发明名称：制造刨花板的雾化树脂胶合方法和系统

摘要

本发明涉及用于制造刨花板的雾化树脂胶合方法和系统。所述方法包括同时对刨花、胶以及化学添加剂混合物进行加热和施加过热蒸汽来施加动态脉冲的步骤。混合物还在树脂胶合装置中受扰动作用，从而产生具有均匀物理特性和雾化颗粒流。
1. 一种制造刨花板的改进系统，其特征是该系统中向树脂胶合装置送入包括压力蒸汽的高温流体，以便增加刨花、胶合材料和其它化学辅助剂的温度，这些被增湿的材料相互混合用于制造刨花板。

2. 如权利要求1所述的系统，其特征是该系统中设置高温水蒸汽注入器，所述注入器安排成与所述树脂胶合装置中混合的刨花材料的运动方向垂直。

3. 如权利要求2所述的系统，其特征是所述装置中还设有混合胶注入器，相对刨花和混合胶在所述装置中的前进方向来说，所述压力蒸汽注入器设置在混合胶注入器的上游侧，所述的混合物被带齿搅拌器驱动而前进，该搅拌器上的齿按一螺旋线排列。

4. 如权利要求1所述的系统，其特征是在所述树脂胶合装置中扩散的蒸汽流向该装置中的刨花和胶合材料施加动态脉冲。

5. 如权利要求1所述的系统，其特征是所述蒸汽与化学辅助剂混合，该混合是在设置在注入喷咀上游的一混合器中进行的，混合容器与一凝液分离器相连通。

6. 如权利要求1所述的系统，其特征是所述的混合容器的壁上设置一与壁相切的用于导入所述蒸汽以便进行处理操作的蒸汽
喷咀或管道，该蒸汽被送到设置在一同样与容器相通的第二管道的前面，第二管道向容器中送入所述的化学辅助剂以便与蒸汽在该容器中混合。

7. 如权利要求5所述的系统，其特征是在所述的蒸汽处理容器内设置有偏转片，偏转片使蒸汽在刚进入容器时与化学辅助剂分开离开，从而使蒸汽与化学辅助剂充分混合。

8. 如权利要求1所述的用于制造刨花板的改进系统，其特征是该系统进一步包括用于注入压力为0.1至13巴并过热加热到120℃至200℃蒸汽的注入器。

9. 如权利要求1所述的用于制造刨花板的改进系统，其特征是系统包括一容器，该容器用于盛装表面活性剂、催化剂、清洁剂以及防水剂，这些材料构成用于向所述的树脂胶合装置连续送入的雾化混合物。

10. 如权利要求9所述的用于制造刨花板的改进系统，其特征是所述的雾化混合物向干刨花中送入聚热并通过冲击施加一定的冲量，在滑流、以及所述树脂胶合装置中的扰动和相互冲击的共同作用下，干刨花逐渐被所述混合胶逐渐浸渍，所述的雾化颗粒流具有均匀的物理特性。

11. 如权利要求1所述的用于制造刨花板的改进系统，其特征是在该系统中通过蒸汽在胶合装置的圆筒形冷水套内壁上的逐渐凝结而形成连续的层通道，从而对流向出口而送往成形台的树脂
胶合刨花流起润滑作用。

12. 如权利要求 1 所述的用于制造刨花板的改进系统, 其特征是所述系统进一步包括对所述树脂胶合装置进行水冷的冷却装置。

13. 用于制造刨花板的雾化树脂胶合方法, 其特征是该方法包括下列步骤:

同时向刨花、胶和化学辅助剂混合物中输入热量和均匀充分的动态脉冲, 并使混合物经受由树脂胶合装置内的搅拌器产生的扰动的作用。

通过向所述的树脂胶合装置中注入压力水蒸汽来提供所述热量和动态脉冲, 所述蒸汽被过热加热, 并在混合胶注入区域的上游侧被预处理, 所述的上游侧是相对混合材料被搅拌器驱动而前进的方向而言的。

14. 如权利要求 13 所述的用于制造刨花板的雾化树脂胶合方法, 其特征是所述方法包括在一合适的圆筒容器, 最好是钢制容器中对所述的过热蒸汽进行预处理的步骤, 该钢制容器中装有表面活性剂、催化剂、清洁剂以及防水剂, 由此产生向所述树脂胶合装置提供的雾化混合物。

15. 如权利要求 13 所述的用于制造刨花板的雾化树脂胶合方法, 其特征是所述的过热水蒸汽通过一喷嘴送入所述容器中, 还包括一适于向容器中送入所述的表面活性剂、催化剂、清洁剂以及防
水剂的第二喷咀。

16. 如权利要求 13 所述的用于制造刨花板的雾化树脂胶合方法, 其特征是还包括向干刨花中送入聚热并通过冲击施加一定的冲量的步骤, 在滑流、以及所述树脂胶合装置中的扰动和相互冲击的共同作用下, 干刨花被所述混合胶逐渐浸渍, 使所述的雾化颗粒料流具有均匀的物理特性。

17. 如权利要求 13 所述的用于制造刨花板的雾化树脂胶合方法, 其特征是所述方法还包括通过蒸汽在所述树脂胶合装置的圆筒形冷水套内壁上的逐渐凝结而形成连续的层通道的步骤, 从而对流向出口而送往成形台的树脂胶合刨花流起润滑作用。

18. 如权利要求 13 所述的用于制造刨花板的雾化树脂胶合方法, 其特征是包括通过一个或多个注入器注入过热的经预处理的水蒸汽的步骤, 所述的注入器有喷咀, 喷咀排列成垂直于材料的流动方向, 喷咀相对流动方向位于紧靠混合胶进料位置的上游侧, 以及在整个技术参数的范围内预设在某一温度下进行操作的步骤。
制造刨花板的雾化树脂胶合方法和系统

本发明涉及用于制造刨花板的雾化树脂胶合方法和系统。

目前公知的有许多树脂胶合制造刨花板的方法，实施这些方法的系统主要包括用于计量从干燥木材中获得的刨花的计量料斗。该料斗向一皮带称以连续方式提供刨花，皮带称悬挂在一加料仓中。

皮带称将与供应给树脂胶合系统的刨花重量有关的数据连续地输入到一电子处理器中，该处理器根据已由操作员设定的干胶与干刨花的重量比控制一泵的转数，该泵将混合胶输进树脂胶合装置中。混合胶包括水、胶和硬化石腊乳液。

每条传统的刨花板生产线至少使用两个系统，一个系统用于树脂胶合细小的刨花，以形成板的外表面，另一系统用于树脂胶合尺寸较大的刨花以形成板的内芯。

在这些系统的下游侧还设置一成形系统。它最好包括四个排成一行的成形装置。

第一成形装置用于在成形皮带上撒布第一层树脂胶合的细小刨花。
花，而第二和第三成形装置形成两层树脂胶合的较大尺寸的刨花，第四成形装置形成最后一层树脂胶合的细小刨花。

由此形成的“柴排”通过在成形装置中被连续驱动的皮带或板带送入一压力机中，该压力机包括两条在两加热板上滑动的钢带，加热板的温度在 180℃至 240℃之间变化，钢带的速度与前述皮带的速度相同。

在压力和温度共同作用下，树脂胶合的刨花柴排在树脂的熟化处理下形成刨花板。

然而这种已知方法受到下面几种缺陷的困扰。

在冬季时，柴排的湿度相对夏季下降大约 20℃，相应地造成板烘烤时间的增加，对于原始厚度为 18 毫米的刨花板来说，系统的操作时间需从 48 秒/毫米增加到 5.9 秒/毫米。

另一个缺点是系统需定期停止操作，以便消除残留在树脂胶合装置中的胶和木屑。

还有一个缺点是树脂胶合性能较低，需使用温度大约为 5℃的冷却水以便冷却树脂胶合系统的水套，因为由于摩擦产生过热，容易使一些物料凝结或沉积在这些水套的内壁上，从而堵塞装置。

此外，在上述成形装置中由于胶合树脂不能在刨花中最佳地扩散，使成形装置容易结污。

另一个缺点是为减小成品刨花板的吸水量，需使用昂贵的石腊乳液。
本发明的目的是提出一种系统和方法以克服上述缺点，该系统和方法可减少烘烤时间，从而大大提高生产效率，而且也无需中断操作来清洗树脂胶合和成形装置。

本发明的另一个主要目的是提出这样一种树脂胶合方法和系统，该方法和系统具有非常好的操作性能，从而改进成品刨花板的机械特性。

本发明的第三个目的是提出这样一种树脂胶合方法和系统，该系统和方法使柴排在成形装置中充分地摊铺开，从而减小压力机出口处坯板的厚度误差。

本发明的第四个目的是提出这样一种树脂胶合方法和系统，其中无需使用任何石腊乳液。

本发明的第五个目的是提出这样一种树脂胶合方法和系统，其中无需使用冷却装置对树脂胶合装置水套中的循环水进行冷却。

按照本发明的一个方面，上述目的，以及其它从下面的说明中可了解到的其它目的。通过这样一种改进的刨花板制造系统而达到，该系统的特征是使用最好包括压力蒸汽的高温液体，所述液体送入树脂胶合装置中以便增加刨花，胶以及化学辅料的温度，这些材料被混合起来用于生产刨花板。

下面参照附图中对本发明无限制意义的一个最佳实施例对本发明进行更详细的说明，参阅下述说明可对本发明的其它特征和优点有更进一步的了解。其中
图 1 和 1a 是用于连续压制刨花板的已有系统示意图；图 2 是用于制造刨花板的已有树脂胶合系统的示意图；图 3 是用于连续制造刨花板的系统的其它部分的示意图；图 4 是用于实施本发明方法的树脂胶合系统的示意图；图 5 是一本发明的用于蒸汽处理刨花的容器的示意侧剖视图；图 6 是图 5 所示容器的顶剖视图，其中该容器与一蒸汽凝液分离器相连。

参看附图，特别是图 2，用于连续制造刨花板的已有树脂胶合系统包括一干刨花计料斗 1，该料斗 1 向一皮带称 2 连续地供应干刨花，皮带称 2 悬挂在一加料槽 3 中。

皮带称 2 将与供应给树脂胶合系统的刨花重量有关的数据连续地输入到一电子处理器中，该处理器根据已由操作员设定的干胶与干刨花的比例控制一泵 5 的转数。泵 5 将混合胶输进树脂胶合装置 4 中，混合胶主要包括水、胶和熟化石蜡乳液。

在刨花板生产线上每形成一层刨花，就连续地使用一个或多个上述已知的树脂胶合系统。

有些树脂胶合装置用于胶合细小的刨花以形成刨花板的外表面，而用一个或多个这样的装置胶合尺寸较大的刨花以形成柴排或多层柴排，这些柴排构成刨花板的内芯。

在上述装置的下游设置有一成形系统 6，它主要包括四个排成一行的成形装置 7、8、9、10。
第一成形装置 7 用于在成形皮带 11 上散布第一层树脂胶合的细小刨花，而第二和三成形装置 8 和 9 形成两层树脂胶合的较大尺寸的刨花板，最后一个成形装置 10 形成最后一层树脂胶合的细小刨花。

由此形成的柴排 12 通过连续驱动的成形皮带 11 连续地送入一压力机 13 中，该压力机包括两条在加热板 15 上滑动的钢条或钢带 14，钢条或钢带 14 的速度与成形皮带 11 的速度相同。

在压力和温度的共同作用下，树脂胶合的刨花柴排 12 在树脂的熟化处理下形成刨花板成品。

然而正如所讨论过的，上述已知的制造方法有几个缺点。

在冬季时，柴排 12 的温度相对夏季下降大约 20℃，相应地造成板烘烤时间的增加，对于原始厚度为 18 毫米的刨花板成品来说系统的操作时间需从 4.8 秒/毫米增加到 5.9 秒/毫米。

参看图 3,4,5 和 6，本发明的树脂喷雾胶合系统和方法使刨花、胶和化学辅助剂混合物同时受到均匀和充分的加热和额外的动态脉冲作用。上述混合物在树脂胶合装置 4 内还受到搅拌器 16 的扰动。

特别是在优选实施例中，通过注入压力蒸汽（设定压力为 0.1—13 巴）进行加热，操作员可预先设定将蒸汽加热到高达 120—200℃，此外还可对蒸汽进行预处理。

加热最好通过设定在树脂胶合装置中的蒸汽注入器 17 进行，蒸
气注入器17安排成垂直于流向，并带有内径为8—10毫米的喷咀，蒸汽注入器距离输入料斗18大约300毫米。相对于搅拌器16挤压下的物料的前进方向来说，蒸汽注入器位于紧靠用于注入混合胶的注入器的上游侧。

上述预处理是在一钢制圆简容器或叶轮式混合器19中进行的。在一优选的但无并并局限性的实施例中，该容器的内径为350毫米，高约600毫米，壁厚约10毫米。

该叶轮式混合容器19包括与容器表面相切的喷咀20和21，喷咀在容器内部带有偏转片22和23。

此外，在容器19上游侧连接有一凝液分离器24，使可能凝结在系统管道中的水滴在该分离器中凝结。

喷咀20将过热蒸汽送入容器中，而喷咀21用于将几种化学添加剂或辅助剂送入容器中。

由于上述偏转片22和23的作用，过热蒸汽和化学辅助剂在容器中央区域混合，偏转片22和23在这些辅助剂刚进入容器中以便对蒸汽进行处理时，使化学辅助剂与过热蒸汽流分开。

化学辅助剂包括表面活性剂25，最好是乙烯基和亚甲基醇。

这些辅料在压制成型过程中用于改变水的表面条件，以便在不同的季节适当地调节水的热平衡。

此外，还使用催化剂以便加速混合胶的熟化，同时也使用清洁剂27。清洁剂特别用于清洗设置在下游侧的装置。
还可使用防水剂 28，以便改善刨花板的防水特性。

除了通过注水器 17 向树脂胶合装置 4 中送入物理特性均匀的稀化混合物外，还向干刨花中送入聚胶并通过冲击施加一定的冲量，在滑流、冲击以及发生在送入树脂胶合装置 4 中的几种物质之间的扰动的共同作用下，干刨花逐渐被混合胶浸渍。

本发明的主要特征主要包括注入过热蒸汽，由此可获得下列几种优点。

首先，随着蒸汽被注入树脂胶合装置中，蒸汽膨胀扩散，从而对混合胶进行加热并使其更具“展韧性”。

此外蒸汽还使木材的毛细孔扩张，从而使胶和其它化学填加剂进入这些毛细孔中。

上述措施提高了胶合性能，从而使成品刨花板具有非常好的机械特性，同时大大提高了抗湿性和防老化性能。

此外蒸汽有助于化学填加剂在垫板中的充分扩散，而并不影响胶合树脂的催化。

向树脂胶合装置中送入过热蒸汽还使板壁更加润滑，不易变污，而这种措施无需冷却水，因为在树脂胶合装置的冷水套中注入了 30℃的专用冷却水。

蒸汽还在刨花中产生连续的层通道，对流向出口 29 送往成形台 6 的刨花流到润滑作用，同时蒸汽在树脂胶合装置 4 的冷水套 4′的内壁上逐渐凝结。
本发明的其中一个主要特点是蒸汽大大缩短了烘烤的时间。

事实上，就刨花板的产品而言，过热蒸汽以非常有利的方式使柴排的温度上升，特别是在冬天，使柴排温度提高约20°C，由此使操作效率相应地增加约20%。

本发明的另一个重要的方面是该方法大大减小了成品刨花板中甲醛的含量。

如上所述可以清楚地看到本发明完全达到了所提出的目的和目标。

在不超出本发明构思的范围内对本发明还可做出一些改变和变化。而且上述提到的装置的一些细节部分也可由一些等同物替代。

在实施本发明时，可根据任何要求确定产品的尺寸和形状，所选用的材料只要相互之间无排 异反应即可使用。