发明名称
情报处理装置、图像登录方法以及程序

摘要
本发明提供对原始图像进行校正后在情报登录装置里登录的信息处理装置、图像登录方法以及程序。情报处理装置包括登录图像数据，从图像数据中抽出背景图像和物体图像，并补正被抽出的背景图像，作出包括物体图像的补正图像数据的图像补正手段，和将补正图像数据与图像数据可以参照地存储的数据库手段。另外，提供通过情报处理装置而执行的图像登录方法以及用于该方法的程序。
1. 一种登录图像数据的情报处理装置，其特征在于包括：
 网络处理手段，其介由网络来取得图像数据；
 图像补正手段，其解析所述图像数据，并从所述图像数据中抽出背景图像和物体图像，将所述被抽出的背景图像依照补正条件来作成；
 数据库手段，其将所述补正图像数据能够参照所述图像数据地存储。
2. 根据权利要求 1 所述的情报处理装置，其特征在于所述图像补正手段包括：
 物体抽出处理手段，其从图像数据中抽出背景图像和物体图像；
 背景图像处理部，其作成包含物体图像的补正图像数据。
3. 根据权利要求 1 或 2 所述的情报处理装置，其特征在于：
 所述物体抽出处理手段包括，将所述图像数据的像素分配成区块，使用所述每一区块的图像特征来抽出所述背景图像和所述物体图像，并存储到存储器里的抽出手段。
4. 根据权利要求 2 或 3 所述的情报处理装置，其特征在于：
 所述背景图像处理部包括，删除作为所述背景图像而抽出的区块，指定色度值，或者将背景图像数据调整为所述图像数据的尺寸，并与所述物体图像进行层的合成的背景修正手段。
5. 根据权利要求 2 至 4 中任何一项所述的情报处理装置，其特征在于：
 所述图像补正手段包括，介由所述网络接收补正要求后对所述补正要求进行解析，根据所述补正要求中包含的补正条件，对所述背景图像处理部的处理进行选择后执行的选择执行手段，根据所述补正条件将补正后的所述补正图像数据，介由所述网络送出。
6. 根据权利要求 1 至 5 中任何一项所述的情报处理装置，其特征在于包括：
 进一步地将所述图像数据以及所述补正图像数据介由所述网络进行浏览的浏览手段。
7. 根据权利要求 5 所述的情报处理装置，其特征在于：
 所述情报处理装置为 CGI 服务器、应用软件服务器、SOA 服务器，将所述图像数据以及所述补正图像数据介由所述网络供利用者浏览，并从连接于外部
的网络服务器手段接受所述补正要求。

8. 一种情报处理装置所执行的图像登录方法，其为介由网络相对于情报
处理装置来登录图像的图像登录方法，所述图像登录方法相对于所述情报处理
装置，其特征在于包括：

介由所述网络从终端装置接受图像数据，并解析所述图像数据后，将背景
图像数据和物体图像数据分离，将所述背景图像数据以及所述物体图像数据存
储到存储器里的步骤；和，

修正存储到所述存储器里的背景图像数据，并将包含所述物体图像数据的
补正图像数据依照补正条件来作成的步骤；和，

将所作成的所述补正图像数据存储到数据库里的步骤；和，

介由所述网络接受登录图像显示要求，并解析所述登录图像显示要求，检
索所述补正图像数据是否被登录在所述数据库里，并且当所述补正图像数据被
登录时，去显示所述补正图像数据，当所述补正图像数据没有被登录时，去显
示没有被补正的所述图像数据的步骤。

9. 根据权利要求 8 所述的图像登录方法，其特征在于：

所述作成补正图像数据的步骤包括，相对于所述图像数据，执行响应于服
务站点的设定的修正处理的步骤。

10. 根据权利要求 8 或 9 所述的图像登录方法，其特征在于：

所述图像数据以 EXIF 格式被传送，作成所述补正图像数据的步骤包括，
使用记述在所述 EXIF 格式内的数据来作成所述补正图像的步骤。

11. 根据权利要求 8 至 10 中任何一项所述的图像登录方法，其特征在于：

所述图像数据从白色平衡、色度补正、锐度、反差、歪曲补正、图像尺寸、
噪声除去之中，至少进行 1 个前处理之后所述情报处理装置进行接受。

12. 根据权利要求 8 至 11 中任何一项所述的图像登录方法，其特征在于：

作成所述补正图像数据的步骤包括，对于所述背景图像数据进行装饰数据
重叠的步骤。

13. 根据权利要求 8 至 12 中任何一项所述的图像登录方法，其特征在于：

作成所述补正图像的步骤包括，使用所述背景图像的图像特征来识别所述
背景图像和所述物体图像的步骤。

14. 根据权利要求 8 至 13 中任何一项所述的图像登录方法，其特征在于：
所述作成补正图像数据的步骤还包括，
介由所述网络等待服务器站点来的补正要求的步骤；和，

接受到所述补正要求时，从所述补正要求取得所述补正条件以及所述图像数据的步骤；和，

依照所述补正条件来变更呼出目标的步骤；和，

在所述目标里定义所述图像数据，作成对象实例的步骤。

15. 根据权利要求 14 所述的图像登录方法，其特征在于包括：

进一步地，从服务站点接受所述补正要求的步骤；和，

将所述补正图像数据作为对所述服务站点响应的返回步骤。

16. 一种程序，其特征在于：

相对于计算机，能够实现权利要求 1 至 7 中任何一项所述的功能手段，为计算机所能执行。
技术领域

本发明涉及图像修正技术，更详细地说是涉及对原图像数据补正后登录到情报处理装置里的情报处理装置、图像登录方法以及程序。

背景技术

近年来，随着网络技术和的进步以及计算机装置等性能的提高，除计算机之外，也可以从移动电话、PDA(Personal Data Assistant)、数字照相机等，去访问网络，进行图像登录，并在网络上可以使用。

随着介由网络登录的图像来源的扩大，介由网络连接的图像登录用的服务器，就要存放图像品质不同的图像了。服务器还能够将介由网络传送来的图像，介由管理及网络来浏览。但是，在将多个图像介由例如网页来作一般浏览的时候，由于图像来源不同而造成的图像画质的不同，会发生通过图像传送的内容不尽人意的情况。另外，有时候还会存在图像登录者希望用到自己家里的计算机装置所没有的专用图像处理，或在服务器上将图像的画质进行一定程度的均一化之后再使其浏览的情况。

介由网络来进行图像登录的图像补正处理系统，已由例如特开 2004-21720号公报（专利文献 1）公开。专利文献 1 里所公开的图像补正处理系统，在摄影图像数据里进行自动的图像补正处理，通过省略至少一部分的图像补正处理，来自动进行少有图像画质劣化的图像补正处理。

专利文献 1 里所公开的图像补正处理系统，根据传送目的地的终端是否为携带终端的判断，来判断是否要执行数据大小的处理。在专利文献 1 中，通过仅当传送目的地为携带终端的时候执行调整大小，以及仅当传送目的地不为携带终端的时候不执行调整大小，来作成对应于传送目的地终端的补正图像，并被保管到图像保管装置中以备后用。

专利文献 1：特开 2004-21720 号公报

发明内容
专利文献1里所公开的图像补正处理系统，在对实施图像补正之后的图像数据保管这一点上，对于使用者来说，可以提供图像补正后的图像数据。但是，由于是使用电子邮件的传送目的地来选择图像处理进程的，当使用者以不使用电子邮件的传送为前提的时候，具体来说是在介由Internet Explorer（商标）、Netscape Navigate（商标）、MOZILLA等WWW浏览器，来登录图像以浏览时，会发生完全不起作用的情况。

亦即，需要使用通常通过WWW浏览器被动地、被传送到为图像数据所访问的服务器装置里的图像数据的图像特征，通过自动或用户的要求，可以由情报处理装置补正并登录到数据库里的情报处理装置、图像登录方法以及程序。

另外，还需要由用户来指定是否执行补正，并且可以响应用户的指令以确定是否要执行补正的情报处理装置、图像登录方法以及程序。

更进一步地，当用户希望进行补正时，需要可以由用户选择使用了图像特征之后的图像补正的补正程度的情报处理装置、图像登录方法以及程序。

另外，还需要可以将移动电话、PDA或数字照相机等送来的图像数据，使用在WWW浏览器或显示画面中有限制的环境之外的，例如个人计算机等来进行图像补正的情报处理装置、图像登录方法以及程序。

本发明鉴于上述通常技术的问题点，本发明的情报处理装置将从多种装置传送来的图像数据，根据补正后有没有数据传送来分离后，使用该图像特征在网页上进行补正，并登录到存储装置里。情报处理装置使用图像数据的图像特征，来识别背景图像和物体图像，对图像数据补正之后作成补正图像数据。情报处理装置将补正图像数据对应于URI（Uniform Resource Indicator）或URL（Uniform Resource Locator）登录后，来响应使用者的阅览要求。

补正也可以是由情报处理装置使用作为默认值设定管理的基准值来自动执行。另外，也可以由用户指定补正处理的有无或补正水平，并以被指定的补正水平来执行图像补正。

被登录的补正图像数据，在显示网页的HTML、XML等构造化文书中使用标签等标识以得到记述，并在网页上得到显示。另外，在显示在网页里的补正图像数据中，也使用<href/>标签等，使得由URI所指定的补正前的图像数据得到链接。此时，用户可以由网页直接访问直接补正图像数据。

更进一步地，用户从移动电话、PDA、数字照相机等终端装置，介由网络将图像数据传送到情报处理装置时，用户可以由携带终端来指令图像补正。另
外，当用户在更好的显示环境及浏览环境下，想在确认图像的同时进行图像补正的时候，用户可以从个人计算机等计算机装置去访问登录了的图像数据，并且在确认补正水平的同时人-机对话地补正图像数据，并登录补正图像。

根据本发明，对于与图像数据的情报处理装置中的处理另外地、被动地被浏览的图像数据，就可以进行图像补正了，从而使得显示在网页里的图像数据的画质得到一致，以获得更有效的浏览。

另外，根据本发明，由于用户在与发送图像数据环境不同的环境下，可以判断是否需要补正以及补正的水平，并登录到情报处理装置里，通过将显示在网页里的补正图像数据的画质，设定在用户判断以及服务网站所要求的设定水平之上，就能够提供更具效果的网页。

更进一步地，根据本发明，还可以提供存储一定画质以上的补正图像数据的数据库服务器或备份服务器。

根据本发明的技术方案，提供一种登录图像数据的情报处理装置，其特征在于包括:网络处理手段，其介由网络来取得图像数据；图像补正手段，其解析所述图像数据，并从所述图像数据中抽出背景图像和物体图像，补正所述被抽出的背景图像，依照补正条件来作成包含物体图像的补正图像数据；数据库手段，其将所述补正图像数据能够参照所述图像数据地存储。

根据本发明的技术方案，其特征在于所述图像补正手段包括:物体抽出处理手段，其从图像数据中抽出背景图像和物体图像；背景图像处理部，其作成包含物体图像的补正图像数据。

根据本发明的技术方案，其特征在于:所述物体抽出处理手段包括，将所述图像数据的像素分配成划块，使用所述每一划块的图像特征来抽出所述背景图像和所述物体图像，并存储到存储器里的抽出手段。

根据本发明的技术方案，其特征在于:所述背景图像处理部包括，删除作为所述背景图像而抽出的划块、指定位度值、或者将背景图像数据调整为所述图像数据的尺寸，并与所述物体图像进行层的合成的背景修正手段。

根据本发明的技术方案，其特征在于:所述图像补正手段包括，介由所述网络接受补正要求后对所述补正要求进行解析，根据所述补正要求中包含的补正条件，对所述背景图像处理部的处理进行选择后执行的选择执行手段，根据所述补正条件将补正后的所述补正图像数据，介由所述网络送出。

根据本发明的技术方案，其特征在于包括:进一步地将所述图像数据以及
所述补正图像数据由所述网络进行浏览的浏览手段。

根据本发明的技术方案，其特征在于：所述情报处理装置为 CGI 服务器、应用软件服务器、SOA 服务器，将所述图像数据以及所述补正图像数据由所述网络让利用者浏览，并从连接于外部的网络服务器手段接受所述补正要求。

另外，根据本发明的技术方案，提供一种情报处理装置所执行的图像登录方法，其为介由网络相对于情报处理装置来登录图像的图像登录方法，所述图像登录方法相对于所述情报处理装置，其特征在于包括：介由所述网络从终端装置接受图像数据，并解析所述图像数据后，将背景图像数据和物体图像数据分离，将所述背景图像数据以及所述物体图像数据存储到存储器里的步骤；和修正存储到所述存储器里的背景图像数据，并将包含所述物体图像数据的补正图像数据依照补正条件来作成的步骤；和将所作成的所述补正图像数据存储到数据库里的步骤；和介由所述网络接受登录图像显示要求，并解析所述登录图像显示要求，检索所述补正图像数据是否被登录在所述数据库里，并且当所述补正图像数据被登录时，去显示所述补正图像数据，当所述补正图像数据没有被登录时，去显示没有被补正的所述图像数据的步骤。

根据本发明的技术方案，其特征在于：所述补正图像数据的步骤包括，相对于所述图像数据，执行响应于服务站点的设定的修正处理的步骤。

根据本发明的技术方案，其特征在于：所述图像数据以 EXIF 格式被传送，作成所述补正图像数据的步骤包括，使用记述在所述 EXIF 格式内的数据来作成所述补正图像的步骤。

根据本发明的技术方案，其特征在于：所述图像数据从白色平衡、色度补正、锐度、反差、歪曲补正、图像尺寸、噪声除去之中，至少进行 1 个前处理之后所述情报处理装置进行接受。

根据本发明的技术方案，其特征在于：作成所述补正图像数据的步骤包括，对于所述背景图像数据进行装饰数据重叠的步骤。

根据本发明的技术方案，其特征在于：作成所述补正图像的步骤包括，使用所述背景图像的图像特征来识别所述背景图像和所述物体图像的步骤。

根据本发明的技术方案，其特征在于：所述作成补正图像数据的步骤还包括，介由所述网络等待服务器站点来的补正要求的步骤；和接受到所述补正要求时，从所述补正要求取得所述补正条件以及所述图像数据的步骤；和依照所述补正条件来变更呼出目标的步骤；和在所述目标里定义所述图像数据，作成
对象实例的步骤。

根据本发明的技术方案，其特征在于包括：进一步地，从服务站点接受所述补正要求的步骤；和将所述补正图像数据作为对所述服务站点响应的返回步骤。

根据本发明的技术方案，能够一种程序，其特征在于：相对于计算机，能够实现上述任何一项所述的功能手段，为计算机所能执行。

附图说明

图 1 所示是显示情报处理装置的功能模块的实施方式图。
图 2 所示是图像补正处理部的功能模块的实施方式图。
图 3 所示是补正处理的实施方式图。
图 4 所示是补正处理的实施方式图。
图 5 所示是补正图像数据的实施方式图。
图 6 所示是图像数据、物体图像、补正图像数据的实施方式图。
图 7 所示是包括图像数据、补正图像数据以及用户标识值的数据构造的实施方式图。
图 8 所示是情报处理装置执行处理的实施方式的流程图。
图 9 所示是接受外部的补正要求时的实施方式的流程图。
图 10 所示是补正处理的实施方式的流程图。
图 11 所示是终端装置的图像数据传送的实施方式图。
图 12 所示是用户显示登录后的补正图像数据的网页的实施方式图。
图 13 所示是在终端装置图像数据被登录之后，用户从个人计算机等对登录的图像数据进行补正时所显示的窗口图。
图 14 所示是包括情报处理装置的网络系统的实施方式图。
图 15 所示是网络系统的第 2 实施方式图。
图 16 所示是第 2 实施方式时交易的实施方式图。
图 17 所示是用于在图像补正网站选择执行脚本的数据构造。

具体实施方式

以下，虽然使用将本发明显示在图面上的实施方式来作说明，但本发明不限制于图面所示的实施方式。
图 1 所示是对于图像数据进行补正的情报处理装置 10 的功能模块图。情报处理装置 10 由：个人计算机、工作站、或作为服务器的计算机等构成的。情报处理装置 10 由：中央处理装置（CPU）、对 CPU 所使用的数据能进行高速存取的高速缓存、使 CPU 得以处理之 RAM、DRAM 等固体存储元件构成的存储器等构成。

作为情报处理装置 10 所使用的 CPU，更具体地是例如 PENTIUM（登录商标）～PENTIUM（登录商标）IV、ATHRON（登录商标）、CELERON（登录商标）等，PENTIUM（登录商标）互换 CPU、POWER PC（登录商标）、MIPS 等，能够将 CISC 或 RISC 架构的 CPU，根据其处理能力或使用平台的实现形式来适当选择后实施。

另外，作为所使用的操作系统（OS），可以列举有 MacOS（登录商标）、Windows（登录商标）、Windows Server、UNIX（登录商标）、AIX（登录商标）、LINUX（登录商标）或其他适当的 OS。更进一步地，情报处理装置 10 存储并执行在上述 OS 上动作的 C、C++、Visual C++、Visual Basic、Java（登录商标）、JAVA（登录商标）SCRIPT、Perl、Ruby 等目标指向型程序语言所记述的应用软件程序。更进一步地，在将情报处理装置 10 作为服务器实施的时候，服务器支持 Apache、IIS、CGI（Common Gateway Interface）等服务器程序，并可以构成作为对使用 HTTP 协议、FTP 协议、SMTP 协议而被要求的图像登录或图像补正进行处理的、CGI 服务器、应用软件服务器、SOAP 服务器等 Web 服务器。

如图 1 所示，情报处理装置 10 包括处理执行部 12、显示装置 14、将各种指令送到处理执行部 12 里的键盘等输入装置 16、鼠标等指标装置 18。处理执行部 12 介由输入输出控制部 28 来接收从键盘 16 或鼠标 18 来的输出，并执行被指定的处理。另外，处理执行部 12 介由输入输出控制部 28 将处理结果或下载的图像数据显示到显示装置 14 里。

情报处理装置 10 还包括浏览器处理部 24、图像补正处理部 26。浏览器处理部 24 实施有作为伺服小程序（Servlet）、服务器程序（Apache）、网际网路资讯伺服器（IIS）等服务器功能。浏览器处理部 24 将 HTML、XML 等结构化文本送交与 Internet Explorer（登录商标）、Netscape Navigator（登录商标）、MOZILLA 等 WWW 浏览器。介由网络 30 被送交到远距离连接的终端装置里的结构化文本，通过浏览软件，作为网页被显示到终端装置上，以为终端装置提供各种服务。

另外，处理处理部 24 介由 NIC（NetWork Interface Card）等的、开放系统互联（OSI）基本参考模型所指的包括数据链接层层级的网络机器之网络处理部
22. 通过包括 LAN(Local Area Network)、WAN(Wide Area Network)以及互联网(Internet)在内的网络 30，来处理 HTTP 请求／响应、FTP 请求／响应等的交易，并能够在显示装置 14 上，通过浏览软件来浏览。还有，在连接到互联网之前，也可以经由异步 2 或异步 3 的网络机器，并介由 DNS(Domain Name Server)、POP 服务器等连接到终端装置里。浏览处理部 24 实施有微应用程序(Applet)，通过在结构化文本里记述出微应用程序的标签＜applet＞或＜object＞，就能够执行微应用程序。

另外，图像 burgl 处理部 26 相对于数字照相机、携带照相机等所拍摄的图像数据来进行图像修正，并将图像数据以及修正后的图像数据存储在记忆装置 20 里。另外，处理执行部 12 实施有关联数据库等数据库，对图像数据和修正图像数据可以相互参照地进行管理。

图 2 所示是图 1 所示的图像修正处理部 26 的详细功能模块图。图像修正处理部 26 由图像获得处理部 32 和图像分析处理部 34 构成。图像获得处理部 32 介由包括以太网(Ethernet)(登录商标)的总线类型的传送途径，来获得数字照相机等拍摄的图像数据，并存储到缓冲存储器(buffer memory)44 里。

图像分析处理部 34 将获得的图像数据分割成块，对各块中所包含的像素进行 RGB 数据的平均，并计算平均色度值。还有，平均色度值作为 RGB 维度(dimention)被计算后，能够原样不动地被用于以后的处理中。另外，将平均色度值从 RGB 的平均值变换到 CIE1976LAB 均匀色彩空间里，并使用规定色差范围的基准值，能够进行统计处理以使得块内的平均值的微小偏差(例如垃圾、阴影等)不至于影响对物体的识别。还有，下面为了说明上的方便，仅对加色混合系统之 RGB 表色系统作说明，对于 CMY 系统的减色混合的表色系统也能够作同样的处理。

另外，在本发明的其他实施方案中，图像解析处理部 34 将图像数据分割成块(block)，通过将块的纹理(texture)经傅立叶变换后变换成空间频谱，就能够以块为单位来对纹理进行解析处理了。

背景取得处理部 36 对于图像解析处理部 34 所分配的块，能够设定足够的块数来平均图像数据的 4 个方向边缘部里的块，例如，以 1 个边缘部 1～5 划块的程度，4 个方向 4～20 划块左右来特定，并对特定了划块平均值之后的块再进行平均，并使得均方差(Unbiased Variance)和方差的差在规定的阈值以下，以取得背景色度值。此时，通过事先计算特定划块的平均色度值的
标准偏差（standard deviation）就能够使用于识别处理中。这是因为图像数据的边缘部的成形可以考虑为不包括注目物体（以后单作为物体来参照）。背景获得处理部 36 所计算的背景色度值被一时性存储在缓冲存储器里后，由物体抽出处理部 38 读出，然后被使用与用来抽出对应于图像数据中的物体的像素。

另外，在本发明的其他的实施方式中，在进行纹理解析的时候，能够获得以构成图像数据边缘部的空间频谱之频率群为特征的过滤数据（filter data），并参照过滤数据将划块作为背景图像来识别。

物体抽出处理部 38 以软件形式，或根据需要与硬件组合之后，使用图像数据的图像特征，来实施抽出背景图像和物体图像的抽出手段。作为图像特征，虽然可以使用 RGB、CMY、CIE1976LAB，纹理的空间频谱等等，但也可以不局限这些。另外，本实施方式中的抽出手段可以由使用（1）Snake 算法、（2）纹理解析法等的多种处理来构成。

（1）的 Snake 算法是这样一种抽出方法，其使用背景色度值的使用于该判断的基准值，以被判断为背景图像的划块为背景来进行识别，当处理对象的划块超过基准值而具有与背景色度值不同的色度值时，在将该划块之内一个划块为止来作为背景图像识别并结束处理之后，从图像数据来抽出物体图像。

另外，上述（2）的纹理解析法，是一种通过傅立叶变换将图像数据的 RGB 值变换为频率，将包含特定频率的领域作为物体领域来识别的方法。其将图像数据分割为划块，通过使用划块的平均色度值来进行傅立叶变换，也能够进行纹理解析，另外，也能够不进行划块分割，而对图像数据进行直接的傅立叶变换。作为使用纹理解析时候的基准值，可以使用作为背景图像用于赋予特征的频率波段，另外还能够将规定的频率波段作为过滤来设定，进行背景图像的物体图像以及物体图像。

背景图像处理部 40 对于被抽出的物体图像进行变更背景图像色度值的处理。还有，如图 2 所示，图像补正处理部 26 在适当的记忆装置中，存储具有 RGB 值（或 CMY 值、或 CIE1976LAB）的、复数个色度值的背景图像数据 46。另外，背景图像数据 46 也可以具有定位，框饰，对应于从背景图像处理部 40 来的访问，能够进行背景颜色的修正以及修饰显示。

背景图像处理部 40 对除去图像数据的物体图像之后部分的色度值进行修正处理。对背景图像的色度值进行修正的处理，在本实施方式中，能够使用上述作为软件被实施的背景修正手段的处理。来行进行背景修正处理。
（1）将尺寸调整到与图像数据相同尺寸的尺寸调整后的背景图像数据46作为下侧层，在上侧层里将物体图像重叠后统一之后，进行GIF、JPEG、JPEG2000、PNG、TIFF等格式的图像数据的处理。

（2）指定归属于被识别为背景图像之划块的像素，并指定特定的RGB值后对背景图像的色度值进行修正，然后进行适当格式的图像数据的处理。

（3）将尺寸调整到与图像数据相同尺寸的尺寸调整后的背景图像数据46作为下侧层，将图像数据作为上侧层，将对应于图像数据背景图像颜色的透过色进行指定的处理。

上述（1）的处理，在修正背景颜色之外，还能够用来对背景图像作添加框饰的处理。另外，上述（2）的处理是不直接使用背景图像数据46的处理。上述（2）以及（3）的处理既可以是各自分开后使用，也可以是将（2）以及（3）进行组合后来使用。通过对（2）以及（3）进行组合，就能够与（1）相同地将框饰追加为背景图像。还有，作为识别背景图像时所使用的基准值，可以使用划块的平均色度值的标准偏差，既可以使用分别对应于RGB的标准偏差σ_g、σ_δ、σ_δ来判定各个RGB的值，另外也可以将σ_g、σ_δ、σ_δ的算数平均、几何平均等作为判断基准来使用。

另外，对于代表背景图像的划块，能够将所获得的频率过滤作为判断基准，来分离背景图像和物体图像。还有，在可以不考虑处理时间、垃圾、周边部的阴影等影响的情况下，也可以不以划块为单位，而使用像素单位的处理来分离背景图像和物体图像。

反差（contrast）补正处理部42是用于将适当的反差赋予给物体图像和新的背景图像的处理。反差补正处理部42能够自动执行以获得，由对物体图像和背景图像的RGB值作相对修正的处理的经验所得到的平衡值。另外，反差补正处理在进行背景图像的色度值的修正的同时，将补正的结果随时显示给用户，从而能够进行人-机对话。还有，反差补正处理部42在不需要特别修正的时候，也可以在实施时省略。

背景获得处理部36或反差补正处理部42的输出结果，被储存到缓冲存储器里之后，由记忆装置20或网络30被送到网络服务器等里面。

图3所示是图像解析处理部34以及背景获得处理部36所执行的划块分割的实施方式。图3所示的图像数据50中，包含了作为物体图像的外衣52。另外，如图3所示，图像数据50是由背景图像54包围物体图像52那样地构成
的。图像解析处理部 34，将图像数据 50 的像素分配成设定尺寸大小的划块 56，
将划块 56 中所包含的像素的 RGB 值平均之后计算该划块的平均色度值，并在
RAM 等存储器与划块识别值一起进行登录。

之后，背景获得处理部 36 对图像数据边缘部的划块作适当数量的取样，
在进行平均化处理之后，计算背景图像的平均色度值。物体抽出处理部 38 在
平均色度值得到计算之后，将具有收敛于预先设定基准值之平均色度值的划
块，作为背景图像来识别，并抽出物体图像。图 4 所示是物体抽出处理部 38
所执行的识别处理的实施方式。如图 4 所示，物体抽出处理部 38 执行着从图 4
中图像数据的左侧上边缘向向下侧进行的划块的识别处理，以剖面线来表示识别
处理结束后的划块。在本实施方式中，识别背景图像的处理虽然可以从图 3 中
任何一个方向开始执行，但从物体抽出的角度来看，以从图像数据的边缘向单
方向的内侧进行为好。另外，不一定是非要从单方向进行不可，也可以是从 4
个方向同时进行识别处理。

另外，如图 4 所示，因为划块的尺寸和物体尺寸之间关系，会有在物体
附近残留很少的背景图像。此时，通过逐渐缩小划块尺寸以作物体近傍的处理，
就能够更正确地识别背景以及物体。另外，在其他实施方式中，对于包含物体
的最外侧的划块，选择具有相当于背景和物体之边界部分的色度值的像素，通
过留下物体侧，将背景侧作为背景来登录，还能够形成更光滑的物体边界。

图 5 所示是对于由背景图像处理部 40 所识别的背景图像以及物体图像，
对作为背景图像被识别的领域进行修正后作成的补正图像数据 58。图 5(a)所
示是将背景以均一色度值的图像进行补正的场合下的实施方式，图 5(b)所示是
将增加窗饰后的图像作为背景图像的场合下的实施方式。在补正图像数据 58
中，背景图像 54 的均一得到修正，均一后的背景图像得到显示。在图(5)所
示的实施方式中，通过在背景图像里设置窗饰，更能加深对物体的印象，从而
对背景图像进行补正。对于框饰或窗饰，也可以是预先赋予背景图像数据 46
后进行登录，并将框饰或窗饰的数据存储在其他的记忆装置里，响应补正的
指令来呼出之后，再与背景图像进行合成。

图 6 所示是情报处理装置 10 所执行的补正处理的另外的实施方式。图 6
所示补正处理，首先(1) 将背景从图像数据删除，(2) 将背景图像的尺寸重新调
整为与图像数据相同的尺寸。其后，(3) 将背景图像配置在下侧层，将物体图
像配置在上侧层，并且使各自的图像的重心重叠一致，通过对层的统合而作成
补正图像数据。

还有，在本说明书里所说的「重心」，指的是对于背景图像以及物体图像
的划块，对其分别进行加权后形成的图像领域的重心。对于背景图像，虽然背
景图像数据 46 的中心和重心是一致的，但对于物体来说，由于是随物体的形
状而变化的，通过使背景图像和物体图像的重心相一致，就能够在补正图像数
据中，对物体进行平衡良好的配置。还有，用于使背景图像和物体图像重叠的
处理，只要是相对于背景来，能够对物体进行平衡良好地配置的，无论是什么
方法都可以。

图 6(a)所示是传送来的图像数据，图 6(b)所示是通过除去背景之后所得
到的物体图像数据，图 6(c)所示是将物体图像数据相对于背景图像，配置成相
互的重心为一致地，将图象合成后的补正图像数据。如图 6(c)所示，补正图像
数据的背景比图 6(a)所示的补正之前的图像数据要亮，而且拍摄时的物体的遮
阴得到抑制，可以给人在整体上是明亮的印象。如图 5 以及图 6 所示，通过本
实施方式的图像补正处理，可以改善物体图像的印象，能够在网页上以更均一
的格式来进行显示。

图 7 所示是情报处理装置 10 在硬盘装置等记忆装置里，作为数据库来管
理的数据构造的实施方式。图 7(a)所示是数据库的数据构造的实施方式，图
7(b)所示是存储在硬盘装置等记忆装置里的目录构造的实施方式。如图 7(a)
所示，录像数据（在图示的实施方式中以后缀 .orig 来表示）和补正图像数据（在
图示的实施方式中以后缀 .mod 来表示）构成了形成于每一个用户标识值里的记
录，从用户标识值、图像数据、补正图像数据中的任何一个开始，都可以相互
进行数据的参照。用户标识值也可以是服务站所分配的用户标识值，另外，也
可以是电子邮件的地址，其不被特别限定。

另外，如图 7(b)所示，图像数据以及补正图像数据被登录在 /etc/image
/ User/ 的下级阶层里。图 7 所示的图像数据构造，是将图像数据在图像数据
构造上用于识别的图像数据以及补正图像数据，成像构架构造。在其他的实施
方式中，也可以是图像数据和补正图像数据进行相互参照，例如可以将后缀等
变更后，将图像数据以及补正图像数据存储在同一个目录里。

另外，作为数据构造也可以使用 XML，为了可以使用 DOM (Document Object
Model) 那样的检索，在其他实施方式中，也可以是以用户标识值作为母节点，
以图像数据以及补正图像数据作为子节点，并作为对应于补正履历的树构成来
登录，用户可以选择多次尝试之后的补正图像数据来登录。

当情报处理装置 10 作为应用软件服务器、网络服务器、或数据服务器等而构成时，图像数据或补正图像数据通过 URL (Uniform Resource Locator) 或 URI (Uniform Resource Indicator)，作为例如 http://www.on-line_Ricoh.co.jp/index.html/Image/Image_001/Jacket1_mod 等被指定。

图 8 所示是情报处理装置 10 所执行的处理的第 1 实施方式的流程图。图 8 所示的处理是从步骤 S100 开始，并在步骤 S101 处从终端装置接受图像数据登录要求。在步骤 S102 处，将登录表单传送给终端装置。在步骤 S103 处，情报处理装置 10 从传送的表单，通过使用 SMTP 协议的电子邮件或使用 HTTP 协议的加载来接受图像数据。

在电子邮件里，附件有图像数据。图像数据可以是各种格式的。在图 8 所示的实施方式中，可以使用 GIF、PNG、TIFF、JPEG、JPEG2000、BMP、EXIF 等已知的任何一种格式。另外，在电子邮件的文档中，对加载图像数据时的属性数据，例如物体的种类、状态、希望销售价格等记述之后传送。在步骤 S103，当情报处理装置 10 接到电子邮件后，即启动文本解析程序 (text parser)，并从接受的数据中抽出物体的种类、状态、希望销售价格等属性数据后，在步骤 S104 处与用户标识值建立对应之后存储到记忆装置里。还有，当终端装置实施了对应于 EXIF 等图像格式的软件时，在图像数据的特定标记所指定的领域里，能够作为元数据来记述属性数据，而无需特别地在电子邮件的文档记述属性数据。

另外，在将 EXIF 格式的图像数据通过 HTTP 协议来加载的时候，在记述上述属性数据的输入字段内，记述属性数据，并登录加载的图像数据，通过点击「传送」键，图像数据以及属性数据即被传送到情报处理装置 10 里。

在步骤 S105 处，接受了图像数据以及属性数据的情报处理装置 10，或根据用户的指令，或自动地作成补正图像数据，并在步骤 S106 处对应于图像数据来存储。在步骤 S107 处，情报处理装置 10 对应于从终端装置来的浏览要求，将记述了补正图像数据的 URI 的结构化文档传送去终端装置，并介由浏览软件将网页显示到终端装置里，然后在步骤 S108 处结束处理。

图 8 所示的处理是，即使用户对于图像数据不发出执行补正的指令，也会从情报处理装置 10 管理的补正条件一览表中，选择能满足基准值的补正条件，并自动进行补正处理情况下的实施方式。另外，在图 8 所示实施方式中，
当不具有浏览功能的终端装置，通过电子邮件来加载图像数据时，或通过电子邮件来传送表单，或通过电子邮件来传送图像数据，即使不从个人计算机对特定的 URL 进行访问，也能够获得补正图像数据。

图 9 所示是情报处理装置 10 所执行的处理的第 2 实施方式。图 9 所示的实施方式是，根据用户的要求来进行补正以及指定补正水平等的条件，从而作成补正图像数据的实施方式。图 9 所示的处理从步骤 S200 开始，在步骤 201 处，持续判断是否从用户那里接受到了补正要求。当有来自于终端装置的补正要求时 (Yes)，在步骤 202，从补正要求获得用户标识符，并从用户所登录的图像数据之中，检索没有登录补正图像数据的图像数据。在步骤 S203 处，将检索到的图像数据的 URI 记述到 HTML 文件里后传送到终端装置里，并在终端装置上浏览图像数据。

在步骤 S204 处，获得包含在补正要求里、或在补正要求之外传送来的补正条件，并在在步骤 S205 处启动图像补正处理部 26，并使用补正条件来执行对图像数据的补正处理，以作成补正图像数据。之后，情报处理装置 10 在步骤 S206 处，为了将补正图像数据显示到网页里，而存储到记忆装置里，并在步骤 S207 结束处理。

图 10 所示是情报处理装置 10 所执行的补正处理的实施方式的流程图。图 10 所示的处理是，从步骤 S300 开始，在步骤 S302 处，将图像数据的像素进行划块分割。在步骤 S303 处，对划块内的 RGB（或 CMY）值进行平均，并计算背景图像的平均色度值，然后存储到缓冲存储器里。在步骤 S304 处，情报处理装置 10 以背景图像的平均色度值为中心，将具有在所设定的基准值范围的平均色度值的划块，在图像数据上作识别，并抽出物体图像和背景图像。之后，情报处理装置 10 在步骤 S305 处，对于被抽出的背景图像以及物体图像执行背景图像处理，并作成补正图像数据，建立图像数据的对应之后存储，并在步骤 S306 处结束处理。还有，背景图像的补正处理是使用了图 4 或图 5 所说明的处理、或使用了依据立叶变换之后的频率过滤之后被执行的。

还有，作为识别背景图像的处理，当使用经傅立叶变换之后的频率过滤时，作为步骤 S303，获得划块的频率波段，在步骤 S304，通过使用频率过滤来对识别处理作置换处理，就能够执行使用了空间小数的背景图像以及物体图像的识别，分离处理。

图 11 所示是终端装置的图像数据的传送实施方式。图 11 (a) 所示是终端
装置 60 和情报处理装置 10 之间的交易的实施方式，图 11(b)所示是被送到终端装置 60 里的表单的实施方式。图 11(a)所示的终端装置 60 由移动电话、数字照相机、PDA、个人计算机等构成。当携带终端 60 支持浏览功能时，对于应用软件服务器或网络服务器等的情报处理装置 10，执行使用表单以及 CGI 的访问。另一方面，终端装置 60 对于情报处理装置 10，以使用了 SMTP 协议的电子邮件，经由 POP 服务器去访问情报处理装置 10。

图 11(b)所示的表单 66，是在窗口 66 上相对于用户来执行图像数据登录的表单。进一步地在窗口 66 上，通过超链接提供有显示图像数据传送方法的选择，「以电子邮件传送」以及「直接加载到服务器」。用户在传送图像的时候，考虑终端装置 60 的环境或输入时间等，来选择电子邮件或直接加载的方法。另外，在窗口 66 里，还配置有用于用户中断登录处理、返回首页的键。

当终端装置 60 介由表单 66 来访问情报处理装置 10 时，介由表单，使用

```
<ahref="mailto:On-line_Ricoh@co.jp">等标记以及方式，就能够传送到专用的电子邮件地址里。还有，在用电子邮件传送图像数据时，在支持 EXIF 格式的终端装置 60 中，通过不在电子邮件文档里记述属性数据，而是在图像数据的标记所指定的位置里记述属性数据后传送，可以提高用户从终端装置传送电子邮件的效率。另外，由于摄影时的数字照相机的参数（曝光、焦距、闪光的有无、白色平衡）等，能够作为 EXIF 文件的元数据来记述，也能够提高情报处理装置 10 一侧的补正处理的效率。
```

另外，当表单终端装置 60 使用表单 66 将图像数据加载到情报处理装置 10 里的时候，能够将负责在表单里登录图像数据，并执行补正等 CGI 处理的 URL，作为<ahref="http://www.on-line/Ricoh.co.jp/cgi-bin/touroku.cgi" method="post" enctype=“”>等来事先记述。用户通过在终端装置 60 的画面上表示出来的表单里进行输入，就能够使图像数据直接访问登录的 URL，并且将图像数据与其属性数据一起加载。

图 12 所示是显示用户登录的补正图像数据的网页的实施方式。图 12 所示的网页，是用户介由终端装置 60 的浏览软件来提供图像数据的网页，例如，在访问 http://www.on-line/Ricoh.co.jp/inex.html 的时候会显示出来。在图 12 所显示的窗口 80 里，具有显示网页 URL 的字段 82、在用于站内检索的关键词等输入的字段 84 之外，显示该网页所登录图像的「登录图像一览」的显示字段 86。
另外，在图 12 里，事先登录的多个补正图像数据 88 以及补正图像数据 90 被登录后，被一览地显示在窗口 80 内。图 12 里补正图像数据符号 88 以及符号 90 来表示。另外，例如符号 92 所表示的图像，由于用户选择了没有补正的显示，所以其显示的是与终端装置 60 传送来的图像数据原样不变的图像。另外，补正图像数据符号 88 以及补正图像数据 90，对于补正前的图像数据的 URI，显示为附有超链接的按钮。因此，用户通过在窗口 80 将像标 94 重合到补正图像数据 88 里，双击之后，就能够参照对应的补正之前的图像数据。

更进一步地，在窗口 80 里，还提供有用于阅览其他图像之前进页的「下一页」键 96 以及用于返回前面页的「返回」键 98，用户能够自由地阅览所登录的图像。

图 13 所示是图像数据登录在终端装置 60 之后，用户对登录的图像数据进行补正时所显示的窗口。图 13 所示的窗口 100 是由，用户从终端装置 60 传送图像数据，在情报处理装置 10 里登录结束之后，从个人计算机或移动电话等支持浏览功能的携带终端，来访问特定的网页的方法来表示的。当访问图 13 所示网页 100 的时候，用户从浏览软件输入 http://www.on-line/Ricoh.co.jp/hosei.html 等 URL 地址。

输入 URL 地址之后，在显示图像面上，用于访问情报处理装置 10 的用户标识值或密码等的输入要求窗口被显示。用户在输入字段里输入用户标识值以及密码，通过情报处理装置 1-的承认后，图 13 的窗口 100 显示出来。还有，用户输入的用户标识值可以与登录图像数据时用户赋予的用户标识值共通，也可以是从电子邮件地址，来查对情报处理装置 10 另外管理的用户管理数据库等后，为了可以检索而赋予关联的值。

情报处理装置 10 将输入的用户标识值作为检索键来使用，并检索数据库，以检索被赋予与该用户标识值相关联的图像数据。从检索得到的图像数据中，将与其对应的补正图像数据还没有被作成的图像数据，作为补正对象的图像数据来取得，并将该图像数据的文件标识值，以 URI 的格式可以链接地、记述在结构化文档的规定的位置里。补正图像数据的登录判断，可以通过具有被赋予到补正图像数据里的后缀的、同一文件名是否存在，或使用该图像数据的访问记录来执行，或者也可以使用 SQL (Structured Query Language) 来检索数据库的该字段。情报处理装置 10 通过 JAVA（登录商标）伺服小程序等，或对显示检索得到的图像数据以及补正图像数据的、结构化文档的 URI 的途径进行修正，
或者通过在由结构化文档参照的 URI 里登录检索后的数据来显示检索结果。

对图 13 的窗口 100 作进一步说明时，在窗口 100 里显示有补正前的图像数据 102。用户在窗口 100 上认识图像数据 102，当希望进行图像数据的补正时，就从指定补正水平的输入字段 110 处，显示选择补正水平的下拉菜单 112。用户在选择所希望的、或想尝试的补正之后，通过点击「补正」键 106 等，将包括补正条件的补正指令发送到情报处理装置 10。

接受了与补正条件一起的补正指令的情报处理装置 10，呼出图像处理脚本后，执行图 9 以及图 10 所示的处理。情报处理装置 10 接受图像处理脚本的执行结果之补正图像数据之后，刊登到与记忆装置 20 的图像数据相同的目录，或由数据库同一用户标识值所特定的记录的字段里。之后，情报处理装置 10 作成去、赋予启动并显示伺服小程序的窗口 100 的、结构化文档的补正图像数据的超链接，在窗口 100 内的显示位置里，作为补正图像数据 104 来显示。

另一方面，当用户不希望补正时，点击「立刻登录」键 108，就能够不经补正地登录。另外，参照补正图像数据 104 之后来参照补正结果的用户，当所希望的水平的补正结束之前，重复进行上述的处理，人机对话地进行补正，从而能够登录用户所希望的水平的补正图像数据。补正结束之后的用户点击「进行登录」键 114，来进行补正图像数据的登录处理。

图 14 所示是包括情报处理装置 10 的网络系统的实施方式。图 14 所示的网络系统 200，介由互联网等公共网络 200，使多个终端装置 60 相互连接，在图像数据登录之外，也可以进行图像数据以及补正图像数据的浏览以及下载等的交易。作为终端装置，在图 14 中所示的实施方式中，虽然例示有个人计算机 204、206、移动电话 210 以及数字照相机 212 等，但本发明对终端装置并不特别限定。

另外，在公共网络 202 中，连接有作为情报处理装置被使用、包含应用软件服务器 / 网络服务器功能的服务器 214。应用软件服务器承担图像登录以及补正等的处理，网络服务器为图像数据以及补正图像数据的浏览，或呼出图像处理脚本而提供界面。服务器 214 对硬盘装置等进行管理，将图像数据以及补正图像数据作为数据库来管理。

个人计算机 206 从数字照相机 208 介由 USB 等总线来接受图像数据，并申请去服务器 214 的登录以及补正处理。还有，个人计算机 206 实施有，处理数字照相机 208 所支持的 EXIF 格式的实用程序软件，将 EXIF 格式的图像数据原
样不动地传送至服务器 214 里。更进而的，实用程序软件也可以在传送之前，对应该传送的图像作自动或手动的图像处理。这时所行用的实用程序软件能够实施有、可以进行白色平衡、色度补正、锐度、反差、歪曲补正、图像尺寸、噪音除去等图像处理的、用于执行作为前处理的应用软件。作为这种软件，具有如 Photoshop（登录商标）那样的功能。

移动电话 210 使用移动电话所实施的携带照相机来取得图像数据，并将图像数据存储到 SD 卡等适当的记录媒介里。之后，移动电话发送规定了用于进行图像登录的 URL 的 HTTP 请求，并且由管理移动电话公司的基局以及网关（gateway）服务器、及公共网络 202 来访问服务器 214。服务器 214 发送表单 66，并在移动电话 210 的显示画面里，提供图 11（b）所示的窗口表示。用户根据窗口表示来选择文件的传送模式，并进行相对于服务器 214 的图像数据的登录。此时，也可以继续进行图像数据的补正处理。

另外，移动电话 210 的显示画面，因其小于个人计算机 204 等的显示画面，当用户希望在个人计算机 204 等里进行补正的时候，在图像数据登录之后，能够从个人计算机去访问指令补正处理的网页，并显示补正处理画面。此时，用户表示值以及登录的图像的一致性，如图 13 所述的那样，是通过执行检索来得到提供的。另外，在其他的实施方式中，服务器 214 从支持 HTTP 协议的终端装置判后图像数据的登录之后，也可以将显示补正处理画面的表单 66 作为 HTTP 响应直接返回，以对于用户，方便地进行补正处理。

另一方面，服务器 214 以电子邮件来接受直接图像数据登录的时候，服务器 214 能够将电子邮件的发送地址作为用户表示值，与图像数据一起登录。此时，当用户从个人计算机 204 成功地访问了服务器 214 时，服务器 214 取得作为用户表示值的电子邮件的发送地址，并检索对应的图像数据，进行补正处理。

用户从补正处理画面开始到进行补正之后的、最终的补正图像数据，通过服务器 214 被登录到记忆装置里，对应于关联数据库等相应字段的补正图像数据的表示值被登录，补正图像的登录得以结束。

另外，服务器 214 实施有网络服务器功能。服务器 214 从非特定的多个利用者（包括进行图像登录之后的用户以及除此之外的非特定的复数个用户）之中，将显示图像数据提供服务、图像数据贮存服务、网上购物服务、网上竞拍服务、博客、SNS（Social Networking Service）、打印代理服务、传真代理服务、补正图像数据的窗口，对应于特定的用途来显示。利用者从显示在终端装
置的显示屏上的网页里，选择所希望的补正图像数据，并从补正图像数据来参照补正前的图像数据。利用者在对图像数据以及补正图像数据作比较的同时，进行其他图像数据的比较，能够从网上购物或网上竞拍等，提供网页的服务站，来接受各种服务。

图 15 所示是网络系统的第 2 实施方式。在图 15 所示的网络系统 300 中，服务器 314 以及服务器 318 是分开构成的。服务器 314 具有应用软件服务器的功能，对于从移动电话 310、数字照相机 312、个人计算机 304、306 等终端装置 60 传送来的图像数据的图像补正处理，接受来自服务器 318 的要求而执行。服务器 314 还管理着数据库 316，储存着图像数据以及补正图像数据的双方。因为这点，服务器 314 也包括图像数据以及补正图像数据的数据库服务器或备份服务器的功能。

另一方面，服务器 318 作为专门提供与图像处理无关的、图像数据提供服务、图像数据贮存服务、网上购物服务、网上竞拍服务、博客、SNS (Social Networking Service)、打印代理服务、传真代理服务的网络服务器而被实施。服务器 318 受于非特定的多个利用者发出的网页访问，介由公共网络 302 来提供介于浏览软件的服务。

服务器 318 通过用户来接受图像数据的登录，将图像数据登录到数据库 320 里。另外，服务器 318 对于被登录的图像数据，在接受到用户来的补正指令之后，对于服务器 314，将图像数据和补正条件、网络地址（既可以是 IP 地址，也可以是 URL），在本实施方式中，服务器 318 将图像处理脚本标识值交付给服务器 314，从服务器 314 中呼出图像处理脚本来执行，作成补正图像数据。

服务器 314 在作成补正图像数据之后，将补正图像数据作为相应分组来交付。服务器 318 在接受补正数据之后，在作为浏览图像而提供的记忆领域里存储补正图像数据，并赋予补正图像数据固有的、用于标识的 URI 之后，介由网页将补正图像数据显示给利用者。还有，服务器 318 也能够保存原始的图像数据，并当原始数据被传送到服务器 314 之后，将原始图像数据删除，能够仅作为服务器 314 的 URI 来管理图像数据。

图 16 所示是图 15 的网络系统 300 所执行的补正处理的实施方式的流程图。图 16 所示的处理，在步骤 S400 处，用户通过点击「补正」键等，将补正指令发送到服务器 318（以下作为登录站来参照）里。在步骤 S401 处，登录站将图像数据、登录站的网页地址、CGI 处理标识值发送到服务器 314（以下作为图
像补正站来参照）里。

在步骤 S402 处，登录站等待来自图像补正站的响应。当从图像处理站有了响应时，就判断响应是否是出错，如果是出错时（yes），在步骤 S405 将处理分枝后结束该交易。另外，当步骤 S402 判断响应不是出错（no）的时候，在步骤 S403 处，将补正图像数据作为响应来接受。

之后，在步骤 S404 中，登录站将取得的补正图像数据存储到适当的记忆领域里，通过登录站以及图像补正站的交易在步骤 S405 处结束。

另一方面，图像补正站等待作为无交互后台程序的处理，在步骤 S406 处，判断是否受到登录站来的补正处理要求。当步骤 S406 的判断结果是，判断到处理要求没有受到时（no），将处理返回步骤 S406，并等待处理要求的出现。另一方面，在步骤 S406 处，当判断到有处理要求时（yes），在步骤 S407 中，图像补正站对登录了图像处理标识值的脚本表格进行查表，并将包含在在数据里的网络地址和图像处理标识值作对照，并判断执行该处理的对象是否存在。

图 17 所示是作为执行步骤 S407 处理所使用的登录站－处理脚本选择的选择执行手段而实施的脚本表格 400 的实施方式。图 17 所示脚本表格 400 的构成包括，登录站的网络地址（站 ID）、与图像处理识别值（图像处理脚本 ID）相对应的表格 400、图像处理脚本 ID、对应于执行图像处理脚本的脚本识别值的表格 404。

图像补正站接到补正处理要求之后，去取得站 ID（网络地址）和图像处理脚本 ID，并检索表格 402，以判断被要求的处理对于登录站是否被许可。如果不被许可，具体来说就是对于该站 ID，当没有被分配的图像处理脚本 ID 被送来的时候，图像补正站就将出错返回。

另一方面，当图像补正站将登录在该站 ID 里的图像处理脚本 ID 送出时，检索表格 404 并取得对应的图像处理脚本的脚本名，执行呼出处理，以及执行对应于补正要求的处理。例如，图像处理脚本 ID=1 的图像处理脚本执行尺寸变更，图像处理脚本 ID=2 所被指定的图像处理脚本抽出背景。另外，图像处理脚本 ID=3 所显示的图像处理脚本执行反差（白色平衡）的调整，图像处理脚本 ID=4 所被指定的图像处理脚本是抽出物体图像，并执行除去背景的处理的图像处理脚本。

还有，脚本表格 400 除了图 17 所示的数据构造以外，只要是能够指定站 ID（网络地址）和作为补正处理被适用的目标或脚本，无论怎样的数据构造都能
够实施到图像补正站里。

另外，如图 17 所示，在表格 402 里，能够将复数种处理作为复数个图像处理脚本 ID 登入。在登入作为图像处理脚本 ID 的复数个处理时，将图 13 所说明的窗口表示，显示在登录站作为网页的终端装置 60 的显示装置上，在相对于用户人-机对话第选择补正水平或种类时被实施。

当登录站和图像补正站不一致时，登录站从上述图 13 所示的网页中、用户所选择的补正水平来检索图像处理脚本，并将图像处理脚本 ID 以及图像数据存储到送信缓冲里。之后，将存储在送信缓冲里的数据记入到有效载荷里，并在 IP 报头里将登录站的网址记述在发送者的 IP 地址里，将图像补正站的 IP 地址记述在受信者 IP 地址里后，送出到网络 302 里。还有，作为站 ID，在使用 IP 地址以外的值时，通过事先在有效载荷里记述登录站的 URL 或 URI，就可以在图像补正站进行处理。还有，当在有效载荷里记入 URL 或 URI 以作成补正要求时，在图 17 的脚本表格 400 里，只要登入 URI 或 URL 即可。

更进一步地，来说明图 16 的处理，在步骤 S407 的判断处，当该处理被判断为不存在的时候（no），就将「出错」通知到登录站后结束交易，将处理返回步骤 S406 后再次等待。一方面，当步骤 S407 判断到该处理存在的时候，步骤 S408 处的图像补正站从 HTTP 方法中，使用 POST 方法来执行图像处理脚本的呼出。还有，图像处理脚本识别值也可以对应于补正水平来提供不同的脚本，或者对应于执行不同物体识别处理的脚本等的特定用途，能够以任何一种组合在图像补正站里实施。

另外，在登录站和图像补正站之间，能够指定执行补正处理应该呼出的脚本的脚本识别值，图像数据，以及网络地址，介由 RPC（Remot Procedure Call）、CORBA（Common Gateway Object Resource Broker Architecture）、SOAP（Simple Object Access Protocol）等分散计算架构，启动伺服小程序、服务器软件等脚本，来执行对应于图像处理脚本的处理。

更进一步的是，依照图 16 所说明的处理，在步骤 S409 处，从呼出的图像处理脚本的类别里，通过对接受的图像数据的说明（declaration）来生成对象实例，并执行处理脚本。被呼出的图像处理脚本对应于根据起服务站作用的登录站所指定或设定的补正水平，或背景图像识别处理等的不同，作为不同的图像处理脚本来被实施，即有複数个登录站，也能够提供个性的补正水平。之后，在步骤 S410 处，将作成的补正图像数据作为响应分组送到登录站里，在
结束该线程的图像处理脚本之后，结束生成该线程的交易，然后再次回到步骤 S406 的等待状态。

如上所述，根据本发明，对于用户登录的图像数据，由于能够将具有一定基准以上水平的补正图像数据让不特定的复数的利用者来阅览，通过提高网页显示的均一性，就能够提高网页的利用性以及访问频率。另外，根据本发明的图像补正，用户能够人-机对话地进行，另外，由于能够将过度的图像补正限制在不允许程度的补正水平里，也能够保证图像数据和补正图像数据之间的一致性，从而能够实现将网络竞拍站或网络购物站，SNS 等的网页利用性，和与网页显示内容的一致性，和站点的信赖性平衡之后的网络服务。

本发明的上述功能，可以通过 C、C++、Java（登录商标）、Java（登录商标）Beans、Java（登录商标）Applet、Java（登录商标）Script、伺服小程序、Apache、Perl、Ruby 等，继承型程序语言或目标指向型程序语言等记述的，可以由装置执行的程序来实现，能够存储在可由装置读取的记录媒介里后进行颁布。

至此，对本发明虽然是使用了图面所示的实施方式作了说明，但本发明不限定于图面所示的实施方式，可以在其他实施方式、追加、变更、删除等的、本领域技术者所能想到的范围内进行变更、无论是怎样的方式，只要是达到本发明的作用・效果的，即包含在本发明的范围内。

亦即，本发明不局限于前述的各个实施方式，在本发明的技术思想的范围内，除前述各实施方式中所示之外，从前述各实施方式作适当变更后的所得也是显而易见的。还有，前述构成部件的数量、位置、形状等不局限于前述各实施方式，在实施本发明时，可以使用适当的数量、位置、形状等。

本专利申请的基础和优先权要求是 2006 年 11 月 29 日，在日本专利局申请的日本专利申请 JP2006-321943，其全部内容在此引作结合。
图3
图 4
图 8

100

开始

接受图像数据登录要求

101

发送登录表单

102

从登录表单通过电子邮件（SMTP）或HTTP来接受图像数据以及属性数据

103

将对应于用户识别值的图像数据以及属性数据存储到记忆装置里

104

作成补正图像数据

105

将补正图像数据存储到用于网页显示的记忆领域里

106

对应于用户的浏览要求来发送网页

107

108 结束
图 9

S200 开始

S201 S202 从补正要求取得用户识别值，并检索图像数据

S203 浏览图像数据

S204 取得补正指令以及补正条件

S205 使用补正条件来补正图像数据，并作成补正图像数据

S206 将补正图像数据存储到网页中用于显示的记忆领域里

S207 结束
图 10
<table>
<thead>
<tr>
<th>脚本ID</th>
<th>站点ID（网址）</th>
<th>图像处理脚本</th>
</tr>
</thead>
<tbody>
<tr>
<td>abc.def.hi.j</td>
<td>1, 2, 4</td>
<td>1</td>
</tr>
<tr>
<td>abc.def.hi.j</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>abc.def.op.q</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>abc.def.op.q</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>