实用新型名称

一种可自动调节攻角的垂直轴风力发电装置

摘要

本实用新型提供了一种可自动调节攻角的垂直轴风力发电装置。由叶片、叶片上固定板、叶片下固定板、输出轴、矩形凸块、凸轮、凸轮驱动组件及底座组成；叶片上设有转轴，通过转轴将叶片铰接于叶片上固定板和叶片下固定板之间；叶片上固定板与输出轴刚性连接；叶片下固定板与底座通过轴承铰接；矩形凸块固定于叶片转轴并与凸轮的外轮廓接触；凸轮外轮廓设有两个内凹圆弧用于改变叶片方向；凸轮驱动组件设于凸轮下方，且固定于底座上；整套装置由底座固定于载体上。本装置与现有采用叶片转角固定的风轮机相比，可以有效降低垂直轴风力发电机的启动风速和提高风能利用率，且结构简单，成本低廉，对于推广风能利用有非常好的社会意义。
1. 一种可自动调节攻角的垂直轴风力发电装置，其特征在于：由叶片、叶片固定板、
叶片下固定板、输出轴、矩形凸块、凸轮、凸轮驱动件及底座组成；叶片上设有转轴，通过
转轴将叶片铰接于叶片固定板和叶片下固定板之间；叶片固定板与输出轴刚性连接；
叶片下固定板与底座通过轴承铰接，矩形凸块固定于叶片转轴并与凸轮的外轮廓接触；
凸轮驱动件设置于凸轮下方，且固定于底座上；整套装置由底座固定于载体上。

2. 如权利要求1所述的一种可自动调节攻角的垂直轴风力发电装置，其特征在于：矩
形凸块与叶片转轴底端固定，其侧面始终与凸轮的外凸圆弧相切。

3. 如权利要求1所述的一种可自动调节攻角的垂直轴风力发电装置，其特征在于：凸
轮轮廓主要由四段圆弧组成，其中两段为同心的外凸圆弧，这两圆弧之间通过两段内凹
圆弧连接，在连接处形成拐点。

4. 如权利要求1所述的一种可自动调节攻角的垂直轴风力发电装置，其特征在于：凸
轮驱动件上设有风向传感器、电机及齿轮传动机构；风向传感器接收风向改变信号，并将
风向改变信号传至电机，使电机转动，再由齿轮传动机构带动凸轮转动。

5. 如权利要求1所述的一种可自动调节攻角的垂直轴风力发电装置，其特征在于：底
座是一空心带法兰结构；内孔通过轴承与输出轴铰接，外轴面通过轴承分别与下叶片固定
板和凸轮铰接；底部法兰与载体连接固定。
一种可自动调节攻角的垂直轴风力发电装置

技术领域
[0001] 本实用新型涉及一种可自动调节攻角的垂直轴风力发电装置，具体是指用于风力发电，可根据风向调节叶片角度的装置，属于垂直轴风能发电技术开发领域。

背景技术
[0002] 风力发电机是一种将风能转换为机械能、电能或热能的能量转换装置。长期以来，人们为了更好地利用风能设计了多种形式的风力发电装置，依风力发电机旋转轴空间方向位置的不同可分为水平轴风力发电机和垂直轴风力发电机，垂直轴风力发电机又可分为阻力型和升力型两类。一般的垂直轴风力发电机的风轮采用升力型，叶片形状复杂，制造成本高，叶片的轴线和垂直轴平行，轮的转速和风向无关，因此不需要像水平轴风力机那样采用迎风装置。由于叶片与悬臂支架的角度固定不变，因此，叶片产生的驱动力矩的大小和方向是不断变化的，同时还会产生较大的阻力矩，造成现有的垂直轴风力发电机的启动风速大，风能利用率不高和环境适应性不强等缺陷。

实用新型内容
[0003] 本实用新型的目的在于提供一种可自动调节攻角的垂直轴风力发电装置，其通过调节叶片攻角来有效降低垂直轴风力发电机的启动风速及提高风能利用率，有效避免了常规垂直轴风力发电机启动风速大和风能利用率低的缺陷。
[0004] 为实现上述目的，本实用新型的技术解决方案是：
[0005] 本实用新型是一种可自动调节攻角的垂直轴风力发电装置，该装置通过调节叶片攻角来有效降低垂直轴风力发电机的启动风速及提高风能利用率。该装置结构由叶片、叶片上固定板、叶片下固定板、输出轴、矩形凸块、凸轮、凸轮驱动组件及底座组成；叶片上设有转轴，通过转轴将叶片铰接于叶片上固定板和叶片下固定板之间；叶片上固定板与输出轴刚性连接；叶片下固定板与底座通过轴承铰接；矩形凸块固定于叶片转轴并与凸轮的外轮廓接触；凸轮驱动组件设于凸轮下方，且固定于底座；整套装置由底座固定于载体上。
[0006] 所述矩形凸块与叶片转轴底端固定，其侧面始终与凸轮的凸圆弧相切。
[0007] 所述凸轮外轮廓主要由四段圆弧组成，其中两段为同心的凸圆弧，这两圆弧之间通过两段内凹圆弧连接，当矩形凸块滚过内凹圆弧时会绕过直角死点进行90°转动，从而调节叶片方向，提高发电效率。
[0008] 所述凸轮驱动组件上设有变向传感器、电机和齿轮传动机构，风向传感器接收风向改变信号，并将风向改变信号传至电机，使电机转动，电机带动齿轮传动机构运转，最终实现凸轮位置调节。
[0009] 所述底座是空心带法兰结构，其内孔通过轴承与输出轴铰接，外轴面通过轴承分别与叶片下固定板和凸轮铰接，最后整套装置通过法兰安装孔与载体连接固定。
[0010] 采用上述方案后，本实用新型具有以下优点：
[0011] (1) 利用凸轮上的两个内凹圆弧来实现矩形凸块方向的转变，从而使与矩形凸块
固定叶片方向改变，结构简单可靠，有效降低了启动风速和提高风能利用率；

[0012] （2）根据风向传感器来控制电机驱动，然后通过齿轮传动机构带动凸轮转动，调节凸轮位置，使得发电机输出轴始终保持处于可产生最大扭矩和转速的状态。

[0013] 综上所述，本实用新型与现有采用叶片转角固定的风轮机相比，该系统不仅可以有效降低垂直轴风力发电机的启动风速，而且还大大提高风能利用率，结构简单，成本低廉，对于充分开发利用风能发电具有非常重要的意义。

[0014] 下面结合附图和具体实施，对一种可自动调节攻角的垂直轴风力发电装置做进一步说明。

附图说明

[0015] 图 1 是一种可自动调节攻角的垂直轴风力发电装置立体结构示意图；

[0016] 图 2 是一种可自动调节攻角的垂直轴风力发电装置剖面结构剖视图；

[0017] 图 3 是沿图 2 中的 A-A 线的剖视图；

[0018] 图 4 是沿图 3 所示的方向，当叶片顺时旋转 30° 时的示意图。

具体实施方式

[0019] 如图 1 至图 3 所示，本实用新型是一种可自动调节攻角的垂直轴风力发电装置，其通过调节叶片攻角来有效降低垂直轴风力发电机的启动风速及提高风能利用率；它由叶片 1、叶片上固定板 2、叶片下固定板 3、输出轴 4、矩形凸块 5、凸轮 6、凸轮驱动组件 7 及底座 8 组成；叶片 1 上设有转轴，叶片 1 转轴一端铰接于叶片上固定板 2，另一端铰接于叶片下固定板 3；叶片上固定板 2 与输出轴 4 刚性连接；叶片下固定板 3 与底座 8 通过轴承铰接；矩形凸块 5 与叶片 1 的转轴底端固定，矩形凸块 5 的侧面始终保持与凸轮 6 外凸圆弧相切；凸轮 6 的外轮廓主要由四段圆弧线组成，分别是外凸圆弧 61，外凸圆弧 63，内凹圆弧 62 和内凹圆弧 64，转动时矩形凸块 5 始终与这四段圆弧接触；如图 4 所示，其中当矩形凸块 5 滚至内凹圆弧 62 或 64 时，矩形凸块 5 在其内的自转角范围（图中未示）作用下会绕叶片 1 转轴自转，保持与凸圆弧 62 或 64 接触，当转至拐点时，矩形凸块 5 则会绕过直角死点进行 90° 转动，从而带动与矩形凸块 5 固定在一起的叶片 1 跟着转动，达到调节叶片攻角目的。

[0020] 凸轮驱动组件 7 固定于底座 8 上面，其上设有风向传感器 71，电机 72 和齿轮传动机构 73，当外界风向改变时，则通过风向传感器 71 确定方向后，再将信号传递给电机 72，由电机 72 和齿轮传动机构 73 联合驱动凸轮 6 转动，使得凸轮 6 始终保持与风向始终保持一致。

[0021] 底座 8 是一空心带法兰结构，内孔 81 通过轴承与输出轴 4 铰接，起传动支撑作用，外轴 82 通过轴承分别与叶片下固定板 3 和凸轮 5 铰接，整套装置最后通过底部法兰 83 的安装孔与电线杆或建筑物连接固定，然后再将输出轴 4 连接发电设备，最终实现发电。

[0022] 上述实例和图示并非限定本实用新型的产品形态和样式，任何所述技术领域的普通技术人员对其所做的适当变化或修正，皆视为不脱离本实用新型的专利范畴。
图 1