TELEPHONE NETWORK SERVICE FOR CONVERTING SPEECH TO TOUCH-TONES

A telecommunications network service for converting spoken words to individual DTMF (e.g., touch-tone) signals (15) to be furnished to an automated system (19) responsive to touch-tone control thereof. This generated DTMF signal is then transmitted to an automated system (19) such as a voice messaging system or telephone answering machine to control the operation thereof. The network service of the present invention may be advantageously employed when the telephone being used by the caller is a rotary or dial pulse type telephone, or in other circumstances where it may be preferable to speak rather than to press the keys of a telephone keypad.
FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

<table>
<thead>
<tr>
<th>Code</th>
<th>Country Name</th>
<th>Code</th>
<th>Country Name</th>
<th>Code</th>
<th>Country Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>AM</td>
<td>Armenia</td>
<td>GB</td>
<td>United Kingdom</td>
<td>MW</td>
<td>Malawi</td>
</tr>
<tr>
<td>AT</td>
<td>Austria</td>
<td>GE</td>
<td>Georgia</td>
<td>MX</td>
<td>Mexico</td>
</tr>
<tr>
<td>AU</td>
<td>Australia</td>
<td>GN</td>
<td>Guinea</td>
<td>NE</td>
<td>Niger</td>
</tr>
<tr>
<td>BB</td>
<td>Barbados</td>
<td>GR</td>
<td>Greece</td>
<td>NL</td>
<td>Netherlands</td>
</tr>
<tr>
<td>BE</td>
<td>Belgium</td>
<td>HU</td>
<td>Hungary</td>
<td>NO</td>
<td>Norway</td>
</tr>
<tr>
<td>BF</td>
<td>Burkina Faso</td>
<td>IE</td>
<td>Ireland</td>
<td>NZ</td>
<td>New Zealand</td>
</tr>
<tr>
<td>BG</td>
<td>Bulgaria</td>
<td>IT</td>
<td>Italy</td>
<td>PL</td>
<td>Poland</td>
</tr>
<tr>
<td>BJ</td>
<td>Benin</td>
<td>JP</td>
<td>Japan</td>
<td>PT</td>
<td>Portugal</td>
</tr>
<tr>
<td>BR</td>
<td>Brazil</td>
<td>KE</td>
<td>Kenya</td>
<td>RO</td>
<td>Romania</td>
</tr>
<tr>
<td>BY</td>
<td>Belarus</td>
<td>KG</td>
<td>Kyrgyzstan</td>
<td>RU</td>
<td>Russian Federation</td>
</tr>
<tr>
<td>CA</td>
<td>Canada</td>
<td>KP</td>
<td>Democratic People's Republic</td>
<td>SA</td>
<td>Sudan</td>
</tr>
<tr>
<td>CF</td>
<td>Central African Republic</td>
<td>KR</td>
<td>Republic of Korea</td>
<td>SE</td>
<td>Sweden</td>
</tr>
<tr>
<td>CG</td>
<td>Congo</td>
<td>KZ</td>
<td>Kazakhstan</td>
<td>SG</td>
<td>Singapore</td>
</tr>
<tr>
<td>CH</td>
<td>Switzerland</td>
<td>LI</td>
<td>Liechtenstein</td>
<td>SI</td>
<td>Slovenia</td>
</tr>
<tr>
<td>CI</td>
<td>Côte d'Ivoire</td>
<td>LK</td>
<td>Sri Lanka</td>
<td>SK</td>
<td>Slovakia</td>
</tr>
<tr>
<td>CM</td>
<td>Cameroon</td>
<td>LR</td>
<td>Liberia</td>
<td>SN</td>
<td>Senegal</td>
</tr>
<tr>
<td>CN</td>
<td>China</td>
<td>LT</td>
<td>Lithuania</td>
<td>SZ</td>
<td>Swaziland</td>
</tr>
<tr>
<td>CS</td>
<td>Czechoslovakia</td>
<td>LU</td>
<td>Luxembourg</td>
<td>TD</td>
<td>Chad</td>
</tr>
<tr>
<td>CZ</td>
<td>Czech Republic</td>
<td>LV</td>
<td>Latvia</td>
<td>TG</td>
<td>Togo</td>
</tr>
<tr>
<td>DE</td>
<td>Germany</td>
<td>MC</td>
<td>Monaco</td>
<td>TJ</td>
<td>Tajikistan</td>
</tr>
<tr>
<td>DK</td>
<td>Denmark</td>
<td>MD</td>
<td>Republic of Moldova</td>
<td>TT</td>
<td>Trinidad and Tobago</td>
</tr>
<tr>
<td>EE</td>
<td>Estonia</td>
<td>MG</td>
<td>Madagascar</td>
<td>UA</td>
<td>Ukraine</td>
</tr>
<tr>
<td>ES</td>
<td>Spain</td>
<td>ML</td>
<td>Mali</td>
<td>UG</td>
<td>Uganda</td>
</tr>
<tr>
<td>FI</td>
<td>Finland</td>
<td>MN</td>
<td>Mongolia</td>
<td>US</td>
<td>United States of America</td>
</tr>
<tr>
<td>FR</td>
<td>France</td>
<td>MR</td>
<td>Mauritania</td>
<td>UZ</td>
<td>Uzbekistan</td>
</tr>
<tr>
<td>GA</td>
<td>Gabon</td>
<td></td>
<td></td>
<td>VN</td>
<td>Viet Nam</td>
</tr>
</tbody>
</table>
TELEPHONE NETWORK SERVICE FOR
CONVERTING SPEECH TO TOUCH-TONES

Field of the Invention

The present invention relates generally to the field of telecommunications and
more particularly to a method for providing a speech-based interface to DTMF (Dual
Tone Multi-frequency) controlled systems.

Background of the Invention

In recent years, the telecommunications industry has seen an explosive growth
in the use of DTMF (i.e., touch-tone) controlled systems. These systems have typically
been employed either for the purpose of providing added user convenience or
accessibility to information, or to reduce or eliminate the need for human telephone
operators. For example, voice messaging systems often may be accessed with use of
touch-tones to enable a caller to retrieve his or her messages or to record outgoing
greeting messages or perform other administrative tasks. Even home-based telephone
answering machines now routinely provide remote access from any telephone through
touch-tone control. In addition, many customer service telephone numbers present
touch-tone controlled menus to the caller, where the menus can be used to efficiently
provide a connection to the appropriate person or department. Moreover, touch-tones
are used to control many other automated systems, such as, for example, automated
banking transaction and stock quotation services. These services often enable a caller
to perform an entire transaction without involving a human participant on the other side
of the call.

Although the fraction of telephones without touch-tone capability (i.e., rotary or
dial pulse type telephones) is small and declining in the United States, there are still a
substantial number of such telephones, especially outside of the United States.
Moreover, many modern touch-tone telephones -- including, for example, most
cordless and cellular telephones -- provide the keypad in the handset, thereby making
it extremely cumbersome for a user to provide the required control signals to such an automated touch-tone based system while continuing to listen to the responses from the system. Thus, the use of these automated systems with typical cordless or cellular telephones often involves frequent back and forth movement of the handset which can become quite annoying. In addition, many telephone users, even those who are not facing any of the above-mentioned limitations, would find it more convenient if they could merely speak a command, rather than having to locate and then press an appropriate key with their finger.

Meanwhile, speech recognition technology has advanced substantially over the last several years. It is now technologically straightforward to provide speaker independent speech recognition (i.e., recognition of speech from any speaker previously unknown to the system) on individual words selected from a modest vocabulary. In fact, some of the aforementioned automated systems provide such speech recognition capability, eliminating the need for the user to press touch-tone keys. On the other hand, it may still be quite a while before the vast majority of these systems will have incorporated speech recognition capability to replace (or supplement) their present touch-tone control mechanisms, since, for example, the investment required to add speech recognition capability to such a system may not be justifiable on the basis of a single individual system alone.

It would be advantageous, therefore, to provide a generalized capability enabling the user of a telephone to speak a word representing a digit (or letter) key, the "*" key (e.g., the word "star") or the "+" key (e.g., the word "pound"), and to have the corresponding DTMF signal (i.e., touch-tone) automatically generated in order to provide the required input to an arbitrary touch-tone controlled system. U. S. Patent No. 5,402,477, issued to Michael L. McMahan and Michele B. Gammel on March 28, 1995, discloses a telephone set which, inter alia, includes the capability of generating touch-tone signals in response to a digit, the word "star," or the word "pound," orally spoken by the user into the handset. But to make use of this capability, it is obviously necessary that this particular specialized telephone terminal equipment as disclosed
therein be available to the user. As such, the approach of U. S. Patent No. 5,402,477 clearly does not provide a solution to the problem described above and addressed herein -- namely, that many telephone calls are, in fact, currently being placed either with rotary or pulse type telephones or with touch-tone telephones whose keypads are located in the handset, and will continue to be so for the foreseeable future.

Summary of the Invention

The present invention provides a telecommunications network service for converting spoken words to individual DTMF (e.g., touch-tone) signals to be furnished to an automated system responsive to touch-tone control thereof. In accordance with one illustrative embodiment of the invention, a telephone user speaks an utterance comprising a word representing a digit, letter, the "*" key (e.g., the word "star") or the "#" key (e.g., the word "pound"). The illustrative network service performs conventional, speaker independent speech recognition on the utterance to identify the spoken word and then generates the touch-tone signal which corresponds to the spoken word so identified (e.g., a digit, letter or special character as found on a conventional touch-tone telephone). This generated DTMF signal is then transmitted to an automated system such as a voice messaging system or telephone answering machine to control the operation thereof. The network service of the present invention may be advantageously employed when the telephone being used by the caller is a rotary or dial pulse type telephone, or in other circumstances where it may be preferable to speak rather than to press the keys of a telephone keypad.

Brief Description of the Drawings

Fig. 1 shows an illustrative telecommunications network in which a speech to touch-tone conversion network service has been provided in accordance with an illustrative embodiment of the present invention.

Fig. 2 shows a flow chart describing the operation of the illustrative speech to touch-tone conversion server of Fig. 1 in accordance with an illustrative embodiment of
the present invention.

Detailed Description

Fig. 1 shows an illustrative telecommunications network in which a speech to touch-tone conversion network service has been provided in accordance with an illustrative embodiment of the present invention. A caller uses telephone 11 in a conventional manner to place a telephone call to a particular telephone number which has been assigned to speech to touch-tone conversion server 15. Telephone 11 may be any type of conventional telephone, although the use of the present invention will be found to be particularly advantageous if telephone 11 is a rotary or dial pulse type telephone, or, alternatively, a touch-tone telephone such as a cordless or cellular telephone wherein the touch-tone keypad is located in the handset. In response to the placement of the call by telephone 11, telecommunications network switch 13 interconnects telephone 11 with speech to touch-tone conversion server 15. Telecommunications network switch 13 may be a conventional long distance or local exchange telecommunications switch, familiar to those of ordinary skill in the art.

Once the call between telephone 11 and speech to touch-tone conversion server 15 has been connected, the server requests that the user provide the telephone number of an automated system responsive to touch-tone control thereof, such as a voice mail system, a telephone answering machine, or an automated transaction service such as a banking or stock quotation service. The requested telephone number may be provided in a conventional manner (i.e., by dialing), or it may be provided orally by the caller. In the latter case, conventional speech recognition techniques may be used to determine the sequence of digits which comprises the telephone number of the desired automated system. In the illustrative embodiment of Fig. 1, the user specified telephone number is that of automated touch-tone responsive system 19.

Once the server has been provided with the telephone number to which the caller wishes to be connected, it may use any of a number of conventional techniques known to those skilled in the art to effectuate a connection between the caller and automated
touch-tone responsive system 19, with the server itself interposed therebetween. In the
illustrative embodiment of Fig. 1, for example, such a connection is established via
telecommunications network switch 17, which, like telecommunications network switch
13, may be a conventional long distance or local exchange telecommunications switch.
(Note that network switch 17 may, in fact, be the same switch as network switch 13.)

In one embodiment, for example, the functionality of speech to touch-tone
conversion server 15 may be provided with use of a PBX (private branch exchange)
system which is directly connected to network switch 17. This connection between the
PBX and the network switch may, for example, comprise a set of T1 trunk lines,
familiar to those of ordinary skill in the art, and may use conventional digital signalling
techniques to communicate therebetween. In particular, speech to touch-tone conversion
server 15 may be connected on the line side of the aforementioned PBX as if it were
one or more telephone sets. (Note that speech to touch-tone conversion server 15 may,
in general, comprise a plurality of ports, thereby enabling its simultaneous use by a
number of individual callers, each caller communicating with an individually associated
automated touch-tone responsive system.)

In use, the call from telephone 11 to server 15 may be set up through the
aforementioned PBX. In this manner, the caller will be connected to a first line of the
server. Then, as described above, speech to touch-tone conversion server 15 requests
from the caller the telephone number of automated touch-tone responsive system 19.
Once the server has received that number, it accesses a second line (to the PBX) and
requests that the PBX system dial the call to the automated system, connecting the
server thereto. The server then instructs the PBX to conference the first line and the
second line together, thereby resulting in the caller being connected to the automated
system with the server interposed therebetween. At this point, the server is poised to
provide speech to touch-tone conversion in accordance with an illustrative embodiment
of the present invention as described below.

Fig. 2 shows a flow chart describing the operation of the illustrative speech to
touch-tone conversion server of Fig. 1 in accordance with an illustrative embodiment of
the present invention. Specifically, steps 21-25 perform the process of interconnecting
the caller with the user specified telephone number as described above, with the server
interposed between the caller and the called number. In step 21, speech to touch-tone
conversion server 15 answers the incoming call (on what will be referred to herein as
the "first" line). Step 22 then instructs the caller to provide the telephone number of
automated touch-tone responsive system 19 -- the automated system to which the caller
wishes to be connected. In step 23, the server receives the telephone number from the
caller. As described above, this may, for example, comprise the conventional
recognition of speech utterances which specify the number, or it may comprise other
conventional techniques such as the receipt of incoming touch-tones.

Once speech to touch-tone conversion server 15 has received the telephone
number to be called, it requests a second (outgoing) line from the telephone network,
and dials thereon the user-provided number of the automated touch-tone responsive
system (step 24). And, finally, when the connection on the second line has been
completed, the server causes the two lines (i.e., the first line which includes the caller
and the second line which includes the automated system) to be "conferenced" together
(i.e., interconnected) in step 25. This may be accomplished either internally within the
server, or the server may instruct the telephone network to merge the two lines into a
single interconnected line. In any event, at this point, the server is poised to provide
speech to touch-tone conversion in accordance with an illustrative embodiment of the
present invention as shown in steps 31-34.

Specifically, steps 31 through 34 provide speech to touch-tone conversion as
needed until the server is disconnected from the call by the caller (or until the call itself
becomes disconnected by either party) as determined by decision 35. In particular, step
31 listens for a spoken word from the user. Note that for many automated touch-tone
responsive systems, the only speech the caller is likely to produce is that provided in
accordance with the present invention for the purpose of generating touch-tones. Thus,
in such a case, it may be advantageously presumed that the spoken word is one which
represents either the digits "0" through "9", "the letters "A" through "Z," or one of the
special character found on conventional touch-tone telephones (i.e., "*" or "+"). However, for systems which ultimately may connect the caller to another person, for example, the caller may advantageously be provided with a mechanism for disconnecting the server from the call before the call itself has been disconnected, thereby eliminating the possibility that the server will erroneously attempt to generate DTMF tones in response to conversational speech by the caller.

As the word for each digit or letter is uttered, speech to touch-tone conversion server 15 performs conventional, speaker independent speech recognition on the spoken utterance in step 32, thereby identifying the spoken word as one of the words representing the digits "0" through "9," the letters "A" through "Z," or one of the special characters "*" or "+." In particular, the set of words used to represent the digits may, for example, include the words "one," "two," "three," "four," "five," "six," "seven," "eight," "nine," "zero" and "oh." Similarly, the set of words used to represent the character "+" may include the words "star" and "asterisk," and the set of words used to represent the character "+" may include the words "pound," "sharp" and "number." Moreover, words in languages other than English may obviously be provided either in addition to or instead of the familiar English words for the digits, letters and special characters. Based on the above-described speech recognition process, step 33 classifies the identified word into the appropriate telephone push button category.

Once the spoken word has been identified and classified, the server then employs a DTMF signal generator to generate the touch-tone signal which corresponds to the given telephone push button category (step 34), thereby providing the necessary input to the automated system. For example, if the identified word is either "two," "A," "B," or "C," the touch-tone signal which has been assigned to the digit "2" for use in touch-tone based telecommunications signalling will be appropriately generated. (As is well known to those skilled in the art, DTMF or touch-tone signals comprise a matrix combination of two frequencies, each from a group of four, which are used in the operation of push button telephone sets to transmit numerical address information. Specifically, the two groups of four frequencies have been standardized to be 697 Hz,
770 Hz, 852 Hz, and 941 Hz, and 1209 Hz, 1336 Hz, 1477 Hz, and 1633 Hz.)

As pointed out above, the server provides speech to touch-tone conversion continuously as needed until the caller requests that the server be removed from the call, at which point the server disconnects itself from the line (i.e., both the first line and the second line) in step 36. (The server will also advantageously disconnect itself from the line when the caller hangs up.) Such a request can be communicated to the server in a number of possible ways. For example, the word "disconnect" can be added to the vocabulary of the server's speech recognition capability, and upon recognizing that the word "disconnect" has been spoken by the caller, the server disconnects itself from the call. Many other possible mechanisms for terminating the server's participation in the call will be obvious to those skilled in the art.

Although a specific embodiment of this invention has been shown and described herein, it is to be understood that this embodiment is merely illustrative of the many possible specific arrangements which can be devised in application of the principles of the invention. Numerous and varied other arrangements can be devised in accordance with these principles by those of ordinary skill in the art without departing from the spirit and scope of the invention. For example, numerous alternative mechanisms may be employed for interconnecting a calling party with an automated system responsive to touch-tone control, with a speech to touch-tone conversion capability interposed therebetween, at which point the principals of the present invention may be used to convert spoken words to touch-tones for use by the automated system. In addition, some or all of the functions of speech to touch-tone conversion server 15 as described in the illustrative embodiment shown herein may, for example, be incorporated directly into one or more telecommunications network switches (such as switches 13 and/or 17 of Fig. 1), or they may be provided within the telecommunications network by any of a number of other possible mechanisms obvious to those skilled in the art. Moreover, as pointed out above, speech to touch-tone conversion server 15 may be provided with the capability of simultaneously handling a plurality of independent telephone calls, thereby providing a generally available network service.
Claims:

1. A method for providing a telecommunications network service performed within a telecommunications network, the network service for use with an automated system responsive to touch-tone control thereof, the method comprising the steps of:

 receiving a spoken utterance comprising a spoken word;

 performing speech recognition on the spoken utterance, thereby identifying the spoken word;

 classifying the spoken utterance into one of a set of categories based on said identification of the spoken word, each of said categories having a DTMF signal associated therewith;

 generating the DTMF signal associated with the category into which said spoken utterance has been classified; and

 transmitting the generated DTMF signal through the network to the automated system responsive to touch-tone control thereof.

2. The method of claim 1 wherein the set of categories comprises the digits "0" through "9", the character "*", and the character "#", and wherein the associated DTMF signals comprise touch-tone signals which have been correspondingly assigned to the digits "0" through "9", the character "*", and the character "#", respectively, for use in touch-tone based telecommunications signalling.
3. The method of claim 2 wherein the spoken word is identified as one of the words from a set comprising words representing the digits "0" through "9."

4. The method of claim 3 wherein the words representing the digits "0" through "9" comprise the words "one," "two," "three," "four," "five," "six," "seven," "eight," "nine," "zero" and "oh."

5. The method of claim 2 wherein the spoken word is identified as one of the words from a set comprising words representing the alphabetic letters "A" through "Z."

6. The method of claim 2 wherein the spoken word is identified as one of the words from a set comprising words representing the "*" key and the "#" key.

7. The method of claim 6 wherein the words representing the "*" key and the "#" key comprise the words "star," "asterisk," "pound," "sharp" and "number."

8. The method of claim 2 wherein the automated system comprises a voice messaging system.

9. The method of claim 8 wherein the voice messaging system comprises a telephone answering machine.

10. A method for interfacing a telephone through a telecommunications network to an automated system responsive to touch-tone control thereof, the method comprising the steps of:

 receiving a spoken utterance comprising a spoken word, the spoken utterance having been spoken into the telephone and transmitted through
the network;

performing speech recognition on the received utterance, thereby identifying the spoken word;

classifying the spoken utterance into one of a set of categories based on said identification of the spoken word, each of said categories having a DTMF signal associated therewith;

generating the DTMF signal associated with the category into which said spoken utterance has been classified; and

providing the generated DTMF signal to the automated system.

11. The method of claim 9 wherein the set of categories comprises the digits "0" through "9", the character "*", and the character "#", and wherein the associated DTMF signals comprise touch-tone signals which have been correspondingly assigned to the digits "0" through "9", the character "*", and the character "#", respectively, for use in touch-tone based telecommunications signalling.

12. The method of claim 11 wherein the spoken word is identified as one of the words from a set comprising words representing the digits "0" through "9."

13. The method of claim 12 wherein the words representing the digits "0" through "9" comprise the words "one," "two," "three," "four," "five," "six," "seven," "eight," "nine," "zero" and "oh."

14. The method of claim 11 wherein the spoken word is identified as one of
the words from a set comprising words representing the alphabetic letters "A" through "Z."

15. The method of claim 11 wherein the spoken word is identified as one of the words from a set comprising words representing the "*" key and the "#" key.

16. The method of claim 15 wherein the words representing the "*" key and the "#" key comprise the words "star," "asterisk," "pound," "sharp" and "number."

17. The method of claim 11 wherein the automated system comprises a voice messaging system.

18. The method of claim 17 wherein the voice messaging system comprises a telephone answering machine.
FIG. 2

START

21

ANSWER CALL ON FIRST LINE

INSTRUCT CALLER TO PROVIDE TELEPHONE NUMBER OF AUTOMATED SYSTEM

RECEIVE TELEPHONE NUMBER

REQUEST SECOND LINE FROM NETWORK AND DIAL NUMBER OF AUTOMATED SYSTEM

WHEN CONNECTION ON SECOND LINE COMPLETED, CONFERENCE TOGETHER WITH FIRST LINE

LISTEN FOR SPOKEN WORD FROM USER

PERFORM SPEECH RECOGNITION TO IDENTIFY THE SPOKEN WORD

CLASSIFY THE IDENTIFIED WORD INTO A TELEPHONE PUSH BUTTON CATEGORY

GENERATE THE CORRESPONDING DTMF SIGNAL

NO

DISCONNECT REQUEST ?

YES

DISCONNECT FROM TELEPHONE LINE

END
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

IPCL(6) : G10L 9/00, 5/02; H04M 3/42, 1/64

US CL. : 395/2.6; 379/201, 67

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

U.S. : 395/2.6; 379/201, 67

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Statistical MAYA analysis

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

APS, IEEE

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>US 5,402,477 A (MCMAHAN ET AL.) 28 MARCH 1995, COL. 2-5.</td>
<td>1-18</td>
</tr>
<tr>
<td>Y</td>
<td>US 5,353,336 A (HOU ET AL.) 04 OCTOBER 1994, ABSTRACT, FIG. 4.</td>
<td>1-18</td>
</tr>
<tr>
<td>A</td>
<td>US 4,827,500 A (BINKERD ET AL.) 02 MAY 1989, ABSTRACT, FIG. 3-5.</td>
<td>1-18</td>
</tr>
<tr>
<td>A</td>
<td>US 5,339,358 A (DANISH ET AL.) 16 AUGUST 1994, ABSTRACT.</td>
<td>1-18</td>
</tr>
<tr>
<td>A,P</td>
<td>US 5,479,491 A (HERRERO GARCIA ET AL.) 26 DECEMBER 1995, ABSTRACT, FIG. 1.</td>
<td>1-18</td>
</tr>
</tbody>
</table>

☐ Further documents are listed in the continuation of Box C. ☐ See patent family annex.

* Special categories of cited documents:

'A' document defining the general state of the art which is not considered to be of particular relevance

'E' earlier document published on or after the international filing date

'I' document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)

'O' document referring to an oral disclosure, use, exhibition or other means

'P' document published prior to the international filing date but later than the priority date claimed

'T' later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

'X' document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

'Y' document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents. Such combination being obvious to a person skilled in the art

'A' document member of the same patent family

Date of the actual completion of the international search: 21 NOVEMBER 1996

Date of mailing of the international search report: 13 JAN 1997

Name and mailing address of the ISA/US
Commissioner of Patents and Trademarks
Box PCT
Washington, D.C. 20231

Authorized officer

Telephone No. (703) 305-9600

Form PCT/ISA/210 (second sheet)(July 1992)