100	95	98	90	90	100	75	98	98	85	95
	Ryegrass, Italian	95	95	85	85	85	95	90	90	85	90	85	85	90	85
	Soybean	25	50	10	5	10	35	30	45	10	20	5	20	0	10
	Velvetleaf	95	95	75	95	98	98	95	90	85	60	90	90	90	90
	Waterhemp	100	98	85	100	70	100	85	100	100	90	95	95	80	98
35	Wheat	15	15	0	0	0	0	35	40	0	10	0	15	0	5

174

Table C

Compounds

250 g ai/ha	83	84	85	87	88	89	90	91	97	98	99	100	102	104
Postemergence														
Barnyardgrass	45	40	50	45	60	40	70	65	35	98	35	40	40	55
5 Blackgrass	90	60	90	65	90	5	40	30	0	70	65	25	10	55
Chickweed	100	100	100	98	100	100	98	100	60	100	90	95	98	100
Corn	10	10	5	5	15	5	25	20	5	15	10	10	10	30
Crabgrass, Large	55	30	45	35	55	10	75	40	25	70	50	15	15	55
Foxtail, Giant	90	85	90	85	90	30	75	80	5	100	50	90	75	85
10 Galium	100	95	100	98	100	95	95	98	90	98	98	95	95	98
Johnsongrass	10	20	25	10	5	5	20	10	5	10	5	10	10	5
Kochia	80	95	70	95	85	100	100	98	85	80	95	95	50	100
Lambsquarters	98	98	100	100	98	100	100	100	60	100	98	98	100	100
Morningglory	98	100	100	100	98	98	100	100	30	100	100	100	100	100
15 Nutsedge, Yellow	90	90	90	85	85	75	85	85	5	60	85	50	75	75
Oat, Wild	95	90	90	90	100	40	95	90	10	100	95	95	25	90
Oilseed Rape	70	50	15	20	80	0	5	90	35	25	55	90	30	98
Pigweed	90	100	90	98	90	95	100	100	75	100	95	100	100	100
Ragweed	85	95	90	100	90	98	100	100	35	100	100	98	100	100
20 Ryegrass, Italian	95	85	95	85	90	80	90	95	55	85	95	95	30	90
Soybean	10	5	15	5	25	0	70	20	5	25	5	5	10	10
Velvetleaf	90	98	95	90	90	80	98	100	30	100	100	65	100	90
Waterhemp	80	90	85	90	90	50	100	80	10	100	98	98	85	95
Wheat	0	0	0	0	0	0	30	5	0	30	10	5	5	10

Table C

Compounds

250 g ai/ha	105	106	107	108	109	111	113	114	115	121	123	125	126	127
Postemergence														
Barnyardgrass	20	40	90	60	65	40	45	40	45	30	70	70	50	25
Blackgrass	60	75	30	55	80	35	60	15	35	50	45	80	40	35
30 Chickweed	100	98	98	98	100	98	100	98	90	98	98	95	100	95
Corn	30	10	15	30	50	10	15	0	15	5	20	5	25	10
Crabgrass, Large	30	30	65	40	60	25	70	25	25	40	75	60	30	25
Foxtail, Giant	85	95	75	85	85	85	70	85	35	85	80	98	25	40
Galium	100	100	98	95	100	95	95	95	95	95	95	95	98	90
35 Johnsongrass	0	10	20	5	5	10	20	15	20	5	25	20	25	15
Kochia	100	80	90	100	100	95	100	95	90	95	98	90	95	90

175

	Lambsquarters	100	98	98	98	100	100	100	100	98	100	100	100	95	98
	Morningglory	100	98	100	100	100	100	100	100	100	98	100	100	98	98
	Nutsedge, Yellow	90	80	85	75	80	75	95	35	80	75	90	90	85	70
	Oat, Wild	90	90	35	90	90	98	90	85	90	90	95	95	85	60
5	Oilseed Rape	75	95	45	95	95	100	0	80	0	55	5	10	85	100
	Pigweed	98	90	98	98	100	98	98	95	90	98	98	98	95	95
	Ragweed	100	98	98	100	100	100	100	100	98	98	98	98	95	90
	Ryegrass, Italian	80	35	90	90	90	95	95	95	95	90	95	95	90	90
	Soybean	40	10	10	15	25	10	55	5	65	0	65	10	35	35
10	Velvetleaf	100	100	100	100	100	90	98	85	65	80	95	98	95	55
	Waterhemp	98	80	90	98	100	70	100	45	90	70	100	100	100	95
	Wheat	5	5	0	10	35	25	15	15	5	0	20	35	5	30
	Table C														Compounds
	250 g ai/ha	129	130	132	133	134	136	137	138	139	145	153	154	161	162
15	Postemergence														
	Barnyardgrass	85	55	25	35	55	40	65	40	60	70	90	95	55	25
	Blackgrass	80	60	45	30	98	45	0	80	10	90	90	85	65	40
	Chickweed	100	100	95	-	-	-	-	-	-	-	98	95	80	95
	Corn	30	15	10	5	15	10	20	15	15	10	10	5	40	0
20	Crabgrass, Large	60	60	25	20	40	35	35	25	40	20	75	75	20	10
	Foxtail, Giant	95	70	75	55	45	90	95	80	60	55	95	95	35	40
	Galium	100	98	95	100	100	95	95	95	100	100	98	95	95	98
	Johnsongrass	25	20	10	10	25	5	15	20	25	20	15	20	25	10
	Kochia	95	100	95	100	100	100	100	100	100	100	85	80	90	90
25	Lambsquarters	98	100	100	100	100	100	100	100	98	100	100	95	95	95
	Morningglory	100	100	98	95	100	100	100	100	100	100	100	100	98	90
	Nutsedge, Yellow	95	85	85	98	90	85	90	80	85	95	90	80	50	30
	Oat, Wild	98	95	90	95	95	90	90	90	90	100	95	90	90	70
	Oilseed Rape	5	0	40	98	100	98	98	98	98	95	90	90	95	90
30	Pigweed	98	90	65	95	100	98	100	98	98	100	85	85	98	90
	Ragweed	95	98	98	5	30	5	40	5	0	25	90	90	85	90
	Ryegrass, Italian	95	95	95	5	40	35	60	70	60	40	95	95	90	80
	Soybean	25	50	20	40	85	15	20	25	60	70	5	25	40	0
	Velvetleaf	100	98	75	100	100	98	95	98	100	100	95	90	100	70
35	Waterhemp	98	98	75	100	100	100	90	100	100	100	90	70	95	65
	Wheat	55	15	0	80	90	90	95	90	90	90	10	5	15	10

176

Table	C	Compounds				Table	C	Compounds			
250	g ai/ha	164	165	171	176	250	g ai/ha	164	165	171	176
Postemergence				Postemergence							
Barnyardgrass		35	25	60	20	Nutsedge, Yellow		40	35	-	5
Blackgrass		45	25	55	0	Oat, Wild		80	70	95	35
Chickweed		98	98	95	-	Oilseed Rape		0	5	30	95
Corn		5	5	20	5	Pigweed		85	85	100	75
Crabgrass, Large		10	20	55	30	Ragweed		90	85	100	0
Foxtail, Giant		30	25	75	40	Ryegrass, Italian		85	70	95	10
Galium		100	100	95	60	Soybean		5	15	50	10
Johnsongrass		10	15	20	10	Velvetleaf		70	50	100	80
Kochia		95	90	98	100	Waterhemp		75	75	100	55
Lambsquarters		98	98	100	90	Wheat		20	15	20	40
Morningglory		90	95	100	100						

Table	C	Compounds													
125	g ai/ha	1	2	10	11	14	16	20	21	22	23	25	26	27	28
Postemergence															
5	Barnyardgrass	5	15	90	5	55	70	30	75	10	75	20	30	25	35
5	Blackgrass	60	85	10	30	5	5	10	90	20	70	60	60	85	80
5	Chickweed	98	95	90	85	90	90	100	100	95	100	100	100	100	98
5	Corn	5	5	5	0	0	0	5	20	5	10	5	5	0	5
5	Crabgrass, Large	25	15	65	0	30	20	10	40	5	35	20	20	30	40
5	Foxtail, Giant	60	90	50	10	50	70	45	90	40	85	70	40	90	85
10	Galium	95	98	70	90	80	85	100	100	95	100	100	95	100	100
10	Johnsongrass	0	5	5	5	0	0	10	20	5	10	5	5	-	-
10	Kochia	95	65	95	100	90	20	90	95	95	100	100	90	90	95
10	Lambsquarters	100	98	65	90	80	40	100	95	90	95	98	90	90	100
10	Morningglory	100	100	100	90	100	60	100	100	100	100	100	100	100	100
15	Nutsedge, Yellow	-	98	-	30	-	-	85	90	65	85	90	20	-	85
15	Oat, Wild	85	90	5	60	40	10	25	98	80	100	90	95	95	100
15	Oilseed Rape	5	70	0	0	0	10	5	100	90	45	20	5	80	5
15	Pigweed	98	90	70	90	70	30	98	95	90	98	95	98	85	90
15	Ragweed	95	95	70	95	50	0	95	90	90	95	95	85	85	85
20	Ryegrass, Italian	95	85	20	90	65	60	80	95	90	95	90	90	90	90
20	Soybean	5	50	0	0	5	0	35	10	0	10	10	0	0	0

177

	Velvetleaf	95	100	40	45	40	20	85	85	80	85	85	60	90	85
	Waterhemp	100	85	50	95	50	5	60	85	75	85	95	85	10	85
	Wheat	10	5	0	5	5	0	0	35	5	35	0	0	5	0
	Table C														
5	125 g ai/ha	29	32	33	34	36	37	40	41	42	47	51	52	54	56
	Postemergence														
	Barnyardgrass	40	65	50	35	35	60	25	40	30	85	10	5	55	5
	Blackgrass	60	80	5	35	5	80	45	50	60	30	0	30	60	5
	Chickweed	100	100	90	90	95	90	90	100	98	70	98	95	55	
10	Corn	30	30	5	5	5	20	20	10	5	10	0	0	5	0
	Crabgrass, Large	50	75	20	20	25	25	10	25	20	40	10	5	35	5
	Foxtail, Giant	60	80	60	25	70	60	20	30	35	75	15	10	75	0
	Galium	100	100	95	95	95	95	90	100	100	90	90	100	98	90
	Johnsongrass	-	15	5	5	5	5	5	10	-	20	0	10	10	5
15	Kochia	75	90	40	60	55	5	0	100	100	95	50	5	90	90
	Lambsquarters	85	98	98	95	98	95	80	95	100	98	65	75	100	85
	Morningglory	100	100	95	95	98	98	80	100	100	100	75	100	98	50
	Nutsedge, Yellow	-	80	45	85	55	65	20	65	-	80	85	90	55	50
	Oat, Wild	85	100	40	90	65	90	60	90	90	30	5	0	60	20
20	Oilseed Rape	5	60	30	50	50	40	5	5	10	5	5	0	40	0
	Pigweed	98	90	65	80	95	95	85	75	98	98	70	10	98	85
	Ragweed	95	98	90	95	95	98	85	95	98	98	5	80	95	60
	Ryegrass, Italian	85	90	70	90	60	90	80	90	90	25	60	45	85	65
	Soybean	20	30	0	15	5	15	30	20	10	10	0	0	10	0
25	Velvetleaf	85	85	75	100	95	85	20	85	85	95	50	55	98	15
	Waterhemp	80	85	65	90	95	80	80	90	98	100	80	10	95	95
	Wheat	30	25	0	10	0	30	10	30	0	0	0	0	0	5
	Table C														
30	125 g ai/ha	57	59	60	65	66	67	69	72	73	75	78	79	80	81
	Postemergence														
	Barnyardgrass	95	55	35	35	30	35	35	50	55	15	30	30	35	35
	Blackgrass	5	85	85	10	40	65	30	80	90	20	5	35	40	90
	Chickweed	95	98	95	90	95	95	95	90	95	95	70	90	95	95
	Corn	5	65	30	5	5	10	5	20	20	10	10	25	5	10
35	Crabgrass, Large	30	25	50	20	35	35	25	35	60	5	10	30	30	40

178

	Foxtail, Giant	85	85	70	35	65	80	10	75	75	5	20	75	70	90
	Galium	95	98	100	90	95	95	98	95	95	90	80	95	95	95
	Johnsongrass	5	25	55	5	5	5	10	5	40	5	5	10	5	5
	Kochia	70	85	100	90	90	35	95	90	90	95	85	90	90	80
5	Lambsquarters	95	98	95	95	100	90	100	90	95	100	75	98	98	98
	Morningglory	100	100	100	95	100	100	95	95	95	100	65	100	100	100
	Nutsedge, Yellow	90	95	90	60	85	80	70	70	80	50	35	80	85	90
	Oat, Wild	45	90	95	50	90	90	80	90	95	40	60	85	90	95
	Oilseed Rape	0	40	85	0	10	75	50	20	70	90	0	70	60	85
10	Pigweed	85	95	95	98	100	80	90	95	95	100	75	98	95	85
	Ragweed	85	95	98	80	90	98	95	95	90	100	60	98	98	70
	Ryegrass, Italian	50	90	95	85	85	85	95	90	90	85	85	85	85	90
	Soybean	0	10	40	5	10	5	20	15	25	35	5	5	5	5
	Velvetleaf	100	90	90	65	85	85	85	85	85	85	35	90	55	90
15	Waterhemp	85	98	98	75	90	75	95	85	85	100	80	80	85	85
	Wheat	0	10	30	0	0	0	0	5	35	0	5	0	10	0
	Table C														Compounds
	125 g ai/ha	82	83	84	85	87	88	89	90	91	97	98	99	100	102
	Postemergence														
20	Barnyardgrass	25	30	25	40	35	40	20	50	45	15	98	35	30	35
	Blackgrass	35	90	55	90	60	90	0	25	10	0	50	50	5	5
	Chickweed	90	95	95	95	95	100	100	95	100	15	100	90	95	95
	Corn	10	10	30	0	30	20	10	10	10	0	15	10	5	10
	Crabgrass, Large	20	40	20	40	25	55	5	35	25	10	45	30	25	20
25	Foxtail, Giant	60	85	65	90	75	90	20	55	75	5	98	30	75	60
	Galium	95	100	95	100	95	100	95	95	98	85	98	98	95	95
	Johnsongrass	10	5	10	50	5	5	0	10	5	0	10	10	5	0
	Kochia	90	65	90	60	90	100	90	100	90	70	60	90	95	20
	Lambsquarters	98	85	98	100	98	95	100	98	100	50	100	85	98	70
30	Morningglory	100	100	98	100	100	98	98	100	100	30	100	100	100	100
	Nutsedge, Yellow	85	85	85	95	80	80	70	90	45	0	50	75	20	60
	Oat, Wild	90	90	90	95	85	100	30	90	90	5	95	90	85	10
	Oilseed Rape	50	45	50	10	50	60	0	0	95	0	10	60	10	5
	Pigweed	90	90	95	85	90	90	80	95	100	60	100	98	100	95
35	Ragweed	95	90	98	85	95	85	90	95	95	25	98	95	95	100
	Ryegrass, Italian	85	90	85	90	85	90	75	90	95	50	65	95	90	25

179

Soybean	5	0	10	0	10	5	0	55	10	5	25	5	5	10
Velvetleaf	95	90	85	85	90	85	75	98	98	10	75	98	40	100
Waterhemp	90	60	95	85	90	85	50	100	75	5	100	95	95	80
Wheat	5	0	5	0	0	0	0	10	10	0	15	10	0	5

5 Table C Compounds

125 g ai/ha	104	105	106	107	108	109	111	113	114	115	121	123	125	126
-------------	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----

Postemergence

Barnyardgrass	45	25	20	40	40	55	45	35	40	35	25	40	80	35
---------------	----	----	----	----	----	----	----	----	----	----	----	----	----	----

Blackgrass	50	50	60	5	35	50	20	45	5	20	15	45	60	10
------------	----	----	----	---	----	----	----	----	---	----	----	----	----	----

10 Chickweed	100	98	95	95	95	95	100	98	98	90	90	90	95	95
--------------	-----	----	----	----	----	----	-----	----	----	----	----	----	----	----

Corn	50	30	10	20	25	35	15	10	0	5	5	20	5	20
------	----	----	----	----	----	----	----	----	---	---	---	----	---	----

Crabgrass, Large	35	20	30	35	25	60	25	25	20	20	20	30	40	30
------------------	----	----	----	----	----	----	----	----	----	----	----	----	----	----

Foxtail, Giant	75	75	90	70	75	80	70	30	50	20	70	35	95	15
----------------	----	----	----	----	----	----	----	----	----	----	----	----	----	----

Galium	98	95	95	100	95	100	95	95	95	95	95	95	95	98
--------	----	----	----	-----	----	-----	----	----	----	----	----	----	----	----

15 Johnsongrass	5	0	10	0	5	5	15	10	5	10	5	20	20	15
-----------------	---	---	----	---	---	---	----	----	---	----	---	----	----	----

Kochia	95	95	80	90	95	100	90	95	90	90	95	95	90	95
--------	----	----	----	----	----	-----	----	----	----	----	----	----	----	----

Lambsquarters	100	100	95	90	98	100	100	100	100	90	98	100	98	95
---------------	-----	-----	----	----	----	-----	-----	-----	-----	----	----	-----	----	----

Morningglory	100	100	100	98	98	100	100	100	100	95	100	98	100	98
--------------	-----	-----	-----	----	----	-----	-----	-----	-----	----	-----	----	-----	----

Nutsedge, Yellow	60	75	90	75	70	80	65	85	25	65	85	85	85	70
------------------	----	----	----	----	----	----	----	----	----	----	----	----	----	----

20 Oat, Wild	90	90	90	40	90	90	90	90	65	80	80	90	95	90
--------------	----	----	----	----	----	----	----	----	----	----	----	----	----	----

Oilseed Rape	95	60	85	80	85	95	95	0	40	0	85	0	5	60
--------------	----	----	----	----	----	----	----	---	----	---	----	---	---	----

Pigweed	100	100	90	98	98	100	90	95	95	70	90	80	98	95
---------	-----	-----	----	----	----	-----	----	----	----	----	----	----	----	----

Ragweed	98	98	75	98	98	100	98	98	98	95	95	95	98	95
---------	----	----	----	----	----	-----	----	----	----	----	----	----	----	----

Ryegrass, Italian	90	90	90	60	90	90	95	95	80	95	90	90	95	90
-------------------	----	----	----	----	----	----	----	----	----	----	----	----	----	----

25 Soybean	10	10	0	20	15	30	5	40	0	20	0	20	10	20
------------	----	----	---	----	----	----	---	----	---	----	---	----	----	----

Velvetleaf	98	90	90	95	100	98	98	90	55	70	75	85	95	98
------------	----	----	----	----	-----	----	----	----	----	----	----	----	----	----

Waterhemp	100	100	75	95	90	90	55	90	55	90	75	100	98	95
-----------	-----	-----	----	----	----	----	----	----	----	----	----	-----	----	----

Wheat	5	5	0	0	5	10	15	5	5	0	25	15	30	0
-------	---	---	---	---	---	----	----	---	---	---	----	----	----	---

Table C Compounds	127	129	130	132	133	134	136	137	138	139	143	145	153	154
-------------------	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----

30 125 g ai/ha	127	129	130	132	133	134	136	137	138	139	143	145	153	154
----------------	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----

Postemergence	25	70	35	25	45	40	35	50	30	40	30	30	70	90
---------------	----	----	----	----	----	----	----	----	----	----	----	----	----	----

Barnyardgrass	5	60	55	25	70	50	30	0	50	60	20	30	90	60
---------------	---	----	----	----	----	----	----	---	----	----	----	----	----	----

Blackgrass	90	100	98	95	-	-	-	-	-	-	80	-	98	90
------------	----	-----	----	----	---	---	---	---	---	---	----	---	----	----

35 Corn	5	30	5	5	5	10	10	10	15	15	5	5	25	5
---------	---	----	---	---	---	----	----	----	----	----	---	---	----	---

180

	Crabgrass, Large	10	35	15	10	5	15	25	35	20	30	30	10	50	70
	Foxtail, Giant	25	85	40	60	40	35	70	80	65	30	20	25	90	95
	Galium	85	100	95	95	98	100	90	90	95	100	90	98	98	95
	Johnsongrass	10	15	5	5	20	5	5	15	20	15	20	20	10	20
5	Kochia	95	90	100	95	100	100	100	100	100	100	60	100	80	60
	Lambsquarters	85	95	100	100	100	100	95	98	95	100	75	100	95	90
	Morningglory	85	100	85	95	100	100	100	100	98	100	70	100	98	98
	Nutsedge, Yellow	60	85	80	75	95	95	75	85	75	70	35	85	95	85
	Oat, Wild	55	100	85	70	95	95	85	90	80	90	60	95	95	90
10	Oilseed Rape	25	5	0	5	98	100	98	98	98	98	5	95	90	98
	Pigweed	90	98	90	70	100	100	85	98	90	98	75	75	85	90
	Ragweed	60	95	98	95	5	5	0	30	5	0	70	5	95	85
	Ryegrass, Italian	80	95	95	95	35	20	30	30	10	35	90	30	95	90
	Soybean	30	20	25	0	75	70	10	15	10	65	20	55	10	20
15	Velvetleaf	25	95	98	65	100	100	90	90	95	95	50	98	90	85
	Waterhemp	85	85	80	80	100	100	95	85	98	100	90	100	90	85
	Wheat	5	40	10	0	55	65	45	90	80	60	15	85	10	10

Table C Compounds

	125 g ai/ha	161	162	164	165	171	176
20	Postemergence						
	Barnyardgrass	45	25	30	25	40	10
	Blackgrass	60	30	40	20	40	0
	Chickweed	70	95	95	95	90	-
	Corn	15	0	5	0	10	0
25	Crabgrass, Large	5	10	10	20	40	20
	Foxtail, Giant	10	15	15	15	50	35
	Galium	95	95	100	98	95	60
	Johnsongrass	20	5	5	10	15	5
	Kochia	80	90	90	85	98	95
30	Lambsquarters	80	90	85	85	98	80
	Morningglory	95	85	90	85	100	98
	Nutsedge, Yellow	20	30	25	25	75	5
	Oat, Wild	80	70	70	65	90	10
	Oilseed Rape	95	0	0	0	0	95
35	Pigweed	90	85	85	75	90	50
	Ragweed	95	75	85	75	100	0

181

	Ryegrass, Italian	90	70	80	55	95	0								
	Soybean	40	0	10	15	60	15								
	Velvetleaf	90	30	25	20	100	75								
	Waterhemp	85	70	70	75	98	60								
5	Wheat	10	5	10	10	30	10								
	Table C							Compounds							
	62 g ai/ha	1	2	10	11	14	16	20	21	22	23	25	26	27	28
	Postemergence														
	Barnyardgrass	5	10	90	0	5	70	10	45	5	60	20	25	20	25
10	Blackgrass	50	65	0	15	0	5	10	90	0	60	55	55	70	70
	Chickweed	95	95	90	65	90	80	98	100	90	100	98	95	100	95
	Corn	25	5	0	0	0	0	5	65	5	30	5	10	5	5
	Crabgrass, Large	10	15	30	0	5	20	10	35	5	20	15	20	25	20
	Foxtail, Giant	15	65	60	5	45	60	25	80	15	65	35	25	75	80
15	Galium	95	95	50	90	55	80	100	100	90	100	95	95	100	100
	Johnsongrass	0	5	0	0	0	0	10	20	5	5	5	5	0	5
	Kochia	95	55	85	95	85	0	80	90	95	95	95	70	80	70
	Lambsquarters	100	85	80	90	80	60	85	90	85	95	95	85	85	98
	Morningglory	100	100	90	80	85	50	100	100	100	100	100	100	100	98
20	Nutsedge, Yellow	-	95	-	15	-	-	65	90	50	70	75	10	80	85
	Oat, Wild	70	80	5	45	30	5	5	98	50	95	70	80	95	95
	Oilseed Rape	0	70	0	0	0	0	0	80	15	15	0	0	70	60
	Pigweed	95	60	60	90	70	30	90	95	75	98	90	85	80	85
	Ragweed	95	80	30	40	90	0	85	90	75	90	85	70	75	75
25	Ryegrass, Italian	90	75	5	70	60	50	60	95	70	90	85	90	85	85
	Soybean	0	0	0	0	0	0	0	0	0	10	0	5	0	0
	Velvetleaf	85	100	45	5	20	5	25	85	50	85	80	30	85	85
	Waterhemp	95	65	45	80	10	5	40	75	70	55	95	85	60	75
	Wheat	0	0	0	0	0	0	0	5	0	30	0	0	0	0
30	Table C							Compounds							
	62 g ai/ha	29	32	33	34	35	36	37	40	41	42	47	51	52	54
	Postemergence														
	Barnyardgrass	25	30	25	25	20	25	20	15	35	30	55	5	5	30
	Blackgrass	50	60	0	10	45	5	40	15	35	35	20	0	10	5
35	Chickweed	95	95	90	90	95	95	90	60	95	100	90	55	90	95

182

	Corn	10	20	5	5	5	0	10	0	5	5	5	0	0	0
	Crabgrass, Large	20	30	20	10	20	30	20	5	10	15	30	5	0	25
	Foxtail, Giant	35	50	40	20	75	55	35	15	15	30	65	5	5	55
	Galium	95	100	90	95	95	95	85	100	90	90	90	100	98	
5	Johnsongrass	5	25	5	5	20	5	5	5	10	5	10	0	10	5
	Kochia	60	50	5	45	40	55	0	80	100	100	90	15	0	90
	Lambsquarters	85	90	95	90	70	98	90	70	95	95	85	50	60	95
	Morningglory	100	100	95	98	100	98	95	65	95	100	100	55	100	98
	Nutsedge, Yellow	35	80	15	60	85	40	40	15	65	75	70	70	80	35
10	Oat, Wild	55	90	30	85	60	60	80	50	90	90	10	5	0	50
	Oilseed Rape	0	60	55	30	10	40	20	30	0	5	0	5	0	80
	Pigweed	95	90	50	85	55	85	100	65	75	95	90	65	5	95
	Ragweed	90	90	95	98	40	90	95	75	85	85	98	5	65	95
	Ryegrass, Italian	80	90	45	80	55	60	85	65	90	90	10	50	40	80
15	Soybean	10	25	0	5	5	0	5	60	15	5	10	0	0	5
	Velvetleaf	80	70	60	80	100	85	70	10	65	85	90	20	25	90
	Waterhemp	80	80	30	85	45	95	80	65	75	85	75	50	10	90
	Wheat	5	15	0	5	5	0	0	10	0	0	0	0	0	50

Table C

Compounds

	62 g ai/ha	56	57	59	60	65	66	67	69	72	73	75	78	79	80
Postemergence															
	Barnyardgrass	5	95	30	25	15	20	35	35	40	40	25	25	25	30
	Blackgrass	5	5	80	60	5	15	60	20	70	85	5	5	10	35
	Chickweed	10	95	98	95	90	95	95	90	90	90	90	60	90	95
25	Corn	0	5	45	25	5	0	5	0	10	20	5	0	0	5
	Crabgrass, Large	5	20	20	35	20	30	35	25	25	35	10	5	25	25
	Foxtail, Giant	0	70	60	60	20	55	75	10	70	65	5	5	60	55
	Galium	85	95	98	100	85	95	95	95	90	90	80	95	95	
	Johnsongrass	0	5	5	35	5	5	5	10	5	5	5	5	5	5
30	Kochia	90	65	85	90	90	90	30	90	85	90	85	70	90	90
	Lambsquarters	50	70	95	90	95	100	95	90	85	95	100	70	95	95
	Morningglory	50	100	100	98	85	95	95	95	90	90	100	40	100	100
	Nutsedge, Yellow	5	90	85	85	50	70	70	65	60	80	20	25	80	80
	Oat, Wild	10	35	75	95	35	80	85	60	95	90	35	50	60	90
35	Oilseed Rape	0	0	50	5	0	10	50	10	35	70	70	0	25	50
	Pigweed	75	80	95	85	90	98	85	85	90	85	95	60	98	90

183

	Ragweed	0	90	95	90	85	85	75	90	90	90	85	20	95	90
	Ryegrass, Italian	60	30	90	90	80	80	80	90	90	90	80	65	60	85
	Soybean	0	0	15	20	5	10	5	25	15	15	35	0	0	15
	Velvetleaf	0	95	85	85	20	75	85	80	85	85	50	10	85	90
5	Waterhemp	75	65	90	90	75	90	70	90	65	75	100	90	90	80
	Wheat	0	0	20	5	0	0	0	0	30	30	0	5	0	5
	Table C														Compounds
	62 g ai/ha	81	82	83	84	85	87	88	89	90	91	97	98	99	100
	Postemergence														
10	Barnyardgrass	35	25	25	20	45	25	40	15	35	30	5	85	25	25
	Blackgrass	85	35	80	35	80	35	80	0	15	5	0	30	30	5
	Chickweed	90	90	95	90	95	90	100	95	90	98	0	100	90	90
	Corn	5	30	5	20	0	5	0	5	10	0	0	0	5	10
	Crabgrass, Large	35	20	25	10	30	10	20	5	15	20	5	25	20	15
15	Foxtail, Giant	85	25	85	55	85	55	85	10	25	45	5	95	15	45
	Galium	95	95	90	95	100	95	100	95	95	90	80	95	95	95
	Johnsongrass	5	5	5	5	15	5	5	0	10	5	0	5	10	0
	Kochia	75	90	60	90	70	90	50	90	100	90	0	20	85	90
	Lambsquarters	95	98	85	90	98	98	85	90	98	100	20	100	75	90
20	Morningglory	100	100	90	98	98	98	100	95	100	100	40	100	95	100
	Nutsedge, Yellow	85	80	80	85	85	80	85	60	80	40	0	15	55	25
	Oat, Wild	90	85	90	90	90	90	95	10	70	70	5	80	70	70
	Oilseed Rape	65	40	0	45	10	50	5	0	0	90	0	0	5	60
	Pigweed	85	90	85	90	85	90	85	75	80	90	50	100	75	85
25	Ragweed	75	98	85	90	85	95	85	90	85	98	10	98	90	95
	Ryegrass, Italian	85	85	90	80	90	80	90	75	90	80	30	45	90	90
	Soybean	0	10	0	5	0	0	0	0	50	5	0	10	5	5
	Velvetleaf	85	80	90	90	85	85	85	75	75	75	20	70	85	50
	Waterhemp	60	98	85	85	65	80	85	40	100	50	5	100	75	90
30	Wheat	0	0	0	0	0	0	0	0	10	5	0	10	0	0
	Table C														Compounds
	62 g ai/ha	102	104	105	106	107	108	109	111	113	114	115	121	123	125
	Postemergence														
	Barnyardgrass	20	35	25	15	50	35	30	30	35	35	20	20	25	40
35	Blackgrass	5	35	40	50	5	35	25	5	25	0	10	15	35	45

184

	Chickweed	95	98	95	98	90	90	95	98	90	95	75	90	90	95
	Corn	0	80	15	10	10	40	15	10	10	0	5	5	15	0
	Crabgrass, Large	10	30	30	40	20	10	40	20	15	20	20	5	35	35
	Foxtail, Giant	35	70	50	75	55	40	50	45	25	20	15	50	20	90
5	Galium	95	95	98	95	95	98	100	95	95	95	90	90	95	95
	Johnsongrass	0	5	0	10	0	0	5	10	10	5	10	5	10	5
	Kochia	0	95	95	85	85	95	95	85	98	90	90	90	95	90
	Lambsquarters	70	98	85	90	90	95	100	100	98	95	90	95	98	98
	Morningglory	100	100	98	98	98	100	98	100	100	100	85	98	90	95
10	Nutsedge, Yellow	55	45	70	85	80	60	50	40	70	10	60	40	75	85
	Oat, Wild	5	90	60	90	20	90	80	70	90	60	60	90	85	90
	Oilseed Rape	0	70	30	80	55	90	90	10	0	85	0	60	0	0
	Pigweed	80	98	98	80	95	95	95	90	75	85	70	85	80	95
	Ragweed	95	90	95	85	90	95	95	90	95	90	85	90	90	98
15	Ryegrass, Italian	5	90	90	90	50	90	90	90	95	70	90	90	90	90
	Soybean	10	0	0	0	5	5	15	5	30	0	20	0	10	5
	Velvetleaf	75	85	85	85	98	85	80	80	95	55	25	35	75	90
	Waterhemp	60	90	100	80	85	85	85	45	90	55	75	65	90	95
	Wheat	0	5	0	0	0	5	5	10	15	5	5	5	5	15
20	Table C														Compounds
	62 g ai/ha	126	127	129	130	132	133	134	136	137	138	139	143	145	151
	Postemergence														
	Barnyardgrass	30	20	65	30	30	30	20	25	40	25	20	25	15	50
	Blackgrass	5	5	40	35	5	35	45	5	0	5	50	5	0	35
25	Chickweed	90	90	98	95	90	-	-	-	-	-	-	70	-	98
	Corn	10	0	20	5	5	5	10	5	15	0	0	0	5	25
	Crabgrass, Large	20	5	30	15	15	5	10	20	30	20	10	10	10	40
	Foxtail, Giant	15	5	75	20	40	25	25	45	60	60	30	5	25	75
	Galium	95	80	100	95	95	95	95	90	90	90	95	90	95	95
30	Johnsongrass	10	5	15	5	5	10	10	5	10	10	5	25	10	20
	Kochia	90	85	60	95	90	100	100	95	100	95	100	60	98	30
	Lambsquarters	95	80	95	98	90	98	98	90	90	90	95	60	98	98
	Morningglory	95	75	100	80	80	100	100	98	98	100	100	65	98	98
	Nutsedge, Yellow	60	35	75	75	55	90	80	55	85	65	75	40	90	85
35	Oat, Wild	80	20	90	80	60	90	90	75	70	80	90	55	95	90
	Oilseed Rape	80	0	0	0	10	98	100	98	98	98	95	0	98	20

185

	Pigweed	90	85	95	70	55	98	100	80	98	85	95	65	100	70
	Ragweed	90	55	90	90	95	0	5	0	20	0	0	30	0	85
	Ryegrass, Italian	85	75	90	90	85	10	15	10	30	5	10	60	15	85
	Soybean	10	10	10	15	0	40	70	10	10	10	55	15	40	25
5	Velvetleaf	85	30	95	70	40	90	90	95	90	90	80	25	90	65
	Waterhemp	90	85	70	85	60	100	100	80	65	95	100	55	100	75
	Wheat	0	5	35	5	0	35	50	45	90	40	55	35	50	0

Table C Compounds

62 g ai/ha 153 154 161 162 164 165 171 176

10 Postemergence

	Barnyardgrass	60	85	35	20	25	15	35	5
	Blackgrass	85	65	40	15	15	15	30	0
	Chickweed	95	90	70	90	90	90	90	-
	Corn	35	5	5	0	0	0	0	10
15	Crabgrass, Large	50	70	5	5	5	5	20	5
	Foxtail, Giant	85	90	5	15	10	5	25	15
	Galium	95	95	80	90	95	85	95	5
	Johnsongrass	5	5	5	5	5	5	5	5
	Kochia	70	50	70	80	85	40	95	90
20	Lambsquarters	90	85	90	95	85	75	95	80
	Morningglory	100	98	90	85	85	70	100	85
	Nutsedge, Yellow	90	60	10	25	20	30	75	5
	Oat, Wild	95	80	50	60	45	45	90	5
	Oilseed Rape	90	90	70	0	0	0	0	95
25	Pigweed	75	85	80	80	80	70	80	30
	Ragweed	90	75	80	85	80	55	100	0
	Ryegrass, Italian	95	90	80	70	60	50	95	0
	Soybean	10	20	30	0	0	10	30	10
	Velvetleaf	85	85	65	15	60	25	70	25
30	Waterhemp	65	80	90	65	70	70	95	40
	Wheat	20	5	0	10	5	5	15	5

Table C Compounds

31 g ai/ha 1 2 10 11 14 16 20 21 22 23 25 26 27 28

Postemergence

35	Barnyardgrass	0	10	35	0	5	5	5	35	5	40	15	20	15	20
----	---------------	---	----	----	---	---	---	---	----	---	----	----	----	----	----

186

	Blackgrass	20	45	0	5	0	0	5	80	0	50	30	50	50	50
	Chickweed	95	95	90	60	90	75	90	95	90	100	90	95	95	95
	Corn	0	0	0	0	0	0	5	5	0	10	5	0	0	5
	Crabgrass, Large	20	10	10	0	5	5	5	30	0	5	5	5	5	25
5	Foxtail, Giant	35	20	70	5	20	55	0	55	10	30	35	15	60	60
	Galium	90	95	5	75	50	60	98	98	90	95	90	90	100	100
	Johnsongrass	0	5	0	0	0	0	5	10	5	5	0	5	10	5
	Kochia	95	50	60	85	85	0	50	80	90	95	95	80	75	70
	Lambsquarters	85	85	50	80	80	10	80	85	70	85	90	75	85	85
10	Morningglory	100	100	55	70	65	45	100	85	100	100	100	98	100	95
	Nutsedge, Yellow	-	80	-	5	-	-	45	85	35	60	65	5	85	75
	Oat, Wild	50	75	5	40	10	5	0	90	40	85	60	60	85	95
	Oilseed Rape	0	65	0	0	0	0	0	65	5	5	0	0	5	5
	Pigweed	95	80	55	50	55	40	75	70	85	90	90	75	55	60
15	Ragweed	90	80	5	0	15	0	80	85	70	85	90	15	70	65
	Ryegrass, Italian	80	60	5	70	40	10	55	90	60	85	70	85	80	80
	Soybean	0	0	0	0	0	0	0	0	0	5	0	5	0	0
	Velvetleaf	80	100	40	0	10	5	25	75	20	70	70	5	80	70
	Waterhemp	95	65	40	80	5	5	70	40	75	80	75	75	65	60
20	Wheat	0	0	0	0	0	0	0	0	0	10	0	0	0	0

Table C

31 g ai/ha

Compounds

		29	32	33	34	35	36	37	40	41	42	47	51	52	54
Postemergence															
	Barnyardgrass	15	10	25	20	20	15	25	5	25	20	15	5	5	15
25	Blackgrass	40	30	0	10	15	5	35	5	30	30	0	0	0	15
	Chickweed	95	90	85	90	95	80	90	55	95	90	90	50	95	95
	Corn	0	0	0	0	5	0	0	0	5	0	0	0	0	0
	Crabgrass, Large	10	10	10	5	20	25	10	5	5	10	20	0	0	20
	Foxtail, Giant	30	15	20	10	50	30	25	5	15	25	50	5	0	20
30	Galium	90	90	90	90	90	90	90	80	100	95	80	85	90	95
	Johnsongrass	0	5	0	5	20	0	0	0	5	5	10	0	5	5
	Kochia	60	50	20	10	30	50	0	70	100	90	75	0	0	50
	Lambsquarters	80	85	90	90	80	90	90	70	90	85	85	5	55	95
	Morningglory	85	90	85	85	100	90	90	55	95	75	100	5	98	95
35	Nutsedge, Yellow	25	55	5	45	75	20	20	0	65	65	40	35	60	10
	Oat, Wild	60	70	35	80	40	50	60	35	55	75	5	0	0	45

187

188

	Barnyardgrass	25	20	25	10	25	25	35	5	30	25	0	60	25	10
	Blackgrass	60	10	40	10	70	10	40	0	10	0	0	5	20	5
	Chickweed	90	90	90	90	90	90	95	90	90	95	0	95	90	90
	Corn	0	35	5	0	0	5	0	5	5	0	0	5	0	5
5	Crabgrass, Large	25	10	20	5	35	5	25	0	5	15	0	10	20	5
	Foxtail, Giant	80	35	75	40	75	35	80	5	20	10	5	90	5	20
	Galium	90	90	90	90	95	90	95	90	90	90	45	95	90	90
	Johnsongrass	5	5	5	0	5	0	5	0	5	0	0	0	5	0
	Kochia	40	90	40	85	30	90	30	85	95	75	0	0	20	80
10	Lambsquarters	95	90	95	90	85	95	85	85	95	98	0	98	75	80
	Morningglory	95	100	98	90	98	98	95	90	100	100	10	100	75	100
	Nutsedge, Yellow	70	65	85	80	75	70	65	40	70	20	0	10	30	5
	Oat, Wild	85	55	90	85	90	85	90	5	70	50	5	70	60	50
	Oilseed Rape	45	35	50	5	5	10	20	0	0	60	0	0	0	30
15	Pigweed	80	85	80	85	85	75	65	80	75	98	20	100	75	75
	Ragweed	70	90	70	85	75	90	80	80	85	75	0	100	70	98
	Ryegrass, Italian	85	80	80	80	85	80	80	45	85	60	10	40	85	65
	Soybean	0	10	0	0	0	0	0	0	40	0	0	5	0	0
	Velvetleaf	75	70	85	60	75	75	75	25	35	50	0	55	35	20
20	Waterhemp	60	85	85	80	85	85	60	30	85	50	5	98	75	85
	Wheat	0	0	0	0	0	0	0	0	5	0	0	10	0	0

Table C

Compounds

	31 g ai/ha	102	104	105	106	107	108	109	111	113	114	115	121	123	125
Postemergence															
25	Barnyardgrass	20	20	10	15	35	20	25	10	25	30	10	20	20	35
	Blackgrass	0	15	15	45	0	15	20	0	15	0	0	0	15	20
	Chickweed	95	90	90	95	90	90	80	95	90	90	80	90	90	95
	Corn	0	5	10	0	5	5	0	5	5	0	5	0	10	5
	Crabgrass, Large	5	20	20	25	15	5	35	10	5	10	10	10	10	25
30	Foxtail, Giant	20	50	40	70	15	30	45	15	20	10	5	20	20	70
	Galium	90	95	95	95	95	90	98	95	95	95	85	90	95	95
	Johnsongrass	0	10	5	5	0	0	0	10	0	5	5	0	5	5
	Kochia	0	95	95	70	70	90	95	80	95	30	70	90	95	85
	Lambsquarters	75	90	85	85	85	90	95	90	98	95	70	90	95	90
35	Morningglory	100	98	100	100	95	98	95	100	98	95	55	98	95	95
	Nutsedge, Yellow	20	55	55	65	80	30	45	35	70	10	40	45	55	35

189

	Oat, Wild	5	80	60	50	20	80	80	55	90	40	55	65	70	85
	Oilseed Rape	0	85	5	60	25	80	70	80	0	15	0	70	0	0
	Pigweed	75	95	85	70	85	90	95	85	65	80	30	75	65	95
	Ragweed	95	85	90	80	85	90	80	98	90	90	60	75	75	95
5	Ryegrass, Italian	0	90	85	85	40	90	90	85	90	60	90	85	90	85
	Soybean	0	0	5	0	0	10	0	0	15	0	10	0	10	0
	Velvetleaf	30	50	75	80	75	70	75	40	70	25	15	10	65	85
	Waterhemp	25	70	80	65	75	85	80	40	85	25	65	60	80	85
	Wheat	0	0	0	0	0	0	0	10	5	0	0	5	5	0
10	Table C														
															Compounds
	31 g ai/ha	126	127	129	130	132	133	134	136	137	138	139	143	144	145
	Postemergence														
	Barnyardgrass	25	10	50	30	15	15	10	15	25	25	25	20	65	20
	Blackgrass	5	0	35	30	5	45	50	10	0	5	20	5	35	5
15	Chickweed	90	50	98	90	90	-	-	-	-	-	-	45	-	-
	Corn	10	0	0	5	0	5	5	0	5	0	5	5	30	10
	Crabgrass, Large	10	0	20	10	15	0	5	10	30	15	20	10	30	15
	Foxtail, Giant	5	5	60	20	30	25	15	35	45	35	20	5	70	20
	Galium	90	75	95	95	90	90	95	90	85	90	95	65	95	90
20	Johnsongrass	10	5	10	5	0	5	10	5	10	10	5	10	10	10
	Kochia	90	40	50	95	85	98	95	95	100	90	95	30	98	95
	Lambsquarters	80	70	95	90	90	95	100	90	90	90	98	50	90	98
	Morningglory	95	65	98	75	65	100	98	98	100	98	98	50	98	95
	Nutsedge, Yellow	35	10	60	55	30	75	75	15	65	45	55	10	75	70
25	Oat, Wild	60	10	85	60	40	90	90	50	70	50	90	40	90	95
	Oilseed Rape	60	0	0	0	5	95	95	95	95	95	95	0	95	98
	Pigweed	85	70	95	50	50	80	80	75	90	80	80	50	90	70
	Ragweed	85	10	90	85	65	0	0	0	10	0	0	0	35	0
	Ryegrass, Italian	80	50	70	90	80	5	5	5	10	5	5	55	70	5
30	Soybean	5	0	0	10	0	55	75	5	10	10	45	0	25	40
	Velvetleaf	30	20	85	75	30	85	80	75	85	85	70	20	85	85
	Waterhemp	75	70	75	70	40	95	98	80	85	90	98	40	95	95
	Wheat	0	0	10	0	0	25	30	35	75	60	45	5	95	40
	Table C														Compounds
35	31 g ai/ha	151	153	154	161	162	164	165	171	176					

190

Postemergence											
	Barnyardgrass	40	40	70	20	10	10	10	15	5	
	Blackgrass	45	80	60	10	10	5	5	5	0	
	Chickweed	95	90	90	65	90	80	70	90	-	
5	Corn	20	20	15	0	0	0	0	0	0	
	Crabgrass, Large	35	55	65	0	0	0	0	5	10	
	Foxtail, Giant	60	80	85	0	5	5	0	10	5	
	Galium	95	95	95	80	90	90	85	95	0	
	Johnsongrass	10	10	5	10	5	5	0	5	5	
10	Kochia	60	40	50	70	70	60	45	95	90	
	Lambsquarters	95	85	90	80	85	70	70	90	60	
	Morningglory	98	98	95	90	60	80	75	90	85	
	Nutsedge, Yellow	80	85	70	5	20	20	20	50	5	
	Oat, Wild	70	90	55	60	50	35	40	65	0	
15	Oilseed Rape	65	90	75	50	0	0	0	0	95	
	Pigweed	75	85	65	80	75	70	75	60	20	
	Ragweed	60	70	70	70	70	70	40	75	0	
	Ryegrass, Italian	60	90	80	70	60	50	40	90	0	
	Soybean	5	5	10	15	0	0	10	10	5	
20	Velvetleaf	60	85	70	45	5	25	20	35	0	
	Waterhemp	55	70	75	85	45	60	65	75	20	
	Wheat	0	15	0	0	0	5	5	0	0	

Table C	Compounds					Table C	Compounds		
16 g ai/ha	35 40 143 144 151					8 g ai/ha	35 144 151		
Postemergence									
Barnyardgrass	10	5	15	35	30	Barnyardgrass	10	25	25
Postemergence									
Blackgrass	5	5	0	20	40	Blackgrass	0	30	10
Chickweed	90	50	30	-	95	Chickweed	90	-	90
Corn	0	0	0	5	25	Corn	0	0	20
Crabgrass, Large	5	5	5	25	30	Crabgrass, Large	5	20	5
Foxtail, Giant	35	5	5	60	40	Foxtail, Giant	25	50	20
Galium	90	30	60	90	95	Galium	90	90	95
Johnsongrass	15	0	10	10	5	Johnsongrass	10	10	5
Kochia	30	20	0	98	10	Kochia	-	90	0
Lambsquarters	75	50	10	90	80	Lambsquarters	35	90	80
Morningglory	100	5	30	98	98	Morningglory	100	95	95

191

Nutsedge, Yellow	60	0	10	60	55	Nutsedge, Yellow	45	60	55
Oat, Wild	30	5	30	90	50	Oat, Wild	10	90	35
Oilseed Rape	0	0	60	95	50	Oilseed Rape	0	95	30
Pigweed	25	15	50	85	55	Pigweed	35	85	65
Ragweed	0	25	0	35	35	Ragweed	0	10	10
Ryegrass, Italian	30	10	45	45	40	Ryegrass, Italian	10	35	40
Soybean	0	35	0	25	5	Soybean	0	40	0
Velvetleaf	75	5	30	90	60	Velvetleaf	60	70	15
Waterhemp	30	20	25	90	55	Waterhemp	0	90	30
Wheat	0	0	0	95	0	Wheat	0	90	0

Table	C	Compound										Table	C	Compound													
		144												144													
		Postemergence												Postemergence													
		Barnyardgrass												Nutsedge, Yellow													
		Blackgrass												Oat, Wild													
		Corn												Oilseed Rape													
		Crabgrass, Large												Pigweed													
		Foxtail, Giant												Ragweed													
		Galium												Ryegrass, Italian													
		Johnsongrass												Soybean													
		Kochia												Velvetleaf													
		Lambsquarters												Waterhemp													
		Morningglory												Wheat													
		Table C												Compounds													
		250 g ai/ha												1	2	10	11	20	21	22	23	25	27	28	29	32	34
		Preemergence																									
5		Barnyardgrass												90	98	5	80	85	100	60	85	85	90	95	90	100	75
		Blackgrass												90	95	0	85	80	90	45	90	90	90	90	85	90	90
		Corn												5	10	5	0	35	65	35	65	10	0	15	45	35	0
		Crabgrass, Large												100	95	0	40	60	100	35	95	90	98	85	90	100	30
		Foxtail, Giant												100	100	0	90	85	100	85	100	100	100	95	85	70	
10		Galium												100	100	45	95	95	100	95	100	98	95	95	98	98	100
		Johnsongrass												5	5	0	0	10	50	0	35	20	25	10	20	45	20
		Lambsquarters												100	100	30	100	90	100	90	95	95	98	90	90	75	

192

	Morningglory	100	100	55	100	100	100	100	98	100	100	100	98	98	95
	Nutsedge, Yellow	75	95	0	30	95	85	70	90	80	95	70	85	60	65
	Oilseed Rape	20	65	0	0	20	100	80	100	35	98	90	70	100	90
	Pigweed	100	100	30	100	100	100	100	100	100	100	100	100	100	100
5	Ragweed	98	98	5	90	75	100	100	90	95	95	90	90	98	95
	Ryegrass, Italian	100	98	80	100	95	95	95	95	95	95	95	90	95	95
	Soybean	0	0	0	0	30	20	5	55	5	0	50	0	55	5
	Velvetleaf	98	100	50	90	100	98	98	100	98	98	95	100	90	98
	Waterhemp	100	100	90	100	100	100	100	100	100	100	100	100	100	100
10	Wheat	20	10	0	10	30	40	0	90	5	10	10	50	70	25
	Table C														
	250 g ai/ha	36	37	41	42	47	54	57	59	60	66	67	69	72	73
	Preemergence														
	Barnyardgrass	70	80	95	80	100	85	100	95	90	70	80	75	80	85
15	Blackgrass	30	90	90	90	90	80	80	98	90	30	60	35	90	90
	Corn	0	20	40	35	5	0	35	65	45	0	0	5	20	25
	Crabgrass, Large	65	25	70	85	95	60	100	100	95	85	65	10	85	75
	Foxtail, Giant	85	85	85	100	100	90	100	100	100	85	100	60	85	95
	Galium	100	100	98	98	98	100	98	98	100	98	90	98	95	98
20	Johnsongrass	5	0	35	30	0	10	0	65	60	65	30	35	85	55
	Lambsquarters	80	90	90	90	100	80	100	95	90	98	85	95	90	90
	Morningglory	95	98	98	98	95	98	100	100	100	90	90	90	90	95
	Nutsedge, Yellow	65	60	80	80	85	70	95	90	85	65	70	90	70	95
	Oilseed Rape	95	90	100	20	10	100	60	95	90	5	20	40	80	85
25	Pigweed	100	100	100	100	100	100	100	100	100	100	100	85	100	98
	Ragweed	95	98	100	100	100	100	100	100	95	95	98	95	95	98
	Ryegrass, Italian	85	95	95	90	50	90	85	100	95	90	90	90	90	90
	Soybean	20	65	55	5	30	20	0	25	75	0	0	5	0	0
	Velvetleaf	90	90	98	98	100	95	100	100	98	85	75	90	85	85
30	Waterhemp	100	100	100	100	100	100	100	100	100	100	85	95	90	95
	Wheat	0	45	65	5	0	0	5	85	70	40	0	5	40	60
	Table C														
	250 g ai/ha	75	79	80	81	82	83	84	85	87	88	89	90	91	97
	Preemergence														
35	Barnyardgrass	85	85	85	98	90	90	85	90	85	100	65	95	95	35

193

	Blackgrass	30	85	90	90	80	90	85	90	90	90	45	55	60	5	
	Corn	10	5	25	30	25	10	0	10	10	20	0	30	25	0	
	Crabgrass, Large	50	30	75	98	80	85	85	85	85	80	75	85	85	60	
	Foxtail, Giant	75	95	98	100	100	100	100	100	95	100	75	95	98	55	
5	Galium	98	98	95	95	95	95	98	95	98	98	98	-	98	90	
	Johnsongrass	10	30	35	98	40	70	30	40	40	60	5	65	25	0	
	Lambsquarters	90	100	98	95	98	100	100	100	100	90	90	100	100	25	
	Morningglory	100	98	98	95	95	98	95	98	95	100	90	98	98	30	
	Nutsedge, Yellow	75	90	80	95	90	95	80	80	80	95	90	90	90	0	
	Oilseed Rape	98	30	0	95	85	50	80	90	80	30	90	90	100	0	
10	Pigweed	100	100	100	100	100	100	100	100	100	95	100	100	100	65	
	Ragweed	100	100	100	98	95	95	98	98	90	98	90	95	100	10	
	Ryegrass, Italian	90	90	90	90	90	90	95	90	90	90	90	95	95	30	
	Soybean	55	0	0	0	0	0	0	0	0	100	5	100	20	20	
	Velvetleaf	98	95	95	98	90	90	90	90	90	85	85	95	100	30	
	Waterhemp	100	100	100	100	100	100	100	100	100	98	75	100	85	20	
15	Wheat	5	0	0	0	0	0	0	0	5	0	10	0	40	40	0

Table C Compounds

	250 g ai/ha	99	102	104	105	106	107	108	109	111	113	114	116	121	125
20	Preemergence														
	Barnyardgrass	85	85	80	90	95	98	85	80	85	95	95	95	60	98
	Blackgrass	90	70	60	90	85	10	85	90	20	60	10	35	60	90
	Corn	30	30	10	25	20	15	15	0	15	35	5	25	5	55
	Crabgrass, Large	80	55	60	80	80	85	70	80	80	90	80	90	35	98
	Foxtail, Giant	90	90	100	100	100	98	95	90	-	-	-	-	95	100
25	Galium	98	95	98	98	95	95	95	90	100	98	100	100	100	100
	Johnsongrass	20	0	30	60	15	20	20	65	20	30	0	10	10	70
	Lambsquarters	95	100	95	95	100	95	100	100	95	100	95	95	100	100
	Morningglory	95	98	98	95	98	98	98	98	98	100	90	98	90	98
	Nutsedge, Yellow	90	75	85	85	90	90	80	80	90	85	95	95	50	90
	Oilseed Rape	98	35	95	10	90	80	90	90	100	90	100	100	85	100
30	Pigweed	100	100	100	100	100	100	100	100	100	100	100	100	100	100
	Ragweed	95	100	100	100	95	100	98	100	98	95	98	100	98	100
	Ryegrass, Italian	100	70	95	95	90	30	95	95	95	95	95	95	90	95
	Soybean	20	5	0	0	0	15	0	0	0	80	-	5	0	35
	Velvetleaf	95	100	90	95	90	90	90	90	100	100	100	95	100	

194

Waterhemp	100	85	100	100	90	98	100	100	85	98	80	100	100	100
Wheat	65	25	0	5	0	5	10	15	40	50	35	15	15	90

Table C		Compounds												
250 g ai/ha	129	131	132	133	134	136	137	138	139	145	152	153	154	161

5	Preemergence	Barnyardgrass	90	35	45	95	90	95	100	98	95	95	70	100	95	30
		Blackgrass	80	90	50	50	75	90	90	90	60	35	95	90	45	
		Corn	40	15	10	10	5	5	55	15	15	15	15	65	5	5
		Crabgrass, Large	85	80	40	65	60	95	80	80	50	55	10	100	100	40
10	Foxtail, Giant	98	98	98	90	80	98	100	100	95	95	90	100	100	80	
		Galium	98	95	98	100	98	100	100	98	100	98	100	100	100	95
		Johnsongrass	25	20	25	40	5	10	20	20	25	5	5	70	75	10
		Lambsquarters	90	95	100	95	100	100	95	100	98	100	98	98	95	80
		Morningglory	98	95	90	95	100	98	98	98	100	90	98	90	85	
15	Nutsedge, Yellow	95	75	75	95	90	80	95	90	90	90	85	95	85	60	
		Oilseed Rape	90	80	90	90	98	100	90	100	100	98	100	100	98	90
		Pigweed	100	100	100	100	100	100	100	100	100	100	100	100	100	100
		Ragweed	95	98	100	98	98	100	100	95	100	90	90	100	95	85
		Ryegrass, Italian	95	95	95	100	100	90	100	95	100	100	90	95	90	85
20	Soybean	20	0	0	80	75	20	30	15	80	80	10	45	20	100	
		Velvetleaf	98	95	95	100	100	100	100	100	100	75	90	85	80	
		Waterhemp	100	100	98	100	100	100	98	100	100	75	100	100	95	
		Wheat	85	20	50	40	40	45	90	5	10	5	85	50	30	0

Table C	Compound	Table C	Compound
250 g ai/ha	171	250 g ai/ha	171
Preemergence		Preemergence	
Barnyardgrass	95	Nutsedge, Yellow	90
Blackgrass	90	Oilseed Rape	90
Corn	40	Pigweed	100
Crabgrass, Large	80	Ragweed	98
Foxtail, Giant	-	Ryegrass, Italian	95
Galium	100	Soybean	70
Johnsongrass	35	Velvetleaf	100
Lambsquarters	100	Waterhemp	100
Morningglory	98	Wheat	70

Table C

Compounds

125 g ai/ha

1 2 10 11 20 21 22 23 25 27 28 29 32 34

Preemergence

Barnyardgrass 25 95 5 10 60 100 5 85 70 90 90 80 85 65

5 Blackgrass 90 95 0 50 40 90 40 90 90 90 90 85 90 85

Corn 0 0 0 0 5 40 0 30 0 5 30 0 0 10

Crabgrass, Large 80 98 0 40 15 85 0 75 95 95 80 55 70 25

Foxtail, Giant 100 98 0 50 65 100 55 85 90 100 100 90 85 75

Galium 95 100 5 90 95 98 95 100 95 95 95 98 100 90

10 Johnsongrass 5 5 0 0 0 35 0 35 5 5 5 25 10 0

Lambsquarters 100 100 - 100 85 98 90 95 85 95 85 80 85 80

Morningglory 100 98 25 100 98 100 100 95 95 100 98 95 98 85

Nutsedge, Yellow 70 70 0 10 95 85 70 85 70 90 85 85 45 35

Oilseed Rape - 65 0 0 0 100 5 90 5 98 85 5 90 90

15 Pigweed 100 100 10 100 100 100 100 100 100 100 100 100 100 100

Ragweed 100 100 0 80 70 100 90 95 98 100 95 85 95 90

Ryegrass, Italian 100 98 25 100 95 90 95 95 95 90 95 90 95 85

Soybean 0 0 0 0 30 0 0 5 0 10 0 0 40 0

Velvetleaf 100 100 10 90 100 98 75 100 90 85 90 100 85 85

20 Waterhemp 100 100 100 100 100 100 100 100 100 100 85 100 100 100

Wheat 5 0 0 0 35 30 0 90 0 0 0 45 50 5

Table C

Compounds

125 g ai/ha

36 37 41 42 47 54 57 59 60 66 67 69 72 73

Preemergence

25 Barnyardgrass 65 70 85 60 85 65 100 90 85 40 40 20 55 70

Blackgrass 20 90 85 90 40 55 70 90 90 35 40 60 70 85

Corn 0 0 5 10 0 10 0 50 30 0 0 0 0 5

Crabgrass, Large 20 20 65 80 60 75 98 85 85 75 10 10 65 75

Foxtail, Giant 85 85 85 90 85 75 90 98 100 80 98 25 85 85

30 Galium 100 95 98 95 98 100 95 98 98 95 90 90 95 95

Johnsongrass 5 5 35 5 0 5 0 45 40 55 10 30 80 35

Lambsquarters 85 85 100 85 100 80 100 95 95 85 85 90 85 80

Morningglory 90 90 95 98 100 95 100 100 98 80 80 85 90 90

Nutsedge, Yellow 20 40 75 40 75 25 90 85 85 30 55 25 60 50

35 Oilseed Rape 60 60 40 5 0 90 30 95 90 0 0 0 80 90

Pigweed 100 100 100 100 100 100 100 100 100 100 95 100 98 100

196

	Ragweed	95	95	95	95	98	95	100	100	95	90	100	90	100	95
	Ryegrass, Italian	35	90	95	90	45	80	70	100	95	80	85	90	90	90
	Soybean	30	20	50	0	10	0	0	15	65	0	0	5	0	0
	Velvetleaf	85	85	95	90	100	90	95	98	95	70	60	75	80	85
5	Waterhemp	100	95	100	100	100	100	100	100	100	100	65	100	90	90
	Wheat	0	5	50	0	0	0	0	75	45	0	0	0	30	35
	Table C														Compounds
	125 g ai/ha	75	79	80	81	82	83	84	85	87	88	89	90	91	97
	Preemergence														
10	Barnyardgrass	50	65	75	80	70	85	60	80	65	85	25	75	20	0
	Blackgrass	30	60	80	90	65	80	90	90	85	90	40	50	60	0
	Corn	0	5	10	20	20	0	0	0	0	0	0	5	10	0
	Crabgrass, Large	25	20	40	90	70	70	70	80	80	80	25	75	50	0
	Foxtail, Giant	70	85	85	98	90	100	90	100	90	98	65	90	90	5
15	Galium	90	95	95	95	90	95	95	95	98	98	98	98	-	98
	Johnsongrass	20	40	30	45	60	60	5	65	40	60	0	60	0	0
	Lambsquarters	85	100	90	85	98	95	100	90	85	90	98	85	80	20
	Morningglory	95	98	90	90	95	95	95	95	95	95	85	98	90	20
	Nutsedge, Yellow	65	90	80	80	60	85	70	75	85	95	80	85	80	0
20	Oilseed Rape	90	30	50	40	0	50	80	40	85	10	30	50	100	0
	Pigweed	100	100	100	95	100	100	100	100	100	95	100	100	100	65
	Ragweed	90	98	95	95	90	95	95	98	95	95	80	85	90	0
	Ryegrass, Italian	90	90	90	90	85	90	85	90	90	90	90	95	95	30
	Soybean	45	5	0	0	0	0	0	0	100	0	0	10	10	10
25	Velvetleaf	90	95	90	85	85	85	85	85	90	85	90	95	85	20
	Waterhemp	100	100	100	90	100	100	100	100	95	40	100	65	10	
	Wheat	10	0	0	0	0	0	0	0	0	0	0	35	30	0
	Table C														Compounds
	125 g ai/ha	99	102	104	105	106	107	108	109	111	113	114	116	121	125
30	Preemergence														
	Barnyardgrass	55	30	40	60	85	80	35	70	55	65	60	70	55	90
	Blackgrass	90	45	30	55	90	10	60	85	5	55	5	30	45	55
	Corn	10	20	15	5	10	10	5	0	0	20	5	60	0	20
	Crabgrass, Large	60	30	55	75	75	75	65	70	85	75	75	50	10	75
35	Foxtail, Giant	65	85	75	90	100	85	85	85	-	-	-	-	90	98

197

	Galium	98	95	90	95	95	90	95	90	100	98	100	100	98	100
	Johnsongrass	0	0	20	20	5	10	30	40	0	20	0	0	0	60
	Lambsquarters	100	85	95	90	100	95	90	90	90	90	90	90	98	100
	Morningglory	90	85	100	100	98	95	98	90	95	98	75	85	85	95
5	Nutsedge, Yellow	60	75	75	40	80	70	70	90	75	85	65	85	20	95
	Oilseed Rape	90	10	85	10	30	20	90	85	100	60	100	95	30	85
	Pigweed	100	98	100	100	100	100	100	100	98	100	100	100	90	100
	Ragweed	95	90	95	98	95	85	98	95	90	85	95	95	98	98
	Ryegrass, Italian	100	50	90	90	85	35	90	90	85	90	90	70	95	95
10	Soybean	5	5	0	0	0	0	0	0	0	65	20	0	0	30
	Velvetleaf	90	85	90	90	85	85	85	80	95	98	85	100	85	100
	Waterhemp	98	75	100	100	80	95	100	100	75	98	65	80	85	100
	Wheat	30	-	5	10	0	0	15	10	20	35	5	5	10	90

Table C Compounds

15	125 g ai/ha	129	131	132	133	134	136	137	138	139	145	152	153	154	161
Preemergence															
	Barnyardgrass	100	10	35	50	70	90	90	90	75	75	30	100	90	10
	Blackgrass	70	40	40	50	40	70	30	40	60	60	30	95	85	5
	Corn	15	5	0	10	10	0	10	5	10	0	10	40	5	5
20	Crabgrass, Large	75	60	10	35	40	60	70	70	20	55	10	98	90	20
	Foxtail, Giant	95	90	85	75	70	100	95	100	85	75	65	100	100	25
	Galium	100	95	90	100	98	100	98	98	100	100	95	100	98	95
	Johnsongrass	10	0	55	30	5	20	20	30	35	5	0	65	50	0
	Lambsquarters	85	85	85	95	100	100	100	100	95	100	90	100	85	65
25	Morningglory	90	85	95	90	95	98	90	98	95	98	75	98	85	75
	Nutsedge, Yellow	90	65	45	70	95	70	90	95	85	95	55	80	70	55
	Oilseed Rape	90	85	30	90	90	90	50	90	98	90	95	98	98	90
	Pigweed	98	100	100	100	100	100	100	100	100	100	100	100	100	98
	Ragweed	95	98	95	95	95	100	95	98	95	85	75	98	90	30
30	Ryegrass, Italian	95	95	95	100	100	85	100	90	100	100	90	90	90	85
	Soybean	5	0	0	65	65	10	40	20	60	75	5	20	5	0
	Velvetleaf	98	85	90	90	90	100	100	98	100	95	65	95	85	50
	Waterhemp	100	98	95	95	98	98	95	98	100	98	85	95	95	75
	Wheat	55	20	20	10	15	45	90	5	15	0	25	30	0	0

Table C Compound Table C Compound

125 g ai/ha	171	125 g ai/ha	171
Preemergence	Preemergence		
Barnyardgrass	75	Nutsedge, Yellow	70
Blackgrass	45	Oilseed Rape	50
Corn	0	Pigweed	100
Crabgrass, Large	60	Ragweed	95
Foxtail, Giant	-	Ryegrass, Italian	95
Galium	98	Soybean	55
Johnsongrass	10	Velvetleaf	95
Lambsquarters	95	Waterhemp	100
Morningglory	95	Wheat	45

Table C

Compounds

62 g ai/ha	1	2	10	11	20	21	22	23	25	27	28	29	32	34
------------	---	---	----	----	----	----	----	----	----	----	----	----	----	----

Preemergence

Barnyardgrass	5	70	5	0	30	100	5	85	30	80	75	35	65	55
---------------	---	----	---	---	----	-----	---	----	----	----	----	----	----	----

5 Blackgrass	90	90	0	40	5	90	20	85	85	90	90	50	90	50
--------------	----	----	---	----	---	----	----	----	----	----	----	----	----	----

Corn	0	0	0	0	0	15	0	0	0	0	0	0	0	0
------	---	---	---	---	---	----	---	---	---	---	---	---	---	---

Crabgrass, Large	40	55	0	0	15	85	0	45	75	80	60	5	35	10
------------------	----	----	---	---	----	----	---	----	----	----	----	---	----	----

Foxtail, Giant	75	100	0	35	30	100	15	85	85	100	100	75	80	65
----------------	----	-----	---	----	----	-----	----	----	----	-----	-----	----	----	----

Galium	100	100	5	90	100	98	90	100	95	95	95	95	95	95
--------	-----	-----	---	----	-----	----	----	-----	----	----	----	----	----	----

10 Johnsongrass	5	0	0	0	0	10	0	5	0	5	0	5	0	0
-----------------	---	---	---	---	---	----	---	---	---	---	---	---	---	---

Lambsquarters	95	100	0	100	85	98	45	85	85	95	85	80	70	90
---------------	----	-----	---	-----	----	----	----	----	----	----	----	----	----	----

Morningglory	100	100	0	100	98	98	85	90	95	98	98	95	90	80
--------------	-----	-----	---	-----	----	----	----	----	----	----	----	----	----	----

Nutsedge, Yellow	35	45	0	5	85	85	45	90	30	90	75	80	45	25
------------------	----	----	---	---	----	----	----	----	----	----	----	----	----	----

Oilseed Rape	5	20	0	0	0	100	5	90	0	95	20	0	90	25
--------------	---	----	---	---	---	-----	---	----	---	----	----	---	----	----

15 Pigweed	100	100	0	100	100	100	100	100	100	100	100	100	100	100
------------	-----	-----	---	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----

Ragweed	80	100	0	50	45	100	75	85	95	100	90	85	90	80
---------	----	-----	---	----	----	-----	----	----	----	-----	----	----	----	----

Ryegrass, Italian	100	98	0	95	95	90	90	90	95	90	90	90	90	85
-------------------	-----	----	---	----	----	----	----	----	----	----	----	----	----	----

Soybean	0	0	0	0	20	0	0	0	0	0	25	0	10	10
---------	---	---	---	---	----	---	---	---	---	---	----	---	----	----

Velvetleaf	90	95	0	10	90	90	60	90	85	85	85	90	85	80
------------	----	----	---	----	----	----	----	----	----	----	----	----	----	----

20 Waterhemp	100	100	0	100	100	95	80	100	100	85	75	100	100	100
--------------	-----	-----	---	-----	-----	----	----	-----	-----	----	----	-----	-----	-----

Wheat	0	0	0	0	0	5	0	85	0	0	0	5	45	0
-------	---	---	---	---	---	---	---	----	---	---	---	---	----	---

Table C

Compounds

62 g ai/ha	35	36	37	41	42	47	54	57	59	60	66	67	69	72
------------	----	----	----	----	----	----	----	----	----	----	----	----	----	----

Preemergence

199

	Barnyardgrass	25	25	30	40	30	20	35	90	70	40	20	20	5	20
	Blackgrass	55	30	30	80	85	30	55	60	90	90	30	30	30	50
	Corn	0	0	0	0	0	0	10	-	20	10	0	0	0	0
	Crabgrass, Large	5	20	5	35	70	30	40	35	70	75	65	70	5	80
5	Foxtail, Giant	85	75	75	80	80	50	80	80	95	85	75	80	5	70
	Galium	95	100	90	100	90	95	95	90	95	95	90	90	90	90
	Johnsongrass	10	5	0	50	0	0	0	0	25	20	25	20	10	25
	Lambsquarters	100	80	60	90	80	100	85	100	90	85	85	80	100	65
	Morningglory	98	80	80	95	98	100	90	100	100	98	85	80	85	85
10	Nutsedge, Yellow	40	20	20	75	60	45	5	30	80	45	35	20	35	10
	Oilseed Rape	90	60	40	50	0	0	90	0	80	85	0	0	0	35
	Pigweed	80	100	98	100	100	100	100	100	100	100	100	90	100	98
	Ragweed	40	90	90	85	90	85	90	95	95	90	85	85	70	90
	Ryegrass, Italian	70	30	85	95	90	20	50	65	100	95	50	40	90	90
15	Soybean	0	0	30	20	0	0	90	0	0	45	0	0	0	0
	Velvetleaf	85	80	80	90	90	90	85	80	90	85	60	35	55	45
	Waterhemp	50	100	95	95	98	98	100	98	100	100	90	80	95	90
	Wheat	5	0	0	5	0	0	0	0	60	40	0	0	0	0

Table C

Compounds

20	62 g ai/ha	73	75	79	80	81	82	83	84	85	87	88	89	90	91
Preemergence															
	Barnyardgrass	25	25	15	65	70	55	70	25	60	35	40	15	65	15
	Blackgrass	80	30	50	80	80	60	80	60	85	30	90	40	40	30
	Corn	0	5	0	10	10	0	0	0	10	10	0	0	0	10
25	Crabgrass, Large	30	10	25	15	75	20	65	10	85	65	80	0	70	20
	Foxtail, Giant	70	45	85	85	98	85	100	75	98	80	90	60	75	65
	Galium	98	90	95	95	95	90	90	95	90	95	98	98	-	98
	Johnsongrass	10	20	35	5	5	65	75	5	30	25	70	75	55	0
	Lambsquarters	70	100	95	90	90	90	85	85	90	80	85	85	80	25
30	Morningglory	90	85	95	90	85	90	90	90	90	90	90	85	85	85
	Nutsedge, Yellow	35	40	45	25	70	60	90	40	85	35	75	75	45	45
	Oilseed Rape	85	70	35	30	5	0	0	0	85	30	20	0	35	98
	Pigweed	100	100	100	100	95	100	100	100	100	100	100	100	100	98
	Ragweed	95	85	95	95	95	90	100	95	90	90	85	80	90	75
35	Ryegrass, Italian	90	90	90	70	90	85	90	85	85	90	90	80	95	70
	Soybean	0	20	0	0	100	100	0	0	0	0	10	0	0	10

200

Velvetleaf	80	85	85	85	65	80	70	65	80	85	70	80	90	70
Waterhemp	90	100	100	100	85	100	90	100	80	100	100	50	90	60
Wheat	20	0	0	0	0	0	0	0	0	0	0	0	0	5

Table C Compounds

5 62 g ai/ha 97 99 102 104 105 106 107 108 109 111 113 114 116 121

Preemergence

Barnyardgrass	0	15	10	25	30	45	45	35	35	20	35	10	30	10
Blackgrass	0	70	50	15	50	50	5	0	30	5	50	5	5	45
Corn	0	20	10	0	0	0	0	10	0	0	0	5	0	0

10 Crabgrass, Large 0 35 5 55 50 70 30 70 65 5 35 5 20 10

Foxtail, Giant	5	35	75	85	80	95	80	85	85	-	-	-	-	55
Galium	0	-	-	85	90	90	90	90	90	80	90	98	85	90
Johnsongrass	0	0	0	20	20	5	0	5	30	0	10	0	0	0
Lambsquarters	0	80	85	85	85	90	100	90	90	95	85	98	98	80

15 Morningglory 30 85 75 95 90 90 85 90 85 70 95 55 80 55

Nutsedge, Yellow	0	70	70	45	45	70	50	80	70	20	70	40	35	25
Oilseed Rape	0	40	10	30	5	0	0	90	85	98	0	98	80	85
Pigweed	35	100	85	100	100	98	100	100	100	90	75	90	100	98
Ragweed	0	90	75	90	90	90	90	90	90	75	95	75	90	95

20 Ryegrass, Italian 5 90 25 85 90 70 35 85 90 90 95 85 30 90

Soybean	10	0	5	0	0	0	0	0	0	-	45	0	0	0
Velvetleaf	0	75	85	80	85	60	60	75	75	70	95	60	85	75
Waterhemp	10	100	65	90	95	75	75	90	90	65	100	75	70	95
Wheat	0	0	5	5	10	0	0	10	10	5	30	0	0	0

25 Table C Compounds

62 g ai/ha 125 129 131 132 133 134 136 137 138 139 145 151 152 153

Preemergence

Barnyardgrass	70	70	0	5	40	40	50	85	55	55	35	85	5	100
Blackgrass	55	30	40	45	60	40	80	40	55	55	30	65	5	90
Corn	0	5	0	0	5	0	5	10	5	0	0	10	10	0

Crabgrass, Large	45	25	20	0	30	30	5	20	40	30	50	70	0	100
Foxtail, Giant	100	90	85	70	65	75	85	85	85	65	60	98	35	100
Galium	100	98	90	90	95	98	98	98	98	90	98	95	45	98
Johnsongrass	55	5	0	10	35	5	5	5	15	35	5	25	0	50

35 Lambsquarters 100 80 70 60 90 90 90 100 95 90 90 85 75 100

201

	Morningglory	95	90	55	65	85	90	95	85	90	90	80	98	40	90	
	Nutsedge, Yellow	95	85	35	35	55	45	35	85	60	60	85	95	20	85	
	Oilseed Rape	0	50	40	85	85	90	30	90	90	98	90	98	85	100	
	Pigweed	100	98	100	100	100	100	100	100	98	98	98	100	100	100	
5	Ragweed	100	85	95	85	75	95	98	95	100	90	65	85	40	95	
	Ryegrass, Italian	95	90	80	90	95	100	55	95	90	100	100	90	50	95	
	Soybean	5	0	0	0	55	45	10	20	0	35	55	10	5	10	
	Velvetleaf	100	85	55	60	90	90	95	100	90	85	85	75	40	90	
	Waterhemp	100	95	98	85	100	98	100	98	100	100	98	45	85	95	
10	Wheat	45	50	0	40	0	0	10	80	35	10	0	0	10	10	
	Table C	Compounds					Table C	Compounds								
	62 g ai/ha	154	161	171				62 g ai/ha					154	161	171	
	Preemergence						Preemergence									
	Barnyardgrass	80	0	35				Nutsedge, Yellow					20	20	55	
	Blackgrass	50	0	40				Oilseed Rape					85	20	5	
	Corn	5	5	0				Pigweed					95	98	60	
	Crabgrass, Large	85	30	45				Ragweed					95	15	80	
	Foxtail, Giant	95	25	–				Ryegrass, Italian					55	40	95	
	Galium	95	70	90				Soybean					5	0	0	
	Johnsongrass	45	0	5				Velvetleaf					60	40	90	
	Lambsquarters	60	40	95				Waterhemp					85	70	95	
	Morningglory	85	40	90				Wheat					0	0	5	
	Table C						Compounds									
	31 g ai/ha	1	2	10	11	20	21	22	23	25	27	28	29	32	34	
	Preemergence															
	Barnyardgrass	5	35	0	0	5	80	5	10	0	55	45	10	20	60	
15	Blackgrass	60	85	0	35	0	90	5	45	85	85	85	50	70	5	
	Corn	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	Crabgrass, Large	35	55	0	0	10	35	0	5	70	55	25	5	0	0	
	Foxtail, Giant	55	80	0	0	5	100	5	30	75	100	85	75	55	0	
	Galium	90	95	0	85	90	98	90	98	90	90	95	95	90	95	
20	Johnsongrass	0	0	0	0	0	10	0	5	0	0	0	10	0	0	
	Lambsquarters	80	100	0	70	80	90	25	85	80	70	65	75	80	80	
	Morningglory	95	98	0	100	85	95	30	85	85	85	80	80	80	70	
	Nutsedge, Yellow	40	30	0	0	80	75	55	40	40	70	50	15	25	25	
	Oilseed Rape	0	0	0	0	0	90	0	50	0	5	0	0	25	10	

202

	Pigweed	100	100	0	0	100	100	60	100	100	98	100	100	100	100
	Ragweed	90	65	0	15	35	95	30	85	80	80	70	80	85	80
	Ryegrass, Italian	95	95	0	90	75	90	90	85	90	85	85	90	85	45
	Soybean	0	0	0	0	0	0	0	0	0	0	0	0	0	10
5	Velvetleaf	70	75	0	0	60	85	10	85	80	70	55	85	75	70
	Waterhemp	100	75	10	90	90	90	75	100	100	80	70	100	98	85
	Wheat	0	0	0	0	0	0	0	75	0	0	0	0	15	0
	Table C														Compounds
	31 g ai/ha	35	36	37	41	42	47	54	57	59	60	66	67	69	72
10	Preemergence														
	Barnyardgrass	5	10	10	10	0	5	15	5	30	10	0	5	0	10
	Blackgrass	50	0	10	70	40	0	50	30	85	90	10	60	30	40
	Corn	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Crabgrass, Large	5	70	5	30	55	0	40	0	25	20	75	10	0	60
15	Foxtail, Giant	60	75	65	45	75	15	70	45	80	75	70	75	0	60
	Galium	90	100	100	90	90	90	95	80	98	90	90	70	50	90
	Johnsongrass	10	0	0	0	0	0	0	0	5	5	10	10	20	0
	Lambsquarters	20	70	85	75	85	100	80	100	70	80	80	80	10	60
	Morningglory	25	80	70	85	85	90	80	100	98	85	80	70	70	75
20	Nutsedge, Yellow	20	10	0	60	55	35	5	10	80	45	35	10	5	10
	Oilseed Rape	90	50	0	5	0	0	70	0	65	30	0	0	0	30
	Pigweed	75	90	98	75	100	100	100	100	100	100	100	75	100	90
	Ragweed	5	85	85	85	90	50	90	70	90	80	75	60	60	85
	Ryegrass, Italian	65	30	50	95	85	0	55	45	100	90	55	30	85	90
25	Soybean	0	100	0	0	35	0	0	0	0	0	0	0	0	80
	Velvetleaf	40	55	25	85	85	65	80	50	85	75	15	10	35	30
	Waterhemp	40	100	90	85	80	100	98	90	95	100	85	70	85	75
	Wheat	0	0	0	0	0	0	0	0	60	10	0	0	0	0
	Table C														Compounds
30	31 g ai/ha	73	75	79	80	81	82	83	84	85	87	88	89	90	91
	Preemergence														
	Barnyardgrass	10	5	10	10	30	10	50	5	35	5	35	5	35	0
	Blackgrass	50	20	20	70	60	50	70	60	50	40	55	5	25	0
	Corn	0	0	0	0	0	0	0	0	0	0	0	0	0	0
35	Crabgrass, Large	0	75	25	10	90	25	75	10	80	10	55	20	35	0
	Foxtail, Giant	55	5	65	70	80	60	85	70	90	70	85	10	75	5

203

204

	31 g ai/ha	125	129	131	132	133	134	136	137	138	139	144	145	151	152
Preemergence															
	Barnyardgrass	55	15	0	0	0	5	25	35	30	20	35	10	70	5
	Blackgrass	50	5	0	20	30	20	70	30	45	50	90	10	60	5
5	Corn	0	0	0	0	5	0	0	0	5	0	0	0	10	15
	Crabgrass, Large	40	5	0	0	0	5	0	20	0	5	60	5	30	0
	Foxtail, Giant	95	85	35	40	30	25	75	65	80	35	90	35	85	0
	Galium	100	95	85	90	95	100	90	98	95	90	100	90	95	50
	Johnsongrass	40	5	0	15	5	0	5	0	10	5	60	10	0	0
10	Lambsquarters	90	85	60	50	90	75	95	90	95	100	100	90	80	50
	Morningglory	90	85	35	40	45	75	80	70	80	85	90	75	90	10
	Nutsedge, Yellow	65	55	10	10	20	30	5	55	5	65	40	35	70	5
	Oilseed Rape	85	5	20	70	5	55	10	0	85	20	70	5	98	50
	Pigweed	100	100	60	100	100	75	100	100	100	70	100	70	100	80
15	Ragweed	95	70	65	70	70	70	95	80	95	75	98	55	90	85
	Ryegrass, Italian	85	90	10	45	90	98	50	85	55	95	100	100	90	10
	Soybean	0	0	0	0	5	40	10	30	0	25	5	0	20	0
	Velvetleaf	95	70	0	60	55	75	75	80	85	60	90	40	60	15
	Waterhemp	98	90	95	90	80	90	98	85	95	100	100	85	35	20
20	Wheat	40	35	0	25	0	0	0	15	0	0	90	0	0	0
	Table C	Compounds				Table C	Compounds								
	31 g ai/ha	153	154	161	171		16 g ai/ha					35	144	151	
Preemergence															
	Barnyardgrass	85	65	0	5		Barnyardgrass					5	5	20	
	Blackgrass	90	5	5	30		Blackgrass					40	70	60	
	Corn	0	5	0	0		Corn					0	0	30	
	Crabgrass, Large	80	70	30	0		Crabgrass, Large					0	25	10	
	Foxtail, Giant	98	85	10	-		Foxtail, Giant					25	75	75	
	Galium	95	98	80	90		Galium					90	95	95	
	Johnsongrass	25	10	0	0		Johnsongrass					0	25	0	
	Lambsquarters	95	15	0	98		Lambsquarters					5	65	80	
	Morningglory	95	45	10	85		Morningglory					25	80	90	
	Nutsedge, Yellow	80	0	0	45		Nutsedge, Yellow					20	25	30	
	Oilseed Rape	95	80	10	0		Oilseed Rape					5	5	85	
	Pigweed	100	55	75	70		Pigweed					75	100	95	
	Ragweed	95	80	40	65		Ragweed					0	95	85	

205

Ryegrass, Italian	90	40	5	90	Ryegrass, Italian	50	100	50
Soybean	20	0	0	-	Soybean	0	0	0
Velvetleaf	85	40	0	70	Velvetleaf	0	85	55
Waterhemp	80	30	20	85	Waterhemp	40	100	10
Wheat	0	0	0	0	Wheat	0	70	0

Table C	Compounds			Table C	Compound		
8 g ai/ha	35 144 151			4 g ai/ha	144		
Preemergence				Preemergence			
Barnyardgrass	0	0	5	Barnyardgrass	0		
Blackgrass	5	55	30	Blackgrass	30		
Corn	0	0	20	Corn	0		
Crabgrass, Large	0	5	0	Crabgrass, Large	0		
Foxtail, Giant	5	60	40	Foxtail, Giant	30		
Galium	90	95	98	Galium	90		
Johnsongrass	0	25	0	Johnsongrass	0		
Lambsquarters	5	35	60	Lambsquarters	25		
Morningglory	10	60	80	Morningglory	25		
Nutsedge, Yellow	0	5	40	Nutsedge, Yellow	5		
Oilseed Rape	0	0	85	Oilseed Rape	0		
Pigweed	40	100	70	Pigweed	75		
Ragweed	0	90	55	Ragweed	70		
Ryegrass, Italian	40	95	15	Ryegrass, Italian	80		
Soybean	0	0	0	Soybean	10		
Velvetleaf	0	70	40	Velvetleaf	25		
Waterhemp	-	100	5	Waterhemp	80		
Wheat	0	55	0	Wheat	0		

TEST D

Seeds of plant species selected from bluegrass (annual bluegrass, *Poa annua*), 5 blackgrass (*Alopecurus myosuroides*), Canada thistle (*Cirsium arvense*), canarygrass (*Phalaris minor*), chickweed (common chickweed, *Stellaria media*), geranium, cutleaf (cutleaf geranium, *Geranium dissectum*), galium (catchweed bedstraw, *Galium aparine*), bromegrass, downy (downy bromegrass, *Bromus tectorum*), field poppy (*Papaver rhoes*), field violet (*Viola arvensis*), foxtail, green (green foxtail, *Setaria viridis*), deadnettle (henbit 10 deadnettle, *Lamium amplexicaule*), ryegrass, Italian (Italian ryegrass, *Lolium multiflorum*),

5 kochia (*Kochia scoparia*), lambsquarters (*Chenopodium album*), oilseed rape (*Brassica napus*), pigweed (*Amaranthus retroflexus*), chamomile (scentless chamomile, *Matricaria inodora*), Russian thistle (*Salsola kali*), speedwell (bird's-eye speedwell, *Veronica persica*), barley, spring (spring barley, *Hordeum vulgare*), wheat, spring (spring wheat, *Triticum aestivum*), buckwheat, wild (wild buckwheat, *Polygonum convolvulus*), mustard, wild (wild mustard, *Sinapis arvensis*), oat, wild (wild oat, *Avena fatua*), radish, wild (wild radish, *Raphanus raphanistrum*), windgrass (*Apera spica-venti*), barley, winter (winter barley, *Hordeum vulgare*), and wheat, winter (winter wheat, *Triticum aestivum*) were planted into a silt loam soil and treated preemergence with test chemicals formulated in a non-phytotoxic 10 solvent mixture which included a surfactant.

15 At the same time, these species were planted in pots containing Redi-Earth® planting medium (Scotts Company, 14111 Scottslawn Road, Marysville, Ohio 43041) comprising sphagnum peat moss, vermiculite, wetting agent and starter nutrients and treated with postemergence applications of the test chemicals formulated in the same manner. Plants 15 ranged in height from 2 to 18 cm (1- to 4-leaf stage). Treated plants and controls were maintained in a controlled growth environment for 14 to 21 d after which time all species were compared to controls and visually evaluated. Plant response ratings, summarized in Table D, are based on a scale of 0 to 100 where 0 is no effect and 100 is complete control. A dash (-) response means no test result.

20 Table D

		Compounds													
250 g ai/ha		1	2	11	20	21	22	23	25	27	28	34	35	36	41
Postemergence															
	Barley, Spring	10	5	10	0	30	15	30	10	10	10	5	15	10	20
	Barley, Winter	10	10	40	0	40	5	30	10	5	5	20	15	10	35
25	Blackgrass	80	90	70	60	90	70	80	80	90	85	75	85	70	75
	Bluegrass	5	15	15	40	50	25	40	40	40	50	20	40	35	35
	Bromegrass, Downy	20	20	50	15	80	25	75	65	70	70	70	30	65	45
	Buckwheat, Wild	100	100	95	100	100	100	100	100	100	100	100	100	100	100
	Canada Thistle	-	-	-	-	-	-	-	-	-	-	-	-	-	-
30	Canarygrass	70	75	55	55	95	65	90	85	90	85	85	80	80	80
	Chamomile	100	100	90	100	100	100	100	100	100	95	100	100	100	100
	Chickweed	100	100	100	100	100	100	100	100	100	100	100	100	100	100
	Deadnettle	70	60	100	65	100	70	85	45	60	70	100	80	100	100
	Field Poppy	95	100	100	100	100	100	100	100	100	100	100	100	100	95
35	Field Violet	95	80	90	45	100	95	75	95	85	90	95	98	90	100
	Foxtail, Green	85	100	70	70	95	75	90	75	80	90	70	95	90	65

208

	Mustard, Wild	80	25	100	100	40	100	100	70	65	80	100	100	100	50
	Oat, Wild	95	40	15	90	85	98	100	100	100	85	98	100	80	85
	Oilseed Rape	70	70	80	100	65	90	80	75	90	20	90	95	100	30
	Pigweed	100	100	80	100	100	100	100	100	100	100	100	100	100	100
5	Radish, Wild	65	20	85	100	90	100	95	45	95	75	95	100	100	65
	Russian Thistle	90	-	55	100	-	85	85	80	85	70	85	85	85	65
	Ryegrass, Italian	85	45	80	95	85	90	95	98	100	85	100	98	98	90
	Speedwell	45	50	100	100	100	100	100	75	100	100	80	100	100	65
	Wheat, Spring	20	15	5	25	10	80	55	5	5	0	70	85	15	5
10	Wheat, Winter	15	5	15	30	15	80	40	0	0	0	60	75	0	0
	Windgrass	98	15	5	75	15	85	98	100	90	55	85	85	65	65
	Table D														Compounds
	250 g ai/ha	80	81	82	83	84	85	87	88	90	104	105	108	109	126
	Postemergence														
15	Barley, Spring	25	10	5	10	10	20	5	15	40	15	15	20	25	10
	Barley, Winter	15	10	0	15	0	10	5	10	35	15	15	15	20	0
	Blackgrass	90	85	80	80	85	90	90	95	65	70	65	75	75	45
	Bluegrass	45	40	35	25	35	40	45	35	30	30	25	35	45	15
	Bromegrass, Downy	75	75	60	70	75	60	65	65	55	65	65	75	25	
20	Buckwheat, Wild	100	100	100	100	100	100	100	100	100	100	100	100	100	100
	Canada Thistle	-	-	-	-	-	-	-	-	98	-	-	-	-	100
	Canarygrass	90	100	85	90	80	90	90	95	75	85	80	80	90	75
	Chamomile	100	100	100	100	100	85	100	95	100	100	100	100	100	100
	Chickweed	100	100	100	100	100	100	100	100	100	100	100	100	100	100
25	Deadnettle	50	60	35	60	40	45	60	45	100	85	30	90	95	85
	Field Poppy	100	100	100	100	100	95	100	100	90	80	80	75	85	85
	Field Violet	100	100	100	100	100	90	100	80	100	98	100	100	100	100
	Foxtail, Green	95	100	90	100	95	85	90	80	75	90	80	95	85	25
	Galium	100	100	100	100	100	100	100	100	100	100	100	100	100	100
30	Geranium, Cutleaf	-	-	-	-	-	-	-	-	95	-	-	-	-	90
	Kochia	100	95	100	90	100	75	95	70	100	100	100	100	100	100
	Lambsquarters	100	100	100	100	100	95	100	90	100	100	95	100	100	100
	Mustard, Wild	100	80	70	70	75	80	60	75	100	90	75	100	100	100
	Oat, Wild	100	98	95	95	100	100	100	100	100	100	100	100	100	90
35	Oilseed Rape	75	85	80	95	75	80	75	80	70	95	60	100	85	85
	Pigweed	100	100	100	100	100	85	100	90	100	100	100	100	100	98

209

210

	Canarygrass	50	55	30	45	85	40	85	80	85	80	75	70	55	80
	Chamomile	85	90	75	100	100	85	85	100	95	90	100	100	100	80
	Chickweed	90	100	80	100	100	98	100	100	100	100	100	100	100	95
	Deadnettle	35	60	100	55	95	45	75	20	30	35	100	20	100	80
5	Field Poppy	100	100	80	100	100	100	100	100	100	100	100	100	90	75
	Field Violet	90	75	75	25	100	75	75	85	75	85	95	75	90	90
	Foxtail, Green	75	95	65	40	85	70	80	70	80	85	55	95	80	50
	Galium	95	100	90	100	100	98	100	100	100	100	100	95	100	100
	Geranium, Cutleaf	-	-	-	-	-	-	-	-	-	-	-	-	-	-
10	Kochia	95	65	85	85	75	100	75	100	55	50	85	65	100	85
	Lambsquarters	90	95	80	90	90	95	75	90	85	90	100	98	100	75
	Mustard, Wild	40	40	75	100	100	100	100	70	30	70	100	100	100	100
	Oat, Wild	80	90	85	60	85	85	95	90	90	90	95	85	85	85
	Oilseed Rape	35	55	20	5	100	95	65	45	70	65	75	100	95	25
15	Pigweed	100	85	95	100	90	98	85	95	95	100	100	85	100	80
	Radish, Wild	30	65	60	70	100	100	100	65	85	85	90	100	100	90
	Russian Thistle	-	-	-	80	80	75	75	80	70	80	80	85	85	75
	Ryegrass, Italian	85	85	85	80	85	85	85	85	85	80	95	80	90	85
	Speedwell	60	80	100	100	100	65	75	25	100	100	100	80	100	100
20	Wheat, Spring	10	10	25	15	40	10	60	15	10	10	15	25	0	30
	Wheat, Winter	0	5	15	15	35	15	55	5	5	5	15	15	5	25
	Windgrass	50	55	15	30	85	35	75	85	80	85	65	70	70	60
	Table D														Compounds
	125 g ai/ha	42	47	52	54	57	59	60	66	67	69	72	73	75	79
25	Postemergence														
	Barley, Spring	5	0	5	0	10	40	40	5	10	0	10	30	0	5
	Barley, Winter	0	15	0	5	25	45	40	0	5	5	30	20	0	0
	Blackgrass	80	35	15	70	55	85	85	75	85	35	75	80	65	40
	Bluegrass	20	10	30	25	15	55	35	30	20	15	40	55	15	10
30	Bromegrass, Downy	40	5	0	55	25	70	65	65	65	20	65	70	15	10
	Buckwheat, Wild	100	90	100	100	85	100	100	100	100	95	100	100	100	100
	Canada Thistle	-	-	-	-	-	-	-	-	-	100	-	-	-	-
	Canarygrass	80	0	0	65	15	90	85	70	85	70	80	80	30	40
	Chamomile	100	-	100	100	100	85	100	100	100	80	85	90	85	100
35	Chickweed	100	95	90	100	100	100	100	100	100	90	100	100	100	100
	Deadnettle	35	30	35	100	85	90	95	35	40	75	100	100	95	20

211

	Field Poppy	100	100	90	100	100	95	85	95	100	70	100	100	100	95
	Field Violet	90	-	75	95	75	95	100	95	90	85	95	90	95	85
	Foxtail, Green	65	70	10	70	75	75	65	90	100	15	70	75	55	75
	Galium	100	75	98	100	90	100	100	100	100	90	100	100	95	100
5	Geranium, Cutleaf	-	-	-	-	-	-	-	-	-	55	-	-	-	-
	Kochia	95	95	55	100	65	95	90	100	40	95	100	100	100	85
	Lambsquarters	85	70	75	95	75	90	80	100	100	95	90	100	100	90
	Mustard, Wild	70	15	90	100	30	100	98	55	40	80	100	100	100	40
	Oat, Wild	85	20	5	90	65	95	95	100	100	80	95	95	85	80
10	Oilseed Rape	60	55	65	100	65	85	75	65	85	10	80	75	95	20
	Pigweed	90	100	75	100	100	100	100	100	85	98	100	100	100	100
	Radish, Wild	20	5	80	100	100	100	95	30	70	60	90	100	100	0
	Russian Thistle	85	-	45	90	-	85	80	75	75	50	80	80	85	55
	Ryegrass, Italian	85	30	75	90	75	90	90	95	98	80	95	95	95	85
15	Speedwell	45	40	100	100	25	100	90	70	75	100	100	100	100	35
	Wheat, Spring	15	15	0	15	10	70	40	0	0	0	60	70	5	0
	Wheat, Winter	10	10	15	25	10	55	35	0	0	0	50	65	0	0
	Windgrass	90	15	5	70	10	80	90	85	90	35	80	75	40	35
	Table D										Compounds				
20	125 g ai/ha	80	81	82	83	84	85	87	88	90	104	105	108	109	126
	Postemergence														
	Barley, Spring	15	0	0	5	5	15	0	5	35	10	10	15	10	10
	Barley, Winter	5	0	0	0	5	5	5	5	25	10	10	10	5	0
	Blackgrass	90	80	75	75	85	90	85	90	55	65	65	65	65	30
25	Bluegrass	35	30	30	15	30	25	45	30	25	20	20	25	25	15
	Bromegrass, Downy	70	65	60	50	65	35	65	35	40	55	25	40	60	20
	Buckwheat, Wild	100	100	100	100	100	100	100	100	100	100	100	100	100	100
	Canada Thistle	-	-	-	-	-	-	-	-	100	-	-	-	-	98
	Canarygrass	85	95	75	80	80	85	85	85	75	80	75	80	80	45
30	Chamomile	100	100	100	100	100	90	100	95	98	95	100	95	95	98
	Chickweed	100	100	95	100	90	100	100	100	98	100	100	100	100	100
	Deadnettle	35	35	25	55	20	40	35	35	100	70	20	75	70	80
	Field Poppy	100	100	95	100	90	80	85	100	75	75	80	65	75	75
	Field Violet	95	100	100	100	100	75	100	80	100	95	95	100	100	90
35	Foxtail, Green	90	95	85	90	85	85	80	80	70	85	75	75	75	25
	Galium	95	100	100	100	100	100	100	100	100	95	100	100	100	100

212

	Geranium, Cutleaf	-	-	-	-	-	-	-	-	75	-	-	-	-	80
	Kochia	100	90	100	80	100	70	90	60	100	100	95	100	100	95
	Lambsquarters	100	100	95	100	95	95	100	90	100	100	90	100	95	100
	Mustard, Wild	70	60	40	65	70	30	25	25	100	85	40	95	90	90
5	Oat, Wild	100	95	95	90	98	95	98	100	98	95	95	100	95	80
	Oilseed Rape	65	75	60	75	70	70	65	75	15	90	25	75	75	75
	Pigweed	100	100	100	100	95	85	100	75	95	100	100	100	100	98
	Radish, Wild	50	95	50	100	55	75	30	85	75	90	20	85	90	75
10	Russian Thistle	80	90	75	80	75	80	65	80	75	65	50	75	75	80
	Ryegrass, Italian	98	95	90	90	98	85	95	90	95	95	90	95	95	90
	Speedwell	85	95	85	75	75	80	75	85	100	55	65	70	75	100
	Wheat, Spring	15	0	0	5	0	15	5	5	40	20	20	20	25	0
	Wheat, Winter	5	5	0	5	0	0	0	5	40	20	10	20	25	0
	Windgrass	95	90	80	90	80	80	85	85	70	85	80	75	80	30
	Table D	Compounds				Table D	Compounds				Table D	Compounds			
	125 g ai/ha	129	153			125 g ai/ha	129	153			125 g ai/ha	129	153		
	Postemergence					Postemergence					Postemergence				
	Barley, Spring	30	15			Geranium, Cutleaf	75	90			Kochia	80	30		
	Barley, Winter	30	10			Lambsquarters	95	65			Mustard, Wild	98	100		
	Blackgrass	60	75			Oat, Wild	95	90			Oilseed Rape	15	85		
	Bluegrass	20	30			Pigweed	100	80			Radish, Wild	80	100		
	Bromegrass, Downy	65	65			Russian Thistle	85	45			Ryegrass, Italian	90	90		
	Buckwheat, Wild	100	100			Speedwell	65	90			Wheat, Spring	50	40		
	Canada Thistle	100	100			Wheat, Winter	40	25			Windgrass	55	65		
	Canarygrass	75	80												
	Chamomile	100	100												
	Chickweed	100	85												
	Deadnettle	70	80												
	Field Poppy	80	100												
	Field Violet	70	95												
	Foxtail, Green	85	85												
	Galium	100	100												
15	Table D	Compounds				Table D	Compounds				Table D	Compounds			
	62 g ai/ha	1	2	11	20	21	22	23	25	27	28	34	35	36	41
	Postemergence														

213

	Barley, Spring	5	0	0	0	5	0	15	0	0	5	0	0	0	5
	Barley, Winter	5	10	20	0	10	0	15	0	0	0	0	0	0	5
	Blackgrass	50	70	40	40	85	20	70	75	80	80	40	65	35	65
	Bluegrass	5	10	5	25	30	15	35	20	25	30	15	25	15	30
5	Bromegrass, Downy	10	10	15	10	60	10	45	25	25	25	30	25	20	20
	Buckwheat, Wild	75	95	45	100	100	98	100	100	100	100	100	100	100	90
	Canada Thistle	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Canarygrass	35	40	20	30	80	35	75	80	80	75	65	30	40	70
	Chamomile	75	80	65	95	95	80	85	95	90	90	80	100	95	75
10	Chickweed	80	95	90	100	100	95	100	98	100	100	100	100	100	98
	Deadnettle	35	60	100	35	100	10	65	10	5	35	100	20	100	100
	Field Poppy	95	95	85	60	100	85	100	80	100	90	100	100	70	80
	Field Violet	75	85	65	15	95	70	45	75	70	75	100	75	85	90
	Foxtail, Green	65	80	25	35	80	45	75	65	80	75	45	90	45	55
15	Galium	90	100	85	75	100	90	100	100	100	100	100	98	100	100
	Geranium, Cutleaf	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Kochia	85	60	75	65	45	95	75	95	55	40	85	20	95	95
	Lambsquarters	90	90	80	85	85	85	75	90	85	85	95	100	95	65
	Mustard, Wild	30	35	70	100	100	95	95	40	40	45	85	100	100	100
20	Oat, Wild	70	80	75	25	85	85	75	80	85	85	85	90	80	80
	Oilseed Rape	15	45	15	0	100	30	60	30	65	65	70	98	85	5
	Pigweed	90	80	65	100	85	95	75	100	85	90	100	80	100	80
	Radish, Wild	20	55	30	40	100	75	75	35	75	100	85	100	90	80
	Russian Thistle	-	-	-	75	75	70	75	75	75	75	80	75	85	70
25	Ryegrass, Italian	75	80	85	70	80	80	80	85	85	80	95	75	80	85
	Speedwell	55	65	100	15	100	60	100	15	70	85	75	75	90	100
	Wheat, Spring	0	0	15	15	30	10	50	0	5	5	10	20	0	20
	Wheat, Winter	0	0	15	10	25	5	40	0	5	5	25	15	0	20
	Windgrass	25	25	10	30	80	20	70	75	75	80	50	65	50	55
30	Table D														Compounds
	62 g ai/ha	42	47	52	54	57	59	60	66	67	69	72	73	75	79
	Postemergence														
	Barley, Spring	0	0	0	0	10	30	25	0	5	0	5	25	0	5
	Barley, Winter	0	10	0	0	30	30	25	0	0	0	20	15	0	0
35	Blackgrass	75	25	15	40	45	80	80	70	75	30	70	70	20	20
	Bluegrass	20	10	5	15	15	40	25	25	15	15	35	30	10	10

214

	Bromegrass, Downy	20	0	0	55	20	70	55	60	60	15	55	55	0	5
	Buckwheat, Wild	95	75	100	100	85	100	95	100	100	70	100	100	100	100
	Canada Thistle	-	-	-	-	-	-	-	-	-	100	-	-	-	-
	Canarygrass	75	0	0	55	5	80	80	65	85	25	50	70	15	20
5	Chamomile	70	-	100	100	100	80	80	90	100	70	80	85	90	95
	Chickweed	100	95	100	100	100	98	100	85	100	80	100	95	100	95
	Deadnettle	25	20	25	100	90	80	75	15	30	65	90	90	90	15
	Field Poppy	85	100	80	100	100	75	75	85	100	70	90	100	100	85
	Field Violet	80	-	65	75	70	80	95	95	80	80	95	95	100	75
	Foxtail, Green	50	60	5	65	75	70	40	80	90	10	65	70	25	70
10	Galium	100	75	95	100	90	100	100	100	100	85	100	100	95	100
	Geranium, Cutleaf	-	-	-	-	-	-	-	-	-	30	-	-	-	-
	Kochia	90	70	20	95	55	95	85	95	35	85	95	80	100	80
	Lambsquarters	85	50	75	95	75	85	80	95	100	95	95	95	100	80
	Mustard, Wild	70	0	75	100	30	100	75	40	35	35	100	100	100	20
	Oat, Wild	85	15	5	85	25	90	90	95	98	75	85	95	70	70
15	Oilseed Rape	50	20	5	95	25	70	70	20	80	10	70	70	95	5
	Pigweed	90	75	40	100	85	85	95	100	80	80	100	100	100	100
	Radish, Wild	10	10	65	100	100	95	75	25	65	20	80	95	100	0
	Russian Thistle	75	-	35	80	-	80	80	80	60	20	75	80	80	55
	Ryegrass, Italian	80	10	50	85	50	90	90	95	90	75	95	85	95	75
	Speedwell	50	10	85	100	15	100	80	70	75	85	75	100	100	30
20	Wheat, Spring	10	10	0	0	10	45	35	0	0	0	50	55	0	0
	Wheat, Winter	5	5	10	5	10	40	30	0	0	0	35	35	0	0
	Windgrass	75	10	5	45	10	80	85	80	85	15	75	70	15	20
	Table D														Compounds
	62 g ai/ha	80	81	82	83	84	85	87	88	90	104	105	108	109	126
	Postemergence														
30	Barley, Spring	10	0	5	5	0	0	0	0	25	10	5	10	5	0
	Barley, Winter	0	0	0	0	0	0	0	0	15	10	10	5	0	5
	Blackgrass	80	75	70	70	75	80	75	85	35	40	25	45	30	20
	Bluegrass	35	20	20	10	20	20	25	25	15	10	10	10	15	10
	Bromegrass, Downy	65	35	45	35	65	30	65	25	30	30	20	30	30	10
	Buckwheat, Wild	100	100	100	100	80	100	100	85	90	95	95	100	95	100
35	Canada Thistle	-	-	-	-	-	-	-	-	100	-	-	-	-	100
	Canarygrass	80	85	55	75	65	85	80	80	45	65	50	50	55	35

215

	Chamomile	95	100	100	100	98	75	100	100	75	85	85	85	85	95
	Chickweed	100	100	90	100	90	100	90	95	90	100	90	100	100	98
	Deadnettle	25	35	10	25	10	15	15	15	80	50	10	50	50	70
	Field Poppy	80	100	85	100	80	90	85	85	70	65	75	55	50	55
5	Field Violet	85	85	100	80	100	65	85	75	98	90	90	95	95	85
	Foxtail, Green	90	95	80	90	80	80	75	75	55	70	70	70	65	10
	Galium	95	100	100	100	100	95	100	100	90	95	95	100	100	
	Geranium, Cutleaf	-	-	-	-	-	-	-	-	65	-	-	-	-	40
	Kochia	100	85	95	75	95	65	90	55	100	95	95	100	100	80
10	Lambsquarters	100	100	95	100	90	85	100	80	90	100	95	95	95	98
	Mustard, Wild	50	60	35	25	50	25	35	20	95	75	25	75	85	80
	Oat, Wild	98	90	90	85	95	85	95	95	90	90	85	95	95	70
	Oilseed Rape	55	70	45	70	45	70	40	65	5	75	15	70	70	65
	Pigweed	100	100	100	100	95	80	100	75	90	100	100	100	85	100
15	Radish, Wild	50	90	20	90	40	65	20	60	75	75	15	75	75	70
	Russian Thistle	70	85	75	80	70	75	65	75	75	60	45	70	75	40
	Ryegrass, Italian	95	90	85	85	95	85	95	90	90	95	85	90	85	90
	Speedwell	75	80	75	70	70	70	75	65	100	35	50	65	60	65
	Wheat, Spring	10	0	0	0	0	0	0	0	35	15	10	20	15	0
20	Wheat, Winter	0	0	0	0	0	0	0	10	35	15	5	15	15	0
	Windgrass	90	80	75	85	75	70	85	80	50	75	70	70	65	20

Table D	Compounds		Table D	Compounds	
62 g ai/ha	129 153		62 g ai/ha	129 153	
Postemergence			Postemergence		
Barley, Spring	25	5	Geranium, Cutleaf	70	90
Barley, Winter	20	5	Kochia	70	15
Blackgrass	45	70	Lambsquarters	90	65
Bluegrass	15	15	Mustard, Wild	80	98
Bromegrass, Downy	40	35	Oat, Wild	90	85
Buckwheat, Wild	100	95	Oilseed Rape	5	85
Canada Thistle	100	98	Pigweed	98	75
Canarygrass	55	75	Radish, Wild	75	85
Chamomile	98	95	Russian Thistle	80	20
Chickweed	100	85	Ryegrass, Italian	85	90
Deadnettle	40	75	Speedwell	60	75
Field Poppy	75	95	Wheat, Spring	35	30

216

	Field Violet	70	90		Wheat, Winter		35	15							
	Foxtail, Green	80	80		Windgrass		35	30							
	Galium	100	100												
Table D															
	31 g ai/ha	1	2	11	20	21	22	25	27	28	34	35	36	41	42
Postemergence															
	Barley, Spring	0	0	0	0	0	0	0	0	5	0	0	0	0	0
5	Barley, Winter	5	10	20	0	0	0	0	0	0	0	0	0	0	0
	Blackgrass	40	65	25	15	80	15	65	75	75	25	30	25	55	75
	Bluegrass	0	5	5	10	20	10	10	15	20	10	35	10	15	15
	Bromegrass, Downy	0	10	15	0	45	10	5	15	15	20	5	10	10	0
	Buckwheat, Wild	70	85	45	80	100	90	80	100	100	100	95	100	80	80
10	Canada Thistle	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Canarygrass	20	25	10	10	80	20	70	75	75	30	20	15	55	50
	Chamomile	65	70	40	70	90	80	75	80	85	75	100	95	75	75
	Chickweed	80	85	45	90	90	85	98	95	100	95	90	100	98	95
	Deadnettle	35	60	75	25	90	10	5	5	10	95	15	80	85	5
15	Field Poppy	95	75	35	30	85	75	70	85	80	100	100	60	55	65
	Field Violet	85	60	65	5	95	70	65	75	80	75	65	70	100	70
	Foxtail, Green	50	70	5	15	70	15	60	70	65	40	75	35	45	35
	Galium	80	85	85	70	100	90	100	100	100	95	98	100	100	100
	Geranium, Cutleaf	-	-	-	-	-	-	-	-	-	-	-	-	-	-
20	Kochia	70	50	60	35	35	80	90	45	35	60	25	85	85	70
	Lambsquarters	75	90	60	85	80	80	90	80	80	90	75	95	70	80
	Mustard, Wild	25	25	65	75	100	90	20	15	35	80	98	100	90	25
	Oat, Wild	40	55	40	20	80	65	75	75	75	75	85	35	70	75
	Oilseed Rape	0	20	0	0	80	30	5	55	65	65	95	75	0	10
25	Pigweed	80	70	35	80	80	85	80	75	75	100	80	100	75	85
	Radish, Wild	10	25	50	50	95	85	15	65	85	65	85	80	90	5
	Russian Thistle	-	-	-	70	70	65	70	65	70	70	70	80	70	70
	Ryegrass, Italian	65	70	80	55	80	75	75	80	75	90	65	75	80	75
	Speedwell	25	50	0	5	100	60	10	35	60	65	70	60	100	10
30	Wheat, Spring	0	0	15	0	20	5	0	0	0	0	15	0	15	0
	Wheat, Winter	0	0	10	0	20	5	0	0	5	5	10	0	10	0
	Windgrass	10	10	10	25	70	15	70	75	70	40	25	40	40	70

Table D

Compounds

	31 g ai/ha	47	52	54	57	59	60	66	67	69	72	73	75	79	80
Postemergence															
5	Barley, Spring	0	0	0	10	25	15	0	0	0	5	10	0	0	0
5	Barley, Winter	10	0	0	20	20	10	0	0	0	10	15	0	0	0
5	Blackgrass	25	10	25	15	70	75	65	70	20	40	65	15	10	75
5	Bluegrass	5	5	10	5	25	15	0	5	0	20	15	10	5	15
5	Bromegrass, Downy	5	0	10	15	35	30	50	60	0	45	25	0	5	55
10	Buckwheat, Wild	60	100	100	80	65	90	95	100	60	95	95	100	70	100
10	Canada Thistle	-	-	-	-	-	-	-	-	85	-	-	-	-	-
10	Canarygrass	0	0	35	5	75	80	55	75	25	40	60	15	5	55
10	Chamomile	-	85	90	100	80	75	85	95	65	75	70	80	85	80
10	Chickweed	90	90	100	100	100	85	75	85	75	98	90	100	95	90
10	Deadnettle	20	35	100	70	80	70	15	40	20	85	75	75	5	35
15	Field Poppy	80	85	70	100	70	60	70	80	65	80	75	100	75	60
15	Field Violet	-	35	85	80	75	80	85	80	75	90	90	95	75	90
15	Foxtail, Green	50	5	55	75	65	35	75	80	10	60	65	0	20	70
15	Galium	65	90	100	90	100	100	85	90	75	95	95	90	95	90
15	Geranium, Cutleaf	-	-	-	-	-	-	-	-	15	-	-	-	-	-
20	Kochia	45	0	15	40	95	70	85	10	60	80	100	95	70	100
20	Lambsquarters	45	75	95	75	90	80	95	90	75	80	95	100	85	95
20	Mustard, Wild	0	20	100	30	90	75	10	25	20	85	85	100	20	35
20	Oat, Wild	10	5	75	15	80	85	85	95	70	85	85	50	70	95
20	Oilseed Rape	20	0	75	20	60	65	0	70	0	65	65	70	0	15
25	Pigweed	75	35	100	85	80	75	95	75	80	95	100	100	100	100
25	Radish, Wild	5	35	80	40	95	65	5	55	0	75	75	95	0	10
25	Russian Thistle	-	20	80	-	80	80	75	55	15	70	75	80	50	70
25	Ryegrass, Italian	10	40	80	25	80	80	85	85	75	95	70	90	70	85
25	Speedwell	10	70	75	100	65	85	55	70	70	75	70	80	25	65
30	Wheat, Spring	10	0	0	0	40	30	0	0	0	40	45	0	0	0
30	Wheat, Winter	5	0	0	5	35	25	0	0	0	25	25	0	0	0
30	Windgrass	10	0	35	10	75	80	75	85	15	65	70	10	15	75
Table D															
	31 g ai/ha	81	82	83	84	85	87	88	90	104	105	108	109	126	129
35	Postemergence	0	0	0	0	0	0	0	10	0	0	0	0	0	20

218

	Barley, Winter	0	0	0	0	0	0	0	0	0	0	5	5	0	10
	Blackgrass	65	45	65	65	75	65	75	15	35	15	20	20	15	35
	Bluegrass	5	10	0	20	10	25	10	5	10	10	5	5	0	10
	Bromegrass, Downy	15	55	25	40	30	45	15	20	20	10	25	30	5	25
5	Buckwheat, Wild	100	85	100	85	95	85	80	80	90	65	90	95	70	100
	Canada Thistle	-	-	-	-	-	-	-	98	-	-	-	-	98	100
	Canarygrass	75	50	50	50	75	55	65	25	45	40	40	40	20	30
	Chamomile	100	90	95	95	75	90	85	70	80	80	75	80	70	100
	Chickweed	100	80	100	85	90	85	85	80	95	90	90	100	80	100
10	Deadnettle	15	10	15	5	10	10	5	70	45	10	35	20	40	35
	Field Poppy	100	70	100	70	70	70	70	65	15	70	20	45	25	70
	Field Violet	75	95	90	85	65	80	75	90	85	85	90	90	85	65
	Foxtail, Green	80	75	75	75	75	70	70	25	30	70	65	55	10	80
	Galium	100	90	100	90	85	85	100	98	85	85	90	100	90	90
15	Geranium, Cutleaf	-	-	-	-	-	-	-	45	-	-	-	-	30	60
	Kochia	60	90	70	85	40	85	45	85	95	85	90	95	75	60
	Lambsquarters	95	95	95	90	80	95	80	90	95	85	90	90	90	75
	Mustard, Wild	50	25	25	25	10	10	10	80	70	5	70	60	80	80
	Oat, Wild	85	90	80	85	75	85	80	75	85	80	85	95	60	90
20	Oilseed Rape	70	25	65	10	65	15	65	0	70	0	45	65	60	5
	Pigweed	100	90	100	95	75	95	75	80	100	85	95	85	98	98
	Radish, Wild	75	25	75	20	60	15	35	65	70	5	75	75	40	60
	Russian Thistle	75	65	75	70	65	60	75	30	55	40	65	60	30	70
	Ryegrass, Italian	85	85	80	80	80	90	80	75	90	75	90	85	85	80
25	Speedwell	75	70	65	70	35	70	25	100	30	45	60	50	60	35
	Wheat, Spring	0	0	0	0	0	0	0	25	10	0	15	5	0	25
	Wheat, Winter	0	0	0	0	0	0	0	20	5	0	10	10	0	30
	Windgrass	70	70	75	75	60	80	65	30	55	60	65	60	0	20
	Table D	Compound				Table D	Compound								
	31 g ai/ha	153				31 g ai/ha	153								
	Postemergence					Postemergence									
	Barley, Spring	5				Geranium, Cutleaf	75								
	Barley, Winter	0				Kochia	20								
	Blackgrass	65				Lambsquarters	75								
	Bluegrass	15				Mustard, Wild	98								
	Bromegrass, Downy	25				Oat, Wild	85								

Buckwheat, Wild	95	Oilseed Rape	70
Canada Thistle	98	Pigweed	80
Canarygrass	75	Radish, Wild	80
Chamomile	70	Russian Thistle	25
Chickweed	80	Ryegrass, Italian	80
Deadnettle	70	Speedwell	75
Field Poppy	75	Wheat, Spring	20
Field Violet	85	Wheat, Winter	10
Foxtail, Green	80	Windgrass	25
Galium	100		

Table D Compounds

250 g ai/ha	1	2	11	20	22	25	27	28	34	35	36	41	42	47
Preemergence														
Barley, Spring	15	0	15	0	0	0	0	0	20	0	0	60	5	15
Barley, Winter	0	0	20	0	0	20	15	15	65	0	0	30	15	10
Blackgrass	90	90	75	75	75	95	100	95	65	95	50	80	100	50
Bluegrass	50	50	55	35	40	75	80	75	60	45	15	90	80	20
Bromegrass, Downy	70	70	55	45	80	85	85	85	80	65	35	80	90	15
Buckwheat, Wild	100	100	25	100	95	25	80	100	0	35	10	75	60	85
Canada Thistle	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Canarygrass	90	90	90	80	90	100	100	95	95	98	65	95	100	5
Chamomile	90	100	-	-	100	95	100	100	-	100	-	-	100	85
Chickweed	100	100	100	95	100	100	100	100	100	100	100	95	100	90
Deadnettle	60	55	100	20	-	50	80	5	95	80	85	100	15	65
Field Poppy	95	100	100	100	100	100	100	100	100	100	100	95	100	100
Field Violet	100	100	100	75	100	100	95	100	95	100	95	100	100	100
Foxtail, Green	100	100	65	85	20	100	100	100	75	100	75	100	100	100
Galium	100	100	100	85	85	100	100	100	85	100	85	100	100	100
Geranium, Cutleaf	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Kochia	75	20	95	90	75	100	60	65	50	25	60	100	100	40
Lambsquarters	100	100	100	100	100	100	100	100	95	100	95	100	100	100
Mustard, Wild	25	40	100	100	95	60	65	55	100	100	90	95	25	65
Oat, Wild	100	100	85	95	95	100	95	100	90	95	85	95	95	40
Oilseed Rape	20	40	5	0	75	35	35	25	85	100	65	15	0	15
Pigweed	100	100	100	100	100	100	100	100	100	100	100	100	100	100
Radish, Wild	100	100	25	65	80	0	95	30	60	100	70	100	60	85

220

	Russian Thistle	-	-	-	70	20	90	75	35	15	25	15	15	70	75	-
	Ryegrass, Italian	100	100	100	100	100	100	100	100	100	100	70	100	100	70	
	Speedwell	95	100	100	90	100	100	100	100	100	100	100	100	100	100	
	Wheat, Spring	10	10	35	45	25	25	25	25	60	30	30	85	20	15	
5	Wheat, Winter	5	5	30	25	5	20	5	0	40	10	0	75	15	10	
	Windgrass	100	100	75	60	80	100	100	100	70	100	65	95	100	75	
	Table D															
																Compounds
	250 g ai/ha	52	54	57	59	60	66	67	69	72	73	75	79	80	81	
	Preemergence															
10	Barley, Spring	0	5	10	60	60	10	0	0	60	60	0	0	0	0	5
	Barley, Winter	0	0	5	45	65	10	0	0	75	75	0	10	45	45	
	Blackgrass	65	75	80	100	100	80	80	75	75	85	55	60	85	85	
	Bluegrass	35	25	65	80	80	30	50	65	50	30	35	35	75	60	
	Bromegrass, Downy	20	40	30	95	98	85	70	65	60	90	25	60	85	75	
15	Buckwheat, Wild	100	80	100	95	60	0	0	15	10	30	50	100	20	15	
	Canada Thistle	-	-	-	-	-	-	-	95	-	-	-	-	-	-	
	Canarygrass	35	90	65	100	100	95	95	95	95	100	75	85	100	100	
	Chamomile	100	-	-	100	100	100	100	100	-	-	-	-	100	-	
	Chickweed	100	100	100	100	100	100	100	100	100	100	100	100	100	100	
20	Deadnettle	25	95	45	100	100	55	60	98	70	100	100	90	75	55	
	Field Poppy	100	100	100	100	100	100	100	100	100	100	100	100	100	100	
	Field Violet	85	95	100	100	100	98	100	95	95	95	100	100	95	95	
	Foxtail, Green	35	100	100	100	100	70	85	55	85	100	100	95	100	100	
	Galium	95	100	100	100	100	75	70	90	85	90	80	100	90	95	
25	Geranium, Cutleaf	-	-	-	-	-	-	-	10	-	-	-	-	-	-	
	Kochia	90	45	100	100	75	85	0	5	40	95	100	95	100	15	
	Lambsquarters	100	95	100	100	100	100	100	100	95	100	100	100	100	95	
	Mustard, Wild	98	100	30	100	90	0	0	80	80	100	95	10	0	50	
	Oat, Wild	30	95	60	100	100	90	90	95	95	100	85	90	95	95	
30	Oilseed Rape	55	100	25	80	80	35	25	15	25	70	100	35	40	100	
	Pigweed	90	100	100	100	100	100	100	100	100	100	100	100	100	100	
	Radish, Wild	75	100	100	100	90	70	95	20	50	90	100	55	100	-	
	Russian Thistle	0	35	-	90	70	90	25	10	25	75	35	100	100	35	
	Ryegrass, Italian	98	100	95	100	100	95	90	100	90	100	0	100	100	100	
35	Speedwell	100	100	100	100	100	100	100	100	100	100	100	-	100	100	
	Wheat, Spring	5	45	10	85	75	20	10	10	80	85	45	0	35	40	

221

222

	125 g ai/ha	1	2	11	20	22	25	27	28	34	35	36	41	42	47
Preemergence															
	Barley, Spring	10	0	10	0	0	0	0	0	0	0	0	30	0	15
	Barley, Winter	0	0	5	0	0	5	10	15	0	0	0	25	5	5
5	Blackgrass	85	85	55	60	55	90	95	85	40	85	35	80	95	30
	Bluegrass	35	30	30	25	30	40	70	65	50	35	10	80	65	20
	Bromegrass, Downy	70	65	20	40	25	80	85	70	50	55	10	70	70	15
	Buckwheat, Wild	65	100	15	100	85	20	45	20	0	20	10	65	80	70
	Canada Thistle	-	-	-	-	-	-	-	-	-	-	-	-	-	-
10	Canarygrass	85	85	90	70	85	95	100	95	90	95	40	90	100	0
	Chamomile	95	95	-	-	100	100	100	100	-	100	-	-	100	85
	Chickweed	100	100	100	95	100	100	100	100	100	100	100	95	100	100
	Deadnettle	0	0	50	10	15	0	55	5	50	55	50	100	25	10
	Field Poppy	95	95	100	95	100	100	100	95	100	100	70	-	100	100
15	Field Violet	100	100	100	25	80	100	95	100	75	85	70	100	100	100
	Foxtail, Green	75	100	15	75	0	95	100	100	60	65	70	100	100	60
	Galium	100	100	100	75	75	95	85	85	80	95	75	95	95	100
	Geranium, Cutleaf	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Kochia	35	0	75	70	50	40	30	30	15	20	45	80	75	35
20	Lambsquarters	100	100	100	100	100	98	100	100	95	100	75	100	100	100
	Mustard, Wild	10	5	75	100	85	20	45	30	75	100	85	95	20	40
	Oat, Wild	95	95	80	85	70	95	90	90	85	85	75	90	95	35
	Oilseed Rape	5	20	5	0	0	0	0	10	50	65	55	25	0	10
	Pigweed	100	65	98	100	98	100	100	100	100	100	100	100	100	100
25	Radish, Wild	15	15	20	50	70	0	60	35	60	100	50	95	15	100
	Russian Thistle	-	-	-	40	0	40	65	15	10	0	10	40	65	-
	Ryegrass, Italian	100	100	100	100	100	100	100	100	100	100	70	100	100	60
	Speedwell	-	90	85	70	50	95	100	95	100	100	100	100	70	80
	Wheat, Spring	0	5	25	25	10	10	5	5	25	5	0	70	0	15
30	Wheat, Winter	5	0	20	15	0	0	0	0	25	0	0	45	5	10
	Windgrass	85	95	55	50	70	100	100	90	55	100	5	80	85	20
	Table D														Compounds
	125 g ai/ha	52	54	57	59	60	66	67	69	72	73	75	79	80	81
	Preemergence														
35	Barley, Spring	0	0	10	40	45	-	0	0	0	0	0	0	5	0
	Barley, Winter	0	0	5	40	50	0	0	0	50	60	0	0	15	45

223

	Blackgrass	65	50	70	95	100	75	75	70	55	80	40	55	80	70
	Bluegrass	25	15	25	75	65	25	20	35	25	35	10	25	75	20
	Bromegrass, Downy	15	15	25	90	95	80	35	35	35	50	10	50	75	15
	Buckwheat, Wild	55	70	10	100	50	0	0	5	15	60	0	25	20	0
5	Canada Thistle	-	-	-	-	-	-	-	95	-	-	-	-	-	-
	Canarygrass	25	80	55	95	95	85	90	95	85	90	70	75	90	95
	Chamomile	100	-	-	100	100	100	100	100	-	-	-	-	100	-
	Chickweed	100	95	100	100	100	100	100	100	100	95	100	100	100	100
	Deadnettle	10	70	25	90	85	55	55	75	65	70	90	100	70	5
10	Field Poppy	100	100	100	100	100	100	100	100	100	100	100	100	100	100
	Field Violet	75	70	100	95	100	95	100	95	75	80	100	98	100	100
	Foxtail, Green	15	65	100	85	95	65	85	50	60	50	55	65	100	100
	Galium	90	85	100	100	95	65	35	90	70	80	60	100	80	85
	Geranium, Cutleaf	-	-	-	-	-	-	-	0	-	-	-	-	-	-
15	Kochia	40	30	35	95	60	75	0	70	10	85	80	100	100	25
	Lambsquarters	100	95	100	100	100	100	100	100	95	95	100	100	100	70
	Mustard, Wild	90	100	25	100	85	0	0	40	60	100	100	5	0	0
	Oat, Wild	25	85	50	95	100	85	80	90	85	85	80	85	90	85
	Oilseed Rape	0	85	0	50	40	35	25	15	15	0	100	40	35	50
20	Pigweed	65	100	98	100	100	100	100	100	95	100	100	100	100	100
	Radish, Wild	55	100	25	95	95	75	75	20	50	100	100	45	100	-
	Russian Thistle	0	25	-	80	35	60	0	0	15	40	25	75	95	15
	Ryegrass, Italian	100	100	80	100	100	90	85	98	100	100	100	90	95	85
	Speedwell	95	100	100	100	100	100	100	100	-	100	100	-	95	100
25	Wheat, Spring	0	0	5	80	65	5	0	0	65	70	35	0	25	0
	Wheat, Winter	0	15	5	70	55	0	0	0	25	50	20	0	0	5
	Windgrass	10	70	65	100	100	85	80	75	80	90	50	50	95	90
	Table D														Compounds
	125 g ai/ha	82	83	84	85	87	88	90	104	105	108	109	126	129	153
30	Preemergence														
	Barley, Spring	0	0	0	0	0	0	20	5	0	0	5	0	0	25
	Barley, Winter	5	0	5	0	10	0	15	10	10	10	0	0	0	25
	Blackgrass	75	70	80	85	80	85	45	65	60	50	75	55	55	85
	Bluegrass	65	35	65	65	45	75	65	70	60	35	30	30	25	75
35	Bromegrass, Downy	80	60	75	55	75	65	55	65	70	70	65	20	65	85
	Buckwheat, Wild	15	0	25	80	0	50	40	55	5	20	30	10	85	85

224

	Canada Thistle	-	-	-	-	-	-	100	-	-	-	-	-	95	100	100
	Canarygrass	90	90	90	90	90	90	85	95	95	90	90	80	60	95	
	Chamomile	100	-	100	-	100	-	100	-	-	-	-	-	100	100	100
	Chickweed	100	100	100	100	100	100	100	95	100	100	100	100	100	98	100
5	Deadnettle	25	15	65	10	65	65	90	80	15	95	80	70	75	100	
	Field Poppy	100	100	100	-	100	90	100	100	100	100	100	90	100	100	
	Field Violet	95	95	100	95	95	100	100	95	100	100	100	100	85	100	
	Foxtail, Green	90	100	75	100	95	100	70	100	65	100	75	25	80	100	
	Galium	80	40	75	75	60	75	85	100	85	95	100	85	90	95	
10	Geranium, Cutleaf	-	-	-	-	-	-	65	-	-	-	-	-	0	70	85
	Kochia	75	30	75	10	100	15	90	95	95	80	80	75	85	25	
	Lambsquarters	100	100	95	100	100	100	85	100	100	100	100	75	100	100	
	Mustard, Wild	25	35	5	35	0	65	100	75	0	95	100	70	100	100	
	Oat, Wild	95	90	95	85	90	90	85	80	85	80	90	80	90	98	
15	Oilseed Rape	35	10	35	20	30	0	0	55	50	75	75	15	55	90	
	Pigweed	100	100	100	100	100	100	100	100	100	100	100	100	100	100	
	Radish, Wild	60	90	35	100	75	-	90	95	35	100	90	75	100	98	
	Russian Thistle	65	15	95	25	85	15	35	55	70	70	35	5	100	60	
	Ryegrass, Italian	90	90	100	85	98	85	100	100	95	100	100	98	98	100	
20	Speedwell	100	100	90	100	90	100	100	-	-	-	-	-	100	100	100
	Wheat, Spring	15	10	15	15	15	25	60	35	0	25	20	0	60	70	
	Wheat, Winter	0	5	0	5	0	10	25	5	5	10	5	0	45	45	
	Windgrass	100	90	90	95	85	85	80	80	80	75	80	75	75	80	

Table D Compounds

	62 g ai/ha	1	2	11	20	22	25	27	28	34	35	36	41	42	47
Preemergence															
	Barley, Spring	0	0	5	0	0	0	0	0	0	0	0	0	0	5
	Barley, Winter	0	0	5	0	0	0	0	0	0	0	0	20	0	0
	Blackgrass	70	75	30	40	45	90	90	85	20	85	30	75	80	20
30	Bluegrass	15	15	15	15	30	35	35	45	25	25	15	75	45	20
	Bromegrass, Downy	25	50	5	35	5	65	55	55	50	30	0	55	55	10
	Buckwheat, Wild	10	10	15	20	20	0	30	0	10	20	0	55	25	60
	Canada Thistle	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Canarygrass	60	60	55	35	35	80	95	85	50	85	45	90	95	0
35	Chamomile	95	100	-	-	100	100	100	95	-	100	-	-	100	80
	Chickweed	90	100	100	95	100	100	100	100	95	95	95	95	100	95

225

	Deadnettle	0	0	15	0	0	0	0	0	40	15	0	90	0	10
	Field Poppy	95	95	75	70	0	100	100	95	100	85	50	95	100	100
	Field Violet	100	100	100	15	65	100	90	85	25	75	10	90	95	100
	Foxtail, Green	15	100	10	60	0	90	95	80	60	45	25	80	65	25
5	Galium	95	85	80	30	65	90	70	60	35	85	20	85	85	95
	Geranium, Cutleaf	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Kochia	0	0	40	25	35	10	20	20	10	0	25	75	60	10
	Lambsquarters	100	60	35	90	100	95	100	100	60	98	95	100	100	100
	Mustard, Wild	0	0	20	35	65	0	40	15	25	100	85	90	15	20
10	Oat, Wild	70	90	70	65	55	90	85	85	75	80	45	90	90	20
	Oilseed Rape	0	0	0	0	0	0	0	0	55	10	0	5	0	0
	Pigweed	100	50	0	40	98	100	100	100	95	95	75	75	100	100
	Radish, Wild	0	5	15	0	25	0	50	0	0	100	0	85	-	25
	Russian Thistle	-	-	-	30	0	25	10	0	0	0	15	20	15	-
15	Ryegrass, Italian	100	95	90	100	90	100	100	95	95	85	65	100	100	30
	Speedwell	50	-	15	70	0	80	100	95	100	75	100	95	75	25
	Wheat, Spring	0	0	15	15	0	0	0	0	0	0	0	55	0	5
	Wheat, Winter	0	0	0	0	0	0	0	0	0	0	0	20	0	5
	Windgrass	60	75	35	40	20	85	85	75	25	95	5	75	85	5
20	Table D														Compounds
	62 g ai/ha	52	54	57	59	60	66	67	69	72	73	75	79	80	81
	Preemergence														
	Barley, Spring	0	0	10	25	10	0	0	0	0	10	0	0	0	0
	Barley, Winter	0	0	0	25	30	0	0	0	25	40	0	0	0	0
25	Blackgrass	20	30	35	90	95	70	75	25	30	60	30	45	75	60
	Bluegrass	10	10	20	50	45	15	0	0	25	35	15	10	55	10
	Bromegrass, Downy	0	15	5	85	90	60	35	20	0	40	0	35	35	45
	Buckwheat, Wild	20	5	10	65	25	0	0	0	0	0	0	90	25	15
	Canada Thistle	-	-	-	-	-	-	-	90	-	-	-	-	-	-
30	Canarygrass	25	55	10	90	95	80	85	80	80	85	55	60	90	65
	Chamomile	100	-	-	95	100	100	95	100	-	-	-	-	100	-
	Chickweed	98	90	100	100	100	100	100	100	100	90	100	100	100	100
	Deadnettle	0	60	20	90	90	40	30	55	15	0	55	10	65	0
	Field Poppy	0	55	100	100	100	100	90	100	100	95	100	100	100	100
35	Field Violet	10	35	100	90	100	85	98	90	75	75	100	85	95	80
	Foxtail, Green	0	60	70	75	80	35	80	50	30	20	35	60	80	65

226

	Galium	100	45	100	95	85	20	10	70	60	80	50	90	40	65
	Geranium, Cutleaf	-	-	-	-	-	-	-	0	-	-	-	-	-	-
	Kochia	35	60	10	60	20	15	0	20	15	30	80	55	75	0
	Lambsquarters	90	65	100	100	100	100	100	100	100	95	95	100	100	95
5	Mustard, Wild	100	100	25	95	70	0	0	30	25	80	35	15	0	0
	Oat, Wild	25	75	30	90	95	85	75	75	75	90	65	80	90	85
	Oilseed Rape	0	50	0	30	15	35	20	15	15	5	75	35	35	0
	Pigweed	55	100	75	100	100	100	95	100	85	100	100	100	100	100
	Radish, Wild	15	100	10	85	90	70	60	0	0	75	70	25	75	50
10	Russian Thistle	0	0	-	50	20	20	0	0	10	25	0	70	95	0
	Ryegrass, Italian	85	90	75	100	100	85	80	95	75	100	100	85	90	65
	Speedwell	100	95	90	100	100	100	75	100	70	100	100	-	95	60
	Wheat, Spring	0	0	5	65	55	0	0	0	35	55	25	0	0	0
	Wheat, Winter	0	0	5	35	35	0	0	0	10	40	0	0	0	0
15	Windgrass	10	50	35	85	90	75	75	55	65	65	15	40	90	75
	Table D														Compounds
	62 g ai/ha	82	83	84	85	87	88	90	104	105	108	109	126	129	153
	Preemergence														
	Barley, Spring	0	0	0	0	0	0	0	0	0	0	0	0	0	0
20	Barley, Winter	0	0	0	0	0	0	0	0	10	0	0	0	0	10
	Blackgrass	75	60	75	80	75	85	35	60	50	35	25	45	15	80
	Bluegrass	45	15	30	60	35	60	40	35	30	15	20	5	10	75
	Bromegrass, Downy	65	30	55	35	65	45	20	65	65	25	30	0	15	75
	Buckwheat, Wild	0	0	15	65	0	45	-	60	5	0	20	0	30	60
25	Canada Thistle	-	-	-	-	-	-	95	-	-	-	-	15	100	100
	Canarygrass	85	85	85	90	90	90	75	85	95	80	75	50	15	90
	Chamomile	100	-	100	-	95	-	100	-	-	-	-	100	100	100
	Chickweed	100	100	100	100	100	100	198	100	100	100	100	98	100	100
	Deadnettle	25	0	20	0	35	0	70	80	10	25	60	45	75	100
30	Field Poppy	100	100	95	-	100	95	100	100	100	10	100	45	98	100
	Field Violet	90	80	100	70	85	95	95	100	100	100	100	85	85	100
	Foxtail, Green	75	50	35	55	55	100	45	70	55	90	65	20	70	75
	Galium	60	25	60	70	40	70	75	95	95	70	75	70	90	95
	Geranium, Cutleaf	-	-	-	-	-	-	60	-	-	-	-	0	0	75
35	Kochia	15	0	15	10	55	10	65	75	50	95	70	20	55	50
	Lambsquarters	95	65	95	100	100	100	98	100	100	100	100	75	85	

227

	Mustard, Wild	0	0	0	25	0	55	98	70	0	60	75	70	100	100
	Oat, Wild	85	85	90	75	85	85	80	80	80	80	80	70	75	95
	Oilseed Rape	35	5	20	0	30	0	0	20	60	45	40	0	15	85
	Pigweed	100	100	100	100	100	100	35	100	100	100	100	100	100	100
5	Radish, Wild	60	70	35	25	65	0	65	100	15	100	75	15	100	98
	Russian Thistle	15	0	5	10	15	0	15	10	60	15	20	0	50	15
	Ryegrass, Italian	80	75	90	80	95	85	100	100	90	98	95	90	80	100
	Speedwell	75	75	75	90	85	100	100	—	—	—	—	100	100	100
	Wheat, Spring	0	0	5	0	0	10	35	15	0	20	5	0	50	45
10	Wheat, Winter	0	0	0	0	0	0	10	0	0	0	0	0	35	20
	Windgrass	80	75	80	70	80	75	65	75	80	50	60	35	45	80
	Table D														Compounds
	31 g ai/ha	1	2	11	20	22	25	27	28	34	35	36	41	42	47
	Preemergence														
15	Barley, Spring	0	0	5	0	0	0	0	0	0	0	0	0	0	0
	Barley, Winter	0	0	5	0	0	0	0	0	0	0	0	0	0	0
	Blackgrass	35	65	5	20	45	85	85	85	15	75	15	70	80	5
	Bluegrass	5	0	10	10	0	25	25	30	0	25	0	70	35	0
	Bromegrass, Downy	20	10	5	15	0	40	35	45	0	20	0	50	45	5
20	Buckwheat, Wild	5	—	20	15	20	0	25	0	0	15	0	35	20	70
	Canada Thistle	—	—	—	—	—	—	—	—	—	—	—	—	—	—
	Canarygrass	40	40	45	25	25	80	85	85	20	75	0	90	90	0
	Chamomile	95	80	—	—	95	100	100	100	—	100	—	—	95	80
	Chickweed	100	90	20	85	95	95	100	100	85	95	95	90	100	90
25	Deadnettle	0	0	10	0	0	0	0	0	0	0	0	35	0	0
	Field Poppy	95	95	75	70	0	95	100	100	—	75	—	95	100	60
	Field Violet	95	95	85	0	20	90	80	75	15	15	15	95	85	95
	Foxtail, Green	10	65	10	25	0	35	95	70	55	50	45	45	30	0
	Galium	75	100	70	10	10	70	60	15	0	80	0	75	70	85
30	Geranium, Cutleaf	—	—	—	—	—	—	—	—	—	—	—	—	—	—
	Kochia	0	0	10	0	35	0	0	20	25	0	0	80	20	10
	Lambsquarters	20	15	25	75	100	80	100	100	60	70	75	25	98	100
	Mustard, Wild	0	0	0	25	5	0	40	10	15	85	45	70	15	10
	Oat, Wild	75	80	15	35	30	85	85	85	70	75	35	85	90	10
35	Oilseed Rape	0	0	5	0	0	0	0	0	10	0	0	0	0	0
	Pigweed	70	25	0	30	100	100	100	90	50	25	55	25	90	70

228

	Radish, Wild	0	0	10	0	0	0	0	0	35	0	25	0	20
	Russian Thistle	-	-	-	0	0	10	0	0	0	0	25	10	-
	Ryegrass, Italian	100	85	85	90	85	95	90	90	75	75	20	95	95
	Speedwell	70	55	0	70	0	35	75	95	100	0	95	100	70
5	Wheat, Spring	0	0	5	0	0	0	0	0	0	0	40	0	5
	Wheat, Winter	0	0	0	0	0	0	0	0	0	0	10	0	5
	Windgrass	15	60	25	35	0	75	75	70	15	25	0	70	70
	Table D													
	31 g ai/ha	52	54	57	59	60	66	67	69	72	73	75	79	80
10	Preemergence													
	Barley, Spring	0	0	5	5	5	0	0	0	0	0	0	0	0
	Barley, Winter	0	0	0	15	15	0	0	0	5	5	0	0	0
	Blackgrass	20	15	25	85	90	25	75	15	15	50	15	20	70
	Bluegrass	0	0	0	30	35	10	0	5	10	15	15	10	20
15	Bromegrass, Downy	0	0	0	75	60	15	25	20	0	20	0	35	30
	Buckwheat, Wild	20	0	0	20	0	0	0	0	0	0	0	0	15
	Canada Thistle	-	-	-	-	-	-	-	30	-	-	-	-	-
	Canarygrass	20	15	0	80	90	25	40	30	0	80	20	45	85
	Chamomile	60	-	-	100	95	90	95	100	-	-	-	-	95
20	Chickweed	98	85	100	100	95	90	100	95	70	95	90	100	100
	Deadnettle	0	0	0	50	35	15	15	15	5	0	30	0	55
	Field Poppy	0	90	100	100	75	100	100	85	100	70	0	100	90
	Field Violet	0	25	95	80	95	60	85	85	10	35	95	80	55
	Foxtail, Green	0	50	10	55	70	15	15	50	20	15	15	55	20
25	Galium	70	0	85	95	75	0	0	45	20	40	15	80	25
	Geranium, Cutleaf	-	-	-	-	-	-	-	0	-	-	-	-	-
	Kochia	15	25	10	20	15	0	0	0	10	30	65	60	35
	Lambsquarters	35	65	100	95	100	55	95	85	35	95	95	100	100
	Mustard, Wild	85	50	0	95	45	0	0	0	0	65	55	0	0
30	Oat, Wild	25	75	15	90	90	75	70	60	65	75	55	80	85
	Oilseed Rape	0	15	0	20	0	35	10	10	5	0	50	25	35
	Pigweed	60	80	70	95	100	30	35	50	35	70	85	45	100
	Radish, Wild	0	25	0	-	55	30	25	0	0	30	40	25	20
	Russian Thistle	0	0	-	40	15	0	0	0	0	10	0	0	10
35	Ryegrass, Italian	85	35	55	100	100	80	75	90	55	95	95	80	90
	Speedwell	50	100	25	100	100	75	80	98	5	100	95	-	65

229

Wheat, Spring	0	0	5	35	35	0	0	0	0	15	0	0	0	0
Wheat, Winter	0	0	5	10	10	0	0	0	5	15	0	0	0	0
Windgrass	10	0	20	85	85	70	30	35	25	40	0	25	75	60
Table D Compounds														
5 31 g ai/ha	82	83	84	85	87	88	90	104	105	108	109	126	129	153
Preemergence														
Barley, Spring	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Barley, Winter	0	0	0	0	0	0	0	0	5	0	0	0	0	0
Blackgrass	70	20	70	75	70	80	25	25	35	15	25	25	10	75
10 Bluegrass	15	15	15	40	25	35	0	35	25	10	10	5	0	70
Bromegrass, Downy	45	20	35	15	25	20	15	0	35	25	0	0	15	75
Buckwheat, Wild	35	0	10	20	0	0	15	0	15	0	0	0	0	40
Canada Thistle	-	-	-	-	-	-	50	-	-	-	-	0	80	100
Canarygrass	75	65	85	80	85	85	50	65	85	45	35	15	5	85
15 Chamomile	100	-	80	-	95	-	100	-	-	-	-	85	100	100
Chickweed	100	100	100	100	100	100	100	100	100	100	100	70	98	98
Deadnettle	10	0	25	0	25	5	15	65	-	0	0	0	60	98
Field Poppy	95	100	90	-	100	-	15	0	100	10	100	30	90	100
Field Violet	100	75	65	65	80	70	95	100	100	90	85	85	85	100
20 Foxtail, Green	35	15	30	25	10	30	25	20	45	30	0	20	35	75
Galium	60	0	20	30	15	25	75	65	80	60	40	50	75	85
Geranium, Cutleaf	-	-	-	-	-	-	0	-	-	-	-	0	0	35
Kochia	0	0	10	5	0	10	75	30	10	60	20	10	5	20
Lambsquarters	75	95	95	25	70	100	90	75	95	100	95	100	100	70
25 Mustard, Wild	0	0	0	25	0	20	35	10	10	5	5	60	75	100
Oat, Wild	80	80	90	75	80	80	75	75	80	80	75	65	75	80
Oilseed Rape	30	5	25	0	15	0	0	15	55	20	15	0	0	75
Pigweed	100	100	95	95	50	75	25	60	100	100	100	98	100	100
Radish, Wild	65	30	-	0	45	5	0	95	-	45	25	5	80	80
30 Russian Thistle	10	0	5	5	5	0	10	0	0	0	0	0	10	0
Ryegrass, Italian	75	40	80	55	90	75	100	100	85	80	80	75	70	100
Speedwell	75	70	70	50	80	95	100	-	-	-	-	70	90	100
Wheat, Spring	0	0	0	0	0	0	20	0	0	0	0	0	25	25
Wheat, Winter	0	0	0	0	0	0	0	0	0	0	0	0	10	5
35 Windgrass	75	15	75	55	80	60	50	70	75	25	55	25	35	75

TEST E

Seeds of plant species selected from corn (*Zea mays*), soybean (*Glycine max*), velvetleaf (*Abutilon theophrasti*), lambsquarters (*Chenopodium album*), wild poinsettia (*Euphorbia heterophylla*), pigweed, palmer (palmer pigweed, *Amaranthus palmeri*),
5 waterhemp (common waterhemp, *Amaranthus rudis*), surinam grass (*Brachiaria decumbens*), crabgrass, large (large crabgrass, *Digitaria sanguinalis*), crabgrass, Brazilian (Brazilian crabgrass, *Digitaria horizontalis*), panicum, fall (fall panicum, *Panicum dichotomiflorum*), foxtail, giant (giant foxtail, *Setaria faberii*), foxtail, green (green foxtail, *Setaria viridis*), goosegrass (*Eleusine indica*), johnsongrass (*Sorghum halepense*), ragweed
10 (common ragweed, *Ambrosia elatior*), barnyardgrass (*Echinochloa crus-galli*), sandbur (southern sandbur, *Cenchrus echinatus*), arrowleaf sida (*Sida rhombifolia*), Italian ryegrass (*Lolium multiflorum*), dayflower (Virginia (VA) dayflower, *Commelina virginica*), field bindweed (*Convolvulus arvensis*), morningglory (*Ipomoea coccinea*), nightshade (eastern black nightshade, *Solanum ptycanthum*), kochia (*Kochia scoparia*), nutsedge, yellow (yellow
15 nutsedge, *Cyperus esculentus*), horseweed (*Conyza canadensis*), and beggarticks (hairy beggarticks, *Bidens pilosa*), were planted into a silt loam soil and treated preemergence with test chemicals formulated in a non-phytotoxic solvent mixture which included a surfactant.

At the same time, plants from these crop and weed species and also waterhemp_RES1, (ALS & Triazine resistant common waterhemp, *Amaranthus rudis*), and waterhemp_RES2, (ALS & HPPD resistant common waterhemp, *Amaranthus rudis*) were planted in pots
20 containing Redi-Earth® planting medium (Scotts Company, 14111 Scottslawn Road, Marysville, Ohio 43041) comprising sphagnum peat moss, vermiculite, wetting agent and starter nutrients were treated with postemergence applications of test chemicals formulated in the same manner. Plants ranged in height from 2 to 18 cm for postemergence treatments
25 (1- to 4-leaf stage). Treated plants and controls were maintained in a greenhouse for 14 to 21 d, after which time all species were compared to controls and visually evaluated. Plant response ratings, summarized in Table E, are based on a scale of 0 to 100 where 0 is no effect and 100 is complete control. A dash (-) response means no test result.

Table E

Compounds

30	250 g ai/ha	1	2	20	25	28	34	41	42	47	57	69	72	75	79
Postemergence															
	Arrowleaf Sida	80	40	80	85	60	75	90	80	60	45	80	90	80	70
	Barnyardgrass	35	35	80	50	60	40	60	35	60	90	30	50	30	20
	Beggarticks	100	100	100	100	100	100	100	100	98	100	100	98	100	100
35	Corn	5	5	15	15	5	5	5	20	20	15	5	30	0	0
	Crabgrass, Brazil	35	15	50	50	60	50	50	50	40	30	30	70	50	40

231

	Dayflower, VA	50	65	50	65	80	90	90	70	10	30	80	80	65	65
	Field Bindweed	95	80	95	90	80	95	95	90	90	95	90	90	85	95
	Horseweed	-	-	85	-	80	90	70	85	75	80	90	70	50	90
	Kochia	-	-	90	98	90	85	95	98	85	75	95	90	100	98
5	Panicum, Fall	85	90	50	90	90	60	50	95	70	80	50	85	60	75
	Pigweed, Palmer	98	35	70	85	50	75	95	95	70	60	60	75	100	75
	Poinsettia, Wild	35	15	30	60	40	-	-	-	30	20	0	75	-	10
	Ragweed	-	-	80	95	75	100	95	90	95	95	95	95	90	100
	Ryegrass, Italian	90	75	80	90	75	90	90	90	10	50	85	90	90	80
10	Sandbur	30	30	40	75	80	90	75	60	35	70	10	80	30	65
	Soybean	20	0	30	75	60	60	75	50	30	10	20	50	75	10
	Waterhemp	100	90	85	90	75	90	85	90	100	75	90	90	95	80
	Waterhemp_RES1	100	100	80	95	80	95	95	98	95	60	85	90	90	75
	Waterhemp_RES2	75	60	60	75	50	70	85	80	70	50	65	65	75	55
15	Table E														Compounds
	250 g ai/ha	81	82	83	84	85	88	100	126	153	171				
	Postemergence														
	Arrowleaf Sida	60	90	60	80	50	60	75	85	40	95				
	Barnyardgrass	50	50	50	40	30	25	50	30	80	50				
20	Beggarticks	100	98	100	100	100	100	100	100	100	100				
	Corn	5	0	10	0	5	5	0	5	0	0				
	Crabgrass, Brazil	50	50	50	20	50	50	50	50	50	60				
	Dayflower, VA	80	65	70	30	80	80	0	50	95	90				
	Field Bindweed	85	85	75	80	90	75	95	100	95	100				
25	Horseweed	85	80	90	85	90	90	80	80	85	60				
	Kochia	75	98	65	100	80	90	100	100	70	100				
	Panicum, Fall	90	75	90	90	95	85	80	35	90	75				
	Pigweed, Palmer	50	65	60	70	80	50	50	80	40	70				
	Poinsettia, Wild	50	50	-	40	-	-	35	50	75	80				
30	Ragweed	80	90	75	95	85	80	90	100	90	98				
	Ryegrass, Italian	80	80	85	85	80	85	85	90	95	90				
	Sandbur	75	75	70	65	70	70	50	40	70	60				
	Soybean	10	35	15	35	15	10	0	30	25	70				
	Waterhemp	75	90	60	95	90	70	90	90	75	90				
35	Waterhemp_RES1	65	95	70	95	80	85	90	100	60	90				
	Waterhemp_RES2	50	60	50	70	50	50	70	85	50	60				

232

Table E

Compounds

125 g ai/ha

1 2 20 25 28 34 41 42 47 57 66 69 72 75

Postemergence

Arrowleaf Sida 70 35 70 80 60 70 95 70 60 40 70 70 80 80

5 Barnyardgrass 25 30 60 50 50 40 50 30 40 90 20 20 40 25

Beggarticks 100 100 98 100 100 98 95 100 98 100 100 100 98 100

Corn 5 5 0 20 5 0 0 15 5 15 15 0 20 0

Crabgrass, Brazil 20 10 20 50 50 50 30 40 25 20 40 30 60 50

Dayflower, VA 30 65 50 50 70 90 85 60 0 35 50 65 80 50

10 Field Bindweed 85 75 90 95 60 80 85 90 85 98 80 80 95 80

Horseweed - - 70 - 80 80 80 75 60 75 90 85 75 60

Kochia - - 75 100 75 85 95 95 80 60 95 80 90 100

Panicum, Fall 80 85 30 80 70 70 30 80 55 70 80 30 80 50

Pigweed, Palmer 75 5 55 100 50 65 90 60 30 30 80 40 60 100

15 Poinsettia, Wild 15 15 30 35 50 - - - 25 30 - 5 65 -

Ragweed - - 85 90 70 90 90 95 95 95 90 90 90 60

Ryegrass, Italian 65 65 70 85 75 85 85 85 0 20 50 90 85 85

Sandbur 30 20 30 70 60 85 70 60 25 65 60 5 75 20

Soybean 15 0 40 30 50 70 60 30 20 15 20 25 30 70

20 Waterhemp 98 75 80 85 70 85 90 100 85 30 80 80 80 90

Waterhemp_RES1 98 70 80 85 60 90 90 70 80 40 80 85 80 95

Waterhemp_RES2 70 5 50 70 50 - 80 70 60 20 50 50 50 60

Table E

Compounds

125 g ai/ha 79 81 82 83 84 85 88 90 99 100 105 109 126 153

25 Postemergence

Arrowleaf Sida 60 30 80 60 70 50 50 90 60 70 70 80 100 40

Barnyardgrass 20 30 50 40 40 20 20 50 50 30 30 40 40 50

Beggarticks 100 100 98 100 95 100 100 100 95 90 100 100 100 100

Corn 0 5 0 0 0 0 5 0 0 0 20 20 5 0

30 Crabgrass, Brazil 25 50 50 50 15 50 30 70 20 40 50 50 40 40

Dayflower, VA 60 80 60 75 10 60 70 90 75 0 60 60 50 90

Field Bindweed 95 75 95 70 100 60 60 100 80 90 95 90 95 100

Horseweed 95 65 75 85 85 85 90 70 75 75 - 85 85 85

Kochia 90 70 95 75 100 80 80 100 70 80 100 100 100 100 55

35 Panicum, Fall 60 85 75 80 85 80 85 70 70 70 80 80 30 90

Pigweed, Palmer 40 - 75 50 80 80 50 60 50 40 70 100 50 30

233

	Poinsettia, Wild	20	40	40	-	30	-	-	60	50	10	30	50	50	50
	Ragweed	95	85	90	70	98	60	70	90	90	90	95	95	100	80
	Ryegrass, Italian	70	75	75	80	75	75	80	85	80	70	80	85	85	90
	Sandbur	50	70	70	65	60	70	70	50	40	40	50	70	40	60
5	Soybean	15	0	40	0	10	5	0	60	30	0	25	20	40	10
	Waterhemp	70	60	85	40	90	65	60	90	75	-	90	90	90	50
	Waterhemp_RES1	70	60	85	80	80	75	65	80	75	85	100	90	90	50
	Waterhemp_RES2	15	50	60	40	70	40	50	70	60	65	70	60	70	30

Table	E	Compound	Table	E	Compound
125 g ai/ha		171	125 g ai/ha		171
Postemergence			Postemergence		
Arrowleaf Sida	90		Pigweed, Palmer	60	
Barnyardgrass	50		Poinsettia, Wild	40	
Beggarticks	100		Ragweed	90	
Corn	0		Ryegrass, Italian	85	
Crabgrass, Brazil	50		Sandbur	50	
Dayflower, VA	70		Soybean	50	
Field Bindweed	100		Waterhemp	85	
Horseweed	70		Waterhemp_RES1	75	
Kochia	100		Waterhemp_RES2	40	
Panicum, Fall	60				

10	62 g ai/ha	Compounds													
		1	2	20	25	34	41	42	47	57	66	69	72	75	79
	Postemergence														
	Arrowleaf Sida	70	30	60	75	60	90	60	50	20	60	60	75	70	50
	Barnyardgrass	20	25	50	50	40	35	30	30	85	25	25	40	30	15
	Beggarticks	98	100	95	100	100	95	95	100	100	90	85	100	95	100
15	Corn	5	0	0	20	0	0	15	5	10	10	0	10	0	0
	Crabgrass, Brazil	15	0	20	40	40	20	35	20	20	30	20	40	40	20
	Dayflower, VA	0	15	10	40	80	40	50	5	15	60	50	65	50	50
	Field Bindweed	70	65	85	95	80	90	85	75	95	80	85	80	90	95
	Horseweed	-	-	80	-	75	80	75	40	75	90	75	60	50	95
20	Kochia	-	-	65	95	98	95	85	70	70	90	80	98	98	80
	Panicum, Fall	75	70	15	50	65	25	50	55	60	70	20	80	40	60
	Pigweed, Palmer	90	5	35	80	80	60	75	35	20	60	20	50	70	35

234

	Poinsettia, Wild	15	0	20	30	-	-	-	15	10	-	0	40	-	10
	Ragweed	-	-	75	90	85	-	85	90	60	80	80	90	70	98
	Ryegrass, Italian	50	50	50	80	80	85	70	0	0	40	70	80	80	40
	Sandbur	30	15	20	60	80	50	50	20	60	50	0	70	20	30
5	Soybean	10	0	20	20	40	40	20	25	0	20	10	30	70	10
	Waterhemp	95	75	75	80	85	85	80	80	50	75	85	65	90	60
	Waterhemp_RES1	90	70	70	80	90	75	75	70	50	75	70	80	90	60
	Waterhemp_RES2	70	5	50	60	80	80	65	50	10	40	40	40	60	15
	Table E														Compounds
10	62 g ai/ha	81	82	83	84	85	88	90	99	100	105	109	126	153	171
	Postemergence														
	Arrowleaf Sida	40	70	50	60	50	50	90	50	60	60	60	80	50	80
	Barnyardgrass	20	40	50	30	30	30	40	40	40	30	30	50	40	45
	Beggarticks	100	90	100	100	100	100	98	100	80	100	85	100	100	95
15	Corn	0	0	0	0	0	0	5	0	5	15	10	10	0	0
	Crabgrass, Brazil	40	30	40	10	30	15	50	10	50	40	30	25	30	50
	Dayflower, VA	70	50	60	0	60	60	80	70	0	50	50	20	90	50
	Field Bindweed	65	80	70	100	50	60	90	70	80	75	95	90	90	85
	Horseweed	75	70	80	75	85	95	75	60	70	85	90	75	80	60
20	Kochia	70	98	60	98	70	70	95	60	80	90	95	100	50	95
	Panicum, Fall	80	65	70	70	75	80	60	50	50	70	65	35	90	50
	Pigweed, Palmer	20	60	40	75	80	55	50	30	30	70	65	50	20	50
	Poinsettia, Wild	40	30	-	30	-	-	50	40	0	25	45	20	30	30
	Ragweed	60	90	50	95	50	50	80	80	85	90	90	80	70	75
25	Ryegrass, Italian	70	70	60	65	60	65	85	70	60	70	90	80	90	75
	Sandbur	60	60	50	50	60	60	50	40	40	45	60	30	85	50
	Soybean	0	25	0	15	0	0	40	10	0	15	20	30	15	40
	Waterhemp	60	80	50	85	50	60	80	60	75	80	80	90	40	80
	Waterhemp_RES1	60	75	65	85	75	70	50	70	80	75	90	95	30	70
30	Waterhemp_RES2	20	50	40	65	50	50	60	40	60	60	50	70	40	30
	Table E														Compounds
	31 g ai/ha	1	2	20	25	34	41	42	47	57	66	69	72	75	79
	Postemergence														
	Arrowleaf Sida	50	25	40	60	65	85	20	40	10	40	50	70	70	50
35	Barnyardgrass	15	20	30	40	30	20	20	10	80	15	20	30	20	15

235

	Beggarticks	85	95	85	100	90	100	95	85	100	80	80	90	100	100
	Corn	5	0	0	10	0	0	10	0	15	0	0	0	0	0
	Crabgrass, Brazil	15	10	10	30	40	10	20	20	15	20	10	50	40	20
	Dayflower, VA	0	20	0	10	60	50	30	0	10	25	20	60	30	50
5	Field Bindweed	65	60	75	90	70	80	90	70	85	60	70	70	85	80
	Horseweed	-	-	70	-	85	75	75	40	60	80	70	60	40	90
	Kochia	-	-	60	90	70	90	75	60	50	95	75	70	90	70
	Panicum, Fall	75	70	0	50	50	15	60	40	40	70	20	75	50	55
	Pigweed, Palmer	20	50	40	75	50	50	70	35	10	70	10	50	70	40
10	Poinsettia, Wild	10	0	0	35	-	-	-	10	10	-	5	30	-	10
	Ragweed	-	-	65	90	90	80	90	80	50	80	70	85	55	90
	Ryegrass, Italian	35	30	40	75	65	80	50	0	0	30	65	80	75	30
	Sandbur	10	10	15	50	70	60	35	20	50	40	0	60	10	20
	Soybean	0	0	20	0	35	30	10	20	10	0	5	25	70	0
15	Waterhemp	85	70	70	80	70	75	75	75	50	65	65	65	80	50
	Waterhemp_RES1	80	70	60	75	90	75	75	60	40	80	65	60	90	50
	Waterhemp_RES2	75	0	50	70	40	20	60	15	20	40	50	35	60	20
	Table E														Compounds
	31 g ai/ha	81	82	83	84	85	88	90	99	100	105	109	126	153	171
20	Postemergence														
	Arrowleaf Sida	40	65	50	50	40	60	80	30	50	60	65	75	40	80
	Barnyardgrass	20	30	40	30	20	20	30	30	30	20	30	40	25	40
	Beggarticks	90	90	98	95	90	100	90	80	75	90	90	100	100	80
	Corn	0	0	0	0	0	0	0	0	0	5	0	0	0	0
25	Crabgrass, Brazil	40	20	30	10	15	15	55	10	25	20	40	10	20	40
	Dayflower, VA	60	40	50	5	50	50	60	60	0	30	30	0	85	40
	Field Bindweed	60	85	60	70	50	50	80	60	75	80	80	85	80	70
	Horseweed	50	60	75	60	60	75	70	50	35	85	80	70	85	50
	Kochia	60	90	40	80	60	60	90	50	60	80	95	100	50	90
30	Panicum, Fall	85	70	70	60	75	75	60	30	30	60	60	10	85	40
	Pigweed, Palmer	30	50	40	70	65	50	65	10	20	70	50	40	20	50
	Poinsettia, Wild	30	40	-	20	-	-	35	30	0	30	25	30	20	25
	Ragweed	60	85	60	85	50	50	75	75	75	-	85	70	75	60
	Ryegrass, Italian	50	50	60	60	50	50	80	50	50	50	75	70	85	65
35	Sandbur	60	50	40	50	40	40	40	30	20	40	40	0	50	30
	Soybean	0	10	0	10	0	0	30	0	0	10	0	10	0	40

236

Waterhemp	50	70	40	70	50	70	70	45	80	70	75	75	50	80
Waterhemp_RES1	50	60	70	60	80	60	50	50	80	80	70	75	50	50
Waterhemp_RES2	10	50	30	55	40	40	50	50	50	50	50	55	10	15

Table E Compounds

5	16 g ai/ha	1	2	66	90	99	105	109						
Postemergence														
	Arrowleaf Sida	30	0	30	70	10	50	50						
	Barnyardgrass	10	20	20	30	40	15	25						
	Beggarticks	70	85	75	85	70	80	80						
10	Corn	0	0	0	5	0	0	0						
	Crabgrass, Brazil	0	0	10	50	5	5	10						
	Dayflower, VA	0	0	0	40	40	30	30						
	Field Bindweed	65	60	70	60	50	75	75						
	Horseweed	-	-	60	50	40	80	60						
15	Kochia	-	-	90	90	55	80	80						
	Panicum, Fall	70	60	30	40	20	40	50						
	Pigweed, Palmer	70	0	50	40	5	75	60						
	Poinsettia, Wild	5	0	-	20	35	30	0						
	Ragweed	-	-	75	50	50	70	80						
20	Ryegrass, Italian	20	20	20	75	40	30	50						
	Sandbur	0	5	25	40	20	30	60						
	Soybean	0	0	0	20	0	0	0						
	Waterhemp	70	70	70	50	65	60	60						
	Waterhemp_RES1	75	65	70	50	50	80	60						
25	Waterhemp_RES2	0	0	40	50	50	40	-						

Table E Compounds

250	g ai/ha	1	2	20	25	27	28	29	34	37	41	47	57	59	69
Preemergence															
	Arrowleaf Sida	80	5	95	95	35	70	98	80	98	100	90	40	98	80
30	Barnyardgrass	20	70	30	90	95	90	90	65	30	65	95	100	90	10
	Beggarticks	100	100	98	100	100	100	100	100	100	100	100	100	100	100
	Corn	0	0	0	0	0	0	0	0	0	25	0	0	20	10
	Crabgrass, Brazil	100	100	90	95	95	90	90	80	95	80	60	70	100	60
	Crabgrass, Large	65	60	30	85	90	90	65	20	90	60	35	0	95	20
35	Dayflower, VA	25	90	0	30	65	70	60	90	60	80	80	80	80	70

237

	Field Bindweed	100	70	95	98	70	75	98	60	100	90	100	100	95	85
	Foxtail, Giant	98	98	90	100	100	100	98	65	90	90	80	95	100	60
	Foxtail, Green	90	98	70	100	100	100	100	65	80	75	70	100	100	30
	Goosegrass	25	25	85	90	85	90	90	10	80	60	0	5	98	50
5	Horseweed	-	-	100	100	100	98	100	-	100	100	-	-	100	-
	Johnsongrass	40	50	0	90	70	90	100	0	100	25	20	35	80	20
	Kochia	85	40	100	100	100	100	70	85	65	100	100	100	100	95
	Lambsquarters	100	100	100	100	100	98	98	98	100	100	100	100	100	90
	Morningglory	100	100	95	100	100	100	95	90	65	95	100	100	100	85
10	Nightshade	100	100	-	98	98	100	90	95	98	98	100	98	-	90
	Nutsedge, Yellow	70	70	95	65	80	95	70	80	70	85	35	70	70	60
	Panicum, Fall	100	100	98	100	100	100	98	95	100	98	95	100	100	70
	Pigweed, Palmer	100	100	70	100	85	98	100	90	100	85	65	60	100	70
	Poinsettia, Wild	35	50	-	-	-	-	-	-	-	65	20	50	-	20
15	Ragweed	100	98	98	100	100	98	98	100	98	100	100	100	100	100
	Ryegrass, Italian	100	100	100	100	100	100	100	100	100	100	50	80	100	100
	Sandbur	70	75	75	85	90	85	90	70	65	80	70	80	90	60
	Soybean	75	40	-	70	0	0	50	0	0	65	40	20	70	20
	Surinam Grass	75	95	90	95	100	98	100	80	90	95	35	95	100	50
20	Velvetleaf	98	90	100	100	100	100	100	100	100	100	100	100	98	90
	Waterhemp	100	98	100	100	95	100	100	100	100	100	80	100	100	

Table E

Compounds

	250 g ai/ha	72	75	79	81	82	83	84	85	87	88	153
Preemergence												
25	Arrowleaf Sida	65	98	75	70	95	65	100	70	80	50	75
	Barnyardgrass	50	65	50	75	40	75	20	35	35	70	90
	Beggarticks	100	100	100	100	100	100	100	100	100	100	100
	Corn	0	35	20	0	5	0	15	0	15	0	20
	Crabgrass, Brazil	98	90	100	100	100	80	100	90	100	90	100
30	Crabgrass, Large	90	30	30	98	90	20	75	25	65	20	80
	Dayflower, VA	50	75	70	65	35	65	50	75	35	70	90
	Field Bindweed	90	98	100	100	95	100	98	95	100	100	100
	Foxtail, Giant	80	75	90	100	95	100	90	100	95	100	100
	Foxtail, Green	70	90	90	100	90	70	100	100	80	100	95
35	Goosegrass	80	5	65	80	90	25	35	20	75	0	75
	Horseweed	100	-	100	100	100	-	100	-	-	-	100

238

	Johnsongrass	35	15	65	100	50	20	0	0	75	0	60
	Kochia	98	100	100	100	100	75	100	98	100	98	90
	Lambsquarters	100	100	100	100	100	100	100	100	100	100	100
	Morningglory	95	100	100	100	100	100	95	100	90	100	100
5	Nightshade	100	100	100	98	100	100	100	100	98	100	100
	Nutsedge, Yellow	35	65	75	90	65	75	40	65	60	65	95
	Panicum, Fall	98	90	90	100	100	98	100	100	98	100	100
	Pigweed, Palmer	90	100	75	100	100	80	100	90	90	100	95
	Poinsettia, Wild	20	-	55	60	20	-	30	-	20	-	75
10	Ragweed	100	100	100	100	100	98	100	98	100	100	100
	Ryegrass, Italian	100	100	100	100	100	100	100	100	100	100	100
	Sandbur	70	70	75	90	75	80	75	90	85	85	90
	Soybean	15	70	50	0	-	0	0	0	0	0	-
	Surinam Grass	90	90	80	95	90	95	95	90	75	95	100
15	Velvetleaf	90	98	100	95	98	100	90	95	95	100	100
	Waterhemp	100	100	100	90	100	75	100	85	100	100	100

Table E Compounds

	125 g ai/ha	1	2	20	21	25	27	28	29	34	37	41	47	57	59
Preemergence															
20	Arrowleaf Sida	75	0	85	50	90	75	50	98	65	90	98	75	50	98
	Barnyardgrass	0	25	10	90	60	80	65	65	35	0	40	50	75	60
	Beggarticks	100	100	95	100	100	100	100	100	100	98	100	100	100	100
	Corn	0	0	0	30	0	0	0	0	0	0	0	0	0	0
	Crabgrass, Brazil	100	50	70	100	95	95	80	70	80	90	100	0	40	100
25	Crabgrass, Large	35	30	35	100	80	50	90	40	50	80	80	0	0	80
	Dayflower, VA	15	25	0	80	15	30	65	10	70	40	70	0	30	80
	Field Bindweed	95	35	85	98	60	70	90	95	40	85	75	90	98	95
	Foxtail, Giant	95	98	75	100	98	100	100	95	40	80	70	40	95	98
	Foxtail, Green	90	95	65	100	98	100	100	90	25	65	50	30	90	95
30	Goosegrass	35	25	50	95	80	80	75	50	10	75	50	0	5	98
	Horseweed	-	-	100	100	100	100	100	100	-	100	100	-	-	100
	Johnsongrass	30	35	-	60	80	75	80	65	0	100	0	0	30	80
	Kochia	35	0	98	65	98	80	60	25	5	0	100	75	75	100
	Lambsquarters	100	98	95	100	100	100	100	100	100	98	100	100	100	100
35	Morningglory	90	100	90	100	95	90	95	80	35	50	90	100	100	98
	Nightshade	100	98	-	-	95	95	98	85	98	98	98	100	98	-

239

	Nutsedge, Yellow	50	65	75	80	20	98	70	30	40	65	75	30	60	75
	Panicum, Fall	95	98	65	100	100	100	98	98	90	100	95	80	100	100
	Pigweed, Palmer	100	90	5	98	100	85	95	100	90	100	75	25	40	100
	Poinsettia, Wild	30	30	-	-	-	-	-	-	-	-	40	0	25	-
5	Ragweed	100	98	70	100	98	100	95	70	100	95	90	98	100	100
	Ryegrass, Italian	100	100	98	100	98	100	95	95	100	100	100	30	65	100
	Sandbur	70	70	65	90	80	90	80	90	65	50	75	10	30	90
	Soybean	40	15	20	35	0	0	0	70	15	-	20	0	0	30
	Surinam Grass	80	90	85	100	90	100	100	95	95	75	75	35	85	100
10	Velvetleaf	90	80	80	90	98	95	70	100	100	70	95	75	95	95
	Waterhemp	100	85	85	100	100	85	98	98	100	98	100	90	40	100
	Table E														
															Compounds
	125 g ai/ha	66	69	72	75	79	80	81	82	83	84	85	87	88	105
	Preemergence														
15	Arrowleaf Sida	65	50	85	90	75	25	70	85	35	80	50	70	0	50
	Barnyardgrass	15	15	50	35	40	20	35	30	35	10	30	10	30	35
	Beggarticks	100	100	98	100	100	100	100	100	100	100	100	100	100	100
	Corn	20	0	0	0	0	0	0	0	0	0	0	20	0	0
	Crabgrass, Brazil	65	50	90	90	80	100	90	100	50	90	80	90	25	75
20	Crabgrass, Large	15	0	30	0	20	35	90	80	40	15	0	65	20	75
	Dayflower, VA	20	70	50	60	65	10	35	5	25	35	30	10	10	10
	Field Bindweed	40	95	65	100	100	100	75	100	35	100	20	95	65	70
	Foxtail, Giant	90	50	70	35	85	85	98	50	100	85	95	70	100	75
	Foxtail, Green	70	0	65	0	80	65	95	75	95	75	15	60	100	40
25	Goosegrass	10	30	60	0	60	20	70	70	5	30	5	60	5	10
	Horseweed	-	-	100	-	100	100	100	100	-	100	-	-	-	100
	Johnsongrass	0	0	35	10	-	80	65	35	0	0	0	70	0	20
	Kochia	90	50	60	100	100	100	35	100	0	100	0	100	25	100
	Lambsquarters	100	-	100	100	100	100	100	100	100	100	100	100	100	100
30	Morningglory	40	50	80	60	90	75	100	90	95	90	50	50	100	60
	Nightshade	100	90	100	90	100	98	100	98	100	50	100	98	15	98
	Nutsedge, Yellow	50	30	30	70	65	35	80	40	70	60	35	65	50	40
	Panicum, Fall	98	75	90	80	80	98	100	98	100	95	98	100	100	98
	Pigweed, Palmer	100	60	95	50	70	70	75	100	50	90	50	75	70	90
35	Poinsettia, Wild	-	20	10	-	60	40	30	0	-	10	-	15	-	10
	Ragweed	100	95	90	80	100	100	100	100	95	100	90	98	100	98

240

Ryegrass, Italian	100	100	100	100	100	98	90	100	98	98	95	98	100	100
Sandbur	70	50	60	40	80	75	70	60	75	60	80	75	80	75
Soybean	0	10	0	40	40	0	0	0	0	0	0	0	0	75
Surinam Grass	50	20	75	60	60	75	95	85	85	90	70	80	90	70
Velvetleaf	80	60	80	100	95	90	90	95	70	70	70	90	70	95
Waterhemp	90	100	100	100	100	90	100	75	90	70	90	75	100	

Table E	Compounds		Table E	Compounds	
125 g ai/ha	109 153		125 g ai/ha	109 153	
Preemergence			Preemergence		
Arrowleaf Sida	35	60	Lambsquarters	98	100
Barnyardgrass	25	70	Morningglory	65	90
Beggarticks	100	100	Nightshade	98	95
Corn	0	10	Nutsedge, Yellow	40	80
Crabgrass, Brazil	70	100	Panicum, Fall	95	100
Crabgrass, Large	35	75	Pigweed, Palmer	85	60
Dayflower, VA	25	90	Poinsettia, Wild	30	60
Field Bindweed	80	100	Ragweed	100	95
Foxtail, Giant	80	95	Ryegrass, Italian	98	100
Foxtail, Green	60	90	Sandbur	75	85
Goosegrass	50	60	Soybean	0	30
Horseweed	100	100	Surinam Grass	40	90
Johnsongrass	40	-	Velvetleaf	65	90
Kochia	100	50	Waterhemp	98	85

Table E	Compounds													
62 g ai/ha	1	2	20	21	25	27	28	29	34	37	41	47	57	59
Preemergence														
Arrowleaf Sida	65	0	70	0	80	65	0	90	20	85	50	0	0	95
Barnyardgrass	0	0	0	70	60	50	20	25	0	0	25	0	0	25
Beggarticks	100	100	85	100	100	100	100	98	100	98	98	100	100	100
Corn	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Crabgrass, Brazil	80	60	60	98	90	70	70	75	10	85	65	0	0	90
Crabgrass, Large	20	0	35	85	15	50	35	25	0	75	70	0	0	50
Dayflower, VA	20	20	0	60	5	10	10	0	35	5	40	0	25	40
Field Bindweed	80	15	65	95	98	40	0	90	50	90	70	50	95	75
Foxtail, Giant	35	95	20	98	95	98	100	80	40	70	65	0	35	95

241

	Foxtail, Green	70	95	40	100	98	100	98	75	0	60	25	20	20	90
	Goosegrass	5	5	10	95	65	75	60	20	5	35	0	0	0	95
	Horseweed	-	-	100	100	100	100	100	100	-	100	100	-	-	100
	Johnsongrass	0	20	-	20	60	75	80	70	0	0	0	0	30	25
5	Kochia	5	0	90	0	80	25	0	0	5	0	90	85	65	90
	Lambsquarters	98	98	95	100	100	100	100	100	100	100	100	100	100	100
	Morningglory	98	90	75	98	70	85	90	65	25	40	50	75	40	95
	Nightshade	95	98	-	-	80	100	98	70	25	80	80	98	98	-
	Nutsedge, Yellow	15	35	50	75	20	15	20	0	80	0	65	-	30	35
10	Panicum, Fall	90	95	35	100	100	100	95	95	80	100	90	50	98	98
	Pigweed, Palmer	100	50	0	70	90	60	65	70	0	90	85	0	35	98
	Poinsettia, Wild	30	30	-	-	-	-	-	-	-	-	40	0	20	-
	Ragweed	75	75	65	98	95	95	90	85	75	90	70	95	100	95
	Ryegrass, Italian	100	98	95	100	95	95	80	75	100	95	100	30	35	100
15	Sandbur	20	15	0	80	65	40	65	75	40	35	70	0	0	70
	Soybean	15	0	0	35	-	0	0	50	35	0	35	0	0	30
	Surinam Grass	50	75	65	100	80	95	98	95	75	75	75	0	70	90
	Velvetleaf	75	60	65	90	100	80	35	95	90	50	85	-	65	95
	Waterhemp	100	80	65	95	100	90	80	90	100	75	98	90	75	100
20	Table E														Compounds
	62 g ai/ha	66	69	72	75	79	80	81	82	83	84	85	87	88	105
	Preemergence														
	Arrowleaf Sida	40	60	35	75	80	35	60	70	25	0	0	60	0	40
	Barnyardgrass	20	10	30	20	30	20	25	15	30	0	0	0	0	20
25	Beggarticks	95	95	80	80	100	100	100	100	100	100	100	100	100	100
	Corn	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Crabgrass, Brazil	25	20	60	20	30	90	95	100	10	85	50	80	40	35
	Crabgrass, Large	0	0	0	0	0	35	75	70	5	10	0	0	5	50
	Dayflower, VA	0	60	15	10	70	0	15	5	10	20	0	0	5	0
30	Field Bindweed	50	40	0	5	90	70	0	50	5	90	5	98	5	50
	Foxtail, Giant	40	50	65	5	70	80	98	65	98	35	65	65	98	35
	Foxtail, Green	35	0	35	0	70	50	70	70	40	50	25	20	75	30
	Goosegrass	10	10	40	0	60	30	40	25	0	30	5	0	0	0
	Horseweed	-	-	100	-	100	100	100	100	-	100	-	-	-	100
35	Johnsongrass	0	0	0	0	-	80	90	-	0	0	0	65	0	20
	Kochia	60	-	35	100	70	100	20	90	0	75	0	100	0	35

242

	Lambsquarters	100	-	80	100	100	98	100	75	98	100	100	100	100	100
	Morningglory	30	30	30	30	85	70	85	80	20	70	30	35	30	70
	Nightshade	15	80	80	0	100	100	90	98	50	100	95	90	5	98
	Nutsedge, Yellow	65	0	20	10	60	40	30	10	65	0	35	60	50	10
5	Panicum, Fall	95	20	80	50	70	95	100	95	95	90	85	90	98	90
	Pigweed, Palmer	65	60	75	85	70	70	75	90	20	100	30	65	50	98
	Poinsettia, Wild	-	25	15	-	60	0	5	0	-	0	-	15	-	10
	Ragweed	90	85	90	65	100	100	100	80	75	98	80	95	85	95
	Ryegrass, Italian	90	90	90	100	80	98	95	95	95	95	80	95	98	95
10	Sandbur	10	40	35	10	70	70	40	35	70	30	50	65	65	70
	Soybean	0	15	0	35	50	0	0	0	0	0	0	0	0	0
	Surinam Grass	5	5	40	35	50	20	90	65	60	65	70	15	75	10
	Velvetleaf	20	20	40	85	80	70	70	75	35	70	30	60	65	70
	Waterhemp	80	100	100	60	100	100	90	90	65	90	80	90	90	90

	Table E	Compounds		Table E	Compounds	
	62 g ai/ha	109 153		62 g ai/ha	109 153	
	Preemergence			Preemergence		
	Arrowleaf Sida	30	70	Lambsquarters	100	100
	Barnyardgrass	10	50	Morningglory	20	90
	Beggarticks	100	100	Nightshade	65	85
	Corn	0	0	Nutsedge, Yellow	40	70
	Crabgrass, Brazil	40	70	Panicum, Fall	90	100
	Crabgrass, Large	40	70	Pigweed, Palmer	100	60
	Dayflower, VA	25	85	Poinsettia, Wild	25	50
	Field Bindweed	40	100	Ragweed	100	100
	Foxtail, Giant	40	95	Ryegrass, Italian	98	100
	Foxtail, Green	40	75	Sandbur	65	85
	Goosegrass	25	40	Soybean	-	50
	Horseweed	100	100	Surinam Grass	60	80
	Johnsongrass	0	0	Velvetleaf	25	90
	Kochia	85	30	Waterhemp	70	70

15	Table E	Compounds													
	31 g ai/ha	1	2	20	21	25	27	28	29	34	37	41	47	57	59
	Preemergence														
	Arrowleaf Sida	0	0	0	0	40	40	-	70	0	70	20	0	0	80

243

	Barnyardgrass	0	0	0	40	20	15	20	0	0	0	10	0	0	0
	Beggarticks	100	100	20	100	100	90	100	80	90	80	65	100	100	100
	Corn	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Crabgrass, Brazil	10	35	40	90	75	70	70	30	0	70	80	0	0	60
5	Crabgrass, Large	0	0	30	65	-	35	-	0	0	50	65	0	0	0
	Dayflower, VA	0	15	0	80	0	0	5	0	35	0	15	0	0	10
	Field Bindweed	20	0	35	35	80	0	0	80	5	75	30	50	70	65
	Foxtail, Giant	50	75	5	95	80	95	85	70	5	65	30	0	5	85
	Foxtail, Green	15	35	0	95	65	75	65	65	0	0	20	0	0	65
10	Goosegrass	15	0	20	90	20	35	35	0	5	35	0	0	10	90
	Horseweed	-	-	100	100	100	100	100	100	-	100	100	-	-	100
	Johnsongrass	0	35	0	-	75	70	70	70	0	0	0	0	0	0
	Kochia	0	0	0	0	20	0	0	0	0	0	90	0	20	80
	Lambsquarters	65	100	70	100	98	100	100	100	10	100	35	100	100	100
15	Morningglory	60	75	20	90	65	85	50	35	0	15	30	25	85	75
	Nightshade	90	75	-	-	90	90	80	5	0	90	25	80	90	-
	Nutsedge, Yellow	10	0	0	0	0	10	20	0	0	0	25	0	0	50
	Panicum, Fall	75	85	0	100	95	100	90	85	70	90	80	50	95	95
	Pigweed, Palmer	90	20	0	65	65	-	0	90	0	0	15	0	35	95
20	Poinsettia, Wild	30	25	-	-	-	-	-	-	-	-	-	15	0	0
	Ragweed	70	35	30	95	75	95	95	90	70	50	5	80	90	100
	Ryegrass, Italian	95	95	90	100	95	80	70	65	90	85	98	5	10	100
	Sandbur	10	15	0	80	35	30	15	75	0	20	50	0	0	70
	Soybean	0	0	0	35	0	0	0	70	0	0	0	0	0	35
25	Surinam Grass	25	35	10	95	65	85	85	75	5	50	10	0	5	85
	Velvetleaf	75	30	0	80	60	50	0	70	20	30	20	0	30	90
	Waterhemp	90	65	0	95	100	95	65	80	100	0	75	50	80	75
	Table E														Compounds
	31 g ai/ha	66	69	72	75	79	80	81	82	83	84	85	87	88	105
30	Preemergence														
	Arrowleaf Sida	0	20	20	50	75	0	40	20	15	0	0	0	0	0
	Barnyardgrass	15	10	0	20	30	0	0	0	0	0	0	0	0	-
	Beggarticks	70	90	70	35	100	85	80	100	100	90	90	90	85	80
	Corn	0	0	0	0	0	0	0	0	0	0	0	0	0	0
35	Crabgrass, Brazil	25	0	50	0	-	75	65	75	0	80	10	60	15	0
	Crabgrass, Large	0	0	0	0	0	0	50	-	0	0	0	0	0	0

244

	Dayflower, VA	0	50	0	10	50	0	10	0	0	10	0	0	0	0
	Field Bindweed	5	0	0	0	60	25	0	65	0	60	-	40	0	20
	Foxtail, Giant	5	40	35	0	60	50	75	30	95	5	15	25	95	0
	Foxtail, Green	0	0	30	0	55	15	20	20	0	10	0	20	50	0
5	Goosegrass	5	0	20	0	50	0	20	20	0	20	5	0	0	0
	Horseweed	-	-	0	-	100	100	90	90	-	100	-	-	-	0
	Johnsongrass	0	0	0	0	70	0	70	0	0	0	0	-	0	0
	Kochia	0	0	25	98	50	90	0	20	0	0	0	65	0	0
	Lambsquarters	90	10	90	100	100	100	98	98	100	15	70	100	100	0
10	Morningglory	0	20	20	0	60	65	60	70	25	20	25	20	25	20
	Nightshade	0	70	0	0	80	75	80	90	35	80	95	50	0	50
	Nutsedge, Yellow	5	0	-	0	50	10	35	0	65	0	-	0	10	0
	Panicum, Fall	60	20	75	10	80	90	98	90	90	85	95	95	90	65
	Pigweed, Palmer	0	40	35	30	75	35	35	90	0	75	25	0	65	0
15	Poinsettia, Wild	-	0	0	-	50	0	0	0	-	0	-	0	-	10
	Ragweed	65	40	0	35	100	70	90	85	70	90	60	98	20	65
	Ryegrass, Italian	65	80	90	100	75	70	75	75	80	80	80	75	95	90
	Sandbur	0	50	0	0	60	65	10	0	20	0	0	25	10	15
	Soybean	0	0	0	0	40	0	0	0	0	0	0	0	0	0
20	Surinam Grass	20	0	5	5	40	10	70	35	65	0	60	10	25	0
	Velvetleaf	0	30	50	35	70	20	10	0	0	25	0	0	15	50
	Waterhemp	65	50	90	50	75	70	60	85	65	85	35	75	60	80

Table E	Compounds	Table E	Compounds
31 g ai/ha	109 153	31 g ai/ha	109 153
Preemergence		Preemergence	
Arrowleaf Sida	35 50	Lambsquarters	95 100
Barnyardgrass	0 20	Morningglory	0 85
Beggarticks	75 100	Nightshade	65 70
Corn	0 0	Nutsedge, Yellow	0 50
Crabgrass, Brazil	60 90	Panicum, Fall	80 100
Crabgrass, Large	0 70	Pigweed, Palmer	20 50
Dayflower, VA	25 80	Poinsettia, Wild	10 40
Field Bindweed	0 90	Ragweed	5 100
Foxtail, Giant	35 75	Ryegrass, Italian	75 100
Foxtail, Green	0 50	Sandbur	40 80
Goosegrass	20 40	Soybean	0 30

245

Horseweed	100	90		Surinam Grass	30	50
Johnsongrass	0	0		Velvetleaf	0	85
Kochia	10	40		Waterhemp	0	60

Table E Compounds

16 g ai/ha 1 2 66 80 105 109

Preemergence

Arrowleaf Sida	0	0	0	0	0	40
5 Barnyardgrass	0	0	0	0	20	0
Beggarticks	100	90	65	100	90	20
Corn	0	0	0	0	0	0
Crabgrass, Brazil	0	0	0	65	-	70
Crabgrass, Large	0	0	0	0	0	0
10 Dayflower, VA	0	0	0	0	0	0
Field Bindweed	5	0	0	20	20	0
Foxtail, Giant	0	40	0	0	0	0
Foxtail, Green	0	0	0	0	0	0
Goosegrass	0	0	5	0	0	0
15 Horseweed	-	-	-	100	0	0
Johnsongrass	0	0	0	-	0	0
Kochia	0	0	0	25	0	0
Lambsquarters	65	50	5	65	0	0
Morningglory	20	0	0	0	40	0
20 Nightshade	80	35	0	75	0	25
Nutsedge, Yellow	0	0	0	5	0	0
Panicum, Fall	65	75	10	80	25	75
Pigweed, Palmer	20	0	0	20	0	0
Poinsettia, Wild	20	0	-	0	0	10
25 Ragweed	35	20	25	70	50	0
Ryegrass, Italian	70	50	40	50	75	60
Sandbur	0	0	0	0	0	0
Soybean	0	0	0	0	0	0
Surinam Grass	0	5	5	0	0	0
30 Velvetleaf	35	0	0	0	0	0
Waterhemp	35	65	0	0	70	0

Test F

This test evaluated the effect of mixtures of Compuond 1 or Compound 2 with various commercial herbicides on multiple plant species. Seeds of multiple plant species selected were planted into Sandy Loam soil and treated either Post-emergence or Pre-emergence with test chemicals formulated in a non-phytotoxic solvent mixture. Plants were grown in a greenhouse using supplemental lighting to maintain a photoperiod of approximately 16 h; daytime and nighttime temperatures were approximately 24–30 and 19–21 °C, respectively. Balanced fertilizer was applied through the watering system. Treated plants and controls were maintained in a greenhouse for 20 d, after which time all species were compared to controls and visually evaluated. Plant response ratings summarized in Tables F1 through F4 and are based on a scale of 0 to 100 where 0 is no effect and 100 is complete control. A dash (–) response means no test result. Application rates (i.e. “Rate”) are expressed in grams of active ingredient per hectare (g a.i./ha). In the following tables KCHSC is kochia (*Kochia scoparia*), LOLMU in Italian Ryegrass (*Lolium multiflorum*), AMBEL is common ragweed (*Ambrosia elatior*), ECHCG is barnyardgrass (*Echinochloa crus-galli*), SETVI is giant foxtail (*Setaria faberii*), AMARE is redroot pigweed (*Amaranthus retroflexus*), ALOMY is blackgrass (*Alopecurus myosuroides*) and GALAP is galium (*Galium aparine*). “Obsd.” is observed effect. “Exp.” is expected effect calculated from Colby’s Equation.

Colby's Equation was used to determine the herbicidal effects expected from the mixtures. Colby's Equation (Colby, S. R. "Calculating Synergistic and Antagonistic Responses of Herbicide Combinations," *Weeds*, 15(1), pp 20-22 (1967)) calculates the expected additive effect of herbicidal mixtures, and for two active ingredients is of the form:

$$P_{a+b} = P_a + P_b - (P_a P_b / 100)$$

25 wherein P_{a+b} is the percentage effect of the mixture expected from additive contribution of the individual components:

P_a is the observed percentage effect of the first active ingredient at the same use rate as in the mixture, and

P_b is the observed percentage effect of the second active ingredient at the same use rate as in the mixture.

30 The results and additive effects expected from Colby's Equation are listed in Tables F1 through F4.

Table F1: Observed and Expected Results from Compound 1 Alone and in Combination with Mesotrione when applied Post-emergence.

Treatment	Rate	KCHSC		LOLMU		AMBEL		ECHCG	
		Obsd.	Exp.	Obsd.	Exp.	Obsd.	Exp.	Obsd.	Exp.

1	16	60.0		65.0		95.0		0.0	
1	62	100.0		100.0		100.0		0.0	
mesotrione	4	0.0		0.0		0.0		0.0	
mesotrione	16	90.0		0.0		75.0		20.0	
1 + mesotrione	16 + 4	100.0	60.0	65.0	65.0	75.0	95.0	20.0	0.0
1 + mesotrione	16+16	100.0	96.0	95.0	65.0	100.0	98.8	75.0	20.0
1 + mesotrione	62+4	100.0	100.0	100.0	100.0	100.0	100.0	60.0	0.0
1 + mesotrione	62+16	100.0	100.0	100.0	100.0	100.0	100.0	100.0	20.0

Treatment	Rate	SETVI		AMARE		ALOMY		GALAP	
		Obsd.	Exp.	Obsd.	Exp.	Obsd.	Exp.	Obsd.	Exp.
1	16	0.0		30.0		0.0		65.0	
1	62	40.0		100.0		35.0		100.0	
mesotrione	4	0.0		0.0		0.0		0.0	
mesotrione	16	0.0		30.0		0.0		35.0	
1 + mesotrione	16+4	0.0	0.0	100.0	30.0	0.0	0.0	100.0	65.0
1 + mesotrione	16+16	20.0	0.0	100.0	51.0	50.0	0.0	100.0	77.3
1 + mesotrione	62+4	70.0	40.0	100.0	100.0	65.0	35.0	100.0	100.0
1 + mesotrione	62+16	95.0	40.0	100.0	100.0	75.0	35.0	100.0	100.0

As can be seen from the results listed in Table F1, most of the observed results for weed species were greater/equal than expected, thereby showing highly synergistic effect of Compound 1 and mesotrione on all above weed species in Post emergence herbicidal application.

Table F2: Observed and Expected Results from Compound 1 Alone and in Combination with Mesotrione when applied Pre-emergence.

Treatment	Rate	KCHSC		LOLMU		AMBEL	
		Obsd.	Exp.	Obsd.	Exp.	Obsd.	Exp.
1	16	0		65		65	
1	62	25		100		90	
mesotrione	4	0		0		0	
mesotrione	16	50		0		30	
1 + mesotrione	16+4	50	0	65	65	85	65
1 + mesotrione	16+ 6	100	25	100	100	100	90
1 + mesotrione	62+4	50	50	80	65	100	76

1 + mesotrione	62+16	100	63	100	100	100	93
----------------	-------	-----	----	-----	-----	-----	----

Treatment	Rate	ECHCG		SETVI		AMARE	
		Obsd.	Exp.	Obsd.	Exp.	Obsd.	Exp.
1	16	0		0		20	
1	62	20		60		90	
mesotrione	4	0		0		0	
mesotrione	16	0		0		20	
1 + mesotrione	16 + 4	0	0	0	0	98	20
1 + mesotrione	16 + 16	10	20	50	60	100	90
1 + mesotrione	62 + 4	20	0	0	0	100	36
1 + mesotrione	62 + 16	45	20	90	60	100	92

As can be seen from the results listed in Table F2, most of the observed results for weed species were greater/equal than expected, thereby showing highly synergistic effect of Compound 1 and mesotrione on all above weed species in Pre-emergence herbicidal application.

Table F3: Observed and Expected Results from Compound 2 Alone and in Combination with Atrazine when applied Post-emergence

Treatment	Rate	KCHSC		LOLMU		AMBEL		ECHCG	
		Obsd.	Exp.	Obsd.	Exp.	Obsd.	Exp.	Obsd.	Exp.
2	16	16	50		75		40		5
2	62	62	75		95		80		20
atrazine	62	62	100		15		10		20
2 + atrazine	16 + 62	100	100	100	100	79	75	46	50
2 + atrazine	62 + 62	100	100	100	100	96	100	82	100

Treatment	Rate	SETVI		AMARE		ALOMY		GALAP	
		Obsd.	Exp.	Obsd.	Exp.	Obsd.	Exp.	Obsd.	Exp.
2	16		15		25		20		100
2	62		80		80		60		100
atrazine	62		5		75		60		50
2 + atrazine	16 + 62	24	85	19	100	81	100	68	100
2 + atrazine	62 + 62	36	95	81	100	95	100	84	100

As can be seen from the results listed in Table F3, most of the observed results for weed species were greater/equal than expected, thereby showing highly synergistic effect of Compound 2 and atrazine on all above weed species in Post emergence herbicidal application.

5 Table F4: Observed and Expected Results from Compound 2 Alone and in Combination with Atrazine when applied Pre-emergence

Treatment	Rate	KCHSC		LOLMU		AMBEL	
		Obsd.	Exp.	Obsd.	Exp.	Obsd.	Exp.
2	16	16	0		0		30
2	62	62	0		50		95
atrazine	62	62	100		100		10
2 + atrazine	16 + 62	100	100	100	65	100	100
2 + atrazine	62 + 62	100	100	100	100	100	100

Treatment	Rate	ECHCG		SETVI		AMARE	
		Obsd.	Exp.	Obsd.	Exp.	Obsd.	Exp.
2	16		0		60		25
2	62		25		98		75
atrazine	62		0		5		85
2 +atrazine	16 + 62	37	25	0	70	62	100
2+atrazine	62 + 62	96	50	25	100	98	100

10 As can be seen from the results listed in Table F4, most of the observed results for weed species were greater/equal than expected, thereby showing synergistic/additive effect of Compound 2 and atrazine on all above weed species in Pre-emergence herbicidal application.

What is claimed:

1. A compound selected from Formula 1, N-oxides and salts thereof,

wherein

W is O or S;

R¹ is H, C₁-C₇ alkyl, C₃-C₈ alkylcarbonylalkyl, C₃-C₈ alkoxy carbonylalkyl, C₄-C₇ alkylcycloalkyl, C₃-C₇ alkenyl, C₃-C₇ alkynyl, C₃-C₇ cycloalkyl, C₄-C₇ cycloalkylalkyl, C₂-C₃ cyanoalkyl, C₁-C₄ nitroalkyl, C₂-C₇ haloalkoxyalkyl, C₁-C₇ haloalkyl, C₃-C₇ haloalkenyl, C₂-C₇ alkoxyalkyl, C₃-C₇ alkylthioalkyl, C₁-C₇ alkoxy or benzyl; or a 5-, or 6-membered saturated or partially saturated heterocyclic ring containing ring members selected from carbon and up to 1 O and 1 S;

R² is H, halogen, -CN, -CHO, C₁-C₇ alkyl, C₃-C₈ alkylcarbonylalkyl, C₃-C₈ alkoxy carbonylalkyl, C₂-C₄ alkylcarbonyl, C₂-C₇ alkylcarbonyloxy, C₄-C₇ alkylcycloalkyl, C₃-C₇ alkenyl, C₃-C₇ alkynyl, C₁-C₄ alkylsulfinyl, C₁-C₄ alkylsulfonyl, C₁-C₄ alkylamino, C₂-C₈ dialkylamino, C₃-C₇ cycloalkyl, C₄-C₇ cycloalkylalkyl, C₂-C₃ cyanoalkyl, C₁-C₄ nitroalkyl, C₂-C₇ haloalkoxyalkyl, C₁-C₇ haloalkyl, C₃-C₇ haloalkenyl, C₂-C₇ alkoxyalkyl, C₁-C₇ alkoxy, C₁-C₅ alkylthio, C₂-C₃ alkoxy carbonyl; or phenyl optionally substituted by halogen, C₁-C₄ alkyl or C₁-C₄ haloalkyl;

X is O, S or NR⁵; or

X is -C(R⁶)=C(R⁷)-, wherein the carbon atom bonded to R⁶ is also bonded to the carbon atom bonded to R⁴, and the carbon atom bonded to R⁷ is also bonded to the phenyl ring moiety in Formula 1;

each R³ is independently halogen, -CN, nitro, C₁-C₅ alkyl, C₂-C₅ alkenyl, C₂-C₅ alkynyl, C₃-C₅ cycloalkyl, C₄-C₅ cycloalkylalkyl, C₁-C₅ haloalkyl, C₃-C₅ haloalkenyl, C₃-C₅ haloalkynyl, C₂-C₅ alkoxyalkyl, C₁-C₅ alkoxy, C₁-C₅ haloalkoxy, C₁-C₅ alkylthio, C₁-C₅ haloalkylthio or C₂-C₅ alkoxy carbonyl;

R^4 , R^6 and R^7 are independently H, halogen, nitro, -CN, C₁-C₅ alkyl, C₂-C₅ alkenyl, C₂-C₅ alkynyl, C₃-C₅ cycloalkyl, C₄-C₅ cycloalkylalkyl, C₁-C₅ haloalkyl, C₃-C₅ haloalkenyl, C₃-C₅ haloalkynyl, C₂-C₅ alkoxyalkyl, C₁-C₅ alkoxy, C₁-C₅ haloalkoxy, C₁-C₅ alkylthio, C₁-C₄ alkylsulfinyl, C₁-C₄ alkylsulfonyl, C₁-C₅ haloalkylthio or C₂-C₅ alkoxy carbonyl;
 R^5 is H, C₁-C₃ alkyl or C₁-C₃ haloalkyl;
 G is G^1 or W^1G^1 ;
 G^1 is H, -C(=O)R⁸, -C(=S)R⁸, -CO₂R⁹, -C(=O)SR⁹, -S(O)₂R⁸, -CONR¹⁰R¹¹, -S(O)₂NR¹⁰R¹¹, or P(=O)(R¹²)₂; or C₁-C₄ alkyl, C₂-C₄ alkenyl, C₂-C₄ alkynyl, C₁-C₄ haloalkyl, C₂-C₄ haloalkenyl, C₂-C₄ haloalkynyl, C₁-C₄ alkoxyalkyl, C₃-C₆ cycloalkyl or C₄-C₇ cycloalkylalkyl; or a 5- or 6-membered heterocyclic ring;
 W^1 is C₁-C₄ alkanediyl or C₂-C₄ alkenediyl;
 R^8 and R^{10} are independently C₁-C₇ alkyl, C₃-C₇ alkenyl, C₃-C₇ alkynyl, C₃-C₇ cycloalkyl, C₁-C₇ haloalkyl, C₃-C₇ haloalkenyl, C₂-C₇ alkoxyalkyl, C₄-C₇ cycloalkylalkyl; or phenyl, benzyl or a 5- to 6-membered heterocyclic ring, each phenyl, benzyl or heterocyclic ring optionally substituted by halogen, C₁-C₄ alkyl or C₁-C₄ haloalkyl;
 R^9 is C₁-C₇ alkyl, C₃-C₇ alkenyl, C₃-C₇ alkynyl, C₃-C₇ cycloalkyl, C₂-C₇ haloalkyl, C₃-C₇ haloalkenyl, C₂-C₇ alkoxyalkyl, C₄-C₇ cycloalkylalkyl; or phenyl, benzyl, or 5- to 6-membered heterocyclic ring, each phenyl, benzyl or heterocyclic ring optionally substituted by halogen, C₁-C₄ alkyl or C₁-C₄ haloalkyl;
 R^{11} is H, C₁-C₇ alkyl, C₂-C₇ alkenyl, C₂-C₇ alkynyl, C₃-C₇ cycloalkyl, C₄-C₇ cycloalkylalkyl, C₁-C₇ haloalkyl or C₂-C₇ alkoxyalkyl;
 R^{12} is C₁-C₇ alkyl or C₁-C₇ alkoxy; and
 n is 0, 1, 2, 3 or 4;
provided that when R^4 is H, then X is -C(R⁶)=C(R⁷)-.

2. A compound of Claim 1 wherein

W is O;

X is O, S, -CH=CH-, -C(CH₃)=CH-, -CH=CF-, -CH=CCl- or -CH=C(CH₃)-;

R^1 is H, C₁-C₇ alkyl, C₃-C₈ alkylcarbonylalkyl, C₃-C₈ alkoxy carbonylalkyl, C₄-C₇ alkylcycloalkyl, C₃-C₇ alkenyl, C₃-C₇ alkynyl, C₃-C₇ cycloalkyl, C₄-C₇ cycloalkylalkyl, C₂-C₃ cyanoalkyl, C₁-C₄ nitroalkyl, C₂-C₇ haloalkoxyalkyl, C₁-C₇ haloalkyl, C₃-C₇ haloalkenyl, C₂-C₇ alkoxyalkyl, C₃-C₇ alkylthioalkyl, C₁-C₇ alkoxy or benzyl;

R² is H, halogen, -CN, -CHO, C₁-C₇ alkyl, C₃-C₈ alkylcarbonylalkyl, C₃-C₈ alkoxy carbonylalkyl, C₂-C₄ alkylcarbonyl, C₂-C₇ alkylcarbonyloxy, C₄-C₇ alkylcycloalkyl, C₃-C₇ alkenyl, C₃-C₇ alkynyl, C₁-C₄ alkylsulfinyl, C₁-C₄ alkylsulfonyl, C₁-C₄ alkylamino, C₂-C₈ dialkylamino, C₃-C₇ cycloalkyl, C₄-C₇ cycloalkylalkyl, C₂-C₃ cyanoalkyl, C₁-C₄ nitroalkyl, C₂-C₇ haloalkoxyalkyl, C₁-C₇ haloalkyl, C₃-C₇ haloalkenyl, C₂-C₇ alkoxyalkyl, C₁-C₇ alkoxy or C₁-C₅ alkylthio;

each R³ is independently halogen, -CN, C₁-C₃ alkyl, C₂-C₄ alkenyl, C₂-C₄ alkynyl, C₃-C₄ cycloalkyl, C₁-C₃ haloalkyl, C₁-C₃ alkoxy, C₁-C₂ haloalkoxy, C₁-C₂ alkylthio, or C₁-C₂ haloalkylthio;

R⁴ is halogen, -CN, C₁-C₃ alkyl, C₂-C₄ alkenyl, C₂-C₄ alkynyl, C₃-C₄ cycloalkyl, C₁-C₃ haloalkyl, C₁-C₃ alkoxy, C₁-C₂ haloalkoxy, C₁-C₂ alkylthio or C₁-C₂ haloalkylthio;

G is G¹;

G¹ is H, -C(=O)R⁸, -C(=S)R⁸, -CO₂R⁹, -C(=O)SR⁹, -S(O)₂R⁸, -CONR¹⁰R¹¹, -S(O)₂NR¹⁰R¹¹, or P(=O)(R¹²)₂; or C₃-C₆ cycloalkyl or C₄-C₇ cycloalkylalkyl;

R⁸ and R¹⁰ are independently C₁-C₇ alkyl, C₃-C₇ cycloalkyl, C₁-C₃ haloalkyl or C₂-C₇ alkoxyalkyl;

R⁹ is C₁-C₇ alkyl, C₃-C₇ cycloalkyl, C₂-C₃ haloalkyl or C₂-C₇ alkoxyalkyl;

R¹¹ is H, C₁-C₇ alkyl, C₃-C₇ cycloalkyl, C₁-C₃ haloalkyl or C₂-C₇ alkoxyalkyl;

R¹² is C₁-C₃ alkyl or C₁-C₃ alkoxy; and

n is 0, 1, 2 or 3.

3. A compound of Claim 2 wherein

X is -CH=CH-, -C(CH₃)=CH-, -CH=CF-, -CH=CCl- or -CH=C(CH₃)-;

R¹ is H, C₁-C₇ alkyl, C₃-C₈ alkoxy carbonylalkyl, C₄-C₇ alkylcycloalkyl, C₃-C₇ cycloalkyl, C₄-C₇ cycloalkylalkyl, C₂-C₃ cyanoalkyl, C₁-C₄ nitroalkyl, C₂-C₇ haloalkoxyalkyl, C₁-C₇ haloalkyl, C₂-C₇ alkoxyalkyl, C₃-C₇ alkylthioalkyl, C₁-C₇ alkoxy or benzyl;

R² is H, halogen, -CN, -CHO, C₁-C₇ alkyl, C₂-C₄ alkylcarbonyl, C₂-C₇ alkylcarbonyloxy, C₄-C₇ alkylcycloalkyl, C₁-C₄ alkylsulfinyl, C₁-C₄ alkylsulfonyl, C₁-C₄ alkylamino, C₃-C₇ cycloalkyl, C₄-C₇ cycloalkylalkyl, C₂-C₃ cyanoalkyl, C₁-C₄ nitroalkyl, C₂-C₇ haloalkoxyalkyl, C₁-C₇ haloalkyl, C₂-C₇ alkoxyalkyl or C₁-C₇ alkoxy;

each R³ is independently halogen, -CN, C₁-C₂ alkyl, -CH=CH₂, -C≡CH, cyclopropyl,

C₁-C₂ haloalkyl or C₁-C₂ alkoxy;
R⁴ is halogen, -CN, C₁-C₂ alkyl, -CH=CH₂, -C≡CH, cyclopropyl, C₁-C₂ haloalkyl or C₁-C₂ alkoxy;
G¹ is H, -C(=O)R⁸, -CO₂R⁹, -S(O)₂R⁸, -CONR¹⁰R¹¹, -S(O)₂NR¹⁰R¹¹ or P(=O)(R¹²)₂;
R⁸, R⁹ and R¹⁰ are independently C₁-C₇ alkyl, C₃-C₇ cycloalkyl or C₂-C₇ alkoxyalkyl;
R¹¹ is H, C₁-C₇ alkyl, C₃-C₇ cycloalkyl or C₂-C₇ alkoxyalkyl; and
R¹² is CH₃ or OCH₃.

4. A compound of Claim 3 wherein
X is -CH=CH-, -CH=CF-, -CH=CCl- or -CH=C(CH₃)-;
R¹ is methyl, ethyl, *n*-propyl or 2-methoxyethyl;
R² is H, methyl, ethyl, *n*-propyl, CF₃ or methoxy;
each R³ is independently halogen, -CN, methyl, ethyl, -CH=CH₂, -C≡CH, cyclopropyl, CF₃, methoxy or ethoxy;
R⁴ is halogen, -CN, methyl, ethyl, -CH=CH₂, -C≡CH, cyclopropyl, CF₃, methoxy or ethoxy;
G¹ is H, -C(=O)R⁸, -CO₂R⁹, -S(O)₂R⁸, or P(=O)(R¹²)₂;
R⁸ and R⁹ are independently C₁-C₇ alkyl or C₂-C₇ alkoxyalkyl;
and n is 1 or 2.

5. A compound of Claim 1 wherein
W is O or S;
R¹ is C₁-C₇ alkyl, C₃-C₇ alkenyl, C₃-C₇ alkynyl, C₃-C₇ cycloalkyl, C₄-C₇ cycloalkylalkyl, C₂-C₃ cyanoalkyl, C₁-C₇ haloalkyl, C₃-C₇ haloalkenyl, C₂-C₇ alkoxyalkyl, C₃-C₇ alkylthioalkyl or C₁-C₇ alkoxy;
R² is H, halogen, -CN, C₁-C₇ alkyl, C₃-C₇ alkenyl, C₃-C₇ alkynyl, C₃-C₇ cycloalkyl, C₂-C₃ cyanoalkyl, C₁-C₇ haloalkyl, C₃-C₇ haloalkenyl, C₂-C₇ alkoxyalkyl, C₁-C₇ alkoxy, C₁-C₅ alkylthio, C₂-C₃ alkoxy carbonyl or phenyl;
X is O, S or NR⁵; or
X is -C(R⁶)=C(R⁷)-, wherein the carbon atom bonded to R⁶ is also bonded to the carbon atom bonded to R⁴, and the carbon atom bonded to R⁷ is also bonded to the phenyl ring moiety in Formula 1;
each R³ is independently halogen, -CN, C₁-C₅ alkyl, C₂-C₅ alkenyl, C₂-C₅ alkynyl, C₃-C₅ cycloalkyl, C₄-C₅ cycloalkylalkyl, C₁-C₅ haloalkyl, C₃-C₅ haloalkenyl,

C₃-C₅ haloalkynyl, C₂-C₅ alkoxyalkyl, C₁-C₅ alkoxy, C₁-C₅ haloalkoxy, C₁-C₅ alkylthio, C₁-C₅ haloalkylthio or C₂-C₅ alkoxy carbonyl;
 R⁴, R⁶ and R⁷ are independently H, halogen, -CN, C₁-C₅ alkyl, C₂-C₅ alkenyl, C₂-C₅ alkynyl, C₃-C₅ cycloalkyl, C₄-C₅ cycloalkylalkyl, C₁-C₅ haloalkyl, C₃-C₅ haloalkenyl, C₃-C₅ haloalkynyl, C₂-C₅ alkoxyalkyl, C₁-C₅ alkoxy, C₁-C₅ haloalkoxy, C₁-C₅ alkylthio, C₁-C₅ haloalkylthio or C₂-C₅ alkoxy carbonyl;
 R⁵ is C₁-C₃ alkyl or C₁-C₃ haloalkyl;
 G is G¹;
 G¹ is H, -C(=O)R⁸, -C(=S)R⁸, -CO₂R⁹, -C(=O)SR⁹, -S(O)₂R⁸, -CONR¹⁰R¹¹ or -S(O)₂NR¹⁰R¹¹;
 R⁸ and R¹⁰ are independently C₁-C₇ alkyl, C₃-C₇ alkenyl, C₃-C₇ alkynyl, C₃-C₇ cycloalkyl, C₁-C₇ haloalkyl, C₃-C₇ haloalkenyl, C₂-C₇ alkoxyalkyl, C₄-C₇ cycloalkylalkyl, phenyl or benzyl;
 R⁹ is C₁-C₇ alkyl, C₃-C₇ alkenyl, C₃-C₇ alkynyl, C₃-C₇ cycloalkyl, C₂-C₇ haloalkyl, C₃-C₇ haloalkenyl, C₂-C₇ alkoxyalkyl, C₄-C₇ cycloalkylalkyl, phenyl or benzyl;
 R¹¹ is H, C₁-C₇ alkyl, C₂-C₇ alkenyl, C₂-C₇ alkynyl, C₃-C₇ cycloalkyl, C₄-C₇ cycloalkylalkyl, C₁-C₇ haloalkyl or C₂-C₇ alkoxyalkyl; and
 n is 0, 1, 2, 3 or 4;
 provided that when R⁴ is H, then X is -C(R⁶)=C(R⁷)-.

6. A compound of Claim 5 wherein
 W is O;
 X is O, S, -CH=CH-, -C(CH₃)=CH- or -CH=C(CH₃)-;
 R¹ is C₁-C₄ alkyl, C₃-C₄ alkenyl, C₃-C₄ alkynyl, C₃-C₄ cycloalkyl, C₂-C₃ cyanoalkyl, C₁-C₃ haloalkyl or C₂-C₄ alkoxyalkyl
 R² is H, halogen, -CN, C₁-C₄ alkyl, C₃-C₅ cycloalkyl, C₁-C₃ haloalkyl, C₂-C₄ alkoxyalkyl or C₁-C₃ alkoxy;
 each R³ is independently halogen, -CN, C₁-C₃ alkyl, C₂-C₄ alkenyl, C₂-C₄ alkynyl, C₃-C₄ cycloalkyl, C₁-C₃ haloalkyl, C₁-C₃ alkoxy, C₁-C₂ haloalkoxy, C₁-C₂ alkylthio or C₁-C₂ haloalkylthio;
 R⁴ is halogen, -CN, C₁-C₃ alkyl, C₂-C₄ alkenyl, C₂-C₄ alkynyl, C₃-C₄ cycloalkyl, C₁-C₃ haloalkyl, C₁-C₃ alkoxy, C₁-C₂ haloalkoxy, C₁-C₂ alkylthio or C₁-C₂ haloalkylthio;
 G¹ is H, -C(=O)R⁸, -CO₂R⁹, -S(O)₂R⁸, -CONR¹⁰R¹¹ or -S(O)₂NR¹⁰R¹¹;
 R⁸ and R¹⁰ are independently C₁-C₇ alkyl, C₃-C₇ cycloalkyl, C₁-C₃ haloalkyl or

C₂-C₇ alkoxyalkyl;
R⁹ is C₁-C₇ alkyl, C₃-C₇ cycloalkyl, C₂-C₃ haloalkyl or C₂-C₇ alkoxyalkyl;
R¹¹ is H, C₁-C₇ alkyl, C₃-C₇ cycloalkyl, C₁-C₃ haloalkyl or C₂-C₇ alkoxyalkyl; and
n is 0, 1, 2 or 3.

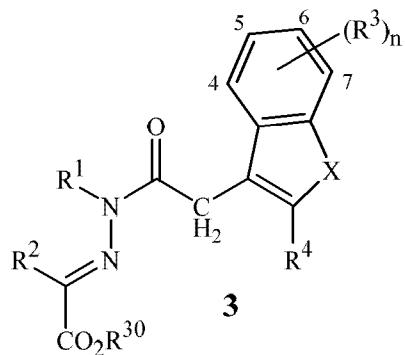
7. A compound of Claim 6 wherein

R¹ is C₁-C₃ alkyl, allyl, propargyl, CH₂CH₂CN, C₁-C₂ haloalkyl or 2-methoxyethyl;
R² is H, halogen, C₁-C₃ alkyl, cyclopropyl, C₁-C₂ haloalkyl, methoxy or ethoxy;
each R³ is independently halogen, -CN, C₁-C₂ alkyl, -CH=CH₂, -C≡CH, cyclopropyl,
C₁-C₂ haloalkyl or C₁-C₂ alkoxy;
R⁴ is halogen, -CN, C₁-C₂ alkyl, -CH=CH₂, -C≡CH, cyclopropyl, C₁-C₂ haloalkyl or
C₁-C₂ alkoxy;
R⁸, R⁹ and R¹⁰ are independently C₁-C₇ alkyl, C₃-C₇ cycloalkyl or C₂-C₇ alkoxyalkyl;
and
R¹¹ is H, C₁-C₇ alkyl, C₃-C₇ cycloalkyl or C₂-C₇ alkoxyalkyl.

8. A compound of Claim 7 wherein

R¹ is methyl, ethyl, n-propyl or 2-methoxyethyl;
R² is H, methyl, ethyl, n-propyl, CF₃ or methoxy;
each R³ is independently halogen, -CN, methyl, ethyl, -CH=CH₂, -C≡CH,
cyclopropyl, CF₃, methoxy or ethoxy;
R⁴ is halogen, -CN, methyl, ethyl, -CH=CH₂, -C≡CH, cyclopropyl, CF₃, methoxy or
ethoxy;
G¹ is H, -C(=O)R⁸, -CO₂R⁹ or -S(O)₂R⁸;
R⁸ and R⁹ are independently C₁-C₇ alkyl or C₂-C₇ alkoxyalkyl;
and n is 1 or 2.

9. A compound of Claim 1 selected from the group consisting of 4-(2,5-dimethylbenzo[b]thien-3-yl)-5-hydroxy-2,6-dimethyl-3(2H)-pyridazinone,
5-hydroxy-2,6-dimethyl-4-(2,5,7-trimethylbenzo[b]thien-3-yl)-3(2H)-pyridazinone,
5-hydroxy-2,6-dimethyl-4-(2,4,6-trimethylbenzo[b]thien-3-yl)-3(2H)-pyridazinone,
5-hydroxy-2,6-dimethyl-4-(2-methyl-3-benzofuranyl)-3(2H)-pyridazinone,
5-hydroxy-4-(5-methoxy-3-benzofuranyl)-2,6-dimethyl-3(2H)-pyridazinone,


4-(5-chloro-2-methyl-3-benzofuranyl)-5-hydroxy-2,6-dimethyl-3(2H)-pyridazinone,
4-(2,5-dimethyl-3-benzofuranyl)-5-hydroxy-2,6-dimethyl-3(2H)-pyridazinone,
4-(2,4-dimethyl-3-benzofuranyl)-5-hydroxy-2,6-dimethyl-3(2H)-pyridazinone,
4-(2,7-dimethyl-3-benzofuranyl)-5-hydroxy-2,6-dimethyl-3(2H)-pyridazinone,
4-(2-ethyl-5-methyl-3-benzofuranyl)-5-hydroxy-2,6-dimethyl-3(2H)-pyridazinone,
5-hydroxy-2,6-dimethyl-4-(1-naphthalenyl)-3(2H)-pyridazinone,
5-hydroxy-2,6-dimethyl-4-(2,5,7-trimethyl-3-benzofuranyl)-3(2H)-pyridazinone,
4-(5-ethyl-2-methyl-3-benzofuranyl)-5-hydroxy-2,6-dimethyl-3(2H)-pyridazinone,
5-(acetoxy)-4-(2,5-dimethyl-3-benzofuranyl)-2,6-dimethyl-3(2H)-pyridazinone,
5-(acetoxy)-4-(2,7-dimethyl-3-benzofuranyl)-2,6-dimethyl-3(2H)-pyridazinone,
5-(acetoxy)-2,6-dimethyl-4-(2,5,7-trimethyl-3-benzofuranyl)-3(2H)-pyridazinone,
5-(2,5-dimethyl-3-benzofuranyl)-1,6-dihydro-1,3-dimethyl-6-oxo-4-pyridazinyl
2,2-dimethyl propanoate,
1,6-dihydro-1,3-dimethyl-6-oxo-5-(2,5,7-trimethyl-3-benzofuranyl)-4-pyridazinyl
2,2-dimethylpropanoate, and
4-(2-ethyl-4,6-dimethylbenzo[b]thien-3-yl)-5-hydroxy-2,6-dimethyl-3(2H)-
pyridazinone.

10. A compound of Claim 1 selected from a compound of Formula 1 wherein
W is O; R¹ is CH₃; R² is Me; X is -CH=CH-; R⁴ is OCHF₂; G is G¹; G¹ is H;
and n is 0;
W is O; R¹ is CH₃; R² is Me; X is -CH=CH-; R³ is 5-F; R⁴ is Cl; G is G¹; G¹ is
H; and n is 1;
W is O; R¹ is CH₃; R² is Cl; X is -CH=CH-; R⁴ is Me; G is G¹; G¹ is H; and n
is 0;
W is O; R¹ is CH₃; R² is Me; X is -CH=CH-; R⁴ is Cl; G is G¹; G¹ is H; and n
is 0;
W is O; R¹ is CH₃; R² is Me; X is -CH=CH-; R³ is 5-Me; R⁴ is OCHF₂; G is
G¹; G¹ is H; and n is 1;
W is O; R¹ is CH₃; R² is Me; X is -CH=CH-; R³ is 5-Br; R⁴ is OCHF₂; G is
G¹; G¹ is H; and n is 1;
W is O; R¹ is CH₃; R² is Me; X is -CH=CH-; R³ is 5-Cl; R⁴ is Cl; G is G¹; G¹
is H; and n is 1; and
W is O; R¹ is CH₃; R² is Me; X is -CH=CH-; R⁴ is OCHF₂; G is G¹; G¹ is
C(O)Me; and n is 0.

11. A herbicidal composition comprising a compound of Claim 1 and at least one component selected from the group consisting of surfactants, solid diluents and liquid diluents.
12. A herbicidal composition comprising a compound of Claim 1, at least one additional active ingredient selected from the group consisting of other herbicides and herbicide safeners, and at least one component selected from the group consisting of surfactants, solid diluents and liquid diluents.
13. A herbicidal mixture comprising (a) a compound of Claim 1, and (b) at least one additional active ingredient selected from (b1) photosystem II inhibitors, (b2) acetohydroxy acid synthase (AHAS) inhibitors, (b3) acetyl-CoA carboxylase (ACCase) inhibitors, (b4) auxin mimics and (b5) 5-enol-pyruvylshikimate-3-phosphate (EPSP) synthase inhibitors, (b6) photosystem I electron diverters, (b7) protoporphyrinogen oxidase (PPO) inhibitors, (b8) glutamine synthetase (GS) inhibitors, (b9) very long chain fatty acid (VLCFA) elongase inhibitors, (b10) auxin transport inhibitors, (b11) phytoene desaturase (PDS) inhibitors, (b12) 4-hydroxyphenyl-pyruvate dioxygenase (HPPD) inhibitors, (b13) homogentisate solenesyltransferase (HST) inhibitors, (b14) cellulose biosynthesis inhibitors, (b15) other herbicides including mitotic disruptors, organic arsenicals, asulam, bromobutide, cinmethylin, cumyluron, dazomet, difenzoquat, dymron, etobenzanid, flurenol, fosamine, fosamine-ammonium, metam, methyldymron, oleic acid, oxaziclomefone, pelargonic acid and pyributicarb, and (b16) herbicide safeners; and salts of compounds of (b1) through (b16).
14. A method for controlling the growth of undesired vegetation comprising contacting the vegetation or its environment with a herbicidally effective amount of a compound of Claim 1.
15. A herbicidal mixture comprising a compound of Claim 1, and at least one additional active ingredient selected from amidosulfuron, azimsulfuron, bensulfuron-methyl, bispyribac-sodium, cloransulam-methyl, chlorimuron-ethyl, chlorsulfuron, cinosulfuron, cyclosulfamuron, diclosulam, ethametsulfuron-methyl, ethoxysulfuron, flazasulfuron, florasulam, flucarbazone-sodium, flumetsulam, flupyrifos-methyl, flupyrifos-sodium, foramsulfuron, halosulfuron-methyl, imazamethabenz-methyl, imazamox,

imazapic, imazapyr, imazaquin, imazethapyr, imazosulfuron, iodosulfuron-methyl (including sodium salt), iofensulfuron (2-iodo-N-[(4-methoxy-6-methyl-1,3,5-triazin-2-yl)amino]carbonyl]benzenesulfonamide), mesosulfuron-methyl, metazosulfuron (3-chloro-4-(5,6-dihydro-5-methyl-1,4,2-dioxazin-3-yl)-N-[(4,6-dimethoxy-2-pyrimidinyl)amino]carbonyl]-1-methyl-1H-pyrazole-5-sulfonamide), metosulam, metsulfuron-methyl, nicosulfuron, oxasulfuron, penoxsulam, primisulfuron-methyl, propoxycarbazone-sodium, propyrisulfuron (2-chloro-N-[(4,6-dimethoxy-2-pyrimidinyl)amino]carbonyl]-6-propylimidazo[1,2-*b*]pyridazine-3-sulfonamide), prosulfuron, pyrazosulfuron-ethyl, pyribenzoxim, pyriftalid, pyriminobac-methyl, pyrithiobac-sodium, rimsulfuron, sulfometuron-methyl, sulfosulfuron, thiencarbazone, thifensulfuron-methyl, triafamone (N-[2-[(4,6-dimethoxy-1,3,5-triazin-2-yl)carbonyl]-6-fluorophenyl]-1,1-difluoro-N-methylmethanesulfonamide), triasulfuron, tribenuron-methyl, trifloxsulfuron (including sodium salt), triflusulfuron-methyl and tritosulfuron.

16. A herbicidal mixture comprising a compound of Claim 1 mixed with rimsulfuron, thifensulfuron-methyl, tribenuron, nicosulfuron, metsulfuron-methyl, flupyrifos-methyl, cloransulam-methyl, pyroxsulam or florasulam.
17. A herbicidal mixture comprising a compound of Claim 1 mixed with rimsulfuron.
18. A herbicidal mixture comprising a compound of Claim 1 mixed with thifensulfuron-methyl.
19. A herbicidal mixture comprising a compound of Claim 1 mixed with tribenuron-methyl.
20. A herbicidal mixture comprising a compound of Claim 1 mixed with ethametsulfuron-methyl.
21. A herbicidal mixture comprising a compound of Claim 1 mixed with nicosulfuron.
22. A compound selected from Formula 3, *N*-oxides and salts thereof,

wherein

R^1 is H, C_1-C_7 alkyl, C_3-C_8 alkylcarbonylalkyl, C_3-C_8 alkoxy carbonylalkyl, C_4-C_7 alkylcycloalkyl, C_3-C_7 alkenyl, C_3-C_7 alkynyl, C_3-C_7 cycloalkyl, C_4-C_7 cycloalkylalkyl, C_2-C_3 cyanoalkyl, C_1-C_4 nitroalkyl, C_2-C_7 haloalkoxyalkyl, C_1-C_7 haloalkyl, C_3-C_7 haloalkenyl, C_2-C_7 alkoxyalkyl, C_3-C_7 alkylthioalkyl, C_1-C_7 alkoxy, benzyl or phenyl; or a 5-, or 6-membered saturated or partially saturated heterocyclic ring containing ring members selected from carbon and up to 1 O and 1 S;

R^2 is H, halogen, -CN, -CHO, C_1-C_7 alkyl, C_3-C_8 alkylcarbonylalkyl, C_3-C_8 alkoxy carbonylalkyl, C_2-C_4 alkylcarbonyl, C_2-C_7 alkylcarbonyloxy, C_4-C_7 alkylcycloalkyl, C_3-C_7 alkenyl, C_3-C_7 alkynyl, C_1-C_4 alkylsulfinyl, C_1-C_4 alkylsulfonyl, C_1-C_4 alkylamino, C_2-C_8 dialkylamino, C_3-C_7 cycloalkyl, C_4-C_7 cycloalkylalkyl, C_2-C_3 cyanoalkyl, C_1-C_4 nitroalkyl, C_2-C_7 haloalkoxyalkyl, C_1-C_7 haloalkyl, C_3-C_7 haloalkenyl, C_2-C_7 alkoxyalkyl, C_1-C_7 alkoxy, C_1-C_5 alkylthio, C_2-C_3 alkoxy carbonyl; or phenyl optionally substituted by halogen, C_1-C_4 alkyl or C_1-C_4 haloalkyl;

X is O, S or NR^5 ; or

X is $-C(R^6)=C(R^7)-$, wherein the carbon atom bonded to R^6 is also bonded to the carbon atom bonded to R^4 , and the carbon atom bonded to R^7 is also bonded to the phenyl ring moiety in Formula 3;

each R^3 is independently halogen, -CN, nitro, C_1-C_5 alkyl, C_2-C_5 alkenyl, C_2-C_5 alkynyl, C_3-C_5 cycloalkyl, C_4-C_5 cycloalkylalkyl, C_1-C_5 haloalkyl, C_3-C_5 haloalkenyl, C_3-C_5 haloalkynyl, C_2-C_5 alkoxyalkyl, C_1-C_5 alkoxy, C_1-C_5 haloalkoxy, C_1-C_5 alkylthio, C_1-C_5 haloalkylthio or C_2-C_5 alkoxy carbonyl;

R^4 is halogen, -CN, C_1-C_3 alkyl, C_2-C_4 alkenyl, C_2-C_4 alkynyl, C_3-C_4 cycloalkyl, C_1-C_3 haloalkyl, C_1-C_3 alkoxy, C_1-C_2 haloalkoxy, C_1-C_2 alkylthio or C_1-C_2 haloalkylthio;

R⁶ and R⁷ are independently H, halogen, nitro, -CN, C₁–C₅ alkyl, C₂–C₅ alkenyl, C₂–C₅ alkynyl, C₃–C₅ cycloalkyl, C₄–C₅ cycloalkylalkyl, C₁–C₅ haloalkyl, C₃–C₅ haloalkenyl, C₃–C₅ haloalkynyl, C₂–C₅ alkoxyalkyl, C₁–C₅ alkoxy, C₁–C₅ haloalkoxy, C₁–C₅ alkylthio, C₁–C₄ alkylsulfinyl, C₁–C₄ alkylsulfonyl, C₁–C₅ haloalkylthio or C₂–C₅ alkoxy carbonyl;
R⁵ is H, C₁–C₃ alkyl or C₁–C₃ haloalkyl;
n is 0, 1, 2, 3 or 4; and
R³⁰ is alkyl.

23. The compound of Claim 22 wherein

X is O, S, -CH=CH-, -C(CH₃)=CH-, -CH=CF-, -CH=CCl- or -CH=C(CH₃)-;
R¹ is H, C₁–C₇ alkyl, C₃–C₈ alkylcarbonylalkyl, C₃–C₈ alkoxy carbonylalkyl, C₄–C₇ alkylcycloalkyl, C₃–C₇ alkenyl, C₃–C₇ alkynyl, C₃–C₇ cycloalkyl, C₄–C₇ cycloalkylalkyl, C₂–C₃ cyanoalkyl, C₁–C₄ nitroalkyl, C₂–C₇ haloalkoxyalkyl, C₁–C₇ haloalkyl, C₃–C₇ haloalkenyl, C₂–C₇ alkoxyalkyl, C₃–C₇ alkylthioalkyl, C₁–C₇ alkoxy, benzyl or phenyl;
R² is H, halogen, -CN, -CHO, C₁–C₇ alkyl, C₃–C₈ alkylcarbonylalkyl, C₃–C₈ alkoxy carbonylalkyl, C₂–C₄ alkylcarbonyl, C₂–C₇ alkylcarbonyloxy, C₄–C₇ alkylcycloalkyl, C₃–C₇ alkenyl, C₃–C₇ alkynyl, C₁–C₄ alkylsulfinyl, C₁–C₄ alkylsulfonyl, C₁–C₄ alkylamino, C₂–C₈ dialkylamino, C₃–C₇ cycloalkyl, C₄–C₇ cycloalkylalkyl, C₂–C₃ cyanoalkyl, C₁–C₄ nitroalkyl, C₂–C₇ haloalkoxyalkyl, C₁–C₇ haloalkyl, C₃–C₇ haloalkenyl, C₂–C₇ alkoxyalkyl, C₁–C₇ alkoxy or C₁–C₅ alkylthio;
each R³ is independently halogen, -CN, C₁–C₃ alkyl, C₂–C₄ alkenyl, C₂–C₄ alkynyl, C₃–C₄ cycloalkyl, C₁–C₃ haloalkyl, C₁–C₃ alkoxy, C₁–C₂ haloalkoxy, C₁–C₂ alkylthio or C₁–C₂ haloalkylthio;
and
n is 0, 1, 2 or 3.

24. The compound of Claim 23 wherein

X is -CH=CH-, -C(CH₃)=CH-, -CH=CF-, -CH=CCl- or -CH=C(CH₃)-;
R¹ is H, C₁–C₇ alkyl, C₃–C₈ alkoxy carbonylalkyl, C₄–C₇ alkylcycloalkyl, C₃–C₇ cycloalkyl, C₄–C₇ cycloalkylalkyl, C₂–C₃ cyanoalkyl, C₁–C₄ nitroalkyl, C₂–C₇ haloalkoxyalkyl, C₁–C₇ haloalkyl, C₂–C₇ alkoxyalkyl, C₃–C₇ alkylthioalkyl, C₁–C₇ alkoxy or benzyl;

R^2 is H, halogen, -CN, -CHO, C_1 - C_7 alkyl, C_2 - C_4 alkylcarbonyl, C_2 - C_7 alkylcarbonyloxy, C_4 - C_7 alkylcycloalkyl, C_1 - C_4 alkylsulfinyl, C_1 - C_4 alkylsulfonyl, C_1 - C_4 alkylamino, C_3 - C_7 cycloalkyl, C_4 - C_7 cycloalkylalkyl, C_2 - C_3 cyanoalkyl, C_1 - C_4 nitroalkyl, C_2 - C_7 haloalkoxyalkyl, C_1 - C_7 haloalkyl, C_2 - C_7 alkoxyalkyl or C_1 - C_7 alkoxy;
each R^3 is independently halogen, -CN, C_1 - C_2 alkyl, - $CH=CH_2$, - $C\equiv CH$, cyclopropyl, C_1 - C_2 haloalkyl or C_1 - C_2 alkoxy;
 R^4 is halogen, -CN, C_1 - C_2 alkyl, - $CH=CH_2$, - $C\equiv CH$, cyclopropyl, C_1 - C_2 haloalkyl or C_1 - C_2 alkoxy.

25. The compound of Claim 24 wherein

X is - $CH=CH$ -, - $CH=CF$ -, - $CH=CCl$ - or - $CH=C(CH_3)$;-;
 R^1 is methyl, ethyl, *n*-propyl or 2-methoxyethyl;
 R^2 is H, methyl, ethyl, *n*-propyl, CF_3 or methoxy;
each R^3 is independently halogen, -CN, methyl, ethyl, - $CH=CH_2$, - $C\equiv CH$, cyclopropyl, CF_3 , methoxy or ethoxy;
 R^4 is halogen, -CN, methyl, ethyl, - $CH=CH_2$, - $C\equiv CH$, cyclopropyl, CF_3 , methoxy or ethoxy;
 n is 1 or 2; and
 R^{30} is methyl or ethyl.

26. The compound of claim 22 wherein

R^{30} is Me, X is $-CH=CH-$, R^1 is Me, R^2 is Me, R^4 is Me, and n is 0;

R^{30} is Me, X is $-CH=CH-$, R^1 is Me, R^2 is Me, R^3 is 5-Me, and R^4 is Me;

R^{30} is Me, X is $-CH=CH-$, R^1 is Me, R^2 is Me, R^3 is 4,6-di-Me, and R^4 is Me;

R^{30} is Me, X is $-CH=CH-$, R^1 is Me, R^2 is Me, R^3 is 5,7-di-Me, and R^4 is Me;

R^{30} is Me, X is $-CH=CH-$, R^1 is Me, R^2 is Me, R^4 is Et, n is 0;

R^{30} is Me, X is $-CH=CH-$, R^1 is Me, R^2 is Me, R^3 is 5-Me, and R^4 is Et;

R^{30} is Me, X is $-CH=CH-$, R^1 is Me, R^2 is Me, R^3 is 4,6-di-Me, and R^4 is Et;

R^{30} is Me, X is $-CH=CH-$, R^1 is Me, R^2 is Me, R^3 is 5,7-di-Me, and R^4 is Et;

R^{30} is Me, X is $-CH=CH-$, R^1 is Me, R^2 is Et, R^4 is Me, and n is 0;

R^{30} is Me, X is $-CH=CH-$, R^1 is Me, R^2 is Et, R^3 is 5-Me, and R^4 is Me;

R^{30} is Me, X is $-CH=CH-$, R^1 is Me, R^2 is Et, R^3 is 4,6-di-Me, and R^4 is Me;

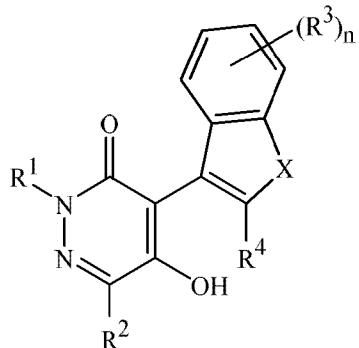
R^{30} is Me, X is $-CH=CH-$, R^1 is Me, R^2 is Et, R^3 is 5,7-di-Me, and R^4 is Me;

R^{30} is Me, X is $-CH=CH-$, R^1 is Me, R^2 is Et, R^4 is Et, n is 0;

R^{30} is Me, X is $-CH=CH-$, R^1 is Me, R^2 is Et, R^3 is 5-Me, and R^4 is Et;

R^{30} is Me, X is $-CH=CH-$, R^1 is Me, R^2 is Et, R^3 is 4,6-di-Me, and R^4 is Et; or

R^{30} is Me, X is $-CH=CH-$, R^1 is Me, R^2 is Et, R^3 is 5,7-di-Me, and R^4 is Et.


27. A compound of Formula 3 as defined in Claim 22 which is

methyl 2-[2-[2-(2,5-dimethylbenzo[b]thien-3-yl)acetyl]-2-methylhydrazinylidene]propanoate;

methyl 2-[2-[2-(2,5-dimethyl-3-benzofuranyl)acetyl]-2-methylhydrazinylidene]propanoate; or

2,5,7-trimethyl-3-benzofuranacetic acid 2-(2-methoxy-1-methyl-2-oxoethylidene)-1-methylhydrazide.

28. A method for preparing a compound of Formula **1b**

1b

wherein

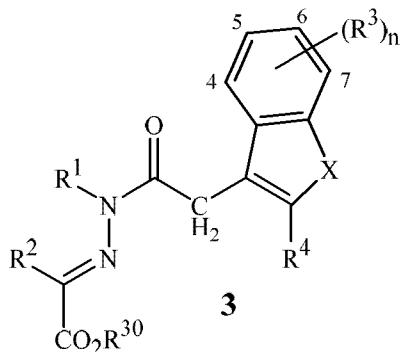
R¹ is H, C₁–C₇ alkyl, C₃–C₈ alkylcarbonylalkyl, C₃–C₈ alkoxy carbonylalkyl, C₄–C₇ alkylcycloalkyl, C₃–C₇ alkenyl, C₃–C₇ alkynyl, C₃–C₇ cycloalkyl, C₄–C₇ cycloalkylalkyl, C₂–C₃ cyanoalkyl, C₁–C₄ nitroalkyl, C₂–C₇ haloalkoxyalkyl, C₁–C₇ haloalkyl, C₃–C₇ haloalkenyl, C₂–C₇ alkoxyalkyl, C₃–C₇ alkylthioalkyl, C₁–C₇ alkoxy, benzyl or phenyl; or a 5-, or 6-membered saturated or partially saturated heterocyclic ring containing ring members selected from carbon and up to 1 O and 1 S;

R² is H, halogen, -CN, -CHO, C₁–C₇ alkyl, C₃–C₈ alkylcarbonylalkyl, C₃–C₈ alkoxy carbonylalkyl, C₂–C₄ alkylcarbonyl, C₂–C₇ alkylcarbonyloxy, C₄–C₇ alkylcycloalkyl, C₃–C₇ alkenyl, C₃–C₇ alkynyl, C₁–C₄ alkylsulfinyl, C₁–C₄ alkylsulfonyl, C₁–C₄ alkylamino, C₂–C₈ dialkylamino, C₃–C₇ cycloalkyl, C₄–C₇ cycloalkylalkyl, C₂–C₃ cyanoalkyl, C₁–C₄ nitroalkyl, C₂–C₇ haloalkoxyalkyl, C₁–C₇ haloalkyl, C₃–C₇ haloalkenyl, C₂–C₇ alkoxyalkyl, C₁–C₇ alkoxy, C₁–C₅ alkylthio, C₂–C₃ alkoxy carbonyl; or phenyl optionally substituted by halogen, C₁–C₄ alkyl or C₁–C₄ haloalkyl;

X is O, S or NR⁵; or

X is -C(R⁶)=C(R⁷)-, wherein the carbon atom bonded to R⁶ is also bonded to the carbon atom bonded to R⁴, and the carbon atom bonded to R⁷ is also bonded to the phenyl ring moiety in Formula **1b**;

each R³ is independently halogen, -CN, nitro, C₁–C₅ alkyl, C₂–C₅ alkenyl, C₂–C₅ alkynyl, C₃–C₅ cycloalkyl, C₄–C₅ cycloalkylalkyl, C₁–C₅ haloalkyl, C₃–C₅ haloalkenyl, C₃–C₅ haloalkynyl, C₂–C₅ alkoxyalkyl, C₁–C₅ alkoxy, C₁–C₅ haloalkoxy, C₁–C₅ alkylthio, C₁–C₅ haloalkylthio or C₂–C₅ alkoxy carbonyl;


R^4 is halogen, -CN, C_1 - C_3 alkyl, C_2 - C_4 alkenyl, C_2 - C_4 alkynyl, C_3 - C_4 cycloalkyl, C_1 - C_3 haloalkyl, C_1 - C_3 alkoxy, C_1 - C_2 haloalkoxy, C_1 - C_2 alkylthio or C_1 - C_2 haloalkylthio;

R^6 and R^7 are independently H, halogen, nitro, -CN, C_1 - C_5 alkyl, C_2 - C_5 alkenyl, C_2 - C_5 alkynyl, C_3 - C_5 cycloalkyl, C_4 - C_5 cycloalkylalkyl, C_1 - C_5 haloalkyl, C_3 - C_5 haloalkenyl, C_3 - C_5 haloalkynyl, C_2 - C_5 alkoxyalkyl, C_1 - C_5 alkoxy, C_1 - C_5 haloalkoxy, C_1 - C_5 alkylthio, C_1 - C_4 alkylsulfinyl, C_1 - C_4 alkylsulfonyl, C_1 - C_5 haloalkylthio or C_2 - C_5 alkoxy carbonyl;

R^5 is H, C_1 - C_3 alkyl or C_1 - C_3 haloalkyl; and

n is 0, 1, 2, 3 or 4

comprising cyclizing the compound of Formula **3** in the presence of solvent and base

wherein

R^1 is H, C_1 - C_7 alkyl, C_3 - C_8 alkylcarbonylalkyl, C_3 - C_8 alkoxy carbonylalkyl, C_4 - C_7 alkylcycloalkyl, C_3 - C_7 alkenyl, C_3 - C_7 alkynyl, C_3 - C_7 cycloalkyl, C_4 - C_7 cycloalkylalkyl, C_2 - C_3 cyanoalkyl, C_1 - C_4 nitroalkyl, C_2 - C_7 haloalkoxyalkyl, C_1 - C_7 haloalkyl, C_3 - C_7 haloalkenyl, C_2 - C_7 alkoxyalkyl, C_3 - C_7 alkylthioalkyl, C_1 - C_7 alkoxy, benzyl or phenyl; or a 5-, or 6-membered saturated or partially saturated heterocyclic ring containing ring members selected from carbon and up to 1 O and 1 S;

R^2 is H, halogen, -CN, -CHO, C_1 - C_7 alkyl, C_3 - C_8 alkylcarbonylalkyl, C_3 - C_8 alkoxy carbonylalkyl, C_2 - C_4 alkylcarbonyl, C_2 - C_7 alkylcarbonyloxy, C_4 - C_7 alkylcycloalkyl, C_3 - C_7 alkenyl, C_3 - C_7 alkynyl, C_1 - C_4 alkylsulfinyl, C_1 - C_4 alkylsulfonyl, C_1 - C_4 alkylamino, C_2 - C_8 dialkylamino, C_3 - C_7 cycloalkyl, C_4 - C_7 cycloalkylalkyl, C_2 - C_3 cyanoalkyl, C_1 - C_4 nitroalkyl, C_2 - C_7 haloalkoxyalkyl, C_1 - C_7 haloalkyl, C_3 - C_7 haloalkenyl, C_2 - C_7 alkoxyalkyl, C_1 - C_7 alkoxy, C_1 - C_5 alkylthio, C_2 - C_3 alkoxy carbonyl; or phenyl optionally substituted by halogen, C_1 - C_4 alkyl or C_1 - C_4 haloalkyl;

X is O, S or NR⁵; or

X is -C(R⁶)=C(R⁷)-, wherein the carbon atom bonded to R⁶ is also bonded to the carbon atom bonded to R⁴, and the carbon atom bonded to R⁷ is also bonded to the phenyl ring moiety in Formula 3;

each R³ is independently halogen, -CN, nitro, C₁–C₅ alkyl, C₂–C₅ alkenyl, C₂–C₅ alkynyl, C₃–C₅ cycloalkyl, C₄–C₅ cycloalkylalkyl, C₁–C₅ haloalkyl, C₃–C₅ haloalkenyl, C₃–C₅ haloalkynyl, C₂–C₅ alkoxyalkyl, C₁–C₅ alkoxy, C₁–C₅ haloalkoxy, C₁–C₅ alkylthio, C₁–C₅ haloalkylthio or C₂–C₅ alkoxy carbonyl;

R⁴ is halogen, -CN, C₁–C₃ alkyl, C₂–C₄ alkenyl, C₂–C₄ alkynyl, C₃–C₄ cycloalkyl, C₁–C₃ haloalkyl, C₁–C₃ alkoxy, C₁–C₂ haloalkoxy, C₁–C₂ alkylthio or C₁–C₂ haloalkylthio;

R⁶ and R⁷ are independently H, halogen, nitro, -CN, C₁–C₅ alkyl, C₂–C₅ alkenyl, C₂–C₅ alkynyl, C₃–C₅ cycloalkyl, C₄–C₅ cycloalkylalkyl, C₁–C₅ haloalkyl, C₃–C₅ haloalkenyl, C₃–C₅ haloalkynyl, C₂–C₅ alkoxyalkyl, C₁–C₅ alkoxy, C₁–C₅ haloalkoxy, C₁–C₅ alkylthio, C₁–C₄ alkylsulfinyl, C₁–C₄ alkylsulfonyl, C₁–C₅ haloalkylthio or C₂–C₅ alkoxy carbonyl;

R⁵ is H, C₁–C₃ alkyl or C₁–C₃ haloalkyl;

n is 0, 1, 2, 3 or 4; and

R³⁰ is alkyl.

29. The method of Claim 28 for preparing a compound of Formula 1b wherein

R¹ is methyl or ethyl;

R² is methyl or ethyl;

X is -C(R⁶)=C(R⁷)-;

each R³ is independently F, Cl, Br, methyl, ethyl or methoxy;

R⁴ is halogen, -CN, methyl, ethyl, -CH=CH₂, -C≡CH, cyclopropyl, CF₃, methoxy or ethoxy;

R⁶ and R⁷ are H or halogen; and

n is 0, 1 or 2

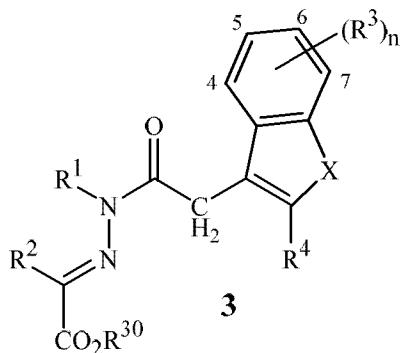
comprising cyclizing the compound of Formula 3 in the presence of solvent and base wherein

R¹ is methyl or ethyl;

R² is methyl or ethyl;

X is -C(R⁶)=C(R⁷)-;

each R³ is independently F, Cl, Br, methyl, ethyl or methoxy;


R^4 is halogen, -CN, methyl, ethyl, -CH=CH₂, -C≡CH, cyclopropyl, CF₃, methoxy or ethoxy;

R^6 and R^7 are H or halogen;

n is 0, 1 or 2; and

R^{30} is methyl or ethyl.

30. A method for preparing a compound of Formula 3

wherein

R^1 is H, C₁-C₇ alkyl, C₃-C₈ alkylcarbonylalkyl, C₃-C₈ alkoxy carbonylalkyl, C₄-C₇ alkylcycloalkyl, C₃-C₇ alkenyl, C₃-C₇ alkynyl, C₃-C₇ cycloalkyl, C₄-C₇ cycloalkylalkyl, C₂-C₃ cyanoalkyl, C₁-C₄ nitroalkyl, C₂-C₇ haloalkoxyalkyl, C₁-C₇ haloalkyl, C₃-C₇ haloalkenyl, C₂-C₇ alkoxyalkyl, C₃-C₇ alkylthioalkyl, C₁-C₇ alkoxy, benzyl or phenyl; or a 5-, or 6-membered saturated or partially saturated heterocyclic ring containing ring members selected from carbon and up to 1 O and 1 S;

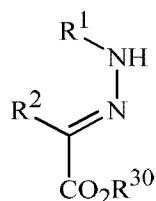
R^2 is H, halogen, -CN, -CHO, C₁-C₇ alkyl, C₃-C₈ alkylcarbonylalkyl, C₃-C₈ alkoxy carbonylalkyl, C₂-C₄ alkylcarbonyl, C₂-C₇ alkylcarbonyloxy, C₄-C₇ alkylcycloalkyl, C₃-C₇ alkenyl, C₃-C₇ alkynyl, C₁-C₄ alkylsulfinyl, C₁-C₄ alkylsulfonyl, C₁-C₄ alkylamino, C₂-C₈ dialkylamino, C₃-C₇ cycloalkyl, C₄-C₇ cycloalkylalkyl, C₂-C₃ cyanoalkyl, C₁-C₄ nitroalkyl, C₂-C₇ haloalkoxyalkyl, C₁-C₇ haloalkyl, C₃-C₇ haloalkenyl, C₂-C₇ alkoxyalkyl, C₁-C₇ alkoxy, C₁-C₅ alkylthio, C₂-C₃ alkoxy carbonyl; or phenyl optionally substituted by halogen, C₁-C₄ alkyl or C₁-C₄ haloalkyl;

X is O, S or NR⁵; or

X is -C(R⁶)=C(R⁷)-, wherein the carbon atom bonded to R⁶ is also bonded to the carbon atom bonded to R⁴, and the carbon atom bonded to R⁷ is also bonded to the phenyl ring moiety in Formula 3;

each R³ is independently halogen, -CN, nitro, C₁–C₅ alkyl, C₂–C₅ alkenyl, C₂–C₅ alkynyl, C₃–C₅ cycloalkyl, C₄–C₅ cycloalkylalkyl, C₁–C₅ haloalkyl, C₃–C₅ haloalkenyl, C₃–C₅ haloalkynyl, C₂–C₅ alkoxyalkyl, C₁–C₅ alkoxy, C₁–C₅ haloalkoxy, C₁–C₅ alkylthio, C₁–C₅ haloalkylthio or C₂–C₅ alkoxy carbonyl;

R⁴ is halogen, -CN, C₁–C₃ alkyl, C₂–C₄ alkenyl, C₂–C₄ alkynyl, C₃–C₄ cycloalkyl, C₁–C₃ haloalkyl, C₁–C₃ alkoxy, C₁–C₂ haloalkoxy, C₁–C₂ alkylthio or C₁–C₂ haloalkylthio;


R⁶ and R⁷ are independently H, halogen, nitro, -CN, C₁–C₅ alkyl, C₂–C₅ alkenyl, C₂–C₅ alkynyl, C₃–C₅ cycloalkyl, C₄–C₅ cycloalkylalkyl, C₁–C₅ haloalkyl, C₃–C₅ haloalkenyl, C₃–C₅ haloalkynyl, C₂–C₅ alkoxyalkyl, C₁–C₅ alkoxy, C₁–C₅ haloalkoxy, C₁–C₅ alkylthio, C₁–C₄ alkylsulfinyl, C₁–C₄ alkylsulfonyl, C₁–C₅ haloalkylthio or C₂–C₅ alkoxy carbonyl;

R⁵ is H, C₁–C₃ alkyl or C₁–C₃ haloalkyl;

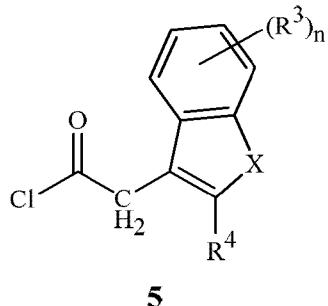
n is 0, 1, 2, 3 or 4; and

R³⁰ is alkyl;

comprising reacting a hydrazine ester of Formula 4

4

wherein


R¹ is H, C₁–C₇ alkyl, C₃–C₈ alkylcarbonylalkyl, C₃–C₈ alkoxy carbonylalkyl, C₄–C₇ alkylcycloalkyl, C₃–C₇ alkenyl, C₃–C₇ alkynyl, C₃–C₇ cycloalkyl, C₄–C₇ cycloalkylalkyl, C₂–C₃ cyanoalkyl, C₁–C₄ nitroalkyl, C₂–C₇ haloalkoxyalkyl, C₁–C₇ haloalkyl, C₃–C₇ haloalkenyl, C₂–C₇ alkoxyalkyl, C₃–C₇ alkylthioalkyl, C₁–C₇ alkoxy, benzyl or phenyl; or a 5-, or 6-membered saturated or partially saturated heterocyclic ring containing ring members selected from carbon and up to 1 O and 1 S;

R² is H, halogen, -CN, -CHO, C₁–C₇ alkyl, C₃–C₈ alkylcarbonylalkyl, C₃–C₈ alkoxy carbonylalkyl, C₂–C₄ alkylcarbonyl, C₂–C₇ alkylcarbonyloxy, C₄–C₇ alkylcycloalkyl, C₃–C₇ alkenyl, C₃–C₇ alkynyl, C₁–C₄ alkylsulfinyl, C₁–C₄ alkylsulfonyl, C₁–C₄ alkylamino, C₂–C₈ dialkylamino, C₃–C₇ cycloalkyl, C₄–C₇ cycloalkylalkyl, C₂–C₃ cyanoalkyl, C₁–C₄ nitroalkyl, C₂–C₇ haloalkoxyalkyl, C₁–C₇

C₇ haloalkyl, C₃–C₇ haloalkenyl, C₂–C₇ alkoxyalkyl, C₁–C₇ alkoxy, C₁–C₅ alkylthio, C₂–C₃ alkoxy carbonyl; or phenyl optionally substituted by halogen, C₁–C₄ alkyl or C₁–C₄ haloalkyl; and

R³⁰ is alkyl;

with an acid chloride of Formula 5

wherein

X is O, S or NR⁵; or

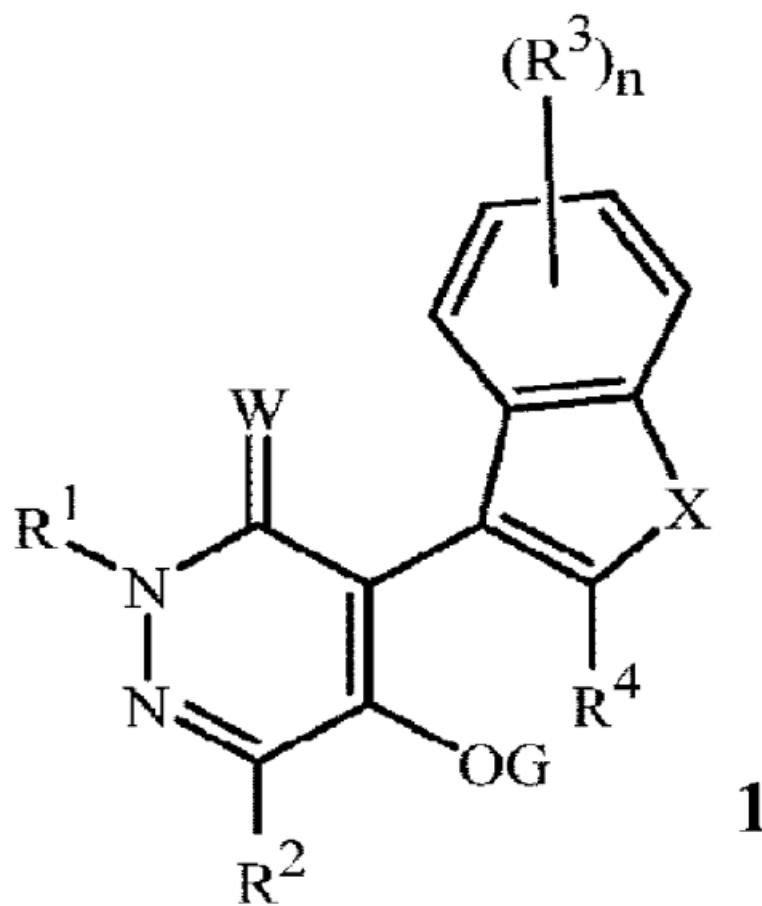
X is -C(R⁶)=C(R⁷)-, wherein the carbon atom bonded to R⁶ is also bonded to the carbon atom bonded to R⁴, and the carbon atom bonded to R⁷ is also bonded to the phenyl ring moiety in Formula 5;

each R³ is independently halogen, -CN, nitro, C₁–C₅ alkyl, C₂–C₅ alkenyl, C₂–C₅ alkynyl, C₃–C₅ cycloalkyl, C₄–C₅ cycloalkylalkyl, C₁–C₅ haloalkyl, C₃–C₅ haloalkenyl, C₃–C₅ haloalkynyl, C₂–C₅ alkoxyalkyl, C₁–C₅ alkoxy, C₁–C₅ haloalkoxy, C₁–C₅ alkylthio, C₁–C₅ haloalkylthio or C₂–C₅ alkoxy carbonyl;

R⁴ is halogen, -CN, C₁–C₃ alkyl, C₂–C₄ alkenyl, C₂–C₄ alkynyl, C₃–C₄ cycloalkyl, C₁–C₃ haloalkyl, C₁–C₃ alkoxy, C₁–C₂ haloalkoxy, C₁–C₂ alkylthio or C₁–C₂ haloalkylthio;

R⁶ and R⁷ are independently H, halogen, nitro, -CN, C₁–C₅ alkyl, C₂–C₅ alkenyl, C₂–C₅ alkynyl, C₃–C₅ cycloalkyl, C₄–C₅ cycloalkylalkyl, C₁–C₅ haloalkyl, C₃–C₅ haloalkenyl, C₃–C₅ haloalkynyl, C₂–C₅ alkoxyalkyl, C₁–C₅ alkoxy, C₁–C₅ haloalkoxy, C₁–C₅ alkylthio, C₁–C₄ alkylsulfinyl, C₁–C₄ alkylsulfonyl, C₁–C₅ haloalkylthio or C₂–C₅ alkoxy carbonyl;

R⁵ is H, C₁–C₃ alkyl or C₁–C₃ haloalkyl; and


n is 0, 1, 2, 3 or 4

in the presence of solvent and base.

31. The method of Claim 30 for preparing a compound of Formula 3 wherein

R¹ is methyl or ethyl;

R² is methyl or ethyl;
X is -C(R⁶)=C(R⁷)-;
each R³ is independently F, Cl, Br, methyl, ethyl or methoxy;
R⁴ is halogen, -CN, methyl, ethyl, -CH=CH₂, -C≡CH, cyclopropyl, CF₃, methoxy or ethoxy;
R⁶ and R⁷ are H or halogen;
n is 0, 1 or 2; and
R³⁰ is methyl or ethyl
comprising reacting a hydrazine ester of Formula 4 wherein
R¹ is methyl or ethyl;
R² is methyl or ethyl; and
R³⁰ is methyl or ethyl
with an acid chloride of Formula 5 wherein
X is -C(R⁶)=C(R⁷)-;
each R³ is independently F, Cl, Br, methyl, ethyl or methoxy;
R⁴ is halogen, -CN, methyl, ethyl, -CH=CH₂, -C≡CH, cyclopropyl, CF₃, methoxy or ethoxy;
R⁶ and R⁷ are H or halogen; and
n is 0, 1 or 2
in the presence of solvent and base.

1