a2 United States Patent
Marshall

US009660891B2

US 9,660,891 B2
May 23, 2017

(10) Patent No.:
45) Date of Patent:

(54) METHODS AND SYSTEMS FOR COMPUTER
MONITORING

(71) Applicant: TravelClick, Inc., New York, NY (US)
(72) Inventor: David Marshall, Naples, FL. (US)
(73) Assignee: TravelClick, Inc., New York, NY (US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 480 days.

(21) Appl. No.: 14/158,197
(22) Filed: Jan. 17, 2014

(65) Prior Publication Data
US 2014/0201360 Al Jul. 17, 2014

Related U.S. Application Data
(60) Provisional application No. 61/753,911, filed on Jan.

17, 2013.
(51) Int. CL

HO4L 12/26 (2006.01)

HO4L 29/08 (2006.01)
(52) US.CL

CPC ... HO4L 43/0888 (2013.01); HO4L 29/08153

(2013.01); HO4L 43/08 (2013.01); HO4L 43/16
(2013.01); HO4L 67/1008 (2013.01)

(58) Field of Classification Search
CPC . GO6F 11/3409; GO6F 11/3419; GO6Q 10/04;

GO06Q 10/06; HOAL 12/66; HOAL
41/5016; HO4AL 43/0888; HO4L 43/08;
HOAL 43/16; HOAL 29/08153; HOAL

67/1008
See application file for complete search history.
(56) References Cited
U.S. PATENT DOCUMENTS
6,473,721 B1* 10/2002 Chacon GO06Q 10/06
702/177
8,069,240 B1* 11/2011 Ybarra, IIT HO4L 41/5016
709/224
2005/0086335 ALl™* 4/2005 Liu ..cocoovivieiacnns G06Q 10/04
709/223
2009/0287744 Al* 112009 Bernardini GOGF 11/3419
2010/0094592 Al* 4/2010 Cherkasova GOGF 11/3409
702/182
2010/0180033 Al* 7/2010 Abdelal HO4L 12/66
709/226
2011/0093253 A1* 4/2011 Kraftcccoeenes GOGF 11/3419
703/21

* cited by examiner

Primary Examiner — Le H Luu
(74) Attorney, Agent, or Firm — Hodgson Russ LLP

(57) ABSTRACT

Methods and systems for deriving metrics for service and/or
computer (e.g., server) utilization and stability from instru-
mentation of applications showing Poisson characteristics
are disclosed. Such methods and systems may be further
applied to automatically act upon the conditions indicated by
the derived metrics, for example, to provision additional
virtual server resource(s) in a cloud-based system.

5 Claims, 2 Drawing Sheets

100
AN

RECORDING THE TIMES AT WHICH ’J
EACH MESSAGE IS DEQUEUED
AND SERVICED.

| 108

CALCULATING A MEAN SERVICE /
TIME AND ARRIVAL RATE FOR THE
MESSAGES SERVICED DURING
THE SAMPLE PERIOD.

| 109

CALCULATING A MAXIMUM /
THROUGHPUT OF THE SERVER.

| 112

CALCULATING A SERVER J
UTILIZATION.

COMPARING THE SERVER s

UTILIZATION TC A
PREDETERMINED UTILIZATION
THRESHOLD.

PROVISIONING A VIRTUAL 18
SERVER COMPUTER INSTANCE IF |
THE SERVER UTILIZATION
EXCEEDS THE THRESHOLD.

U.S. Patent

100

May 23, 2017 Sheet 1 of 2

US 9,660,891 B2

103

RECORDING THE TIMES AT WHICH
EACH MESSAGE IS DEQUEUED
AND SERVICED.

/

CALCULATING A MEAN SERVICE
TIME AND ARRIVAL RATE FOR THE
MESSAGES SERVICED DURING
THE SAMPLE PERIOD.

106

CALCULATING A MAXIMUM
THROUGHPUT OF THE SERVER.

109

112

CALCULATING A SERVER
UTILIZATION.

COMPARING THE SERVER
UTILIZATION TO A
PREDETERMINED UTILIZATION
THRESHOLD.

115

PROVISIONING A VIRTUAL
SERVER COMPUTER INSTANCE IF
THE SERVER UTILIZATION
EXCEEDS THE THRESHOLD.

118

Fig. 1

U.S. Patent

200

May 23, 2017 Sheet 2 of 2

RECORDING THE TIMES AT WHICH
EACH MESSAGE IS DEQUEUED
AND SERVICED.

CALCULATING A MEAN SERVICE

TIME AND STANDARD DEVIATION
FOR THE MESSAGES SERVICED
DURING THE SAMPLE PERIOD.

CALCULATING A VARIABILITY
VALUE BASED ON THE MEAN
SERVICE TIME AND STANDARD
DEVIATION.

CALCULATING A STABILITY VALUE
BASED ON THE VARIABILITY
VALUE.

COMPARING THE STABILITY
VALUE TO A PREDETERMINED
STABILITY THRESHOLD.

Fig. 2

US 9,660,891 B2

203

206

209

212

215

US 9,660,891 B2

1
METHODS AND SYSTEMS FOR COMPUTER
MONITORING

CROSS-REFERENCE TO RELATED
APPLICATIONS

The present application claims the benefit of the earlier
filing date of U.S. Provisional Patent Application No.
61/753,911, filed Jan. 17, 2013.

FIELD OF THE INVENTION

The disclosure relates to methods and systems for using
custom application instrumentation to derive application-
specific techniques for monitoring performance.

BACKGROUND OF THE INVENTION

The use of variance analysis as a trigger for alarms is
known for distilling key information from a plethora of data
points. However, too much non-specific information hinders
the ability to monitor and measure the performance of
computer systems. The understanding of system perfor-
mance characteristics increases significantly the application
code is instrumented to provide useful data for measuring
the particular application. When source code is accessible
application developers may employ a simple, static
approach where calls to a metrics package are inserted at
appropriate points in the application code. If source is not
available instrumentation may be possible using dynamic
techniques such as Aspect-Oriented-Programming (AOP) to
gather metrics via aspects deployed at well-defined point-
cuts.

However, previous techniques for the use of application-
specific metrics provide only first-order data which must be
interpreted by an operator to be useful.

BRIEF SUMMARY OF THE INVENTION

The present invention is directed to methods and systems
for deriving metrics for service and/or computer utilization
(e.g., server) and stability from instrumentation of applica-
tions showing Poisson characteristics. Such methods and
systems are useful for, and may further comprise, automati-
cally acting upon the conditions indicated by the derived
metrics, for example, to provision additional virtual server
resource(s) in a cloud-based system.

DESCRIPTION OF THE DRAWINGS

For a fuller understanding of the nature and objects of the
disclosure, reference should be made to the following
detailed description taken in conjunction with the accom-
panying drawings, in which:

FIG. 1 is a flowchart depicting a method according to an
embodiment of the present disclosure; and

FIG. 2 is a flowchart depicting a method according to
another embodiment of the present disclosure.

DETAILED DESCRIPTION OF THE
INVENTION

Instrumentation
The essential categories of metrics gathered here may be
considered to be time-based:

10

15

20

25

30

35

40

45

50

55

60

65

2

“wait time” is the time between enqueuing a message on
the input queue for a particular service center and the time
the same message is dequeued for service.

“service time” is the time between dequeuing a message
for service and the completion of that service.

The data used for the metrics may be collected and
analyzed during one or more discrete sample periods. Such
sample periods may be long enough to contain statistically
significant sample sizes, yet short enough for the population
to have similar characteristics in terms of workload and
performance. Exemplary embodiments have been imple-
mented using intervals of one minute (for high-volume
systems) and five minutes (for moderate-volume systems)
with good results, but should not be limited to only such
examples. In some embodiments, two sets of statistics may
be maintained: (1) full period statistics representing the
entire population since application startup; and (2) interval
statistics periodically reset according to a known frequency
(e.g., one minute). Interval statistics may be derived by
calculating the change between subsequent readings of
full-period statistics.

For each of these sets, the following data points and
statistics are collected in exemplary embodiments:

timestamp: the time the sample was taken

interval: time since the previous sample (or uptime for
full-period statistics)

count: population size

m: maximum concurrent service points

service min: minimum service time of any item in the
sample

service max: maximum service time of any item in the
sample

service [mean service time

service o: standard deviation on service time

wait min: minimum wait time of any item in the sample

wait max: maximum wait time of any item in the sample

wait |1: mean wait time

wait o: standard deviation on wait time

Instrumenting an application may be accomplished such
that very little overhead is required. Even calculating a
running mean and variance is efficient when a good algo-
rithm is employed.

Harvesting Statistics

It may be convenient to distinguish between statistics
collection and statistics harvesting. Whereas statistics col-
lection is the domain of any instrumentation package, sta-
tistics harvesting is preferably done by an external agent.
This approach has the benefits of: (1) allowing different
harvesting techniques independent of collection; and (2)
separation of concerns. Statistics gatherers may invite
inspection (e.g., a JMX MBean on a java-based system), or
publish events (e.g., to a log file or an event stream available
to a continuous-event-processing (“CEP”) engine).

Two useful metrics gathered as part of the exemplary
instrumentation are: (1) mean service time; and (2) through-
put. Knowing these values, and measuring them at discrete
intervals, allows for the application of queuing theory con-
cepts for both monitoring and capacity planning purposes.

Application of queuing theory to running systems

Queuing theory can be applied as a modeling tool to
predict performance in queuing systems when behavior is
understood. Here, Little’s law is applied to a running system
to dynamically derive a utilization metric. This technique is
applicable to any open system with Poissonian arrivals and
exponential service characteristics. Known statistical tests
may be applied to determine if a given data set is Poissonian.

US 9,660,891 B2

3

Little’s law defines the relationship between the mean
queue length (Q), the expected arrival rate (A) and the mean
resident time (R) in a stable queuing system:

O=NR ey

In a transactional system in a steady state, throughput (X)

may be considered to be equal to A:

X=\ ()]

To maintain a steady state, sufficient service resources
must be available to handle Q work items simultaneously.
The measure of the number of concurrent servers (or serving
resources) is given by m. In many configurations m is
constant or limited by a predetermined upper bound.

Considering again the steady state, and given that mean
service time (S) is known through instrumentation, Erlang’s
equations predict R=~S.

Little’s law is applied to calculate the maximum through-
put (X,,,.) at a mean service time (S) on a queuing system
with maximum concurrency (m

max)

mmax

©)

Kmax =

As m=m,, . is usually known and constant, a simple
function for maximum throughput for a given mean service

time (S) is obtained as:

Kol $) = % @

Utilization

The concept of utilization monitoring is known to those
skilled in the art of monitoring computer systems/servers;
for example, CPU and memory utilization data are captured
and charted as a standard part of many monitoring regimens.
However, without examining and understanding a system’s
behavior in light of its throughput limit X, , it is possible
for a system to reach a point where performance suffers well
before CPU utilization or other common measures are a
concern.

To confound things further, this throughput limit may
change dynamically. For example, in modern business sys-
tems major portions of service time are spent in one or more
1/O wait states (e.g., waiting for disk, waiting for a lock,
waiting for a database response). Changes in the perfor-
mance characteristic of an I/O resource that cause increases
in mean service times cause a corresponding decrease in
maximum throughput X, ... When actual arrival rates
exceed this limit (A>X,,,,) a backlog results. If new work
units continue to arrive at the same rate, queue depth builds
quickly and the once-stable system enters a failing state. The
present disclosure provides methods and systems to present
a computer system’s utilization from a queuing theoretic
viewpoint. In this manner, such behavioral dynamics may be
accounted for in a simple, well understood format.

The present invention may be embodied as a computer-
based method 100, such as, for example, that depicted in
FIG. 1, for monitoring utilization of a server computer
during a sample period. The server computer may be an
transactional server configured to perform services
requested via received messages (i.e., servicing the mes-
sages). The server is instrumented to provide data which is
relevant to the particular transactions of the application. The

10

15

20

25

30

35

40

45

50

55

60

4

method 100 comprises the step of recording 103, in an
electronic file, the time at which each message is dequeued
and the time at which each message has been serviced. For
example, the time at which each event occurs may be
recorded in a log file or a memory location.

A mean service time is calculated 106 by the computer,
for the messages serviced during the sample period. Addi-
tional details related to the method 100 are provided under
the heading “Utilization Exemplary Embodiment and Dis-
cussion” below. For example, a service time may be calcu-
lated for each message, and a mean derived using the service
times. The arrival rate of the messages may be calculated
106 as well. For example, the number of messages arriving
per unit of time (e.g., per second, per 10 seconds, etc.) may
be calculated 106 as the arrival rate.

A maximum throughput of the server may be calculated
109 based on the mean service time and a concurrency value
representing the maximum number of transaction servers
available. The concurrency value may be resident as an
environmental variable, stored in a configuration file of the
server, passed to the method software as a parameter, or
otherwise provided.

A server utilization is calculated 112 as a ratio of the
measured throughput (from the mean service time and
arrival rate) and the calculated maximum throughput. The
calculated server utilization is compared 115 to a utilization
threshold to determine server capacity.

The method 100 may further comprise the step of provi-
sioning 118 a server computer instance if the calculated
server utilization exceeds the utilization threshold. In this
manner, a provisioning service may be automated to pre-
emptively address server capacity. Such an automated
method is especially useful in a cloud-based, Hardware-as-
a-Service environment, where servers may be provisioned
and/or decommissioned without operator intervention.

The present disclosure may be embodied as a non-
transitory medium having computer-readable instructions
for causing a processor to perform embodiments of the
method 100. The present disclosure may be embodied as a
system 10 comprising a processor 12. The system 10 may
further comprise a network interface 14 in electronic com-
munication with the processor 12. The processor 12 may be
programmed to perform embodiments of method 100. For
example, the processor 12 may be programmed to determine
the time at which each of a plurality of messages, received
at the network interface 14, is dequeued and the time at
which each message has been serviced; calculate a mean
service time and an arrival rate for the messages serviced
during the sample period; calculate a maximum throughput
of the computer based on the mean service time and a
concurrency value; calculate a computer utilization based on
the measured throughput and the calculated maximum
throughput; and compare the calculated computer utilization
to a utilization threshold to determine computer overcapac-
ity.

Utilization Exemplary Embodiment and Discussion

The disclosed current utilization (U) is a measure of
current throughput (X) relative to maximum throughput

O(max):

UX,$)= % ©)

US 9,660,891 B2

5

Throughput will increase or decrease in unison with
changes in arrival rate A, provided Little’s law is satisfied,
s0:

A=OR (6)

However, if mean service times increase, resident time
will increase and the throughput ceiling X, . decreases
accordingly.

Determining m

Concurrency in a transactional queuing system is
described by m, representing the number of simultaneous
servers operating at the same service center. In multi-
threaded architectures, m represents the maximum concur-
rent worker threads that may be utilized at a given service
center. If work is being performed by a pool of threads, m
represents the number of threads in the pool. For multi-
process architectures (e.g., traditional Unix forking servers
such as Apache httpd 1.3), m represents the number of
worker processes.

It is preferred to constrain m via a configured upper-bound
to prevent runaway resources during periods of unusual peak
demand. The overhead of thread or process creation and
destruction is well-known and this overhead has led to the
standard practice of using pooled workers.

If it is not possible to determine m at runtime when
reporting or harvesting statistics, the value of m may be
passed as a parameter.

Stability Metrics

In another embodiment of the present invention, a method
200 is provided to derive a measure of service stability by
examining variability in mean service times for an instru-
mented service. Transactional and computational services in
computer systems are considered to exhibit an exponential
distribution when stable (provided work arrives according to
a Poisson process).

A computer-based method 200 for monitoring the stability
of a server computer comprises recording 203, in an elec-
tronic file, the time at which each message is dequeued and
the time at which each message has been serviced. For
example, the time at which each event occurs may be
recorded in a log file or a memory location.

A mean service time and standard deviation are calculated
206 by the computer, for the messages serviced during the
sample period. Additional details related to the method 200
are provided under the heading “Stability Exemplary
Embodiment and Discussion” below. For example, a service
time may be calculated for each message, and the mean and
standard deviation derived using the service times.

The method 200 comprises the step of calculating 209 a
variability value based on the mean service time and stand
deviation of service times (here again, further details are
provided below). A stability value is calculated 212 based on
the variability value and a predetermined dampening factor,
and the stability value is compared 215 to a stability thresh-
old to determine the stability of the server.

The present disclosure may be embodied as a non-
transitory medium having computer-readable instructions
for causing a processor to perform embodiments of the
method 200. The present disclosure may be embodied as a
system 50 comprising a processor 52. The system 50 may
further comprise a network interface 54 in electronic com-
munication with the processor 52. The processor 52 may be
programmed to perform embodiments of method 200. For
example, the processor 52 may be programmed to determine
a time at which each of a plurality messages, received at the
network interface 54, is dequeued and the time at which each
message has been serviced; to calculate a mean service time

25

35

40

45

55

6

and a standard deviation of service times for the messages
serviced during the sample period; to calculate a variability
value based on the mean service time and stand deviation of
service times; to calculate a stability value based on the
variability value and a predetermined dampening factor; and
to compare the stability value to a stability threshold to
determine computer stability.

Stability Exemplary Embodiment and Discussion

An useful characteristic of an exponential distribution is
a coefficient of variation C, of 1. The coeflicient of variation
is given by the equation:

Ol =12 M
u

When C >1 a sample population exhibits behavior better
fitted to a hyper-exponential distribution, the greater the
coeflicient, the less predictable or stable the outcome. The
present stability metric is a measure of how far C, deviates
from the expected norm of 1. The greater the deviation, the
less the stability.

In an embodiment of the stability metric, stability (S) was
assumed to be 100% at C, =1, and reach 0% as C, approaches
2:

S(e, W=1-(C,-1) ®)

A dampening factor D was introduced to soften the
gradient of the stability line. As such the dampening factor
may be adjusted based on operational experience, with a
suitable value being chosen to complement the behavior of
the particular system being measured. Accordingly, the
stability equation of (8) is adjusted to:

c, -1
D

S(o,w=1- ®

In practice, a dampening factor of D=1.5 was found to be
a suitable initial value when fitting to a new system’s
characteristics.

As this is to be a dimensionless metric, the result is
preferably normalized to fall within the closed interval [0,
1]. Accordingly, stability equation (9) is normalized as:

L Cy-1 (10)
1 if —— =1
D

Cy -1

S(o, w) = 0 if D =1
c, -1 .

1-— otherwise
D

Aggregating Stability Metrics

Modern systems, such as Service-Oriented Architecture
(“SOA”) implementations, offer multiple types of messages
or services, each with different performance characteristics.
It is often useful to combine stability metrics for several
service types to produce an overall stability metric appli-
cable to a server or server cluster. If component statistics
exhibit significantly different mean service times, a stability
metric that is typeless and based on the total population will
exhibit a counter-intuitive Yule-Simpson effect. The corre-
sponding stability metric will yield a lower value than the
stability of the constituent types.

US 9,660,891 B2

7

To counter this effect, a weighted arithmetic mean of
component stability metrics may be calculated when con-
sidering such aggregations. Each given type with stability S,
may be weighted according to its frequency of occurrence f;
within the measurement interval. Combining all such types,
yields:

L (1
Zfisi
1

§_i

n

i

i=

It should be noted a computer of the present disclosure
may monitor itself or other computers (e.g., servers). Fur-
thermore, although processors are described, it is to be
appreciated that the processors may be implemented in
practice by any combination of hardware, software, and
firmware. Also, its functions as described herein may be
performed by one unit, or divided up among different
components, each of which may be implemented in turn by
any combination of hardware, software, and firmware.

Although the present invention has been described with
respect to one or more particular embodiments, it will be
understood that other embodiments of the present invention
may be made without departing from the spirit and scope of
the present invention. Hence, the present disclosure is
deemed limited only by the appended claims and the rea-
sonable interpretation thereof.

What is claimed is:

1. A computer-based method for monitoring utilization of
a server computer during a sample period, the server com-
puter servicing received messages, the method comprising
the steps of:

10

15

20

25

30

8

recording, in an electronic file, the time at which each
message is dequeued and the time at which each
message has been serviced;

calculating, using the computer, a mean service time and

an arrival rate for the messages serviced during the
sample period;

calculating, using the computer, a maximum throughput

of the server based on the mean service time and a
concurrency value;

calculating a server utilization based on the measured

throughput and the calculated maximum throughput;
comparing the calculated server utilization to a utilization
threshold to determine server overcapacity.

2. The method of claim 1, further comprising the step of
provisioning a server computer instance if the calculated
server utilization exceeds the utilization threshold.

3. The method of claim 1, wherein the concurrency value
is stored in an electronic file of the server computer.

4. The method of claim 1, wherein the concurrency value
is a received parameter.

5. A computer-based method for monitoring the stability
of a server computer, the method comprising the steps of:

recording, in an electronic file, the time at which each

message is dequeued and the time at which each
message has been serviced;

calculating, using the computer, a mean service time and

a standard deviation of service times for the messages
serviced during the sample period;

calculating a variability value based on the mean service

time and stand deviation of service times;

calculating a stability value based on the variability value

and a predetermined dampening factor; and
comparing the stability value to a stability threshold to
determine server stability.

#* #* #* #* #*

