多播单频网 MBSFN 传输的方法、装置和系统

摘要
本发明实施例提供进行 MBSFN 方式传输的方法、装置和系统，上述方法和装置包括：根据所述方法获取网络节点的时钟同步状态信息；根据所述时钟同步状态信息确定所述时钟同步状态信息所在的网络节点；利用所述时钟同步状态信息确定处于同步状态的网络节点。本发明实施例具体体现在实施传输前，获取时钟同步状态信息来确保传输稳定和精度，从而增加传输增益。
1. 一种多播单频网 MBSFN 传输方法，其特征在于，包括：
获取网络节点的时钟同步状态信息；
根据所述时钟同步状态信息确定处于同步状态的网络节点；
利用处于同步状态的网络节点执行 MBSFN 传输。

2. 如权利要求 1 所述方法，其特征在于，所述获取网络节点的时钟同步状态信息包括：
接收时钟同步状态实体 SME 发送的所述网络节点的时钟同步状态信息；
所述网络节点的时钟同步状态信息由所述 SME 向所述网络节点查询获得；或者，
所述网络节点的时钟同步状态信息由所述 SME 接收所述网络节点发送的发布消息解析获得；或者，
所述网络节点的时钟同步状态信息由所述 SME 对所述网络节点进行测量获得；或者，
所述网络节点的时钟同步状态信息由所述 SME 通过与所述 SME 相连的第三方应用服务器获得。

3. 如权利要求 1 所述方法，其特征在于，根据所述时钟同步状态信息确定处于同步状态的网络节点包括：根据所述时钟同步状态信息确定主时钟的时钟同步精度在微秒级内的网络节点为处于同步状态的网络节点。

4. 如权利要求 1 至 3 任一所述方法，其特征在于，所述方法还包括：
触发根据所述时钟同步状态信息确定处于非同步状态的网络节点进行同步，以达到同步状态。

5. 一种通信装置，其特征在于，所述装置包括：
获取单元，用于获取网络节点的时钟同步状态信息；
确定单元，用于根据所述获取单元获取得到的时钟同步状态信息确定处于同步状态的网络节点；
传输单元，用于利用所述确定单元确定的处于同步状态的网络节点进行 MBSFN 传输。

6. 如权利要求 5 所述的装置，其特征在于，所述获取单元还用于接收时钟同步状态实体 SME 发送的所述网络节点的时钟同步状态信息；
所述网络节点的时钟同步状态信息由所述 SME 向所述网络节点查询获得；或者，
所述网络节点的时钟同步状态信息由所述 SME 接收所述网络节点发送的发布消息解析获得；或者，
所述网络节点的时钟同步状态信息由所述 SME 对所述网络节点进行测量获得；或者，
所述网络节点的时钟同步状态信息由所述 SME 通过与所述 SME 相连的第三方应用服务器获得。

7. 如权利要求 5 所述的装置，其特征在于，所述确定单元还用于根据所述时钟同步状态信息确定主时钟的时钟同步精度在微秒级内的网络节点为处于同步状态的网络节点。

8. 如权利要求 5-7 任一所述的装置，其特征在于，所述装置还包括：“

2
触发单元，用于触发根据所述时钟同步状态信息确定处于非同步状态的网络节点进行同步，以达到同步状态。

9. 一种通信系统，其特征在于，所述系统包括通信装置，用于获取网络节点的时钟同步状态信息；根据所述时钟同步状态信息确定处于同步状态的网络节点；利用处于同步状态的网络节点进行 MBSFN 传输。

10. 如权利要求 9 所述系统，其特征在于，所述通信装置用于接收时钟同步状态实体 SME 发送的所述网络节点的时钟同步状态信息；
所述网络节点的时钟同步状态信息由所述 SME 向所述网络节点查询获得；或者，
所述网络节点的时钟同步状态信息由所述 SME 接收所述网络节点发送的发布消息解析获得；或者，
所述网络节点的时钟同步状态信息由所述 SME 对所述网络节点进行测量获得；或者，
所述网络节点的时钟同步状态信息由所述 SME 通过与所述 SME 相连的第三方应用服务器获得。
多播单频网 MBSFN 传输的方法、装置和系统

技术领域

本发明涉及移动通信领域，尤其涉及 MBSFN 传输的方法、装置和系统。

背景技术

多媒体广播 / 组播业务（MBMS，Multimedia Broadcast Multicast Service）是第三代合作伙伴计划（3GPP，3rd Generation Partnership Project）组织在 R6 版本中引入的重要特性，是为了实现从数据源向特定范围内多个用户同时传送数据的一种点到多点的业务，从而令网络（包括核心网和接入网）资源得到共享，以较少的资源为大量具有相同需求的用户同时提供业务。演进的多媒体广播 / 组播业务（eMBMS，Evolved Multimedia Broadcast Multicast Service）是在 MBMS 基础上针对长期演进（LTE，Long Term Evolution）系统而在逻辑架构、业务模式、传输方式和信道结构等方面进行了重大改进后的多媒体广播 / 组播业务。

eMBMS 在接入网中引入了单频网（SFN，Single Frequency Network）传输方式，即多播单频网（MBSFN）传输方法，就是在同一时间以相同频率在多个小区进行同步传输。MBSFN 传输可以极大地提高小区整体信噪比分布，频谱效率也会相应地大幅度提升。

在实现本发明过程中，发明人发现现有技术中至少存在如下问题：现有技术中无法确保 MBSFN 传输时多个小区的同步，则不仅不会带来增益，反而会带来干扰，导致这些小区覆盖范围以及周边区域无法正常接收 MBMS 业务。

发明内容

本发明实施例提供一种 MBSFN 传输的方法、装置和系统。

首先，本发明实施例提供一种多播单频网 MBSFN 传输方法，包括：获取网络节点的时钟同步状态信息；根据上述时钟同步状态信息确定处于同步状态的网络节点；利用处于同步状态的网络节点进行 MBSFN 传输。

其次，本发明实施例还提供一种通信装置，上述装置包括：获取单元，用于获取网络节点的时钟同步状态信息；确定单元，用于根据上述获取单元获取得到的时钟同步状态信息确定处于同步状态的网络节点；传输单元，用于利用上述确定单元确定的处于同步状态的网络节点进行 MBSFN 传输。

再次，本发明实施例还提供一种通信系统，上述系统包括通信装置，用于获取网络节点的时钟同步状态信息；根据上述时钟同步状态信息确定处于同步状态的网络节点；利用处于同步状态的网络节点进行 MBSFN 传输。

本发明上述方法实施例技术方案通过利用获取网络节点的时钟同步状态信息在进行 MBSFN 方式传输前，确定处于同步状态的网络节点，从而使得进行 MBSFN 传输的网络节点都是同步的，整个 MBSFN 传输带来了增益，并且减少干扰，可以使小区覆盖范围以及周边区域都可以正常接收 MBMS 业务。
附图说明

[0010] 为了更清楚地说明本发明实施例或现有技术中的技术方案，下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍，显而易见地，下面描述中的附图仅仅是本发明的一些实施例，对于本领域普通技术人员来讲，在不付出创造性劳动的前提下，可以根据这些附图获得其他的附图。

[0011] 图 1 是本发明实施例中包含 MBMS 协调实体 (MCE, Multi-Cell/MulticastCoordination Entity) 的网络结构示意图。

[0012] 图 2 是本发明实施例中一种 MBSFN 传输方法的流程图。

[0013] 图 3 是本发明实施例中引入 SME 的网络结构示意图。

[0014] 图 4 是本发明实施例一种 MBSFN 传输的方法流程图。

[0015] 图 5 为本发明实施例中通过与 SME 相连的第三方应用服务器获取 eNB 的时钟同步状态信息示意图。

[0016] 图 6 为本发明实施例中 eNB 同步误差精度分布图。

[0017] 图 7 为本发明实施例 MBMS 业务区域进行 MBSFN 传输的示意图。

[0018] 图 8 为本发明实施例一种通信装置示意图。

[0019] 图 9 为本发明实施例提供的一种通信系统示意图。

具体实施方式

[0020] 下面将结合本发明实施例中的附图，对本发明实施例中的技术方案进行清楚、完整地描述，显然，所描述的实施例仅仅是本发明一部分实施例，而不是全部的实施例。基于本发明中的实施例，本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例，都属于本发明保护的范围。

[0021] MBSFN 传输方式的特征是多小区的同步传输，需要解决的是同步问题。在本发明实施例中，需要进行同步的网络节点可以是 eNB，也可以是宏基站、微小区基站等进行 MBSFN 传输需要进行时间同步的网络节点，在本发明实施例中，以 eNB 为例进行说明。

[0022] 如图 1 所示，是本发明实施例中包含 MCE 的网络结构示意图。MCE 为可实现多小区传输的逻辑实体，MCE 既可以作为功能实体的一部分，也可以是一个独立的实体。当进行多小区传输时，负责对 MBSFN 区域内所有 eNB 的无线资源进行分配和管理。由于是逻辑实体，MCE 既可以作为特定实体的一部分，也可以是一个独立的实体。

[0023] 为了保证无线帧的同步传输，eMBMS 在 eNB 与 eMBMS 网关用户面之间的 M1 接口上使用同步 (SYNC) 协议。eMBMS 网关在进行数据传输时会携带 SYNC 信息，eNB 会根据 SYNC 信息来发送无线帧。此外，为了保障同步传输，eNB 需要具备一定的缓存能力。

[0024] 在 MBSFN 同步区域内，所有 eNB 的 SYNC 信息是统一的，并且在进行 MBSFN 传输之前，会由 MCE 为所有相关的 eNB 配置相同的无线链路控制 (RLC)/ 媒体接入控制 (MAC)/ 物理层 (PHY)。对于 MBMS 传输，会由特定的 eMBMS 网关通过 M1 接口向所有相关的 eNB 发送 MBMS 业务数据，eMBMS 网关不需要知道准确的无线资源分配的信
息，包括精确的时间分配，只需要在 MBMS 业务数据中携带 SYNC 信息即可。

[0025] 在移动网络中，例如在 TD-LTE（时分双工 - 长期演进）网络中，eNB 可以缺省
认为已经实现了时钟同步，但是在 FD-LTE（频分双工 - 长期演进）网络中，eNB 只是实现
了频率同步，所以针对支持 eMBMS 业务小区的时钟同步需要单独进行实现。另外，即使
实现了时钟同步，也不能保证在需要多小区广播时当前 eNB 的时间同步状态满足多小区
同步的时钟同步精度。如果某小区的时钟同步不能满足要求，将干扰邻近小区 MBSFN
的发送。因此 eMBMS 中的管理实体有必要在进行多小区广播业务前，获取相关 eNB 的
时钟同步状态信息，并根据这些信息来确定真正能够进行 MBSFN 方式传输的 eNB，即确
定能够进行多小区广播的小区。

[0026] 如图 2 所示，是本发明实施例中一种 MBSFN 传输方法的流程图，本实施例提供
的 MBSFN 传输方法包括：

[0027] 201、获取网络节点的时钟同步状态信息。
[0028] 202、根据时钟同步状态信息确定处于同步状态的网络节点。
[0029] 203、利用处于同步状态的网络节点进行 MBSFN 传输。

[0030] 本发明上述方法实施例以技术方案通过利用获取网络节点的时钟同步状态信息在
进行 MBSFN 方式传输前，确定处于同步状态的网络节点，从而使得进行 MBSFN 传输的
网络节点都是同步的，整个 MBSFN 传输带来了增益，并且减少干扰，可以使小区覆盖范
围以及周边区域都可以正常接收 MBMS 业务。

[0031] 如图 3 所示，是本发明实施例中引入 SME 的网络结构示意图，该时钟同步状态
管理实体 SME 可以是一个逻辑实体，也可以位于 MCE、eNB 等同步事件中，也可以独立作
为一个实体存在。SME 获取各 eNB 的时钟同步状态信息，并将各 eNB 的时钟同步状态
信息提供给 MCE，或者 SME 在获取各 eNB 的时钟同步状态信息后，确定处于同步状态的
eNB，然后将处于同步状态的 eNB 的信息告知 MCE。MCE 在收到来自 MME 的 MBMS
会话控制信令后，在判断该 MBMS 业务在接入网中能否进行 MBSFN 传输时，会考虑各
eNB 的时钟同步状态信息。SME 获取时钟同步状态信息的方法可以是通过现有的时钟同
步协议如 PTP（Precision Time Protocol，精确时间协议）、NTP（Network Time Protocol，网
络时钟协议），也可以由 SME 通过第三方应用实体利用这些时钟同步协议向 eNB 获取时
钟同步状态信息后进行相应的处理。

[0032] 参照图 4，本发明实施例中说明一种 MBSFN 传输的方法，该方法包括：

[0033] 401：SME 获取 eNB 的时钟同步状态信息，并反馈给 MCE。

[0034] 下面介绍本发明实施例中几种 SME 获取 eNB 的时钟同步状态信息的方法。

[0035] 第一种方法，SME 向 eNB 查询获取时钟同步状态信息。

[0036] SME 可以根据 PTP 协议来获取 eNB 的同步状态信息，例如，SME 主动发送管
理（Management）消息给 eNB，要求获取 eNB 当前的时钟同步状态信息，eNB 在接收到
Management 消息后，向 SME 发送响应消息，该响应消息中包含该 eNB 的时钟同步状态
信息。这样，SME 可以实时地了解 eNB 当前的时钟同步状态信息。

[0037] 第二种方法，SME 检测 eNB 发送的消息，进行解析来获取时钟同步状态信息。

[0038] 例如，根据 PTP 协议，SME 检测 eNB 发送的发布（Announce）消息，然后对该
Announce 消息进行解析，获得 eNB 当前的时钟同步状态信息。
第三种方法，SME 对 eNB 进行测量获取时钟同步状态信息。
如果 SME 位于 eNB 中，该 eNB 自身是时钟同步域内的需要进行时间同步的网络节点，SME 可以根据自身的同步时钟发起同步测量，获取其它 eNB 的时钟同步状态信息。可以有多种测量方法，例如可以采用 IEEE（Institute of Electrical and Electronics Engineers，美国电气及电子工程师学会）1588 中的 PTP 方式，同步测量可以采取 PTP 中的延迟测量机制。

第四种方法，SME 通过与 SME 相连的第三方应用服务器获取 eNB 的时钟同步状态信息。
如图 5 所示，为本发明实施例中通过与 SME 相连的第三方应用服务器获取 eNB 的时钟同步状态信息示意图。第三方应用实现可以是网络中的基站管理实体或网元管理实体，只要是能够获得 eNB 的时钟同步状态信息的网络实体都可以成为第三方应用实体。SME 通过第三方应用实体提供的接口来获取所需要的同步节点同步状态信息，并发送给 MCE，该过程可以为 SME 向第三方应用实体发送请求消息，第三方应用实体向 SME 发送 eNB 的时钟同步状态信息。

MCE 根据接收到的时钟同步状态信息确定处于同步状态的 eNB。
MCE 进行同步判断，对于各 eNB 时间偏差（Offset）在同步精度要求范围内的 eNB，认为处于同步状态。
根据各同步节点的同步要求，判断同步的标准不同：
（1）帧同步
帧同步即需要帧边界同步。例如需要把 Offset 归一化到 1 帧范围内，LTE 系统中，1 帧是 10ms，把 Offset mod 10ms，经过归一化后的值，分布如图 6 所示，图 6 为本发明实施例中 eNB 同步误差精度分布图，计算出参考值，将误差精度要求外的点判断为不同步的节点，如 A。也可以得到如上图 6 的分布，然后找出不满足同步要求的点。帧号同步的要求比帧同步的要求严格，即不仅需要帧边界同步，同时还要求帧号同步。
在本发明实施例中，如果根据时钟同步状态信息确定有些 eNB 为不同步，则可以进一步触发不同步的 eNB 进行同步。
MCE 利用同步的 eNB 进行 MBSFN 传输。

MCE 利用 eNB 的时钟同步状态信息，管理 MBSFN 小区，满足同步要求的 eNB 可以作为 MBSFN 小区的一部分，不满足同步要求的 eNB 不作为 MBSFN 小区的一部分。
在本发明实施例中，当 SME 获取到 eNB 的时钟同步状态信息后，也可以先由 SME 自己判断获取到时钟同步状态信息的 eNB 是否处于同步状态，然后利用处于同步状态的 eNB 进行 MBSFN 传输，或者将各 eNB 的同步状态反馈给 MCE，由 MCE 利用同步的 eNB 进行 MBSFN 传输。SME 在根据获取得到的时钟同步状态信息判断各 eNB 是否处于同步状态的方法可以和上述 MCE 判断方法相同。
由于 MBSFN 传输涉及的是多个小区间的同步传输，因此需对 MBSFN 传输的区域进行定义：
1) MBSFN 同步区域：是指有能力进行 MBSFN 传输的区域，该区域内的所有
eNB 能够被同步并进行 MBSFN 传输。
[0056] 2) MBSFN 区域 (Area)：是指通过协调实现了 MBSFN 传输的一组小区。对于接收 MBSFN 传输的 UE (User Equipment, 用户设备)，整个 MBSFN 区域会被看作是一个 MBSFN 小区。
[0057] 如图 7 所示，为本发明实施例 MBMS 业务区域进行 MBSFN 传输的示意图。MBSFN Area 定义为：一个 MBSFN Area 包含一组小区，并且这组小区都位于网络中的同一个可以协调进行 MBSFN 方式传输的 MBSFN 同步区。 MBSFN 同步区中的小区可以是多个 MBSFN Area 中的一部分。也就是 MBSFAArea 内的基站必须处于同步状态，如果不处于同步状态，需要把不处于同步状态的基站从 MBSFN 区域排除出来，不参与 MBSFN 方式传输，即不进行 SFN 发射。
[0058] 显然，MBSFN 区域必定不会超出 MBSFN 同步区域的范围。一个 MBSFN 同步区域中可以包含多个 MBSFN 区域，而 MBSFN 同步区域的特定小区也可以属于多个不同的 MBSFN 区域。MBSFN 同步区域一般通过配置实现，而 MBSFN 区域既可以通过配置，也可以通过 MCE 来实现。
[0059] 即便在同一个 MBSFN 区域内，由于对 MBSFN 传输可能处于不同的接收状况，因此可以进一步将 MBSFN 区域内的小区分为传输和告示区 (图 7 中的 U1，U2，U3，A1，A2，A3) 和保留区 (图 7 中的 R1)。传输和告示区是指那些可同时接收传输内容和业务信息的小区，在这种小区中，UE 能够有保障地进行接收；保留小区是指那些不参与 MBSFN 方式传输的小区。
[0060] 本发明上述方法实施例的技术方案具体规范了在进行 MBSFN 方式传输前，获取网络节点的时钟同步状态信息来确保同步区内各小区都同步到达同步。可以使用 eMBMS 在进行 MBSFN 传输时能够提前获知各小区的时钟同步状态信息，进而根据基站的同步状态信息进行处理，确定满足同步状态的节点才参与 MBSFN 传输。进一步，对于通过时钟同步状态信息确定为不同步的节点，可以在触发不同步的节点进行同步后再参与 MBSFN 方式传输。
[0061] 如图 8 所示，为本发明实施例一种通信装置示意图，上述装置包括：
[0062] 获取单元 801，用于获取网络节点的时钟同步状态信息；
[0063] 确定单元 802，用于根据获取单元 801 获取到的时钟同步状态信息确定处于同步状态的网络节点；
[0064] 传输单元 803，用于利用确定单元 802 确定的处于同步状态的网络节点进行 MBSFN 传输。
[0065] 在本发明实施例中，通信装置可以为 MCE，也可以为 SME，当通信装置为 MCE 时，获取单元 801 可以用于接收时钟同步状态实体 SME 发送的所述网络节点的时钟同步状态信息；所述网络节点的时钟同步状态信息由所述 SME 向所述网络节点查询获得；或者，所述网络节点的时钟同步状态信息由所述 SME 收到所述网络节点发送的消息解析获得；或者，所述网络节点的时钟同步状态信息由所述 SME 对所述网络节点进行测量获得；或者，所述网络节点的时钟同步状态信息由所述 SME 通过与所述 SME 相连的第三方应用服务器获得。确定单元 802 可以根据所述时钟同步状态信息确定与主时钟的时钟同步精度在微秒级内的网络节点为处于同步状态的网络节点。
可选的，如图 8 所示，本发明实施例通信装置还可以包括：

触发单元 804，用于触发根据所述时钟同步状态信息确定处于非同步状态的网络节点进行同步，以达到同步状态。

获取单元 801 可以通过时钟同步协议获取网络节点的时钟同步状态信息，上述时钟同步协议至少包括如下之一：精确时钟协议、网络校时协议。上述网络节点可以为演进基站、宏基站或家用基站等需要进行同步的节点。

参照图 9，为本发明实施例提供的一种通信系统，所述系统包括通信装置 901，用于获取网络节点 902 的时钟同步状态信息；根据所述时钟同步状态信息确定处于同步状态的网络节点；利用处于同步状态的网络节点进行 MBSFN 传输。网络节点 902 可以为多个。

通信装置可以为 MCE，可以为 SME。当通信装置为 MCE 时，获取单元 801 可以用于接收时钟同步状态实体 SME 发送的网络节点 902 的时钟同步状态信息；时钟同步状态信息由所述 SME 向网络节点 902 查询获得；或者，时钟同步状态信息由所述 SME 接收网络节点 902 发送的发布消息解析获得；或者，时钟同步状态信息由所述 SME 对所述网络节点 902 进行测量获得；或者，所述时钟同步状态信息由所述 SME 通过与所述 SME 相连的第三方应用服务器获得。

本发明实施例提供的装置实施例和系统实施例可以实现上述方法实施例的内容。本发明上述装置和系统实施例的技术方案具体规范了 MBSFN 传输前，获取网络节点的时钟同步信息来确保同步小区内网络节点已经达到同步。可以使 eMBMS 在进行 MBSFN 传输时能够提前获知各小区的时钟同步状态信息，进而根据网络节点的同步状态信息进行处理，确定满足同步状态的节点参与 MBSFN 传输，对于不同的节点，可以在触发不同的节点进行同步后再参与 MBSFN 方式传输。为整个 MBSFN 传输带来增益，并且减少干扰，可以使小区覆盖范围以及周边区域都可以正常接收 MBMS 业务。

本领域普通技术人员可以理解实现上述实施例方法中的全部或部分步骤是可以通过程序来指令相关硬件来完成，所述的程序可以存储于一计算平台可读取存储介质中，所述程序在执行时，包括上述全部或部分步骤，所述存储介质，如：ROM/RAM、磁盘、光盘等。

以上所述的具体实施方式，对本发明的目的、技术方案和有益效果进行了进一步详细说明，所应理解的是，以上所述仅为本发明的具体实施方式而已，并不用于限定本发明的保护范围，凡在本发明原则之内所做的任何修改、等同替换、改进等，均应包含在本发明的保护范围之内。
图4

图5

图6