OFFICE DE LA PROPRIETE

INTELLECTUELLE DU CANADA t‘.

OPIC CIPO

PROPERTY OFFICE

(72) QUAST, W. NORBERT, DE
(71) ACOS INTERNATIONAL LIMITED, IE

51) Int.C1.° GO6F 9/44
(0) 1998/01/02 (198 00 102.9) DE
(0) 1998/02/20 (198 07 191.4) DE

(12) (19) (CA) Dem ande-Application

(CANADIAN INTELLECTUAL

(21) (A1) 2,3 16,952
86) 1998/12/29
87y 1999/07/15

54) PROCEDE DE DEROULEMENT DE PROGRAMME ET
PROCEDE POUR LEXTENSION D’UN SYSTEME DE

COMPOSANTES DE PROGRAMME

54) PROGRAM FLOW METHOD AND METHOD FOR EXPANDING

A PROGRAM COMPONENT SYSTEM

18

o
T
T

(57) L invention concerne un procede de déroulement de
programme pour un systeme de composantes de
programme presentant un systeme d’exécution (14) et
plusieurs composantes (20, 20°, ...). Le procede selon
I"1invention comprend une acquisition de donnees d une
deuxiecme composante (207) vers la premiere composante
(20), par 'interméediaire du systeme d’excécution (14),
indépendamment d’interfaces definies par e
programmeur dans la deuxiecme composante (207), ainsi
qu'une extraction de donnees de la premiere
composante (20) vers la deuxieme composante (207),
par l'interme¢diaire du systeme d’exécution (14),

I*I Industrie Canada Industry Canada

(57) The invention relates to a program flow method 1n a
program component system which has a running time
system (14) and a number of components (20, 20°, ...).
The inventive method comprises a data acquisition of
data pertamning to a second component (207) 1n the first
component (20) independent of programming-defined
interfaces 1n the second component (207), said data
acquisition being conveyed by the running time system
(14). The mventive method also comprises a data
acquisition of data pertaining to the first component (20)
in the second component (20°) 1independent of
programming-defined interfaces 1 the second

OFFICE DE LA PROPRIETE

INTELLECTUELLE DU CANADA

OPIC CIPO

C‘*’

- » "a' I: ’:0”:‘:.:0. e ™y
."':I":'.Q:'O:': "\ \ \ \
X '_-.;‘:;_~:.o:~:~

PROPERTY OFFICE

indéependamment d’interfaces definies par e
programmeur dans la deuxieme composante (207). Dans
un procede d’extension d’un systeme de composantes de
programme a une composante supplémentaire, on
cherche des pomnts d’ancrage pour la composante
supplementaire, puis on modifie les composantes
(20, 20°, ...) du systeme de composantes de programme
dans lesquelles se trouve au moins un point d’ancrage en
inscrivant une information d’appel au niveau de chaque
pomnt d’ancrage trouve. Le procede selon 1'imvention
permet d’¢tendre un systeme de composantes de
programme de maniere particuliecrement souple et large.

I*I Industrie Canada Industry Canada

(CANADIAN INTELLECTUAL

21) (A1) 2,3 16,952
86) 1998/12/29
87y 1999/07/15

component (207). In a method for expanding a program
component system around an additional component, the
invention provides that docking points are to be searched
for the additional component, and the respective
components (20, 20°,...) of the program component
system 1 which at least one docking point has been
found are to be changed by registering call information
on each docking pomt which has been found. The
invention permits an especially flexible and extensive
expansion of a program component sy stem.

CA 02316952 2000-06-30

PCT

Intermnationales

WBL'!ORGANISATION FUR GEISTIGES EIGENTUM

Biiro

INTERNATIONALE ANMELDUNG VEROFFENTLICHT NACH DEM VERTRAG UBER DIE
INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

' (51) Internationale Patentklassifikation 6 :
GOOF 9/46

(21) Internationales Aktenzeichen:.

(22) Internationales Anmeldedatum: 29. Dezember 1998

(29.12.98)

(30) Prioritiitsdaten:
198 00 102.9
198 07 191.4

2. Januar 1998 (02.01.98) DE
20. Februar 1998 (20.02.98) DE

(71) Anmelder (ﬁir alle Bestimmungsstaaten ausser US): ACOS
INTERNATIONAL LIMITED ([IE/E]; Central Office, 17
Nutgrove Park, Dublin 14 (IE).

(72) Erfinder; und
(75) Erfinder/Anmelder (nur fiir US): QUAST, W. Norbert
[DE/DE); Mithlenhof 11, D-51598 Friesenhagen (DE).

(74) Anwalt: DENDORFER, Claus; Wichtershiuser & Hartz, Tal
29, D-80331 Miinchen (DE).

(54) Tite:

(11) Internationale Veramulchummmr: WO 99/35571
(43) Internationales

Verdftentlichungsdatum:

15. Juli 1999 (15.07.99)

PCT/EP98/08507 | (81) Bestimmungsstaaten: AL, AM, AT, AT (Gebrauchsmuster),

AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, CZ
(Gebrauchsmuster), DE, DE (Gebrauchsmuster), DK, DK
(Gebrauchsmuster), EE, EE (Gebrauchsmuster), ES, FI, FI
(Gebrauchsmuster), GB, GD, GE, GH, GM, HR, HU, ID,
IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS,
LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL,
PT, RO, RU, SD, SE, SG, SI, SK, SK (Gebrauchsmuster),
SL., TJ, ™, TR, TT, UA, UG, US, UZ, VN, YU, ZW,
ARIPO Patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW),
curasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ,
TM), europitisches Patent (AT, BE, CH, CY, DE, DK, ES,
FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI Patent
(BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE,
SN, TD, TG).

Verdffentlicht

Ohne internationalen Recherchenbericht und erneut zu
verdffentlichen nach Erhalt des Berichis.

PROGRAM FLOW METHOD AND METHOD FOR EXPANDING A PROGRAM COMPONENT SYSTEM

(54) Bezeichnung: PROGRAMMABLAUFVERFAHREN UND VERFAHREN ZUR ERWEITERUNG EINES PROGRAMMKOMPO-

NENTENSYSTEMS

(57) Abstract

The invention relates to a program flow
method in a program component system which has
a running time system (14) and a number of com-
ponents (20, 20°, ...). The inventive method com-
prises a data acquisition of data pertaining to a sec-
ond component (20°) in the first component (20)
independent of programming—defined interfaces in
the second component (20’), said data acquisition
being conveyed by the running time system (14).
The inventive method also comprises a data ac-
quisition of data pertaining to the first component
(20) in the second component (20') independent
of programming—defined interfaces in the second
component (20°). In a method for expanding a pro-
gram component system around an additional com-
ponent, the invention provides that docking points
are to be searched for the additional component,

and the respective components (20, 20',...) of the program component system in which at least one docking point has been found are to
be changed by registering call information on each docking point which has been found. The invention permits an especially fiexible and

extensive expansion of a program component system.

CA 02316952 2000-06-30

1
Program Flow Method and Method for Expanding a Program Component System

The invention relates to program flow as well as to establishing a program
component system also referred to as "Component Ware". In particular, the

invention relates to a program flow method in a program component system as well
as a method for expanding such system.

From the US patent 5,634,124 (Khoyi et al.) a method for data integration by object
management is known where a plurality of object managers and an operation-

manager are used.

10
In the article "Componentenware — von der Komponente zur Applikation"

(Component ware — from component to application) by Michael Stal, published in the
magazine OBJEKTspektrum, vol. 3, 1987, pages 86-89, the basics of program
component systems are described. It is aimed at replacing the very time consuming

software production which has been required until now, by simply "wiring" given
components. These components are supposed to be applicable in different contexts
without requiring the component producer to disclose details of the source code a

component is based on.

For producing component ware several mutually supplementary technologies are
20 known such as distribution platforms, container platforms and the composite

documents technology.

In distribution platforms, conventions and tools for distributing components beyond
computer boundaries and for communicating between the components are provided.
The following distribution platforms have become quasi industrial standards: DCOM
(Distributed Component Object Model) by Microsoft, CORBA (Common Object
Request Broker Architecture) by OMG (Object Management Group), JAVA-RMI

- (Remote Method invocation) by JavaSoft.

-ontainer platforms include a solution-oriented set of software compdnents at least
30 partially covering a predetermined field of problems and tasks (such as

stockkeeping, accounting, ...) and a solution neutral middleware (such as a graphical
user interface) to permit an interaction between the components and the user.
AMENDED SHEET

CA 02316952 2000-06-30

The composite documents technology provides for integrating different applications.
A composite document comprises several components (such as tables, graphics,
texts,) with one application being responsible for each of them. Known
architectures for composite documents are for example ActiveX by Microsoft,
OpenDoc by CiLab and Java Beans by JavaSoft.

However, the available methods have the problem that the functionality of a
component can only and exclusively be used via interfaces predefined by the
component manufacturer. In particular, these interfaces are the methods or
parameters predefined by the component manufacturer. As the source code is
generally not available, there is no way to expand the functionality of a component
independently of the component manufacturer. A mere possibility for
parametrization which may be provided, does not constitute an expansion of the
functionality of a component, as all possible functions already have to be provided
originally by the component manufacturer.

Therefore, it is an object of the present invention to provide a program component
system with especially flexible and far reaching expandability. In particular, the
functionality of a component should lend itself to modification and/or expansion
without requiring a knowledge of the source code of the component to be expanded.

According to the invention, this object is achieved by a program flow method in a
program component system having the features of claim 1 and a method for
expanding the program component system having the features of claim 10.

In the following, the component to be expanded is referred to as the "basic

component” while the new component to be added is referred to as the "expansion
component”.

The invention starts from the basic idea to achieve nearly unlimited expandability of

the basic component by giving up the requirement of an expansion interface in the
basic component to be defined by the programmer. Rather, the manufacturer of the

expansion component defines how the expansion component is supposed to interact

CA 02316952 2000-06-30

3

with the basic comﬁonent. This basic idea constitutes an inversion of the traditional
principles in computer science (encapsulation, information hiding, ...). Surprisingly,
however, this very abandonment of established principles enables even non-
programmers to implement relatively large software systems in an amazingly short
time.

The reasoning according to the invention of having the programmer of the expansion
component rather than the programmer of the basic component define the expansion
interfaces, involves a reversal of used patterns of thinking during the program flow as
well as during the introduction of an expansion component into an existing program

component system. These two cases are the subject matter of independent claims 1
and 10.

In the course of the program flow, components usually need data from eagh other in
order to process them and to generate resuits. It is known to provide a called
procedure with data from the calling location and to return the results upon reentry

(return jump). However, this method requires the calling interface to be predefined
by the programmer of the calling procedure.

In contrast, the invention provides for the called component to fetch/acquire the
required data itself — using a suitable running time system. This process willbe
called "data acquisition" from now on. In the component from which data are to be
acquired, there is no need for special interfaces previously defined by the
programmer. Accordingly, it is the called component's job to store the results into

- suitable locations of other components. This process will be called "data disposal”.
Also in this case, it is not necessary that the programmer has provided special
interfaces for data disposal. In this context, the mere definition or declaration of a
data field or a variable (if necessary including a type specification and further .
parameters) is not to be regarded as an "interface”. In contrast, an interface would
be for example procedural instructions that have to be explicitely introduced into a

component script by the programmer in order to start or enable a data transfer at the
appropriate running time.

CA 02316952 2000-06-30

When attaching an expansion component to an existing program component system,
the known principles are reversed correspondingly. Normally it would be expected
that the previous components of the program component system remain unchanged
by the expansion. In contrast, the invention provides that docking points for the
expansion component are searched for in the program component system and that
those components of the program component system in which at least one docking
point was found are changed by inserting calling information for the new component

at each docking point that was found. Thus, each component of the entire program
component system is potentially modified.

The solution according to the invention enables the execution of far reaching
expansions of the functionality of a program component system without having the
programmer of the previous components already plan, provide or preconceive such
possibilities. This constitutes a substantial progress vis-a-vis previously known
program component systems.

In the wording of the present application, the term "running time system" is meant to
cover all generic routines, i.e. routines which are not explicitely given by the '
programmer of a component. Here, the running time system may also comprise
portions included in the components. For example, the portion of the running time
system carrying out the data transfer may be shifted into the individual components.

The data transmitted during data acquisition and data disposal are preferably not
generally accessible, but are associated to the component from which the data are
acquired or into which the data are disposed. These data are transferred in
preferred embodiments while the named component is inactive. In particular, this
component may be transferred from the regular working memory to an externatl
location at the time of data acquisition and data disposal. Preferably, local and/or
non-persistent data, and thus, no globally available data in particular are transmitted
when data are acquired and/or disposed.

Preferably, data acquisition and/or data disposal are carried out without cooperation
of the component from which the data are acquired or into which the data are

disposed. For example, it can be provided that only the disposing component and

CA 02316952 2000-06-30

5

the running time system willl be contributing during a data disposal. In preferred
embodiments, the component into which the data are archived has no way of
Influencing.

Preferably, when executing a component, the data fields required for data disposal
are put on a list. In particular, this can be data fields the contents of which has been
determined by data acquisition and to which a write acces has been carried out.

Desirably, it is further provided for a called component to be able to directly acces by
reading or writing data fields defined and/or available in the calling component. This
allows a quasi interface-free data transfer between the above two components. The
call of a component is preferably triggered by call information or a call message
included in a docking point of the calling component. The use of docking points
being able to accept call information provides a particularly flexible expansion of
functionality.

Desirably, all interaction interfaces of a component are predefined as potential
docking points. Such interaction interfaces may be interaction screen fields such as
Input fields or switch panels. In addition, all output fields of a print mask and/or all
access operations on persistent data (for example opening, reading, and writing of a
file or a data base) may be provided as interaction interfaces. In preferred
embodiments, interaction interfaces may also be predetermined by the programmer
of a component.

Preferably, when inserting a further component into the program component system,
all possible docking points are automatically identified (without knowing the source
codes of the already existing components). Therefore, it is possible to carry out an
expansion with little programming effort. Further, appropriate call information is
desirably entered into at least one docking point.

In preferred embodiments, the method for component expansion includes a further

step of generating at least one component as a binary object. In particular, exactly
one or a maximum of one binary objects can be generated for each docking point

that has been found. In this binary object, the memory allocation of the program

CA 02316952 2000-06-30

component system can be taken into consideration at a later program execution
time.

Further preferred embodiments are the subject matter of the sub-claims.

For a better understanding of the present invention, an embodiment of the invention
and several modifications thereof are discussed in more detail with reference to the
schematic drawings.

Fig. 1 shows a principle presentation of the program component system during

program execution;
Fig. 2 shows a principle presentation of a binary object:

Fig. 3 shows a flow chart of the instantiation of components: and

Figs. 4a - 4c show a flow chart of the course of computing at the time of execution
including a change of component.

Referring to Fig. 1, the structure of the program component system during the time'of
execution is illustrated. An operating system 10 such as a conventional windows
operating system has been expanded by a distribution platform 12 such as DCOM or
CORBA. On this distribution platform 12 a running time system 14 is based which is
also referred to as "middleware". The operating system 10 provides a working
memory region 16 which is managed and used by the running time system 14, In
one embodiment the distribution platform 12 has been omitted and the running time
system 14 is immediately based on the operating system 10. The program
component system is executed by a commercially available computer such as a PC-
compatible computer.

Besides the running time system 14 the program component system comprises a
container environment 18 including several components 20, 20'. 20". 20" in the form
of binary objects. The components 20, 20', 20", 20™ determine the behavior of the

CA 02316952 2000-06-30

program component system. The are called - for example as a function of actions
caused by the user - by the running time system 14.

As illustrated in Fig. 2, one component 20 in the binary object fofrnat comp}ises
several portions, i.e. one program portion 22, one table portion 24, one directory
portion 26 and one memory image portion 28.

The program portion 22 includes an interpretable code which is interpreted by the
running time system 14 at the time of execution and which determines the behavior
of component 20. The code included in the program portion 22 is in an intermediate
format enabling the program execution time to be efficiently carried out. In some
alternative embodiments a suitable compilation of the code is provided for immediate
execution under the control of the operating system 10.

In the table portion 24 execution time tables for configurable properties and
parameters of the code are stored. For example, this is information about window
size and colors for the screen representation or information for the print
representation. In addition, the execution time tables contain management
information on memory allocation. The directory portion 26 contains a directory of

the docking references, a memory directory, a data transfer directory and a method
directory.

The memory directory contains the designations for memory fields available in the
component, information on the memory fields as well as references thereto (more
precisely: offset values or displacement values). The method directory contains a list
of the methods provided by the component. These two directories are included in
the binary code such that an expansion of the functionality of a component
(component script) is possible even without any knowledge of the source code of a
component. All the memory fields contained in the memory directory are accessible
from arbitrary other components by the operations of data acquisition and data
disposal and can be read, modified and described. In this described embodiment
there is no possibility for the programmer to protect individual memory fields from

unauthorized acces. Information needed for data acquisition and data disposal at
the execution time is contained in the data transfer directory.

CA 02316952 2000-06-30

In the memory image portion 28 three contiguous data regions 30, 32, 34 are
provided having boundaries given by the management information in the execution
time tables. The first data region 30 will be referred to as access data region 30
below. It is reserved for those data originating from a component at a high level
within the call hierarchy. These data can be immediately read, processed and
written by the called component without necessitating any programmed data transfer.
Within the context of a procedural programming language this is roughly equivalent
‘to the possibility of accessing variables directly which variables are defined in a
statically higher level procedure. The size of the access data region 30 will be fixed
during instantiation of a component 20. This is possible because each component
20 in the binary object format is associated to exactly one possible call location (one
docking point). The size of the acces data region 30 of a component 20 is the sum

of the quantities of the access data region and a local data region (to be described
later) of the calling component.

As a second data region in the memory image portion 28 of a component 20 the
local data region 32 is provided. This data region is adjacent to the access data
region 30. It contains the data which are redefined in the component 20. Such
definition may be carried out directly in the component or indirectly — for example by
means of a reference on a screen mask or a print format. Within the contextofa

procedural programming language the local data region 32 contains roughly the local
variables of a procedure.

Finally, as a third data region in the memory image portion 28 a transfer data region
34 is provided. The transfer data region is reserved for intermediate storage of data

which are acquired during the program execution time from another component

according to the data acquisition principle and disposed into it according to the data
disposal principle.

When a component 20 is instantiated, i.e. translated from a component script into at
least one binary object, the access data region 30 and the transfer data region 34
need not be covered with defined values since these regions will be overwritten
anyway during execution time. The local data region 32 will be filled with

CA 02316952 2000-06-30

predetermined standard values for the individual data types. During the execution
time of a program component system these three data regions 30, 32 and 34 of a
component 20 are used for the intermediate storage of the current system condition
each time a further component is called and for partially recovering this condition
(with regard to the local data region 32 and the transfer data region 34) at a return
jump.

For generating a component the programmer creates a component script which is
suitable for automatic translation by means of a generator system. This translation
process which is also referred to as instantiation of a component will be described
below in more detail. The component script constitutes the definition of the
component to be generated. It contains instruction lines which are translated as an
interpretable code of the component. The programming language used is known per
se and is based on object-oriented principles. In addition, the component script may
contain instructions determining docking points for expansions preconceived by thé
examiner. Also, data and parameters may optionally be contained in a component
script, for example parameters for visually representing data or an enumeration of -
permissible input values. Furthermore, the component script may contain
instructions for calling "foreign programs”. During the time of execution the
corresponding program, for example a COBOL program, is then started. This

program itself may now use interfaces of the program component system and, for
example, start further components.

in addition, the component script may contain references to screen masks and
formats to be used as well as print formats. Such screen masks or print formats are
developed beforehand using an appropriate graphical tool. The tool ("GU!-Builder")
generates several global directories which may be accessed during each
instantiation process of a component. These are, first, a global directory of the
available screen masks and print formats, second, a directory of the docking points
given by these masks and formats, and, third, a directory of the labels and types of
the data to be expected in the defined input fields or print fields.

If the component script is the definition of an expansion component, i.e. a
component which is supposed to expand an already existing component (basic

CA 02316952 2000-06-30

10

component), the component script also comprises an inheritance parameter
specifying the desired docking points for the component expansion. The inheritance
parameter may define more than one basic component and more than one docking
point, as explained below.

The docking points may be generic locations or locations in the basic component
indicated by the programmer at which locations call information for an expansion
component may be inserted. The docking points of a component in the binary object
format can be automatically identified such that a component expansion is possible
without any knowledge of the source code of the basic component. |

in the embodiment described for this case, for types of docking points are provided.
First, all input fields and other operating elements (buttons, switching areas, ...) in the
screen masks are provided as docking points accessed by the basic component.

For example, this enables component expansions to be always called when the user
carnies out an interaction with the input field of the basic component, such as

inputting a value or activating the input field or moving the mouse pointer over it.
The programmer of the basic component does not necessarily have to explicitely
provide for this possibility. Similarly, all print mask output fields may be used as
docking points, for example such that the output values of a table to be printed may
be modified.

Furthermore, all operations of the basic component on persistent data (such as data
access or data base access) are provided as docking points. In this case as well,
expansion components may be "connected in between" without requiring the
programmer of the basic component to explicitely indicate it. Finally, as mentioned
before, a component may also include docking points defined by the programmer at
arbitrary locations of the program flow. Alternative embodiments may comprise
additional or other docking points.

In this embodiment, each docking point comprises several docking locations ("slots").
Thus, several component expansions can be connected to one docking point. At a
docking point associated to an input field, there are for example one main docking
location and five sub docking locations. A component expansion which is entered

CA 02316952 2000-06-30

11

Into the main docking location will always be called when the user activates the input
field. Optionally, this component can already be called each time while the input field
Is displayed, i.e. before a user action. In contrast, the sub docking locations may be
associated for example to the operation of certain function keys or other actions of
the user. In the case of print mask output fields the contro) of the docking locations
of a docking point may be determined for example by a user input at the starting time
of the printing process. In alternative embodiments other call strategies or other
numbers of docking locations (for example only one per docking point) are possible.

Referring to Fig. 3 below, the instantiation of components is described in mord detail.
As mentioned above, "instantiation" means transiation of a component script into at
least one binary object. In the présent embodiment, exactly one component as a
binary object is generated for each docking point found.

The instantiation process which is automatically carried out by the generator system
starts with reading the component script (step 40). In step 42 a first dockin'g point is
searched for. If the component script to be translated includes only the container

However, if the component script to Se translated includes a "real" inheritance
parameter, this parameter will define the docking points provided for the component
expansion. To this end, several possibilities exist. For example, if an input field of a
Screen mask is to serve as a docking point, the Inheritance parameter may indicate
both the field name and the desired docking location within the docking point (the
number of the "slot") besides specifying the basic component. As an alternative, it is
also possible to only enter the field name and if necessary the number of the "s|ot"
into the inheritance parameter. As a docking point, all locations in the binary objects
currently available in the program component system are then used, at which binary
Objects a screen format using the the above field as an input field is referenced.

When a first docking point has been found (inquiry 44), suitable call information such
as a "message" serving to call the expansion component is first entered into the

CA 02316952 2000-06-30

12

basic component containing the docking point (step 46). To this end, the basic
component is read in its binary format, the reference to the expansion component is
entered into the basic component, and the binary object thus modified will be
rewritten into the program component system. In doing this, the inheritance
parameter determines at which docking location ("Slot") within a docking point the call

information is to be entered and which user action is supposed to resuit in calling the
expansion component.

After modifying the basic component including the docking point which has been
found, the expansion component associated to this docking point is built up as a
binary object (box 48). First, the docking points of the expansion component are
determined and entered into the corresponding directory in the directory portion 26 of
the component 30 (step 50). To this end, all screen masks and print formats
referenced by the script of the expansion component are examined. In addition, the

global directory of the docking points defined by these masks and formats is
accessed. The information contained therein is imported as docking references into

the directory portion 26. Besides the name of an integrated screen field or print field,

this may be information about the type of field, the memory space requirements of
the associated data value etc.

In addition, the component script is searched for docking references indicated by the
programmer (construction: INTERFACE-IS <name>). These docking references are
also adopted by the directory portion 26. F inally, for all access operations on
persistent data found in the component script (construction: for example READ

<name of entity>) the corresponding docking references are adopted into the
directory portion 26.

" In a consecutive step 52 the running time memory organisation is instantiated. To
this end, the field names in the screen masks and print formats referenced by the
expansion component are first determined, which field names have not yet been
defined in the basic component. Unless they do not correspond to entries in the
access data region 30, these field names are regarded as local variables of the
expansion component. All field names are entered into the memory directory in the
directory portion 26. In addition, a transfer list is established in order to transfer the

CA 02316952 2000-06-30

13

screen data and print data from a buffer memory into the memory region of the
expansion component (access data region 30 or local data region 32 or transfer data
region 34) during the time of execution. This function is automatically carried out at
the time of execution without requiring any explicit programming.

As a further part of step 52 the statical memory definitions in the component script
are now processed. As the basic component is unequivocally given, the sizes of the
three data regions 30, 32, 34 of the binary object 20 can be already determined at
the time of instantiation. In addition, the memory directory in the directory portion 26
can be completely established.

First, all statical memory definitions (construction: INHERIT-DATA <name>) in the
component script which are aiready defined in the basic component are searched
for. At the time of execution the corresponding data values are located in the access
data region 30 at the same location (the same offset or displacement value) as in the
basic component, since the working memory region 16 occupied by the access data
region 30 of the basic component will still be used when the expansion component is
called. Therefore, entries corresponding to the ones of the basic component are
received in the memory directory. These entries include the name and the type of
the data value as well as the field length and the displacement value.

Finally, the statical memory definitions of the component script are processed which
are associated to the local data region 32. These are, first, definitions of memory
fields not defined in the basic component and, second, memory definitions where a
local storage has been expressly given (construction: INHERIT-DATA-LOCAL
<name>). For such memory definitions a free address in the local membry region 32
is determined and reserved. More precisely, the next available (free) address with
regard to the current memory level is used (which depends on the memory
occupancy of the basic component and may also depend on local fields of the
expansion component which have already been assigned). For these memory
definitions as well. corresponding entries into the memory directory of the expansion
component are received.

CA 02316952 2000-06-30

14

In the next step 54, the data acquisition and data disposal of the expansion
component occurring at the time of execution are instantiated by establishing the
data transfer memory in the memory portion 26. To this end, the data acquisition
and data disposal definitions in the component script are searched for. These
definitions have the following form, with "INH" representing "inherit" and "IME"
representing "“import/export":

INH-DATA-IME <identification of the component with which data
acquisition and data disposal takes place>
INTERFACE = <field name 1>
<field name 2>,

<field name n>
ENDTRANSFER

When such a definition is found. the memory directory of the addressed component
Is evaluated. Information about the data fields to be exchanged (field type, field
length, address or displacement) in the working memory region 16 at the time of
execution are entered. In addition, a corresponding memory field is reserved in the
transfer data region 34, provided the addressed field is not included in the access
data region 30. From this information a corresponding entry in the data transfer
directory of the directory portion 26 of the expansion component is generated. This
entry thus includes the allocation of the memory field of the addressed component to
the memory field in the transfer data region 34 of the currently instantiated

regions 30, 32, 34. Thus, data acquisition and data disposal of all data available in
any other component is possible.

Now, the code generation (step 56) takes place, in which the instruction lines in the

CA 02316952 2000-06-30

186

described. The resulting binary object has the structure shown'in F ig. 2 and the

structure which has already been described above. It will be stored in a further step
(step 58).

Thus, the generation of a binary object for the docking point is completed. In the
instantiation procedure a subsequent docking point is now searched for (step 60). If
such docking point is present in the program component system, a further binary
object is generated; otherwise, the instantiation is finished. At the most, the binary
objects generated from a component script are different from each other with regard
to the memory occupancy defined in the memory directory. If several docking points
are found in a basic component, this memory occupancy, however, is usually
identical. This case may also occur if several docking points are found in dlfferent

basic components. Thus, one alternative embodiment provides for optimization to
generate each binary object only once.

In order to execute the program component system the structure represented in Fig.
1is built up. To this end, the running time system 14 and the container environment
18 are first loaded and started. The container environment 18 iIncludes a catalog of
the menu entries visible during loading. This catalog is defined by the components
18. Now, a root component is started which has been generated by the generator
system itself during the above instantiation process. The running time system now
walits for an action caused by the user, such as a menu selection, indicating the call
of the "actual" component of the program component system.

In Figs. 4a to 4¢ the program flow method is shown, which is carried out during the
calling of the component as well as during the execution of the called component. In
the present embodiment, exactly one component is always active at the running
time. Immediately after the system start, this is the root component described
above. Only each active component is located in the working memory region 16.
This component has the binary object structure shown in Fig. 2. In alternative

embodiments a quasi-parallel program run procedure is also possible (for example

by "multi-threading”). The control is then carried out by the underlying operating
system 10.

CA 02316952 2000-06-30

16

If a new component is to be called, for example in response to an input or an action
of the user, the state of the component being active is saved (step 70). This means
at least that a part of the working memory region 16 is transferred into a file or any
other saving region, in whlch part the memory image region 28 of the component is
located. In the present embodiment, even the entire binary object is saved since its
remaining portions are not significant with respect to memory space requirements.

In addition, all data disposal processes are carried out, which processes have been
put on a waiting list during the program run procedure of the component which has
been active (step 72). In order to increase effi iciency, the present embodiment
provides for only those memory fields of the transfer data region 34 which have been
writingly accessed, to be re-transferred from the current component into the
component referenced by the data disposal. In alternative embodiments, no waiting
list of the changed data is prepared: rather, during each change of component, all
data fields in the transfer data region 34 are transferred to each of the referenced

components.

In each data disposal process the data transfer directory of the current component is
resorted to, in order to determine the referenced component(s) and the
corresponding data field(s) in the memory image portion(s) 28 thereof and to transfer
the data thereto. Each data disposal thus changes a binary object of a component
currently not active. During the running time, a component may have been called

and partially executed several times. In this case, several versions of the component
are saved and the data are disposed into the saved component version which, within
the call chain leading to the currently active component, is closest to this component.
In alternative embodiments, a different selection or a selection determined by the
programmer, of the component version to be used is made.

Next, in step 74, the last-called new component is ioaded into the working memory
region 16 as a binary object. When this is done, the part of the working memory
region 16 which has been used for the program, table and directory portions 22, 24

26 of the old component, will be overwritten at any case.

CA 02316952 2000-06-30

17

Also, the local data region 32 of the memory image portion 28 of the new component
will be loaded into the working memory region 16. Thus, at the start of the new
component, all local data are pre-occupied with defined standard values. However.
the portion of the working memory region 16 which corresponds to the access data
region 30 of the called component, will not be overwritten. Thus, the data values
stored thereat are not lost when components are exchanged. Réther, the new
component can directly access memory fields defined in the calling component, via
the access data region 30. The size of the access data region 30 is determined by
the memory distribution found out during the instantiation phase. If the calling
component accesses values completely different from the ones of the called
component, the access data region 30 has zero size.

After the called component has been loaded as a binary object, the code included in
the program portion 22 will be interpreted command by command. When executing
a command (step 76) some special cases have to be taken into consideration.

If the command is a memory operation aiming at the transfer data region 34 (inquiry
78), the memory field in question will be put on a waiting list for later data disposal
(step 80). Such putting on a waiting list is also possible by an explicit command.

If the current command is an instruction causing data acquisition from a referenced
component (inquiry 82), the steps shown in Fig. 4b are carried out. Such command
may be for example the above-described construction INH-DATA-IME which, in the
present embodiment, is considered both as a declaration of a data acquisition and a
data disposal relationship as well as an instruction for data acquisition. In alternative
embodiments, all data referenced by a component are already acquired from the
very beginning of this component.

In the data acquisition method of Fig. 4b it is first examined whether the referenced
component has already been (at least partially) carried out (inquiry 84). If this is not
the case, no valid data can be acquired and a running time error will be triggered. In
contrast, if a saved version of the referenced component is available, the required

data are loaded from it and written into the transfer data region 34 of the currently
active component. Each of the memory locations in the referenced and in the active

CA 02316952 2000-06-30

18

component can be seen from the data transfer directory of the active component. In
this case (similar to step 72) it is possibie that several versions of the referenced
component are memorized. The version which has been carried out last in the call
chain leading to the active component will then be used for data acquisition. In
alternative embodiments, other given or programmed selection strategies are
possible. After the end of the data acquisition the program flow will be continued at

step 76 (Fig. 4a).

In inquiry 88 (Fig. 4a) it is examined whether the currently interpreted command is a
command for exchanging components, i.e. for calling a new component. In '
particular, such command may be call information (a message) stored in a docking
point. As described above, such call information resuits in calling the corhponent
indicated in the call information in response to the type of the docking point, either by
its mere presence or during a predetermined action of the user. If such a call takes

place, the current command counter level is stored in a stack storage and a new
instance of the method iliustrated in Fig. 4a is started.

Finally, inquiry 90 is related to the case where the execution of the current .
component is terminated in a regular manner. If this is not the case, the programm
execution will be continued with step 76. In contrast, if the program end has been
reached the method illustrated in Fig. 4c will be carried out. Similar to step 72, all
data disposals that have been put on a waiting list are carried out (step 92). Then,
the state of the component in the working memory region 16 which has called the
current component (step 94) is restored. This concerns the portions 22, 24 and 26
as well as the local data region 32. However, the portion of the working memory ’
region 16 corresponding to the access data region 30 of the calling component is not
restored such that a return of values in the access data region 30 from the current
component to the calling component is possible. '

After the calling component has been restored, the present instance of the method
illustrated in Figs. 4a to 4c is terminated. The program execution will be continued in
the former instance at the location where the original component call has been
triggered (step 76).

CA 02316952 2000-06-30

19

Using the above-described methods, an expansion of functionality of components is
possible in a relatively easy manner. For example, a basic component is given which
carries out a method of determining prices based on a single price to be entered by
the user (via an input field). Using a suitable expansion component, this basic
component can be expanded by an application-specific method of determining price
for the single price. To this end, the call information for the expansion component is
written into a docking point associated to the input field for the single price. The
single price determined by the expansion component is written into the basic
component by the data disposal method. Additional data values the expansion
component needs for determining price are called by the data acquisition method
from other components. It is not necessary for such expansion of functionality to be
taken into account during the programming of the basic component or the other

components.

The programming of larger software systems can be simplified in different ways. For
example, it is possible to define what is referrd to as "adapte'r components';. An
adapter component is an expansion component directly referencing another
component. Thus, the other component can be used several times under different

names.

CA 02316952 2000-06-30

Claims

1. A program flow method in a program component system, comprising a running
time system (14) and several components (20, 20, ...) each having one program
portion (22), said method comprising the following steps during the execution of the
program portion (22) of a first component (20):

a) data acquisition by means of the running time system (14), of data of a second
component (20°) into said first component (20) independent of program-defined
interfaces in said second component (20'): and

b) data disposal by means of the running time system (14), of data of said first
component (20) into said second component (20) independent of program-defined

interfaces in said second component (20".

2. The method according to claim 1, characterized in that the data transmitted
during the data acquisition are transferred from a memory image portion (28) of said
second component (20') into a transfer data region (34) of said first component (20),
and/or that the data transmitted during the data disposal are transferred from a
transfer data region (34) of said first compaonent (20) into a memory image portion
(28) of said second component (20').

3. The method according to claims 1 or 2, characterized in that said data acquisition
and/or data disposal is carried out without the cooperation of said second component

(20").

4. The method according to any one of claims 1 to 3, characterized in that said
second component (20') is inactive during said data acquisition and/or said data
disposal.

5. The method according to any one of claims 1 to 4, characterized in that said
transfer data region (34) of said second component (20°) is located in a saving region
during said data acquisition and said data disposal.

CA 02316952 2000-06-30

- 21

6. The method lacc‘ording to any one of claims 1 to 5, characterized in that local
and/or non-persistent data of said second component (20') are transmitted during
said data acquisition and/or said data disposal.

7. The method according to any one of claims 1 to 6, characterized in that during
the execution of the program portion (22) of said first component (20) a waiting list is
made indicating which of the data of said first component (20) require data disposal.

8. The method according to any one of claims 1 to 7, characterized in that a called
component (20, 20, ...) can directly access an access data region (30) comprising
the data fields defined and/or available in said calling component (20, 20', ...).

9. The method according to any one of ciaims 1 to 8, characterized in that the call
of a component (20, 20', ...) is triggered by call information comprised in a docking
point of the calling component. '

10. A method of expanding a program component system comprising several
components (20, 20', ...), by one further component, said method comprising the
steps of:

a) searching for docking points for said further component in said program
component system, which docking points correspond to an inheritance parameter
determined by a definition of said further component: and

b) modifying the components (20, 20/, ...) of the program component system where
at least one docking point was found, by entering call information about the further
component at each docking point found.

11. The method according to claim 10, characterized in that all interaction interfaces
of the previous components (20, 20/, ...) are predefined as potential docking points.

12. The method according to claim 10, characterized in that all interaction screen
fields referenced by the previous components (20, 20', ...) and/or all print mask
output fields and/or all access operations on persistent data are predefined as
potential docking points.

CA 02316952 2000-06-30

22

13. The method according to any one of claims 10 to 12, characterized in that by
entering said call information into a docking point a call of the further component
from the component into which said call information was entered, is prepared.

14. The method according to any one of claims 10 to 13, characterized by an
additional step of
c) generating at least one binary object from the definition of the further component.

15. The method according to claim 14, characterized in that a maximum of one
binary object is generated for each docking point that has been found.

16. The method according to claim 15, characterized in that while generating each
binary object, the memory aliocation is considered in the one component (20, 20', ...)
of the program component system which includes the underlying docking point.

CA 02316952 2000-06-30

IS

18

FIG 1

20

28

FIG 2

CA 02316952 2000-06-30

2/4

o
SFARC!-IFORFH{S'.J.' DOCKING POINT 42

NO
‘W"

° ves 44

FIG 3

CA 02316952 2000-06-30

3/4

SAVE STATE OF ACTIVE COMPO-
NENT 70

CARRY OUT DATA DISPOSALS ON
WAITING LIST 72

FIG 4a m

CA 02316952 2000-06-30

@
1

	Page 1 - abstract
	Page 2 - abstract
	Page 3 - abstract
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - claims
	Page 24 - claims
	Page 25 - claims
	Page 26 - drawings
	Page 27 - drawings
	Page 28 - drawings
	Page 29 - drawings
	Page 30 - abstract drawing

