



US 20140294607A1

(19) **United States**

(12) **Patent Application Publication**  
**MIYAZAKI**

(10) **Pub. No.: US 2014/0294607 A1**

(43) **Pub. Date: Oct. 2, 2014**

(54) **LIQUID TRANSPORTING APPARATUS AND LIQUID TRANSPORTING METHOD**

(71) Applicant: **SEIKO EPSON CORPORATION**,  
Tokyo (JP)

(72) Inventor: **Hajime MIYAZAKI**, Matsumoto-shi  
(JP)

(73) Assignee: **SEIKO EPSON CORPORATION**,  
Tokyo (JP)

(21) Appl. No.: **14/242,047**

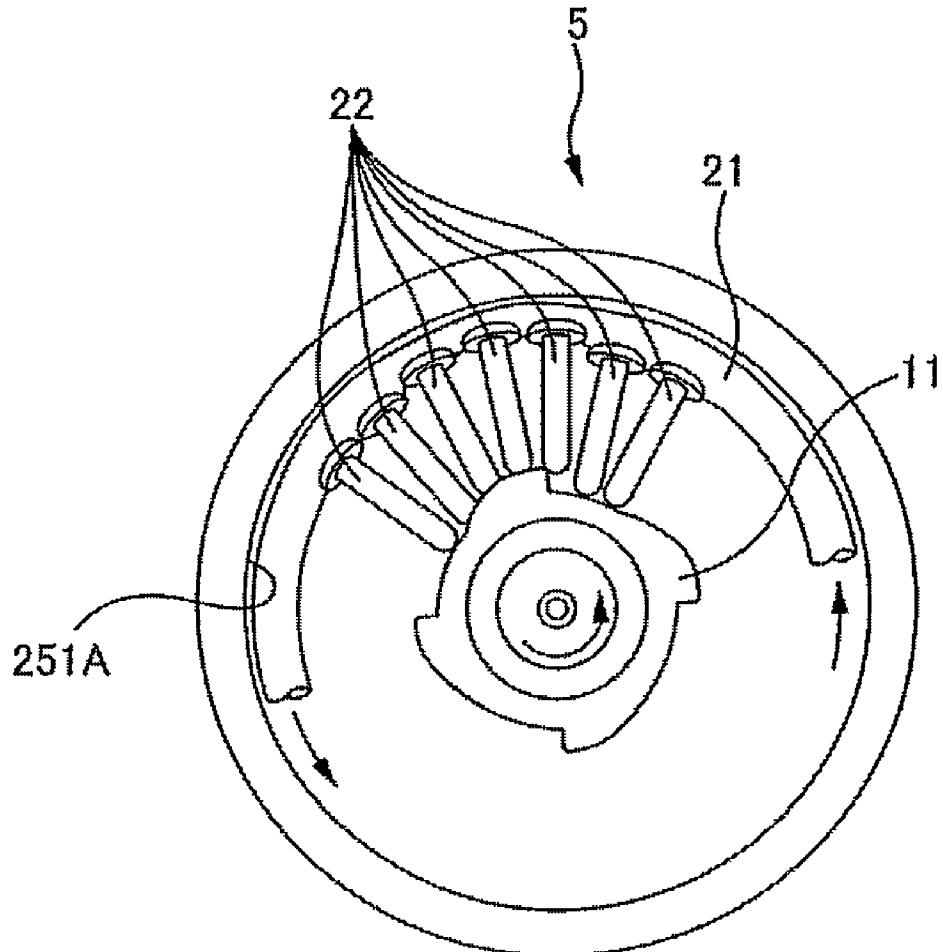
(22) Filed: **Apr. 1, 2014**

(30) **Foreign Application Priority Data**

Apr. 2, 2013 (JP) ..... 2013-076630

**Publication Classification**

(51) **Int. Cl.**  
**F04B 43/00** (2006.01)


(52) **U.S. Cl.**

CPC ..... **F04B 43/0081** (2013.01)  
USPC ..... **417/53; 417/212**

(57)

**ABSTRACT**

An operation of a liquid transporting apparatus is controlled by communication using a controller, and the power consumption during communication standby is reduced. The liquid transporting apparatus includes a liquid storage section that stores a liquid; a body section that is connected to the liquid storage section when transporting the liquid; a body control section that controls an operation of a driving section having at least a part of function for transporting the liquid. The body control section determines whether the body section and the liquid storage section are connected. If it is determined that the body section and the liquid storage section are connected, the communication between the body control section and an external control section that performs instruction to control the operation of the driving section starts.



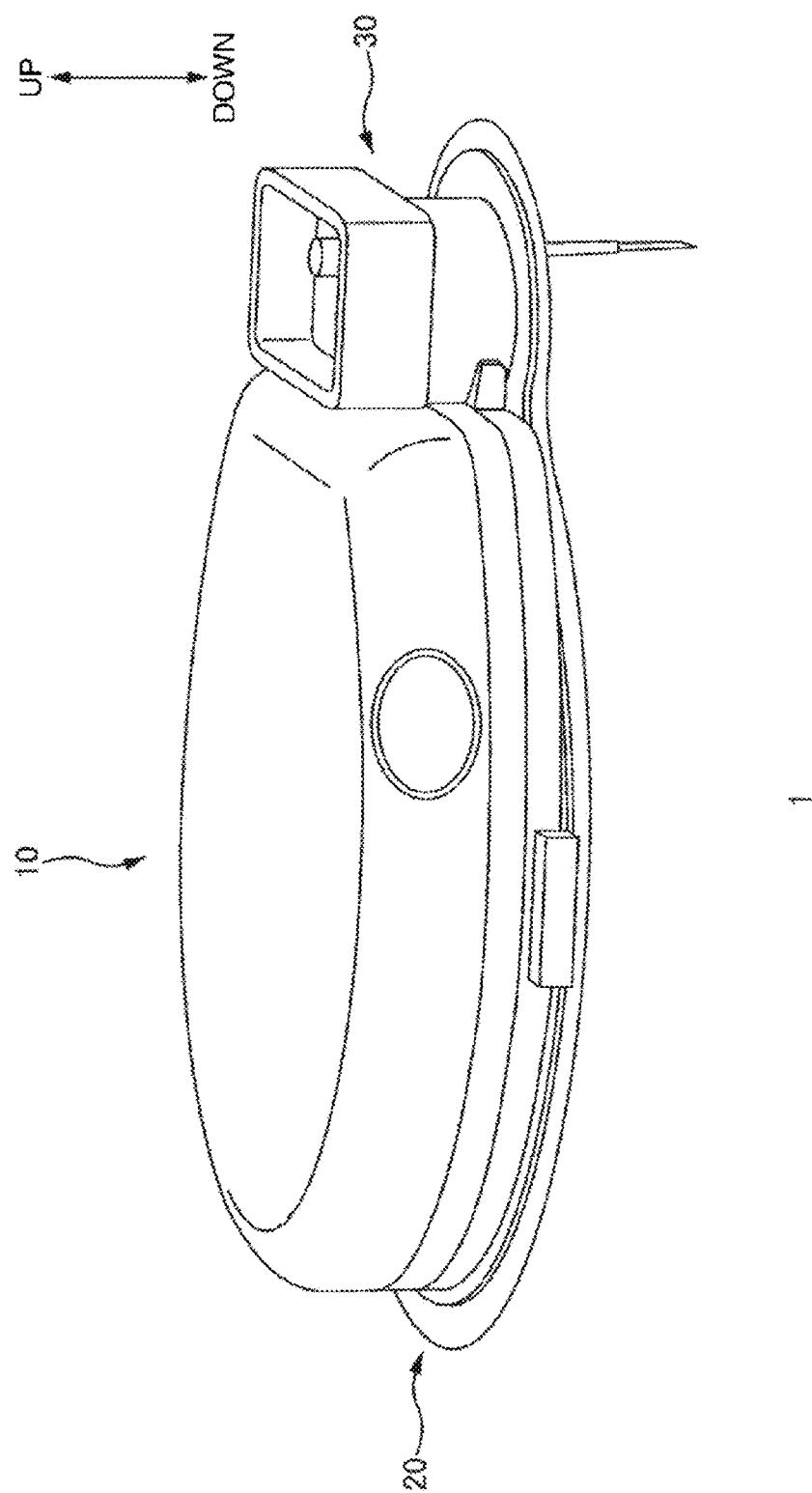



FIG. 1

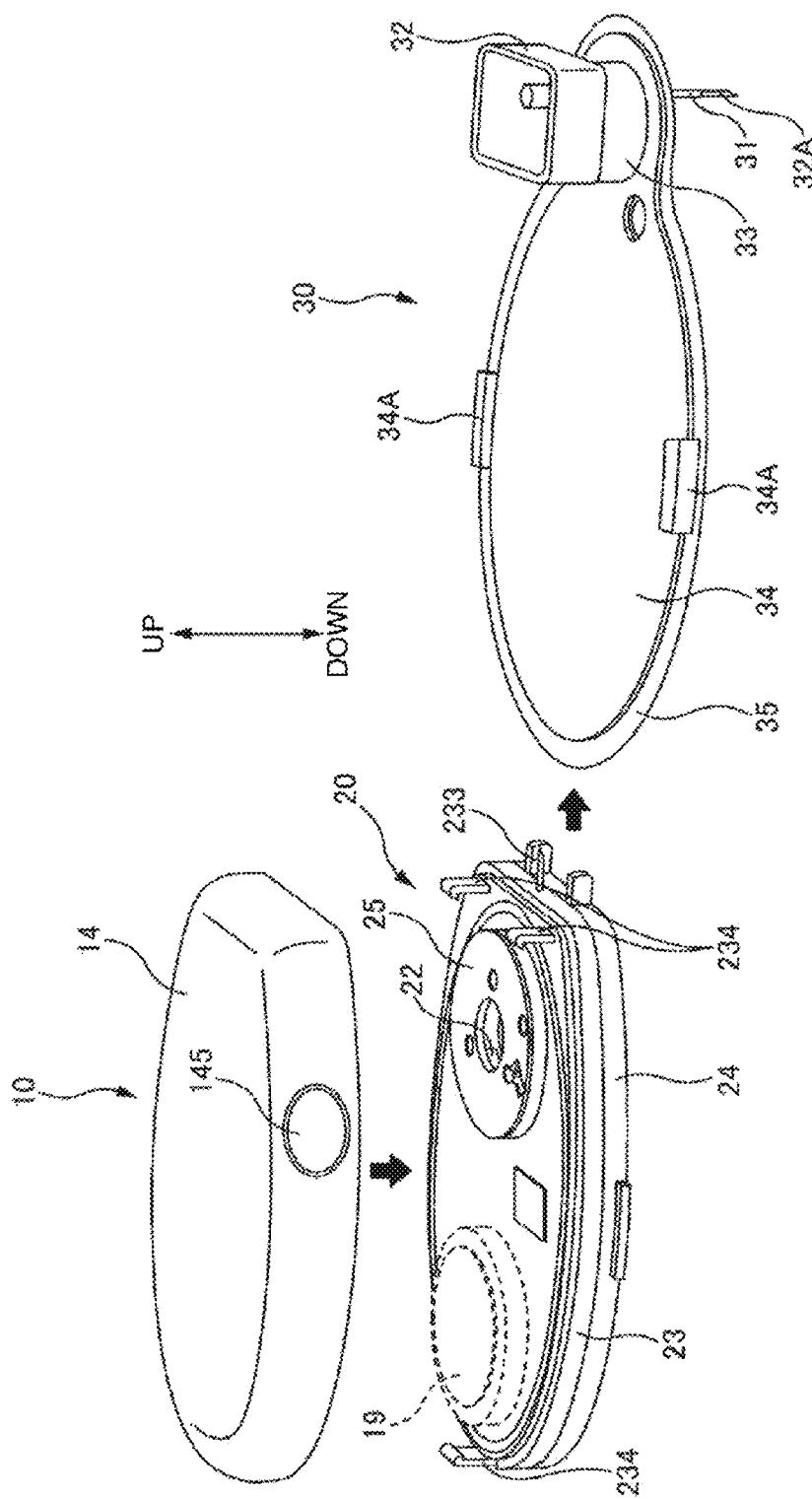



FIG. 2

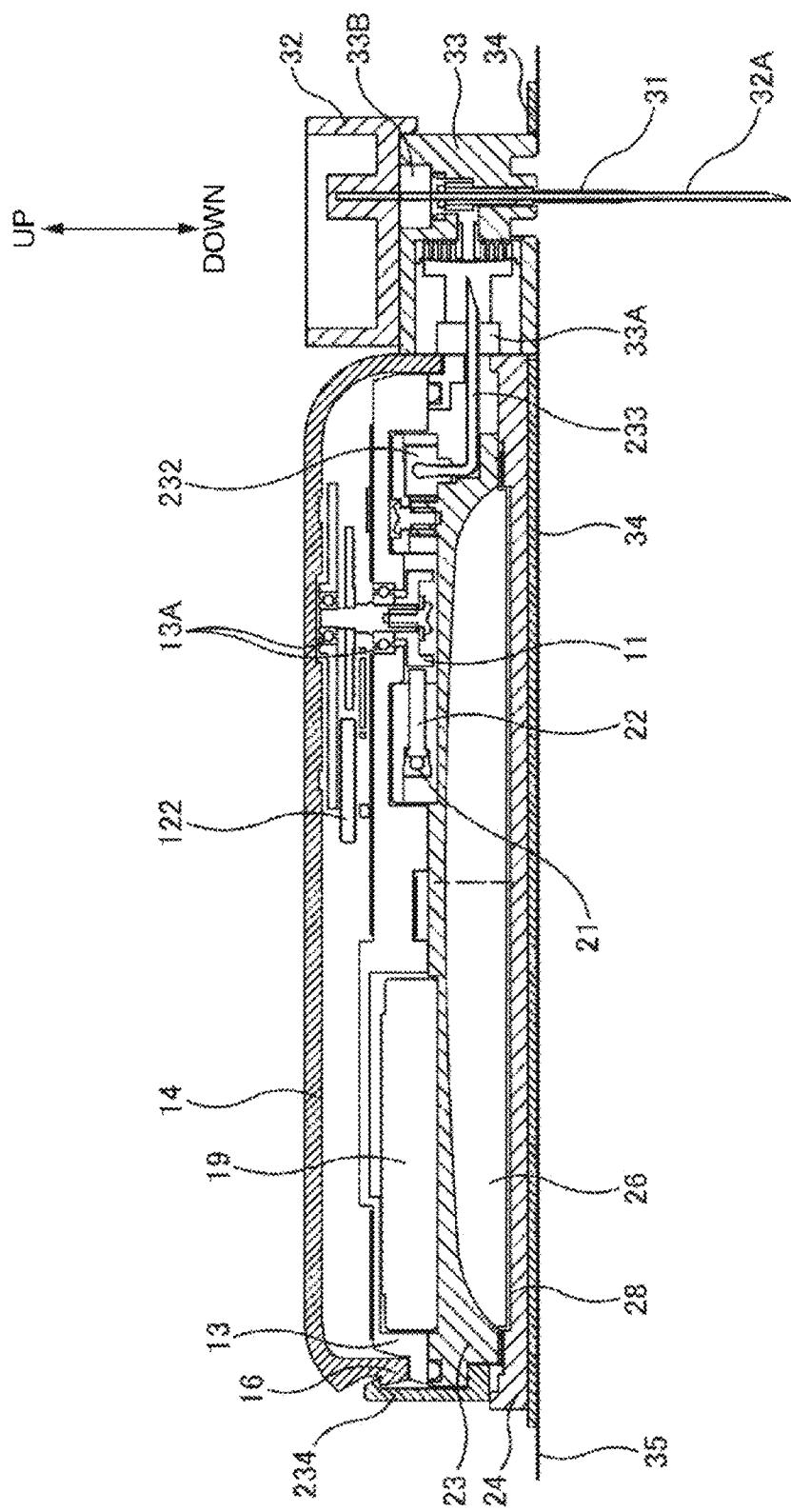
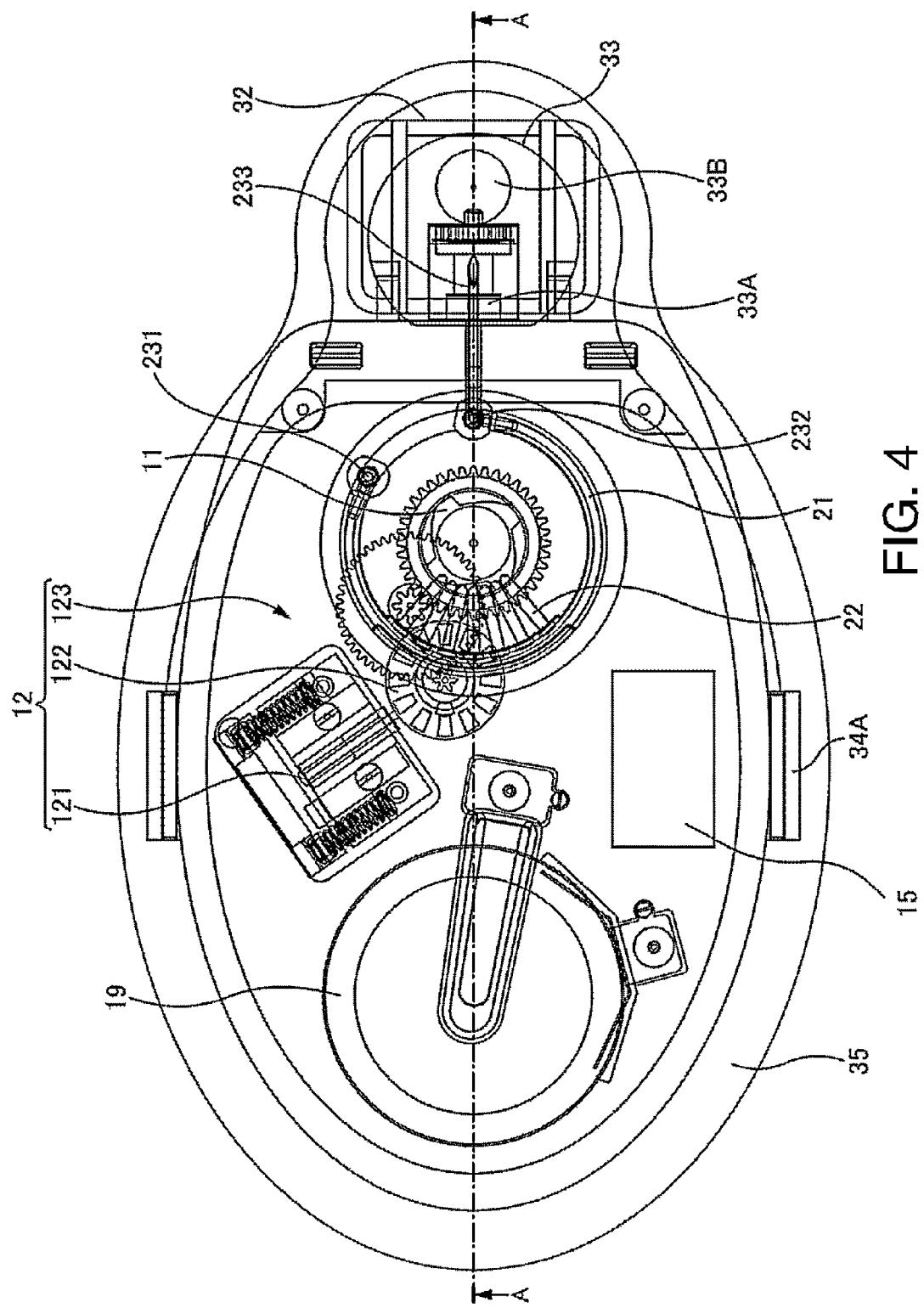




FIG. 3



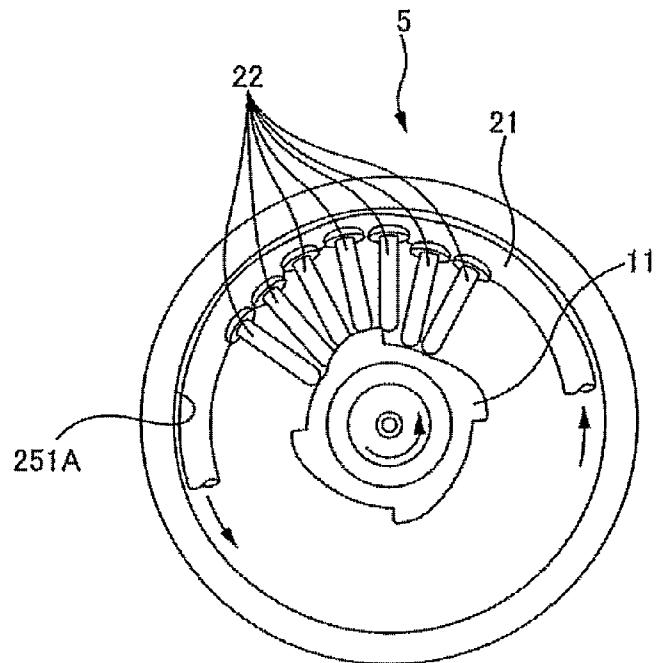



FIG. 5

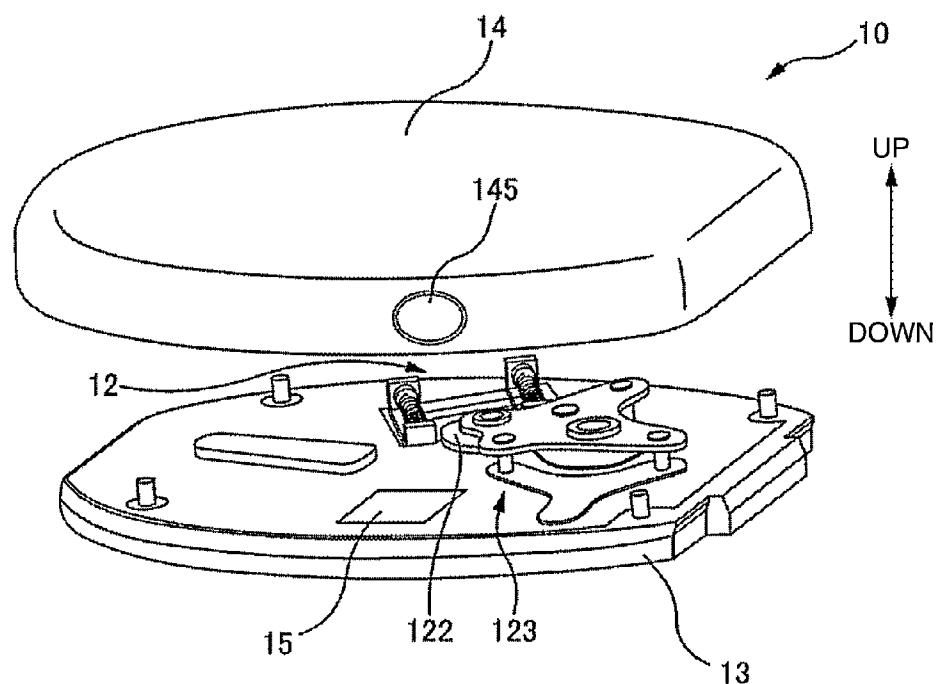



FIG. 6

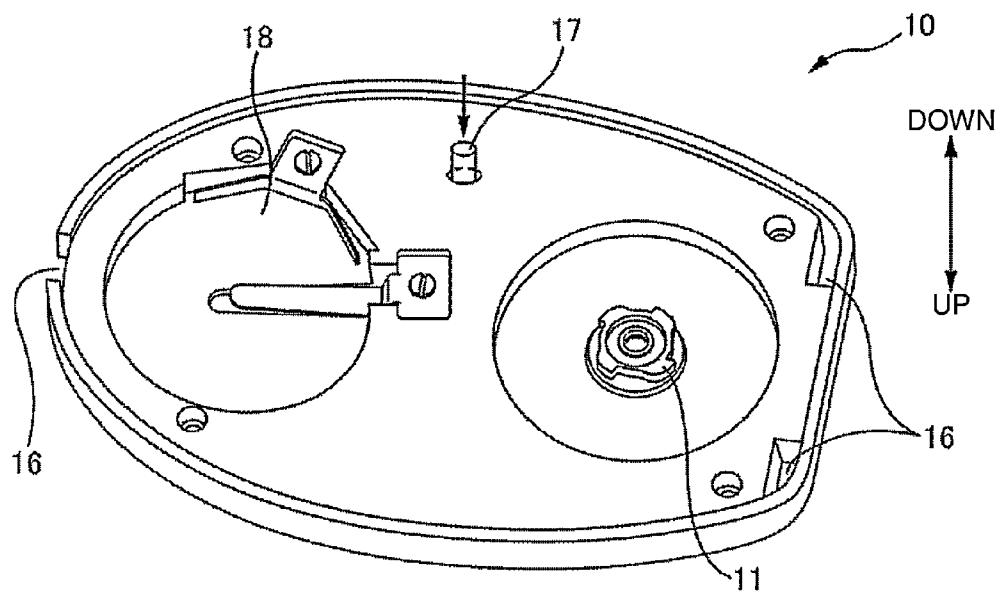



FIG. 7

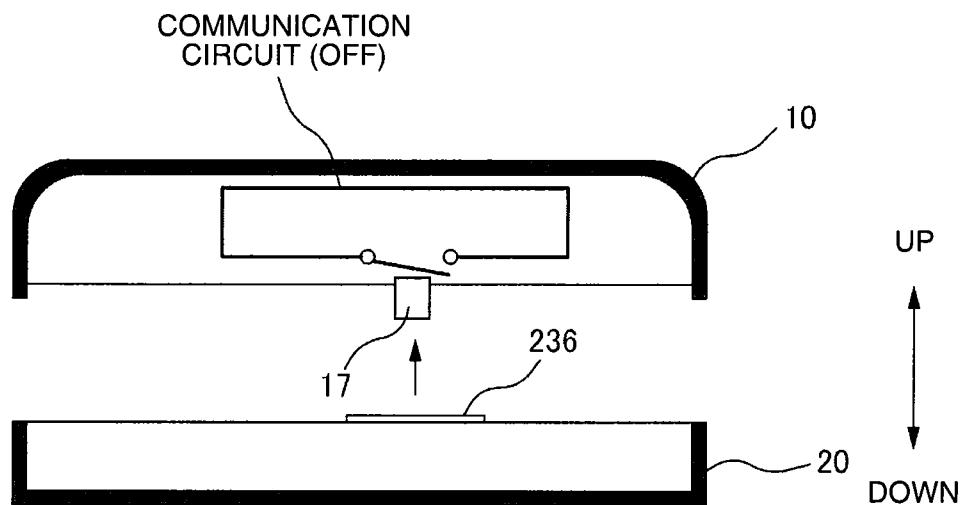



FIG. 8A

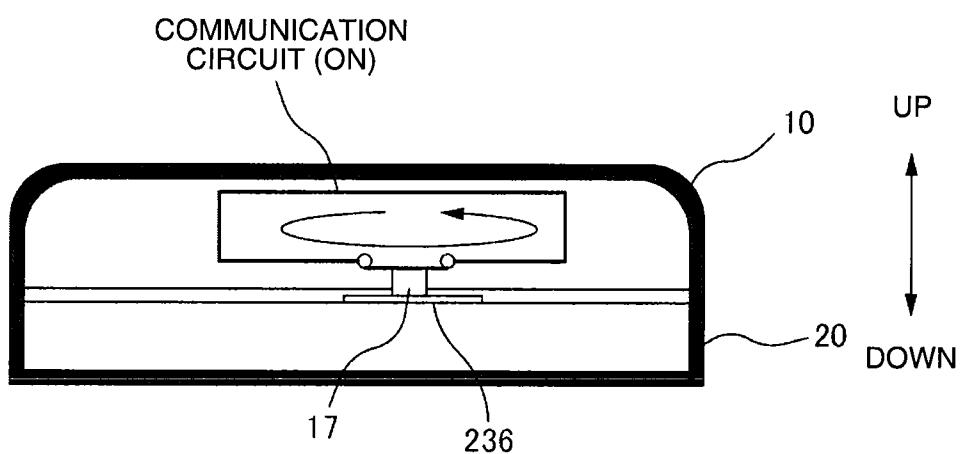



FIG. 8B



FIG. 9

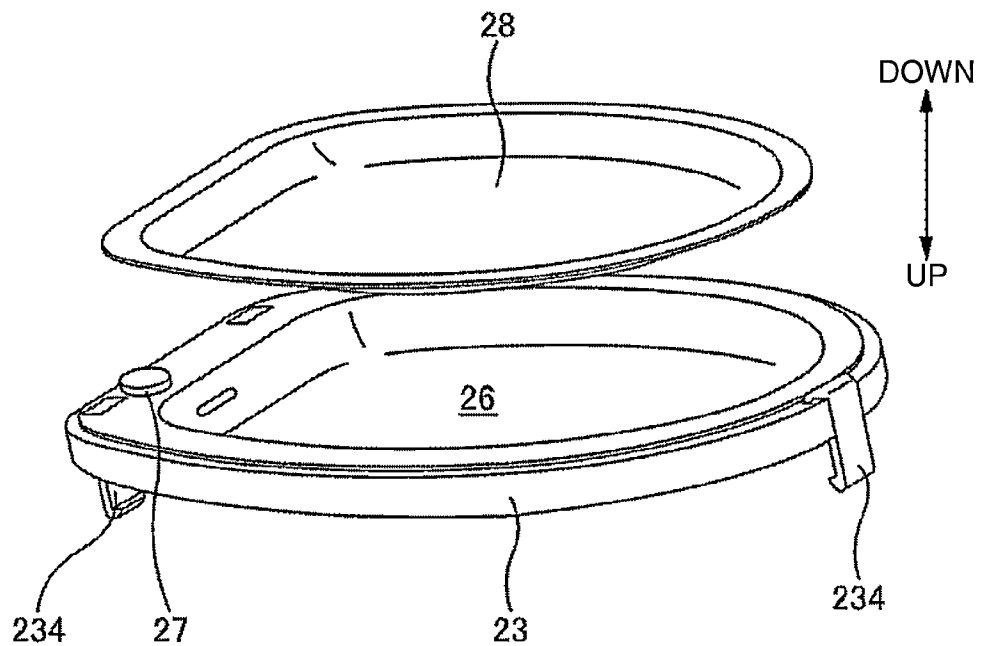



FIG. 10

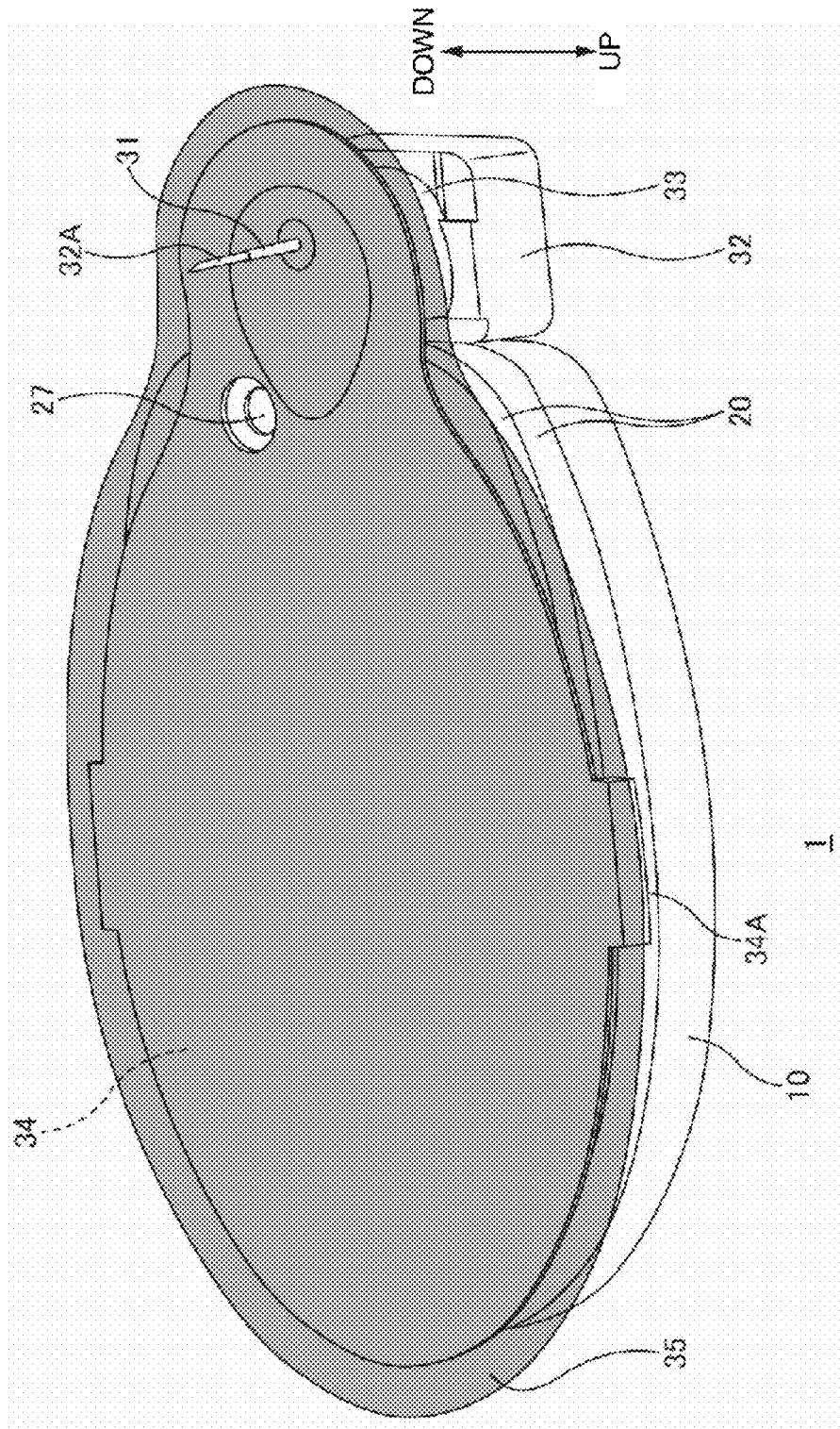



FIG. 11

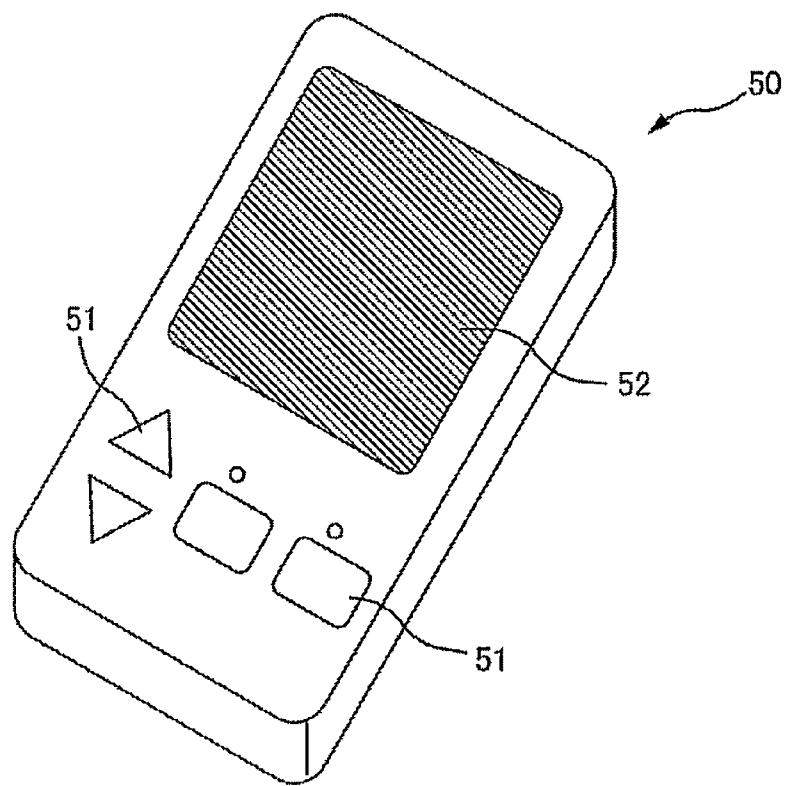



FIG. 12

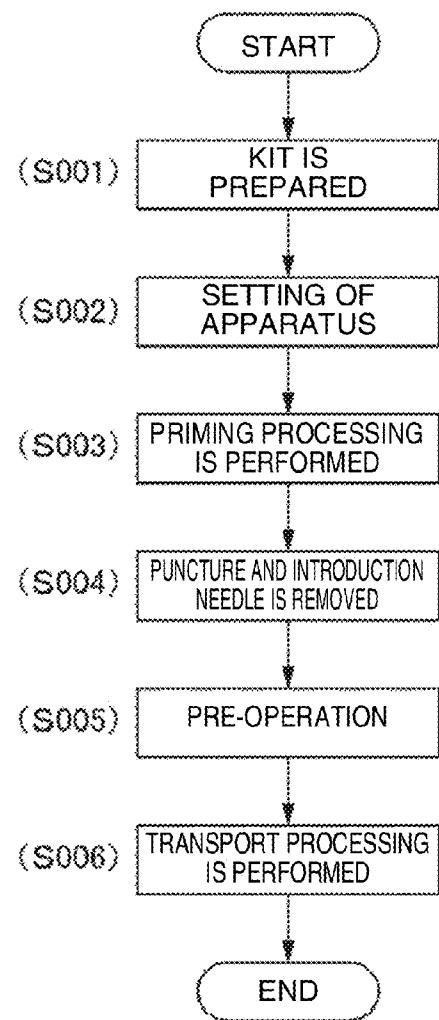



FIG. 13

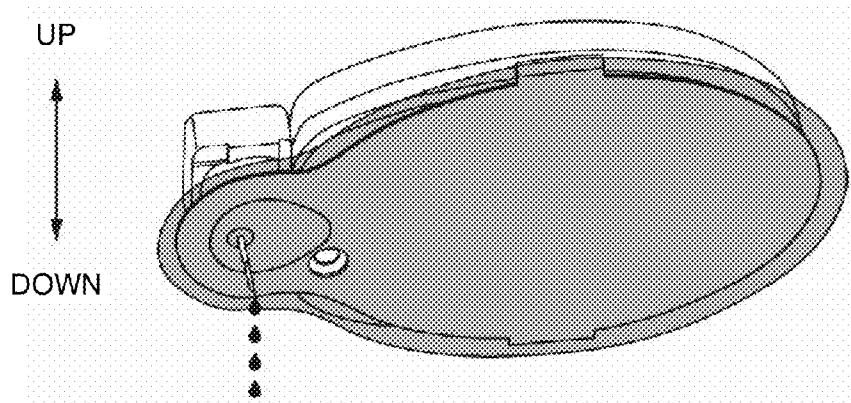



FIG. 14

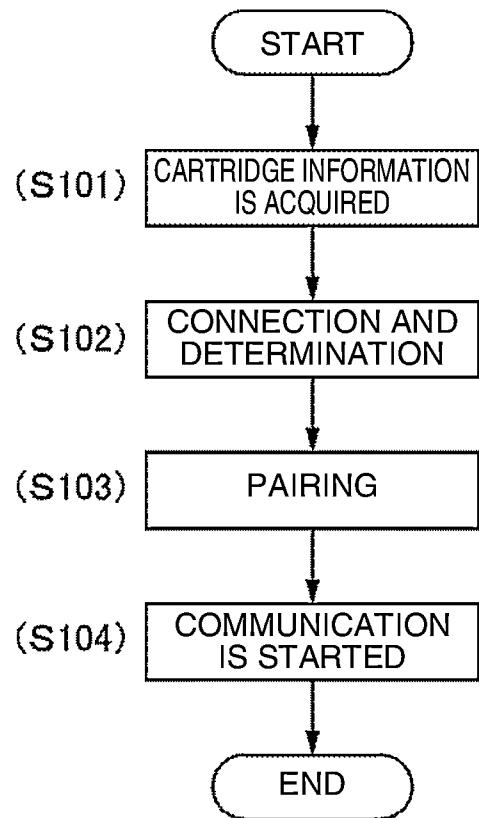



FIG. 15

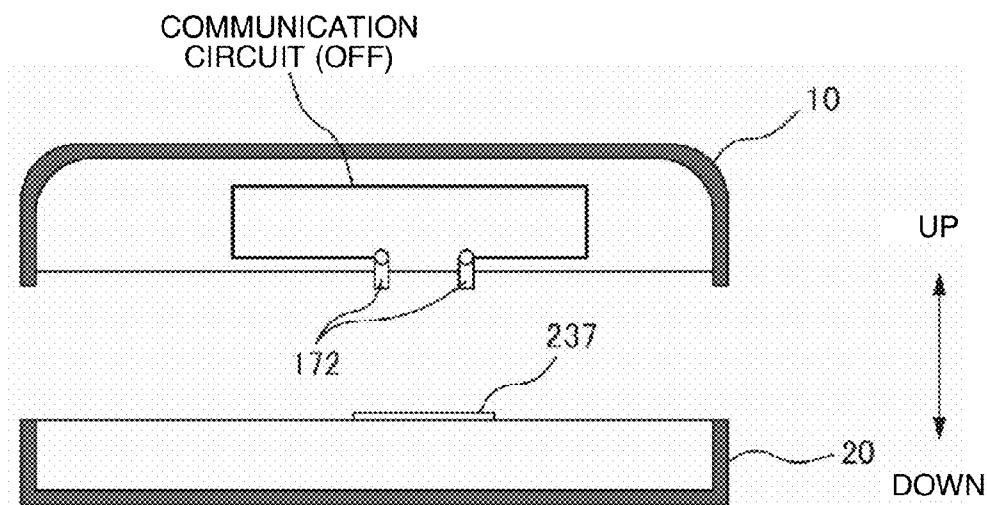



FIG. 16A

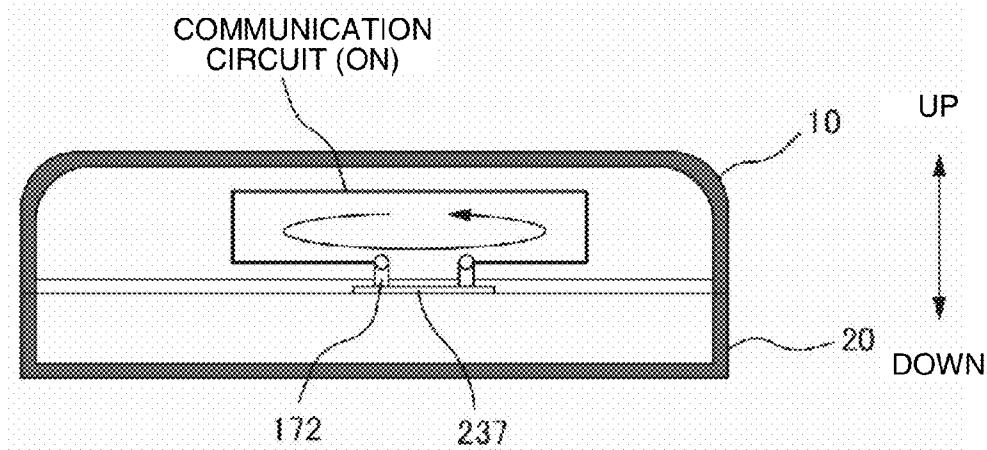



FIG. 16B

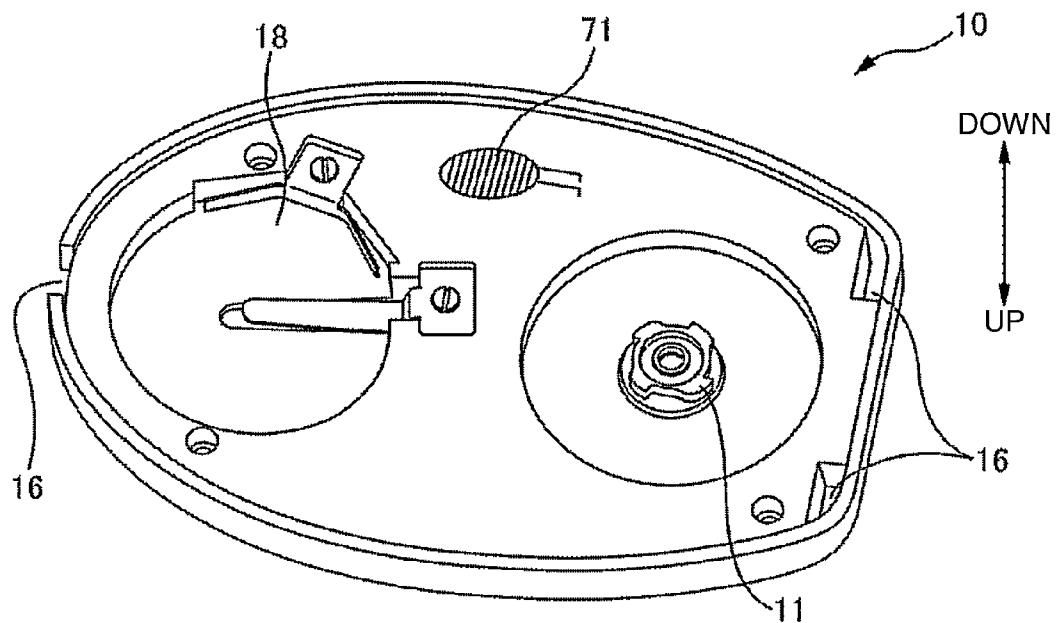



FIG. 17

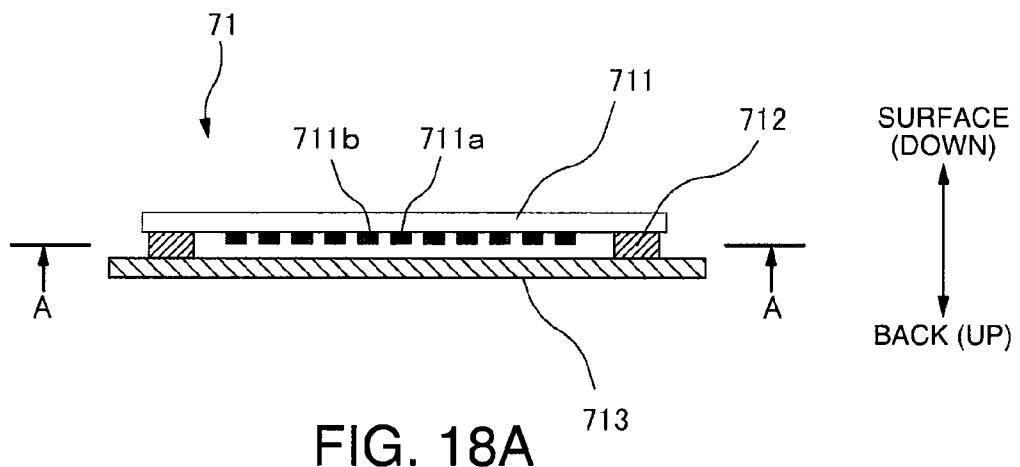
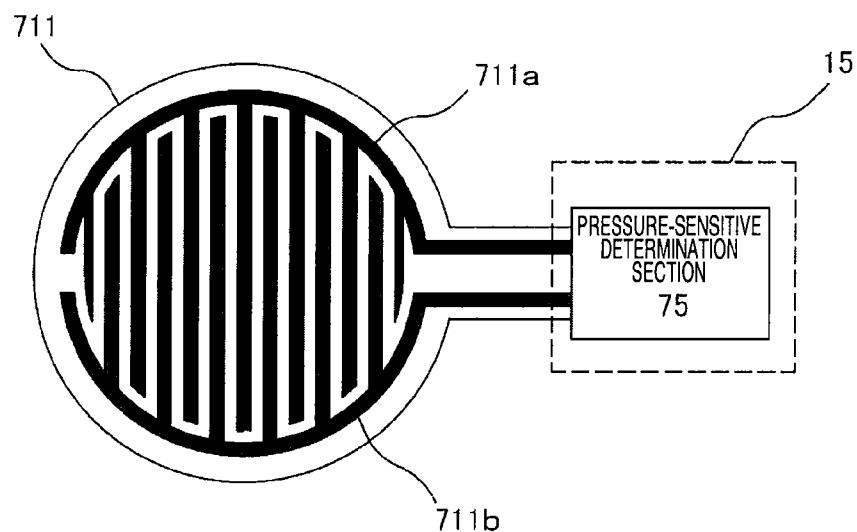




FIG. 18A



A-A CROSS SECTION

FIG. 18B

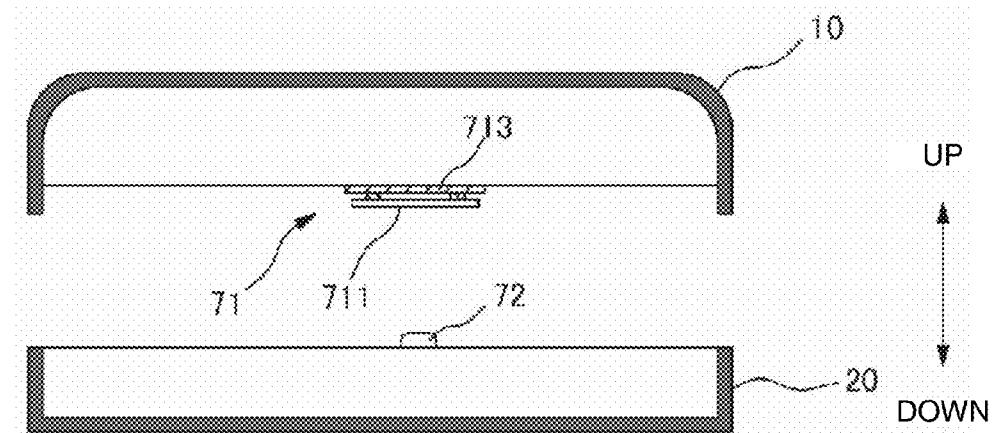



FIG. 19A

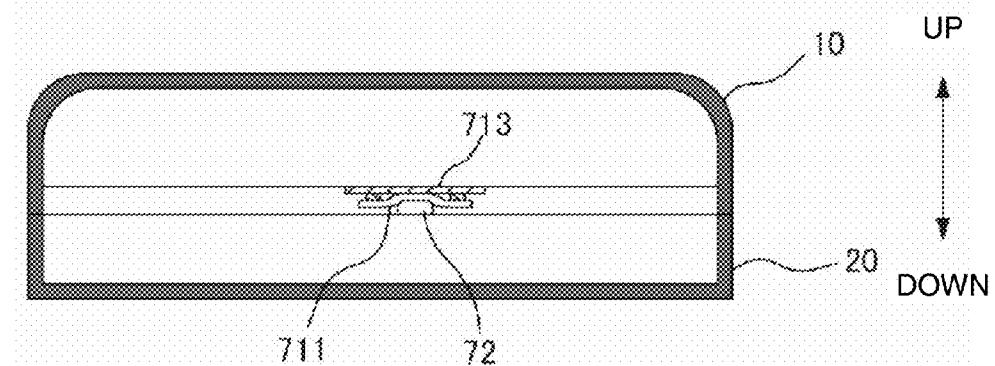



FIG. 19B

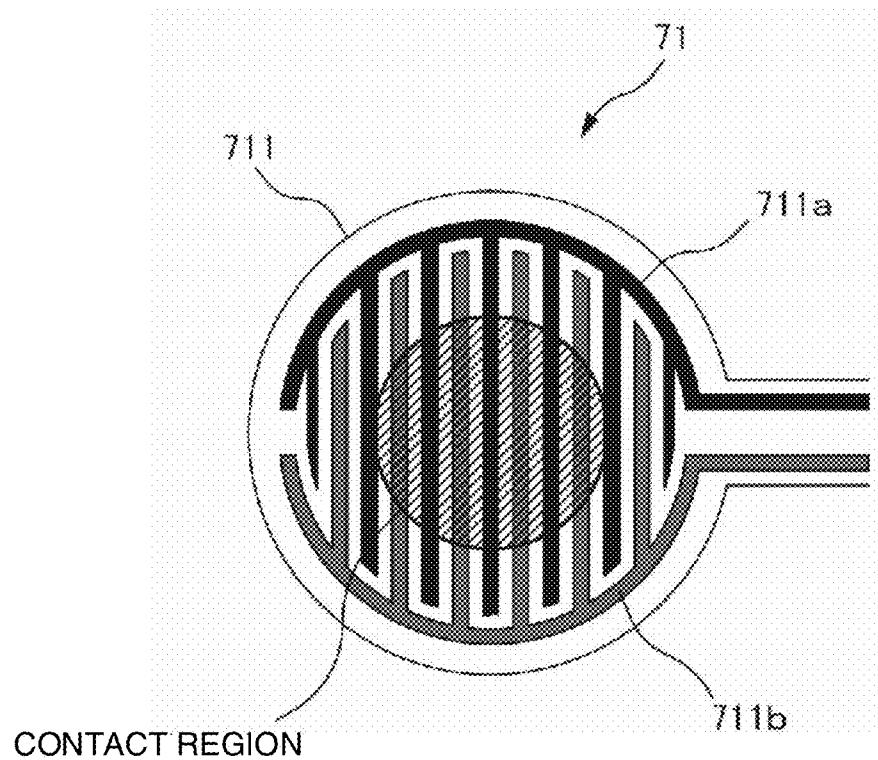



FIG. 20

## LIQUID TRANSPORTING APPARATUS AND LIQUID TRANSPORTING METHOD

### BACKGROUND

[0001] 1. Technical Field

[0002] The present invention relates to a liquid transporting apparatus and a liquid transporting method.

[0003] 2. Related Art

[0004] There is a liquid transporting apparatus capable of continuously transporting a liquid. As a practical example of the liquid transporting apparatus, an insulin injecting apparatus is known which is used when a liquid medicine such as insulin is subcutaneously injected. For example, an insulin dosing device that injects and transports the insulin using a liquid transporting apparatus into a living body through a catheter is disclosed in JP-T-2006-511263.

[0005] When controlling a liquid transportation operation by the liquid transporting apparatus, a remote operation is often performed using a controller. At this time, radio communication or the like is performed between a control section inside the liquid transporting apparatus and the controller and there is no need for the communication unless the liquid transportation operation is required. Regardless, the control section must be on standby so that the communication can be started any time and there is a likelihood of problem that power consumption occurs even during standby.

### SUMMARY

[0006] An advantage of some aspects of the invention is to suppress power consumption during standby in a liquid transporting apparatus of which an operation is controlled by communication using a controller.

[0007] A liquid transporting apparatus according to an aspect of the invention includes: a liquid storage section that stores a liquid; a body section that supports a driving section having at least a part of function for transporting the liquid and is connected to the liquid storage section when transporting the liquid; a body control section that controls an operation of the driving section and determines whether the body section and the liquid storage section are connected; and an external control section that communicates with the body control section and performs instruction to control an operation of the driving section. If it is determined that the body section and the liquid storage section are connected, communication between the body control section and the external control section is started.

[0008] Other features of the invention will be apparent from the following description and the accompanying drawings.

### BRIEF DESCRIPTION OF THE DRAWINGS

[0009] The invention will be described with reference to the accompanying drawings, wherein like numbers reference like elements.

[0010] FIG. 1 is an overall perspective view of a liquid transporting apparatus.

[0011] FIG. 2 is an exploded view of the liquid transporting apparatus.

[0012] FIG. 3 is a cross-sectional view of the liquid transporting apparatus.

[0013] FIG. 4 is a transparent top view of an inside of the liquid transporting apparatus.

[0014] FIG. 5 is a schematic explanatory view of a driving section.

[0015] FIG. 6 is an exploded perspective view illustrating an internal structure of a body.

[0016] FIG. 7 is a perspective view of a back surface of the body.

[0017] FIGS. 8A and 8B are schematic views describing ON/OFF of a switch in a first embodiment.

[0018] FIG. 9 is an exploded perspective view illustrating an internal structure of a cartridge.

[0019] FIG. 10 is an exploded perspective view of a back surface of a base of the cartridge.

[0020] FIG. 11 is a perspective view in which the liquid transporting apparatus is viewed from a side of a bottom surface of an injection set.

[0021] FIG. 12 is a schematic view illustrating an example of a controller.

[0022] FIG. 13 is a flowchart illustrating a using method of the liquid transporting apparatus.

[0023] FIG. 14 is an explanatory view of a priming processing.

[0024] FIG. 15 is a view illustrating a flow when setting of communication is performed.

[0025] FIGS. 16A and 16B are schematic views describing ON/OFF of a communication circuit in a modification example of the first embodiment.

[0026] FIG. 17 is a perspective view of a back surface of a body in a second embodiment.

[0027] FIGS. 18A and 18B are views describing a structure of a pressure sensitive sensor.

[0028] FIGS. 19A and 19B are views describing a connection detection method using the pressure sensitive sensor.

[0029] FIG. 20 is a view describing a state of an electrode when measuring a pressure by the pressure sensitive sensor.

### DESCRIPTION OF EXEMPLARY EMBODIMENTS

[0030] At least matters below will become clear by the description of the specification and the accompanying drawings.

[0031] A liquid transporting apparatus includes: a liquid storage section that stores a liquid; a body section that supports a driving section having at least a part of function for transporting the liquid and is connected to the liquid storage section when transporting the liquid; a body control section that controls an operation of the driving section and determines whether the body section and the liquid storage section are connected; and an external control section that communicates with the body control section and performs instruction to control an operation of the driving section. If it is determined that the body section and the liquid storage section are connected, communication between the body control section and the external control section is started.

[0032] According to the liquid transporting apparatus with this configuration, it is possible to suppress power consumption during standby if the operation is controlled by the communication using the external controller.

[0033] Further, in the liquid transporting apparatus, it is preferable that the body section includes a communication circuit that performs communication with the external control section, the communication circuit has a contact point that is in a closed state by coming into contact with a contact section that is provided in the liquid storage section, and the body control section determines that the body section and the liquid storage section are connected if the contact point is in the closed state.

[0034] According to the liquid transporting apparatus with this configuration, at first, since there is no communication between the body section and the external control section during standby, the power consumption is small. Then, if it is determined that the liquid storage section and the body section are connected from a conduction state of the communication circuit, the body section and the external control section are in a state in which communication is possible. That is, since the communication between the body section and the external control section starts immediately before the liquid transporting operation is executed, it is possible to suppress the wasteful standby power consumption.

[0035] Further, in the liquid transporting apparatus, it is preferable that a pressure detection section that measures the pressure is provided in the body section, and the body control section measures an amount of pressure when the pressure detection section is pressed by a pressing section that is provided in the liquid storage section, and determines that the body section and the liquid storage section are connected if the pressure that is measured has a predetermined amount or more.

[0036] According to the liquid transporting apparatus with this configuration, at first, since there is no communication between the body section and the external control section, the power consumption is small in the state of the communication standby. Then, if it is determined that the body section and the liquid storage section are connected from a result of measurement of the pressure when the body section and the liquid storage section are connected, the body section and the external control section are in a state of being capable of communicating. That is, since the communication between the body section and the external control section starts immediately before the liquid transporting operation is executed, it is possible to suppress the wasteful standby power consumption.

[0037] Further, in the liquid transporting apparatus, it is preferable that information including a type and a storage amount of the liquid which is stored in the liquid storage section is recorded in the liquid storage section, and the information is acquired by the external control section.

[0038] According to the liquid transporting apparatus with this configuration, if the liquid is a medicine, it is possible to safely manage quality and dose of the medicine, based on the information.

[0039] Further, in the liquid transporting apparatus, it is preferable that the communication between the external control section and the body control section is performed using radio, and the setting of connection is performed between the external control section and the body control section before the communication is started.

[0040] According to the liquid transporting apparatus with this configuration, the body control section is suppressed from being erroneously connected to other external control sections and it is possible to perform safely communication between the body control section and the external control section.

[0041] Further, it will become clear that a liquid transporting method includes: determining whether a liquid storage section that stores a liquid and a body section that supports a driving section having at least a part of function for transporting the liquid and is connected to the liquid storage section when the liquid is transported are in a state of being connected; starting the communication to the external control section if it is determined that the body section and the liquid

storage section are connected; and transporting the liquid by an instruction from the external control section.

### First Embodiment

#### Basic Configuration of Liquid Transporting Apparatus

[0042] FIG. 1 is an overall perspective view of a liquid transporting apparatus 1. FIG. 2 is an exploded view of the liquid transporting apparatus 1. As illustrated in the views, description is given in which a side (a side of a living body) where the liquid transporting apparatus 1 adheres is referred to as "down" and the side opposite the living body is referred to as "up."

[0043] The liquid transporting apparatus 1 is an apparatus for transporting a liquid. The liquid transporting apparatus 1 includes a body 10, a cartridge 20 and an injection set 30. Further, a controller 50 (see FIG. 12) for remotely controlling the liquid transporting apparatus 1 from outside is provided.

[0044] As illustrated in FIG. 2, the body 10, the cartridge 20 and the injection set 30 can be separated from each other, but as illustrated in FIG. 1, they are integrally assembled when being used. The liquid transporting apparatus 1 is appropriately used to periodically inject liquid (for example, insulin) stored in the cartridge 20 with the injection set 30 adhering to the living body. If the liquid (for example, the insulin) stored in the cartridge 20 runs out, the cartridge 20 is replaced. Further, the injection set 30 is generally replaced at once in every three day. Meanwhile, the body 10 may be continuously used.

[0045] FIG. 3 is a cross-sectional view of the liquid transporting apparatus 1. FIG. 4 is a transparent top view of an inside of the liquid transporting apparatus 1. In FIG. 4, a configuration of a driving section 5 is also illustrated. FIG. 5 is a schematic explanatory view of the driving section 5.

[0046] The driving section 5 has a function as a pump for transporting the liquid stored in the cartridge 20. The driving section 5 of the embodiment includes a cam 11 and a driving mechanism 12, and transports the liquid by sequentially squeezing a tube 21 by driving a plurality of fingers 22.

[0047] The tube 21 is a liquid transporting tube for transporting the liquid. An upstream side (an upstream side based on a transportation direction of the liquid) of the tube 21 communicates with a storage section 26 of the liquid of the cartridge 20. The tube 21 has elasticity enough to be closed when being pressed by the finger 22 and to be returned to the original shape when releasing a force from the finger 22. The tube 21 is partially disposed in a circular arc shape along an inner surface of a tube guide wall 251A of the cartridge 20. The portion of the tube 21 in the circular arc shape is disposed between the inner surface of the tube guide wall 251A and the plurality of fingers 22. A center of a circle arc of the tube 21 is coincident with a rotation center of the cam 11.

[0048] The finger 22 is a member for closing the tube 21. The finger 22 is operated in a driven basis by receiving a force from the cam 11. The finger 22 has a rod-shaped shaft section and a collar-shaped pressing section, and is in a T-shape. The rod-shaped shaft section comes into contact with the cam 11 and the collar-shaped pressing section comes into contact with the tube 21. The finger 22 is supported so as to be movable along an axial direction.

[0049] The plurality of fingers 22 are radially disposed at an equal interval from the rotation center of the cam 11. The

plurality of fingers 22 are disposed between the cam 11 and the tube 21. Here, seven fingers 22 are provided.

[0050] The cam 11 has protrusion sections at four positions of an outer periphery thereof. The plurality of fingers 22 are disposed on the outer periphery of the cam 11 and the tube 21 is disposed outside the fingers 22. The tube 21 is closed when pressing the fingers 22 by the protrusion sections of the cam 11. If the finger 22 is disengaged from the protrusion section, the tube 21 returns to the original shape by an elastic force of the tube 21. If the cam 11 rotates, seven fingers 22 are pressed in order from the protrusion section and then the tube 21 closes in order from the upstream side in the transportation direction. Therefore, the tube 21 performs writhing and the liquid is squeezed and transported by the tube 21. In order to prevent backflow of the liquid, the protrusion sections of the cam 11 are formed so that at least one and preferably two fingers 22 close the tube 21.

[0051] The driving mechanism 12 is a mechanism for driving the cam 11 to rotate. The driving mechanism 12 has a piezoelectric motor 121, a rotor 122 and a reduction transmission device 123 (see FIG. 4).

[0052] The piezoelectric motor 121 is a motor for rotating the rotor 122 by using vibration of a piezoelectric element. The piezoelectric motor 121 vibrates a vibration body by applying a drive signal to the piezoelectric element that adheres to both surfaces of a rectangular vibration body. An end section of the vibration body comes into contact with the rotor 122 and the end section vibrates while drawing a predetermined orbit such as an elliptic orbit or an 8-shaped orbit, if the vibration body vibrates. The end section of the vibration body comes into contact with the rotor 122 in a part of the vibration orbit and then the rotor 122 is driven to rotate. The piezoelectric motor 121 is biased toward the rotor 122 by a pair of springs so that the end section of the vibration body comes into contact with the rotor 122.

[0053] The rotor 122 is a driven body that is rotated by the piezoelectric motor 121. A rotor pinion that configures a part of the reduction transmission device 123 is formed in the rotor 122.

[0054] The reduction transmission device 123 is a device that transmits the rotation of the rotor 122 to the cam 11 with a predetermined reduction ratio. The reduction transmission device 123 is configured of a rotor pinion, a transmission wheel and a cam gear. The rotor pinion is a small gear which is integrally attached to the rotor 122. The transmission wheel has a large gear that meshes with the rotor pinion and a pinion that meshes with the cam gear, and has a function for transmitting a rotational force of the rotor 122 to the cam 11. The cam gear is integrally attached to the cam 11 and is rotatably supported with the cam 11.

[0055] Hereinafter, configurations of the body 10, the cartridge 20, the injection set 30 and the controller 50 are described.

#### Body 10

[0056] FIG. 6 is an exploded perspective view illustrating a configuration of an inside of the body 10. FIG. 7 is a perspective view of a back surface of the body 10. Hereinafter, the configuration of the body 10 is described with reference to FIGS. 1 to 4 and the drawings.

[0057] The body 10 has a body base 13 and a body case 14. Then, the driving mechanism 12 described above and a control substrate 15 are maintained on the body base 13. Further, a bearing 13A is provided in the body base 13. A rotation shaft

of the cam 11 passes through the body base 13 and the bearing 13A rotatably supports the rotation shaft of the cam 11 with respect to the body base 13. The cam 11 is integrally formed with the cam gear configuring the reduction transmission device 123 and the cam gear is disposed inside the body 10 by being covered by the body case 14, and the cam 11 is exposed from the body 10. If the body 10 and the cartridge 20 are combined together, the cam 11 which is exposed from the body 10 meshes with the end section of the finger 22 of the cartridge 20.

[0058] The body case 14 is a member configuring an exterior of the liquid transporting apparatus 1. The driving mechanism 12 (the piezoelectric motor 121, the rotor 122 and the reduction transmission device 123) or the control substrate 15 provided in the body base 13 is covered and protected by the body case 14.

[0059] In the embodiment, a function button 145 is provided in the body case 14. The function button 145 is a button which can set a plurality of functions and can realize any function which is set when the button is pressed. The function button 145 of the embodiment has functions which perform setting of the communication or functions which perform switching of a plurality of control patterns which are set in the control substrate 15 described below. Moreover, setting of the functions of the function button 145 is done using the controller 50.

[0060] The control substrate 15 is a body control section that controls an operation of the driving section 5. The body control section in the embodiment has functions which determines whether the body 10 and the cartridge 20 are correctly connected, and which starts the communication between the liquid transporting apparatus 1 (the body 10) and the controller 50. A storage section (a memory) storing a plurality of control patterns (control programs) for controlling the piezoelectric motor 121 or the like is provided in the control substrate 15. Then, the cam 11 is driven, based on one of the plurality of control patterns stored in the storage section, and writhing of the tube 21 can be controlled by the finger 22. Moreover, the control patterns are set by using the controller 50.

[0061] In addition, the body 10 has a hook hanger 16, a switch 17, a battery storage section 18 and a receiving section (not illustrated). The hook hanger 16 is a member for fixing the cartridge 20 and the body 10 being connected. A fixed hook 234 of the cartridge 20 described below is caught on the hook hanger 16 and the body 10 is fixed to the cartridge 20. The battery storage section 18 stores a battery 19 that is a power supply of the liquid transporting apparatus 1 (see FIG. 9). The receiving section receives a signal or a radio wave that is transmitted from the controller 50 described below.

[0062] As illustrated in FIG. 7, the switch 17 is a protrusion member that protrudes downward from a back surface (a lower surface side) of the body 10 (the body base 13) and corresponds to a push-button switch turning ON/OFF of a communication circuit (not illustrated in FIG. 7) incorporated inside the body base 13. The switch 17 is movable so as to be pushed into the body base 13 (that is, in an upper direction of the body 10). In a state where the switch 17 protrudes from the body base 13, the communication circuit is in an open state (OFF state) and a current does not flow. On the other hand, if the switch 17 is pushed into the body base 13, the communication circuit is in a closed state (ON state) and the current flows, and then the communication circuit is capable of communicating with the controller 50.

**[0063]** In the liquid transporting apparatus 1 of the embodiment, ON/OFF of the switch 17 is switched by connecting the body 10 and the cartridge 20. FIGS. 8A and 8B are schematic views describing ON/OFF of the switch 17 in the first embodiment. In FIG. 8A, when the body 10 and the cartridge 20 are not connected to each other, the switch 17 is in a state of protruding from the side of the lower surface of the body 10 and a contact point of the communication circuit provided inside the body 10 is open and then the circuit is in the OFF state. On the other hand, as illustrated in FIG. 8B, when the body 10 and the cartridge 20 are connected, a leading end of a lower side of the switch 17 protruding from the lower surface side of the body 10 comes into contact with a contact plate 236 (see FIG. 9) provided on the side of the upper surface of the cartridge 20 and then the contact plate 236 pushes the switch 17 in the upper direction. Therefore, the leading end of the upper side of the switch 17 causes the contact point of the communication circuit provided inside the body 10 to be closed and the circuit is in the ON state. That is, in the embodiment, the switch 17 functions as a so-called mechanical contact point. Moreover, if the cartridge 20 is detached from the body 10, the switch 17 returns to an initial state (a state of FIG. 8A) and the communication circuit is turned to OFF again. A communication method with the controller 50 after the communication circuit is turned to ON is described below.

#### Cartridge 20

**[0064]** FIG. 9 is an exploded perspective view illustrating a configuration of an inside of the cartridge 20. FIG. 10 is an exploded perspective view of a back surface of the cartridge 20. Hereinafter, a configuration of the cartridge 20 is described with reference to FIGS. 1 to 5 and the drawings.

**[0065]** The cartridge 20 has a cartridge base 23 and a base receiver 24.

**[0066]** A tube unit 25 is provided on an upper side of the cartridge base 23. The tube unit 25 has the tube 21 and the plurality of fingers 22 which are described above, a unit base 251 and a unit cover 252. The tube guide wall 251A is formed in the unit base 251 and the tube 21 is disposed inside the unit base 251 in a circular arc shape. Further, the unit base 251 movably supports the fingers 22 in the axial direction. The tube 21 and the fingers 22 inside the unit base 251 are covered by the unit cover 252.

**[0067]** The tube unit 25 is in a planar cylindrical shape and the cam 11 exposed from the body 10 is inserted into a cavity of a center of the tube unit 25. Therefore, the cam 11 on the side of the body 10 meshes with the fingers 22 on the side of the cartridge 20.

**[0068]** A supply-side joint 231 and a discharge-side joint 232 are provided in the cartridge base 23. End sections of the tube 21 inside the tube unit 25 are connected to the supply-side joint 231 and the discharge-side joint 232, respectively. If the plurality of fingers 22 squeeze the tube 21 in order, the liquid is supplied from the supply-side joint 231 to the tube 21 and the liquid is discharged from the discharge-side joint 232. A connection needle 233 communicates with the discharge-side joint 232 and the liquid discharged from the discharge-side joint 232 is supplied to the side of the injection set 30 through the connection needle 233.

**[0069]** The fixed hook 234 is formed in the cartridge base 23. The fixed hook 234 is caught on the hook hanger 16 of the body 10 and fixes the body 10 to the cartridge 20. The contact plate 236 that is a contact section coming into contact with the

leading end section of the switch 17 when connecting with the body 10 is provided on the upper surface of the cartridge base 23. The switch 17 is pressed to the upper side (the side of the body 10) by coming into contact with the contact plate 236 (see FIGS. 8A and 8B).

**[0070]** A reservoir film 28 is interposed between the cartridge base 23 and the base receiver 24. Circumference of the reservoir film 28 comes into close contact with a bottom surface of the cartridge base 23. The storage section 26 is formed between the cartridge base 23 and the reservoir film 28, and the liquid (for example, the insulin) is stored in the storage section 26. The storage section 26 communicates with the supply-side joint 231 and the liquid stored in the storage section 26 is supplied to the tube 21 through the supply-side joint 231.

**[0071]** As described above, the storage section 26 is configured on the lower side of the cartridge base 23. Since the tube 21 and the fingers 22 configuring the driving section 5 are disposed on the upper side of the cartridge base 23, the driving section 5 and the storage section 26 are disposed up and down. Therefore, miniaturization of the liquid transporting apparatus 1 is achieved. Further, the storage section 26 is disposed further to the side of the living body than the driving section 5. Therefore, the liquid stored in the storage section 26 is likely to maintain the temperature thereof with the temperature of the living body and a difference between the temperature of the liquid and the temperature of the living body is suppressed.

**[0072]** If the liquid stored in the storage section 26 runs out, the cartridge 20 is detached from the liquid transporting apparatus 1 and is replaced with new cartridge 20. However, the liquid can be injected from outside into the storage section 26 through a cartridge septum 27 using an injection needle. Moreover, the cartridge septum 27 is configured of a material (for example, rubber, silicon or the like) that closes a hole if the injection needle is pulled out.

#### Injection Set 30

**[0073]** FIG. 11 is a perspective view of the liquid transporting apparatus 1 viewed from a side of the bottom surface of the injection set 30. Hereinafter, a configuration of the injection set 30 is described with reference to FIGS. 1 to 5 and the drawing.

**[0074]** The injection set 30 has a soft needle 31, an introduction needle folder 32, a port base 33, an injection set base 34 and an adhesive pad 35.

**[0075]** The soft needle 31 is a tube for injecting the liquid into the living body and has a function of a catheter. For example, the soft needle 31 is configured of a soft material such as fluorine resin. An end of the soft needle 31 is fixed to the port base 33.

**[0076]** The introduction needle folder 32 is a member for holding an introduction needle 32A. An end of the introduction needle 32A is fixed to the introduction needle folder 32. The introduction needle 32A is a needle made of a metal for inserting the soft needle 31 which is soft into the living body. The introduction needle 32A is a hollow tubular needle which is long and narrow, and has a transverse hole (not illustrated). If the liquid is supplied from the transverse hole of the introduction needle 32A, the liquid is discharged from a leading end of the introduction needle 32A. Therefore, before the soft needle 31 punctures the living body, priming processing which fills the inside a flow path of the liquid transporting apparatus 1 with the liquid can be performed.

[0077] In a state prior to use, the introduction needle folder 32 is attached to the port base 33, the introduction needle 32A is inserted into the soft needle 31 and then a needle tip is exposed from the lower side of the soft needle 31. When the injection set 30 is attached to the living body, after the soft needle 31 and the introduction needle 32A puncture the living body, the introduction needle folder 32 is withdrawn (removed) from the port base 33 together with the introduction needle 32A. Since the introduction needle 32A which is hard does not need to be continuously placed in the living body, a load on the living body is small. Moreover, although the soft needle 31 is continuously placed on the living body, the soft needle 31 is soft, and thus, the load on the living body is small.

[0078] The port base 33 is a member that supplies the liquid supplied from the connection needle 233 of the cartridge 20 to the soft needle 31. The port base 33 has a connection needle septum 33A and an introduction needle septum 33B. The connection needle septum 33A and the introduction needle septum 33B are configured of a material (for example, rubber, silicon or the like) that closes the hole if the needle is pulled out. The connection needle 233 of the cartridge 20 is inserted into the connection needle septum 33A and the liquid is supplied from the side of the cartridge 20 to the side of the injection set 30 through the connection needle 233 over the connection needle septum 33A. Even if the connection needle 233 of the cartridge 20 is pulled out from the injection set 30 to replace the cartridge 20, the hole of the connection needle septum 33A that is generated by the connection needle 233 is closed naturally. The introduction needle 32A is inserted into the introduction needle septum 33B and if the introduction needle 32A is pulled out, the hole of the introduction needle septum 33B that is generated by the introduction needle 32A is closed naturally. The liquid inside the injection set 30 is prevented from leaking to the outside or a body liquid of the living body is prevented from flowing back to the side of the injection set 30 by the connection needle septum 33A and the introduction needle septum 33B. Moreover, a region (a region except the introduction septum) in which the introduction needle 32A is present inside the port base 33 is a flow path of the liquid after the introduction needle 32A is pulled out.

[0079] The injection set base 34 is a planar member fixed to the port base 33. The injection set base 34 has a fixing section 34A for fixing the base receiver 24. The adhesive pad 35 is attached to the bottom surface of the injection set base 34. The adhesive pad 35 is an adhesive pad for bonding the injection set 30 to the living body or the like.

[0080] In the liquid transporting apparatus 1, the driving section 5 and the storage section 26 are vertically disposed and reduction of the size of the liquid transporting apparatus 1 is achieved. Therefore, it is possible to reduce the size of the adhesive pad 35.

#### Controller 50

[0081] FIG. 12 is a schematic view illustrating an example of the controller 50. The controller 50 is an external control section that makes the liquid transporting apparatus 1 perform the liquid transportation operation or sets the functions and, for example, is capable of remotely operating the liquid transporting apparatus 1 using wireless communication such as "Bluetooth" (registered trademark) or "ZigBee" (registered trademark), or infrared beams. The controller 50 has operation buttons 51 and a display section 52, a reading section and a storage section (both not illustrated).

[0082] The user can start/stop the liquid transportation operation or set the control patterns (programs) defining the liquid transport amount per unit time or the like by operating the operation buttons 51. Further, the operation buttons 51 are also used in start or setting of the communication with the body 10. Information (for example, information indicating the liquid transport amount) regarding the liquid transportation operation is displayed on the display section 52 and the user can perform various types of setting while recognizing the information which is displayed. A present time, an alarm concerning the liquid transportation operation or the like is also displayed on the display section 52.

[0083] Moreover, in the embodiment, it is possible to use commercially available smartphone as the controller 50. In this case, when performing the communication for controlling the liquid transporting apparatus 1, occurrence of malfunction or the like is suppressed by pairing (described below) with the body 10.

#### Using Method of Liquid Transporting Apparatus

[0084] FIG. 13 is a flowchart illustrating a using method of the liquid transporting apparatus 1.

[0085] First, the user prepares a kit of the liquid transporting apparatus 1 (S001). The body 10, the cartridge 20, the injection set 30 or the like for configuring the liquid transporting apparatus 1 is included in the kit. As illustrated in FIG. 2, the user assembles the liquid transporting apparatus 1 by assembling the body 10, the cartridge 20 and the injection set 30, and then performs setting of starting for the liquid transportation operation (S002). The user makes the cam 11 on the side of the body 10 mesh with the finger 22 on the side of the cartridge 20 by assembling the body 10 and the cartridge 20. At this time, as described above, the communication circuit is turned to ON state and is in a state of being capable of communicating with the controller 50 according to the body 10 and the cartridge 20 being connected to each other. Further, the user inserts the connection needle 233 of the cartridge 20 into the connection needle septum 33A of the injection set 30 and makes the liquid be capable of being supplied from the side of the cartridge 20 to the side of the injection set 30.

[0086] Next, the user performs the priming processing (S003). FIG. 14 is an explanatory view of the priming processing. The priming processing is a processing that fills the inside flow path of the liquid transporting apparatus 1 with the liquid by driving the driving section 5 of the liquid transporting apparatus 1. Gas inside the flow path of the liquid transporting apparatus 1 is discharged from the introduction needle 32A by the priming processing. Further, the tube 21 which is vacant is filled with the liquid by the priming processing. The user drives the driving section 5 of the liquid transporting apparatus 1 until the liquid is discharged from the leading end of the introduction needle 32A.

[0087] After the priming processing, the user makes the introduction needle 32A and the soft needle 31 puncture perpendicularly the living body, after that, withdraws the introduction needle folder 32 from the port base 33, and removes the introduction needle 32A from the soft needle 31 (S004). Since there is the introduction needle septum 33B, even if the introduction needle 32A is removed, the hole of the introduction needle septum 33B that is generated by the introduction needle 32A is closed naturally. At this time, the user peels a protective sheet of the adhesive pad 35 of the injection

set 30 and the liquid transporting apparatus 1 may adhere to the living body by attaching the adhesive pad 35 to the skin of the living body.

[0088] Next, the user performs pre-operation of the driving section 5 so that the liquid for a capacity of a region (a region except the introduction septum) in which the introduction needle 32A is present is transported (S005). Therefore, it is possible to fill a space with the liquid at which the introduction needle 32A is present.

[0089] After that, the user makes the liquid transporting apparatus 1 perform a liquid transport processing (S006). In the liquid transporting apparatus 1, the cam 11 is rotated by driving the piezoelectric motor 121 of the driving mechanism 12, seven fingers 22 are pressed in order by the protrusion sections of the cam 11 and the tube 21 is closed in order from the upstream side in the transportation direction, and then the liquid is transported by writhing of the tube 21. In a quantitative transport processing, the rotation amount of the cam 11 is controlled so that the liquid of a predetermined amount is transported in a predetermined time.

#### Setting of Communication

[0090] Setting of the communication among settings which are performed in S002 of FIG. 13 is described. The operation of the liquid transporting apparatus 1 is controlled by communicating with the controller 50. However, if a state where the communication is possible is maintained for all times, the power consumption on the communication standby is increased and there is a concern that an important liquid transportation operation may be interrupted, the liquid transporting apparatus 1 is in a state of being capable of communicating at a necessary timing by performing the setting of the communication at an appropriate time before the liquid transportation operation is practically performed. Therefore, wasteful standby power consumption is suppressed. Further, since it is assumed that the liquid transporting apparatus 1 is also used as the insulin injection device, high accuracy of the liquid transportation operation is required. Therefore, in order to suppress occurrence of a malfunction, the setting of the communication with the controller 50 is important.

[0091] FIG. 15 is a view illustrating a flow when the setting of the communication is performed.

[0092] First, specific information of the cartridge 20 used in the liquid transportation operation is obtained by using the controller 50 (S101). The specific information of the cartridge 20 is a type and a storage amount of a liquid that is stored in the storage section 26 of the cartridge 20, a manufacturing number of the cartridge and the like. The information is stored as a bar code or a two-dimension code (for example, "QR code" (registered trademark)) associated with an ID of the cartridge. The user obtains the specific information of the cartridge 20 by reading the two-dimension code or the like given to the cartridge 20 using the reading section of the controller 50, and the specific information is temporarily stored in the storage section of the controller 50. When using the liquid transporting apparatus 1 as the insulin injection device or the like, it is also possible to perform safety management of quality or dosage of the medicine, based on the information.

[0093] Further, pairing information for communication with one to one between the body 10 connected to the cartridge 20 and the controller 50 is also included in the specific information of the cartridge. Pairing is to perform setting of connection between two devices communicating using radio

or the like. For example, if "Bluetooth" described above is used as means for communication, it is necessary to make the controller 50 and the body 10 be accessible to each other by the Bluetooth device. At this time, the setting of the connection of two devices is performed, based on the pairing information given to the cartridge 20.

[0094] Further, information regarding a correction coefficient when the liquid transportation operation is performed is included in the specific information of the cartridge. The correction coefficient is a coefficient for correcting the liquid transport amount per unit time by the liquid transporting apparatus 1. In the liquid transporting apparatus 1, writhing of the tube 21 is performed by the plurality of fingers 22 thereby performing the transportation of the liquid. However, quality of the tube 21 is not necessarily uniform. For example, a slight difference occurs in a wall thickness (a thickness of a wall surface) or elasticity of the tube 21 when manufacturing the tube 21 and variation in quality may occur. If such variation occurs in the tube 21, difference occurs in timing when the tube 21 that is squeezed returns to the original shape or in the writhing property and thus, an error may occur in the liquid transport amount of the cartridge 20. Further, if the length of the finger 22 on the squeezing side of the tube 21 is not uniform, there is a concern that an error in the liquid transport amount may also occur. Then, change in the liquid transport amount when replacing the cartridge 20 is suppressed by setting the correction coefficient for the cartridge 20 individually. Moreover, the correction coefficient is determined when quality test or the like is performed in a manufacturing processing of the cartridge 20.

[0095] After the controller 50 obtains the specific information of the cartridge 20, connection between the cartridge 20 and the body 10 is performed and it is determined whether or not both are properly connected (S102). The connection of the cartridge 20 and the body 10 is performed as described in FIGS. 2 and 9, and the switch 17 described above is turned to ON and the current flows on the communication circuit by connecting the both members. The control substrate 15 determines that the cartridge 20 and the body 10 are correctly connected when communication circuit is in a conduction state and if it is determined that the connection is achieved, the body 10 is in a state of being capable of communicating.

[0096] Next, the pairing of the body 10 (the cartridge 20) and the controller 50 is performed (S103). When performing the pairing, first, the body 10 is in a state of being capable of pairing by continuously pressing (long press) the function button 145 provided in the body 10 in a predetermined time (for example, three seconds). The button is long pressed to prevent occurrence of malfunction in which the pairing is immediately started when the button is accidentally touched by mistake. However, the pairing may be started by other methods. Subsequently, after searching a communication target device (in this case, the body 10) by operating the operation buttons 51 of the controller 50 and finding the body 10, the pairing processing is performed. In the pairing processing, the setting of the connection of the body 10 connected to the cartridge 20, and the controller 50 is performed, based on the pairing information obtained from the cartridge 20, and the state of being capable of communicating is made between two devices by "the Bluetooth" or the like. Therefore, safe communication can be performed between the controller 50 and the body 10.

[0097] Moreover, a personal identification number or a password may be input to the controller 50 during the pairing.

In the embodiment, the liquid transporting apparatus **1** is remote controlled using radio or the like by the controller **50**. At this time, there is a concern that if the body **10** is paired with a device other than the controller **50**, control system becomes confused and then the malfunction may occur. For example, in a case of the Bluetooth device, one device can be paired with a plurality of devices and there is a concern that two external control device may be connected to one body **10**. Then, such a erroneous connection is suppressed by requesting input of the personal identification number when performing the pairing. Further, if the liquid transporting apparatus **1** is used as the insulin injection device, since personal information such as the insulin injection amount is handled, it is preferable to ensure security by setting the personal identification number described above.

[0098] After performing the pairing, practical communication starts (S104). In the embodiment, the liquid transportation operation may be started by the liquid transporting apparatus **1** using the controller **50** and it is possible to change the liquid transport amount. For example, if the liquid transporting apparatus **1** is used as the insulin injection device, it is possible to continuously inject the insulin of a certain amount by normal liquid transportation operation (such an injecting method is referred to as "a basal"). Meanwhile, since a blood glucose level temporarily increases when the user takes a meal, it is necessary to increase the injection amount of the insulin according to the increase in the blood glucose level (such an injecting method is referred to as "a bolus"). Thus, in the liquid transporting apparatus **1**, it is possible to change the liquid transport amount by using the controller **50**. Adjustment of the transport amount is performed by controlling the operation of the driving section **5**, based on a predetermined control pattern among a plurality of control patterns stored in the control substrate **15**.

[0099] For example, if the normal insulin injection of the user is 1 U (1 unit=approximately 10  $\mu$ liters) per hour, an injection speed of 1 U/h is set as the control pattern for the basal. Further, if it is necessary to inject the insulin of 20 U (20 units) in a short term when taking a meal, the injection amount of 20 U is set as the control pattern for the bolus. Then, the insulin injection is normally performed at the injection speed of 1 U/h, based on the control pattern for the basal. Meanwhile, the control pattern for the bolus is used and the insulin of 20 U is injected within 24 hours of taking a meal.

[0100] Moreover, the controller **50** is also used when storing the control pattern during the liquid transportation operation in the control substrate **15** of the body **10**.

[0101] As described above, in the liquid transporting apparatus **1**, since it is a state where the body **10** cannot communicate with the controller **50** initially, the power consumption in the communication standby state is small. Then, if it is determined that the cartridge **20** that is a liquid storage section, and the body **10** are connected, the body **10** and the controller **50** are in a state of being capable of communicating. That is, communication between the body **10** and the controller **50** starts immediately before executing the liquid transportation operation. Therefore, it is possible to suppress the wasteful standby power consumption.

#### Modification Example

[0102] In the first embodiment, when the body **10** starts the communication with the controller **50**, ON/OFF of communication circuit is performed using the switch **17** that is a mechanical contact point (see FIGS. 8A and 8B), ON/OFF of

the communication circuit may be performed by other means. For example, the communication circuit can be ON/OFF using terminals **172** instead of the switch **17**.

[0103] FIGS. 16A and 16B are schematic views describing ON/OFF of the communication circuit in a modification example. A basic configuration of a liquid transporting apparatus **1** of the modification example is substantially the same as that of the first embodiment, but the terminals **172** are provided instead of the switch **17** of the body **10** and a metal plate **237** having conductivity is provided as the contact section instead of the contact plate **236** of the cartridge **20**. The terminals **172** are a set of contact points provided on the side of the lower surface of the body **10** and, as illustrated in FIG. 16A, when the body **10** and the cartridge **20** are not connected to each other, the communication circuit is in a state of being open (OFF). Then, as illustrated in FIG. 16B, when the body **10** and the cartridge **20** are connected, the terminals **172** come into contact with the metal plate **237** so that the contact points are electrically connected and the communication circuit is in a state of being closed (ON). Therefore, it is determined that the body **10** and the cartridge **20** is normally connected. Then, similar to the first embodiment, if it is determined that the body **10** and the cartridge **20** are normally connected, the body **10** and the controller **50** are in a state of being capable of communicating. Therefore, in the modification example, it is also possible to suppress the wasteful standby power consumption.

#### Second Embodiment

[0104] In the second embodiment, a connection state between a body **10** and a cartridge **20** is determined by detecting the pressure when the cartridge **20** are set to the body **10** by a pressure sensitive sensor and this is used as a trigger when starting the communication between the body **10** and a controller **50**.

#### Pressure Sensitive Sensor

[0105] A configuration of a liquid transporting apparatus **1** in the second embodiment is substantially the same as that of the first embodiment, but a pressure sensitive sensor **71** is provided on a back surface of the body **10** instead of the switch **17** or the terminal **172** of the first embodiment. Similarly, a pressing section **72** is provided on an upper surface of the cartridge **20** instead of the contact plate **236** or the metal plate **237** of the first embodiment. The pressure sensitive sensor **71** and the pressing section **72** have a positional relationship of facing each other when the body **10** and the cartridge **20** are connected.

[0106] FIG. 17 is a perspective view of the back surface of the body **10** in the second embodiment. FIGS. 18A and 18B are views describing a structure of the pressure sensitive sensor **71**. FIGS. 19A and 19B are views describing a connection detection method using the pressure sensitive sensor. FIG. 20 is a view describing a state of an electrode when measuring a pressure by the pressure sensitive sensor **71**.

[0107] In the second embodiment, the plate-shaped pressure sensitive sensor **71** is provided on the back surface side of the body **10**. The pressure sensitive sensor is a pressure detection section that is capable of detecting the amount of pressure applied on the sensor portion by using that a resistance value is reduced when the pressure is applied to the sensor section. In the embodiment, the connection state of the cartridge **20** and the body **10** is determined by measuring the amount of

pressure when the pressing section 72 that is provided in the cartridge 20 presses the pressure sensitive sensor 71 that is provided in the body 10.

[0108] The pressure sensitive sensor 71 has an electrode sheet 711, a spacer 712 and a conductive sheet 713 in a vertical direction. The pressure that is applied to the surface side of the pressure sensitive sensor 71 (the electrode sheet 711) is measured when measuring the pressure. The electrode sheet 711 is a film-shaped member of which the back surface has an electrode. In the electrode sheet 711 of the embodiment, as illustrated in A-A cross-sectional view of FIG. 18B, electrodes 711a and electrodes 711b are finely spread so there is no contact between them. That is, in this state, the electrodes 711a and the electrodes 711b are not conductive. The spacer 712 is a member that is provided between the electrode sheet 711 and the conductive sheet 713, and is for isolating the electrodes 711a and the electrode 711b so there is no contact between them. The conductive sheet 713 is a sheet-shaped member that is provided to face the electrodes 711a and the electrodes 711b of the electrode sheet 711, and has conductivity. Further, the electrodes 711a and the electrodes 711b are connected respectively, to a pressure-sensitive determination section 75 and it is possible to detect a resistance value of the pressure sensitive sensor 71 by the pressure-sensitive determination section 75. The pressure is measured, based on the resistance value that is detected, and the determination of the connection state of the cartridge 20 and the body 10 is performed. The pressure-sensitive determination section 75 is provided in a control substrate 15 (a body control section).

[0109] FIG. 19A illustrates a state before the cartridge 20 and the body 10 are connected. In this state, as described in FIGS. 18A and 18B, the electrode 711a and the electrode 711b are not conductive. Thus, a great resistance value is detected in the pressure-sensitive determination section 75. On the other hand, FIG. 19B illustrates a state that the cartridge 20 and the body 10 are connected. Both members are connected and then the pressing section 72 that is provided in the cartridge 20 presses the pressure sensitive sensor 71 from the surface side to the back surface side (from the lower side to the upper side). Therefore, the electrode sheet 711 is pressed against the conductive sheet 713 and a region (a contact region) coming into contact with the conductive sheet 713 is formed on a surface (the back surface side) of the electrode sheet 711 on which the electrodes is provided. A region illustrated in a hatched section of FIG. 20 is the contact region that is formed on the electrode sheet 711. Since the electrode 711a and the electrode 711b are conductive through the conductive sheet 713 in the contact region, the resistance value that is detected by the pressure-sensitive determination section 75 is smaller than that of the non-contact state (the state of FIGS. 18A and 18B). Then, if the pressure by the pressing section 72 is great, since a contact area between the electrode 711a and the electrode 711b, and the conductive sheet 713 is great, the resistance value that is detected by the pressure-sensitive determination section 75 is further reduced.

[0110] That is, if the cartridge 20 and the body 10 are correctly connected, since the pressure sensitive sensor 71 is pressed strongly by the pressing section 72, the resistance value that is detected by the pressure-sensitive determination section 75 is small. Conversely, if the cartridge 20 and the body 10 are not correctly connected, the resistance value that is detected by the pressure-sensitive determination section 75 is great. Therefore, if the resistance value that is detected is a

predetermined threshold or less, the pressure-sensitive determination section 75 determines that the connection state of the cartridge 20 and the body 10 is normal, and if the resistance value that is detected is greater than a predetermined threshold, the pressure-sensitive determination section 75 determines that the connection state of the cartridge 20 and the body 10 is not normal. In other words, if the pressure when the pressure sensitive sensor 71 is pressed by the pressing section 72 is a predetermined amount or more, it is determined that the connection state of the cartridge 20 and the body 10 is normal.

[0111] Moreover, a setting position of the pressure sensitive sensor 71 is not limited to the example described above. For example, when the pressure sensitive sensor may be provided in a position facing a tube 21 and when the cartridge 20 and the body 10 are connected, the pressure to the pressure sensitive sensor by the tube 21 may be detected. Further, the structure of the sensor itself is also not limited to the example described above and it may be a method for detecting the pressure in a manner other than using the change in the resistance value.

#### Setting of Communication in Second Embodiment

[0112] A setting of the communication in the second embodiment is basically the same as that of the first embodiment. That is, the setting of the communication is performed according to the flow described in FIG. 15.

[0113] However, in the second embodiment, in S102 of FIG. 15, the determination that the cartridge 20 and the body 10 are correctly connected is performed by the pressure determination using the pressure sensitive sensor. Particularly, in S102, the pressure is detected that is applied to the body 10 by the cartridge 20 as the resistance value, and determines the connection state, based on the resistance value that is detected. If it is determined that the connection state of the cartridge 20 and the body 10 is normal, the body control section causes the communication circuit to be ON and to be a state of being capable of communicating with the controller 50. Thereafter, pairing of the body 10 between the controller 50 is performed (S103) and the communication starts practically (S104).

[0114] According to the liquid transporting apparatus 1 of the second embodiment, since the communication with the controller 50 is not started before the body 10 and the cartridge 20 are correctly connected, it is possible to reduce the power consumption during the communication standby. Then, the body 10 and the controller 50 are in a state being capable of communicating for the first time in a stage in which it is determined that the connection state of the both members is normal from a result of measurement of the pressure when the body 10 and the cartridge 20 are connected.

#### OTHER EMBODIMENTS

[0115] The embodiments described above are intended to facilitate understanding of the invention and are not intended to be construed as limiting the invention. The invention may be altered and improved as long as there is no departure from the spirit thereof, and it is needless to say that equivalents thereof are included in the invention.

[0116] The entire disclosure of Japanese Patent Application No. 2013-076630, filed Apr. 2, 2013 is expressly incorporated by reference herein.

What is claimed is:

1. A liquid transporting apparatus comprising:  
a liquid storage section that stores a liquid;  
a body section that supports a driving section having at least a part of function for transporting the liquid and is connected to the liquid storage section when transporting the liquid; and  
a body control section that controls an operation of the driving section and determines whether the body section and the liquid storage section are connected,  
wherein if it is determined that the body section and the liquid storage section are connected, communication between the body control section and an external control section that communicates with the body control section and performs instruction to control operation of the driving section is started.
2. The liquid transporting apparatus according to claim 1, wherein the body section includes a communication circuit that performs communication with the external control section,  
wherein the communication circuit has a contact point that is in a closed state by coming into contact with a contact section that is provided in the liquid storage section, and wherein the body control section determines that the body section and the liquid storage section are connected if the contact point is in the closed state.
3. The liquid transporting apparatus according to claim 1, wherein a pressure detection section that measures the pressure is provided in the body section, and wherein the body control section measures an amount of pressure when the pressure detection section is pressed by a pressing section that is provided in the liquid storage section, and determines that the body section and the liquid storage section are connected if the pressure that is measured has a predetermined amount or more.
4. The liquid transporting apparatus according to claim 1, wherein the body section includes a battery storage section that stores a battery as a power supply of the liquid transporting apparatus, and holds the body control section.
5. The liquid transporting apparatus according to claim 1, wherein information including a type and a storage amount of the liquid which is stored in the liquid storage section is recorded in the liquid storage section, and wherein the information is acquired by the external control section.
6. The liquid transporting apparatus according to claim 1, wherein the communication between the external control section and the body control section is performed using radio, and wherein the setting of connection is performed between the external control section and the body control section before the communication is started.
7. The liquid transporting apparatus according to claim 1, further comprising:  
a battery as a power supply of the liquid transporting apparatus.
8. The liquid transporting apparatus according to claim 1, further comprising:  
the external control section.
9. A liquid transporting apparatus comprising:  
a liquid storage section that stores a liquid;  
a body section that supports a driving section having at least a part of function for transporting the liquid and is connected to the liquid storage section when transporting the liquid; and  
a body control section that controls an operation of the driving section and determines whether the body section and the liquid storage section are connected,  
wherein if it is determined that the body section and the liquid storage section are connected, the body control section is set to be capable of communicating with an external control section that communicates with the body control section and performs instruction to control operation of the driving section.
10. The liquid transporting apparatus according to claim 9, wherein if it is determined that the body section and the liquid storage section are connected, the communication between the external control section and the body control section is started.
11. The liquid transporting apparatus according to claim 9, further comprising:  
the external control section.
12. A liquid transporting method comprising:  
determining whether a liquid storage section that stores a liquid and a body section that supports a driving section having at least a part of function for transporting the liquid and is connected to the liquid storage section when the liquid is transported are in a state of being connected;  
starting the communication to the external control section if it is determined that the body section and the liquid storage section are connected; and  
transporting the liquid by an instruction from the external control section.

\* \* \* \* \*