wo 2014/186058 A 1[I I N0FV0 00T 0 O

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2014/186058 A1l

20 November 2014 (20.11.2014) WIPO I PCT
(51) International Patent Classification: (81) Designated States (uniess otherwise indicated, for every
GO6F 19/00 (2011.01) GO6F 9/44 (2006.01) kind of national protection available): AE, AG, AL, AM,
. L AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
(21) International Application Number: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
PCT/US2014/031921 DO, DZ. EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
(22) International Filing Date: HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
26 March 2014 (26.03.2014) KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
. MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
(25) Filing Language: English OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,
(26) Publication Language: English SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, T™M,
TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM,
(30) Priority Data: ZW.
61/824,544 17 May 2013 (17.05.2013) Us
14/044.417 2 October 2013 (02.10.2013) ys (84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
(71) Applicant: ORACLE INTERNATIONAL CORPORA- GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
TION [US/US]; 500 Oracle Parkway, Redwood Shores, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
California 94065 (US). TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
(72) Taventors: LEIGH, John; 720 W. Capistrano Way, San EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
. . . MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
Mateo, California 94402 (US). ALLAN, David; 1112
Blackfield Way, Mountain View, California 94040 (US). TR), OAPL(BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,
Y. KM, ML, MR, NE, SN, TD, TG).
LAU, Kwok-hung (Thomas); 1070 Mercedes Avenue, i ? T T T
#25, Los Altos, California 94022 (US). Published:
(74) Agents: PARMENTER, Sean et al.; Kilpatrick Townsend — with international search report (Art. 21(3))

& Stockton LLP, Eighth Floor, Two Embarcadero Center,
San Francisco, California 94111 (US).

(54) Title: USE OF PROJECTOR AND SELECTOR COMPONENT TYPES FOR ETL MAP DESIGN

/ 1900

f PROJECTOR TYPE

]

c3

81

[

ATTRIBUTE LIST

c1

|/ TYPE

DECLARED

SELECTOR

(57) Abstract: A data integration system is
disclosed that incorporates one or more
techniques for simplifying the design and
maintenance of a mapping. As components
are added or removed to an existing design,
the data integration system removes the
need to specify all input and output attrib-
utes. In one aspect, components types are
implemented that allow assignment expres-

ATTRIBUTE LIST

sions to reference all or part of upstream
T components. Therefore, attributes of certain
types of components can be propagated to

DERIVED

c2

82

FIG. 19

downstream components or otherwise inher-
ited from upstream components with minim-
al effort on the part of a map designer. Dur-
ing code generation the attributes required
to be projected by any component can be
derived based on the needs of the down-
stream components.

10

15

20

25

WO 2014/186058 PCT/US2014/031921

USE OF PROJECTOR AND SELECTOR COMPONENT TYPES FOR
ETL MAP DESIGN

BACKGROUND OF THE INVENTION
[0001] In today's increasingly fast-paced business environment, organizations need to use
more specialized software applications. Additionally, organizations need to ensure the
coexistence of these applications on heterogeneous hardware platforms and systems and

guarantee the ability to share data between applications and systems.

[0002] Data integration is a resource-intensive procedure that requires a proprietary server
having specially designed software that specifically configures it to perform data migration
from one system to another. It is in these areas that typically results in poor, or inefficient

performance.

[0003] Accordingly, what is desired is to solve problems relating to developing data
integration scenarios, some of which may be discussed herein. Additionally, what is desired
is to reduce drawbacks relating to developing data integration scenarios, some of which may

be discussed herein.

BRIEF SUMMARY OF THE INVENTION
[0004] The following portion of this disclosure presents a simplified summary of one or
more innovations, embodiments, and/or examples found within this disclosure for at least the
purpose of providing a basic understanding of the subject matter. This summary does not
attempt to provide an extensive overview of any particular embodiment or example.
Additionally, this summary is not intended to identify key/critical elements of an embodiment
or example or to delineate the scope of the subject matter of this disclosure. Accordingly,
one purpose of this summary may be to present some innovations, embodiments, and/or
examples found within this disclosure in a simplified form as a prelude to a more detailed

description presented later.

[0005] In various embodiments, a data integration system enables users to create a logical

design which is platform and technology independent. The user can create a logical design

10

15

20

25

30

WO 2014/186058 PCT/US2014/031921

that defines, at a high level, how a user wants data to flow between sources and targets. The
tool can analyze the logical design, in view of the user’s infrastructure, and create a physical
design. The logical design can include a plurality of components corresponding to each
source and target in the design, as well as operations such as joins or filters, and access
points. Each component when transferred to the physical design generates code to perform
operations on the data. Depending on the underlying technology (e.g., SQL Server, Oracle,
Hadoop, etc.) and the language used (SQL, pig, etc.) the code generated by each component
may be different.

[0006] In one aspect, a user of data integration system is not required to specify all data
attributes at each component in the logical design, from start to end. The data integration
system provides a plurality of component types, such as projector and selector types, that
avoid the need to fully declare the information that flows through the logical design. The
data integration system is able to decide what attributes are needed at operations represented
by predetermined component types. This simplifies both the design and maintenance. In
various aspects, data transformation and migration is provided that leverages existing
RDBMS resources and capabilities to avoid the need for a separate proprietary ETL server to

achieve improved performance.

[0007] In one embodiment, a method for facilitating generation of a data mapping includes
receiving information specifying one or more components of a logical design, wherein at
least one of the one or more components is of a first type. A set of data attributes visible to
downstream components in the logical design is determined of the at least one of the one or
more components that is of the first type based on upstream components in the logical design.
Information indicative is then generated of the set of attributes visible to the downstream
components in the logical design of the at least one of the one or more components that is of
the first type. In one aspect, determining the set of data attributes visible to the downstream
components in the logical design of the at least one of the one or more components that is of
the first type may include deriving one or more attributes visible from an upstream
component and exposing the one or more attributes to a downstream component. In another
aspect, receiving the information specifying the one or more components of the logical design
may include receiving information indicative of an operation that changes shape of the

information flowing through the logical design.

10

15

20

25

30

WO 2014/186058 PCT/US2014/031921

[0008] In some embodiments, receiving the information specifying the one or more
components of the logical design may include receiving information indicative of an
operation that controls the flow of information flowing through the logical design but does
not change shape of the information flowing through the logical design. In further
embodiments, receiving the information specifying the one or more components of the
logical design may include receiving information indicative of a source component having
one or more attributes of data stored in a source datastore. Receiving the information
specifying the one or more components of the logical design may include receiving
information indicative of a target component having one or more attributes of data to be

stored in a target datastore.

[0009] Generating the information indicative of the set of attributes visible to the
downstream components in the logical design of the at least one of the one or more
components that is of the first type may include exporting a list of attributes to a downstream
component. In one embodiment, a change may be received in the logical design through the
introduction or removal of a component or an attribute into the logical design. A
determination of whether the change in the logical design affects the at least one of the one or
more components that is of the first type. Based on a determination that the change in the
logical design affects the at least one of the one or more components that is of the first type,

an updated set of data attributes visible to downstream components may be determined.

[0010] In further embodiments, a change is received in the logical design through the
introduction of a component or an attribute into the logical design. A determination may be
made whether the change in the logical design affects the at least one of the one or more
components that is of the first type. Based on a determination that the change in the logical
design affects the at least one of the one or more components that is of the first type, the set
of data attributes visible to downstream components may be preserved. In another aspect,
based on a determination that the change in the logical design affects the at least one of the
one or more components that is of the first type, the set of data attributes visible to

downstream components may be automatically renamed.

[0011] In one embodiment, a non-transitory computer-readable medium stores computer-
executable code for facilitating generation of a data mapping. The non-transitory computer-
readable medium may include code for receiving information specifying one or more

components of a logical design, wherein at least one of the one or more components is of a

10

15

20

25

30

WO 2014/186058 PCT/US2014/031921

first type, code for determining a set of data attributes visible to downstream components in
the logical design of the at least one of the one or more components that is of the first type
based on upstream components in the logical design, and code for generating information
indicative of the set of attributes visible to the downstream components in the logical design

of the at least one of the one or more components that is of the first type.

[0012] In another embodiment, a system for facilitating generation of a data mapping may
include a processor and a memory in communication with the processor and configured to
store a set of instructions which when executed by the processor configure the processor to
receive information specifying one or more components of a logical design, wherein at least
one of the one or more components is of a first type, determine a set of data attributes visible
to downstream components in the logical design of the at least one of the one or more
components that is of the first type based on upstream components in the logical design, and
generate information indicative of the set of attributes visible to the downstream components

in the logical design of the at least one of the one or more components that is of the first type.

[0013] In one embodiment, a system for facilitating generation of a data mapping includes
a receiving unit configured to receive information specifying one or more components of a
logical design, wherein at least one of the one or more components is of a first type; a
determining unit configured to determine a set of data attributes visible to downstream
components in the logical design of the at least one of the one or more components that is of
the first type based on upstream components in the logical design; and a generating unit
configured to generate information indicative of the set of attributes visible to the
downstream components in the logical design of the at least one of the one or more
components that is of the first type. Determining the set of data attributes visible to the
downstream components in the logical design of the at least one of the one or more
components that is of the first type may include deriving one or more attributes visible from

an upstream component and exposing the one or more attributes to a downstream component.

[0014] The information specifying the one or more components of the logical design may
include information indicative of an operation that changes shape of the information flowing
through the logical design. The information specifying the one or more components of the
logical design may include information indicative of an operation that controls the flow of
information flowing through the logical design but does not change shape of the information

flowing through the logical design. The information specifying the one or more components

10

15

20

25

30

WO 2014/186058 PCT/US2014/031921

of the logical design may include information indicative of a source component having one or
more attributes of data stored in a source datastore. The information specifying the one or
more components of the logical design may include information indicative of a target
component having one or more attributes of data to be stored in a target datastore.

Generating the information indicative of the set of attributes visible to the downstream
components in the logical design of the at least one of the one or more components that is of

the first type may include exporting a list of attributes to a downstream component.

[0015] In one embodiment, the receiving unit is further configured to receive a change in
the logical design through the introduction or removal of a component or an attribute into the
logical design; the determining unit is further configured to determine whether the change in
the logical design affects the at least one of the one or more components that is of the first
type; and the determining unit is further configured to, based on a determination that the
change in the logical design affects the at least one of the one or more components that is of

the first type, determine an updated set of data attributes visible to downstream components.

[0016] In one aspect, the system may further include a preserving unit, wherein the
receiving unit is further configured to receive a change in the logical design through the
introduction of a component or an attribute into the logical design; the determining unit is
further configured to determine whether the change in the logical design affects the at least
one of the one or more components that is of the first type; and the preserving unit is
configured to, based on a determination that the change in the logical design affects the at
least one of the one or more components that is of the first type, preserve the set of data

attributes visible to downstream components.

In another aspect, the system may further include a renaming unit, wherein the receiving unit
is further configured to receive a change in the logical design renaming a component or an
attribute; the determining unit is further configured to determine whether the change in the
logical design affects the at least one of the one or more components that is of the first type;
and the renaming unit is configured to, based on a determination that the change in the logical
design affects the at least one of the one or more components that is of the first type, rename

the set of data attributes visible to downstream components.

[0017] A further understanding of the nature of and equivalents to the subject matter of this

disclosure (as well as any inherent or express advantages and improvements provided) should

WO 2014/186058 PCT/US2014/031921

be realized in addition to the above section by reference to the remaining portions of this

disclosure, any accompanying drawings, and the claims.

BRIEF DESCRIPTION OF THE DRAWINGS
[0018] In order to reasonably describe and illustrate those innovations, embodiments,
and/or examples found within this disclosure, reference may be made to one or more
accompanying drawings. The additional details or examples used to describe the one or more
accompanying drawings should not be considered as limitations to the scope of any of the
claimed inventions, any of the presently described embodiments and/or examples, or the

presently understood best mode of any innovations presented within this disclosure.

[0019] FIG. I is a simplified illustration of a system that may incorporate an embodiment

of the present invention.

[0020] FIG. 2 is a block diagram of a data integration system according to an embodiment

of the present invention.

[0021] FIG. 3 is a simplified block diagram of a hardware/software stack that may be used

to implement a data integration system according to an embodiment of the present invention.

[0022] FIG. 4 is a block diagram of an environment having various heterogeneous data
sources for which data integration scenarios may be created in various embodiments of the

present invention.

[0023] FIGS. 5A and 5B depict simplified data flows in conventional data integration

processing that may be performed by the data integration system.

[0024] FIGS. 6A and 6B depict simplified data flows in next generation data integration
processing that may be performed by the data integration system, in accordance with an

embodiment of the present invention.

[0025] FIG. 7 is a simplified block diagram of interactions between an ODI Studio and a
repository of the data integration system in one embodiment according to the present

invention.

[0026] FIG. 8 depicts a flowchart of a method for creating a data integration scenario in

accordance with an embodiment of the present invention.

10

15

20

25

WO 2014/186058 PCT/US2014/031921

[0027] FIG. 9 is a screenshot of a user interface for creating data integration scenarios in

accordance with an embodiment of the present invention.

[0028] FIG. 10 depicts a flowchart of a method for creating a mapping in accordance with

an embodiment of the present invention.

[0029] FIG. 11 is a screenshot of a user interface for providing mapping information in

data integration scenarios in accordance with an embodiment of the present invention.

[0030] FIG. 12 is a screenshot of a user interface for providing flow information in data

integration scenarios in accordance with an embodiment of the present invention.

[0031] FIG. 13 depicts a flowchart of a method for creating a package in accordance with

an embodiment of the present invention.

[0032] FIG. 14 is a screenshot of a user interface for providing package sequence
information in a data integration scenario in accordance with an embodiment of the present

invention.

[0033] FIG. 1S5 depicts a flowchart of a method for deploying a data integration scenario in

accordance with an embodiment of the present invention.

[0034] FIGS. 16A and 16B are simplified block diagrams of mappings in one embodiment

according to the present invention.

[0035] FIG. 17 depicts a flowchart of a method for deriving component attributes based on

component type in accordance with an embodiment of the present invention.

[0036] FIG. 18 is a simplified block diagram of a mapping of FIGS. 16A and 16B with a

filter component in one embodiment according to the present invention.

[0037] FIG. 19 is a simplified block diagram of a mapping in one embodiment according to

the present invention.

[0038] FIG. 20 depicts a flowchart of a method for generate components in accordance

with an embodiment of the present invention.

[0039] FIG. 21 is a simplified block diagram of a computer system that may be used to

practice embodiments of the present invention.

[0040] FIG. 22 is a simplified block diagram of a system for facilitating generation of a

data mapping according to an embodiment.

10

15

20

25

30

WO 2014/186058 PCT/US2014/031921

DETAILED DESCRIPTION OF THE INVENTION
[0041] Introduction

[0042] In various embodiments, a data integration system enables users to create a logical
design which is platform and technology independent. The user can create a logical design
that defines, at a high level, how a user wants data to flow between sources and targets. The
tool can analyze the logical design, in view of the user’s infrastructure, and create a physical
design. The logical design can include a plurality of components corresponding to each
source and target in the design, as well as operations such as joins or filters, and access
points. Each component when transferred to the physical design generates code to perform
operations on the data. Depending on the underlying technology (e.g., SQL Server, Oracle,
Hadoop, etc.) and the language used (SQL, pig, etc.) the code generated by each component
may be different.

[0043] In one aspect, a user of data integration system is not required to specify all data
attributes at each component in the logical design, from start to end. The data integration
system provides a plurality of component types, such as projector and selector types, that
avoid the need to fully declare the information that flows through the logical design. The
data integration system is able to decide what attributes are needed at operations represented

by predetermined component types. This simplifies both the design and maintenance.

[0044] FIG. 1 is a simplified illustration of system 100 that may incorporate an
embodiment or be incorporated into an embodiment of any of the innovations, embodiments,
and/or examples found within this disclosure. FIG. I is merely illustrative of an embodiment
incorporating the present invention and does not limit the scope of the invention as recited in
the claims. One of ordinary skill in the art would recognize other variations, modifications,

and alternatives.

[0045] In one embodiment, system 100 includes one or more user computers 110 (e.g.,
computers 110A, 110B, and 110C). User computers 110 can be general purpose personal
computers (including, merely by way of example, personal computers and/or laptop
computers running any appropriate flavor of Microsoft Corp.’s WindowsTM and/or Apple
Corp.’s MacintoshTM operating systems) and/or workstation computers running any of a
variety of commercially-available UNIXTM or UNIX-like operating systems. These user

computers 110 can also have any of a variety of applications, including one or more

10

15

20

25

30

WO 2014/186058 PCT/US2014/031921

applications configured to perform methods of the invention, as well as one or more office

applications, database client and/or server applications, and web browser applications.

[0046] Alternatively, user computers 110 can be any other electronic device, such as a thin-
client computer, Internet-enabled mobile telephone, and/or personal digital assistant, capable
of communicating via a network (e.g., communications network 120 described below) and/or
displaying and navigating web pages or other types of electronic documents. Although the
exemplary system 100 is shown with three user computers, any number of user computers or

devices can be supported.

[0047] Certain embodiments of the invention operate in a networked environment, which
can include communications network 120. Communications network 120 can be any type of
network familiar to those skilled in the art that can support data communications using any of
a variety of commercially-available protocols, including without limitation TCP/IP, SNA,
IPX, AppleTalk, and the like. Merely by way of example, communications network 120 can
be a local area network (“LAN”), including without limitation an Ethernet network, a Token-
Ring network and/or the like; a wide-area network; a virtual network, including without
limitation a virtual private network (“VPN”); the Internet; an intranet; an extranet; a public
switched telephone network (“PSTN”); an infra-red network; a wireless network, including
without limitation a network operating under any of the IEEE 802.11 suite of protocols, the
BluetoothTM protocol known in the art, and/or any other wireless protocol; and/or any

combination of these and/or other networks.

[0048] Embodiments of the invention can include one or more server computers 130 (e.g.,
computers 130A and 130B). Each of server computers 130 may be configured with an
operating system including without limitation any of those discussed above, as well as any
commercially-available server operating systems. Each of server computers 130 may also be
running one or more applications, which can be configured to provide services to one or more

clients (e.g., user computers 110) and/or other servers (e.g., server computers 130).

[0049] Merely by way of example, one of server computers 130 may be a web server,
which can be used, merely by way of example, to process requests for web pages or other
electronic documents from user computers 110. The web server can also run a variety of
server applications, including HTTP servers, FTP servers, CGI servers, database servers, Java

servers, and the like. In some embodiments of the invention, the web server may be

10

15

20

25

30

WO 2014/186058 PCT/US2014/031921

configured to serve web pages that can be operated within a web browser on one or more of

the user computers 110 to perform methods of the invention.

[0050] Server computers 130, in some embodiments, might include one or more file and
or/application servers, which can include one or more applications accessible by a client
running on one or more of user computers 110 and/or other server computers 130. Merely by
way of example, one or more of server computers 130 can be one or more general purpose
computers capable of executing programs or scripts in response to user computers 110 and/or
other server computers 130, including without limitation web applications (which might, in

some cases, be configured to perform methods of the invention).

[0051] Merely by way of example, a web application can be implemented as one or more
scripts or programs written in any programming language, such as Java, C, or C++, and/or
any scripting language, such as Perl, Python, or TCL, as well as combinations of any
programming/scripting languages. The application server(s) can also include database
servers, including without limitation those commercially available from Oracle, Microsoft,
IBM and the like, which can process requests from database clients running on one of user

computers 110 and/or another of server computers 130.

[0052] In some embodiments, an application server can create web pages dynamically for
displaying the information in accordance with embodiments of the invention. Data provided
by an application server may be formatted as web pages (comprising HTML, XML,
Javascript, AJAX, etc., for example) and/or may be forwarded to one of user computers 110
via a web server (as described above, for example). Similarly, a web server might receive
web page requests and/or input data from one of user computers 110 and/or forward the web

page requests and/or input data to an application server.

[0053] In accordance with further embodiments, one or more of server computers 130 can
function as a file server and/or can include one or more of the files necessary to implement
methods of the invention incorporated by an application running on one of user computers
110 and/or another of server computers 130. Alternatively, as those skilled in the art will
appreciate, a file server can include all necessary files, allowing such an application to be
invoked remotely by one or more of user computers 110 and/or server computers 130. It
should be noted that the functions described with respect to various servers herein (e.g.,

application server, database server, web server, file server, etc.) can be performed by a single

10

10

15

20

25

30

WO 2014/186058 PCT/US2014/031921

server and/or a plurality of specialized servers, depending on implementation-specific needs

and parameters.

[0054] In certain embodiments, system 100 can include one or more databases 140 (e.g.,
databases 140A and 140B). The location of the database(s) 140 is discretionary: merely by
way of example, database 140A might reside on a storage medium local to (and/or resident
in) server computer 130A (and/or one or more of user computers 110). Alternatively,
database 140B can be remote from any or all of user computers 110 and server computers
130, so long as it can be in communication (e.g., via communications network 120) with one
or more of these. In a particular set of embodiments, databases 140 can reside in a storage-
area network (“SAN”) familiar to those skilled in the art. (Likewise, any necessary files for
performing the functions attributed to user computers 110 and server computers 130 can be
stored locally on the respective computer and/or remotely, as appropriate). In one set of
embodiments, one or more of databases 140 can be a relational database that is adapted to
store, update, and retrieve data in response to SQL-formatted commands. Databases 140

might be controlled and/or maintained by a database server, as described above, for example.
[0055] Data Integration Overview

[0056] FIG. 2 is a simplified block diagram of data integration system 200 according to an
embodiment of the present invention. FIG. 2 is a simplified illustration of data integration
system 200 that may incorporate various embodiments or implementations of the one or more
inventions presented within this disclosure. FIG. 2 is merely illustrative of an embodiment or
implementation of an invention disclosed herein should not limit the scope of any invention
as recited in the claims. One of ordinary skill in the art may recognize through this disclosure
and the teachings presented herein other variations, modifications, and/or alternatives to those

embodiments or implementations illustrated in the figures.

[0057] In this embodiment, data integration system 200 includes information sources 202,
information integration 204, and information destinations 206. In general, information flows
from information sources 202 to information integration 204 whereby the information may be
consumed, made available, or otherwise used by information destinations 206. Data flows
may be unidirectional or bidirectional. In some embodiments, one or more data flows may be

present in data integration system 200.

[0058] Information sources 202 are representative of one or more hardware and/or software

elements configured to source data. Information sources 202 may provide direct or indirect

11

10

15

20

25

30

WO 2014/186058 PCT/US2014/031921

access to the data. In this embodiment, information sources 202 include one or more

applications 208 and one or more repositories 210.

[0059] Applications 208 are representative of traditional applications, such as desktop,
hosted, web-based, or cloud-based applications. Applications 208 may be configured to
receive, process, and maintain data for one or more predetermined purposes. Some examples
of applications 208 include customer relationship management (CRM) applications, financial
services applications, government and risk compliance applications, human capital
management (HCM), procurement applications, supply chain management applications,
project or portfolio management applications, or the like. Applications 208 may include
functionality configured for manipulating and exporting application data in a variety of
human-readable and machine-readable formats, as is known in the art. Applications 208 may

further access and store data in repositories 210.

[0060] Repositories 210 are representative of hardware and/or software elements
configured to provide access to data. Repositories 210 may provide logical and/or physical
partitioning of data. Repositories 210 may further provide for reporting and data analysis.
Some examples of repositories 210 include databases, data warchouses, cloud storage, or the
like. A repository may include a central repository created by integrating data from one or
more applications 208. Data stored in repositories 210 may be uploaded from an operational
system. The data may pass through additional operations before being made available in a

source.

[0061] Information integration 204 is representative of one or more hardware and/or
software elements configured to provide data integration services. Direct or indirect data
integration services can be provided in information integration 204. In this embodiment,
information integration 204 includes data migration 212, data warehousing 214, master data
management 216, data synchronization 218, federation 220, and real-time messaging 222. It
will be understood that information integration 204 can include one or more modules,
services, or other additional elements than those shown in here that provide data integration

functionality.

[0062] Data migration 212 is representative of one or more hardware and/or software
elements configured to provide data migration. In general, data migration 212 provides one
or more processes for transferring data between storage types, formats, or systems. Data

migration 212 usually provides for manual or programmatic options to achieve a migration.

12

10

15

20

25

30

WO 2014/186058 PCT/US2014/031921

In a data migration procedure, data on or provided by one system is mapped to another
system providing a design for data extraction and data loading. A data migration may
involve one or more phases, such a design phase where one or more designs are created that
relate data formats of a first system to formats and requirements of a second system, a data
extraction phase where data is read from the first system, a data cleansing phase, and a data
loading phase where data is written to the second system. In some embodiments, a data
migration may include a data verification phases to determine whether data is accurately

processed in any of the above phases.

[0063] Data warchousing 214 is representative of one or more hardware and/or software
elements configured to provide databases used for reporting and data analysis. A data
warehouse is typically viewed as a central repository of data which is created by integrating
data from one or more disparate sources. Data warechousing 214 may include the current
storage of data as well as storage of historical data. Data warchousing 214 may include
typical extract, transform, load (ETL)-based data warchouse whereby staging, data
integration, and access layers house key functions. In one example, a staging layer or staging
database stores raw data extracted from each of one or more disparate source data systems.
An integration layer integrates disparate data sets by transforming the data from the staging
layer often storing this transformed data in an operational data store (ODS) database. The
integrated data is then moved to yet another database, often called the data warehouse
database. The data can be arranged into hierarchical groups (often called dimensions) and
into facts and aggregate facts. An access layer may be provided to help users or other
systems retrieve data. Data warehouses can be subdivided into data marts whereby each data
mart stores subsets of data from a warchouse. In some embodiments, data warchousing 214
may include business intelligence tools, tools to extract, transform and load data into the

repository, and tools to manage and retrieve metadata.

[0064] Master data management 216 is representative of one or more hardware and/or
software elements configured to manage a master copy of data. Master data management 216
may include a set of processes, governance, policies, standards and tools that consistently
define and manage master data. Master data management 216 may include functionality for
removing duplicates, standardizing data, and incorporating rules to eliminate incorrect data
from entering a system in order to create an authoritative source of master data. Master data

management 216 may provide processes for collecting, aggregating, matching, consolidating,

13

10

15

20

25

30

WO 2014/186058 PCT/US2014/031921

quality-assuring, persisting and distributing data throughout an organization to ensure

consistency and control in the ongoing maintenance and application use of information.

[0065] Data synchronization 218 is representative of one or more hardware and/or software
elements configured to synchronize data. Data synchronization 218 may provide for
establishing consistency among data from a source to a target and vice versa. Data
synchronization 218 may further provide for the continuous harmonization of the data over

time.

[0066] Federation 220 is representative of one or more hardware and/or software elements
configured to consolidate a view of data from constituent sources. Federation 220 may
transparently map multiple autonomous database systems into a single federated database.
The constituent databases maybe interconnected via a computer network and may be
geographically decentralized. Federation 220 provides an alternative to merging several
disparate databases. A federated database, or virtual database, for example, may provide a
composite of all constituent databases. Federation 220 may not provide actual data

integration in the constituent disparate databases but only in the view.

[0067] Federation 220 may include functionality that provides a uniform user interface,
enabling users and clients to store and retrieve data in multiple noncontiguous databases with
a single query -- even if the constituent databases are heterogencous. Federation 220 may
include functionality to decompose a query into subqueries for submission to relevant
constituent data sources and composite the result sets of the subqueries. Federation 220 can
include one or more wrappers to the subqueries to translate them into appropriate query
languages. In some embodiments, federation 220 is a collection of autonomous components
that make their data available to other members of the federation through the publication of

an export schema and access operations.

[0068] Real-time messaging 222 is representative of one or more hardware and/or software
elements configured to provide messaging services subject to a real-time constraint (e.g.,
operational deadlines from event to system response). Real-time messaging 222 may include
functionality that guarantees an action or response within strict time constraints. In one
example, real-time messaging 222 may be tasked with taking some orders and customer data
from one database, combining it with some employee data held in a file, and then loading the
integrated data into a Microsoft SQL Server 2000 database. Because orders need to be

analyzed as they arrive, real-time messaging 222 may pass the orders through to a target

14

10

15

20

25

30

WO 2014/186058 PCT/US2014/031921

database in as close to real time as possible and extract only the new and changed data to

keep the workload as small as possible.

[0069] Information destinations 206 are representative of one or more hardware and/or
software elements configured to store or consume data. In this embodiment, information
destinations 206 may provide direct or indirect access to the data. In this embodiment,
information destinations 206 include one or more applications 224 and one or more

repositories 226.

[0070] Applications 224 are representative of traditional applications, such as desktop,
hosted, web-based, or cloud-based applications. Applications 224 may be configured to
receive, process, and maintain data for one or more predetermined purposes. Some examples
of applications 224 include customer relationship management (CRM) applications, financial
services applications, government and risk compliance applications, human capital
management (HCM), procurement applications, supply chain management applications,
project or portfolio management applications, or the like. Applications 224 may include
functionality configured for manipulating and importing application data in a variety of
human-readable and machine-readable formats, as is known in the art. Applications 224 may

further access and store data in repositories 226.

[0071] Repositories 226 are representative of hardware and/or software elements
configured to provide access to data. Repositories 226 may provide logical and/or physical
partitioning of data. Repositories 226 may further provide for reporting and data analysis.
Some examples of repositories 226 include databases, data warchouses, cloud storage, or the
like. A repository may include a central repository created by integrating data from one or
more applications 226. Data stored in repositories 226 may be uploaded or imported through
information integration 204. The data may pass through additional operations before being

made available at a destination.
[0072] Data Integration System

[0073] FIG. 3 is a simplified block diagram of a hardware/software stack that may be used
to implement data integration system 200 according to an embodiment of the present
invention. FIG. 3 is merely illustrative of an embodiment or implementation of an invention
disclosed herein should not limit the scope of any invention as recited in the claims. One of
ordinary skill in the art may recognize through this disclosure and the teachings presented

herein other variations, modifications, and/or alternatives to those embodiments or

15

10

15

20

25

30

WO 2014/186058 PCT/US2014/031921

implementations illustrated in the figures. One example of components found within data
integration system 200 according to this embodiment may include ORACLE DATA
INTEGRATOR, a member of the ORACLE FUSION Middleware family of products
provided by Oracle of Redwood Shores, California. ORACLE DATA INTEGRATOR is a
Java-based application that uses one or more databases to perform set-based data integration
tasks. In addition, ORACLE DATA INTEGRATOR can extract data, provide transformed
data through Web services and messages, and create integration processes that respond to and
create events in service-oriented architectures. ORACLE DATA INTEGRATOR is based on
an ELT [extract-Load and Transform] architecture rather than conventional ETL [extract-
transform-load] architectures. A copy of a user manual for ORACLE DATA INTEGRATOR

is attached to this disclosure and incorporated herein by reference for all purposes.

[0074] In various embodiments, data integration system 200 provides a new declarative
design approach to defining data transformation and integration processes, resulting in faster
and simpler development and maintenance. Data integration system 200 thus separates
declarative rules from the implementation details. Data integration system 200 further
provides a unique E-LT architecture (Extract - Load Transform) for the execution of data
transformation and validation processes. This architecture in embodiments eliminates the
need for a standalone ETL server and proprietary engine. In some embodiments, data

integration system 200 instead leverages the inherent power of RDBMS engines.

[0075] In some embodiments, data integration system 200 integrates in one or more
middleware software packages, such as the ORACLE FUSION MIDDLEWARE platform
and becomes a component of the middleware stack. As depicted in FIG. 3 data integration

system 200 may provide run-time components as Java EE applications.

[0076] In this example, one component of data integration system 200 is repositories 302.
Repositories 302 are representative of hardware and/or software elements configured to store
configuration information about an IT infrastructure, metadata of all applications, projects,
scenarios, and execution logs. In some aspects, multiple instances of repositories 302 can
coexist in an IT infrastructure, for example Development, QA, User, Acceptance, and
Production. Repositories 302 are configured to allow several separated environments that
exchange metadata and scenarios (for example: Development, Test, Maintenance and
Production environments). Repositories 302 further are configured to act as a version control

system where objects are archived and assigned a version number.

16

10

15

20

25

30

WO 2014/186058 PCT/US2014/031921

[0077] In this example, repositories 302 are composed of at least one master repository 304
and one or more work repositories 306. Objects developed or configured for use within data
integration system 200 may be stored in one of these repository types. In general, master
repository 304 stores the following information: security information including users, profiles
and rights, topology information including technologies, server definitions, schemas,
contexts, languages and so forth, and versioned and archived objects. The one or more work

repositories 306 may contain actual developed objects.

[0078] Several work repositories may coexist in data integration system 200 (for example,
to have separate environments or to match a particular versioning life cycle). The one or
more work repositories 306 store information for models, including schema definition, data
stores structures and metadata, fields and columns definitions, data quality constraints, cross
references, data lincage, and so forth. The one or more work repositories 306 may further
store projects, including business rules, packages, procedures, folders, knowledge modules,
variables and so forth, and scenario execution, including scenarios, scheduling information
and logs. In some aspects, the one or more work repositories 306 may contain only execution

information (typically for production purposes), and be designated as an execution repository.

[0079] In various embodiments, repositories 302 store one or more ETL projects. An ETL
project defines or otherwise specifies one or more data models that model data attributes of
data in a source or target. An ETL project further provides for data quality control as well as
defining mappings to move and transform data. Data integrity control ensures the overall
consistency of the data. Application data is not always valid for the constraints and
declarative rules imposed by a particular source or target. For example, orders may be found
with no customer, or order lines with no product, and so forth. Data integration system 200
provides a working environment to detect these constraint violations and to store them for

recycling or reporting purposes.

[0080] In some embodiments of data integration system 200, there are two different types
of controls: Static Control and Flow Control. Static Control implies the existence of rules
that are used to verify the integrity of application data. Some of these rules (referred to as
constraints) may already be implemented in data servers (using primary keys, reference
constraints, etc.). Data integration system 200 allows for the definition and checking of
additional constraints, without declaring them directly in a source. Flow Control relates to

targets of transformation and integration processes that implement their own declarative

17

10

15

20

25

30

WO 2014/186058 PCT/US2014/031921

rules. Flow Control verifies an application’s incoming data according to these constraints
before loading the data into a target. Flow control procedures are generally referred to as

mappings.

[0081] An ETL project can be automated into a package that can be deployed for execution
in a runtime environment. Accordingly, the automation of data integration flows is achieved
by sequencing the execution of the different steps (mappings, procedures, and so forth) in a
package and by producing a production scenario containing ready-to-use code for each of
these steps. A package is typically made up of a sequence of steps organized into an
execution diagram. Packages are the main objects used to generate scenarios for production.
They represent the data integration workflow and can perform jobs, such as for example: start
a reverse-engineering process on a datastore or a model, send an email to an administrator,
download a file and unzip it, define the order in which mappings must be executed, and

define loops to iterate over execution commands with changing parameters.

[0082] A scenario is designed to put a source component (mapping, package, procedure,
variable) into production. A scenario results from the generation of code (SQL, shell, and so
forth) for this component. Once generated, the code of the source component is frozen and
the scenario is stored inside repositories 302, such as one or more of work repositories 306.

A scenario can be exported and then imported into different production environments.

[0083] In various embodiments, data integration system 200 is organized around
repositories 302 in a modular fashion accessed by Java graphical modules and scheduling
agents. Graphical modules can be used to design and build one or more integration processes
stored in repositories 302. Administrators, Developers and Operators may use a development
studio to access repositories 302. Agents can be used to schedule and coordinate a set of
integration tasks associated with an integration process stored in repositories 302. For
example, at runtime, an agent deployed on a desktop, web services, or otherwise in
communication with a source coordinates the execution of one or more integration processes.
The agent may retrieve code stored in master repository 304, connect to various source and

target systems, and orchestrate an overall data integration process or scenario.

[0084] In this embodiment, data integration system 200 includes desktop 308 that may
include one or more of the above discussed graphical modules and/or agents. Desktop 308 is
representative of one or more desktop or workstation computing devices, such as personal

computers, laptops, netbooks, tablets, and the like. Desktop 308 includes a Java virtual

18

10

15

20

25

30

WO 2014/186058 PCT/US2014/031921

machine (JVM) 310 and Oracle Data Integrator (ODI) Studio 312. Java virtual machine
(JVM) 310 is a virtual machine that can execute Java bytecode. JVM 310 is most often
implemented to run on an existing operating system, but can also be implemented to run
directly on hardware. JVM 310 provides a run-time environment in which Java bytecode can
be executed, enabling features such as runtime web service (WS) 314 and agent 316. JVM
310 may include a Java Class Library, a set of standard class libraries (in Java bytecode) that
implement the Java application programming interface (API), and other elements that form a

Java Runtime Environment (JRE).

[0085] Agent 316 is configured to schedule and coordinate a set of integration tasks
associated with one or more integration processes stored in repositories 302. For example, at
runtime, an agent coordinates the execution of integration processes. The agent may retrieve
code stored in master repository 304, connect to various source and target systems, and

orchestrate an overall data integration process or scenario.

[0086] Referring again to FIG. 3, ODI Studio 312 includes hardware and/or software
elements configured to design data integration projects. In this example, ODI Studio 312
includes four graphical modules or navigators that are used to create and manage data
integration projects, namely, designer module 318, operator module 320, topology module
322, and security module 324. Designer module 318 is a module configured to define data
stores (tables, files, Web services, and so on), data mappings, and packages (sets of
integration steps, including mappings). In various embodiments, designer module 318
defines declarative rules for data transformation and data integrity. Accordingly, project
development takes place in designer module 318. Additionally, in designer module 318, is
where database and application metadata are imported and defined. Designer module 318, in
one embodiment, uses metadata and rules to generate data integration scenarios or load plans
for production. In general, designer module 318 is used to design data integrity checks and to
build transformations such as for example: automatic reverse-engineering of existing
applications or databases, graphical development and maintenance of transformation and
integration mappings, visualization of data flows in the mappings, automatic documentation

generation, and customization of generated code.

[0087] Operator module 320 is a module configured to view and manage production
integration jobs. Operator module 320, thus, manages and monitors data integration

processes in production and may show execution logs with error counts, the number of rows

19

10

15

20

25

30

WO 2014/186058 PCT/US2014/031921

processed, execution statistics, the actual code that is executed, and so on. At design time,
developers can also use operator module 320 for debugging purposes in connection with

designer module 318.

[0088] Topology module 322 is a module configured to create and manage connections to
datasources and agents. Topology module 322 defines the physical and logical architecture
of the infrastructure. Infrastructure or projects administrators may register servers, database
schemas and catalogs, and agents in a master repository through topology module 322.

Security module 324 is a module configured to manage users and their repository privileges.

[0089] In general, a user or process interacts with designer module 318 to create a data
integration project having one or more data integration processes for sources and targets 326.
Each data integration process includes at least one data integration task. In some
embodiments, a data integration task is defined by a set of business rules indicative of what
bit of data is to be transformed and combined with other bits as well as technical specifics of
how the data is actually extracted, loaded, and so on. In preferred embodiments, a data
integration task is specified using a declarative approach to build data mappings. A mapping
is an object that populates one datastore, called the target, which data coming from one or
more other datastores, known as sources. In general, columns in the source datastore are
linked to the columns in the target datastore through mapping. A mapping can be added into
a package as a package step. As discussed above, a package defines a data integration job. A
package is created under a project and is made up of an organized sequence of steps, each of
which can be a mapping or a procedure. A package can have one entry point and multiple

exit points.

[0090] In some embodiments, when creating a new mapping, a developer or technical
business user interacts with designer 318 to first define which data is integrated and which
business rules should be used. For example, the developer may specify what tables are to be
joined, filters to be applied, and SQL expressions to be used to transform data. The particular
dialect of SQL that is used is determined by the database platform on which the code is to be
executed. Then, in a separate step, technical staff can interact with designer 318 to choose
the most efficient way to extract, combine, and then integrate this data. For example, the
technical staff may use database-specific tools and design techniques such as incremental

loads, bulk-loading utilities, slowly changing dimensions, and changed-data capture.

20

10

15

20

25

30

WO 2014/186058 PCT/US2014/031921

[0091] In this embodiment, mappings can be created for sources and targets 326. Sources
and targets 326 may include one or more legacy applications 328, one or more files/XML
documents 330, one or more applications 332, one or more data warchouses (DW), business
intelligence (BI) tools and applications, and enterprise process management (EPM) tools and
applications 334, and one or more JVMs 336 (including runtime web service 340 and agent

342).

[0092] FIG. 4 is a block diagram of environment 400 having various heterogeneous data
sources for which data integration scenarios may be created in various embodiments of the
present invention. In this example, environment 400 includes ODI Studio 312 and
repositories 302. Repositories 302 contain all of the metadata required to generate integration
scenarios 400. A user or process interacts with ODI Studio 312 to create integration

scenarios 400 using data integrity controls 402 and declarative rules 404.

[0093] Orders application 406 is representative of an application for tracking customer
orders. An “Orders Application” data model is created to represent data stored in Orders
application 406 as well as any data integrity controls or conditions. For example, the “Orders
Application” data model may be based on a Hyper Structured Query Language Database
(HSQLDB) mapping and include five datastores, SRC_CITY, SRC_CUSTOMER,
SRC_ORDERS, SRC_ORDER_LINES, SRC PRODUCT, and SRC_REGION.

[0094] Parameter file 408 is representative of a flat file (e.g., ASCII) issued from a
production system containing a list of sales representatives and the segmentation of ages into
age ranges. In this example, a “Parameter” data model is created to represent the data in the
flat file. For example, the “Parameter” data model may be based on a file interface and

include two datastores, SRC _SALES PERSON and SRC_AGE_GROUP.

[0095] Sales administration application 410 is representative of an application for tracking
sales. The sales administration application 410 may be a data warchouse populated with
transformations of data from orders application 406 and parameter file 408. A “Sales
Administration” data model is created to represent data stored in sales administration
application 410 as well as any data integrity controls or conditions or transformations. For
example, the “Sales Administration” data model may be based on a Hyper Structured Query
Language Database (HSQLDB) mapping and include six datastores, TRG CITY,
TRG_COUNTRY, TRG_CUSTOMER, TRG_PRODUCT, TRG PROD FAMILY,

TRG _REGION, and TRG_SALE.

21

10

15

20

25

30

WO 2014/186058 PCT/US2014/031921

[0096] FIGS. 5A and 5B depict simplified data flows in conventional data integration
processing that may be performed by data integration system 200. In this example, data from
orders application 406, parameter file 408, and one or more other optional or additional
sources flow through a traditional ETL process targeted to sales administration application
410. Data transforms occur in a separate ETL server 500. The scenario requires dedicated or

proprietary resources, results in poorer performance, and incurs high costs.

[0097] FIGS. 6A and 6B depict simplified data flows in next generation data integration
processing that may be performed by data integration system 200, in accordance with an
embodiment of the present invention. In this example, data from orders application 406,
parameter file 408, and one or more other optional or additional sources flow through E-LT
process targeted to sales administration application 410. Data transforms leverage existing
resources resulting in higher performance and efficiency. As described above, prior ETL
systems required dedicated and/or proprietary infrastructure to perform data transforms. This
was done, in part, to accommodate unknown user infrastructures. For example, without
knowing what types of databases are being used, prior ETL systems were unable to anticipate
what transform operations would be available in a given system. However, this results in
under-utilized resources, such as the user’s existing databases and servers which are capable
of executing the appropriate data transforms without any dedicated and/or proprietary

infrastructure.

[0098] In accordance with an embodiment, the present invention leverages the user’s
existing infrastructure by enabling the user to customize a data integration process according
to the user’s particular needs. For example, when a data integration plan is designed, it can
be divided into discrete portions which are executable by a single system, referred to as
execution units. Once a data integration plan has been divided into a plurality of execution
units, the user can be presented with a physical plan based on the user’s infrastructure and
system resources. This plan can be further customized by the user to change which user
systems execute which execution units. For example, a user may be presented with a plan in
which a join operation is executed on a first database, and the user may customize the plan by

moving the join operation to a second database.

[0099] As shown in FIG. 6B, this results in an extract-load-transform (E-LT) architecture
that does not rely on a stand-alone transform server which characterized prior ETL systems.

Instead, as described above, data transforms can be performed on the user’s existing

22

10

15

20

25

30

WO 2014/186058 PCT/US2014/031921

infrastructure. The E-LT architecture provides users with greater flexibility while reducing

costs associated with acquiring and maintaining proprietary transform servers.

[0100] Referring again to FIG. 3, agents can be used to schedule and coordinate a set of
integration tasks associated with an integration process. For example, at runtime, an agent
coordinates the execution of integration processes. The agent may retrieve code stored in
master repository 304, connect to the various source and target systems and orchestrates an
overall data integration process or scenario. In various embodiments, there are two types of
agents. In one example, a standalone agent is installed on desktop 308, such as agent 316. In
another example, an application server agent can be deployed on application server 326 (such
as a Java EE Agent deployed on an Oracle WebLogic Server) and can benefit from the
application server layer features such as clustering for High Availability requirements. In yet

another example, an agent can be deployed on sources and targets 326, such as agent 342.

[0101] In this embodiment, data integration system 200 includes application server 344 that
may include one or more of the above discussed agents. Application server 344 is
representative of one or more application servers, web-servers, or hosted applications. In this
example, application server 344 includes FMW console 346, servlet container 348, web

services container 350, and data sources connection pool 352.

[0102] FMW console 346 is representative of one or more hardware and/or software
clements configured to manage aspects of application server 344, such as information related
to servlet container 348, web services container 350, and data sources connection pool 334.
For example, FMW console 346 may be a browser-based, graphical user interface used to
manage an Oracle WebLogic Server domain. FMW console 346 may include functionality to
configure, start, and stop WebLogic Server instances, configure WebLogic Server clusters,
configure WebLogic Server services, such as database connectivity (JDBC) and messaging
(JMS), configure security parameters, including creating and managing users, groups, and
roles, configure and deploy Java EE applications, monitor server and application
performance, view server and domain log files, view application deployment descriptors, and
edit selected run-time application deployment descriptor elements. In some embodiments,
FMW console 346 includes ODI plug-in 354 providing FMW console 346 with access to data
integration processes in production and may show execution logs with error counts, the

number of rows processed, execution statistics, the actual code that is executed, and so forth.

23

10

15

20

25

30

WO 2014/186058 PCT/US2014/031921

[0103] Servlet container 348 is representative of one or more hardware and/or software
elements configured to extend the capabilities of application server 344. Servlets are most
often used to process or store data that was submitted from an HTML form, provide dynamic
content such as the results of a database query, and manage state information that does not
exist in the stateless HTTP protocol, such as filling the articles into the shopping cart of the
appropriate customer. A servlet is typically a Java class in Java EE that conforms to the Java
Servlet API, a protocol by which a Java class may respond to requests. To deploy and run a
servlet, servlet container 348 is used as a component of a web server that interacts with
servlets. Accordingly, servlet container 348 may extend functionality provided by public
web service 356 and data services 358 of web services container 350 as well as access to data
pools provided by data sources connection pool 352. Servlet container 348 is also
responsible for managing the lifecycle of servlets, mapping a URL to a particular servlet and

ensuring that the URL requester has the correct access rights.

[0104] In this example, servlet container 348 includes Java EE application 360 associated
with ODI SDK 362, ODI console 364, and runtime web service 366 associated with Java EE
agent 368. ODI SDK 362 provides a software development kit (SDK) for data integration
and ETL design. ODI SDK 362 enables automation of work that is common and very

repetitive allowing a user to script repetitive tasks.

[0105] ODI console 364 is a Java Enterprise Edition (Java EE) application that provides
Web access to repositories 302. ODI console 364 is configured to allow users to browse
Design-Time objects, including projects, models, and execution logs. ODI console 364 may
allow users to view flow maps, trace the source of all data, and even drill down to the field
level to understand the transformations used to build the data. In addition, end users can
launch and monitor scenario execution through ODI console 364. In one aspect, ODI console
364 provides administrators with the ability to view and edit Topology objects such as Data

Servers, Physical and Logical Schemas as well as to manage repositories 302.
[0106] Data Scenario Design and Development

[0107] As discussed above, a scenario is designed to put a source component (mapping,
package, procedure, variable) into production. A scenario results from the generation of code
(SQL, shell, and so forth) for this component. A scenario can be exported and then imported

into different production environments.

24

10

15

20

25

30

WO 2014/186058 PCT/US2014/031921

[0108] FIG. 7 is a simplified block diagram of interactions between an ODI Studio and a
repository of the data integration system in one embodiment according to the present
invention. In the embodiment shown in FIG. 7, ODI Studio 312 of FIG. 3 uses metadata and
rules to generate data integration scenarios 700 for production. In general, designer module
318 is used to design data integrity checks and to build transformations such as for example:
automatic reverse-engineering of existing applications or databases, graphical development
and maintenance of transformation and integration mappings, visualization of data flows in

the mappings, automatic documentation generation, and customization of generated code.

[0109] FIG. 8 depicts a flowchart of method 800 for creating a data integration scenario in
accordance with an embodiment of the present invention. Implementations of or processing
in method 800 depicted in FIG. 8 may be performed by software (e.g., instructions or code
modules) when executed by a central processing unit (CPU or processor) of a logic machine,
such as a computer system or information processing device, by hardware components of an
clectronic device or application-specific integrated circuits, or by combinations of software

and hardware elements. Method 800 depicted in FIG. 8 begins in step 810.

[0110] In various embodiments, a user may initiate a session with designer module 318 of
ODI Studio 312 and connect to repositories 302. The user may interact with one or more user
interface features to create a new data integration project or select from existing data
integration projects stored in, for example, master repository 304. In general, designer
module 318 is used to manage metadata, to design data integrity checks, and to build
transformations. In various embodiments, the main objects handled through designer module
318 are models and projects. Data models contain all of the metadata in a data source or
target (e.g., tables, columns, constraints, descriptions, cross-references, etc.). Projects contain
all of the loading and transformation rules for a source or target (e.g., mappings, procedures,

variables, etc.).

[0111] In step 820, one or more data models are created. In step 830, one or more projects
are created. FIG. 9 is a screenshot of user interface 900 for creating a data integration
scenario in accordance with an embodiment of the present invention. In this example,
navigation panel 910 displays information and includes functionality for interacting with
projects. Navigation panel 920 displays information and includes functionality for interacting
with data models. As discussed above, the user may not only create the data model, but also

develop any data integrity checks for the data in the data models. Additionally, the user may

25

10

15

20

25

30

WO 2014/186058 PCT/US2014/031921

specify mappings, procedures, variables for projects that provide data integrity and
transforms for the data in a flow that loads data from a source into a target. In step 840, one

or more data integration scenarios are generated. FIG. 8 ends in step 850.

[0112] FIG. 10 depicts a flowchart of method 1000 for creating a mapping in accordance
with an embodiment of the present invention. Implementations of or processing in method
1000 depicted in FIG. 10 may be performed by software (e.g., instructions or code modules)
when executed by a central processing unit (CPU or processor) of a logic machine, such as a
computer system or information processing device, by hardware components of an electronic
device or application-specific integrated circuits, or by combinations of software and

hardware elements. Method 1000 depicted in FIG. 10 begins in step 1010.

[0113] In step 1020, target datastore information is received. For example, a user may
interact with one or more user interface features of designer module 318 to provide target
datastore information. In one embodiment, the user may drag and drop target datastore
information comprising one or more data models from navigation panel 910 onto a mapping
or flow panel that visually represents aspects of a selected data model and any associated

transforms or data integrity checks.

[0114] In step 1030, source datastore information is received. For example, a user may
interact with one or more user interface features of designer module 318 to provide source
datastore information. In one embodiment, the user may drag and drop source datastore
information comprising one or more data models from navigation panel 910 onto the same
mapping or flow panel of the target datastore information that visually represents aspects of a

selected data model and any associated transforms or data integrity checks.

[0115] In various embodiments, the source datastore information and the target data store
information may be composed of one or more data models and optionally operations. Some
examples of operations can include one or more data set operations (e.g., unions, joins,
intersections, etc.), data transformations, data filter operations, constraints, descriptions,
cross-references, integrity checks, or the like. In further embodiments, some of these
operations may be preconfigured and visually represented in designer module 318. In other
embodiments, custom operations may be provided allowing the user to specify logic,

mappings, and the like that implement an operation.

[0116] In step 1040, mapping information is received. For example, a user may interact

with one or more user interface features of designer module 318 to map the source datastore

26

10

15

20

25

30

WO 2014/186058 PCT/US2014/031921

information to the target datastore information. In one embodiment, the user may visually
connect attributes of data elements in the source datastore information with attributes of data
elements in the target datastore information. This may be done by matching column names
of tables in the source datastore information and the target datastore information. In further
embodiments, one or more automatic mapping techniques may be used to provide mapping

information.

[0117] FIG. 11 is a screenshot of user interface 1100 for providing mapping information in
a data integration scenario in accordance with an embodiment of the present invention. In

this example, attributes of source components are mapped to attributes of target components.

[0118] Referring again to FIG. 10, in step 1050, data loading strategies are received. A
data loading strategy includes information on how the actual data from the source datastore
information is to be loaded during an extract phase. Data loading strategies can be defined in
a flow tab of designer 318. In some embodiments, a data loading strategy can be

automatically computed for a flow depending on a configuration of the mapping.

[0119] For example, one or more knowledge modules may be proposed for the flow. A
knowledge module (KM) is a component that implements reusable transformation and ELT
(extract, load, and transform) strategies across different technologies. In one aspect,
knowledge modules (KMs) are code templates. Each KM can be dedicated to an individual
task in an overall data integration process. The code in KMs appears in nearly the form that
it will be executed with substitution methods enabling it to be used generically by many
different integration jobs. The code that is generated and executed is derived from the
declarative rules and metadata defined in the designer module 318. One example of this is
extracting data through change data capture from Oracle Database 10g and loading the
transformed data into a partitioned fact table in Oracle Database 11g, or creating timestamp-
based extracts from a Microsoft SQL Server database and loading this data into a Teradata

enterprise data warehouse.

[0120] The power of KMs lies in their reusability and flexibility—for example, a loading
strategy can be developed for one fact table and then the loading strategy can be applied to all
other fact tables. In one aspect, all mappings that use a given KM inherit any changes made
to the KM. In some embodiments, five different types of KMs are provided, each of them

covering one phase in a transformation process from source to target, such as an integration

27

10

15

20

25

30

WO 2014/186058 PCT/US2014/031921

knowledge module (IKM), a loading knowledge module (LKM), and a check knowledge
module CKM.

[0121] Referring to FIG. 4, a user may define a way to retrieve the data from

SRC_AGE GROUP, SRC _SALES PERSON files and from the SRC_CUSTOMER table in
environment 400. To define a loading strategies, a user may select a source set that
corresponds to the loading of the SRC_AGE_GROUP file and select a LKM File to SQL to
implement the flow from a file to SQL. In one aspect, a LKM is in charge of loading source

data from a remote server to a staging areca.

[0122] In step 1060, data integration strategies are received. After defining the loading
phase, the user defines a strategy to adopt for the integration of the loaded data into a target.
To define the integration strategies, the user may select a target object and select an IKM
SQL Incremental Update. An IKM is in charge of writing the final, transformed data to a
target. When an IKM is started, it assumes that all loading phases for remote servers have
already carried out their tasks, such as having all remote source data sets loaded by LKMs

into a staging area, or the source datastores are on the same data server as the staging area.

[0123] In step 1070, data control strategies are received. In general, a CKM is in charge of
checking that records of a data set are consistent with defined constraints. A CKM may be
used to maintain data integrity and participates in overall data quality initiative. A CKM can
be used in 2 ways. First, to check the consistency of existing data. This can be done on any
datastore or within mappings. In this case, the data checked is the data currently in the
datastore. In a second case, data in the target datastore is checked after it is loaded. In this
case, the CKM simulates the constraints of the target datastore on the resulting flow prior to

writing to the target.

[0124] FIG. 12 is a screenshot of user interface 1200 for providing flow information in a

data integration scenario in accordance with an embodiment of the present invention.
[0125] Instep 1080, a mapping is generated. FIG. 10 ends in step 1090.
[0126] Data Integration Scenario Packages and Deployment

[0127] As discussed above, automation of data integration flows can be achieved in data
integration system 200 by sequencing the execution of the different steps (mappings,
procedures, and so forth) in a package and by producing a production scenario containing the

ready-to-use code for each of these steps. A package is made up of a sequence of steps

28

10

15

20

25

30

WO 2014/186058 PCT/US2014/031921

organized into an execution diagram. Packages are the main objects used to generate
scenarios for production. A scenario is designed to put a source component (mapping,
package, procedure, variable) into production. A scenario results from the generation of code
(SQL, shell, and so forth) for this component. A scenario can be exported and then imported

into different production environments.

[0128] FIG. 13 depicts a flowchart of a method for creating a package in accordance with
an embodiment of the present invention. Implementations of or processing in method 1300
depicted in FIG. 13 may be performed by software (e.g., instructions or code modules) when
executed by a central processing unit (CPU or processor) of a logic machine, such as a
computer system or information processing device, by hardware components of an electronic
device or application-specific integrated circuits, or by combinations of software and

hardware elements. Method 1300 depicted in FIG. 13 begins in step 1310.

[0129] In step 1320, package step information is received. The package step information
includes information identifying a step, elements, properties, components, and the like. In
one example, a user may interact with one or more user interface features of designer module
318 to create, identify, or otherwise specify one or more steps for a package. In one
embodiment, one or more components are selected and placed on a diagram. These

components appear as steps in the package.

[0130] In step 1330, package step sequence information is received. The package step
sequence information includes information identifying an ordering for a step, dependencies,
and the like. Once steps are created, the steps are ordered or reordered into a data processing
chain. In one example, a user may interact with one or more user interface features of
designer module 318 to provide sequencing or ordering for one or more steps of a package.

A data processing chain may include a unique step defined as a first step. Generally, each
step has one or more termination states, such as success or failure. A step in some states,
such as failure or success, can be followed by another step or by the end of the package. In
one aspect, in case of some states, such as failure, sequence information may define a number

of retries. In another aspect, a package may have but several possible termination steps.

[0131] FIG. 14 is a screenshot of a user interface for providing package step sequence
information in a data integration scenario in accordance with an embodiment of the present

invention.

[0132] Instep 1340, a package is generated. FIG. 13 ends in step 1350.

29

10

15

20

25

30

WO 2014/186058 PCT/US2014/031921

[0133] As discussed above, the automation of data integration flows can be achieved by
sequencing the execution of different steps (mappings, procedures, and so forth) in a package.
The package can then be produced for a production scenario containing the ready-to-use code
for each of the package’s steps. In various embodiments, the package is deployed to run

automatically in a production environment.

[0134] FIG. 15 depicts a flowchart of method 1500 for deploying a data integration
scenario in accordance with an embodiment of the present invention. Implementations of or
processing in method 1500 depicted in FIG. 15 may be performed by software (e.g.,
instructions or code modules) when executed by a central processing unit (CPU or processor)
of a logic machine, such as a computer system or information processing device, by hardware
components of an electronic device or application-specific integrated circuits, or by
combinations of software and hardware elements. Method 1500 depicted in FIG. 15 begins

in step 1510.

[0135] In step 1520, an integration scenario is retrieved. In one embodiment, a package is
retrieved from repositories 302. In step 1530, the integration scenario is deployed to one or
more agents. In step 1540, the integration scenario is executed by the one or more agents. In
one aspect, the integration scenario can be executed in several ways, such as from ODI
Studio 312, from a command line, or from a web service. Scenario execution can be viewed
and monitored, for example, via operator module 320 and the like as discussed above. FIG.

15 ends in step 1550.
[0136] Use of Projector and Selector Types

[0137] In most data integration systems, a mapping requires an explicit definition of all
input and output attributes that form part of a map. In typical flow based ETL tools,
connectors are made at the attribute level. This results in a very concise mapping model.
However, this also generates a huge number of objects and makes constructing and

maintaining maps cumbersome due to the number of attribute level connectors.

[0138] In various embodiments, data integration system 200 incorporates one or more
techniques for easing the design and maintenance of a mapping. Components can simply be
added to an existing design without the need to specify all input and output attributes and
allowing component level connectors to be rerouted. In one aspect, components are
implemented that allow assignment expressions to reference all or part of upstream

components. Accordingly, attributes of certain types of components can be propagated to

30

10

15

20

25

30

WO 2014/186058 PCT/US2014/031921

downstream components or otherwise inherited from upstream components with minimal

cffort on the part of a mapping designer.

[0139] In one aspect, data integration system 200 minimizes the need to manage attribute
level connectivity. For example, data integration system 200 may classify components of a
mapping (such as Joiner, Set, Table, Filter, etc.). Some examples of categories are projectors
and selectors. In general, projectors are components that influence the shape of the data that
flows through a map. Selectors are components that control the flow of the data, but don’t
fundamentally change the shape of the flow. In various embodiments, selector type
components are configured to be transparent in that attributes of upstream components are
visible. Projector type components are configured to be opaque that attributes of upstream

components are not visible, only those made available in the shape of the data flow.

[0140] Accordingly, requiring each attribute to be connected to a downstream component’s
attributes in order to be able to see the data from upstream, in various embodiments, data
integration system 200 enables users to directly reference any upstream attribute up to and
including the closest projector’s attributes. Therefore, data integration system 200 greatly
cases the design and maintenance of a mapping. Data integration system 200 further makes
adding in components to an existing design simple, typically just needing component level

connectors to be rerouted.

[0141] FIGS. 16A and 16B are simplified block diagrams of mappings in one embodiment
according to the present invention. In this example, mapping 1600 of FIG. 16A includes
component 1610 representing a data source SRC_EMP, component 1620 representing data
source SRC_DEPT, and component 1630 representing data target TGT EMPDEPT. In order
to update data target TGT EMPDEPT, a join is needed for data source SRC_EMP and

SRC DEPT. Component 1640 representing a JOIN is added to mapping 1600 that connects
to components 1610 and 1620 as inputs and to component 1630 as output. Component 1640
is configured to provide a join expression, such as (SRC_EMP.DEPTNO =

SRC DEPT.DEPTNO).

[0142] In traditional data integration systems, mapping 1600 requires an explicit definition
of all input and output attributes that form part of component 1640 representing the JOIN. In
contrast, in various embodiments, a mapping developer can define how columns of data
target TGT EMPDEPT are populated directly from attributes of data source SRC_EMP
represented by component 1610 and attributes of data source SRC_DEPT represented by

31

10

15

20

25

30

WO 2014/186058 PCT/US2014/031921

component 1620 that flow through component 1640 and are thus visible to component 1630.
For example, the assignment of the target column TGT _EMPDEPT.NAME can reference
SRC_EMP.ENAME without a need to reference to an attribute of component 1640.

[0143] FIG. 17 depicts a flowchart of method 1700 for deriving component attributes based
on component type in accordance with an embodiment of the present invention.
Implementations of or processing in method 1700 depicted in FIG. 17 may be performed by
software (e.g., instructions or code modules) when executed by a central processing unit
(CPU or processor) of a logic machine, such as a computer system or information processing
device, by hardware components of an electronic device or application-specific integrated
circuits, or by combinations of software and hardware elements. Method 1700 depicted in

FIG. 17 begins in step 1710.

[0144] Instep 1720, a component type for a component is determined. As discussed
above, some types of components influence the shape of the data that flows through a
mapping while other types of components control the flow of the data but do not
fundamentally change the shape of the flow. In step 1730, attributes for downstream
components are determined based on the component type. For example, if a component
controls the flow of the data but does not fundamentally change the shape of the flow, data
integration system 200 may derive a set of attributes based on attributes of upstream
components. In step 1740, the derived components are exposed to downstream components.
FIG. 17 ends in step 1750. Accordingly, an assignment of target column

TGT _EMPDEPT.NAME can reference SRC_EMP.ENAME transparently without a need to

reference to an attribute of component 1640.

[0145] Data integration system 200 further makes adding in components to an existing
design simple, typically just needing component level connectors to be rerouted. For
example, if a filter component were added into a design, changing component level
connectors would not require changes to attribute assignments of certain downstream

components.

[0146] FIG. 18 is a simplified block diagram of mapping 1600 with filter component 1800
in one embodiment according to the present invention. In this example, mapping 1600
includes filter component 1800 placed between component 1610 and component 1640. To
add filter component 1800 (e.g. using filter SRG_EMP.SAL > 3000) into mapping 1600, a

user only needs to add filter component 1800 into the graph between component 1610 and

32

10

15

20

25

30

WO 2014/186058 PCT/US2014/031921

component 1640. The component level connectors would need to be relinked such that filter
component 1800 connects to components 1610 as an input and to component 1640 as output.
Such as change would not require changes to any downstream assignments in mapping 1600.
In traditional flow tools, everything at the column level would need to be relinked by the

introduction of the new component.

[0147] FIG. 19 is a simplified block diagram of mapping 1900 in one embodiment
according to the present invention. In this example, mapping 1900 includes component S1
representing a data source, component S2 representing a data source, and component T
representing a data target. Components C1, C2, and C3 are configured to either influence the
shape of the data that flows through a mapping or control the flow of the data but do not
fundamentally change the shape of the flow. In this example, component C1 is of a projector
type. Therefore, component C1 has a declared set of attributes (some of which are declared
from one or more attributes of component S1) as viewed from downstream components (e.g.,
component C3 et seq.) Component C3 is of a selector type. Therefore, component C3 has a
derived set of attributes (some of which are derived from one or more attributes of

components C1 and C2) as viewed from downstream components (e.g., component T).

[0148] FIG. 20 depicts a flowchart of method 2000 for generating components in
accordance with an embodiment of the present invention. Implementations of or processing
in method 2000 depicted in FIG. 20 may be performed by software (e.g., instructions or code
modules) when executed by a central processing unit (CPU or processor) of a logic machine,
such as a computer system or information processing device, by hardware components of an
electronic device or application-specific integrated circuits, or by combinations of software

and hardware elements. Method 2000 depicted in FIG. 20 begins in step 2010.

[0149] In step 2020, a component definition is received. For example, a component
definition may include rules, operations, procedures, variables, sequences, and the like. In
step 2030, a component type is received. For example, if a component changes the shape of
data in a flow, the component may be classified in one manner. If the component controls the
flow of the data but does not fundamentally change the shape of the flow, the component may
be classified in another manner. In step 2040, the component is generated and may be used

by data integration system 200. FIG. 20 ends in step 2050.

[0150] Accordingly, data integration system 200 enables users to create a logical design

which is platform and technology independent. The user can create a logical design that

33

10

15

20

25

30

WO 2014/186058 PCT/US2014/031921

defines, at a high level, how a user wants data to flow between sources and targets. The tool
can analyze the logical design, in view of the user’s infrastructure, and create a physical
design. The logical design can include a plurality of components corresponding to each
source and target in the design, as well as operations such as joins or filters, and access
points. Each component when transferred to the physical design generates code to perform
operations on the data. Depending on the underlying technology (e.g., SQL Server, Oracle,
Hadoop, etc.) and the language used (SQL, pig, etc.) the code generated by each component
may be different.

[0151] Thus, a user of data integration system is not required to specify all data attributes at
each component in the logical design, from start to end. Data integration system 200
provides a plurality of component types, such as projector and selector types, that avoid the
need to fully declare the information that flows through the logical design. Data integration
system 200 is able to decide what attributes are needed at operations represented by

predetermined component types. This simplifies both the design and maintenance.
[0152] Conclusion

[0153] FIG. 21 is a simplified block diagram of computer system 2100 that may be used to
practice embodiments of the present invention. As shown in FIG. 21, computer system 2100
includes processor 2110 that communicates with a number of peripheral devices via bus
subsystem 2120. These peripheral devices may include storage subsystem 2130, comprising
memory subsystem 2140 and file storage subsystem 2150, input devices 2160, output devices

2170, and network interface subsystem 2180.

[0154] Bus subsystem 2120 provides a mechanism for letting the various components and
subsystems of computer system 2100 communicate with each other as intended. Although
bus subsystem 2120 is shown schematically as a single bus, alternative embodiments of the

bus subsystem may utilize multiple busses.

[0155] Storage subsystem 2130 may be configured to store the basic programming and data
constructs that provide the functionality of the present invention. Software (code modules or
instructions) that provides the functionality of the present invention may be stored in storage
subsystem 2130. These software modules or instructions may be executed by processor(s)
2110. Storage subsystem 2130 may also provide a repository for storing data used in
accordance with the present invention. Storage subsystem 2130 may comprise memory

subsystem 2140 and file/disk storage subsystem 2150.

34

10

15

20

25

30

WO 2014/186058 PCT/US2014/031921

[0156] Memory subsystem 2140 may include a number of memories including a main
random access memory (RAM) 2142 for storage of instructions and data during program
execution and a read only memory (ROM) 2144 in which fixed instructions are stored. File
storage subsystem 2150 provides persistent (non-volatile) storage for program and data files,
and may include a hard disk drive, a floppy disk drive along with associated removable
media, a Compact Disk Read Only Memory (CD-ROM) drive, a DVD, an optical drive,

removable media cartridges, and other like storage media.

[0157] Input devices 2160 may include a keyboard, pointing devices such as a mouse,
trackball, touchpad, or graphics tablet, a scanner, a barcode scanner, a touchscreen
incorporated into the display, audio input devices such as voice recognition systems,
microphones, and other types of input devices. In general, use of the term “input device” is
intended to include all possible types of devices and mechanisms for inputting information to

computer system 2100.

[0158] Output devices 2170 may include a display subsystem, a printer, a fax machine, or
non-visual displays such as audio output devices, etc. The display subsystem may be a
cathode ray tube (CRT), a flat-panel device such as a liquid crystal display (LCD), or a
projection device. In general, use of the term “output device” is intended to include all
possible types of devices and mechanisms for outputting information from computer system

2100.

[0159] Network interface subsystem 2180 provides an interface to other computer systems,
devices, and networks, such as communications network 2190. Network interface subsystem
2180 serves as an interface for receiving data from and transmitting data to other systems
from computer system 2100. Some examples of communications network 2190 are private
networks, public networks, leased lines, the Internet, Ethernet networks, token ring networks,

fiber optic networks, and the like.

[0160] Computer system 2100 can be of various types including a personal computer, a
portable computer, a workstation, a network computer, a mainframe, a kiosk, or any other
data processing system. Due to the ever-changing nature of computers and networks, the
description of computer system 2100 depicted in FIG. 21 is intended only as a specific
example for purposes of illustrating the preferred embodiment of the computer system. Many
other configurations having more or fewer components than the system depicted in FIG. 21

are possible.

35

10

15

20

25

30

WO 2014/186058 PCT/US2014/031921

[0161] FIG. 22 is a simplified block diagram of system 2200 for facilitating generation of a
data mapping according to an embodiment. The units included in system 2200 in FIG. 22 can
be implemented in software (e.g., instructions or code modules) which can be executed by a
central processing unit (CPU or processor) of a logic machine, such as a computer system or
information processing device, in hardware components of an electronic device or
application-specific integrated circuits, or in combinations of software and hardware

elements.

[0162] As shown in FIG. 22, among others, data integration system 2200 may include
receiving unit 2210, determining unit 2220 and generating unit 2230. Receiving unit 2210
may be configured to receive information specifying one or more components of a logical
design, wherein at least one of the one or more components is of a first type. Determining
unit 2220 may be configured to determine a set of data attributes visible to downstream
components in the logical design of the at least one of the one or more components that is of
the first type based on upstream components in the logical design. Generating unit 2230 may
be configured to generate information indicative of the set of attributes visible to the
downstream components in the logical design of the at least one of the one or more

components that is of the first type.

[0163] According to an embodiment, determining the set of data attributes visible to the
downstream components in the logical design of the at least one of the one or more
components that is of the first type may comprise deriving one or more attributes visible from

an upstream component and exposing the one or more attributes to a downstream component.

[0164] According to an embodiment, the information specifying the one or more
components of the logical design may comprise information indicative of an operation that

changes shape of the information flowing through the logical design.

[0165] According to an embodiment, the information specifying the one or more
components of the logical design may comprise information indicative of an operation that
controls the flow of information flowing through the logical design but does not change shape

of the information flowing through the logical design.

[0166] According to an embodiment, the information specifying the one or more
components of the logical design may comprise information indicative of a source component

having one or more attributes of data stored in a source datastore.

36

10

15

20

25

30

WO 2014/186058 PCT/US2014/031921

[0167] According to an embodiment, the information specifying the one or more
components of the logical design may comprise information indicative of a target component

having one or more attributes of data to be stored in a target datastore.

[0168] According to an embodiment, generating the information indicative of the set of
attributes visible to the downstream components in the logical design of the at least one of the
one or more components that is of the first type may comprise exporting a list of attributes to

a downstream component.

[0169] According to an embodiment, receiving unit 2210 may be further configured to
receive a change in the logical design through the introduction or removal of a component or
an attribute into the logical design. Determining unit 2220 may be further configured to
determine whether the change in the logical design affects the at least one of the one or more
components that is of the first type. Based on a determination that the change in the logical
design affects the at least one of the one or more components that is of the first type,
determining unit 2220 may be further configured to determine an updated set of data

attributes visible to downstream components.

[0170] According to an embodiment, data integration system 2200 may further include
preserving unit 2240. Receiving unit 2210 may be further configured to receive a change in
the logical design through the introduction of a component or an attribute into the logical
design. Determining unit 2220 may be further configured to determine whether the change in
the logical design affects the at least one of the one or more components that is of the first
type. Based on a determination that the change in the logical design affects the at least one of
the one or more components that is of the first type, preserving unit 2240 may be configured

to preserve the set of data attributes visible to downstream components.

[0171] According to an embodiment, data integration system 2200 may further include
renaming unit 2250. Receiving unit 2210 may be further configured to receive a change in
the logical design renaming a component or an attribute. Determining unit 2220 may be
further configured to determine whether the change in the logical design affects the at least
one of the one or more components that is of the first type. Based on a determination that the
change in the logical design affects the at least one of the one or more components that is of
the first type, renaming unit 2250 may be configured to rename the set of data attributes

visible to downstream components.

37

10

15

20

25

30

WO 2014/186058 PCT/US2014/031921

[0172] [0173] Although specific embodiments of the invention have been described,
various modifications, alterations, alternative constructions, and equivalents are also
encompassed within the scope of the invention. The described invention is not restricted to
operation within certain specific data processing environments, but is free to operate within a
plurality of data processing environments. Additionally, although the present invention has
been described using a particular series of transactions and steps, it should be apparent to
those skilled in the art that the scope of the present invention is not limited to the described

series of transactions and steps.

[0174] Further, while the present invention has been described using a particular
combination of hardware and software, it should be recognized that other combinations of
hardware and software are also within the scope of the present invention. The present
invention may be implemented only in hardware, or only in software, or using combinations

thereof.

[0175] The specification and drawings are, accordingly, to be regarded in an illustrative
rather than a restrictive sense. It will, however, be evident that additions, subtractions,
deletions, and other modifications and changes may be made thereunto without departing

from the broader spirit and scope of the invention as set forth in the claims.

[0176] Various embodiments of any of one or more inventions whose teachings may be
presented within this disclosure can be implemented in the form of logic in software,
firmware, hardware, or a combination thereof. The logic may be stored in or on a machine-
accessible memory, a machine-readable article, a tangible computer-readable medium, a
computer-readable storage medium, or other computer/machine-readable media as a set of
instructions adapted to direct a central processing unit (CPU or processor) of a logic machine
to perform a set of steps that may be disclosed in various embodiments of an invention
presented within this disclosure. The logic may form part of a software program or computer
program product as code modules become operational with a processor of a computer system
or an information-processing device when executed to perform a method or process in
various embodiments of an invention presented within this disclosure. Based on this
disclosure and the teachings provided herein, a person of ordinary skill in the art will
appreciate other ways, variations, modifications, alternatives, and/or methods for

implementing in software, firmware, hardware, or combinations thereof any of the disclosed

38

10

15

20

WO 2014/186058 PCT/US2014/031921

operations or functionalities of various embodiments of one or more of the presented

inventions.

[0177] The disclosed examples, implementations, and various embodiments of any one of
those inventions whose teachings may be presented within this disclosure are merely
illustrative to convey with reasonable clarity to those skilled in the art the teachings of this
disclosure. As these implementations and embodiments may be described with reference to
exemplary illustrations or specific figures, various modifications or adaptations of the
methods and/or specific structures described can become apparent to those skilled in the art.
All such modifications, adaptations, or variations that rely upon this disclosure and these
teachings found herein, and through which the teachings have advanced the art, are to be
considered within the scope of the one or more inventions whose teachings may be presented
within this disclosure. Hence, the present descriptions and drawings should not be
considered in a limiting sense, as it is understood that an invention presented within a

disclosure is in no way limited to those embodiments specifically illustrated.

[0178] Accordingly, the above description and any accompanying drawings, illustrations,
and figures are intended to be illustrative but not restrictive. The scope of any invention
presented within this disclosure should, therefore, be determined not with simple reference to
the above description and those embodiments shown in the figures, but instead should be

determined with reference to the pending claims along with their full scope or equivalents.

39

N R R N =) T Ve L S N S B

e e e =
W o= O

[N

—_—

WO 2014/186058 PCT/US2014/031921

WHAT IS CLAIMED I8S:

1. A method for facilitating generation of a data mapping, the method
comprising:

receiving, at one or more computer systems, information specifying one or more
components of a logical design, wherein at least one of the one or more components is of a first
type;

determining, with one or more processors associated with the one or more
computer systems, a set of data attributes visible to downstream components in the logical design
of the at least one of the one or more components that is of the first type based on upstream
components in the logical design; and

generating, with the one or more processors associated with the one or more
computer systems, information indicative of the set of attributes visible to the downstream
components in the logical design of the at least one of the one or more components that is of the

first type.

2. The method of claim 1 wherein determining, with the one or more
processors associated with the one or more computer systems, the set of data attributes visible to
the downstream components in the logical design of the at least one of the one or more
components that is of the first type comprises deriving one or more attributes visible from an

upstream component and exposing the one or more attributes to a downstream component.

3. The method of claim 1 or 2 wherein receiving the information specifying
the one or more components of the logical design comprises receiving information indicative of

an operation that changes shape of the information flowing through the logical design.

4. The method of any one of claims 1 to 3 wherein receiving the information
specifying the one or more components of the logical design comprises receiving information
indicative of an operation that controls the flow of information flowing through the logical

design but does not change shape of the information flowing through the logical design.

5. The method of any one of claims 1 to 4 wherein receiving the information

specifying the one or more components of the logical design comprises receiving information

40

[e—
SO O 0 N1 N R W N AW = AW =

N e N =) NV e L O e S R

WO 2014/186058 PCT/US2014/031921

indicative of a source component having one or more attributes of data stored in a source

datastore.

6. The method of any one of claims 1 to 5 wherein receiving the information
specifying the one or more components of the logical design comprises receiving information
indicative of a target component having one or more attributes of data to be stored in a target

datastore.

7. The method of any one of claims 1 to 6 wherein generating the
information indicative of the set of attributes visible to the downstream components in the logical
design of the at least one of the one or more components that is of the first type comprises

exporting a list of attributes to a downstream component.

8. The method of any one of claims 1 to 7 further comprising:

receiving, at the one or more computer systems, a change in the logical design
through the introduction or removal of a component or an attribute into the logical design;

determining, with the one or more processors associated with the one or more
computer systems, whether the change in the logical design affects the at least one of the one or
more components that is of the first type; and

based on a determination that the change in the logical design affects the at least
one of the one or more components that is of the first type, determining, with the one or more
processors associated with the one or more computer systems, an updated set of data attributes

visible to downstream components.

9. The method of any one of claims 1 to § further comprising:

receiving, at the one or more computer systems, a change in the logical design
through the introduction of a component or an attribute into the logical design;

determining, with the one or more processors associated with the one or more
computer systems, whether the change in the logical design affects the at least one of the one or
more components that is of the first type; and

based on a determination that the change in the logical design affects the at least
one of the one or more components that is of the first type, preserving the set of data attributes

visible to downstream components.

41

N R R N =) T Ve L S N S B O 0 1 SN U R WD

—_
e

[N

AW N =

WO 2014/186058 PCT/US2014/031921

10. The method of any one of claims 1 to 9 further comprising:

receiving, at the one or more computer systems, a change in the logical design
renaming a component or an attribute;

determining, with the one or more processors associated with the one or more
computer systems, whether the change in the logical design affects the at least one of the one or
more components that is of the first type; and

based on a determination that the change in the logical design affects the at least
one of the one or more components that is of the first type, renaming the set of data attributes

visible to downstream components.

11. A non-transitory computer-readable medium storing computer-executable
code for facilitating generation of a data mapping, the non-transitory computer-readable medium
comprising:

code for receiving information specifying one or more components of a logical
design, wherein at least one of the one or more components is of a first type;

code for determining a set of data attributes visible to downstream components in
the logical design of the at least one of the one or more components that is of the first type based
on upstream components in the logical design; and

code for generating information indicative of the set of attributes visible to the
downstream components in the logical design of the at least one of the one or more components

that is of the first type.

12. The non-transitory computer-readable medium of claim 11 wherein the
code for determining the set of data attributes visible to the downstream components in the
logical design of the at least one of the one or more components that is of the first type comprises
code for deriving one or more attributes visible from an upstream component and exposing the

onge or more attributes to a downstream component.

13. The non-transitory computer-readable medium of any one of claim 11 or
12 wherein the code for receiving the information specifying the one or more components of the
logical design comprises code for receiving information indicative of an operation that changes

shape of the information flowing through the logical design.

42

— [B VS I\ B~ W B~ W wnm Rk W D =

O o0 1 AN W R W N

WO 2014/186058 PCT/US2014/031921

14. The non-transitory computer-readable medium of any one of claims 11 to
13 wherein the code for receiving the information specifying the one or more components of the
logical design comprises code for receiving information indicative of an operation that controls
the flow of information flowing through the logical design but does not change shape of the

information flowing through the logical design.

15. The non-transitory computer-readable medium of any one of claims 11 to
14 wherein the code for receiving the information specifying the one or more components of the
logical design comprises code for receiving information indicative of a source component having

one or more attributes of data stored in a source datastore.

16. The non-transitory computer-readable medium of any one of claims 11 to
15 wherein the code for receiving the information specifying the one or more components of the
logical design comprises code for receiving information indicative of a target component having

one or more attributes of data to be stored in a target datastore.

17. The non-transitory computer-readable medium of any one of claims 11 to
16 wherein the code for generating the information indicative of the set of attributes visible to the
downstream components in the logical design of the at least one of the one or more components
that is of the first type comprises code for exporting a list of attributes to a downstream

component.

18. The non-transitory computer-readable medium of any one of claims 11 to
17 further comprising:

code for receiving a change in the logical design through the introduction or
removal of a component or an attribute into the logical design;

code for determining whether the change in the logical design affects the at least
one of the one or more components that is of the first type; and

based on a determination that the change in the logical design affects the at least
one of the one or more components that is of the first type, code for determining an updated set

of data attributes visible to downstream components.

43

N R R N =) T Ve L S N S B N R R N =) T Ve L S N S B O 0 1 SN U R WD

—
<o

WO 2014/186058 PCT/US2014/031921

19. The non-transitory computer-readable medium of any one of claims 11 to
18 further comprising:

code for receiving a change in the logical design through the introduction or
removal of a component or an attribute into the logical design;

code for determining whether the change in the logical design affects the at least
one of the one or more components that is of the first type; and

based on a determination that the change in the logical design affects the at least
one of the one or more components that is of the first type, code for preserving the set of data

attributes visible to downstream components.

20. The non-transitory computer-readable medium of any one of claims 11 to
19 further comprising:

code for receiving a change in the logical design renaming a component or an
attribute;

code for determining whether the change in the logical design affects the at least
one of the one or more components that is of the first type; and

based on a determination that the change in the logical design affects the at least
one of the one or more components that is of the first type, code for renaming the set of data

attributes visible to downstream components.

21. A system for facilitating generation of a data mapping, the system
comprising:
a processor; and
a memory in communication with the processor and configured to store a set of
instructions which when executed by the processor configure the processor to:
receive information specifying one or more components of a logical
design, wherein at least one of the one or more components is of a first type;
determine a set of data attributes visible to downstream components in the
logical design of the at least one of the one or more components that is of the first type

based on upstream components in the logical design; and

44

11
12
13

WO 2014/186058

PCT/US2014/031921

generate information indicative of the set of attributes visible to the

downstream components in the logical design of the at least one of the one or more

components that is of the first type.

45

WO 2014/186058

17123

USER
COMPUTER
110A

USER
COMPUTER
110B

SERVER
COMPUTER
130A

—
e

DATABASE
140A

~N—

COMM.
NETWORK
120

—

DATABASE
140B

v

FIG. 1

PCT/US2014/031921

USER
COMPUTER
110C

SERVER
COMPUTER
130B

WO 2014/186058 PCT/US2014/031921

200 N 2/23
INFORMATION DESTINATIONS
206
]
|
v
(_— 224
APPS [REPOSITORIES
__ ~
226 ~
v
INFORMATION INTEGRATION
204
DATA MASTER DATA
MIGRATION MANAGMENT FEDEZF;/ST'ON
212 216 =
DATA REAL-TIME
WAREHOUSING DAT;SsYNC MESSAGING
214 = 222
INFORMATION SOURCES
202
|
]
APPS [REPOSITORIES
__ ~
210 ~
v

FIG. 2

€ Ol

PCT/US2014/031921

WO 2014/186058

3/23

Ve —_ —
— . 0
INIOV pee 453 oee 74
— Nd3 TNX HILSYIN
0 Sddv AOVOIT
S TNTLNAN N9/ma /s34
—— MHOM >
9%¢
AT —
9z¢ 90¢
SLI9YVL ANV S30HN0S || T———
< Z0¢
=ce S3MOLISOdIY
700d NOILOANNOD SIOHNOS V1va
55T 9% 89¢ voE 2%
SADINYIS SM LN3OV 210SNOD Xds 1do $7¢C 3¢
v1ivd onand 33 VAVP a0 09¢ ALlMNO3S LNIOVY
99¢ ddV 33 VAP = =
SM JNILNNY
0%t = AD010d01 SM JNILLNAE
"LNOD SAHS 83M YINIVLNOD LI TAYIS 0zt _\A_W/w
HO1VH3dO
$SE NI-ON1d 1a0 e 8l€
F10SNOD M SINOISI]
vve 453 30¢
YIAYTS ddv OIdNLs 1ao 4OLMS3a

/ 00¢

PCT/US2014/031921

WO 2014/186058

4/23

v Old
TN

(57
ddVv
NINQVY S3TVS

-

00¥
SOI4VYN30S
NOILVHOILNI

807
3114
d31dAVdvd

90¥
ddVv
SH3Ad0

—
e

N

20¢
S3AHOLISOd3ad

S—

—~— V0¥

401%

[4%3
olandts 1ao

WO 2014/186058

EXTRACT

ORDERS APP
406

PARAMETER
FILE
408

SOURCE

L~

\\\\\;
P

PCT/US2014/031921
5/23
TRANSFORM LOAD
D E—
ETL SERVER SALES ADMIN
500 APP
I 410

" Conventional ETLArchitecture |

WO 2014/186058 PCT/US2014/031921
6/23
EXTRACT LOAD/
TRANSFORM
ORDERS APP |
406 I e
>
PARAMETER SALES ADMIN
FILE > APP
408 410
| P
I
SOURCE H— |
: Mext Generation Architecture :
\\\‘\

FIG. 6B

WO 2014/186058

7123

ODI STUDIO
312

DESIGNER
318

OPERATOR
320

TOPOLOGY
322

SECURITY
324

700

REPOSITORIES
302

FIG. 7

PCT/US2014/031921

WO 2014/186058 PCT/US2014/031921

8/23

(800

C BEfIN }/\810

CREATE DATA MODELS ~—> 820
CREATE PROJECTS > 830

'

GENERATE DATA INTEGRATION SCENARIOS {840

'
C END }/‘ 850

FIG. 8

WO 2014/186058

9/23
900

910 SampleMappings
‘ ! Packages
Mappings
S BPELMap
D&|wirm&ithLEP
Flowdainithaqg
Flowd COJainith LKF
LoadCharnnzls

5?‘“ Uses

920 \ ;}'5.}? Ciagrams

W

\\
e RAREH R T R T R

GlohalOhjects

Clobal YVariables
; Glohal Sequences

PCT/US2014/031921

WO 2014/186058 PCT/US2014/031921

10/23

/ 1000

(BEGIN }/\ 1010

v

RECEIVE TARGET DATASTORE INFORMATION {1020
v

RECEIVE SOURCE DATASTORE INFORMATION f—~— 1030
v

RECEIVE MAPPING INFORMATION > 1040
v

RECEIVE DATA LOADING STRATEGIES > 1050
v

RECEIVE DATA INTEGRATION STRATEGIES {1060
v

RECEIVE DATA CONTROL STRATEGIES —> 1070
v

GENERATE MAPPING > 1080
v

(END }/\ 1090

FIG. 10

PCT/US2014/031921

WO 2014/186058

11/ 23

L1 Old

WY oy AP 1430
Wy opy e SE]
Iy o B 1KE!
WAL L% 03dIH A3
WAL) dorndra
I apy 1004p3
WL o EE IV ERICE
A way oy MR ARE
RETO R HEEI R

AAYYS
"%d3dIH
TR

SII0G JOITFUUDT

AU

ElgE40
CHd3
3l

Buizipeuarisf

1aBJe]

(SETPED]

OM143Q
KRGS
%5
FLya3dIH -
LR

anl
ELKACE]

A7 L4
[l 0l
s

L4307 dpi3

dIATEH wP:
a0
ELKACE
QP

2
A7
6143

Al
IN
=
Ao
o)
£
~
o)
=
I
n
2
[
o
A
9]
AN
/
N
-

WO 2014/186058

0ocl

YNBLEQ &S7

npop abps|Rowy Bupeo
SR

BINpop aBpapaouy GuipEeo
[EFEIEIN]

L43d d E\m

R e e

WO 2014/186058

PCT/US2014/031921

131/23

(1300

BEGIN }/\ 1310
Y
RECEIVE PACKAGE STEP INFORMATION ke~ 1320
RECEIVE PACKAGE STEP SEQUENCE 1330
INFORMATION
GENERATE PACKAGE _— 1340

l

END

FIG. 13

PCT/US2014/031921

WO 2014/186058

14 /23

vl Old

EAgE SHL Hed crgoddTad] dey

TTAgEd 9dl dud
FEPR

rer oy

S SO]

RIS @Ed
FET
w\m. . T

- AR
ST UL inloaToul dod oo anL ded

. L
G s
L e 5 <eeee

e,

ey

b EN TR RN TR

apEriyaeapn G

tegpry

R

WO 2014/186058

151/23

/ 1500

PCT/US2014/031921

C BEGIN

Y

RETRIEVE INTEGRATION SCENARIO

'

DEPLOY INTEGRATION SCENARIO TO AGENT 1530

'

EXECUTE INTEGRATION SCENARIO

'

END

FIG. 15

PCT/US2014/031921

WO 2014/186058

16 /23

%97
1d3adW3 191

V9l "Old

02ar
1d3a"oys

0091

0191

diN3 OdS

WO 2014/186058 PCT/US2014/031921

17123

FIG. 16B

WO 2014/186058 PCT/US2014/031921

18 /23

/ 1700

(BEGIN }/\ 1710

Y

DETERMINE COMPONENT TYPE 1720

'

DERIVE ATTRIBUTES FOR DOWNSTREAM
COMPONENTS BASED ON COMPONENT TYPE

'

EXPOSE DERIVED ATTRIBUTES > 1740

'
C END }/\ 1750

FIG. 17

PCT/US2014/031921

WO 2014/186058

191723

s
1d3adN3 191

81 Old

029r
1d3a 0¥s

(=
(=

Wl &
—

0091

0l91

diN3 OdS

PCT/US2014/031921

WO 2014/186058

20/ 23

61 Old

S
20
a3AlNaa
1SI73LNGIYLLY
€0 a3yv103a
3dAL S|
YO10313S 1SI73LNGIYLLY
1D
JdAL HO103royd S
1S

0061

WO 2014/186058

21/23

(2000

PCT/US2014/031921

BEGIN

'

RECEIVE COMPONENT DEFINITION

'

RECEIVE COMPONENT TYPE

'

GENERATE COMPONENT

'

END

FIG. 20

WO 2014/186058

22 /23

PCT/US2014/031921

STORAGE
PROCESSOR(S) 2130
2110 MEMORY
2140
FILE
RAM [ROM 2150
2120 2142 || 2144
NETWORK OUTPUT
INTERFACE DEVICES 'NPUTZ?E'SEOV'CES
2180 2170

COMM.
NETWORK
2190

FIG. 21

WO 2014/186058 PCT/US2014/031921

23 /23

Data Integration System 2200

Receiving Unit 2210

Determining Unit 2220

Generating Unit 2230

FIG. 22

INTERNATIONAL SEARCH REPORT International application No.
PCT/US2014/031921

A. CLASSIFICATION OF SUBJECT MATTER
GOO6F 19/00(2011.01)i, GO6F 9/44(2006.01)i

According to International Patent Classification (IPC) or to both national classification and [PC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
GOG6F 19/00; GOGF 9/44; GO6F 17/30

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Korean utility models and applications for utility models
Japanese utility models and applications for utility models

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
cKOMPASS(KIPO internal) & keywords: data mapping, attributes, specifying, logical design

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

X US 2013-0103705 Al (SUSAN MARIE THOMAS) 25 April 2013 1-3,11-13,21
See paragraphs [0075]-[0086]; and figures 1, 3A.

A US 2008-0281849 A1 (KAZUO MINENO) 13 November 2008 1-3,11-13,21
See paragraphs [0094]-[0096]; and figure 12.

A US 2005-0050068 A1 (ALEXANDER VASCHILLO et al.) 3 March 2005 1-3,11-13,21
See paragraphs [0037]-[0044]; and figures 1-2.

A US 2011-0295792 A1 (ALEXTAIR MASCARENHAS et al.) 1 December 2011 1-3,11-13,21
See paragraphs [0049]-[0052]; and figure 5.

A US 2012-0096426 A1 (SERGHEI SARAFUDINOV) 19 April 2012 1-3,11-13,21
See paragraphs [0028]-[0042]; and figures 1-8.

|:| Further documents are listed in the continuation of Box C. See patent family annex.
* Special categories of cited documents: "T" later document published after the international filing date or priority
"A" document defining the general state of the art which is not considered date and not in conflict with the application but cited to understand
to be of particular relevance the principle or theory underlying the invention
"E" carlier application or patent but published on or after the international "X" document of particular relevance; the claimed invention cannot be
filing date considered novel or cannot be considered to involve an inventive
"L" document which may throw doubts on priority claim(s) or which is step when the document is taken alone
cited to establish the publication date of another citation or other "Y" document of particular relevance; the claimed invention cannot be
special reason (as specified) considered to involve an inventive step when the document is
"O" document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents,such combination
means being obvious to a person skilled in the art
"P" document published prior to the international filing date but later "&" document member of the same patent family
than the priority date claimed
Date of the actual completion of the international search Date of mailing of the international search report
31 July 2014 (31.07.2014) 31 July 2014 (31.07.2014)
Name and mailing address of the [ISA/KR Authorized officer .
International Application Division g

¢ Korean Intellectual Property Office
189 Cheongsa-to, Seo-gu, Dagjeon Metropolitan City, 302-701, N §
Y Republic of Korea \\ ey
Facsimile No. +82-42-472-7140 Telephone No. +82-42-481-5688 e

JI, Jeong Hoon

Ay,

Form PCT/ISA/210 (second sheet) (July 2009

INTERNATIONAL SEARCH REPORT International application No.
PCT/US2014/031921

Box No. Il Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:;

1. Claims Nos.:
because they relate to subject matter not required to be searched by this Authority, namely:

2. Claims Nos.:
because they relate to parts of the international application that do not comply with the prescribed requirements to such an
extent that no meaningful international search can be carried out, specifically:

3. Claims Nos.: 4-10,14-20
because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box No. III Observations where unity of invention is lacking (Continuation of item 3 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

1. |:| As all required addtional search fees were timely paid by the applicant, this international search report covers all searchable
claims.

2. |:| As all searchable claims could be searched without effort justifying an additional fees, this Authority did not invite payment
of any additional fees.

3. |:| As only some of the required additional search fees were timely paid by the applicant, this international search report covers
only those claims for which fees were paid, specifically claims Nos.:

4, |:| No required additional search fees were timely paid by the applicant. Consequently, this international search report is
restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest |:| The additional search fees were accompanied by the applicant's protest and, where applicable, the
payment of a protest fee.
The additional search fees were accompanied by the applicant's protest but the applicable protest
fee was not paid within the time limit specified in the invitation.
|:| No protest accompanied the payment of additional search fees.

Form PCT/ISA/210 (continuation of first sheet (2)) (July 2009)

INTERNATIONAL SEARCH REPORT

International application No.

Information on patent family members PCT/US2014/031921
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 2013-0103705 Al 25/04/2013 US 2007-203923 Al 30/08/2007
US 8307012 B2 06/11/2012
US 2008-0281849 Al 13/11/2008 US 2012-323841 Al 20/12/2012
US 8280840 B2 02/10/2012
US 8639670 B2 28/01/2014
WO 2007-083371 Al 26/07/2007
US 2005-0050068 Al 03/03/2005 CN 100468396 CO 11/03/2009
CN 1604082 A 06/04/2005
EP 1519266 A2 30/03/2005
EP 1519266 A3 26/12/2007
JP 04847689 B2 28/12/2011
JP 2005-327232 A 24/11/2005
KR 10-1159311 Bl 22/06/2012
KR 10-2005-0022272 A 07/03/2005
US 7739223 B2 15/06/2010
US 2011-0295792 Al 01/12/2011 CN 102918530 A 06/02/2013
EP 2577507 A2 10/04/2013
JP 2013-531844A 08/08/2013
WO 2011-149666 A2 01/12/2011
WO 2011-149666 A3 19/01/2012
US 2012-0096426 Al 19/04/2012 None

Form PCT/ISA/210 (patent family annex) (July 2009)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - claims
	Page 42 - claims
	Page 43 - claims
	Page 44 - claims
	Page 45 - claims
	Page 46 - claims
	Page 47 - drawings
	Page 48 - drawings
	Page 49 - drawings
	Page 50 - drawings
	Page 51 - drawings
	Page 52 - drawings
	Page 53 - drawings
	Page 54 - drawings
	Page 55 - drawings
	Page 56 - drawings
	Page 57 - drawings
	Page 58 - drawings
	Page 59 - drawings
	Page 60 - drawings
	Page 61 - drawings
	Page 62 - drawings
	Page 63 - drawings
	Page 64 - drawings
	Page 65 - drawings
	Page 66 - drawings
	Page 67 - drawings
	Page 68 - drawings
	Page 69 - drawings
	Page 70 - wo-search-report
	Page 71 - wo-search-report
	Page 72 - wo-search-report

