wo 20197237029 A1 |0 0000 0000000 0 0

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property '

Organization
=

International Bureau

(43) International Publication Date

(10) International Publication Number

WO 2019/237029 Al

12 December 2019 (12.12.2019) WIPO | PCT

(51) International Patent Classification:
HO4L 12/743 (2013.01) GO6F 16/903 (2019.01)
GO6N 5/02 (2006.01)

(21) International Application Number:
PCT/US2019/036096

(22) International Filing Date:
07 June 2019 (07.06.2019)

(25) Filing Language: English
(26) Publication Language: English
(30) Priority Data:

62/682,695 08 June 2018 (08.06.2018) UsS

(71) Applicant: FUNGIBLE, INC. [US/US], 3201 Scott Blvd.,
Santa Clara, California 95054 (US).

(72)

(74)

@81)

Inventors: THANTRY, Hariharan Lakshminarayanan;
1472 Lemos Lane, Fremont, California 94539 (US).
SUNKAM RAMANUJAM, Rohit; 1059 E Duane Av-
enue, 200, Sunnyvale, California 94085 (US). HUBER,
John David; 5872 Adams Avenue, San Diego, California
92115 (US). GOEL, Deepak; 1421 Stephen Way, San Jose,
California 95129 (US). MINGLANI, Vikas; 10306 Nor-
wich Avenue, Cupertino, California 95014 (US).

Agent: WOLFE, Mark A.; Shumaker & Sieffert, P.A.,
1625 Radio Drive, Suite 100, Woodbury, Minnesota 55125
(US).

Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ,
CA, CH, CL, CN, CO, CR, CU, CZ,DE, DJ, DK, DM, DO,
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN,
HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP,

(54) Title: DIRECTED GRAPH TRAVERSAL USING CONTENT-ADDRESSABLE MEMORY

441

BUS

M0~y
415
| /4
E1: $=00 KEY=01 M=11 => R0: P[1]; WRITE P[1],B[2,0]; SHIFT 1 RO
E2: $=00 KEY=10 M=11 => $=2, K=R3 —»| Locic » Rl -
E3: §=01, KEY=", M=00 =» §=11 R2
E4: $=10, KEY=*, M=00 => §=11 R3
M
ES: $=11, KEY=*, M=00 = 116 .
@ :
*
°
.
TCAM KEY, STATE _
»| query [«
INITIALIZER: \419
INITIAL STATE,
INITIAL KEY, KEY? <
END STATE
N
m a2

PACKET BUFFER
P)
PACKET BYTES IN (PACKET BYTES OUT

431

FIG. 4

(57) Abstract: This disclosure describes techniques that include representing, traversing, and processing directed graphs using one or
more content-addressable memory devices. In one example, this disclosure describes a method that includes presenting query data to
one or more ternary content-addressable memory (TCAM) devices, wherein the query data includes state data and key data; receiving,
from the TCAM devices, information about a matching address identified by the TCAM devices; accessing, based on the information
about the matching address, information in one or more storage devices, performing, based on the information in the one or more
storage devices, at least one operation on data included within the one or more storage devices to generate processed data; outputting
the processed data; determining, based on the information in the one or more storage devices, new state data and a new key value; and

presenting new query data to the TCAM devices.

[Continued on next page]

WO 2019/237029 A1 [I 0000000 00 A0 OO

KR,KW,KZ, LA, LC,LK, LR, LS, LU, LY, MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,
SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CIL, CM, GA, GN, GQ, GW,
KM, ML, MR, NE, SN, TD, TG).

Published:
— with international search report (Art. 21(3))

WO 2019/237029 PCT/US2019/036096

DIRECTED GRAPH TRAVERSAL USING CONTENT-ADDRESSABLE MEMORY

CROSS REFERENCE

[0001] This application claims the benefit of U.S. Provisional Patent Application No.
62/682,695 filed on June 8, 2018, which is hereby incorporated by reference herein in its

entirety.

TECHNICAL FIELD

[0002] This disclosure relates to data processing, and more specifically, to use of data stored

within one or more hardware devices to represent and traverse directed graphs.

BACKGROUND

[0003] A directed graph generally consists of a set of vertices (or nodes) and a set of
directional edges connecting the vertices. The edges correspond to transitions from one
vertex to the next. Often, directed graphs can be used to represent finite state diagrams
having an initial state and a number of intermediate states corresponding to processing steps.
Directed graphs are well understood data structures with applications in many fields,

including computer networking and stream processing.

SUMMARY

[0004] This disclosure describes techniques that include representing, traversing, and
processing directed graphs using one or more content-addressable memory devices. Further,
aspects of one or more systems and/or techniques described herein may enable representing a
directed graph using a high-level descriptive language, and using such a language to express
source code that may, in some examples, be processed by an assembler to generate content-
addressable memory entries and additional initialization and/or other data. The memory
entries and the additional data may be used to implement a system for traversing a directed
graph. In some examples, such techniques may involve using a ternary content-addressable
memory (TCAM) device as the basis for (or part of) a system for traversing a directed graph
to parse network streams. In some examples, such a system may be used to process network

headers of a data unit, such as a packet.

WO 2019/237029 PCT/US2019/036096

[0005] Techniques in accordance with one or more aspects of the present disclosure may
provide several advantages. For instance, techniques in accordance with one or more aspects
of the present disclosure may enable directed graph processing without the overhead and/or
complexity of a conventional processor-based system in which graph-traversal is performed
entirely by software. Further, the manner in which parsing of stream data is performed in
some examples may be flexible enough to enable parsing, by the same system, of multiple
types of network packets using the same TCAM. In some examples, additional stream data
parsing capabilities may easily be added to the system by modifying the data stored within
the TCAM to incorporate such new capabilities, and with few, if any, modifications to the
parsing hardware. As a result, modification to parsing algorithms and/or future
accommodation of additional types of network headers may easily be performed by simple
modifications to data stored within the TCAM.

[0006] In one example, this disclosure describes a method comprising presenting, by logic
connected to ternary content-addressable memory (TCAM), query data to the TCAM,
wherein the query data includes state data and key data; receiving, by the logic and from the
TCAM, information about a matching address identified by the TCAM; generating processed
data by performing, by the logic and based on the information about the matching address, at
least one operation on data stored within one or more storage devices, outputting, by the
logic, the processed data; determining, by the logic and based on the information in the one or
more storage devices, new state data; determining, by the logic and based on the information
in the one or more storage devices, a new key value; and presenting, by the logic, new query
data to the TCAM, wherein the new query data includes the new state data and the new key
value. .

[0007] In another example, this disclosure describes an apparatus comprising: ternary
content-addressable memory (TCAM); one or more storage devices; and logic connected to
the TCAM and the one or more storage devices and configured to: present query data to the
TCAM, wherein the query data includes state data and key data, receive, from the TCAM,
information about a matching address identified by the TCAM, generate processed data by
performing, based on the information about the matching address, at least one operation on
data stored within the one or more storage devices, output the processed data, determine,
based on the information about the matching address, new state data, determine, based on the
information about the matching address, a new key value, and present new query data to the

TCAM, wherein the new query data includes the new state data and the new key value.

WO 2019/237029 PCT/US2019/036096

[0008] In another example, this disclosure describes a device for parsing network packet
headers, comprising: ternary content-addressable memory (TCAM); one or more storage
devices including an array of registers; a packet buffer that stores information about incoming
packets; and logic connected to the TCAM, the one or more storage devices, and the packet
buffer, wherein the logic is configured to: present query data to the TCAM, wherein the query
data includes state data and key data, receive, from the TCAM, information about a matching
address identified by the TCAM, generate processed data by performing, based on the
information about the matching address, at least one operation on data stored within the one
or more storage devices, wherein the at least one operation includes at least one of extracting
data from the packet buffer, performing an arithmetic operation, storing data within the array
of registers, and writing data to an output bus; output the processed data, determine, based on
the information about the matching address, new state data, determine, based on the
information about the matching address, a new key value, and present new query data to the
TCAM, wherein the new query data includes the new state data and the new key value.
[0009] The details of one or more examples of the disclosure are set forth in the
accompanying drawings and the description below. Other features, objects, and advantages

of the disclosure will be apparent from the description and drawings, and from the claims.

BRIEF DESCRIPTION OF THE DRAWINGS

[0010] FIG. 1A s a conceptual diagram illustrating a simple directed graph, in accordance
with one or more aspects of the present disclosure.

[0011] FIG. 1B is a table illustrating data that may be stored in example TCAM for
traversing the directed graph of FIG. 1A, in accordance with one or more aspects of the
present disclosure.

[0012] FIG. 1C is a conceptual diagram illustrating hardware devices and/or modules used to
implement and traverse the directed graph of FIG. 1A, in accordance with one or more
aspects of the present disclosure.

[0013] FIG. 2A is a conceptual diagram illustrating another directed graph, in accordance
with one or more aspects of the present disclosure.

[0014] FIG. 2B is a table illustrating data that may be stored in example TCAM and storage
devices corresponding to the directed graph of FIG. 2A, in accordance with one or more

aspects of the present disclosure.

WO 2019/237029 PCT/US2019/036096

[0015] FIG. 2C is a conceptual diagram illustrating hardware devices and/or modules used to
implement and traverse the directed graph of FIG. 2A, in accordance with one or more
aspects of the present disclosure.

[0016] FIG. 3 is an illustration of four example data streams that may be parsed in
accordance with one or more aspects of the present disclosure.

[0017] FIG. 4 is a conceptual diagram illustrating hardware devices and/or modules used to
implement and traverse an example network header, in accordance with one or more aspects
of the present disclosure.

[0018] FIG. 5 is a conceptual illustration of an example pseudocode listing that may perform
a traversal of a directed graph for parsing network headers, in accordance with one or more
aspects of the present disclosure.

[0019] FIG. 6 is a block diagram illustrating an example system that processes source code to
parse network packet headers, in accordance with one or more aspects of the present
disclosure.

[0020] FIG. 7 is a flow diagram illustrating an example process for traversing a parse graph
represented by a TCAM-based hardware system, in accordance with one or more aspects of

the present disclosure.

DETAILED DESCRIPTION

[0021] Content-addressable memory (CAM) devices operate by accepting an input query
value, and then performing a search of the data stored within the content-addressable memory
to identify a storage address or location (or “entry”) within the memory having data that
matches the query value. CAM might be considered, in some respects, to be the opposite of
random access memory (RAM), because for a RAM device, an address is input to the RAM
device, and the RAM device returns the data at that address. With a CAM device, on the
other hand, data is presented to the CAM device as input, and the CAM device returns the
address of one or more storage locations that match the input data. In some examples, a
CAM device returns the first address or entry number that matches the data included in the
query. In other examples, a CAM device may return multiple addresses if multiple addresses
or entries within the CAM device match the query data. Further, some content-addressable
memory devices perform the query through a parallel search of multiple entries, and as a
result, content-addressable memory device may be significantly faster than random access

memory devices.

WO 2019/237029 PCT/US2019/036096

[0022] A “ternary” content-addressable memory (TCAM) device differs from a CAM device
because a TCAM device enables queries to be performed using a mask value for each of the
entries in the TCAM, thereby effectively enabling three different values (0, 1, and a “don’t
care” value) for each bit stored within a TCAM storage. For example, if a bit in a TCAM
entry is a “don’t care” value (referred to herein as an “X” value), the TCAM considers either
a “0” or “1” input value presented as a search query to match that “X” value, thereby
effectively broadening the search query. This differs from a search performed by a binary
CAM device, which performs exact-match searches using only Os and 1s.

[0023] FIG. 1Ais a conceptual diagram illustrating a simple directed graph, in accordance
with one or more aspects of the present disclosure. In FIG. 1A, directed graph 101 represents
a set of four nodes (or “vertices”) including a “Start” node, “A” and “B” nodes, and an “End”
node. Directed graph 101 further includes a number of “directed edges” which represent
transitions from one node to the next. From the Start state, for example, directed graph 101
transitions to the A node if an input value (e.g., the “key” value) is 00, and to the B node if
the input value is 01. The transition from either the A or B node is to the End state, regardless
of the value of the key or any input.

[0024] FIG. 1B is a table illustrating data that may be stored in example TCAM for
traversing the directed graph of FIG. 1A, in accordance with one or more aspects of the
present disclosure. TCAM table representation 102 of FIG. 1B illustrates bitwise data stored
within a TCAM having many entries (five are shown in FIG. 1B), each of which includes a
two-bit state value, a two-bit key value, and a two-bit mask value. Operations table 103
illustrates data, organized by TCAM entry, that may be stored within the TCAM orin a
separate storage device that has entries that correspond to each of the TCAM entries.

[0025] FIG. 1C is a conceptual diagram illustrating hardware devices and/or modules used to
implement and traverse the directed graph of FIG. 1A, in accordance with one or more
aspects of the present disclosure. In various examples, system 110 may be implemented as
one or more application-specific integrated circuit (ASIC) components or as other hardware
and software components. System 110 may, for example, represent a portion of a data
processing unit (DPU), or devices including a DPU, for processing streams of information,
such as network packets or storage packets. In general, a stream is defined as an ordered,
unidirectional sequence of computational objects that can be of unbounded or undetermined
length. In a simple example, a stream originates in a producer and terminates at a consumer,
is operated on sequentially, and is flow-controlled. In some examples, a stream can be

defined as a sequence of stream fragments, each representing a portion of data communicated
5

WO 2019/237029 PCT/US2019/036096

by a stream. Streams can be discrete, such as a sequence of packets received from a network,
or continuous, such as a stream of bytes read from a storage device. Additional example
details of various example access nodes are described in U.S. Provisional Patent Application
No. 62/559,021, filed September 15, 2017, entitled “Access Node for Data Centers,” and U.S.
Provisional Patent Application No. 62/530,691, filed July 10, 2017, entitled “Data Processing
Unit for Computing Devices,” the entire contents of both being incorporated herein by
reference

[0026] In this example, system 110 of FIG. 1C includes one or more TCAM devices 113, one
or more logic devices 115, and one or more register arrays 117. TCAM 113 may include data
corresponding to the entries illustrated in TCAM table representation 102 of FIG. 1B, so in
the example shown, TCAM 113 includes entries that are 6 bits wide: the first 2 bits
corresponding to the state value, the middle 2 bits corresponding to the key value, and the
rightmost 2 bits corresponding to a mask value. Data stored within 113 thereby corresponds
to five entries with the same sequence of six bits that are illustrated in TCAM table
representation 102,

[0027] A logical “and” operation using the mask is applied to the key values when TCAM
113 performs a query on input provided by TCAM query module 119. In other words, when
a query is presented to TCAM 113, the two-bit mask is applied to that portion of the input
query that corresponds to the key, and further, the same two-bit mask is applied to that
portion of each entry in TCAM 113 that corresponds to the key (e.g., the middle two bits of
each entry in TCAM 113). Therefore, when the mask value for a given TCAM entry is “00,”
the key value portion of any query will match the key portion of each of entries within
TCAM 113, since the key value bits for the query and for each TCAM entry will, after a
logical “AND” masking operation, be “00.”

[0028] Logic 115 may be used to perform sequencing operations (e.g., determine a new state
value) or perform other actions, such as writing data to locations within register array 117 or
elsewhere. Register array 117 may correspond to an array of registers, each including data
consistent with that shown in operations table 103 and used in the manner hereinafter
described. System 110 further includes initialization module 111 and TCAM query module
119. Initialization module 111 may include initial system variables, such as an in initial state,
initial key value (or a reference to a register that holds the initial key value), and an
identification of an “END” state. TCAM query module 119 receives input from logic 115,
register array 117, and/or initialization module 111 to generate a query presented as input to

TCAM 113. TCAM query module 119 may also interact with initialization module 111 to
6

WO 2019/237029 PCT/US2019/036096

update one or more initial system variables and/or to evaluate and/or output data received by
TCAM query module 119.

[0029] In FIG. 1C, and in accordance with one or more aspects of the present disclosure,
system 110 may begin traversing directed graph 101 at an initial state. For instance, in the
example of FIG. 1C, TCAM query module 119 determines, based on input from initialization
module 111, that the initial state value for system 110 is the two-bit quantity “00” (i.e.,
“S=007) and the initial key value is “00” (also a two-bit quantity, stored in R0), also specified
by initialization module 111. Further, initialization module 111 also specifies that traversing
the directed graph will terminate when a state value corresponding to the two-bit quantity
“11” is encountered.

[0030] System 110 may process a first query after the initial state is initialized. For instance,
on the first clock cycle in FIG. 1C, TCAM query module 119 generates a query of “0000,”
composed of the initial state value (two-bit quantity 00) and the initial key value (the two-bit
quantity stored in RO of register array 117). TCAM query module 119 presents the “0000”
query to TCAM 113. TCAM 113 matches the first entry (“E17) because searching the entries
in ascending order, starting from E1, results in a match of E1. In this first query, the two
rightmost bits (corresponding to the key value) of the query value of “0000” are masked
using the “11” masking bits in the first entry (E1), and the middle two bits of the first entry
(corresponding to the key value in E1) are also masked using the “11” masking bits in the
first entry. In this case, after the masking operation, the query matches the first four bits of
the first entry, so TCAM 113 determines that the query matches the first entry. (In this case,
since the masking bits are “11,” the masking operation has no effect on the key values, and
the query matches the first entry even without the masking operation.).

[0031] System 110 may perform, based on the results of the query matching E1, sequencing
operations and one or more actions associated with E1. For instance, in FIG. 1C, logic 115
receives input from TCAM 113 identifying matching entry 1 (E1). Logic 115 determines,
based on the matching entry #1 and data corresponding to that of operations table 103, that
the next state value is “01” (see the row corresponding to matching entry #1 in operations
table 103 of FIG. 1B). Logic 115 further determines that the new key is the value stored in
R3 (which, in this example, is the two-bit quantity “117). Sull further, logic 115 performs
one or more actions corresponding to node “A.” In some examples, such actions may include
modifying a stored value, writing data to one or more storage locations, or another operation.
[0032] System 110 may perform a second query. For instance, still referring to FIG. 1C, and

on the second clock cycle, TCAM query module 119 generates a new query of “0111,” which
7

WO 2019/237029 PCT/US2019/036096

is generated based on the new state value “01” (resulting from prior query matching E1) and
the new key value (“11” stored in R3). TCAM query module 119 presents the new query to
TCAM 113, and TCAM 113 determines that entry 3 (corresponding to E3 in TCAM 113) is
the first match. Entry 3 matches since the query state value (01) matches the state value of
entry 3, and the mask of entry 3 (00) effectively masks out all values of the key, so that any
key value will match the key value of entry 3.
[0033] System 110 may terminate based on the results of the second query. For instance, in
FIG. 1C, logic 115 receives input from TCAM 113 identifying matching entry 3. Logic 115
determines, based on this input and data corresponding to that of operations table 103, that
the next state is 11, which is the “END” state. Since logic 115 has determined that the end
state has been encountered, the next value of the key is immaterial, so in some examples, no
register is specified in operations table 103 in the row corresponding to entry 3. Logic 115
and/or TCAM query module 119 terminate the traversal of directed graph 101 pursuant to
encountering the “END” state.
[0034] Note that in the example of FIG. 1C, if the initial key were “01,” TCAM 113 would
initially identify entry 2 as the matching entry. In such an example, logic 115 would receive
input identifying entry 2 as the matching entry on the first clock cycle. Based on this input
and the data stored in operations table 103, logic 115 would perform action B (corresponding
to node B of directed graph 101) before transitioning to state “10” and then to state “11,” and
then terminating. Accordingly, system 110 corresponds to a traversal of the directed graph
corresponding to directed graph 101.
[0035] FIG. 2A is a conceptual diagram illustrating another directed graph, in accordance
with one or more aspects of the present disclosure. In FIG. 2A, directed graph 201 represents
a set of four vertices or nodes including a “Start” node, “A” and “B” nodes, and an “End”
node. In the example of FIG. 2A, node A involves decrementing the key (“k”) value, and
returning to the Start node. This loop continues until the key value reaches 0, at which point
the Start node transitions to node B, followed by a transition to the End node.
[0036] FIG. 2B is a table illustrating data that may be stored in example TCAM and storage
devices corresponding to the directed graph of FIG. 2A, in accordance with one or more
aspects of the present disclosure. TCAM table representation 202 of FIG. 2B, like TCAM
table representation 102 of FIG. 1B, illustrates bitwise data stored within a TCAM having a
number of entries, each of which includes a two-bit state value, a two-bit key value, and a
two-bit mask value. Operations table 203 illustrates data used by logic 115 to traverse
directed graph 201. The data in operations table 203 is organized by TCAM entry. As in

8

WO 2019/237029 PCT/US2019/036096

FIG. 1B, the data in operations table 203 may be stored within the TCAM or in a separate
storage device.

[0037] FIG. 2C is a conceptual diagram illustrating hardware devices and/or modules used to
implement and traverse the directed graph of FIG. 2A, in accordance with one or more
aspects of the present disclosure. System 110 of FIG. 2C is the same as the system illustrated
in FIG. 1C, except that the data in TCAM 113 and register array 117 has been modified to
correspond to directed graph 201 of FIG. 2A, rather than directed graph 101 of FIG. 1A.
Accordingly, each of the components or devices within FIG. 2C may correspond to like-
numbered components or devices of FIG. 1C, and descriptions provided in connection with
FIG. 1C may apply to components and/or devices of FIG. 2C.

[0038] In FIG. 2C, and in accordance with one or more aspects of the present disclosure,
system 110 may begin traversing directed graph 201 at an initial state. For instance, in the
example of FIG. 2C, TCAM query module 119 determines, based on input from initialization
module 111, that the initial state value for system 110 is the two-bit quantity “00,” and the
initial key value is “10” (also a two-bit quantity, and corresponding to the value initially
stored in RO). Further, initialization module 111 also specifies that traversing the directed
graph will terminate when a state value corresponding to the two-bit quantity “117 is
encountered.

[0039] System 110 may process a first query after initialization. For instance, on the first
clock cycle in FIG. 2C, TCAM query module 119 generates a query of “0010,” composed of
the initial state value (two-bit quantity 00, as specified by initialization module 111) and the
initial key value (the two-bit quantity “10” initially stored in RO of register array 117).
TCAM query module 119 presents the “0010” query to TCAM 113. TCAM 113 traverses
each of its entries in sequential order, and does not match the first entry (“E1), but matches
the second entry (“E2”). Upon matching the second entry, TCAM 113 outputs to logic 115
information about the second entry. TCAM 113 does not match the first entry because while
the state value matches the query state value (00), the key value of entry 1 (00) does not
match the key value of the query (10). The mask value in entry one (the mask value is “11”")
will not have any effect on the value of the query key or the key portion of the data stored in
E1. Accordingly, TCAM 113 does not match entry 1, and therefore proceeds, sequentially, to
entry 2. TCAM 113 determines that entry 2 is a match because the state value matches (both
the query and E2 have state values of “00”), and the key value of entry 2 will match any
queried key value, since entry 2 applies (i.e., through a logical “AND”) a “00” mask to both

the query key and the entry key, ensuring that both compared values are equal to “00.”
9

WO 2019/237029 PCT/US2019/036096

[0040] System 110 may decrement the value of the key as a result of matching entry 2. For
instance, in FIG. 2C, logic 115 receives input from TCAM 113 identifying matching entry 2.
Logic 115 determines, based on the matching entry 2 and data corresponding to that of
operations table 203, that the next state value is “00” (see the row of operations table 203 of
FIG. 2B corresponding to entry 2). Logic 115 further determines that the new key is the
value stored in RO. In this example, logic 115 also performs one or more actions
corresponding to node A (as specified in operations table 203), which in this example,
involves decrementing the contents of the key value, stored in RO. Accordingly, the new key
is “01” (the initial value of “10” stored in RO after subtracting 1).

[0041] System 110 may continue to decrement the value of the key. For instance, still
referring to FIG. 2C, and on the second clock cycle, TCAM query module 119 generates a
new query of “0001,” which is generated based on the state value of “00” and the new key
value (“01”). TCAM query module 119 presents the new query to TCAM 113, and TCAM
113 determines that entry 2 is again the first matching entry. TCAM 113 outputs to logic 115
information about entry 2. Logic 115 determines, based on input from TCAM 113 and data
corresponding to that of operations table 203, that the next state continues to be “00.” Logic
115 also decrements the value of the key stored in RO, just as it did in the prior clock cycle,
resulting in the new key value of “00.”

[0042] System 110 may exit the loop and transition to node B. For instance, again referring
to FIG. 2C, and on the third clock cycle, TCAM query module 119 generates a new query of
“0000,” and presents it to TCAM 113. This time, TCAM 113 matches entry 1, and outputs
information identifying entry 1 to logic 115. Logic 115 detects the input and performs, based
on the data stored in operations table 203 of FIG. 2B, sequencing and action operations.
Specifically, logic 115 determines that the new state is “11” (the value stored in R2), and
performs one or more actions corresponding to node B. Logic 115 outputs information about
the state to TCAM query module 119. TCAM query module 119 determines that the state
value matches the end state value, and therefore terminates, thereby completing the traversal
of directed graph 201.

[0043] Processing network packets, or network packet headers in an incoming byte stream, is
one application that may be suitable for a TCAM-based system, such as that illustrated in
FIG. 1C and FIG. 2C, that parses a directed graph. Parsing network packet headers may
involve examining fields within various types of headers and processing packets based on the
data stored within the fields. Packets typically contain multiple headers, each carrying

information about protocols or information about how the packets should be handled,
10

WO 2019/237029 PCT/US2019/036096

processed, and/or routed. Normally, each header is parsed in sequence, and the process for
doing so can often be represented by a directed graph. Traversal of such a directed graph,
using techniques described herein, may result in effective parsing of network headers.
[0044] FIG. 3 is an illustration of four-byte streams that may be parsed in accordance with
one or more aspects of the present disclosure. The example of FIG. 3 includes header
formats 301A through 301D, each differing in the packet headers included within each
stream. Header format 301 A of FIG. 3 includes an Ethernet header followed by a virtual
local area network (VLAN) header, and then followed by an IP v4 header. The Ethernet
headers illustrated in FIG. 3 includes a 48-bit destination address, a 48-bit source address,
and a 16-bit type identifier. The VLAN header in header format 301 A includes a 16-bit
“PC_VID” field, and a 16-bit type field. The IP v4 header of header format 301A includes a
96-bit sequence of fields (“V4_Other”), a 32-bit source address, and a 32-bit destination
address.

[0045] Header format 301B has a format similar to header format 301A, except that header
format 301B includes an Ethernet header followed by the IP v4 header (i.e., omitting the
VLAN header present in header format 301A). Header format 301C includes an Ethernet
header followed by the VL AN header, without the IP v4 header. And as shown in FIG. 3,
header format 301D includes only an Ethernet header.

[0046] Parsing logic for parsing each of header formats 301A through 301D can be
represented through a directed graph, with states at least partially devoted to parsing each
type of header, and with transitions to new states that may be specific to each header. Where
parsing logic can be represented as a directed graph, network headers (e.g., header formats
301A through 301D) may be parsed through a TCAM-based parser in a manner consistent
with the description of directed graph traversals described in connection with FIG. 1C and
FIG. 2C. In some examples, an appropriate packet header parser may be constructed by
making some modifications to system 110 of FIG. 1C and FIG. 2C.

[0047] FIG. 4 is a conceptual diagram illustrating hardware devices and/or modules used to
implement and traverse an example network header parser, in accordance with one or more
aspects of the present disclosure. Packet parsing system 410 of FIG. 4 includes one or more
TCAM devices 413, one or more logic devices 415, and one or more register arrays 417, one
or more initialization modules 411, one or more TCAM query modules 419, one or more key
selectors 421. In some examples, packet parsing system 410 further includes packet buffer

431 and/or output bus 441.

11

WO 2019/237029 PCT/US2019/036096

[0048] Initialization module 411 may initialize a value for an initial state and an initial key,
and define an end state. Key selector 421 selects and/or extracts data from packet buffer 431,
and selectively identifies a key value from either packet buffer 431 or one or more registers in
register array 417.

[0049] Packet buffer 431 receives a sequence of bytes from a packet stream (e.g., over a
network connection) and may output bytes after parsing by packet parsing system 410.
TCAM query module 419 accepts input from key selector 421 and/or logic 415 and prepares
a query to present to TCAM 413. Logic 415 may write data to output bus 441, and cause
register array 417 to output a value to TCAM query module 419.

[0050] Logic 415 may further store values extracted from packet buffer 431 to RAM 416
(included within logic 415) or to one or more registers in register array 417 for possible later
use (e.g., as values included within a query presented to TCAM 413 by TCAM query module
419). Accordingly, logic 415 may store any data into register array 417, and not merely data
extracted from a packet header or from the byte stream. Accordingly, keys may be based on
data from packet buffer 431, in addition to data from register array 417 or other storage
locations (e.g., RAM 416).

[0051] In some examples, logic 415 may also be capable of performing arithmetic operations
on data stored within RAM 416, within register array 417, or within other locations. Such
operations may, for example, be performed by a VLIW (Very Large Instruction Word)
processor included within logic 415. Alternatively or in addition, logic 415 (or packet
parsing system 410 generally) may operate as a micro-coded action processor using a
TCAM-based implementation.

[0052] Logic 415 may also be configured to cause packet buffer 431 to shift bytes out of
packet buffer 431, discarding bytes that are not used or are no longer needed, and thereby
advancing into packet buffer 431 new bytes for processing. Still further, logic 415 may write
data to output bus 441 when performing actions corresponding to nodes in a directed graph.
In this way, output bus 441 may be used for storing useful packet data extracted from packet
bytes passing through packet buffer 431, thereby applying a structure to the incoming byte
stream arriving over a network connection. Logic 415 may include RAM 416 for use in
storing data accessed, generated, and/or extracted during processing.

[0053] For ease of illustration, a limited number of TCAM devices 413, logic devices 415,
register arrays 417, TCAM query modules 419, key selectors 421, output busses 441, packet
buffers 431, and other components, devices, and structures are shown within FIG. 4 and/or in

other illustrations referenced herein. However, techniques in accordance with one or more
12

WO 2019/237029 PCT/US2019/036096

aspects of the present disclosure may be performed with many more of such systems, and
collective references to components, devices, modules, and/or systems may represent any
number of such components, devices, modules, and/or systems. For instance, multiple packet
parsing systems 410 may operate in parallel, and to increase throughput of parsing
operations. In some examples, each of packet parsing systems 410 may share one or more
components (e.g., packet parsing system 410), and in addition, may share state information to
streamline operations.

[0054] In FIG. 4, and in accordance with one or more aspects of the present disclosure,
packet parsing system 410 may begin traversing a directed graph at an initial state. For
instance, in the example of FIG. 4, TCAM query module 419 determines, based on input
from initialization module 411, an initial state, an initial key, and an end state. On the first
clock cycle in FIG. 4, TCAM query module 419 generates a query based on the initial state
and key, and presents the query to TCAM 413. TCAM 413 identifies a matching entry and
outputs information about the matching entry to logic 415.

[0055] Logic 415 determines, based on the input (i.e., entry #) received from TCAM 413,
one or more sequencing operations and one or more action operations to perform. For
instance, in the example of FIG. 4, if entry 1 is the matching entry based on its state (“S=00"
for E1 in FIG. 4), key (“KEY=01" for E1), and mask (“M=11" for E1) values logic 415
determines, based on matching entry 1, that the operations following the “=>" are to be
performed. Logic 415 may receive information identifying these operations from TCAM
413, or logic 415 may use the identity of the matching entry output by TCAM 413 (in this
case, entry 1) to identify the operations by accessing information within RAM 416, register
array 417, or other storage. For entry 1, logic 415 performs a number of operations,
including writing a value of “00” to RO (“R0=007), assigning byte index 1 from packet buffer
431 to the key value (“K=P[1]”), writing data starting at byte index 1 from packet buffer 431
to bytes 2, 1, and O of output bus 441 (“WRITE P[1], B[2,0]”), and shifting 1 byte out of
packet buffer 431 (“SHIFT 17).

[0056] Packet parsing system 410 may continue to process additional queries and traverse a
directed graph for parsing packet headers. For instance, still referring to FIG. 4, logic 415
outputs state information to TCAM query module 419. TCAM query module 419
determines, based on the state information and/or information from key selector 421, a new
query. TCAM query module 419 presents a new query to TCAM 413. TCAM 413 outputs a
matching entry index to logic 415. Logic 415 again performs sequencing operations and

action operations based on the matching entry index received from TCAM 413. In some
13

WO 2019/237029 PCT/US2019/036096

examples, the sequencing operations may involve determining a new state value based on
information stored in one or more registers and/or other storage locations. In some examples,
the action operations may involve performing modifications to values stored in register array
417 or other storage locations, moving data from packet buffer 431 into output bus 441,
shifting bits out of packet buffer 431, or other operations. Packet parsing system 410
continues to process a new state and perform action operations until an end state is reached.
[0057] Through appropriate entries in TCAM 413 and, in some examples, within RAM 416
and register array 417, packet parsing system 410 may traverse a directed graph for parsing
the network headers illustrated in FIG. 3. One such example directed graph, expressed in the
form of pseudocode, is illustrated in FIG. 5.

[0058] FIG. 5 is a conceptual illustration of an example pseudocode listing that may perform
a traversal of a directed graph for parsing network headers (traversing a “parse graph”), in
accordance with one or more aspects of the present disclosure. The pseudocode of FIG. 5
corresponds to an idealized parsing process performed by packet parsing system 410 of FIG.
4 to process header formats 301A through 301D as illustrated in FIG. 3. In the example of
FIG. 5, it is assumed that header formats 301A through 301D of FIG. 3 are the only stream
types that are to be processed. Other or additional packet and/or stream types can be parsed
with appropriate modifications to the code listed in FIG. 5.

[0059] The code listing of FIG. 5 relies on a number of syntax and language constructs or
assumptions in order to unambiguously and accurately express a parse graph and appropriate
operations performed in connection with traversing the parse graph. In some examples, an
existing and well-supported markup or data serialization language, such as YAML
(sometimes described as an acronym for “YAML Ain’t Markup Language”), might be used to
express code corresponding to functions and/or operations to be performed by a system.
Using an existing language may enable beneficial leveraging of existing documentation as
well as interpretive, parsing, and/or processing tools. In other examples, new and/or
customized language and/or language constructs might be conceived for expressing a directed
graph and the traversal of the directed graph.

[0060] To express directed graphs and traversal of directed graphs using source code, an
ability to express the following a number of language constructs may be helpful. For
example, it may be useful to express addressing mechanisms for bus locations, packet header
layouts and instances, conditionals that can be mapped into TCAM lookup keys, and packet

buffer byte shifts as a function of the destination field offset in a packet instance.

14

WO 2019/237029 PCT/US2019/036096

[0061] To enable use of labels in a program listing, a language construct enabling expression

of integer constants may be expressed with a form such as the following:

DEF PKT LEN: 64
[0062] String constants may be used where string constants are expected (e.g., as labels)
through the following:

ETHERTYPE VLAN: ‘0x8100’
[0063] Lookup key constants may be expressed using a notation that specifies both a value
and a mask, or a set of “don’t cares” for certain nibbles and/or bits:

VAR ONE: 0x**24 //first two nibbles are don’t care

VAR TWO: OB*******1 //first 7 bits are don’t care
VAR THREE: [‘0x01’, ‘0x03’] //interpreted as value, mask

[0064] Variables or data fields on the bus (e.g., the parsed result vector bus) can be expressed
based on a location within that bus. Since there may be multiple busses referenced in a single

program, a name field, as used below, may be used to identify the bus being referenced:
BUS:

Name: prv_fv
Width: 8
Size: 104

Name: meta fv
Width: 4

size: 96

Name: prv flags

Width: 1

Size: 32
[0065] Each variable on a given bus might be expressed in source code by identifying an
offset and width value. In the example below, each variable is referenced by the notation

“{x,w}”, where “x” is the offset or byte location on the bus, and “w” is the width or size of

that variable, in bits, on the bus:
PRV _FV:
vd src: {0, 4}
v4d dst: {4, 4}

[0066] A stream of bits might be interpreted as a structured packet header, if a language
construct is used to define the format or structure of each header. In the following example, a

structure for Ethernet (“Eth”), VLAN, and IP v4 packet is defined using the “hdr_type” label:

15

WO 2019/237029 PCT/US2019/036096

hdr type:
Eth:
dst addr: 48
src_addr: 48

type: 12
vlan:

pc_vid: 16

type: 16
ip vé:

v4 other: 96
src: 32

dst: 32
[0067] The same types of packet headers can appear multiple times in a stream, so in some

examples, each instance can be referenced separately (and distinctively) using the following

notation:

hdr instance:

eth: [ethO]
vlan: [vlan 0]
ip véd: [v4]

[0068] Source code instructions may, in some examples, tend to fall into one of two
categories: instructions that involve traversing the parse graph (sequencing instructions), and
instructions that involve bus accesses, including as storing and/or saving data on the parsed
result vector (action instructions). The following instructions are examples of instructions
that might be considered sequencing instructions, and they might be expressed using the
following format:
GOTO <node>: //Unconditional transition to a node
SET KEY [<end fld., start fld> | <end reg, start reg>]
//The above line sets the lookup key to be used in the
next node.
SAVE end field, start field, register //Saves the window
region from end field to start field to a register.
This allows us to use this register as a SET KEY
target in a future node.
[0069] The following instructions are example of instructions that might be considered action

instructions (e.g. memory access and/or modification instructions), and they have the

following format:
MV <bus-var>, <pkt-fld>

MV IMM <bus-var>, imm val

16

WO 2019/237029 PCT/US2019/036096

To initialize the state of the parser hardware, an
initial state and start key can be specified, on a
per-ingress port basis, in the following way:

START STATE:

[Port]: [State]

START KEY:

[State]: [pkt fld off start, pkt fld off end]

END STATE:

[State—-name]: [State-id]

[0070] When processing packets, a checksum algorithm may be applied to data within the
packets to check for data corruption. In some examples, and in order to perform such
operations, data from within packet buffer 431 may be added to a checksum engine that
implements the checksum algorithm. Not all data required for the checksum may be
available within packet buffer 431 at the same time. Accordingly, some of the required data
may be saved for later processing by the checksum engine. To save data, the following

instruction may be used, which specifies the start and end fields as parameters:
ADD TO CKSUM fld start, fld end

[0071] In addition, mechanisms may be included within packet parsing system 410 to a
directed graph or parse graph to perform repeated traversals when the parse graph structure is
similar (e.g. overlay parsing of headers that follows the underlay headers). Such mechanisms
may reduce the number of TCAM entries for sequencing, while still enabling different action
operations corresponding to different nodes. Still further, packet parsing system 410 may
include mechanism to perform simple additions to register values, or arithmetic operations on
buffer entries, thereby enabling, for example, calculation of header lengths.

[0072] The program listing illustrated in FIG. 5 uses the conventions described above, and
illustrates a program that traverses a parse graph for processing the packet header types
illustrated in FIG. 3. By convention in the example of FIG. 5, program execution begins after
the “parse ethernet” label, and continues until the “END” label is encountered. Although the
program of FIG. 5 is a simplified example that primarily extracts a source and destination
address from an IP v4 header, the program of FIG. 5 illustrates how the previously-described
YAML-implemented language constructs might be used to write code to express a directed
graph and describe how it is traversed.

[0073] FIG. 6 is a block diagram illustrating an example system that processes source code to
parse network packet headers, in accordance with one or more aspects of the present

disclosure. In the example of FIG. 6, system 600 includes code processing computing system

17

WO 2019/237029 PCT/US2019/036096

601 and packet parsing system 410. Packet parsing system 410 of FIG. 6 may correspond to
packet parsing system 410 of FIG. 4, and may be implemented in a manner consistent with or
similar to packet parsing system 410 of FIG. 4. In other examples, packet parsing system 410
may be implemented in a manner different than that illustrated in FIG. 4. Asin FIG. 4,
packet parsing system 410 may generate a parsed result vector for subsequent processing. In
some examples, that subsequent processing may involve processing by a forwarding pipeline
followed by presenting packets to a packet switch in the manner described in U.S. Provisional
Patent Application No. 62/642,798, filed March 14, 2018, entitled “Flexible Processing of
Network Packets,” (Attorney Docket No. 1242-017USP1), the entire content of which is
incorporated herein by reference.

[0074] Code processing computing system 601 is a system, device and/or module that
translates source code, such as source code having the form illustrated in FIG. 5, into values
for storage within components or devices within packet parsing system 410. In some
examples, code processing computing system 601 may be one or more computing clusters or
a general-purpose computing system programmed to perform various support functions for
configuring packet parsing system 410 to parse a directed graph. Accordingly, code
processing computing system 601 may be implemented as any suitable computing system,
such as one or more control processing clusters, server computers, workstations, appliances,
cloud computing systems, and/or other computing systems that may be capable of performing
operations and/or functions described in accordance with one or more aspects of the present
disclosure.

[0075] Assembler module 602 may perform functions relating to translating, assembling, or
compiling source code, such as the code illustrated in FIG. 5, into machine readable form. In
some examples, such a process may take the form of generating TCAM entries, registry
entries, and/or data for storage within other storage locations. Although assembler module
602 may be described in connection with FIG. 6 as primarily translating source code into a
different (e.g., machine-readable) form, assembler module 602 may alternatively, or in
addition, perform other operations. For instance, assembler module 602 may present a user
interface to prompt a user for input when initially configuring source code or other
information for traversing a directed graph represented by source code. Assembler module
602 may also present a user interface to present information about the status of one or more
source code translations performed by assembler module 602. Accordingly, assembler
module 602 may receive information from and output information to one or more other

modules included within assembler module 602 (e.g., user interface libraries), and may
18

WO 2019/237029 PCT/US2019/036096

otherwise interact with and/or operate in conjunction with one or more other modules of code
processing computing system 601.

[0076] In general, assembler module 602 may perform operations described using software,
hardware, firmware, or a mixture of hardware, software, and firmware residing in and/or
executing at one or more computing devices. For example, code processing computing
system 601 may execute one or more of such modules with multiple processors or multiple
devices, or may execute one or more of such modules as a virtual machine executing on
underlying hardware. One or more of assembler modules 602 may execute as one or more
services of an operating system or computing platform. One or more of assembler modules
602 may execute as one or more executable programs at an application layer of a computing
platform. In other examples, functionality provided by a module could be implemented by a
dedicated hardware device.

[0077] In the example of FIG. 6, and in accordance with one or more aspects of the present
disclosure, system 600 may initialize packet parsing system 410. For instance, in some
examples, code processing computing system 601 detects input and outputs to assembler
module 602 an indication of input. Assembler module 602 determines that the input
corresponds to source code for expressing a directed graph. Assembler module 602 analyzes
the source code and generates TCAM entries and other data appropriate for processing a
directed graph by packet parsing system 410. In some examples, the other data includes
initial values (e.g., initial directed graph state and key values) for use by packet parsing
system 410. Assembler module 602 outputs the TCAM entries and other data to packet
parsing system 410 and causes the data to be stored in a TCAM device within packet parsing
system 410 (e.g., TCAM 413 of FIG. 4) and in other appropriate locations within packet
parsing system 410 (e.g., within RAM 416 or register array 417 of FIG. 4).

[0078] Packet parsing system 410 may process a stream of network packets. For instance,
still referring to FIG. 6, packet parsing system 410 detects input that it determines
corresponds to a stream of packet bytes. In response, packet parsing system 410 processes
the packet bytes by traversing the directed graph represented through the TCAM entries and
other data previously stored within packet parsing system 410 by assembler module 602. In
some examples, packet parsing system 410 parses network packet headers to generate a result
vector in the manner described in connection with FIG. 4. Packet parsing system 410 outputs
the result vector for further processing by other components, such as by a forwarding

pipeline.

19

WO 2019/237029 PCT/US2019/036096

[0079] Through techniques in accordance with one or more aspects of the present disclosure,
such as by using a TCAM to represent and process a directed graph, system 600 may enable a
flexible and high-speed method of parsing network packets. Since TCAM devices perform
queries at a high rate, a TCAM-based implementation of a network packet parser may be
significantly faster than other types of packet parsers. Further, in some examples, additional
parsing capabilities may be added to the system by modifying the TCAM entries to
incorporate such new capabilities, and with few, if any, modifications to the parsing
hardware. Such modifications may be performed by changing the source code expressing the
directed graph, and then causing assembler module 602 to reinitialize packet parsing system
410 based on the updated source code. As a result, system 600 may represent a high-speed
yet flexible network packet parsing system.

[0080] FIG. 7 is a flow diagram illustrating an example process for traversing a parse graph
represented by a TCAM-based hardware system, in accordance with one or more aspects of
the present disclosure. In the example of FIG. 7, the illustrated process may be performed by
components within packet parsing system 410 in the context of FIG. 4. In other examples,
different operations may be performed, or operations described in connection with FIG. 7
may be performed by one or more other components, modules, systems, and/or devices.
Further, in other examples, operations described in connection with FIG. 7 may be merged,
performed in a difference sequence, omitted, or may encompass additional operations not
specifically illustrated or described.

[0081] In the process illustrated in FIG. 7, and in accordance with one or more aspects of the
present disclosure, packet parsing system 410 may present a query to a TCAM device (701).
For example, with reference to FIG. 4, TCAM query module 419 of packet parsing system
410 may present a query to TCAM 413. In some examples, the query may be composed of a
state value and a key value. Initially, the state and key value may be based on values from
initialization module 411. The state and key values may later be based on input or data from
one or more other devices included within packet parsing system 410 of FIG. 4, including
data generated by or included within logic 415, register array 417, and packet buffer 431.
[0082] Packet parsing system 410 may identify a matching entry in the TCAM device (702).
For example, in FIG. 4, TCAM 413 performs a query based on the input from TCAM query
module 419. TCAM 413 determines whether the query matches any of the entries included
within TCAM 413, after accounting for any broadening effect that the mask data associated
with each entry might have on the query. When one or more matching entries are found,

TCAM 413 outputs information about the one or more matching entries to logic 415.
20

WO 2019/237029 PCT/US2019/036096

[0083] Packet parsing system 410 may generate processed data by performing, based on the
matching entry address or address from TCAM 413, one or more operations (703). For
example, logic 415 of FIG. 4 may access RAM 416 or other storage locations to determine
one or more operations that correspond to the query match identified by TCAM 413. Logic
415 may perform the operations, which may include, for example, incrementing one or more
registers within register array 417, performing another arithmetic operation, accessing data
from packet buffer 431, and/or storing data within register array 417. In some examples,
such stored data may be derived from an incoming packet stream; in other examples, such
data may be generated and/or accessed from another source. Logic 415 may also cause
packet buffer 431 to shift data out of packet buffer 431, thereby queuing new packet data for
processing.

[0084] Packet parsing system 410 may output the processed data (704). For example, logic
415 may access data within one or more register arrays 417, modify the data as processed
data, and write the processed data back to register array 417. In other examples, logic 415
may extract data within packet buffer 431 as processed data and write the data to a portion of
output bus 441 as processed data.

[0085] Packet parsing system 410 may determine a new state (705). For example, logic 415
accesses one or more storage locations within packet parsing system 410 (e.g., register array
417) and determines a new state based on the current state and/or data stored within the one
or more storage locations. Logic 415 outputs information about the new state to TCAM
query module 419.

[0086] Packet parsing system 410 may determine whether the new state is an “END” state
(706). For example, TCAM query module 419 evaluates the new state and compares the new
state to an “END” state stored within or received from initialization module 411. If TCAM
query module 419 determines that the new state corresponds to an “END” state, TCAM
query module 419 may cause packet parsing system 410 to terminate processing (707).
[0087] Packet parsing system 410 may generate a new query (708). For example, if TCAM
query module 419 determines that the new state does not correspond to the “END” state,
TCAM query module 419 presents a new query to TCAM 413. The new query may be
composed of a combination of the new state and a new key value. In some examples, the
new key value may be accessed from packet buffer 431. In other examples, the new key
value may be accessed from within RAM 416 and/or register array 417. Processing may

continue until an “END” state is reached.

21

WO 2019/237029 PCT/US2019/036096

[0088] For processes, apparatuses, and other examples or illustrations described herein,
including in any flowcharts or flow diagrams, certain operations, acts, steps, or events
included in any of the techniques described herein can be performed in a different sequence,
may be added, merged, or left out altogether (e.g., not all described acts or events are
necessary for the practice of the techniques). Moreover, in certain examples, operations, acts,
steps, or events may be performed concurrently, e.g., through multi-threaded processing,
interrupt processing, or multiple processors, rather than sequentially. Further certain
operations, acts, steps, or events may be performed automatically even if not specifically
identified as being performed automatically. Also, certain operations, acts, steps, or events
described as being performed automatically may be alternatively not performed
automatically, but rather, such operations, acts, steps, or events may be, in some examples,
performed in response to input or another event.

[0089] The Figures included herein each illustrate at least one example implementation of an
aspect of this disclosure. The scope of this disclosure is not, however, limited to such
implementations. Accordingly, other example or alternative implementations of systems,
methods or techniques described herein, beyond those illustrated in the Figures, may be
appropriate in other instances. Such implementations may include a subset of the devices
and/or components included in the Figures and/or may include additional devices and/or
components not shown in the Figures.

[0090] The detailed description set forth above is intended as a description of various
configurations and is not intended to represent the only configurations in which the concepts
described herein may be practiced. The detailed description includes specific details for the
purpose of providing a sufficient understanding of the various concepts. However, these
concepts may be practiced without these specific details. In some instances, well-known
structures and components are shown in block diagram form in the referenced figures in order
to avoid obscuring such concepts.

[0091] Accordingly, although one or more implementations of various systems, devices,
and/or components may be described with reference to specific Figures, such systems,
devices, and/or components may be implemented in a number of different ways. For
instance, one or more devices illustrated in the Figures herein (e.g., Figure 1, Figure 2, Figure
4, and/or Figure 6) as separate devices may alternatively be implemented as a single device;
one or more components illustrated as separate components may alternatively be
implemented as a single component. Also, in some examples, one or more devices illustrated

in the Figures herein as a single device may alternatively be implemented as multiple devices;
22

WO 2019/237029 PCT/US2019/036096

one or more components illustrated as a single component may alternatively be implemented
as multiple components. Each of such multiple devices and/or components may be directly
coupled via wired or wireless communication and/or remotely coupled via one or more
networks. Also, one or more devices or components that may be illustrated in various
Figures herein may alternatively be implemented as part of another device or component not
shown in such Figures. In this and other ways, some of the functions described herein may
be performed via distributed processing by two or more devices or components.

[0092] Further, certain operations, techniques, features, and/or functions may be described
herein as being performed by specific components, devices, and/or modules. In other
examples, such operations, techniques, features, and/or functions may be performed by
different components, devices, or modules. Accordingly, some operations, techniques,
features, and/or functions that may be described herein as being attributed to one or more
components, devices, or modules may, in other examples, be attributed to other components,
devices, and/or modules, even if not specifically described herein in such a manner.

[0093] In one or more examples, the functions described may be implemented in hardware,
software, firmware, or any combination thereof. If implemented in software, the functions
may be stored, as one or more instructions or code, on and/or transmitted over a computer-
readable medium and executed by a hardware-based processing unit. Computer-readable
media may include computer-readable storage media, which corresponds to a tangible
medium such as data storage media, or communication media including any medium that
facilitates transfer of a computer program from one place to another (e.g., pursuant to a
communication protocol). In this manner, computer-readable media generally may
correspond to (1) tangible computer-readable storage media, which is non-transitory or (2) a
communication medium such as a signal or carrier wave. Data storage media may be any
available media that can be accessed by one or more computers or one or more processors to
retrieve instructions, code and/or data structures for implementation of the techniques
described in this disclosure. A computer program product may include a computer-readable
medium.

[0094] By way of example, and not limitation, such computer-readable storage media can
include RAM, ROM, EEPROM, optical disk storage, magnetic disk storage, or other
magnetic storage devices, flash memory, or any other medium that can be used to store
desired program code in the form of instructions or data structures and that can be accessed
by a computer. Also, any connection is properly termed a computer-readable medium. For

example, if instructions are transmitted from a website, server, or other remote source using a
23

WO 2019/237029 PCT/US2019/036096

coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), or wireless
technologies such as infrared, radio, and microwave, then the coaxial cable, fiber optic cable,
twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are
included in the definition of medium. It should be understood, however, that computer-
readable storage media and data storage media do not include connections, carrier waves,
signals, or other transient media, but are instead directed to non-transient, tangible storage
media. Combinations of the above should also be included within the scope of computer-
readable media.

[0095] Instructions may be executed by one or more processors, such as one or more digital
signal processors (DSPs), general purpose microprocessors, application specific integrated
circuits (ASICs), field programmable logic arrays (FPGAs), or other equivalent integrated or
discrete logic circuitry. Accordingly, the terms “processor” or “processing circuitry” as used
herein may each refer to any of the foregoing structure or any other structure suitable for
implementation of the techniques described. In addition, in some examples, the functionality
described may be provided within dedicated hardware and/or software modules. Also, the
techniques could be fully implemented in one or more circuits or logic elements.

[0096] The techniques of this disclosure may be implemented in a wide variety of devices or
apparatuses, including a wireless handset, a mobile or non-mobile computing device, a
wearable or non-wearable computing device, an integrated circuit (IC) or a set of ICs (e.g., a
chip set). Various components, modules, or units are described in this disclosure to
emphasize functional aspects of devices configured to perform the disclosed techniques, but
do not necessarily require realization by different hardware units. Rather, as described above,
various units may be combined in a hardware unit or provided by a collection of
interoperating hardware units, including one or more processors as described above, in

conjunction with suitable software and/or firmware.

24

WO 2019/237029 PCT/US2019/036096

WHAT IS CLAIMED IS:

1. An apparatus comprising:

ternary content-addressable memory (TCAM) storing a plurlaity of entries, each entry
including a state value and a key value, wherein at least a portion of the key value is capable
of being masked when the TCAM is queried by query data, and wherein the TCAM identifies
a matching entry in response to being queried by the query data;

one or more storage devices storing operation information for each of the plurality of
entries stored in the TCAM, wherein the operation information specifies operations
associated with each respective entry in the plurality of entries stored in the TCAM; and

logic connected to the TCAM and the one or more storage devices, wherein the logic

is configured perform the operations associated with the matching entry.

2. The apparatus of claim 1, wherein to perform the operations associated with the
matching entry, the logic is further configured to:

present the query data to the TCAM, wherein the query data includes state data and
key data;

receive, from the TCAM, information about the matching entry identified by the
TCAM;

generate processed data by performing, based on the information about the matching
entry, at least one operation on data stored within the one or more storage devices;

output the processed data;

determine, based on the information about the matching entry, new state data;

determine, based on the information about the matching entry, a new key value; and

present new query data to the TCAM, wherein the new query data includes the new

state data and the new key value.

3. The apparatus of claim 2, wherein the one or more storage devices include a packet
buffer that stores information about incoming packets, and wherein to generate processed
data, the logic is further configured to:

perform network packet header parsing operations on network packet headers stored
within the packet buffer, wherein the network packet headers include at least one of an

Ethernet packet header, a VLAN packet header, and an IP version 4 packet header.

25

WO 2019/237029 PCT/US2019/036096

4. The apparatus of claim 3, wherein to generate processed data, the logic is further
configured to:

extract data from the packet buffer.

5. The apparatus of claim 3, wherein to generate processed data, the logic is further
configured to:
perform one or more arithmetic operations on data stored within the one or more

storage devices.

6. The apparatus of claim 3, wherein the one or more storage devices include an array of
registers, and wherein to generate processed data, the logic is further configured to:
store additional data within the array of registers, wherein the additional data includes

data not included within the incoming packets.

7. The apparatus of claim 3, wherein to generate processed data, the logic is further
configured to:

shift data out of the packet buffer.

8. The apparatus of claim 3, wherein the one or more storage devices include a parsed
result vector bus, and wherein to output the processed data, the logic is further configured to:

write data to the parsed result vector bus.

0. The apparatus of claim 3, wherein to determine the new key data, the logic is further
configured to:

access data from the packet buffer.

10. The apparatus of claim 2, wherein to determine the new key data, the logic is further
configured to:
determine, further based on information included within the one or more storage

devices, the new key data.

11. The apparatus of claim 2, wherein the one or more storage devices include an array of
registers, and wherein to determine the new key data, the logic is further configured to:

access data from the array of registers.

26

WO 2019/237029 PCT/US2019/036096

12. The apparatus of claim 2, wherein the logic is further configured to:
determine an initial value for the state data;
determine an initial value for the key data;
initialize the TCAM with TCAM entry data;
initialize the one or more storage devices with initial storage device values;
identify an end state; and

determine if the state data matches the end state.

13. The apparatus of claim 12, further comprising:
an assembler module configured to generate, based on a source code listing, the initial
value for the state data, the initial value for the key data, the TCAM entry data, and the initial

storage device values.

14. A method comprising:

presenting, by logic connected to ternary content-addressable memory (TCAM),
query data to the TCAM, wherein the query data includes state data and key data;

receiving, by the logic and from the TCAM, information about a matching address
identified by the TCAM,;

generating processed data by performing, by the logic and based on the information
about the matching address, at least one operation on data stored within one or more storage
devices,

outputting, by the logic, the processed data;

determining, by the logic and based on the information in the one or more storage
devices, new state data;

determining, by the logic and based on the information in the one or more storage
devices, a new key value; and

presenting, by the logic, new query data to the TCAM, wherein the new query data

includes the new state data and the new key value.

27

WO 2019/237029 PCT/US2019/036096

15. The method of claim 14, wherein the one or more storage devices include a packet
buffer that stores information about incoming packets, and wherein generating the processed
data includes:

performing network packet header parsing operations on network packet headers
stored within the packet buffer, wherein the network packet headers include at least one of an

Ethernet packet header, a VLAN packet header, and an IP version 4 packet header.

16. The method of claim 15, wherein generating processed data includes:

extracting data from the packet buffer.

17. The method of claim 15, wherein generating processed data includes:
performing one or more arithmetic operations on data stored within the one or more

storage devices.

18. The method of claim 15, wherein the one or more storage devices include an array of
registers, and wherein generating processed data includes:
storing additional data within the array of registers, wherein the additional data

includes data not included within the incoming packets.

19. The method of claim 15, wherein generating processed data includes:

shifting data out of the packet buffer.

20. A device for parsing network packet headers, comprising:
ternary content-addressable memory (TCAM);
one or more storage devices including an array of registers;
a packet buffer that stores information about incoming packets; and
logic connected to the TCAM, the one or more storage devices, and the packet buffer,
wherein the logic is configured to:
present query data to the TCAM, wherein the query data includes state data
and key data,
receive, from the TCAM, information about a matching address identified by
the TCAM,
generate processed data by performing, based on the information about the

matching address, at least one operation on data stored within the one

28

WO 2019/237029 PCT/US2019/036096

or more storage devices, wherein the at least one operation includes at
least one of extracting data from the packet buffer, performing an
arithmetic operation, storing data within the array of registers, and
writing data to an output bus,

output the processed data,

determine, based on the information about the matching address, new state
data,

determine, based on the information about the matching address, a new key
value, and

present new query data to the TCAM, wherein the new query data includes the

new state data and the new key value.

29

WO 2019/237029 PCT/US2019/036096
1/7

101~y
FIG. 1A
102 103
poosmestmmmmmmee SRR RN
i INITIAL STATE=00 RIHIDIN NEW AR
§ INITIAL KEY=R1(10) N \\\\\\\\\\\\Q\ §\§\}\ nminaaw
i ENDSTATE=11 i R DUERIET NER
Pecosoeomoceneene - 1 00 00 11 01 R3(11) A
7 2 00 01 1 10 R3(11) B
= 5 3 01 XX 00 1 - -
4 10 XX 00 11 - -
5 1 XX XX - - -
.
* FIG. 1B
113 17
S 115 N\
. A AN \
E1: 00.00.11 RO: 00
10— —» E2:00.01.11 —»| LOGIC |——» R1:10
E3: 01.XX.00 R2: 00
E4: 10.XX.00 " R3: 11
E5: 11.XX.XX = .
» o
[4
L4
L]
TCAM KEY
| ™ query ‘\
INITIALIZER 119
=00 g FIG. 1C

KEY=R0

END=11 \
1M1

WO 2019/237029 PCT/US2019/036096
2/7

01—

key=00

FIG. 2A
202 203
{ INTIAL STATE=00 ‘ . .
} INITIAL KEY=RO(10) 3 N AR\ R AR
i END STATE=11 AR ‘\\\\\\\\\ \\ \
ety ' 1 00 00 1 01 R2(11) B
E— 2 00 00 00 00 R0(01,00) | A:k=k-1
3 01 00 00 1 - -
4 10 00 00 1 - -
5 1 XX XX XX - -
.
* FIG. 2B
113 17
X 115 X
. ma N .
E1: 00.00.11 R0: 10,01,00
10—y —»{ E2:00.00.00 —» LOGIC |——»{ R1:10
E3: 01.00.00 R2: 11
E4: 10.00.00 N R3: 11
E5: 11.XX.XX < -
[4 @ °
L4
L]
TCAM KEY
| ™ query ‘\
INITIALIZER 119
$=00 FIG. 2C

KEY=R0 <
END=11
\111

PCT/US2019/036096

WO 2019/237029

3/7

€ Old

aiog
<
veo 9 8 8
L S a
(§)
JENECTE
alog
4
e oL | ok | 9l 8 8
Lla]l S a
X y]
NVIA 13N¥3HLT
ai0¢
e
e 43 43 96 9 8 8
1sa | ous ¥IHLO VA L S a
N} X) J
pAdl JENRECTE
Vi0€
/
43 43 96 oL | ok | 9l 8 8
1sa | ous ¥IHLO VA Lla]l S a
. N . J
pAd NVIA 13N¥3HLT

PCT/US2019/036096

WO 2019/237029

4/7

1NO S31A9 13M0Vd

ey

y

< (d)
¥344n9 13Movd

(¥4 4 LIy
/ 31v1S aN3
> ‘AT TVILINI
‘J1V1S TYILINI
BLY~ FZIVIIINI

> AY3ND ¢ _

3LVLS ‘A

¥ "OId

NI S31A8 L3XOvd

00=I ‘w=A3M ‘L1=S :§3

9
oLy >
// =
€y 1
Y Wy
3% «— 21901
0d
7
7 _ \
Ly Sy

11=S <= 00=IN ‘»=A3N ‘01=S :¥3

11=S <= 00=IN ‘»=A3N ‘10=S :€3

€d=) ‘2=S <= L1=IN 0L=A3N 00=S :Z3

+—

L L4IHS [0°Z1a'TL]d LM [L1d=) 00=0d <= LL=IN LO=ATM 00=S ‘13

Ely

o

Sng

374

WO 2019/237029

FIG. 5

PCT/US2019/036096
577

/* Constants */

CONSTANTS :
ETHERTYPE_VLAN: *0x8100/
ETHERTYPE_IPV4: ‘0x0800/
DEFAULT: [‘0x0’, ‘0x0']

HDR_TYPE:

dst_addr: 48
src_addr: 48

ip_v4:

type: 12
pc_vid: 16
type: 16

v4 other: 96
srec: 32

dst: 32

HDR_INSTANCE:

ip_v4 . [v4]

Name: prv_fv
Width: 8
Size: 104

_V4_src: {0: 4}
v4 _dst: {4: 4}

START STATE:
Ox**: parse ethernet // Assuming B-bit ingress port

START KEY:
parse_ethernet: [ethO.type.0, ethO.type.1]

END_STATE:
END: 255

/* Parse Graph specification */
parse_ethernet: |
ETHERTYPE_IPV4:

ETHERTYPE VLAN:

DEFAULT:

parse_vlan: |
ETHERTYPE_IPV4:

DEFAULT:

parse_v4: |
DEFAULT:
MV prv_fv.v4_src, véd.src
MV prv_fv.v4_dst, vd.dst
Goto END

NOP

[ethO]
[v1ianO]

SHIFT v4.src
GOTO parse v4

SHIFT vlanO.pc_vid
SET_KEY vlanO.type.O, vlanO.type.1l
GOTO parse_vlan

GOTO END

SHIFT v4.src
GOTO parse_v4

GOTO END

SUBSTITUTE SHEET (RULE 26)

WO 2019/237029 PCT/US2019/036096

6/7
600~
INITIAL VALUES
CODE (STATE, KEY, REGISTERS)
PROCESSING
—> SYSTEM TCAM ENTRIES RESULT VECTOR
SOURCE CODE 601 >
—
ASSEMBLER PACKET
SYSTEM
410
PACKET BYTES IN PACKET BYTES OUT
> —>

FIG. 6

WO 2019/237029 PCT/US2019/036096
717

g QUERY TCAM

l

IDENTIFY MATCHING
ENTRY IN TCAM

~
o
—

|N
=3
N

GENERATE
PROCESSED DATA

|

OUTPUT PROCESSED
DATA

703|

~J
P

0

GENERATE NEW
QUERY

~J
=
(<]

DETERMINE NEW
STATE

~J
b=
o

TERMINATE
YES PROCESSING

END STATE?

NO

FIG. 7

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2019/036096

A. CLASSIFICATION OF SUBJECT MATTER

INV. HO4L12/743 GOB6N5/02 GO6F16/903
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

HO4AL GO6N GO6F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™ | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

X TSAT HSIANG-JEN ET AL: "A Flexible 1,2,
Wildcard-Pattern Matching Accelerator via 4-14

Simultaneous Discrete Finite Automata", 16-2

IEEE TRANSACTIONS ON VERY LARGE SCALE

INTEGRATION (VLSI) SYSTEMS,

vol. 25, no. 12,

1 December 2017 (2017-12-01), pages

3302-3316, XP011673333,

ISSN: 1063-8210, DOI:

10.1109/TVLSI.2017.2671408

[retrieved on 2017-11-21]

Y Sec. II B.; 3,15

figures 6-8

Sec. III A.
Sec. III C.
Sec. III D.

_/__

Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents : L
"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand

"A" document defining the general state of the art which is not considered the principle or theory underlying the invention

to be of particular relevance

"E" earlier application or patent but published on or after the international "X" document of particular relevance; the claimed invention cannot be

filing date considered novel or cannot be considered to involve an inventive
"L" document which may throw doubts on priority claim(s) or which is step when the document is taken alone
cited to establish the publication date of another citation or other

. e "Y" document of particular relevance; the claimed invention cannot be
special reason (as specified)

considered to involve an inventive step when the document is

"O" document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents, such combination
means being obvious to a person skilled in the art

"P" document published prior to the international filing date but later than
the priority date claimed "&" document member of the same patent family

Date of the actual completion of the international search Date of mailing of the international search report

15 July 2019 24/07/2019

Name and mailing address of the ISA/ Authorized officer
European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040, . .
éx%ﬂ1#&34&ﬁh6 Tortelli, Michele

Form PCT/ISA/210 (second sheet) (April 2005)

page 1 of 2

INTERNATIONAL SEARCH REPORT

International application No

Pattern Matching for Network IDS/IPS",
PROCEEDINGS OF IEEE INTERNATIONAL
CONFERENCE ON NETWORK PROTOCOLS, ICNP
'06.,

1 November 2006 (2006-11-01), pages
187-196, XP031051917,

ISBN: 978-1-4244-0593-0

Sec. II B;

figure 2

PCT/US2019/036096

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category™ | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

Y US 2011/116507 Al (PAIS ALON [IL] ET AL) 3,15
19 May 2011 (2011-05-19)

A paragraph [0020] - paragraph [0021]; 1,2,
figures 2, 3, 4a-5b 4-14,
paragraph [0028] 16-20
paragraph [0035] - paragraph [0037]
paragraph [0042]
paragraph [0050] - paragraph [0060]
paragraph [0064] - paragraph [0065]

A MANSOOR ALICHERRY ET AL: "High Speed 1-20

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

page 2 of 2

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2019/036096
Patent document Publication Patent family Publication
cited in search report date member(s) date

US 2011116507 Al 19-05-2011 CN 102577273 A 11-07-2012
JP 2013511223 A 28-03-2013
JP 2016001897 A 07-01-2016
US 2011116507 Al 19-05-2011
WO 2011060436 Al 19-05-2011

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - claims
	Page 28 - claims
	Page 29 - claims
	Page 30 - claims
	Page 31 - claims
	Page 32 - drawings
	Page 33 - drawings
	Page 34 - drawings
	Page 35 - drawings
	Page 36 - drawings
	Page 37 - drawings
	Page 38 - drawings
	Page 39 - wo-search-report
	Page 40 - wo-search-report
	Page 41 - wo-search-report

