특허협력조약에 의하여 공개된 국제출원
세계지식재산권기구
국제사무국
2017년 6월 29일 (29.06.2017)
WO 2017/111208 A1

(51) 국제특허분류:
C12N 9/24 (2006.01) C12N 15/63 (2006.01)
C12N 15/52 (2006.01) C07K 14/33 (2006.01)

(21) 국제출원번호:
PCT/KR2016/003389

(22) 국제출원일:
2016년 4월 1일 (01.04.2016)

(25) 출원인:
한국어

(26) 공개인:
한국어

(30) 우선권전보:

(71) 출원인: 고려대학교생산협력단 (KOREA UNIVERSITY
RESEARCH AND BUSINESS FOUNDATION)
교, 서울 (KR).

(72) 발명자: 한성숙 (HAN, Sung Ok) 02714 서울시 성동구
길음로 119, 209-1503, 서울 (KR). 강대희 (KANG,
Dae-Hee), 12728 경기도 광주시 조원읍 지월로 55
변길 24, 103-1203, Gyeonggi-do (KR). 현경은 (HYEON,
Jeong-Eun), 02843 서울시 성동구 인촌로 13길 18-21,
1층, 서울 (KR).

(74) 대리인: 이치영 (LEE, Cheo Young) 등, 06133 서울시
강남구 태평동 123 11층, 서울 (KR).

(81) 지정국 (별도의 표시가 없는 한, 가능한 모든 종류의
국내 권리의 보호를 위하여): AE, AG, AL, AM, AO,
AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ,
CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN,
HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KZ, LA,
LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN,
MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE,
PQ, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE,
SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT,
TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) 지정국 (별도의 표시가 없는 한, 가능한 모든 종류의
영역 권리의 보호를 위하여): ARIPPO (BW, BH, GM,
KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, TZ, UG,
ZM, ZW), 유라시아 (AM, AZ, BY, KG, KZ, RU, TJ,
TM), 유럽 (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE,
ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC,
MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR),
OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM,
ML, MR, NE, SN, TD, TG).

규칙 4.17에 의한 선언서:
— 신규성을 해제하지 아니하는 개시 또는 신규성 상실의
예외에 관한 선언 (규칙 4.17(1))

공개:
— 국제조사보고서와 함께 (조약 제21조(3))

Title: ENZYME COMPLEX COMPRISING BETA-AGARASE, KAPPA-CARRAGEEINASE AND ANHYDRO-GALACTOSIDASE, AND USE THEREOF

발명의 명칭 : 베타-아가라세, 카파-카라기아나세 및 무수갈락토시다이아세를 함유하는 효소 복합체 및 그 응용

Abstract: The present invention relates to:
an enzyme complex in which chimeric beta-
agarase, in which beta-agarase and a dockerin
module of endo-β-1,4-glucanase-B are fused,
chimeric kappa-carrageenase, in which kappa-
carrageenase and a dockerin module of endo-
β-1,4-glucanase-B are fused, chimeric anhy-
dro-galactosidase, in which anhydro-galacto-
sidase and a dockerin module of endo-β-1,4-
glucanase-B are fused, and small cellulose binding
protein A are bound; and a method for degrad-
ing red algal biomass by using the same. Ac-
cording to the present invention, it is expected
that, in the production of agar degradation
products, introducing a degradation step using
an enzyme to a conventional method having re-
lied on physical and chemical pre-treatment
steps, would greatly contribute to effective
conversion of marine algae into valuable products
by using an ecofriendly degradation system
having excellent efficiency, control over a
product, convenient usability and a low-cost
and high-efficiency property.
본 발명은 베타-아가레즈와 엔도-β-1,4-글루카나야제-B의 도커린 모듈이 융합된 키메라 베타-아가레즈. 카프-카프키나아제와 엔도-β-1,4-글루카나야제-B의 도커린 모듈이 융합된 키메라 카프-카프키나아제, 무수갈락토시타다아제와 엔도-β-1,4-글루카나야제-B의 도커린 모듈이 융합된 키메라 무수갈락토시타다아제 및 소형 셀룰로스-결합 단백질 A가 결합되어 있는 효소 복합체 및 이를 이용한 홍조류 바이오메스의 분해 방법에 관한 것으로, 본 발명에 따르면, 야가 분해 생산물 제조에 있어서 물리적, 화학적 전처리 공정에 의존하였던 기존의 방식에서 엔자임을 이용한 분해 공정을 도입함으로써 뛰어난 효율성, 생산물의 제어, 간편한 환경성, 저비용 고효율의 친환경적 분해 시스템을 이용하여 해양조류 부터 가지는 생산물을 효율적으로 전환하는데 크게 기여할 것으로 기대된다.
명세서
발명의 명칭: 베타-아가레이즈, 카프-카라기나아제 및 무수갈락토시다아제를 함유하는 효소 복합체 및 그 용도
기술분야
[1] 본 발명은 카베릭 카프-카라기나아제 및 카베릭 베타-아가레이즈 및 카베릭 무수갈락토시다아제를 함유하는 효소 복합체에 관한 것으로, 더욱 자세하게는 베타-아가레이즈와 엔도-β-1,4-글루카나아제-B의 도커린 모듈이 융합된 카베릭 베타-아가레이즈, 카프-카라기나아제와 엔도-β-1,4-글루카나아제-B의 도커린 모듈이 융합된 카베릭 카프-카라기나아제, 무수갈락토시다아제와 엔도-β-1,4-글루카나아제-B의 도커린 모듈이 융합된 카베릭 무수갈락토시다아제 및 소형 셜룰로즈-결합 단백질 A가 결합 되어 있는 효소 복합체 및 이를 이용한 홍조류 바이오매스의 분해 방법에 관한 것이다.

배경기술
[2] 한천(agar)은 홍조류의 세포벽에서 주로 발견되는 다당류로, 일종의 식이섬유원이며, 주로 뿡생물 배양을 위한 고체 배지에 사용되고, 제과, 제육가공에서는 안정적으로 사용되며, 화장품이나 음식물에서는 간遞체로 사용되기도 한다. 이러한 아가는 약 70%의 아가로스(agarose)와 약 30%의 아가로펙틴(agarpectin)으로 구성되어 있다. 상기 아가로스는 중성 다당류로서, 아가로스 내에는 갈락토스(galactose)간의 α-1,3 결합과 β-1,4 결합이 반갈아 존재하고 있다. 한편, 아가로펙틴은 산성 다당류로서, 아가로펙틴은 아가로스에 황산기, 구체적으로 황산염, 글루코산(gluconic acid)이나 피루부이트(pyruvate)가 결합된다. 아가로스 이외 홍조류의 다른 구성물 중 카라기난(Carrageenan)은 산성 서양류로서 갈락토스 장기로 연결된 갈락탄 구성물인데, 보다 정화하는 α-1,3 결합과 β-1,4 결합이 반갈아가며 결합된 갈락토스 장기가 연결된 갈락탄이다. 그 구조적으로는 아가로스와 동일이나, 3,6-anhydro-D-galactose와 sulphate ester 그룹이 모두 혹은 몇몇 갈락탄 유닛에 결합되어 있는 형태가 나타나며, 장기의 위치에 따라 구조적만 변형이 되는 것이 차이점이다. 대표적인 이상화된 구조로는 카프(Kappa), 아이오타(Iota), 람다(Lambda)구조가 있다.

[5] 또한, 신규 효소 무수갈락토시다아제는 베타-아가레이즈와 카프-카라기나아제 효소로 가수분해된 가수분해물인 베타아가로올리고당의 1,3-α-3,6-l-galacosidic
결합을 끊어내는 역할을 하여 단당류로 분해시킬으므로써 발효가능 당 전환이 가능하다.

[6] 한편, 목질계 섬유소는 식물의 세포벽의 구성 성분이며 설탕로즈와
해미설탕로즈의 복합체로 이루어져 있다. 설탕로즈는 β-1,4-glucose 복합체이며
자연상태에서 가장 풍부한 재생 가능한 물질이다(Reiter et al. CurrOpinPlant Biol
5: 536, 1998). 비록 화학적 구성은 단순하지만 효율적으로 설탕로즈로 분해하기
위해서는 여러 개의 다른 효소들의 작용이 필요하다(Ximenes et al. Hemicellulases
β-1,4-xylose인 자일란과 β-1,4-glucose, mannose인 글루코만단 등이 있다.
대부분의 설탕로즈를 분해 할 수 있는 허기성 미생물들은 설탕로즈이라는
효소복합체를 형성한다(Roy H. Doi, The Chemical Record 1:24, 2001). 설탕로즈는
결정상 설탕로즈나 자일란, 만난, 햄틴과 같은 다양한 기질에 대하여 작용하고
설탕로즈 형성 효소들과 지지체 단백질로 이루어져 있다. 설탕로즈의 형성을
하나의 설탕로즈 형성 효소의 도커린 모듈과 지지체 단백질의 여러 개의 코히신
모듈 중 하나의 결정으로 이루어진다. 모든 설탕로즈 형성 효소들은 도커린
모듈을 가지고 있고 도커린 모듈이 없는 효소들은 비설탕로즈 형성

[7] 기존 기술에서는 한천 분해효소 베타-아가레이즈를 이용한 효소 복합체를
통해 한천 분해능을 증진한 연구외 카라기난 분해효소인 카프-카라기나아제계와
라다-카라기나아제를 이용한 효소 복합체를 통해 카라기난 분해능을 증진한
것을 진행연구로 마련하고 있다.

[8] 이에, 본 발명자들은 기존 효소들과 신규 효소의 조합으로 고장성 가수분해
효소 복합체를 개발하고자 여의 노력한 결과, 베타-아가레이즈,
카프-카라기나아제 및 무수갈락토식다아제를 함유하는 효소 복합체가 높은
홍조류 바이오메스 분해능을 나타내는 것을 확인하고, 본 발명을 완성하게
되었다.

[9] 본 배경기술 부분에 기재된 상기 정보는 오직 본 발명의 배경에 대한 이해를
향상시키기 위한 것이며, 이에 본 발명이 속하는 기술분야에서 통상의 지식을
가지는 자에게 있어 이미 알려진 배경기술을 형성하는 정보를 포함하지 않을 수
있다.

[10]

[12] 본 발명의 목적은 베타-아가레이즈, 카프-카라기나아제 및
무수갈락토식다아제를 함유하는 홍조류 바이오메스 분해능이 우수한 효소
복합체를 제공하는데에 있다.

[13] 본 발명의 다른 목적은 상기 효소 복합체를 코딩하는 유전자를 도입된 재조합
미생물을 제공하는데에 있다.

본 발명의 또 다른 목적은 상기 효소 복합체를 이용하여 홍조류 바이오매스를 분해하는 방법을 제공하는데에 있다.

상기 목적을 달성하기 위하여, 본 발명은 베타-아가레아제와 엔도-β-1,4-글루카나아제-B의 도커린 모듈이 융합된 키메릭 베타-아가레아제, 카프-카라기나아제와 엔도-β-1,4-글루카나아제-B의 도커린 모듈이 융합된 키메릭 카프-카라기나아제, 무수갈락토시다아제와 엔도-β-1,4-글루카나아제-B의 도커린 모듈이 융합된 키메릭 무수갈락토시다아제 및 소형 셀룰로스-결합 단백질 A가 결합되어 있는 효소 복합체를 제공한다.

본 발명은 또한, 베타-아가레아제와 엔도-β-1,4-글루카나아제-B의 도커린 모듈이 융합된 키메릭 베타-아가레아제를 코딩하는 유전자, 카프-카라기나아제와 엔도-β-1,4-글루카나아제-B의 도커린 모듈이 융합된 키메릭 카프-카라기나아제를 코딩하는 유전자, 무수갈락토시다아제와 엔도-β-1,4-글루카나아제-B의 도커린 모듈이 융합된 키메릭 무수갈락토시다아제를 코딩하는 유전자 및 소형 셀룰로스-결합 단백질 A를 코딩하는 유전자가 도입된 제조할 미생물을 제공한다.

본 발명은 또한, 상기 효소 복합체의 제조방법을 제공한다.

본 발명은 또한, 상기 효소 복합체를 이용하여 홍조류 바이오매스를 분해하는 방법을 제공한다.

도면의 간단한 설명

도 1은 본 발명에서 제시된 키메릭 카프-카라기나아제, 키메릭 베타-아가레아제, 키메릭 무수갈락토시다아제 유전자 및 소형 골격 단백질 miniCbpA 유전자가 삽입된 제조합 백터 pET22(+), cCgpA, pET22(+), cAgaB, pET22(+), cAhgA 및 pET22b(+), mCbpA의 모식도이다.

도 2는 본 발명에서 제시된 키메릭 제조합 백터 pET22b(+), cCgpA, pET22b(+), cAgaB, pET22b(+), cAhgA 및 pET22b(+), mCbpA의 크기를 확인한 SDS-PAGE 전기영동 결과를 나타낸 것이다.

도 3의 A는 소형 골격 단백질 miniCbpA의 셀룰로스 결합 모듈(Cellulose binding module; CBM)을 이용한 정제결과를 나타낸 것이고, B는 Ni-NTA(Nickel-nitrilotriacetic acid; NTA)를 이용한 정제 결과를 나타낸 것이다. 또한, C는 다양한 조합의 가수분해 효소 복합체의 크기를 확인하기 위한 Non-denaturation PAGE 전기영동 결과를 나타낸 것이다.

도 4의 A는 다양한 조합의 가수분해 효소 복합체의 아가와 카라기나 기질에서의 환원당 측정 결과를 나타낸 것이며, B는 다양한 조합의 가수분해 효소 복합체의 지하 기질에서의 환원당 측정 결과를 나타낸 것이다. 또한, C는 다양한 조합의 가수분해 효소 복합체의 카라기나 기질에서의 환원당 측정 결과를 나타낸 것이다.
결과를 나타낸 것이다.

[25] 도 5의 A는 아가와 카라기난 기질에서, 혹은 아가 기질에서, 혹은 카라기난 기질에서의 mCbpA, cCgkA, cAgAB 및 cAhgA 조합의 가수분해 효소 복합체를 이용한 활성도 생산 균형을 단합체효소(monomeric enzyme)를 이용한 활성도 생산 균형과 비교한 결과를 나타낸 것이며, B는 아가와 카라기난 기질에서의 mCbpA, cCgkA, cAgAB 및 cAhgA 조합의 가수분해 효소복합체를 이용한 활성도 생산 균형을 단합체효소(monomeric enzyme) cAgAB를 이용한 활성도 생산 균형과 비교한 결과를 나타낸 것이다.

[26] 도 6은 본 발명의 전체적인 공정 전략도를 나타낸다.

[27] [28] 발명의 상세한 설명 및 구체적인 구현에

다른 식으로 정의되지 않는 한, 본 명세서에서 사용된 모든 기술적 및 과학적 용어들은 본 발명에 속하는 기술 분야에서 수록된 전문가에 의해서 통상적으로 이해되는 것과 동일한 의미를 가진다. 일반적으로, 본 명세서에서 사용된 명명법은 본 기술 분야에서 잘 알려져 있고 통상적으로 사용되는 것이다.

[31] 따라서, 본 발명은 일 관계에서, 베타-아가레이즈와 엔도-β-1,4-글루카나아제-B의 도커린 모듈이 응합된 키베릭 베타-아가레이즈, 카프-카라기나아제와 엔도-β-1,4-글루카나아제-B의 도커린 모듈이 응합된 키베릭 카프-카라기나아제, 무수갈락토시디아제와 엔도-β-1,4-글루카나아제-B의 도커린 모듈이 응합된 키베릭 무수갈락토시디아제 및 소형 셀룰로스-결합 단백질 A가 결합되어 있는 효소 복합체에 관한 것이다.

[32] 본 발명에 있어서 상기 무수갈락토시디아제는 조벨리아 갈락토니보란스(zobellia galactanivorans) 또는 사카로과키스 데그라단스(Saccharophagus degradans) 또는 아가리보란스 갈버스(Agarivorans gilvus)로부터 유래한 것을 특징으로 할 수 있다.

[33] 본 발명에서 클로스터리디움 속 균주의 도커린 모듈이란 클로스터리디움 속의
셀룰로즈-결합 단백질의 일부분인 코히존 모듈과의 상호작용으로 효소 복합체인 셀룰로증을 형성하는 섬유소 분해효소인 셀룰라아제(cellulosomal cellulase) 단백질이 가지는 모듈을 의미한다.

본 발명에서 소형 셀룰로즈-결합 단백질 A는(mCbP)A는 셀룰로증 기본글격 소단위체를 만드는 셀룰로즈에 결합하는 단백질을 의미하며, 본 발명에서 사용한 소형 셀룰로즈-결합 단백질 A는 mCbP란 플로스트리디움 속의 셀룰로즈-결합 단백질의 하나인 셀룰로즈-결합 단백질-에이(CbpA) 중에서 하나의 셀룰로즈 결합 모듈(Cellulose binding module; CBM)과 두 개의 코히존 모듈(Cohesin module)을 가지는 소형 셀룰로즈-결합 단백질을 의미한다.

셀룰로증 조합체 (Cellulosomal complex)의 기본적인 구조는 하나의 Cellulose binding module(CBM)을 가지고 있는 기본 글격 소단위체 (Primary scaffolding subunit)가 주축이 되어 Catalytic module을 가진 셀룰라아제 혹은 헤티셀룰라아제의 효소 소단위체 (Enzyme Subunits)들이 합쳐져서 이루어진다.

이 구조를 이루기 위해 기본 글격 소단위체에 있는 9개의 Cohesin module이 강력하게 각각의 효소 소단위체에 있는 Dockerin module에 단백질 간의 상호작용 (Protein-Protein interaction)에 의해 결합하게 된다.

본 발명은 다른 관점에서, 베타-아카레이즈와 엔도-β-1,4-글루카나아제-B의 도커린 모듈이 융합된 키테릭 베타-아카레이즈를 코딩하는 유전자, 캐퍼-카라기나아제와 엔도-β-1,4-글루카나아제-B의 도커린 모듈이 융합된 키테릭 캬퍼-카라기나아제를 코딩하는 유전자, 무수갈락토시다아제와 엔도-β-1,4-글루카나아제-B의 도커린 모듈이 융합된 키테릭 무수갈락토시다아제를 코딩하는 유전자 및 소형 셀룰로즈-결합 단백질 A를 코딩하는 유전자가 도입된 제조합 요법물에 관한 것이다.

본 발명에서 용어 "벡터 (vector)"는 적합한 숙주 내에서 DNA를 발현시킬 수 있는 적합한 조절 서열에 작동가능하게 연결된 DNA 서열을 함유하는 DNA 제조물을 의미한다. 벡터는 플라스미드, 파지 입자, 또는 간단하게 임의적 게놈 삽입물들일 수 있다. 적당한 숙주로 형질전환되면, 벡터는 숙주 게놈과 무관하게 복제하고 기능 할 수 있거나, 또는 일부 경우에 게놈 그 자체에 통합될 수 있다.

플라스미드가 현재 벡터의 가장 흔하게 사용되는 형태이므로, 본 발명의 명세서에서 "플라스미드 (plasmid)" 및 "벡터 (vector)"는 때로 상호 교환적으로 사용된다. 그러나, 본 발명은 당업계에 알려진 또는 알려지게 되는 바와 동등한 기능을 갖는 벡터의 다른 형태를 포함한다.

"발현 조절 서열 (expression control sequence)"이라는 표현은 특정한 숙주생물에서 작동가능하게 연결된 코딩 서열의 발현에 필수적인 DNA 서열을 의미한다. 그러한 조절 서열은 전자를 실시하기 위한 프로모터, 그러한 전자를 조절하기 위한 임의의 오퍼레이터 서열, 적합한 mRNA 리보즘 결합 부위를 코딩하는 서열 및 전자 및 해독의 중점을 조절하는 서열을 포함한다. 예를 들면, 원핵생물에 적합한 조절 서열은 프로모터, 오퍼레이터 서열 및 리보즘 결합
부위를 포함한다. 전핵세포는 프로모터, 플라테밀화 사그너 및 인버셔가 이에 포함된다. 플라시드에서 유전자 발현 양에 가장 영향을 미치는 인자는 프로모터이다. 보 발현용의 프로모터로서 SRα 프로모터와 사이토메가로바이러스 (cytomegalovirus) 유래 프로모터 등이 바람직하게 사용된다.

[39] 본 발명의 DNA 서열을 발현시키기 위하여, 매우 다양한 발현 조절 서열 중 어느 것이라도 벡터에 사용될 수 있다. 유용한 발현 조절서열의 예에는, SV40 또는 아테노바이러스의 초기 일종 후기 프로모터들, lac 시스템, trp 시스템, TAC 또는 TRC 시스템, T3 및 T7 프로모터들, 과지 합단의 주요 오프레이터 및 프로모터 영역, fd 코드 단백질의 조절 영역, 3-포스포글리세로고당-eight 또는 다른 클리올분해 효소에 대한 프로모터, 승기 포스포타제의 프로모터들, 효모 알과-교배 시스템의 프로모터 및 원핵세포 또는 전핵 세포 또는 이들의 바이러스의 유전자 발현을 조절하는 것으로 알려진 구성과 유도의 기타 다른 서열 및 이들의 여러 조합이 포함된다.

[40] 핵산은 다른 핵산 서열과 기능적 관계로 배치될 때 "작동가능하게 연결 (operably linked)"된다. 이것은 적절한 분자 (예를 들면, 전사 활성화 단백질)은 조절 서열(들)에 결합될 때 유전자 발현을 가능하게 하는 방식으로 연결된 유전자 및 조절 서열(들)이 될 수 있다. 예를 들면, 전사서열(pre-sequence) 또는 러리더 (leader)에 대한 DNA는 플라스마토이드의 분비에 참여하는 전단백질로서 발현되는 경우 플라스마토이드에 대한 DNA에 작동가능하게 연결되고, 프로모터 또는 인쇄서는 서열의 전사에 영향을 끼치는 경우 코딩서열에 작동가능하게 연결되거나, 또는 러보줌 결합 부위는 서열의 전사에 영향을 끼치는 경우 코딩 서열에 작동가능하게 연결되거나; 또는 러보줌 결합 부위는 면역을 용이하게 하도록 배치되는 경우 코딩 서열에 작동가능하게 연결된다. 일반적으로, "작동가능하게 연결된"은 연결된 DNA 서열이 접촉하고, 또한 분비 러리의 경우 접촉하고 러리 프레임 내에 존재하는 것을 의미한다. 그러나, 인쇄서 (enhancer)는 접촉할 필요가 없다. 이들 서열의 연결은 편리한 제한 효소 부위에서 라이케이션(연결)에 의해 수행된다. 그러한 부위가 존재하지 않는 경우, 통상의 방법에 따르면 함성 올리고뉴클레오티드 어댑터 (oligonucleotide adaptor) 또는 링커(linker)를 사용한다.

[41] 본 명세서에 사용된 용어 "발현 벡터"는 통상 이종의 DNA의 단편이 삽입된 제조한 캐리어 (recombinant carrier)로서 일반적으로 이종 가닥의 DNA의 단편을 의미한다. 여기서, 이종 DNA는 숙주 세포에서 천연적으로 발현되지 않는 DNA인 이형 DNA를 의미한다. 발현 벡터는 일반 숙주 세포 내에 있으며 숙주 염색체 DNA와 무관하게 복제할 수 있으며 벡터의 수 개의 가닥 및 그의 삽입된 (이종) DNA가 생성될 수 있다.

[42] 머무게에서 주저된 바와 같이, 숙주세포에서 형질감염 유전자 발현 수준을 높이기 위해서는, 해당 유전자로, 선택된 발현 숙주 내에서 기능을 발휘하는
전사 및 해독 발현 조절 시열에 작용가능하도록 연결되어야만 한다. 바람직하게는 발현 조절시열 및 해당 유전자는 껍질이 선택 마커 및 복제 개시점 (replication origin)을 같이 포함하고 있는 하나의 발현 벡터 내에 포함되게 된다.

[43] 상술한 발현 벡터에 의해 형질전환된 숙주 세포는 본 발명의 또 다른 측면을 구성한다. 본원 명세서에 사용된 용어 "형질전환"은 DNA를 숙주로 도입하여 DNA가 염색체 외 인자로서 또는 염색체 통합완성에 의해 복제 가능하게 되는 것을 의미한다. 모든 벡터와 발현 조절 시열이 본 발명의 DNA 서열을 발현하는데 모두 동등하게 기능을 발휘하지는 않는다는 것을 이해하여야만 한다. 마찬가지로 모든 숙주가 동일한 발현 시스템에 대해 동일하게 기능을 발휘하지는 않는다. 그러나, 당연히나면 과도한 실험적 부담없이 본 발명의 범위를 벗어나지 않는 채로 여러 벡터, 발현 조절 서열 및 숙주 중에서 적절한 선택을 할 수 있다.

[44] 예를 들어, 벡터를 선택함에 있어서는 숙주를 고려하여야 하는데, 이는 벡터가 그 안에서 복제되어야만 하기 때문이다. 벡터의 복제 수, 복제 수를 조절할 수 있는 능력 및 당해 벡터에 의해 코딩되는 다른 단백질, 예를 들어 항체체 마커의 발현도 또한 고려되어야만 한다. 발현 조절 서열을 선정함에 있어서도, 여러 가지 인자들을 고려하여야만 한다. 예를 들어, 서열의 상대적 강도, 조절가능성 및 본 발명의 DNA 서열과의 상용성 등, 특히 가능성 있는 이차 구조와 관련하여 고려하여야 한다. 단세포 숙주는 선정된 벡터, 본 발명의 DNA 서열에 의해 코딩되는 단백질의 독성, 분비 특성, 단백질을 정화하게 폴딩 시킬 수 있는 능력, 배양 및 발효 요건들, 본 발명 DNA 서열에 의해 코딩되는 단백질을 숙주로부터 정제하는 것이 이용가능한 인자를 고려하여 선정되어야만 한다. 이들 변수의 범위 내에서, 당업자는 본 발명의 DNA 서열을 발효 또는 대규모 동물 배양에서 발현시킬 수 있는 각종 벡터/발현 조절 서열/숙주 조합을 선정할 수 있다. 발현 클로닝에 의해 NSP 단백질의 cDNA를 클로닝 하려고 할 때의 스크리닝법으로서 바인딩법(binding법), 팬닝법(panning법), 필름에뮬션법(film emulsion 법)등이 적용될 수 있다.

[45] 본 발명은 또 다른 관점에서, 상기 효소 복합체의 제조방법에 관한 것이다.
[47] 본 발명에 있어서, 상기 홍조류 바이오�.slim은 아가나 카라기난이를 특정으로 할 수 있다.
[48] 아울러, 본 발명에서는 셀룰로스 결합 모듈(CBM)을 이용한 가수분해 효소 복합체의 분리정제를 수행하였으며, 수득된 mChpA, cCgkA, cAgaB 및 cAghA 조합의 가수분해 효소 복합체가 순수한 베타-아가레이스 cAgaB보다 아가와 카라기난 기질에서 3.9배 높은 환원당 생성값을 가지는 것을 확인하였다.
[49]
[50] 이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는
오로지 본 발명을 예시하기 위한 것으로, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지 않는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명한 것이다.

[51] 실시예 1: 섬유소 분해효소의 도커린 도메인의 유전자, 카파-카라기나아제와 베타-아가레이즈 및 무수갈락토시다아제 유전자의 종목

[52] 현천 분해 효소 복합체 형성을 위한 섬유소 분해효소의 도커린 도메인의 유전자를 클로닝하기 위하여 클로스토리디움 셜록로브라소스의 지노믹디엔에이로부터 엔도-베타-1,4-글루칸아제-비 유전자의 도커린 부분의 염기서열 서열번호 4를 참고로 하여 서열번호 6의 정방향 프라이머(Forward primer)의 5'에는 슈도알데모나스 카라기노브라로부터 유래한 카파-카라기나아제 CgkA와 조벨리아 갈락토니보란스로부터 유래한 베타-아가레이즈 AgaB 그리고, 무수갈락토시다아제 AlgA 유전자의 C-terminal 부분에서 각각 10bp 크기의 서열이 들어가도록 하고, 서열번호 7의 역방향 프라이머(Reverse primer)의 5'에는 제한효소 인식서열이 삽입되도록 프라이머를 디자인하여 합성하였다. 이후 상기 합성된 프라이머를 이용하여 PCR를 수행하였다. 그 결과 212bp의 엔도-베타-1,4-글루칸아제-비 유전자의 도커린 부분의 유전자가 포함되어 있는 PCR 밴드를 각각 확인할 수 있었다.

[53] 프라이머 서열번호 6: GCGCggatccATTCACCGCAAT

[54] 프라이머 서열번호 7: ATATcgcgctATGCATGCAACC

[55] 슈도알데모나스 카라기노브라스로부터 유래한 키메릭 카파-카라기나아제 cCgkA 유전자를 클로닝하기 위하여 조벨리아 갈락토니보란스의 지노믹디엔에이로부터 시그널 센타이드 부분을 제외한 염기서열을 참고로 하여 서열번호 8의 정방향 프라이머(Forward primer)의 5'에는 제한효소 SacI, 서열번호 9의 역방향프라이머(Reverse primer)의 5'에는 NolI 인식서열이 삽입되도록 하고, 엔도-베타-1,4-글루칸아제-비 유전자의 도커린 부분의 N-terminal 부분의 10bp 크기의 서열이 삽입된 프라이머를 디자인하여 합성하였다. 이후, 상기 합성된 프라이머를 이용하여 PCR를 수행하여서 그 결과 1311bp의 섬유소 분해효소의 도커린 도메인의 유전자들이 연결된 키메릭 카파-카라기나아제 cCgkA 유전자가 포함되어 있는 PCR 밴드를 확인할 수 있었다.

[56] 프라이머 서열번호 8: cccatggATTCTCAATCCGCTATTAAAAGTA

[57] 프라이머 서열번호 9: ggatccACGAAACATATGACGTGAATTTTCT

[58] 또한, 조벨리아 갈락토니보란스로부터 유래한 키메릭 베타-아가레이즈 cAgaB 유전자를 클로닝하기 위하여 조벨리아 갈락토니보란스의 지노믹디엔에이로부터 시그널 센타이드 부분을 제외한 염기서열을 참고로 하여 서열번호 10의 정방향 프라이머(Forward primer)의 5'에는 제한효소 SacI, 서열번호 11의 역방향프라이머(Reverse primer)의 5'에는 엔도-베타-1,4-글루칸아제-비 유전자의 도커린 부분의 N-terminal 부분의 10bp
크기의 서열이 각각 삽입된 프라이머를 합성하였다. 그 결과 1201bp의 슈도알데로모마스 카라기노보란스로부터 유래한 베타-아가레즈 cAgA 유전자가 포함되어 있는 PCR 밴드를 확인할 수 있었다.

[60] 프라이머 서열번호 10: GCGCgaacctGGCGGACATCTCATAATTTTGATA
[61] 프라이머 서열번호 11: CAGCggatccTTTCTCTACAGGTTTATAGATC
[62] 또한, 조별리아 갈락토니보란스로부터 유래한 키메릭 무수갈락토시다야제 cAhgA 유전자를 클로닝하기 위하여 조별리아 갈락토니보란스의 지노믹니엔어에부터 시그널 패턴이도 부분을 제외한 염기서열을 참고로 하여 서열번호 12의 정방향 프라이머(Forward primer)의 5’에는 제한효소 EcoRI, 서열번호 13의 역방향 프라이머(Reverse primer)의 5’에는 HindIII 인식서열이 삽입되도록 하고, 엔도- 베타-1,4-글루칸아세-비 유전자의 도커린 도메인의 N-terminal 부분의 10bp 크기의 서열이 삽입된 프라이머를 디자인하여 합성하였다. 이후, 상기 합성된 프라이머를 이용하여 PCR을 수행하여 그 결과 1382bp의 섬유소 분해효소의 도커린 도메인의 유전자가 연결된 키메릭 무수갈락토시다야제 cAhgA 유전자가 포함되어 있는 PCR 밴드를 확인할 수 있었다.

[63] 프라이머 서열번호 12: GCGCgaacctGATGAAAAACTCCCAATTTTTAAT
[64] 프라이머 서열번호 13: tggtaaacatTTTCTTTTTTACTCTTTAGCTA
[65] 그리고 클로스트리디움 유래의 셜룰로보란스의 기본 굴격 소단위형(primary scaffolding subunit)인 셜룰로즈-결합 단백질-에이(Cellulose-binding protein A) 중 셜룰로즈 결합 모듈(Cellulose binding module; CBM)과 두 개의 코히즘 모듈(Cohesin module)을 가진 소형 셜룰로즈-결합 단백질-에이(Mini-Cellulose-binding protein A) 유전자를 클로닝하기 위해 염기서열을 참고로 하여 서열번호 14의 정방향 프라이머(Forward primer)의 5’에는 제한효소 BamHI, 서열번호 15의 역방향 프라이머(Reverse primer)에는 제한효소 KpnI 인식서열이 각각 삽입된 프라이머를 합성하였다. 그 결과 1647bp의 클로스트리디움 유래의 셜룰로보란스의 셜룰로즈-결합 단백질-에이 유전자의 일부인 mCbpA 유전자가 포함되어 있는 PCR 밴드를 확인할 수 있었다.

[66] 프라이머 서열번호 14: ggaatccGCAGCGACATCATCAAT
[67] 프라이머 서열번호 15: GCGCggatccGCTATAGGATCTTTAAT
[68] 실험 1에서 얻은 성유소 분해효소의 도커린 도메인과 연결된 유전자를 클로닝 실험 1에서 얻은 성유소 분해효소의 도커린 도메인과 연결된 유전자와 각각의 CgkA, AgaB와 AhgA 중폭산물은 0.8% 아가로스 젤 상에서 전기영동하였고 아가로스 젤 상의 DNA 결합은 Gel extraction kit (GeneAll)을 사용하여 회수하였다.

[71] 그 후 성유소 분해효소의 도커린 도메인의 유전자와 카프-카라기나아제, 성유소 분해효소의 도커린 도메인의 유전자와 베타-아가레즈, 성유소
분해효소의 도커린 도메인의 유전자와 무수갈락토시다아세 유전자를 연결하기 위해 최수한 DNA 절편을 이용하여 오버랩(overlap) PCR 반응을 각각 수행하였다. 최수한 두 DNA 절편으로부터 서열번호 16의 정방향 프라이머(Forward primer)의 5'에는 제한효소 SacI, 서열번호 17의 역방향 프라이머(Reverse primer)의 5'에는 제한효소 NotI 인식서열이 삽입되도록 프라이머를 디자인하여 합성하였다. PCR 반응을 수행하여 삽유소 분해효소의 도커린 도메인의 유전자가 연결된 슈도알데로보나스 카라기노보란스로부터 유래한 1311bp의 키메릭 카프-카라기나아세 cCgkA 유전자를 포함되어 있는 PCR 밴드를 각각 확인할 수 있었다.

[72] 프라이머 서열번호 16: ATATccatggATGCATCTATGCAACC
[73] 프라이머 서열번호 17: GCCGgatccATTCCGCGAAT
[74] 서열번호 18의 정방향 프라이머(Forward primer)의 5'에는 제한효소 SacI,
서열번호 19의 역방향 프라이머(Reverse primer)의 5'에는 제한효소 Sall 인식서열이 삽입되도록 프라이머를 디자인하여 합성하였다. PCR 반응을 수행하여 삽유소 분해효소의 도커린 도메인의 유전자가 연결된 조벨리아 갈락토니보란스로부터 유래한 1217bp의 키메릭 베타-아가레아 cAgAA 유전자를 포함되어 있는 PCR 밴드를 각각 확인할 수 있었다.

[75] 프라이머 서열번호 18: GCGCgagctcCGGCACAATTCAAAAATTTGATA
[76] 프라이머 서열번호 19:
GCCGgagctcTCAATGATGATGATGATGATGAAACGCATTATTAAAG

[77]

[78] 서열번호 20의 정방향 프라이머(Forward primer)의 5'에는 제한효소 EcoRl,
서열번호 21의 역방향 프라이머(Reverse primer)의 5'에는 제한효소 Hind III 인식서열이 삽입되도록 프라이머를 디자인하여 합성하였다. PCR 반응을 수행하여 삽유소 분해효소의 도커린 도메인의 유전자가 연결된 1382bp의 키메릭 무수갈락토시다아세 cAhgA 유전자를 포함되어 있는 PCR 밴드를 각각 확인할 수 있었다.

[79] 프라이머 서열번호 20: GCGCgagctcGATGAACAAATACTCCCAATTAAAAAT
[80] 프라이머 서열번호 21: GCGCgagctcTAAAGCATTATTAAAAAGACAGCTA
[81] 그 후, 키메릭 카프-카라기나아세 cCgkA, 키메릭 베타-아가레아 cAgAA와
키메릭 무수갈락토시다아세 cAhgA 유전자를 각각의 제한효소로 절단한 후
대장균 발현 백터(E.coli expression vector)인 pET22b(+)에
라이게이션(ligation)시켜 앤세포시아 콜라이 (대장균, E.coli) DH5α에
형질전환을 하였다. 이어 제조합 미생물로부터 라이게이션(ligation)된 제조합
플라스미드 DNA를 분리하였다. 상기 제조합 백터를 pET22(+)-cCgkA,
pET22(+)-cAgAA와 pET22(+)-cAhgA로 명명하였다(도 1). 그리고 상기 대장균
제조합 미생물을 DH5α/cCgkA, DH5α/cAgAA와 DH5α/cAhgA로 명명하였다.

[82]
실시예 3: 대장균 제조합 미생물의 활성 측정

실시예 2에서 확인한 대장균 제조합 미생물을 IPTG로 발현 후 주요 식물성 촉매AGA의 효소 단백질을 형성하도록 하는 조건을 조성하여 28℃에서 90분 동안 전장에 배양 후 원심분리하여 세포내 단백질을 sonicating을 통하여 분해하고 농축하여(Millipore, amicon 10kDa cut off) cCgkA, cAGaB 효소 단백질을 얻었다. 다만, cAhgA 효소 단백질이 배양액으로 분비되도록 하는 조건은 상기 cCgkA와 cAGaB 보다 낮은 온도인 16℃에서 240분 이상 전장배양 후 원심분리하여 분리하고, 세포내 단백질은 sonicating하여 단백질을 얻었다. 얻어진 제조합 미생물의 효소 단백질 발현을 확인하기 위하여, SDS-PAGE와 Western Blot을 실행하였으며, 목적 단백질들의 크기별로 분리됨을 확인하였다(도 2).

실시예 4: 효소단백질과 소형 골격 단백질의 효소복합체 형성

제조된 효소단백질 가공체, 카페-카라비나아제와 cCgkA 및 카메러 메타-아가레스 cAGaB 및 카메러 무수갈락토시다아제 cAhgA와 소형 골격 단백질 mCbpA와의 효소 복합체 형성방법은 다음과 같다. 엔도-메타-1,4-글루간아세토 비 유전자의 도커린 모체이는 연결된 조별리아 간략도니보라스로부터 유래한 카메러 메타-아가레스 cAGaB와 소형 셀룰로즈 결합 단백질 mCbpA와의 결합으로 인한 복합체의 형성을 확인하기 위해 세 가지 단백질을 각각 100μl의 결합단백질과 함께 인장 비율로 섞어 배양한 후 우선 셀룰로즈-결합 모듈(Cellulose binding module; CBM)과 셀룰로즈 사이의 상호작용을 이용한 단백질 전제 후에 Western-blotting을 통해 분석하였다.

결합단백질은 25mM Sodium acetate buffer와 15mM CaCl2 [pH 6.0]의 조성으로 제조하고, 1:1:1:1:6=cAGaB:cCgkA:cAhgA:miniCbpA:binding buffer 비율로 섞어 4℃에서 260분 동안(18시간) 반응시켰다. 다음과 같은 반응을 이용하여 PAGE analysis를 하였으며, Western-blotting은 anti-His-tag primary antibody (ELPIS)와 goat anti-rabbit HRP conjugated(Santacruz) secondary antibody를 사용하였고 luminol reagent(Santacruz)로 효소 단백질의 발현을 확인하였다(도 3의 C).

실시예 5: 카호레이드레이트 바인딩 모듈을 이용한 효소복합체의 분리장치

카호레이드레이트 바인딩 모듈(CMB)을 이용한 장치는 셀룰로즈 1mg당 10μg의 제조합 미생물의 비율로 상온에서 1시간 동안 고반압으로 인하여 결합되었으며, 셀룰로즈와 결합된 CMB이용 단백질은 1,600 x g에서 10분간 원심분리 되었다. 20mM Tris(pH 8.0)에 1M NaCl이 함유된 버퍼와 20mM Tris(pH 7.5) 버퍼에 각각 세척한 후 다음 50mM Tris(pH 12.5) 버퍼로 용출하여 얻었으며, 이의 샘플을 SDS-PAGE를 통하여 확인하였다(도 3의 A).

실시예 6: 효소복합체를 이용한 다양한 기질에서의 활성단 측정
구축된 가수분해 효소복합체의 분해능을 시험하기 위하여 reducing sugar assay와 3,5-dinitrosalicylic acid (DNS) assay를 이용하여 분석하였다. 0.5mℓ agar solution과 0.5mℓ carrageenan solution을 동일 비율로 배합하고, 0.5mℓ (i) 키메릭 카프-카라기나아체와 키메릭 베타-아가레이즈와 소형 셜룰로즈-결합 단백질-에이가 결합된 효소복합체(CAM), (ii) 키메릭 카프-카라기나아체와 키메릭 무수갈락토시디아체와 소형 셜룰로즈-결합 단백질-에이가 결합된 효소복합체(CHM), (iii) 키메릭 베타-아가레이즈와 키메릭 무수갈락토시디아체와 소형 셜룰로즈-결합 단백질-에이가 결합된 효소복합체(AHM), (iv) 키메릭 카프-카라기나아체와 키메릭 베타-아가레이즈와 키메릭 무수갈락토시디아체와 소형 셜룰로즈-결합 단백질-에이가 결합된 효소복합체(CAHM)으로 구성된 군의 각각의 샘플들을 50℃에서 배양하였으며, 각각 2시간 간격으로 0.075mℓ 샘플링 하였다. 0.15mℓ의 DNS solution을 첨가하여 PCR 기기에서 10분간 가열한 후, 상온에서 식린 샘플을 550nm 파장에서 absorbance를 측정하였다(도 4의 A).

또한, 구축된 가수분해 효소복합체의 분해능을 시험하기 위하여 reducing sugar assay와 3,5-dinitrosalicylic acid (DNS) assay를 이용하여 분석하였다. 1.0mℓ agar solution과 0.5mℓ (i) 키메릭 카프-카라기나아체와 키메릭 베타-아가레이즈와 소형 셜룰로즈-결합 단백질-에이가 결합된 효소복합체(CAM), (ii) 키메릭 카프-카라기나아체와 키메릭 무수갈락토시디아체와 소형 셜룰로즈-결합 단백질-에이가 결합된 효소복합체(CHM), (iii) 키메릭 베타-아가레이즈와 키메릭 무수갈락토시디아체와 소형 셜룰로즈-결합 단백질-에이가 결합된 효소복합체(AHM), (iv) 키메릭 카프-카라기나아체와 키메릭 베타-아가레이즈와 키메릭 무수갈락토시디아체와 소형 셜룰로즈-결합 단백질-에이가 결합된 효소복합체(CAHM)으로 구성된 군의 각각의 샘플들을 50℃에서 배양하였으며, 각각 2시간 간격으로 0.075mℓ 샘플링 하였다. 0.15mℓ의 DNS 솔루션을 첨가하여 PCR 기기에서 10분간 가열한 후, 상온에서 식린 샘플을 550nm 파장에서 absorbance를 측정하였다(도 4의 B).

또한, 구축된 가수분해 효소복합체의 분해능을 시험하기 위하여 reducing sugar assay와 3,5-dinitrosalicylic acid (DNS) assay를 이용하여 분석하였다. 1.0mℓ carrageenan solution과 0.5mℓ (i) 키메릭 카프-카라기나아체와 키메릭 베타-아가레이즈와 소형 셜룰로즈-결합 단백질-에이가 결합된 효소복합체(CAM), (ii) 키메릭 카프-카라기나아체와 키메릭 무수갈락토시디아체와 소형 셜룰로즈-결합 단백질-에이가 결합된 효소복합체(CHM), (iii) 키메릭 베타-아가레이즈와 키메릭 무수갈락토시디아체와 소형 셜룰로즈-결합 단백질-에이가 결합된 효소복합체(AHM), (iv) 키메릭 카프-카라기나아체와 키메릭 베타-아가레이즈와 키메릭 무수갈락토시디아체와 소형 셜룰로즈-결합 단백질-에이가 결합된 효소복합체(CAHM)으로 구성된 군의 각각의 샘플들을 50℃에서 배양하였으며,
각각 2시간 간격으로 0.075mℓ 샘플링 하였다. 0.15mℓ의 DNS 솔루션을 첨가하여 PCR 기기에서 10분간 가열한 후, 상온에서 식힌 샘플을 550nm 파장에서 absorbance를 측정하였다(도 4의 C).

이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였으나, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적 기술은 단지 바람직한 실시 양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백한 것이다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.

산업상 이용가능성
본 발명에 따르면, 아가 분해 생산물 제조에 있어서 물리적, 화학적 전처리 공정에 의존하였던 기존의 방식에서 효소 복합체를 이용한 분해 공정을 도입함으로써 뛰어난 효율성, 생산물의 제어, 간편한 활용성, 저비용 고효율의 친환경적 분해 시스템을 이용하여 해양조류부터 가지 있는 생산물을 효율적으로 전달하는데 크게 기여할 것으로 기대된다.

서열목록 Free Text
전자파일 첨부하였음.
청구범위

[청구항 1] 베타-아가레이즈와 엔도-β-1,4-글루카나아제-B의 도커린 모듈이 융합된
키메릭 베타-아가레이즈-카파-카라기나아제와
엔도-β-1,4-글루카나아제-B의 도커린 모듈이 융합된 키메릭
카파-카라기나아제; 무수갈락토시다아제와 엔도-β-1,4-글루카나아제-B의
도커린 모듈이 융합된 키메릭 무수갈락토시다아제; 및 소형
셀룰로즈-결합 단백질 A가 결합 되어 있는 효소 복합체.

[청구항 2] 제1항에 있어서, 상기 베타-아가레이즈는 서열번호 1의 아미노산 서열을
갖는 것을 특징으로 하는 효소 복합체.

[청구항 3] 제1항에 있어서, 상기 카파-카라기나아제는 서열번호 2의 아미노산
서열을 갖는 것을 특징으로 하는 효소 복합체.

[청구항 4] 제1항에 있어서, 상기 무수갈락토시다아제는 서열번호 3의 아미노산
서열을 갖는 것을 특징으로 하는 효소 복합체.

[청구항 5] 제1항에 있어서, 상기 엔도-β-1,4-글루카나아제-B는 서열번호 4의
아미노산 서열을 갖는 것을 특징으로 하는 효소 복합체.

[청구항 6] 제1항에 있어서, 상기 소형 셀룰로즈-결합 단백질 A는 서열번호 5의
아미노산 서열을 갖는 것을 특징으로 하는 효소 복합체.

[청구항 7] 베타-아가레이즈와 엔도-β-1,4-글루카나아제-B의 도커린 모듈이 융합된
키메릭 베타-아가레이즈를 코딩하는 유전자; 카파-카라기나아제와
엔도-β-1,4-글루카나아제-B의 도커린 모듈이 융합된 키메릭
카파-카라기나아제를 코딩하는 유전자; 및 무수갈락토시다아제와
엔도-β-1,4-글루카나아제-B의 도커린 모듈이 융합된 키메릭
무수갈락토시다아제를 코딩하는 유전자가 포함되어 있는 제조합 미생물.

[청구항 8] 제7항에 있어서, 상기 베타-아가레이즈는 서열번호 1의 아미노산 서열을
갖는 것을 특징으로 하는 제조합 미생물.

[청구항 9] 제7항에 있어서, 상기 카파-카라기나아제는 서열번호 2의 아미노산
서열을 갖는 것을 특징으로 하는 제조합 미생물.

[청구항 10] 제7항에 있어서, 상기 무수갈락토시다아제는 서열번호 3의 아미노산
서열을 갖는 것을 특징으로 하는 제조합 미생물.

[청구항 11] 제7항에 있어서, 상기 엔도-β-1,4-글루카나아제-B는 서열번호 4의
아미노산 서열을 갖는 것을 특징으로 하는 제조합 미생물.

[청구항 12] 다음 단계를 포함하는 제1항의 효소 복합체의 제조방법:
(a) 제7항의 제조합 미생물을 배양하여, 키메릭 베타-아가레이즈, 키메릭
카파-카라기나아제 및 키메릭 무수갈락토시다아제를 생성시키는 단계;
(b) 상기 생성된 키메릭 베타-아가레이즈, 키메릭 카파-카라기나아제,
키메릭 무수갈락토시다아제를 수득한 다음, 소형 셀룰로즈-결합 단백질
A와 결합시켜 효소 복합체를 제조하는 단계.

[청구항 13] 제1항의 효소 복합체를 이용하여 홍조류 바이오폴스를 분해하는 방법.
[청구항 14] 서열번호 3의 아미노산 서열을 가지는 무수할락토시다아세와 서열번호 4의 아미노산 서열을 가지는 엔도-β-1,4-글루카나아세-B의 도커린 모듈이 융합된 키메리 무수할락토시다아세.
[청구항 16] 제15항의 키메리 무수할락토시다아세를 코딩하는 유전자를 함유하는 제조합 벡터.
[청구항 17] 제16항의 키메리 무수할락토시다아세를 코딩하는 유전자 또는 제17항의 키메리 무수할락토시다아세를 코딩하는 유전자를 함유하는 제조합 벡터가 도입된 제조합 미생물.
[도3]

CBM Purification

Enzyme Complex (A+C+H+M)

mCbpA Only

Enzyme Complex (M+A+C+H)

Enzyme Complex (M+A+C)
INTERNATIONAL SEARCH REPORT

International application No.
PCT/KR2016/003389

A. CLASSIFICATION OF SUBJECT MATTER
C12N 9/24(2006.01)i, C12N 15/52(2006.01)i, C12N 15/63(2006.01)i, C07K 14/33(2006.01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED
Minimum documentation searched (classification system followed by classification symbols)
C12N 9/24; C12N 15/63; C12N 15/70; C12N 15/62; C12N 15/56; C12N 15/31; C12N 15/52; C07K 14/33

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Korean Utility models and applications for Utility models: IPC as above
Japanese Utility models and applications for Utility models: IPC as above

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
eKOMPASS (KIPO internal) & Keywords: enzyme complex, beta-agarase, kappa-carrageeaease, anhydrous galactosidase, dockerin module

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>KANG, Da Hee et al., "Convenient Purification Method and Efficient Degradation of Red Algal Biomass by Protein Complexes Comprising of Various Hydrolytic Enzymes", Advanced Biomass R&D Center Workshop, 22-23 January 2015 See abstract; figures 3 and 5.</td>
<td>1,7,12-13</td>
</tr>
<tr>
<td>A</td>
<td>KR 10-1367348 B1 (KOREA UNIVERSITY RESEARCH AND BUSINESS FOUNDATION) 26 February 2014 See claims 1 and 6; examples 1-5.</td>
<td>2,6,8-11,14-17</td>
</tr>
<tr>
<td>Y</td>
<td>KR 10-2015-0028564 A (REPUBLIC OF KOREA (NATIONAL INSTITUTE OF FOREST SCIENCE)) 16 March 2015 See paragraph [0005]; abstract.</td>
<td>1,7,12-13</td>
</tr>
<tr>
<td>A</td>
<td>KR 10-2011-0044410 A (KOREA UNIVERSITY RESEARCH AND BUSINESS FOUNDATION) 29 April 2011 See abstract.</td>
<td>1-17</td>
</tr>
</tbody>
</table>

☒ Further documents are listed in the continuation of Box C. ☒ See patent family annex.

X Special categories of cited documents;
"A" document defining the general state of the art which is not considered to be of particular relevance;
"E" earlier application or patent published on or after the international filing date;
"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified);
"O" document referring to an oral disclosure, use, exhibition or other means;
"P" document published prior to the international filing date but later than the priority date claimed;

"Y" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention;
"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone;
"W" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art;
"&" document member of the same patent family

Date of the actual completion of the international search
19 SEPTEMBER 2016 (19.09.2016)

Date of mailing of the international search report
20 SEPTEMBER 2016 (20.09.2016)

Name and mailing address of the ISA/KR
Korean Intellectual Property Office
Government Complex-‐Daejeon, 139 Seomsa-ro, Daejeon 342-701, Republic of Korea
Facsimile No. 82-42-472-7140

Authorized officer

Telephone No.

Form PCT/ISA/210 (second sheet) (January 2015)
<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>KANG, Dae Hee et al., "Synergistic Effect of the Hydrolytic Enzyme Complexes Based on Cellulosome System for Efficient Utilization of Red Algae", 2015 The Korean Society for Biotechnology and Bioengineering, 15-17 April 2015 See the entire document. (※ The above document is a document related to a declaration concerning non-prejudicial disclosures or exceptions to lack of novelty of the present international application.)</td>
<td>1,7,12-13</td>
</tr>
<tr>
<td>X</td>
<td>KANG, Dae Hee et al., "Degradation of Red Algae Substrate by Multi-enzyme Complexes Comprising of Agarase, Carrageenases and Neogalactobiose Hydrolase with Scaffolding Protein MiniChpA", The Australian Society for Microbiology, 15 July 2015 See the entire document. (※ The above document is a document related to a declaration concerning non-prejudicial disclosures or exceptions to lack of novelty of the present international application.)</td>
<td>1,7,12-13</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member</td>
</tr>
<tr>
<td>--</td>
<td>-----------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>KR 10-2015-0028564 A</td>
<td>16/03/2015</td>
<td>NONE</td>
</tr>
</tbody>
</table>

Form PCT/ISA/210 (patent family annex) (January 2015)
A. 발명이 속하는 기술분야(국제특허분야(IPC))
C12N 9/24(2006.01)i, C12N 15/52(2006.01)i, C12N 15/63(2006.01)i, C07K 14/33(2006.01)i

B. 조사된 분야
조사된 최소문헌(국제특허문헌)을 기재
C12N 9/24; C12N 15/63; C12N 15/70; C12N 15/62; C12N 15/56; C12N 15/31; C12N 15/52; C07K 14/33
조사된 기술분야에 속하는 최소문헌 이외의 문헌
한국등록특허전산정보 및 한국공개특허전산정보: 조사된 최소문헌과 기재된 IPC
일본등록특허전산정보 및 일본공개특허전산정보: 조사된 최소문헌과 기재된 IPC

국내조사의 이용된 전산 데이터베이스(데이터베이스의 명칭 및 검색어(대략하는 경우))
kOMPASS(특허청 내부 검색시스템) & 키워드: 효소 복합제, 베타-아가레이즈, 카피-카라기나아제, 무수갈락토시타이아제, 도키린 모듈

C. 관련문헌

<table>
<thead>
<tr>
<th>카테고리*</th>
<th>인용문헌명 및 관련 구절(대략하는 경우)의 기재</th>
<th>관련청구항</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>KANG, DAE HEE 등. 'Convenient purification method and efficient degradation of red algal biomass by protein complexes comprising of various hydrolytic enzymes', 차세대메이总书记在의 획득, 2015.01.22-23</td>
<td>1,7,12-13</td>
</tr>
<tr>
<td>A</td>
<td>KR 10-1367348 BI (고려대학교 산학협력단) 2014.02.26</td>
<td>2-6,8,11,14-17</td>
</tr>
<tr>
<td>Y</td>
<td>KR 10-2015-0028364 A (대한민국 산림청 산림과학연구원) 2015.03.16</td>
<td>1,7,12-13</td>
</tr>
<tr>
<td>A</td>
<td>KANG, DAE HEE 등. 'Efficient enzymatic degradation process for hydrolysis activity of the Carrageenan from red algae in marine biomass', Journal of Biotechnology, 2014.10.02, 192권, 페이지 108-113</td>
<td>1-17</td>
</tr>
<tr>
<td>A</td>
<td>KR 10-2011-0044410 A (고려대학교 산학협력단) 2011.04.29</td>
<td>1-17</td>
</tr>
</tbody>
</table>

[추가 문헌이 C(계속)에 기재되어 있습니다.]

* 인용된 문헌의 특별 카테고리:

"A" 국외특허 또는 유전자로에 공개된 문헌으로, 최종과 상량하지 않으며 발명과 기초가 되는 원리나 이론을 이해하기 위해 인용된 문헌

"B" 특허 및 특히의 관련된 문헌, 특히 발명의 신규성 또는 진보성에 영향을 미치는 것으로 보이는 문헌

"C" 국내특허 또는 유전자로에 공개된 문헌으로, 최종과 상량하지 않으며 발명과 기초가 되는 원리나 이론을 이해하기 위해 인용된 문헌

"D" 특허 및 특히의 관련된 문헌, 특히 발명의 신규성 또는 진보성에 영향을 미치는 것으로 보이는 문헌

"E" 특허 및 특히의 관련된 문헌, 특히 발명의 신규성 또는 진보성에 영향을 미치는 것으로 보이는 문헌

"F" 특허 및 특히의 관련된 문헌, 특히 발명의 신규성 또는 진보성에 영향을 미치는 것으로 보이는 문헌

"G" 특허 및 특히의 관련된 문헌, 특히 발명의 신규성 또는 진보성에 영향을 미치는 것으로 보이는 문헌

국내조사의 설계 완료일
2016년 09월 19일 (19.09.2016)

국제조사보고서 발송일
2016년 09월 20일 (20.09.2016)

ISA/KR의 명칭 및 우편주소
대한민국 특허청
(35208) 대전광역시 서구 정무로 189, 4층 (문양동, 정부대전청사)

전화번호: +82-42-481-8578

시작 PCT/ISA/210 (두 번째 용지) (2015년 1월)
<table>
<thead>
<tr>
<th>카테고리</th>
<th>인용문헌명 및 관련 구절(해당하는 경우)의 기재</th>
<th>관련 참고항</th>
</tr>
</thead>
</table>

※ 상기 문헌은 본 국제출원의 신규성을 해저지 아니하는 게시 또는 신규성 상실의 예외에 관한 선언서와 관련된 문헌임다.}
<table>
<thead>
<tr>
<th>국제조사보고서</th>
<th>공개일</th>
<th>대응특허문헌</th>
<th>공개일</th>
</tr>
</thead>
<tbody>
<tr>
<td>KR 10-2015-0028564 A</td>
<td>2015/03/16</td>
<td>없음</td>
<td></td>
</tr>
</tbody>
</table>

서식 PCT/ISA/210 (대응특허 추가용지) (2015년 1월)