

(11) Número de Publicação: PT 1311488 E

(51) Classificação Internacional: **C07D 233/64** (2007.10) **A61K 31/4172** (2007.10) **A61P 7/02** (2007.10)

(12) FASCÍCULO DE PATENTE DE INVENÇÃO

(22) Data de pedido: 2001.08.08	(73) Titular(es):
(30) Prioridade(s): 2000.08.17 GB 0020346 2000.11.09 GB 0027409 2000.12.04 GB 0029556	RAMSGATE ROAD SANDWICH, KENT CT13 9NJ GB
(43) Data de publicação do pedido: 2003.05.21	(72) Inventor(es): JOHN STEELE GB JULIAN BLAGG GB
(45) Data e BPI da concessão: 2009.11.04 251/2009	MARK EDWARD BUNNAGE GB CHARLOTTE MOIRA NORFOR ALLERTON GB
	(74) Mandatário: MANUEL ANTÓNIO DURÃES DA CONCEIÇÃO ROCHA AV LIBERDADE, №. 69 1250-148 LISBOA PT

- (54) Epígrafe: IMIDAZÓIS SUBSTITUÍDOS UTILIZADOS COMO INIBIDORES DE TAFIA
- (57) Resumo:

RESUMO

"IMIDAZÓIS SUBSTITUÍDOS UTILIZADOS COMO INIBIDORES DE TAFIA"

A presente invenção proporciona compostos de fórmula (I). Estes compostos são uma classe de inibidores de TAFIa, aterosclerose, aderências, cicatrização dérmica, cancro, patologias fibróticas, doenças inflamatórias e aquelas patologias que beneficiam da manutenção ou aumento dos níveis de bradiquinina no corpo.

DESCRIÇÃO

"IMIDAZÓIS SUBSTITUÍDOS UTILIZADOS COMO INIBIDORES DE TAFIA"

A presente invenção descreve uma série de imidazóis substituídos como inibidores de TAFIa, úteis no tratamento de doencas.

O Inibidor da Fibrinólise Activado pela Trombina, TAFI, é uma glicoproteína de 60 kDa encontrada no plasma humano. É também conhecido como procarboxipeptidase B, carboxipeptidase B carboxipeptidase B, plasmática, carboxipeptidase U e carboxipeptidase R. Desempenha um papel intrínseco no processo de coagulação do sangue, durante o qual é transformado numa forma activada, TAFIa, actuando a seguir sobre a matriz de fibrina constuída por um coágulo sanguíneo em formação para evitar a sua dissolução. Pensa-se que os desequilíbrios processo de coagulação do sangue estejam na origem de diferentes estados patológicos, muitos e que relacionados por uma acumulação indesejável de fibrina. A acumulação de fibrina é determinada escala da delicado equilíbrio entre as cascatas bioquímicas no corpo humano; as cascatas da coagulação e fibrinólise. Estas uma parte integrante da cascatas são manutenção da hemostase.

Para manter a hemostase no sangue, os mamíferos desenvolveram mecanismos para reparar o corpo no caso de lesão vascular. O vaso sanguíneo lesionado irá contrair para reduzir o fluxo sanguíneo à área. As plaquetas irão agregar para reduzir a perda de sangue da área, seguido

por fibrinogénio que irá polimerisar e formar um coágulo de fibrina. Este coágulo cobrirá a área da lesão vascular evitando a perda sanguínea. Após a reparação do vaso sanguíneo, o coágulo então dissolver-se-á. A cascata de coagulação é responsável pela formação de um coágulo; a cascata de fibrinólise é responsável pela dissolução do coágulo.

Estudos demonstraram que estes dois processos estão intrinsecamente ligados através da produção de lpha-trombina. A α -trombina é o produto final da cascata de coagulação do sangue e é responsável pela conversão do fibrinogénio plasmático solúvel numa matriz de fibrina insolúvel. A fibrina polimerizada proporciona um tampão hemostático que evita perda de sanque do local da lesão vascular e proporciona uma matriz provisória que aumenta o processo subsequente de reparação. Para além de mediar coagulação, a lpha-trombina também reduz a taxa à qual os coágulos sanguíneos são decompostos pela plasmina, serina protease. A actividade anti-fibrinolítica da lphatrombina resulta da sua activação de TAFI. O TAFI circula no plasma normal a uma concentração de cerca de 75 nM numa forma inactiva. A trombina converte o zimogénio inactivo em TAFI activo (TAFIa), uma reacção que é aumentada cerca de 1250 vezes pela trombomodulina. Uma vez activado, o TAFIa cliva ambos os resíduos de arginina e lisina Cterminais do coáqulo de fibrina em desenvolvimento. A remoção de aminoácidos di-básicos da superfície da matriz de fibrina atenua a lise do coágulo inibindo a ligação de mediadores chave de fibrinólise: activador do tecidual plasminogénio (tPA) е seus substrato, plasminogénio, que é o precursor da plasmina. Tanto o tPA

como o plasminogénio contêm um motivo estrutural chamado um domínio do tipo kringle que se liga firmemente aos resíduos de lisina C-terminais. A remoção destes sítios de ligação evita a formação de um complexo ternário entre o tPA, o plasminogénio e a fibrina e isto inibe a conversão de plasminogénio em plasmina, deste modo protegendo o coágulo contra uma rápida degradação.

Pode observar-se que se o equilíbrio entre a coagulação e a fibrinólise estiver a favor da coagulação, então haverá uma quantidade de fibrina presente maior do que o normal. Isto faz com que seja mais provável que o indivíduo desenvolva um ou mais dos estados patológicos em que está implicada a acumulação de trombos. Pela utilização de um inibidor de TAFIa, o TAFIa não será capaz de actuar sobre um coágulo de fibrina em desenvolvimento tal como descrito acima para inibir a fibrinólise do coágulo. Deste modo, um inibidor de TAFIa deve servir para aumentar a cascata de fibrinólise.

A utilização de inibidores de TAFI para tratar certas doenças é conhecida na técnica. Embora a utilização de inibidores de TAFIa para tratar estas doenças seja desconhecida, foram identificados certos inibidores de TAFIa fracos e não específicos.

O documento USA 5993815 descreve a utilização de um péptido que se liga ao zimogénio de TAFI, inibindo a activação do zimogénio de TAFI, para tratar aquelas patologias onde uma lisina ou arginina C-terminal é clivada a partir de um péptido intacto. As patologias adequadas são artrite, sépsis, trombose, acidente vascular cerebral, trombose venosa profunda e enfarte do miocárdio. O péptido utilizado é um anticorpo ou um fragmento

funcionalmente activo. O péptido deve ser utilizado numa quantidade para promover a fibrinólise *in vivo*.

McKay et al., Biochemistry, 1978, 17, 401, revela o teste de vários compostos como inibidores competitivos de bovina de origem pancreática. A carboxipeptidase B inibição foi medida pela eficácia do inibidor em proteger o centro activo de tirosina e ácido glutámico carboxipeptidase B bovina contra alquilação irreversível bromoacetil-D-arginina por ou bromoacetamidobutilguanidina. É sugerido que estes inibidores poderiam actuar como pontenciadores da bradiquinina.

As enzimas bovinas de origem pancreática são muito diferentes daquelas encontradas no plasma humano, de modo que não se poderia esperar que os inibidores de uma inibissem a outra. Além disso, tais inibidores são dirigidos para uma utilidade muito diferente. Em concordância, a referência acima não contém ensinamentos de inibidores de TAFIa ou sua utilidade.

Redlitz et al., J. Clin. Invest. 1995, 96, 2534, descreve o envolvimento de carboxipeptidase B do plasma (pCPB ou TAFI) na formação de coágulos. A lise dos coágulos sanguíneos foi seguida na ausência e na presença de pCPB, depois do que se constatou que a presença de pCPB retardou a lise do coágulo. Para confirmar que o pCPB foi responsável foram realizadas duas reacções de controlo; uma em que a experiência da lise foi repetida na presença de pCPB e um inibidor de carboxipeptidase, PCI, uma segunda em que a reacção de lise foi conduzida na presença de plasma do qual foi removido o pCPB. Em ambos os casos a lise continuou não inibida.

Boffa et al., J. Biol. Chem. 1998, 273, 2127, compararam plasma e TAFI recombinante e TAFIa em relação a glicosilação, activação, estabilidade propriedades enzimáticas. Foram determinadas constantes de competitivos: inibidores inibição para três aminocapróico $(\varepsilon-ACA)$, ácido 2guanidinoetilmercaptosuccínico (GEMSA) е inibidor de carboxipeptidase de batata (PCI).

Ηá grande número de um carboxipeptidases, caracterizadas por clivarem o aminoácido C-terminal de um péptido. As mesmas podem ser divididas em ácidas, neutras ou básicas, dependendo do tipo de aminoácido que clivam. As carboxipeptidases básicas clivam a arginina, lisina e histidina. O TAFIa é um subconjunto específico carboxipeptidases básicas. Em termos da presente invenção os inibidores revelados acima por Redlitz et al. e Boffa al., são muito fracos, não específicos ou inadequados serem considerados como inibidores para adequados de TAFIa para aplicação terapêutica. Além disso, embora o papel do TAFIa na lise de coágulo seja explicado, não há sugestão que os inibidores de TAFIa possam ser utilizados para tratar doenças.

O documento WO00/66550 discute uma ampla classe de compostos úteis como inibidores de carboxipeptidase U. Supõe-se que os inibidores de carboxipeptidase U facilitam a fibrinólise e, deste modo, os compostos são descritos como úteis no tratamento de estados trombóticos. Não há dados para apoiar esta declaração, embora sejam dados pormenores de um ensaio adequado.

O documento WO00/66152 revela formulações contendo um inibidor de carboxipeptidase U e um inibidor de trombina. Inibidores de carboxipeptidase U adequados são aqueles do documento W000/66550. As formulações são descritas como úteis primariamente no tratamento de patologias trombóticas.

A presente invenção revela uma classe de inibidores de TAFIa. Há muitas grandes vantagens na utilização de um inibidor de TAFIa em relação a um inibidor de TAFI. O TAFI é activado em TAFIa por meio de reacção com trombina. Um inibidor de TAFI tem de evitar que estes dois grandes péptidos entrem em contacto para reagir no apropriado. Até a data só foram descritos péptidos grandes que podem interferir com esta reacção (Documento USA-5993815). No entanto, descobriu-se que o sítio activo na responsável TAFIa, por reagir com 0 coágulo desenvolvimento, é pequeno deste modo, pode e, ser bloqueado por uma molécula pequena, uma com um molecular inferior a 1000, de preferência inferior a 500. É uma grande vantagem ter um composto de peso molecular baixo como a parte "activa" num medicamento. Estes estão associados com a biodisponibilidade oral e os doentes, em geral, preferem formulações orais. Além disso, há terapêutica peptídica potencial para а induzir resposta imune. Não é provável que isto seja um problema no caso de uma molécula pequena. As moléculas pequenas são também, em geral, mais estáveis no plasma e, deste modo, têm uma maior duração de acção. Não é provável que isto seja uma questão com moléculas grandes, particularmente motivos um inibidor de péptidos. Por estes TAFTa preferido. A invenção proporciona uma classe potente de inibidores de TAFIa.

A presente invenção proporciona como um conjunto preferido de inibidores de TAFIa, os compostos de fórmula(I):

Onde:

X é N ou CH

né0a3

 R^1 é:

- a) alquilo $C_{1\text{--}6}$, de cadeia linear ou cadeia ramificada,
- b) alcenilo C_{1-6} , de cadeia linear ou cadeia ramificada,
- c) alcinilo C_{1-6} , de cadeia linear ou cadeia ramificada,
 - d) Heterociclo,
 - e) Heterociclo aromático,
 - f) Arilo;

g) hidrogénio;

os referidos grupos (a), (b) e (c) opcionalmente também substituídos por: cicloalquilo C_{3-7} , arilo, heterociclo aromático, heterociclo, OR, $Nr^{11}R^{12}$, $S(0)_pR^{11}$, $OC(0)R^{11}$, CO_2R^{11} , $CONR^{11}R^{12}$, $SO_2NR^{11}R^{12}$, halogéneo e $NHSO_2R^{11}$, onde R^1 pode estar ligado a qualquer posição no anel imidazol.

 R^2 e R^3 são cada um independentemente seleccionado de hidrogénio, alquilo C_{1-6} , opcionalmente também substituídos por OR^{11} , halogéneo; ou em que R^2 e R^3 podem ser unidos para formar uma ligação, a referida ligação é alquileno C_{2-6} .

 R^4 é hidrogénio, alquilo C_{1-6} , opcionalmente também substituído por cicloalquilo C_{3-7} , arilo, OR^{11} , halogéneo e R^{11} ; ou

em que R^4 e R^{10} podem ser unidos para formar uma ligação, a referida ligação é alquileno C_{1-4} , opcionalmente também substituído por OR^{11} , halogéneo e R^{11} ,

R⁵ e R⁶ são seleccionados de:

hidrogénio, arilo, alquilo C_{1-6} , o referido alquilo opcionalmente também substituído por cicloalquilo C_{3-7} , heterociclo aromático, heterociclo, arilo, OR^{11} , R^{11} e halogéneo; ou

em que R^{10} e cada de R^{5} ou R^{6} pode ser unido para formar uma ligação, em que a referida ligação é um alquileno C_{1-3} , opcionalmente também substituído por OR^{11} , halogéneo, R^{11} e arilo; ou

em que R^5 e R^6 podem ser unidos para formar uma ligação, em que a referida ligação é alquileno C_{2-6} .

R⁷ e R⁸ são independentemente seleccionados de:

hidrogénio, alquilo C_{1-6} , opcionalmente também substituído por OR^{11} , halogéneo, arilo e R^{11} ; ou em que R^7 e R^8 podem ser unidos para formar uma ligação, em que a referida ligação é alquileno C_{2-6} .

R⁹ e R¹⁰ são independentemente seleccionados de:

hidrogénio, $C(NR^{11})NR^{11}R^{12}$, alquilo C_{1-6} , o referido alquilo opcionalmente substituído por OR^{11} , halogéneo, arilo e R^{11} ; ou

em que R^9 e R^{10} podem ser unidos para formar uma ligação, em que a referida ligação é alquileno C_{2-6} .

 R^{11} e R^{12} são cada um independentemente seleccionado de hidrogénio ou alquilo C_{1-6} ; ou quando formam uma unidade $NR^{11}R^{12}$, R^{11} e R^{12} também podem ser unidos para formar uma ligação, em que a referida ligação é alquileno C_{2-6} . p é 0, 1 ou 2

Em que:

Arilo é definido como um carbociclo aromático de 6-14 membros, opcionalmente também substituído por R^{11} , halogéneo, OR^{11} , $NR^{11}R^{12}$, $NR^{11}CO_2R^{12}$, CO_2R^{11} , $NR^{11}SO_2R^{12}$, CN, haloalquilo, O(haloalquil), $S(O)_pR^{11}$, $OC(O)R^{11}$, $SO_2NR^{11}R^{12}$, $C(O)NR^{11}R^{12}$.

Heterociclo aromático é definido como um anel de 5 a 7 membros, contendo de 1 a 3 heteroátomos, cada um independentemente seleccionado de O, S e N, o referido grupo heterociclo opcionalmente substituído por OR11, $NR^{11}R^{12}$, CO_2R^{11} , $NR^{11}CO_2R^{12}R^{11}$, halogéneo, CN, haloalquilo, O(haloalquil), $S(0)_{p}R^{11}$, $OC(0)R^{11}$, $NR^{11}SO_{2}R^{12}$, $SO_{2}NR^{11}R^{12}$, $C(0)NR^{11}R^{12}$. Heterociclo é definido como um anel de 3-8 membros contendo de 1-3 heteroátomos cada um independentemente seleccionado de O, S e N, o referido anel sendo saturado ou parcialmente saturado, o referido grupo heterociclo opcionalmente substituído por OR11, $NR^{11}R^{12}$, CO_2R^{11} , $NR^{11}CO_2R^{12}$, R^{11} , halo, CN, haloalquilo, O(haloalquil), $S(O)_pR^{11}$, $OC(O)R^{11}$, $NR^{11}SO_2R^{12}$, $SO_2NR^{11}R^{12}$, $C(0)NR^{11}R^{12}$.

Os compostos de fórmula (I) incluem zwitterions, sais, pro-fármacos, solvatos e polimorfos farmaceuticamente aceitáveis dos mesmos.

Halogéneo inclui os grupos flúor, cloro, bromo e iodo. Alquilo inclui cadeia linear e cadeia ramificada.

Um carbociclo aromático de 6-14 membros inclui fenilo, naftilo, indenilo, antrilo e fenantrilo.

Um sal farmaceuticamente aceitável de um composto de fórmula (I) pode ser prontamente preparado misturando soluções de um composto de fórmula (I) e o ácido ou base desejado, como apropriado. O sal pode precipitar da solução e ser recolhido por filtração ou pode ser recuperado por evaporação do solvente.

Os sais farmaceuticamente aceitáveis dos compostos de fórmula (I) incluem os seus sais de adição de ácido e sais básicos.

Os sais de adição de ácido adequados são formados a partir de ácidos que formam sais não tóxicos e exemplos são os sais cloridrato, hidrobrometo, hidroiodeto, sulfato, bissulfato, nitrato, fosfato, hidrogénio fosfato, acetato, maleato, fumarato, lactato, tartarato, citrato, gluconato, succinato, sacarato, benzoato, metanossulfonato, etanossulfonato, benzenossulfonato, p-toluenossulfonato e pamoato.

Os sais básicos adequados são formados a partir de bases que formam sais não tóxicos e exemplos são sais de sódio, potássio, alumínio, cálcio, magnésio, zinco e dietanolamina.

Para um artigo de revisão sobre sais adequados, ver Berge et al., J. Pharm. Sci., 1977, 66, 1.

Os solvatos farmaceuticamente aceitáveis dos compostos de fórmula (I) incluem os seus hidratos.

Igualmente incluídos no presente âmbito dos compostos de fórmula (I) estão os seus polimorfos.

Será também entendido que os compostos da invenção pro-fármacos: incluirão derivados os seus farmaceuticamente aceitáveis de (I) em que os funcionais explicitamente citados acima derivatizados para proporcionar pro-fármacos que podem ser convertidos no composto progenitor in vivo. Tais profármacos são discutidos em Drugs of Today, 1983, 19, 499-538 e Annual Reports in Medicinal Chemistry, 1975, Vol. 10, Ch 31, 306-326. Os pro-fármacos adequados incluirão os compostos de fórmula (II) e (III).

Em que R^1 , R^2 , R^3 , R^4 , R^5 , R^6 , R^7 , R^8 , X e Z são como descrito acima, R9 e R10 são como descrito acima ou além disso um ou ambos os grupos podem ser um grupo apropriado protector do átomo de azoto e R¹³ é um grupo apropriado protector do átomo de oxigénio. Os grupos protectores de azoto adequados incluem carbamatos, particularmente BOC e grupos benzilo. Os grupos apropriados protectores do átomo de oxigénio são conhecidos dos especialistas na técnica e incluem os grupos alilo, arilo e alquilo, o referido grupo alquilo opcionalmente substituído por arilo cicloalquilo C_{3-7} ou, mais especificamente, grupos tais como benzilo, pivaloiloximetilo (POM) e alquilo C_{1-6} . Fazse também referência aqui a "Protective Groups in Organic Synthesis", 2nd edition, T. W. Greene e P. G. M. Wutz, Wiley-Interscience (1991).

Os compostos de fórmula (I) contêm um ou mais átomos de carbono assimétricos e, deste modo, existem em duas ou mais formas estereoisoméricas. Onde os compostos de fórmula (I) contêm um grupos alcenilo ou alcenileno, também pode ocorrer isomerismo cis (E) e trans (Z). A presente invenção inclui os estereoisómeros individuais

dos compostos de fórmula (I) e, onde apropriado, as suas formas tautoméricas individuais, juntamente com suas misturas.

Os compostos preferidos de fórmula (I) incluem aqueles que possuem a estereoquímica apresentada adiante.

Aqueles compostos de fórmula (IA) são particularmente preferidos.

A separação de diastereoisómeros ou isómeros cis e trans pode se conseguida por meio de técnicas convencionais, por exemplo, por cristalização fraccional, cromatografia ou H.P.L.C. de uma mistura estereoisomérica de um composto de fórmula (IA) ou (IB) ou um seu sal adequado ou seu derivado. Um enantiómero individual de um compostos de fórmulas (IA) ou (IB) também pode ser preparado a partir de um intermediário correspondente opticamente puro ou por resolução, tal como por H.P.L.C. do racemato correspondente utilizando um suporte quiral

adequado ou por cristalização fraccional dos sais diastereoisoméricos formados pela reacção do racemato correspondente com um ácido ou base adequado opticamente activo, conforme apropriado. Faz-se aqui referência a "Enantiomers, Racemates and Resolutions" J. Jacques e A. Collet, publicado por Wiley, NY, 1981; e "Handbook of Chiral Chemicals" capítulo 8, Eds D. Ager e M. Dekker, ISBN: 0-8247-1058-4.

Os compostos preferidos de fórmula (I) incluem aqueles onde o imidazol está substituído em qualquer posição por R^1 e nas posições C2 ou C4 pelo fragmento do aminoácido. Particularmente preferidos são aqueles compostos de fórmula (I) onde R^1 está ligado ao N1 da unidade imidazol de modo a dar o imidazol (1,4)-dissubstituído e compostos de fórmula (I) onde R^1 está ligado ao C4 do imidazol de modo a dar o imidazol (2,4)-dissubstituído.

De preferência, R^1 é um grupo arilo, um grupo cicloalquilo C_{3-7} , um grupo alcenilo C_{1-6} ou um grupo alquilo C_{1-6} , os referidos grupos alquilo ou alcenilo opcionalmente substituídos por um ou mais grupos seleccionados de: um grupo cicloalquilo C_{3-7} , heterociclo, heterociclo aromático, OR^{11} , CO_2R^{11} , $NR^{11}SO_2R^{12}$, $NR^{11}R^{12}$, $C(O)NR^{11}R^{12}$, $SO_2NR^{11}R^{12}$, halogéneo, $OC(O)R^{11}$, arilo ou $S(O)_pR^{11}$, onde p é 0-2.

Mais preferencialmente, R^1 é um grupo arilo, grupo alcenilo C_{1-6} ou um grupo alquilo C_{1-6} , em que o referido grupo alquilo está opcionalmente substituído por um ou mais grupo seleccionados de CO_2R^{11} , OR^{11} , arilo, cicloalquilo C_{3-7} , $NHSO_2R^{11}$, halogéneo, heterociclo aromático.

Ainda mais preferencialmente, R^1 é um grupo CF_3 ou um grupo alquilo C_{1-6} , em que o referido alquilo está opcionalmente substituído por um grupo cicloalquilo C_{3-7} , heterociclo aromático, OR^{11} , CO_2R^{11} , $NR^{11}SO_2R^{12}$ ou arilo.

Ainda mais preferencialmente, R^1 é alquilo C_{1-6} , opcionalmente substituído por um grupo C_{3-4} cicloalquilo ou grupo arilo.

Mais preferencialmente, R^1 é alquilo C_{1-3} , R^2 e R^3 são preferencialmente independentemente seleccionados de hidrogénio e alquilo C_{1-6} .

Mais preferencialmente, R² e R³ são hidrogénio.

 R^4 é preferencialmente independentemente seleccionado de hidrogénio e alquilo C_{1-6} , o referido alquilo opcionalmente substituído por fenilo; ou em que R^4 e R^{10} podem ser unidos para formar uma ligação, a referida ligação é alquileno C_{2-3} .

Mais preferencialmente, R^4 é independentemente seleccionado de hidrogénio e alquilo C_{1-3} ; ou em que R^4 e R^{10} podem ser unidos para formar uma ligação, a referida ligação é alquileno C_{2-3} .

Ainda mais preferencialmente, R^4 é independentemente seleccionado de hidrogénio; ou em que R^4 e R^{10} podem ser unidos para formar uma ligação, a referida ligação é alquileno C_{2-3} .

Mais preferencialmente, R4 é hidrogénio.

 R^5 e R^6 são preferencialmente independentemente seleccionados de hidrogénio e alquilo C_{1-6} , o referido grupo alquilo opcionalmente substituído por fenilo; ou em que R^5 e R^{10} podem ser unidos para formar uma ligação, a referida ligação é alquileno C_{1-3} .

Mais preferencialmente, R^5 e R^6 são independentemente seleccionados de hidrogénio e alquilo C_{1-3} , o referido grupo alquilo opcionalmente substituído por fenilo; ou em que R^5 e R^{10} podem ser unidos para formar uma ligação, a referida ligação é alquileno C_2 .

Ainda mais preferencialmente, R^5 e R^6 são independentemente seleccionados de hidrogénio e alquilo C_{1-3} .

Mais preferencialmente, R⁵ e R⁶ são hidrogénio.

Preferencialmente, R^7 e R^8 são independentemente seleccionados de hidrogénio e alquilo C_{1-6} , o referido alquilo opcionalmente substituído por fenilo.

Mais preferencialmente, R^7 e R^8 são independentemente seleccionados de hidrogénio e alquilo C_{1-}

Ainda mais preferencialmente, R^7 e R^8 são independentemente seleccionados de hidrogénio e alquilo C_{1-3} .

Ainda mais preferencialmente, R^7 e R^8 são independentemente seleccionados de hidrogénio e CH_3 . Mais preferencialmente, R^7 e R^8 são hidrogénio.

Preferencialmente, R^9 e R^{10} são independentemente seleccionados de hidrogénio, $C(NH)\,NH_2$ e alquilo C_{1-6} ; ou em que R^{10} e R^4 podem ser unidos para formar uma ligação, a referida ligação é alquileno C_{2-3} .

Mais preferencialmente, R^9 e R^{10} são independentemente seleccionados de hidrogénio e alquilo C_{1-} 3; ou em que R^{10} e R^4 podem ser unidos para formar uma ligação, a referida ligação é alquileno C_{2-3} .

Ainda mais preferencialmente, R^9 e R^{10} são independentemente seleccionados de hidrogénio e alquilo C_{1-3} .

Mais preferencialmente, R9 e R10 são hidrogénio.

Preferencialmente R^{11} e R^{12} são independentemente seleccionados de hidrogénio e alquilo C_{1-3} . Mais preferencialmente, R^{11} e R^{12} são independentemente seleccionados de hidrogénio e CH_3 .

X é preferencialmente CH.

n é preferencialmente 0 ou 1.

n é mais preferencialmente 0.

arilo é preferencialmente fenilo, opcionalmente substituído por 1-3 grupos seleccionados de: R^{11} , halogéneo, OR^{11} , $NR^{11}R^{12}$, CO_2R^{11} , $NHSO_2R^{11}$, CN ou haloalquilo.

Mais preferencialmente, arilo é fenilo.

Preferencialmente, heterociclo aromático é definido como um anel de 5 a 6 membros, contendo de 1 a 3 heteroátomos, cada um independentemente seleccionado de 0, S e N, o referido grupo heterociclo opcionalmente substituído por 1-3 grupos seleccionados de: OR^{11} , $NR^{11}R^{12}$, CO_2R^{11} , $NR^{11}CO_2R^{12}$, R^{11} , halogéneo, CN, haloalquilo, O(haloalquil), $S(O)_pR^{11}$, $OC(O)R^{11}$, $NR^{11}SO_2R^{12}$, $SO_2NR^{11}R^{12}$, $C(O)NR^{11}R^{12}$.

Mais preferencialmente, heterociclo aromático é definido como um anel de 5 a 6 membros, contendo de 1 a 2 heteroátomos, cada um independentemente seleccionado de 0, S e N, o referido grupo heterociclo opcionalmente substituído por 1-3 grupos seleccionados de: OR^{11} , $NR^{11}R^{12}$, CO_2R^{11} , $NR^{11}CO_2R^{12}$, R^{11} , halogéneo, CN, haloalquilo, O(haloalquil), $S(O)_pR^{11}$, $OC(O)R^{11}$, $NR^{11}SO_2R^{12}$, $SO_2NR^{11}R^{12}$, $C(O)NR^{11}R^{12}$.

Mais preferencialmente, heterociclo aromático é definido como um anel de 5 a 6 membros, contendo de 1 a 2 heteroátomos, cada um independentemente seleccionado de 0, S e N.

Preferencialmente, heterociclo é definido como um anel de 3-8 membros, contendo de 1-2 heteroátomos, cada um independentemente seleccionado de O, S e N, o referido anel sendo saturado ou parcialmente saturado, o referido grupo heterociclo opcionalmente substituído por 1-3 grupos seleccionados de: OR^{11} , $NR^{11}R^{12}$, CO_2R^{11} , $NR^{11}CO_2R^{12}$, R^{11} , halo, CN, haloalquilo, (haloalquil), $S(O)_pR^{11}$, $OC(O)R^{11}$, $NR^{11}SO_2R^{12}$, $SO_2NR^{11}R^{12}$, $C(O)NR^{11}R^{12}$.

Mais preferencialmente, heterociclo é definido como um anel de 5-6 membros contendo de 1-2 heteroátomos, cada um independentemente seleccionado de O, S e N, o referido anel sendo saturado ou parcialmente saturado, o referido grupo heterociclo opcionalmente substituído por 1-3 grupos seleccionados de: OR^{11} , $NR^{11}R^{12}$, CO_2R^{11} , $NR^{11}CO_2R^{12}$, R^{11} , halogéneo, CN, haloalquilo, (haloalquil), $S(O)_DR^{11}$, $OC(O)R^{11}$, $NR^{11}SO_2R^{12}$, $SO_2NR^{11}R^{12}$, $C(O)NR^{11}R^{12}$.

Mais preferencialmente, heterociclo é definido como um anel de 5-6 membros contendo de 1-2 heteroátomos, cada um independentemente seleccionado de 0, S e N, o referido anel sendo saturado ou parcialmente saturado.

Os compostos preferidos da presente invenção incluem:

Ácido (+)-5-amino-2-[(1-n-propil-1*H*-imidazol-4-il)metil]pentanóico (Exemplo 2)

Ácido (+) - (2S) -5-amino-2-[(1-n-butil-1H-imidazol-4-il) metil]pentanóico (Exemplo 5)

Ácido (+) - (2S) -5-amino-2-[(1-n-propil-1H-imidazol-

4-il)metil]pentanóico (Exemplo 7)

Ácido (+)-(2S)-5-amino-2-(1H-imidazol-4-ilmetil) pentanóico (Exemplo 9)

Ácido (2S)-2-[(2-aminoetil)amino]-3-(1-n-propil-1H-imidazol-4-il)propanóico (Exemplo 25)

Ácido (2S)-2-[(2-aminoetil)amino]-3-(1-n-butil-1H-imidazol-4-il)propanóico (Exemplo 26)

Ácido (2)-2-[(2-aminoetil)amino]-3-(1-n-isobutil-1H-imidazol-4-il)propanóico (Exemplo 29)

Ácido (2S)-2-[(2-aminoetil)amino]-3-(1-nisopentil-1H-imidazol-4-il)propanóico (Exemplo 30)

O ácido (+)-(2S)-5-amino-2-[(1-n-propil-1H-imidazol-4-il)metil]pentanóico é particularmente preferido (Exemplo 7).

A presente invenção também inclui compostos de fórmula (XXIII) e (XXIV)

Onde R^1 , R^3 , R^5 , R^6 , R^7 , R^8 e R^{10} são conforme descrito acima, R^4 é hidrogénio, n é 0, X é CH e R^9 é conforme descrito acima ou é um grupo apropriado protector do átomo de azoto. Grupos apropriados protectores do átomo

de azoto incluem carbamatos, particularmente BOC e grupos benzilo. Estes compostos são particularmente úteis como intermediários na síntese dos compostos de fórmula (I)

invenção também proporciona métodos para preparação dos compostos da invenção, que são descritos secção de Exemplos e adiante e Preparações. na especialista entenderá compostos da que os invenção poderiam ser feitos por meio de métodos que não sejam os aqui descritos, por adaptação dos métodos aqui descritos e/ou adaptação de uma pletora de métodos conhecidos na técnica. Deve ser entendido que os métodos de transformação sintética especificamente aqui mencionados podem ser realizados em várias sequências diferentes a fim de que as substâncias desejadas possam ser eficazmente montadas. O químico hábil exercitará o seu julgamento quanto à sequência de reacções mais eficaz para a síntese de uma dada substância alvo.

Ficará evidente aos especialistas na técnica que os grupos funcionais sensíveis podem necessitar de serem protegidos e desprotegidos durante a síntese de uma substância da invenção. Isto pode ser conseguido por meio de técnicas convencionais, por exemplo, tal como descrito em "Protective Groups in Organic Synthesis" por T. W. Greene e P. G. M. Wuts, John Wiley and Sons Inc., 1991.

Os compostos de fórmula (I) podem ser preparados fazendo reagir um composto de fórmula (II)

$$R^{10}$$
 R^{10}
 R

Em que R^1 , R^2 , R^3 , R^4 , R^5 , R^6 , R^7 , R^8 e X são conforme descrito acima, R^9 , R^{10} são conforme descrito acima. Além disso, um ou ambos podem ser um grupo apropriado protector do átomo de azoto e R^{13} é um grupo apropriado protector do átomo de oxigénio, com um reagente adequado para remover o referido grupo protector do átomo de oxigénio.

Os grupos apropriados protectores do átomo de oxigénio incluem grupos alilo e grupos alquilo, os referidos grupos alquilo opcionalmente substituídos por grupos arilo.

Reagentes e condições adequados para remover os referidos grupos são bem conhecidos dos especialistas na técnica e podem incluir hidrólise e hidrogenação.

Onde R⁹ e/ou R¹⁰ é um grupo protector do átomo de azoto, pode ser necessário remover o referido grupo protector do átomo de azoto depois da reacção de (II) com um reagente adequado para remover o referido grupo protector do átomo de oxigénio. Os grupos apropriados

protectores do átomo de azoto são bem conhecidos dos especialistas na técnica, bem como as condições adequadas para a sua remoção.

Os compostos de fórmula (II), onde R^1 , R^3 , R^4 , R^5 R^6 , R^7 , R^8 , R^9 , R^{10} , R^{13} e X são conforme descrito acima e R^2 é hidrogénio, podem ser preparados a partir dos compostos de (V) e (VI) de acordo com o seguinte esquema de reacção (VI)

Os compostos de fórmula (IV) podem ser formados pela etapa (a) do processo, uma reacção de Wadsworth-Emmons entre os compostos de fórmula (V) e (VI). Isto pode ser conduzido em condições padrão, tais como descrito em Org. Synth. Coll. Vol., 1988, 6, 358 e 1993, 8, 265. Condições adequadas incluem a formação do anião fosfonato com uma base adequada tal como NaH a 0 °C, depois fazendo reagir com 1 eq do aldeído apropriado à temperatura ambiente durante 18 horas. Um solvente adequado seria tetra-hidrofurano.

Os compostos de fórmula (II) podem ser formados pela etapa (b) do processo, uma hidrogenação. Esta pode realizada por meio de um método tal hidrogenação catalítica, por exemplo, 10% de Pd/C a 4 atmosferas, num solvente alcoólico (metanol ou etanol) à temperatura ambiente até 60 °C durante entre 4 e 72 horas; ou por redução de hidreto de metal activado, por exemplo, 30 eq de NaBH₄, 1,5 a 2,5 eq de CuCl, em metanol, à temperatura ambiente durante 2 horas. O processo também pode ser conduzido para dar uma hidrogenação assimétrica da ligação alceno. Tais métodos são bem conhecidos dos especialistas na técnica e são discutidos em "Asymmetric Synthetic Methodology" capítulo 9, Eds D. Ager e M. East, CRC Press, 1996, ISBN: 0-8493-8492-9.

Os compostos de fórmula (V) estão disponíveis comercialmente ou podem ser preparados por meio de vários métodos da literatura bem conhecidos de um especialista na técnica. Referência é feita às preparações aqui descritas e a G. Shapiro et al., Heterocycles, 1995, 41, 215; L. A. Reiter, J. Org. Chem., 1987, 52, 2714; B. H. Lipshutz et al., Tetrahedron Lett. 1986, 27, 4095; F. Aldebbagh et

al., Tetrahedron Lett., 1997, 38 7937; e S. M. Abdelaal, J. Het. Chem. 1995, 32, 903.

Os compostos de fórmula (VI) onde R^4 , R^5 , R^6 , R^7 , R^8 , R^9 , R^{10} e R^{13} são conforme acima descrito e X é CH, podem ser preparados de acordo com o seguinte esquema.

$$\begin{array}{c} R^{9} \\ R^{10} \\ R^{10}$$

Os compostos de fórmula (VI) podem ser preparados a partir dos compostos de fórmula (VII) e (VIII) onde Y é halogéneo, nas condições do passo (c) do processo, uma reacção de alquilação. Esta pode ser realizada em condições padrão, tipicamente 1 eq de (VII) é tratado com 1,1 eq de NaH, antes de reacção com (VIII), 18-c-6 (cat)

em refluxo durante 18 horas.

Os compostos de fórmula (VI) onde R^5 , R^6 , R^7 , R^8 , R^9 , R^{10} e R^{13} são conforme acima descrito, R^4 é um grupo protector do átomo de azoto e X é N, podem ser preparados utilizando o esquema de reacção descrito acima.

Os compostos de fórmula (I) também podem ser preparados por meio do tratamento de um composto de fórmula (III) nas condições de uma reacção de hidrólise da lactama. Esta pode ser conduzida em condições padrão, tipicamente condições básicas, por exemplo, LiOH aquoso em tetrahidrofurano à temperatura ambiente durante 4-18 horas.

Os compostos de fórmula (III) onde R^1 , R^3 , R^4 , R^5 , R^6 , R^7 , R^8 , R^9 , R^{13} , X e Z são conforme descrito acima e R^2 é hidrogénio, podem ser preparados por meio do seguinte processo

Os compostos de fórmula (IX) podem ser preparados fazendo reagir os compostos de fórmula (V) e (X) nas condições da etapa (a) do processo descrito acima. Os compostos de fórmula (III) podem ser preparados fazendo reagir os compostos de fórmula (IX) nas condições da etapa (b) do processo descrito acima.

Os compostos de fórmula (X) onde R^4 , R^5 , R^6 , R^7 , R^8 , R^9 , R^{10} e R^{13} são conforme descrito acima, com a condição de que R^9 e R^{10} não podem ser ligados e X é CH podem ser preparados a partir de um composto de fórmula

(XI) onde Y é halogéneo, de acordo com o seguinte esquema de reacção.

$$R^4$$
 X
 $(CH_2)_n$
 R^7
 R^8
 EtO
 O
 $(CH_2)_n$
 R^7
 R^8
 $(CH_2)_n$
 R^7
 R^8
 $(CH_2)_n$
 R^7
 R^8
 $(CH_2)_n$
 R^7
 R^8
 $(CH_2)_n$
 R^7
 $(CH_2)_n$
 $(CH_2)_n$

Os compostos de fórmula (X) podem ser preparados a partir de compostos de fórmula (XI) nas condições da etapa (c) do processo descrito acima.

Os compostos de fórmula (II) onde R^1 , R^2 , R^3 , R^4 , R^6 , R^7 , R^8 , R^{10} e R^{13} são conforme descrito acima, R^9 é conforme acima ou é um grupo apropriado protector do átomo de azoto, X é N e R^6 é hidrogénio podem ser preparados a partir de um composto de fórmula (XII) e (XIII), de acordo com o seguinte esquema de reacção.

Os compostos de fórmula (II) podem ser preparados fazendo reagir os compostos de fórmula (XII) e (XIII) nas condições da etapa (e) do processo, uma reacção de alquilação redutiva, realizada em condições padrão conhecidas dos especialistas na técnica. Condições adequadas incluiriam reagir (XII) e (XIII) na presença de acetato de sódio e cianoboro-hidreto de sódio.

Os compostos de fórmula (II) em que R⁹ é H podem ser obtidos a partir dos compostos de fórmulas (II) onde R⁹ é um grupo apropriado protector do átomo de azoto por meio da etapa (k) do processo opcional, remoção de um grupo protector do átomo de azoto; as condições apropriadas para

a remoção dos grupos protectores do átomo de azoto P¹ são descritas em "Protective Groups in Organic Synthesis", 2nd edition, T. W. Greene e P. G. M. Wutz, Wiley-Interscience (1991). As condições apropriadas incluem:

desprotecção de BOC: ácido clorídrico aquoso 6 N à temperatura ambiente até a temperatura de refluxo, durante entre 1 e 3 horas; desprotecção de benzilo: redução com metal em

Os compostos de fórmula (XIII) estão disponíveis comercialmente ou podem ser preparados por métodos bem conhecidos de um especialista na técnica.

solução, por exemplo Na, NH₃ líquido, -78 °C.

Os compostos acima de fórmula (XII) estão disponíveis comercialmente. Alternativamente, onde R^1 , R^3 , R^4 e R^{13} são conforme descrito acima, e R^2 é hidrogénio, os mesmos podem ser preparados por meio da via revelada em *Helv. Chim. Acta.*, 1994, 77, 1395 ou como revelado adiante.

Os compostos de fórmula (XII) podem ser preparados fazendo reagir os compostos de fórmula (V) e (XIV) nas condições da etapa (a) do processo, descrito acima. Os compostos de fórmula (XIIa) podem ser preparados fazendo

reagir os compostos de fórmula (XIII) nas condições da etapa (b) do processo, descrito acima. Se um composto de fórmula (XII) for necessário onde R⁴ não é hidrogénio, então os compostos de fórmula (XII) podem ser preparados fazendo reagir os compostos de fórmula (XIIa) nas condições da etapa (e) do processo, descrito acima.

Os compostos de fórmula (XIIa) onde R^1 , R^2 e R^3 , são conforme descrito acima, com a condição de que R^2 e R^3 não estejam ligados e R^{13} é metilo, também podem ser assimetricamente preparados a partir de um composto de fórmula (XVI), onde Y é halogéneo, de acordo com o seguinte esquema de reacção.

$$(XVI) \qquad R^2 \qquad R^3 \qquad (XVII)$$

$$R^1 \qquad N \qquad N \qquad (XVII)$$

$$R^1 \qquad N \qquad N \qquad (XVI)$$

$$R^2 \qquad R^3 \qquad (XV)$$

$$R^2 \qquad R^3 \qquad (XIIa)$$

Os compostos de fórmula (XV) podem ser preparados fazendo reagir os compostos de fórmula (XVII) e (XVI) nas condições da etapa (f) do processo, uma reacção alquilação assimétrica de Scholikopf, compreendendo a reacção de um haleto com um auxiliar quiral de Schollkopf desprotonado adequado (Angew. Chem. Int. Ed. Engl., 1981, 20, 798). As condições adequadas são tratar o auxiliar de Schollkopf em tetra-hidrofurano a -78 °C com BuLi, seguido pela adição de (XVI) depois 24 horas à temperatura ambiente. Os compostos de fórmula (XIIa) podem preparados fazendo reagir os compostos de fórmula (XV) nas etapa (g) do processo, uma condições da reacção hidrólise, descrita em Angew. Chem. Int. Ed. Engl., 1981, 20, 798. Condições adequadas são 5 eq de ácido clorídrico aquoso 0,25 N à temperatura ambiente durante 2 horas.

Os compostos de fórmula (XII) podem ser obtidos por meio de métodos bem conhecidos dos especialistas na técnica ou como exemplificados nos Exemplos. Deve ser observado que os compostos de fórmula (XII) e seus intermediários em que R^1 não é H podem ser produzidos pelo acoplamento dos compostos de fórmula (XII) e seus intermediários onde R^1 é H, com um reagente apropriado contendo R^1 , onde R^1 é conforme revelado acima.

Os compostos de fórmula (II) onde R^1 , R^2 , R^3 , R^4 , R^5 , R^6 , R^7 , R^8 , R^9 , R^{10} e R^{13} são conforme descrito acima e X é azoto também podem ser preparados a partir de compostos de fórmula (XIX) e (XVIII) onde Y é halogéneo por meio do método descrito no seguinte esquema de reacção.

Os compostos de fórmula (II) podem ser preparados fazendo reagir os compostos de fórmula (XVIII) e (XIX) nas condições da etapa (h) do processo, uma reacção de alquilação, fazendo reagir um excesso da amina com o haleto. As condições adequadas são 6 eq de (XIX) e 1 eq de (XVIII) em acetonitrilo à temperatura ambiente durante 2 horas seguido por 18 horas a refluxo.

Os compostos de fórmula (XIX) podem ser preparados por meio de várias vias da literatura, bem conhecidas de um especialista na técnica, bem como podem estar disponíveis comercialmente.

Os compostos de fórmula (XX) onde R^1 , R^2 , R^3 e R^{13} são conforme descrito acima, com a condição de que R^2 e R^3

não estejam ligados, podem ser preparados por meio do método descrito no seguinte esquema de reacção.

$$R^{1}$$
 N R^{2} R^{3} O $(XIIa)$ R^{1} N R^{2} R^{3} O (XX)

Os compostos de fórmula (XX) podem ser preparados fazendo reagir os compostos de fórmula (XIIa) nas condições da etapa (i) do processo, uma reacção de diazotisação/halogenação, compreendendo a conversão do grupo amina num grupo diazo, seguido por reacção com um haleto adequado, tipicamente *in situ*. As condições adequadas são tratar 1 eq de amina com 3,3 eq de NaNO₂ em ácido clorídrico concentrado:água (30:5) a -5 °C, depois 17 horas à temperatura ambiente.

Os compostos de fórmulas (IA) e (IB) onde R^1 , R^3 , R^5 , R^6 , R^7 e R^8 são conforme descrito acima, R^2 , R^4 e R^{10} são hidrogénio, R^9 é conforme descrito acima ou é um grupo apropriado protector do átomo de azoto, n é 0 e X é CH podem ser preparados a partir de compostos de fórmula

(XXIII), ambos os isómeros ${\tt E}$ e ${\tt Z}$ de acordo com o seguinte esquema.

Os compostos de fórmula (XXII) podem ser preparados a partir de compostos de fórmula (XXIII), nas condições da etapa (b) do processo, conforme descrito acima. Os grupos

protectores do átomo de azoto incluem carbamatos, particularmente BOC e grupos benzilo. A etapa (b) do processo também pode ser conduzida assimetricamente, utilizando métodos conhecidos dos especialistas na técnica.

Os compostos de fórmula (XXI) podem ser preparados a partir de compostos de fórmula (XXII) nas condições da etapa (d) do processo, uma reacção de hidrólise da lactama que pode ser conduzida em condições ácidas ou básicas conforme apropriado.

Os compostos de fórmulas (IA) e (IB) podem ser preparados a partir de compostos de fórmula (XXI) nas condições da etapa (j) do processo, resolução dos enantiómeros, seguido pela etapa (k) opcional do processo, remoção do grupo protector do átomo de azoto quando R^9 é um grupo protector do átomo de azoto.

Na etapa (j) do processo, enantiómeros individuais um composto das fórmulas (IA) ou (IB) podem ser preparados por resolução, como por exemplo, por H.P.L.C. do racemato correspondente utilizando um suporte quiral cristalização ou por fraccional adequado diastereoisoméricos formados por reacção do correspondente com um ácido ou base opticamente activo, apropriado. Faz-se referência "Enantiomers, Racemates and Resolutions" J. Jacques e A. Collet, publicado por Wiley, NY, 1981; e "Handbook of Chiral Chemicals" capítulo 8, Eds D. Ager e M. Dekker, ISBN: 0-8247-1058-4.

Os compostos de fórmulas (IA) ou (IB) em que R^9 é H podem ser obtidos a partir de compostos de fórmulas (IA) ou (IB) onde R^9 é um grupo apropriado protector do átomo de

azoto por meio da etapa (k) opcional do processo, remoção de um grupo protector do átomo de azoto; as condições apropriadas para a remoção dos grupos protectores do átomo de azoto R⁹ estão descritas em "Protective Groups in Organic Synthesis", 2nd edition, T. W. Greene e P. G. M. Wutz, Wiley-Interscience (1991). As condições apropriadas incluem:

desprotecção de BOC: ácido clorídrico aquoso 6 N à temperatura ambiente até a temperatura de refluxo, durante entre 1 e 3 horas; desprotecção de benzilo: redução com metal em solução, por exemplo Na, NH₃ líquido, -78 °C.

Os compostos de fórmulas (IA) e (IB) onde R^1 , R^3 , R^5 , R^6 , R^7 , R^3 e X são conforme descrito acima e R^2 , R^4 , e R^{10} são hidrogénio e R^9 é conforme descrito acima ou é um grupo apropriado protector do átomo de azoto também podem ser preparados assimetricamente a partir de compostos de fórmula (XXIII), onde (XXIII) é o isómero E ou Z, de acordo com o esquema de reacção apresentado adiante.

Os compostos de fórmula (XXIV) podem ser preparados a partir de compostos de fórmula (XXIII) nas condições da etapa (d) do processo, conforme descrito acima.

Os compostos de fórmula (IA) ou (IB) podem ser preparados a partir de compostos de fórmula (XXIV) nas condições da etapa (b) do processo, uma hidrogenação, (j), resolução de enantiómeros e opcionalmente, (k), remoção do

grupo protector do átomo de azoto P^1 quando R^9 é um grupo protector do átomo de azoto. As etapas (b), (j) e (k) do processo estão descritas acima.

Numa forma de realização alternativa, os compostos de fórmula (IA) onde R^1 , R^3 , R^5 , R^6 , R7, R^8 , R^{10} e X são conforme descrito acima, R^2 e R^4 são hidrogénio e R^9 é conforme descrito acima ou pode ser um grupo apropriado protector do átomo de azoto, também podem ser preparados assimetricamente a partir de compostos de fórmula (XXIV), onde (XXIV) é o isómero E ou Z, de acordo com o esquema de reacção apresentado adiante.

Os compostos de fórmulas (IA) ou (IB) podem ser preparados a partir de compostos de fórmula (XXIV) nas condições das etapas do processo (I), uma hidrogenação

assimétrica, (j), resolução dos enantiómeros e opcionalmente (k), remoção do grupo protector do átomo de azoto quando R⁹ é um grupo protector do átomo de azoto. A etapa (j) do processo é opcional e depende do grau de selectividade enantiomérica obtida na etapa (I). A etapa (j) do processo também pode ser conduzida *in situ* durante a etapa (I) do processo. As etapas (j) e (k) do processo são descritas acima e são também exemplificadas nos Exemplos.

Os métodos utilizados para conduzir a etapa (I) do processo são bem conhecidos dos especialistas na técnica e são discutidos em "Asymmetric Synthetic Methodology" capítulo 9, Eds D. Ager e M. East, CRC Press, 1996, ISBN: 0-8493-8492-9, bem como são exemplificados nos Exemplos.

Os compostos de fórmula (XXIII) onde R^1 , R^3 , R^5 , R^6 , R^7 , R^8 e X são conforme descrito acima e R^9 é conforme descrito acima ou um grupo protector do átomo de azoto podem ser preparados a partir de compostos de fórmula (V) e (XXVI) de acordo com o esquema de reacção adiante.

Os compostos de fórmula (XXV) podem ser preparados a partir dos compostos de fórmula (V) e (XXVI) nas condições da etapa (m) do processo, uma reacção do tipo Aldol. As condições adequadas para esta reacção são bem conhecidas de um especialista na técnica. Referência é também feita aqui a "Advanced Organic Chemistry" (4th Edition) por Jerry March, John Wiley and Sons Inc.

Os compostos de fórmula (XXIII) podem ser preparados a partir dos compostos de (XXV) nas condições da etapa (n) do processo, uma reacção de eliminação. (XXV) pode ser tratado de tal modo que o grupo hidroxi é removido directamente numa reacção de desidratação ou pode ser eliminado tendo primeiro sido transformado num bom grupo de partida tal como um grupo tosilato ou mesilato.

Os compostos de fórmula (XXII) onde R^1 , R^2 , R^3 , R^4 R^5 , R^6 , R^7 , R^8 e X são conforme revelado acima, R^9 é conforme revelado acima ou um grupo protector do átomo de azoto e n é 0 também podem ser preparados a partir de compostos de fórmula (XXX) e (XXVI) de acordo com o esquema adiante.

Os compostos de fórmula (XXXI) podem ser preparados a partir de compostos de fórmula (XXVI) e fórmula (XXX), em que R^3 é conforme descrito acima e P^2 é um grupo apropriado protector do átomo de azoto, nas condições da etapa (m) do processo conforme descrito acima. Os compostos de (XXXII) podem ser preparados a partir da fórmula (XXXI) nas condições do passo (n) do processo, conforme descrito acima.

Os compostos de fórmula (XXIIa) onde R^2 , R^3 , R^4 , R^5 , R^6 , R^7 , R^8 e X são conforme revelado acima, R^9 é conforme revelado acima ou um grupo protector do átomo de azoto, n é 0 e R^1 é hidrogénio podem ser preparados a partir de compostos de fórmula (XXXII) nas condições da etapa (b) do processo, seguido pela etapa (k) do processo, ambas conforme descrito acima.

Os compostos de fórmula (XXII) onde R¹ não é hidrogénio podem ser obtidos a partir de compostos de fórmula (XXIIa) nas condições do passo (r) do processo, uma reacção de acoplamento. As condições adequadas incluem aquelas descritas nas etapas (h) ou (p) do processo, com referência a reacções de alquilação bem como reacções de arilação bem conhecidos dos especialistas na técnica. As condições de alquilação adequadas podem incluir:

1,5 eq de base (por exemplo, Cs_2CO_3) e 1,25 eq de agente alquilante (por exemplo, R^1Br), em DMF a 70 °C durante 3 horas.

As condições de arilação adequadas podem incluir:

2 eq de R¹-B(OH)₂, 1,5 eq de acetato de Cu(II) catalisador, 2 eq de piridina em DCM, durante 2 dias, sob uma corrente de ar comprimido. (P. Y. S. Lam et al., Tetrahedron Lett. 39; 2941; 1998)

Os compostos de fórmula (I), onde R^1 , R^2 , R^3 , R^5 , R^6 , R^7 , R^8 , R^9 e R^{10} são conforme descrito acima, R^4 é hidrogénio e X é azoto, com a condição de que um de R^9 e R^{10} não é hidrogénio e R^1 está ligado a um átomo de N de imidazol, podem ser preparados a partir de compostos de fórmula (XXIX) de acordo com o esquema de reacção adiante.

$$R^9$$
 R^8
 R^7
 $(CH_2)_0$
 R^4
 R^6
 R^5
 OH
 R^1
 R^2
 R^3
 R^3
 R^6
 R^5

Os compostos de fórmula (XXVIII) podem ser preparados a partir de compostos de fórmula (XXIX), onde R^4 é hidrogénio e um de R^9 ou R^{10} não é hidrogénio, por meio da etapa (o) do processo, uma reacção de carbonilação. A reacção pode ser realizada em condições padrão, tal como descrito em *Tetrahedron* 1996, 52, 5363. As condições apropriadas incluem fazer reagir 1 eq de (XXIX) com 1 eq de carbonildiimidazole em N,N-dimetilformamida a 60 °C durante 17 horas.

Os compostos de fórmula (XXVII) podem ser preparados a partir dos compostos de fórmula (XXVIII) por meio da etapa (p) do processo, uma reacção de alquilação. Esta pode ser conduzida em condições padrão, por exemplo, fazendo reagir (XXVIII) com um agente alquilante, tal como um haleto de alquilo, opcionalmente na presença de um catalisador, num solvente adequado. As condições adequadas

incluem tratar 1 eq of (XXVIII) com 2 eq de R^1 -Cl em acetonitrilo em refluxo durante 18 horas.

Os compostos de fórmula (I) podem ser preparados a partir de compostos de fórmula (XXVII) nas condições da etapa (q) do processo, uma reacção de desprotecção hidrolítica. O material de partida é tratado com um ácido aquoso, preferencialmente ácido clorídrico ou sulfúrico.

Os compostos de fórmula (XXIX) podem ser preparados pelas vias reveladas neste documento, em que, ao contrário, R^1 é hidrogénio.

Todas as reacções e preparações anteriores de novos materiais de partida utilizados nos métodos precedentes são reagentes convencionais e apropriados e as condições de reacção para o seu desempenho ou preparação, bem como os procedimentos para isolar os produtos desejados serão bem conhecidos dos especialistas na técnica com referência à literatura anterior e os Exemplos e Preparações dos mesmos.

A presente invenção proporciona os compostos de fórmula (I) e seus sais, solvatos e pro-fármacos farmaceuticamente aceitáveis para utilização como um medicamento.

A invenção também proporciona a utilização de um inibidor de TAFIa na preparação de um medicamento para o tratamento ou prevenção de uma patologia seleccionada de trombose, aterosclerose, aderências, cicatrização dérmica, cancro, estados fibróticos, doenças inflamatórias e aquelas doenças que beneficiam com a manutenção ou aumento dos níveis de bradiquinina no corpo.

Preferencialmente, o inibidor de TAFIa é um composto de fórmula (I) tal como aqui descrito. Em

concordância, a presente invenção proporciona a utilização de um composto de fórmula (I) ou um seu sal, solvato ou pro-fármaco farmaceuticamente aceitável na preparação de um medicamento para o tratamento ou prevenção de uma patologia seleccionada de entre trombose, aterosclerose, aderências, cicatrização dérmica, cancro, estados fibróticos, doenças inflamatórias e aquelas doenças que beneficiam com a manutenção ou aumento dos níveis de bradiquinina no corpo.

Além disso, a invenção proporciona um método para tratar ou prevenir a trombose, aterosclerose, aderências, cicatrização dérmica, cancro, estados fibróticos, doenças inflamatórias e aquelas doenças que beneficiam com a manutenção ou aumento dos níveis de bradiquinina no corpo que compreende administrar uma quantidade terapeuticamente eficaz de um inibidor de TAFIa e seus sais, solvatos e pro-fármacos farmaceuticamente aceitáveis a um doente em necessidade de tal tratamento.

Preferencialmente, o inibidor de TAFIa um composto de fórmula (I) tal como aqui descrito. Εm concordância, a presente invenção proporciona um método a trombose, tratar ou prevenir aterosclerose, cicatrização dérmica, cancro, aderências, fibróticos, doenças inflamatórias e aquelas doenças que beneficiam com a manutenção ou aumento dos níveis de bradiquinina no corpo que compreende administrar uma quantidade terapeuticamente eficaz de um composto de fórmula (I) e seus sais, solvatos е pro-fármacos farmaceuticamente aceitáveis a um doente em necessidade de tal tratamento.

As patologias trombóticas estão entre a causa mais de morte no mundo desenvolvido. Há uma grande quantidade de agentes anti-trombóticos disponíveis para estes estados patológicos. A maior tratar parte dos agentes funcionam no sentido de reduzir a formação de Todos estes agentes são associados com vários trombo. de efeitos secundários hemorrágicos. graus Εm concordância, os doentes a serem tratados desta maneira irão necessitar de monitorização a fim de evitar eventos adversos de sangramento.

Há uma necessidade de um antitrombótico que seja eficaz mas que não cause sangramento. No entanto, isto pareceria impossível dada à contradição inerente entre parar a formação de coágulo para evitar a doença trombótica e permitir a formação de coágulo de modo a evitar que o doente tenha uma hemorragia.

Surpreendentemente, isto foi resolvido por meio dos compostos da presente invenção que são uma classe de inibidores de TAFIa. As terapêuticas mais convencionais actuam para inibir a coagulação ou a activação das plaquetas. Os inibidores de TAFIa funcionam aumentando a fibrinólise e, portanto, a taxa na qual o coágulo é dissolvido. Isto tem o efeito de deslocar o equilíbrio entre coagulação e fibrinólise, em favor da fibrinólise. A maior parte dos trombos clinicamente relevantes são subagudos, isto é, formam-se lentamente ao longo do tempo. O efeito de deslocar o equilíbrio em favor da fibrinólise é que estes coágulos são dissolvidos antes de tornarem-se clinicamente significativos.

No caso de lesão vascular, o equilíbrio retrocede em favor da coagulação. As primeiras respostas de vaso

contrição e aglutinação de plaquetas do corpo permanecem intactas pela utilização de inibidores de TAFIa. O corpo então rapidamente activa a cascata de coagulação. O efeito disto é temporariamente deslocar o equilíbrio para a coagulação e permitir a formação de um tampão hemostático utilizando fibrina. Uma vez que a lesão vascular esteja vedada o corpo retornará ao seu equilíbrio pré-lesão.

A presente invenção também proporciona a utilização de inibidores de TAFIa na preparação de um medicamento tratamento ou prevenção de trombose, para particularmente enfarte do miocárdio, trombose profunda, acidente vascular cerebral, acidente vascular cerebral em pacientes jovens, doença vascular periférica, angina e outras formas de síndromes coronárias agudas, coaqulação intravascular disseminada, sépsis, embolismo pulmonar, embólicos secundários eventos а arritmias cardíacas e prevenção de eventos cardiovasculares a seguir a intervenção cirúrgica. Preferencialmente, o referido inibidor de TAFIa deve ter um Ki inferior a 20 µM, utilizando o ensaio descrito adiante. Preferencialmente, o referido inibidor de TAFIa deve ter uma selectividade para a carboxipeptidase de > em relação Ν preferencialmente > 1000:1, utilizando o ensaio descrito adiante. Preferencialmente, os referidos inibidores TAFIa são não-peptídicos.

Preferencialmente, o inibidor de TAFIa é um composto de fórmula (I) tal como aqui revelado. Em concordância, a presente invenção proporciona a utilização de um composto de fórmula (I) na preparação de um medicamento para o tratamento de uma patologia trombótica seleccionada de entre enfarte do miocárdio, trombose

venosa profunda, acidente vascular cerebral, acidente vascular cerebral em jovens, enfarte cerebral, trombose cerebral, embolismo cerebral, doença vascular periférica, angina e outras formas de síndromes coronárias agudas, coagulação intravascular disseminada, sépsis, embolismo pulmonar, eventos embólicos secundários a arritmias cardíacas e a prevenção de eventos cardiovasculares a seguir a revascularização ou intervenção cirúrgica.

A invenção também proporciona um método para tratar ou prevenir a trombose, particularmente o enfarte do miocárdio, trombose venosa profunda, acidente vascular cerebral, acidente vascular cerebral em jovens, enfarte cerebral, trombose cerebral, embolismo cerebral, doença vascular periférica, angina e outras formas de síndromes coronárias agudas, coagulação intravascular disseminada, sépsis, embolismo pulmonar, eventos embólicos secundários a arritmias cardíacas e a prevenção de eventos cardiovasculares a seguir a intervenção cirúrgica que compreende administrar uma quantidade terapeuticamente eficaz de um composto de fórmula (I) e seus sais, solvatos e pro-fármacos farmaceuticamente aceitáveis a um doente em necessidade de tal tratamento.

Os indivíduos com patologias trombóticas que são adequadas para o tratamento por meio da presente invenção aqueles que têm estados associados incluem COM hipercoagulabilidade. incluiriam, Estes embora sem limitação: mutação do factor V, deficiência de antitrombina III, deficiências da proteína C e proteína S, policitemia vera, cofactor 11 da heparina e indivíduos que exibem hiper-homocisteinemia ou homocisteinuria.

A presente invenção também inclui como uma indicação trombótica a melhoria da função do órgão observada depois de transplante, reduzindo a coagulação sanguínea e, deste modo, preservando a função.

Os eventos cardiovasculares a seguir a uma intervenção cirúrgica incluem estados tais como reestenose ou reoclusão a seguir a intervenções, tais como angioplastia coronária transluminal percutânea, enxerto, colocação de stent, cirurgia de bypass coronário ou qualquer outra forma de revascularização ou intervenção cirúrgica.

Na presente invenção, a coaqulação intravascular disseminada inclui todos os estados que resultam activação intravascular do processo de coagulação. Isto pode ocorrer de forma aquda através da libertação de substâncias pro-coagulantes (por exemplo, emergências obstétricas, mordidas de cobra, malignidade da lesão por esmagamento), por contacto anormal do sangue (por exemplo, infecções, queimaduras, circulação extracorporal, enxertos) ou através da geração de pro-coagulantes no sangue (reacções a transfusões, leucemia); ou cronicamente exemplo, toxemia, hipertensão maligna, cirrose hepática grave).

A trombose venosa profunda também abrange o que é conhecido com "síndrome da classe económica", onde os coágulos se formam em indivíduos forçados a suportar condições de cãibra durante um período de tempo, tais como aqueles que se sentam em assentos apertados da classe económica num avião.

A presente invenção também proporciona a utilização de inibidores de TAFIa e/ou inibidores de TAFI como um

revestimento em dispositivos intravasculares, tais como em permanentes para diálise, substituições válvulas ou stents arteriais; e como um revestimento em dispositivos de circulação sanguínea extra corporal tais como, máquinas do coração, pulmão e diálise renal para evitar trombose, particularmente enfarte do miocárdio, trombose venosa profunda, acidente vascular cerebral, acidente vascular cerebral em jovens, enfarte cerebral, trombose cerebral, embolismo cerebral, doença vascular periférica, angina e outras formas de síndrome coronárias agudas, coagulação intravascular disseminada, embolismo pulmonar, eventos embólicos secundários arritmias cardíacas е а prevenção de eventos cardiovasculares tais como re-estenose а sequir intervenção cirúrgica, tais como angioplastia coronária transluminal percutânea, enxerto, colocação de cirurgia de bypass coronário ou qualquer outra forma de revascularização ou intervenção cirúrgica. Particularmente preferidos como revestimentos são os compostos de fórmula (I) e seus sais, solvatos e pro-fármacos farmaceuticamente aceitáveis.

Em concordância, a presente invenção proporciona a utilização de inibidores de TAFIa e/ou inibidores de TAFI como um revestimento em dispositivos intravasculares.

Além disso, a presente invenção proporciona a utilização de um composto de fórmula (I) como um revestimento em dispositivos intravasculares.

A invenção inclui dispositivos intravasculares, dos quais a porção intravascular é revestida com um inibidor de TAFIa e/ou inibidor de TAFI; e dispositivos de circulação sanguínea extra corporal, tais como máquinas do

coração, pulmão e diálise renal, onde a porção que entra em contacto com o sangue do indivíduo é revestida com um inibidor de TAFIa e/ou inibidor de TAFI. Particularmente preferidos são aqueles dispositivos intravasculares ou de circulação sanguínea extra corporal revestidos compostos de fórmula (I) e seus sais, solvatos e profármacos farmaceuticamente aceitáveis. Preferencialmente, o referido inibidor de TAFIa deve ter um Ki inferior a 20 utilizando 0 ensaio descrito adiante. Preferencialmente, o referido inibidor de TAFIa deve ter uma selectividade para TAFIa em relação a carboxipeptidase N de > 50:1, preferencialmente > 1000:1, utilizando o ensaio descrito adiante. Preferencialmente, os referidos inibidores de TAFIa são não-peptídicos.

Em concordância, a presente invenção proporciona um dispositivo intravascular revestido com um inibidor de TAFIa.

Além disso, a presente invenção proporciona um dispositivo intravascular revestido com um composto de fórmula (I).

Os compostos da presente invenção foram testados num modelo de reperfusão na artéria coronária utilizando um método similar ao descrito por W. E. Rote et al., J. Cardiovasc. Pharmacol., 1994, 23, 203, e constatou-se que eram eficazes.

Os inibidores de TAFIa são também úteis no tratamento de aterosclerose. A aterosclerose é um estado patológico comum em indivíduos que sofrem de doença vascular periférica, resistência a insulina e o grupo de estados patológicos genericamente referido como "Síndrome X". A Síndrome X é um termo frequentemente utilizado para

agrupar uma variedade de doenças inter-relacionadas. primeiro estágio da síndrome X consiste em resistência a insulina, níveis anormais de colesterol e triglicérido, obesidade e hipertensão. Qualquer um destes estados pode ser utilizado para diagnosticar o início da Síndrome X. A doença pode então progredir com um estado levando desenvolvimento do outro no grupo. Por exemplo, resistência a insulina é associada com altos níveis de lípidos, hipertensão e obesidade. Α doença o desenvolvimento desencadeia. com de cada adicional a aumentar o risco de desenvolver doenças mais graves. Isto pode progredir no desenvolvimento diabetes, doença renal e doença cardíaca. Estas doenças podem levar a acidente vascular cerebral, enfarte miocárdio e falência de órgãos.

O tratamento convencional de isquemia do miocárdio em doença da artéria coronária clinicamente estável é predominantemente concebida para reduzir a carga de trabalho cardíaca e aumentar o fluxo sanguíneo. Estas abordagens claramente reduzem a isquemia do miocárdio deste modo aumentando a qualidade de vida. No entanto, estas estratégias têm pouco efeito sobre a patogénese da aterosclerose coronária que é um processo crónico de remodelação contínua da árvore vascular em resposta a vários graus de lesão vascular.

Um papel da formação de trombo na patofisiologia de angina de peito estável foi recentemente destacado por vários grupos independentes. A formação de trombos não oclusivos não apenas restringe o fluxo sanguíneo, mas devido à lise endógena incompleta pode ser incorporado pela parede arterial como material em placa solidificado

que aumenta o processo aterosclerótico. A administração a longo prazo de um inibidor de TAFIa evita a formação de trombos e, portanto, proporciona um tratamento seguro e eficaz que alivia os sintomas da angina de peito. Sem trombos presentes, estes não podem ser incorporados à parede arterial e, deste modo, um inibidor de TAFIa diminui o progresso da doença.

A presente invenção também proporciona a utilização de compostos de fórmula (I) e seus sais, solvatos e profármacos na preparação de um medicamento para o tratamento ou prevenção da aterosclerose.

A invenção também proporciona um método para o tratamento ou prevenção da aterosclerose que compreende administrar uma quantidade terapeuticamente eficaz de um composto de fórmula (I) e seus sais e pro-fármacos farmaceuticamente aceitáveis a um doente em necessidade de tratamento.

Além disso, a invenção também proporciona utilização de um inibidor de TAFIa na preparação de um tratamento ou medicamento para 0 prevenção da aterosclerose. Preferencialmente, o referido inibidor de TAFIa deve ter um Ki inferior a 20 µM, utilizando o ensaio descrito adiante. Preferencialmente, o referido inibidor de TAFIa deve ter uma selectividade para TAFIa em relação carboxipeptidase N de > 50:1, preferencialmente > 1000:1, utilizando ensaio 0 descrito adiante. Preferencialmente, os referidos inibidores de TAFIa são não-peptídicos.

A aterosclerose é considerada como incluindo doenças da artéria coronária tanto primárias como secundárias, nas quais a aterosclerose restringe o

fornecimento de sangue ao coração. A prevenção primária da da artéria coronária significa aparecimento de complicações isquémicas, tais como enfarte do miocárdio em doentes sem história de doença da artéria coronária mas que têm um ou mais factores de risco. A secundária doença da prevenção da artéria coronária significa evitar as complicações isquémicas em doentes com doença coronária estabelecida, tais como doentes tiveram um enfarte do miocárdio anteriormente.

inibidores de TAFIa são também eficazes na inibição da maturação e progressão de tumores. Metástase é um processo complexo e multifactorial que não é ainda bem entendido. Em concordância, embora sem desejar ligado por qualquer teoria, crê-se que 0 hemostático está envolvido em vários níveis da patologia do cancro, incluindo a neovascularização, desprendimento de células do tumor primário, invasão do fornecimento sanquíneo, aderência à parede do vaso e desenvolvimento no sítio metastático. Pensa-se que a eficácia dos inibidores de TAFI têm origem na capacidade de reduzir a deposição de fibrina à volta de tumores sólidos e, deste modo, inibir os processos acima mencionados.

A presente invenção também proporciona a utilização de compostos de fórmula (I) e seus sais, solvatos e profármacos farmaceuticamente aceitáveis na preparação de um medicamento para o tratamento ou prevenção do cancro.

A presente invenção também proporciona um método para o tratamento ou prevenção do cancro que compreende administrar uma quantidade terapeuticamente eficaz de um composto de fórmula (I) e seus sais, solvatos e pro-

fármacos farmaceuticamente aceitáveis a um doente em necessidade de tal tratamento.

Além disso, a invenção também proporciona a utilização de um inibidor de TAFIa na preparação de um medicamento para o tratamento ou prevenção do cancro. Preferencialmente, o referido inibidor de TAFIa deve ter um Ki inferior a 20 µM, utilizando o ensaio descrito adiante. Preferencialmente, o referido inibidor de TAFIa deve ter uma selectividade para TAFIa em relação a carboxipeptidase N de > 50:1, preferencialmente > 1000:1, utilizando o ensaio descrito adiante. Preferencialmente, os referidos inibidores de TAFIa são não-peptídicos.

Os inibidores de TAFIa são também eficazes na prevenção da formação de aderências no corpo. A maioria dos procedimentos cirúrgicos e traumas físicos resultam em hemorragia na cavidade entre os tecidos. O sangue que acumula nestes sítios então coagula formando trombos ricos em fibrina. Estes trombos ligam o espaço entre os tecidos adjacentes e actuam como focos para a acumulação de células inflamatórias е fibroblastos. Os fibroblastos matriz extracelular invasores depositam uma rica colagénio que fortalece a aderência dos tecidos produzindo uma ligação firme que pode então restringir o movimento. As aderências podem ser caracterizadas de acordo com a sua localização e podem ser resultantes de qualquer cirurgia, abdominal, ortopédica, exemplo, neurológica, cardiovascular e ocular. Esta aderência inapropriada de tecidos pós-cirurgia ou trauma é uma questão importante que pode levar a vários resultados, por exemplo, "dores e incómodos", "pontadas", inflamação local, restrição mobilidade, dor, obstrução intestinal e algumas vezes, nos

casos mais grave, morte. No caso de cirurgia ginecológica, o resultado pode ser infertilidade. Coágulos adicionais que formam trombos ricos em fibrina estão implicados na cicatrização dérmica e re-estenose.

Sem estar ligado por qualquer teoria, crê-se que a formação aderências pode ser aumentada de devido deficiência em fibrinólise resultando na manutenção aumento de formação de coáqulos. O tratamento com um inibidor de TAFIa peri e/ou pós intervenção cirúrgica pode aumentar a fibrinólise dos trombos ricos em fibrina e, consequência, inibir а formação, o aumento, estabilização de trombos e, deste modo inibir a formação de aderências. Um inibidor de TAFIa dado sistemicamente ou localmente como uma aplicação tópica, pode ser visto como benéfico numa variedade de procedimentos cirúrgicos. Além disso, a administração de um inibidor de TAFIa pode ser utilizado para tratar aderências resultantes de outras formas de traumas físicos não-cirúrgicos onde causaram sangramento interno. Exemplos de tais traumas podem incluir lesões em desporto, ou qualquer outra coisa que resulte numa rotura, corte, contusão ou endurecimento do corpo.

A presente invenção também proporciona a utilização de compostos de fórmula (I) e seus sais, solvatos e profármacos farmaceuticamente aceitáveis na preparação de um medicamento para o tratamento ou prevenção de aderências ou cicatrização dérmica.

A invenção também proporciona um método para o tratamento ou prevenção de aderências ou cicatrização dérmica que compreende administrar uma quantidade terapeuticamente eficaz de um composto de fórmula (I) e

seus sais, solvatos e pro-fármacos farmaceuticamente aceitáveis a um doente em necessidade de tal tratamento.

Além disso, a invenção também proporciona a utilização de um inibidor de TAFIa na preparação de um medicamento para o tratamento ou prevenção de aderências ou cicatrização dérmica. Preferencialmente, o referido inibidor de TAFIa deve ter um Ki inferior a 20 μΜ, utilizando o ensaio descrito adiante. Preferencialmente, o referido inibidor de TAFIa deve ter uma selectividade para TAFIa em relação a carboxipeptidase N de > 50:1, preferencialmente > 1000:1, utilizando o ensaio descrito adiante. Preferencialmente, os referidos inibidores de TAFIa são não-peptídicos.

O TAFIa liga-se com a bradiquinina e a fragmenta (Tan et al,. Biochemistry 1995, 34, 5811). Há muitos estados patológicos que são conhecidos por se beneficiarem da manutenção ou aumento dos níveis de bradiquinina. Em concordância, a presente invenção também proporciona a utilização dos compostos de fórmula (I) e seus sais, solvatos e pro-fármacos farmaceuticamente aceitáveis na preparação de um medicamento para o tratamento ou prevenção de estados patológicos que se beneficiam da manutenção ou aumento dos níveis de bradiquinina.

A invenção também proporciona um método para o tratamento ou prevenção de estados patológicos que se beneficiam da manutenção ou aumento dos níveis de bradiquinina que compreende administrar uma quantidade terapeuticamente eficaz de um composto de fórmula (I) e seus sais, solvatos e pro-fármacos farmaceuticamente aceitáveis a um doente em necessidade de tal tratamento.

Os estados patológicos conhecidos por beneficiarem-se da manutenção ou aumento dos níveis de bradiquinina incluem: doenças tais como hipertensão, angina, insuficiência cardíaca, hipertensão pulmonar, insuficiência renal e falência de órgãos.

Os inibidores de TAFIa são eficazes no tratamento de estado em que a fibrose é um qualquer factor contribuinte. Em concordância, a presente invenção também proporciona a utilização de inibidores de TAFIa preparação de um medicamento para o tratamento prevenção de doença fibrótica. Preferencialmente, referido inibidor de TAFIa deve ter um Ki inferior a 20 utilizando 0 ensaio descrito adiante. Preferencialmente, o referido inibidor de TAFIa deve ter uma selectividade para TAFIa em relação a carboxipeptidase N de > 50:1, preferencialmente > 1000:1, utilizando o ensaio descrito adiante. Preferencialmente, os referidos inibidores de TAFIa são não-peptídicos. Particularmente preferidos são os compostos de fórmula (I) e seus sais, solvatos e pro-fármacos farmaceuticamente aceitáveis.

Os estados fibróticos adequados incluem fibrose cística, doença fibrótica pulmonar, por exemplo, doença pulmonar obstrutiva crónica (COPD), síndrome da angústia respiratória do adulto (ARDS), displasia fibromuscular, doença pulmonar fibrótica e depósitos de fibrina no olho durante cirurgia oftálmica.

Em concordância, a presente invenção proporciona a utilização de um composto de fórmula (I) tal como aqui revelado na preparação de um medicamento para o tratamento ou prevenção de um estado fibrótico seleccionado de fibrose cística, doença fibrótica pulmonar, doença

pulmonar obstrutiva crónica (COPD), síndrome da angústia respiratória do adulto (ARDS), displasia fibromuscular, doença pulmonar fibrótica e depósitos de fibrina no olho durante cirurgia oftálmica.

A invenção também proporciona um método para o prevenção de tratamento ou um estado fibrótico seleccionado de fibrose cística, doença fibrótica pulmonar, doença pulmonar obstrutiva crónica (COPD), angústia respiratória do adulto síndrome da displasia fibromuscular, doença pulmonar fibrótica e depósitos de fibrina no olho durante cirurgia oftálmica que compreende administrar uma quantidade terapeuticamente eficaz de um composto de fórmula (I) e seus sais, e profármacos farmaceuticamente aceitáveis a um doente necessidade de tratamento.

Os inibidores de TAFIa são eficazes no tratamento da inflamação. Em concordância, a presente invenção também proporciona a utilização de inibidores de TAFIa na preparação de um medicamento para o tratamento prevenção da inflamação. Preferencialmente, o referido inibidor de TAFIa deve ter um Ki inferior a 20 µM, utilizando o ensaio descrito adiante. Preferencialmente, o referido inibidor de TAFIa deve ter uma selectividade para em relação a carboxipeptidase Ν de preferencialmente > 1000:1, utilizando o ensaio descrito adiante. Preferencialmente, os referidos inibidores de TAFIa são não-peptídicos. Particularmente preferidos são os compostos de fórmula (I) e seus sais, solvatos e profármacos farmaceuticamente aceitáveis.

Em particular, a invenção pode ser utilizada para o tratamento ou prevenção de doenças inflamatórias tais como

asma, artrite, endometriose, doenças inflamatórias do intestino, psoríase e dermatite atópica e para doenças neurodegenerativas tais como Alzheimer e Parkinson.

Em concordância, a presente invenção proporciona a utilização de um composto de fórmula (I) e seus sais, solvatos e pro-fármacos farmaceuticamente aceitáveis na preparação de um medicamento para o tratamento de uma doença inflamatória seleccionada de asma, artrite, endometriose, doenças inflamatórias do intestino, psoríase e dermatite atópica e doenças neurodegenerativas, Alzheimer e Parkinson.

A invenção também proporciona um método para o tratamento ou prevenção de uma doença inflamatória seleccionada de asma, artrite, endometriose, doenças inflamatórias do intestino, psoríase e dermatite atópica e doenças neurodegenerativas, Alzheimer e Parkinson, que compreende administrar uma quantidade terapeuticamente eficaz de um composto de fórmula (I) e seus sais, solvatos e pro-fármacos farmaceuticamente aceitáveis a um doente em necessidade de tratamento.

Deve ser entendido que todas referências aqui citadas para tratamento incluem tratamento curativo, paliativo e profilático.

Os compostos da presente invenção foram testados utilizando o seguinte ensaio. Para determinar o grau de inibição do TAFIa, os compostos foram incubados com TAFI activado, e a quantidade de inibição foi expressa em termos de Ki. Este ensaio tem por base aquele revelado em Boffa et al., J. Biol. Chem., 1998, 273, 2127.

Ensaio para inibição de TAFIa.

i) Activação de TAFI

TAFI humano (recombinante ou purificado) foi activado por meio da incubação de 20 µL de solução mãe (360 g/mL) com 10, µL de trombina humana (10 NIH unidades/mL), 10 µL de trombomodulina de coelho (30 g/mL), 6 μ L de cloreto de cálcio (50 mM) em 50 µL de tampão HEPES 20 mM (N-[2hidroxietil]piperazina-N-[ácido 2-etanossulfónico]) contendo 150 mM de cloreto de sódio e 0,01% TWEEN 80 (mono-oleato de polioxietileno-sorbitan) pH 7,6 durante 20 minutos a 22 °C. No final do período de incubação, a trombina foi neutralizada pela adição 10 µL de PPACK (D-Phe-Pro-Arg clorometil cetona) (100 nM). A solução de TAFIa foi armazenada em gelo durante 5 minutos finalmente diluída com 175 µL de tampão HEPES.

ii) Determinação de Ki (TAFIa)

Ki Calculado

Foram feitas várias diluições diferentes do composto teste em água. A 20 µL de cada diluição foram adicionados 150 µL de tampão HEPES e 10 µL de TAFIa, que foi então pré-incubado durante 15 minutos a 24 °C. A cada diluição foram então adicionados 20 µL de furilacriloilalanil-lisina concentração (FAAL) a uma padrão. quantidade de substrato foi medida pela leitura da absorvência da mistura de reacção a 330 nm a cada 15 segundos durante 39 minutos. A reacção foi realizada a 24 °C e as amostras foram misturadas por 3 segundos antes de cada leitura de absorvência.

Um gráfico da % de inibição em comparação com a concentração do composto de teste foi então traçado; a partir do qual foi calculado o valor de IC_{50} . O valor de Ki pode então ser calculado utilizando a equação de Cheng-Prusoff.

Dois controlos, positivo e negativo, foram utilizados para verificar a precisão dos resultados em cada caso. Para o primeiro controlo, o ensaio foi realizado como acima mencionado, mas com 20 µL de água em vez de uma diluição do composto de teste. Isto apresentou uma inibição mínima. Para o segundo controlo, o ensaio foi realizado como acima mencionado, mas com uma quantidade eficaz de um inibidor específico de carboxipeptidase em vez de uma diluição do composto de teste. Isto apresentou uma inibição máxima.

No caso dos dois controlos não demonstrarem inibição mínima e máxima respectivamente, então os resultados foram descontados e o composto de teste foi reanalisado.

Utilizando o ensaio acima citado constatou-se que os compostos da presente invenção são inibidores potentes e selectivos de TAFIa. Todos os compostos tinham um valor de Ki inferior a 20 μ M. Os valores específicos de Ki de certos compostos estão pormenorizados adiante:

Ácido (+)-6-amino-2-[(1-n-propil-1H-imidazol-4-il) metil]hexanóico (Exemplo 3) Ki = 310 nM

Ácido (+)-(2S)-5-amino-2-[(1-n-propil-1H-imidazol-4-il)metil]pentanóico (Exemplo 7) Ki = 13 nM

Ácido (2S)-2-[(2-aminoetil)amino]-3-(1H-imidazol-4-il)propanóico (Exemplo 11) Ki = 344 nM

Ácido (2S)-2-[(2-aminoetil)amino]-3-[1-(1,3-tiazol-5-ilmetil)-1H-imidazol-4-il]propanóico (Exemplo 45) Ki = 197 nM.

Foi também determinada a selectividade dos compostos da presente invenção para TAFIa em relação a carboxipeptidase N. Isto foi feito por meio do cálculo de Ki dos compostos da presente invenção quanto à carboxipeptidase N, depois comparando o mesmo ao Ki para o TAFIa. O valor de Ki foi calculado utilizando o ensaio para o cálculo de Ki de TAFIa, mas substituindo 10 µL de carboxipeptidase N humana por 10 µL de TAFIa.

Os compostos da presente invenção exibem uma forte selectividade para TAFIa em relação a carboxipeptidase N da ordem de > 50: 1.

Os compostos da presente invenção são inibidores de TAFIa, cuja utilidade tem por base evitar a reacção entre um trombo em desenvolvimento e o TAFIa.

Constatou-se que os compostos da presente invenção são também capazes de ligarem-se a uma molécula de TAFI, no sítio implicado na reacção entre TAFIa e o coágulo em desenvolvimento. A utilização de inibidores de TAFIa, tal como descrito acima em termos de âmbito e utilidade, incluem estes inibidores de TAFIa que se ligam ao TAFI.

Os compostos de fórmula (I) também podem ser administrados juntamente com outros anti-trombóticos, incluindo anti-plaquetas, anticoagulantes e profibrinolíticos. Os anti-trombóticos adequados incluem,

aspirina, Plavix™, ticlopidina, varfarina (Coumarin™), heparina não fraccionada, hirudina (Lepirudin™), estreptoquinase, uroquinase, activador do plasminogénio recombinante (tPA), dipiridamole, tecidual Aggrastat™ e Integrilin™. Os compostos de fórmula (I) administrados juntamente também podem ser com hipertensivos e com agentes para tratar dislipidemia, tais como estatinas, por exemplo Lipitor™. Outras classes de para co-administrarão fármacos adequados incluem inibidores do Factor X e anti-arrítmicos, tais como amiodarone ou digoxina.

A presente invenção proporciona a utilização de um inibidor de TAFIa na preparação de um medicamento em associação com um antitrombótico para o tratamento de trombose. A presente invenção proporciona a utilização de um composto de fórmula (I) tal como descrito acima na preparação de um medicamento em associação com um antitrombótico para o tratamento de trombose.

Numa forma de realização preferida o antitrombótico é um profibrinolítico. Numa forma de realização mais preferida o antitrombótico é activador do plasminogénio tecidual recombinante (tPA).

A presente invenção proporciona um método para o tratamento ou prevenção de trombose, que compreende administrar uma quantidade terapeuticamente eficaz de um inibidor de TAFIa em associação com um antifibrinolítico a um doente em necessidade de tal tratamento.

A presente invenção também proporciona um método para o tratamento ou prevenção de trombose, que compreende administrar uma quantidade terapeuticamente eficaz de um composto de fórmula (I) e seus sais, solvatos e pro-

fármacos farmaceuticamente aceitáveis em associação com um antifibrinolítico a um doente em necessidade de tal tratamento.

Numa forma de realização preferida o antitrombótico é um profibrinolítico. Numa forma de realização mais preferida o antitrombótico é activador do plasminogénio tecidual recombinante (tPA).

A presente invenção proporciona um kit compreendendo:

- a) uma composição compreendendo um composto de fórmula (I) tal como aqui revelado e um diluente ou veículo farmaceuticamente aceitável;
- b) uma composição compreendendo um antitrombótico e um diluente ou veículo farmaceuticamente aceitável;
- c) um recipiente.

Os componentes deste kit podem ser administrados separadamente, simultaneamente ou sequencialmente.

A capacidade de um inibidor de TAFIa utilizado em conjunto com um antitrombótico para a lise de trombos foi investigada utilizando procedimentos cirúrgicos similares àqueles descritos em *J. Cardiovasc. Pharmacol.* Fevereiro de 1994; 23 (2) 194-202 e 203-211.

- O estudo foi concebido com 4 grupos (8 cães/grupo):
- (i) pré-tratamento com aspirina/perfusão com veículo;

- (ii) sem pré-tratamento/perfusão com veículo;
- (iii) sem pré-tratamento/inibidor de TAFIa; e
- (iv) pré-tratamento com aspirina/inibidor de TAFIa.

Método

O pré-tratamento com aspirina foi de 325 mg por dia durante 3 dias. O inibidor de TAFIa (composto do Ex 7) foi dado como uma dose de carga seguido por uma perfusão contínua com o objectivo de alcançar um estado estável de concentração livre no plasma de 4000 nM (220 x IC_{50} para in vitro). Trinta minutos depois de iniciar a perfusão do veículo ou composto uma corrente eléctrica contínua foi administrada ao lúmen da artéria coronária circunflexa esquerda (LCX) para provocar uma endotelial e estimular a produção de um trombo. Deixou-se que os trombos amadurecessem durante 1 hora antes de tentar a lise do trombo e provocar a reperfusão do vaso com t-PA. Um total de 4 injecções em bolus de t-PA (cada 0,45 mg/kg i.v.) foram dadas sequencialmente com 15 minutos de intervalo. O fluxo sanguíneo através da artéria coronária foi então monitorizado durante mais 2 horas de modo a avaliar a patência do vaso. Os tempos de oclusão do vaso e reperfusão foram medidos e a quantidade qualidade do fluxo sanguíneo foram analisadas reperfusão do vaso. Além disso, foram também avaliados o efeito do tratamento sobre o sangramento cirúrgico, o tempo de coagulação activado, o sangramento cutâneo e a agregação de plaquetas.

Resultados

Os dados estão descritos na Fig. 1. Pela Fig. 1 é possível observar que:

- 1) Só tPA é superior à associação de tPA e aspirina.
- A associação de um inibidor de TAFIa e tPA é muito superior a só tPA.
- 3) melhoria no fluxo do sangue coronário provocada pelo inibidor de TAFIa foi mantida por todo o período de reperfusão (165 minutos) fluxo significativamente maior comparação com os respectivos controlos. Particularmente, o inibidor de TAFIa aumentou de forma significativa a proporção de animais nos quais o fluxo era > 75% da linha de base no final do protocolo. No final da experiência 2/8 dos cães grupo apenas no sem tratamento/veículo e 1/8 dos cães no grupo préaspirina/veículo tratamento com patência. Em contraste, os vasos lesionados tinham patência em 8/8 dos cães no grupo de tratamento com inibidor de TAFIa.
- 4) Não houve efeito de nenhum dos tratamentos sobre o sangramento cirúrgico, tempo de sangramento cutâneo, tempo de coagulação

activado ou agregação de plaquetas induzida por ADP seja pré ou pós tratamento com t-PA.

A associação (iv) não é aqui considerada.

A presente invenção proporciona uma composição que compreende um composto de fórmula (I) e um excipiente, diluente ou veículo farmaceuticamente aceitável.

Os compostos de fórmula (I) podem ser administrados sós mas, de um modo geral, serão administrados em mistura com um excipiente, diluente ou veículo farmaceuticamente aceitável seleccionado relativamente à via de administração pretendida e prática farmacêutica padrão.

Por exemplo, os compostos de fórmula (I) podem ser administrados por via oral, bucal ou sublingual na forma de comprimidos, cápsulas, óvulos, elixires, soluções ou suspensões, que podem conter agentes aromatizantes ou corantes, para aplicações de libertação imediata, retardada, modificada, prolongada, pulsada ou controlada.

Tais comprimidos podem conter excipientes, tais como celulose microcristalina, lactose, citrato de sódio, carbonato de cálcio, fosfato de cálcio dibásico e glicina, desintegrantes tais como amido (preferencialmente amido de milho, batata ou tapioca), glicolato de amido sódico, croscarmelose sódica e certos silicatos complexos e aglutinantes de granulação tais como polivinilpirrolidona, hidroxipropilmetilcelulose (HPMC), hidroxipropilcelulose (HPC), sacarose, gelatina e goma arábica. Além disso, podem ser incluídos agentes lubrificantes tais como estearato de magnésio, ácido esteárico, behenato de glicerilo e talco.

Composições sólidas de um tipo similar também podem ser utilizadas como enchimentos em cápsulas de gelatina. Neste sentido, os excipientes preferidos incluem lactose, amido, uma celulose, açúcar do leite ou glicóis de alto peso molecular. Para suspensões aquosas e/ou elixires, os compostos de formula (I) podem ser associados com vários agentes edulcorantes ou aromatizantes, matéria corante ou pigmentos, com agentes emulsificantes e/ou de suspensão e com diluentes tais como água, etanol, propilenoglicol e glicerina e combinações destes.

compostos de fórmula (I) também podem administrados na forma de uma cápsula de gelatina mole ou dura cheia com um líquido ou suspensão. Tais cápsulas são, em geral, feitas de gelatina, glicerina, água e sorbitol. As cápsulas duras são distintas das cápsulas moles por conterem menos água e, deste modo, terem correspondentemente mais forte. Excipientes adicionais adequados para utilização em tais cápsulas incluem propilenoglicol, etanol, água, glicerol óleos е comestíveis.

Os compostos de fórmula (I) também podem ser administrados por via parentérica, for exemplo, por via intravenosa, intra-arterial, intraperitoneal, intratecal, intraventricular. intrauretral, intraesternal. intracraniana, intramuscular ou subcutânea, ou podem ser administrados por meio de técnicas de perfusão. Para tais melhor administrações parentéricas, os compostos são utilizados na forma de uma solução aquosa estéril que pode conter outras substâncias, por exemplo, sais ou glucose suficientes para tornar a solução isotónica com o sangue. As soluções aquosas devem ser adequadamente tamponadas

(preferencialmente a um pH de 3 a 9), se necessário. A preparação de formulações parentéricas adequadas em condições estéreis é prontamente conseguida por meio de métodos farmacêuticos convencionais bem conhecidos dos especialistas na técnica.

Os compostos de fórmula (I) também podem ser administrados por via intranasal ou por inalação e são administrados convenientemente na forma de um inalador de pó seco ou uma apresentação de pulverizador aerossol a partir de um recipiente pressurizado, bomba, pulverizador, atomizador ou nebulizador, com ou sem a utilização de um propulsor adequado, for exemplo, diclorodifluorometano, triclorofluorometano, diclorotetrafluoroetano, hidrofluoroalcano tal como 1,1,1,2-tetrafluoroetano (HFA 134A[™]) ou 1,1,1,2,3,3,3-heptafluoropropano (HFA 227EA[™]), dióxido de carbono ou outro gás adequado. No caso de um aerossol pressurizado, a dose unitária pode determinada proporcionando uma válvula para administrar uma quantidade medida. O recipiente pressurizado, bomba, pulverizador, atomizador ou nebulizador pode conter uma solução ou suspensão do composto activo, por exemplo, utilizando uma mistura de etanol e o propulsor como solvente, que adicionalmente pode conter um lubrificante, exemplo, trioleato de sorbitano. As cápsulas cartuchos (feitos, exemplo de qelatina) por utilização num inalador ou insuflador podem ser formulados para conter uma mistura em pó de um composto de fórmula (I) e uma base em pó adequada, tal como lactose ou amido.

Alternativamente, os compostos de fórmula (I) podem ser administrados na forma de um supositório ou pessário

ou podem ser aplicados topicamente na forma de um gel, hidrogel, loção, solução, creme, pomada ou pó. Os compostos de fórmula (I) também podem ser administrados por via dérmica ou transdérmica, por exemplo, por meio da utilização de um sistema adesivo para a pele. Podem também ser administrados pelas vias pulmonar ou rectal.

Os compostos também podem ser administrados pela via ocular. Para utilização oftálmica, os compostos podem ser formulados como suspensões micronizadas em soro fisiológico estéril isotónico, de pH ajustado, ou, preferencialmente, como soluções em soro fisiológico estéril isotónico, de pH ajustado em associação com um agente conservante tal como um cloreto de benzilalcónio. Alternativamente, podem ser formulados numa pomada, tal como petrolato.

Para aplicação tópica, os compostos de fórmula (I) podem ser formulados como uma pomada adequada contendo o composto activo suspenso ou dissolvido na mesma, por exemplo, uma mistura com um ou mais dos seguintes: óleo mineral, petrolato líquido, petrolato branco, propilenoglicol, composto polioxietileno de emulsificante polioxipropileno, cera áqua. Alternativamente, podem ser formulados como uma loção ou creme adequados, suspensos ou dissolvidos, por exemplo, numa mistura de um ou mais dos seguintes: óleo mineral, monoestearato de sorbitano, um polietilenoglicol, parafina líquida, polisorbato 60, cera de ésteres cetílicos, álcool cetearílico, 2-octildodecanol, álcool benzílico e água.

Os compostos de fórmula (I) também podem ser utilizados em associação com uma ciclodextrina. As ciclodextrinas são conhecidas por formarem complexos de

inclusão e não-inclusão com moléculas de fármacos. formação de um complexo fármaco-ciclodextrina modificar а solubilidade, taxa de dissolução, biodisponibilidade e/ou propriedade de estabilidade de uma molécula de fármaco. Os complexos fármaco-ciclodextrina, de um modo geral, são úteis para a maioria das formas farmacêuticas e vias de administração. Como alternativa à complexação directa com o fármaco, a ciclodextrina pode ser utilizada como um aditivo auxiliar, por exemplo, como um veículo, diluente ou solubilizador. As ciclodextrinas alfa, beta e gama são mais utilizadas frequentemente e exemplos adequados estão descritos nos documentos WO-A-91/11172, WO-A-94/02518 e WO-A98/55148.

A invenção é ainda ilustrada pelos seguintes exemplos não limitativos.

Os pontos de fusão foram determinados num aparelho de ponto de fusão Gallenkamp utilizando tubos capilares de vidro e não foram corrigidos. Salvo indicado em contrário, todas as reacções foram realizadas numa atmosfera de azoto, utilizando solventes anidros comercialmente disponíveis. "Amoníaco 0,88" refere-se a uma solução aquosa de amoníaco comercialmente disponível de cerca de 0,88 de gravidade específica. A cromatografia de camada fina foi realizada em placas de vidro da Merck prérevestidas de sílica gel (60 F254) e cromatografia em colona de gel de sílica foi realizada utilizando 40-63 µm de sílica gel (sílica gel 60 da Merck). A cromatografia de troca iónica foi realizada utilizando a resina de troca iónica especificada que tinha sido pré-lavada com água desionizada. Os espectros de RMN de protões foram medidos num espectrómetro Varian Inova 300, Varian Inova 400, ou

Varian Mercury 400 nos solventes especificados. Nos espectros de RMN, apenas os protões intercambiáveis que parecem distintos dos picos dos solventes são registados. Os espectros de massa de baixa resolução foram registados num Fisons Trio 1000, utilizando ionização positiva por termospray ou num Finnigan Navigator, utilizando ionização positiva ou negativa por electrospray. Os espectros de massa de alta resolução foram registados num Bruker Apex II FT-MS utilizando ionização positiva por electrospray. As análises de combustão foram conduzidas por Exeter Analytical UK. Ltd., Uxbridge, Middlesex. As rotações determinadas a 25 °C utilizando ópticas foram polarímetro Perkin Elmer 341 utilizando os solventes e as especificadas. Os compostos do concentrações designados como isómeros ópticos (+) ou (-) são atribuídos com base no sinal da rotação óptica quando determinados em áqua desionizada.

Abreviaturas e Definições

Arbocel™ Agente de filtração, de J. Rettenmaier & Sohne, Alemanha

Amberlyst® 15 Resina de troca iónica, disponível da Aldrich Chemical Company

atm Pressão em atmosferas (1 atm = 760 Torr)

Biotage™ Cromatografia realizada utilizando cartucho de sílica gel Flash 75 da Biotage, Reino

Unido

BOC Grupo terc-Butiloxicarbonilo

br Largo

c Concentração utilizada para medições de

rotação óptica em g por 100 mL (1 mg/mL é c

0,10)

cat Catalítico

d Dubleto

dd Dubleto of dubletos

Degussa® 101 paládio sobre carvão activado a 10% em peso

tipo Degussa E101 disponível da Aldrich

Chemical Company

DOWEX® Resina de troca iónica, da Aldrich Chemical

Company

ee Excesso enantiomérico

HRMS Espectroscopia de Massa de Alta Resolução

(varrimento de ionização positiva por

electrospray)

Hyflo™ Hyflo super cel® da Aldrich Chemical

Company

liq líquido

LRMS Espectroscopia de Massa de Baixa Resolução

(varrimento de ionização positiva por

electrospray ou termospray)

LRMS (ES⁻) Espectroscopia de Massa de Baixa Resolução

(electrospray ionisation negative scan)

m Multipleto

m/z Pico do espectro de massa

MCI™ gel Polímero de alta porosidade, CHP20P 75-150

μm, da Mitsubishi Chemical Corporation

q Quarteto

Rf Factor de retenção em TLC

s Singuleto

Sep-Pak® Cartucho de sílica gel C18 de fase reversa,

Waters Corporation

t Tripleto

TLC Cromatografia de Camada Fina

 δ Deslocamento químico

Exemplo 1

Uma mistura do éster da Preparação 1 (150 mg, 0,25 mmol) em dioxano (2 mL) e hidróxido de sódio aquoso (2 mL, 2 N) foi agitada à temperatura ambiente durante 1,5 horas. Ácido clorídrico aquoso (6 mL, 6 N) foi cuidadosamente adicionado e a reacção foi aquecida sob refluxo durante, 24 horas. A mistura arrefecida foi purificado por cromatografia em coluna de troca iónica (DOWEX® 50WX8-200), utilizando um gradiente de eluição de água desionizada:amoníaco 0,88 (100:0 a 97:3). O produto foi triturado com metanol para dar o composto sob epígrafe como um sólido branco, 28 mg, 57% de rendimento.

 $^{1}\text{H-RMN}$ (CD₃OD, 300 MHz) $\delta\colon$ 1,44-1,75 (m, 4H), 2,48 (m, 1H), 2,62 (dd, 1H), 2,90 (m, 3H), 6,81 (s, 1H), 7,55 (s, 1H).

HRMS: m/z 198,1242 (MH+) calculada 198,1237.

Exemplo 2

Uma mistura do éster da Preparação 2 (85 mg, 0,17 mmol) em dioxano (1 mL) e hidróxido de sódio aquoso (1 mL, 2 N) foi agitada à temperatura ambiente durante 72 horas. Análise por TLC mostrou material de partida restante, então a reacção foi aquecida a 70 °C durante 3 horas. Ácido clorídrico aquoso (2 mL, 6 N) foi adicionado à solução arrefecida e a reacção foi agitada à temperatura ambiente durante 18 horas. Análise por TLC mostrou material de partida restante, então a reacção foi aquecida a 70 °C durante mais 2 horas. A mistura arrefecida foi extraída com hexano, e a solução aquosa restante foi purificada por cromatografia em coluna de troca iónica (DOWEX® 50WX8200) eluindo com um gradiente de solvente de água desionizada:amoníaco 0,88 (100:0 a 97:3). O produto foi dissolvido num volume mínimo de água desionizada, e

liofilizado para dar o composto sob epígrafe como uma goma, 18 mg, 43% de rendimento.

 1 H-RMN (CD₃OD, 300 MHz) δ: 0,92 (t, 3H), 1,45-1,70 (m, 4H), 1,79 (m, 2H), 2,43-2,60 (m, 2H), 2,76-2,95 (m, 3H), 3,90 (t, 2H), 6,86 (s, 1H), 7,45 (s, 1H).

HRMS: m/z 240,1713 (MH+), calculada 240,1706.

Exemplo 3

$$H_2N$$
O
OH

Uma mistura da amina protegida da Preparação 3 (17 mg, 0,05 mmol) em ácido clorídrico aquoso (2 mL, 6 N) foi agitada à temperatura ambiente durante 3 horas. A solução foi purificada directamente por cromatografia de troca iónica (DOWEX® 50WX8-200), eluindo com um gradiente de solvente de água desionizada:amoníaco 0,88 (100:0 a 97:3), para dar o composto em epígrafe, 7 mg, 55% de rendimento.

 1 H-RMN (CD₃OD, 300 MHz) δ : 0,88 (t, 3H), 1,42 (m, 3H), 1,62 (m, 3H), 1,78 (m, 2H), 2,54 (m, 2H), 2,89 (m, 3H), 3,90 (t, 2H), 6,85 (s, 1H), 7,46 (s, 1H).

HRMS: m/z 254,1870 (MH+), calculada 254,1863.

Exemplo 4

Uma mistura do éster da Preparação 6 (185 mg, 0,35 mmol) em dioxano (6 mL) e hidróxido de sódio aquoso (6 mL, 2 N) foi agitada a 50 °C durante 3 horas. Ácido clorídrico aquoso (12 mL, 6 N) foi adicionado cuidadosamente, e a reacção foi agitada a 70 °C durante mais 18 horas. A mistura arrefecida foi lavada com éter e a solução aquosa foi purificada por cromatografia de troca iónica (DOWEX® 50WX8-200) eluindo com um gradiente de solvente de água desionizada:amoníaco 0,88 (100:0 a 95:5). O produto foi bem azeotropado com éter e seco sob vácuo para dar o composto em epígrafe como um sólido esbranquiçado, 45 mg, 51 % de rendimento.

 1 H-RMN (CD₃OD, 300 MHz) δ: 0,97 (t, 3H), 1,33 (m, 2H), 1,48-1,79 (m, 6H), 2,45-2,61 (m, 2H), 2,79-2,95 (m, 3H), 3,95 (t, 2H), 6,88 (s, 1H), 7,45 (s, 1H).

HRMS: m/z 254,1873 (MH+), calculada 254,1863.

Exemplo 5

$$H_2N$$
O
OH

O composto em epígrafe foi obtido num rendimento de 35% a partir do éster da Preparação 7, seguindo um procedimento similar ao descrito no Exemplo 4

 1 H-RMN (CD₃OD, 300 MHz) δ: 0,97 (t, 3H), 1,33 (m, 2H), 1,48-1,79 (m, 6H), 2,45-2,61 (m, 2H), 2,79-2,95 (m, 3H), 3,95 (t, 2H), 6,88 (s, 1H), 7,45 (s, 1H).

HRMS: m/z 254,1874 (M+), calculada 254,1863.

 $[\alpha]_D$ = +3,7 (c 0,14, água desionizada)

 $[\alpha]D = -5,2$ (c 0,15, metanol)

Exemplo 6

Uma solução da amina protegida da Preparação 9 (1,01 g, 2,97 mmol) em ácido clorídrico aquoso (15 mL, 6 N) foi agitada à temperatura ambiente durante 18 horas. A solução foi purificada directamente por cromatografia de troca iónica (DOWEX® 50WX8 200), eluindo com um gradiente de solvente de água desionizada:amoníaco 0,88(100:0 a 97:3), para dar o composto em epígrafe, 680 mg, 94% de rendimento.

 1 H-RMN (CD₃OD, 400 MHz) δ: 0,84 (t, 3H), 1,48 (m, 1H), 1,55-1,68 (m, 3H), 1,76 (m, 2H), 2,42-2,57 (m, 2H), 2,86 (m, 3H), 3,83 (t, 2H), 6,82 (s, 1H), 7,42 (s, 1H),

HRMS: m/z 262.1533 (MNa+), calculada 262,1526.

Análise Encontrada: C, 58,04; H, 8,93; N, 16,92. $C_{12}H_{21}N_3O_2 \bullet 0, 5H_2O \text{ requer C, 58,04; H, 8,93; N, 16,92} \}.$

 $[\alpha]_D = -2,53$ (*c* 0,15, água desionizada)

Exemplo 7

$$H_2N$$
O
OH

Hidróxido de sódio mono-hidratado (1,1 g, 28 mmol) e água (28 mL) foram adicionados a uma solução de lactama da Preparação 11 (3 g, 9,33 mmol) em tetra-hidrofurano (45 mL) e a reacção foi agitada à temperatura ambiente durante 18 horas. A solução foi neutralizada utilizando ácido clorídrico aquoso (6 N), depois mais ácido (15 mL, 6 N) foi adicionado e a solução foi agitada à temperatura ambiente durante 4 horas. A mistura foi purificada directamente por cromatografia de troca iónica (DOWEX® 50WX8-200), eluindo com um gradiente de solvente de água desionizada:amoníaco 0,88 (100:0 a 97:3), para dar o composto em epígrafe como um sólido, 2,1 g, 94% de rendimento. Este foi bem triturado com acetona, o sobrenadante foi removido e o sólido residual foi seco sob vácuo para dar o composto em epígrafe como um sólido branco.

 1 H-RMN (D₂O, 400 MHz) δ: 0,60 (t, 3H), 1,30 (m, 2H), 1,40 (m, 2H), 1,55 (m, 2H), 2,26-2,40 (m, 2H), 2,57 (dd, 1H), 2,76 (m, 2H), 3,68 (t, 2H), 6,66 (s, 1H), 7,36 (s, 1H).

HRMS: m/z 240,1699 (MH+), calculada 240,1706. Análise Encontrada: C, 58,90; H, 8,90; N, 17,17.

 $C_{12}H_{21}N_3O_2 \bullet 0$, $3H_2O$ requer C, 58,88; H, 8,92; N, 16,99%.

 $[\alpha]_D$ = +2,80 (c 0,14, água desionizada)

 $[\alpha]_D = -4,9 \ (c \ 0,16, \text{ metanol})$

 $[\alpha]_D = -5,0 \ (c \ 0,10, \text{ etanol}).$

Método alternativo para o Exemplo 7

Uma suspensão do sal de quinidina da Preparação 110 (19 g, 28,6 mmol) em água (95 mL) foi ajustada ao pH 10 utilizando uma solução de hidróxido de sódio 5 N e a mistura foi extraída com diclorometano (1 x 40 mL, 2 x 20 mL). A suspensão aquosa restante foi acidificada utilizando ácido clorídrico 5 N ao pH 0,5 e a solução foi agitada à temperatura ambiente durante 18 horas. A solução foi purificada numa coluna de resina de troca iónica Dowex® HCR-S (40 g), utilizando um gradiente de eluição de água: amoníaco 0,88 (100:0 a 97:3). A espuma resultante foi diluída com acetona (20 mL), o sólido foi filtrado e seco sob vácuo a 40 °C para dar o composto em epígrafe como um sólido branco, 4,6 g, 68% de rendimento.

 1 H-RMN (CD₃OD, 400 MHz) δ: 0,87 (t, 3H), 1,50 (m, 1H), 1,58-1,72 (m, 3H), 1,78 (m, 2H), 2,44-2,59 (m, 2H), 2,90 (m, 3H), 3,88 (t, 2H), 6,84 (s, 1H), 7,46 (s, 1H).

LRMS: m/z 240 (MH+)

HRMS: m/z 240,1705 (MH+), calculada 240,1706.

Análise Encontrada: C, 49,10; H, 9,34; N, 14,31. $C_{12}H_{21}N_3O_2 \bullet 3H_2O \text{ requer C, 49,13; H, 9,28; N, 14,32\%. }$

Exemplo 8

Ácido (-)-(2R)-5-amino-2-(1H-imidazol-4-ilmetil) pentanóico

Uma mistura da amina protegida da Preparação 12 (85 mg, 0,14 mmol) em hidróxido de sódio aquoso (1 mL, 2 N) e dioxano (1 mL) foi agitada à temperatura ambiente durante 3 dias. Análise por TLC mostrou material de partida restante, então foi adicionado hidróxido de sódio aquoso adicional (1 mol, 2 N) e a reacção foi agitada a 50 °C durante 18 horas. A mistura foi arrefecida e tratada com ácido clorídrico aquoso (5 mL, 6 N). A solução foi então agitada a 80 °C durante 18 horas, arrefecida à temperatura ambiente, hexano foi adicionado e a mistura foi agitada durante uma hora. As camadas foram separadas e a fase aquosa foi purificada directamente por cromatografia de troca iónica (DOWEX® 50WX8-200), eluindo com um gradiente de solvente de água desionizada:amoníaco 0,88 (100:0 a 97:3), para dar o composto em epígrafe, 20 mg, 73% de rendimento.

 1 H-RMN (CD₃OD, 300 MHz) δ: 1,40-1,68 (m, 4H), 2,45 (m, 1H), 2,62 (dd, 1H), 2,78 (m, 2H), 2,90 (m, 1H), 6,78 (s, 1H), 7,50 (s, 1H).

HRMS: m/z 198,1243 (MH+), calculada 198,1237.

 $[\alpha]_D = -6.0$ (c 0.1 mg/ mL, água desionizada)

Exemplo 9

O composto em epígrafe foi obtido num rendimento de 96% a partir da amina protegida da Preparação 13, seguindo o procedimento descrito no Exemplo 8.

 1 H-RMN (CD₃OD, 300 MHz) δ: 1,45 (m, 1H), 1,59 (m, 3H), 2,47 (m, 1H), 2,62 (dd, 1H), 2,78 (m, 2H), 2,90 (dd, 1H), 6,80 (s, 1H), 7,50 (s, 1H).

HRMS: m/z 220,1064 (MNa+), calculada 220,1056.

Exemplo 10

$$H_3C$$
 N
 NH
 H_2N
 O
 OH

Uma mistura da amina protegida da Preparação 14 (108 mg, 0,23 mmol) em ácido clorídrico aquoso (1,5 mL, 6 N) foi agitada sob refluxo durante 1,5 horas. A solução arrefecida foi purificada directamente por cromatografia de troca iónica (DOWEX® 50WX8-200), eluindo com um gradiente de solvente de água desionizada:amoníaco 0,88 (100:0 a 96:4), para dar o composto em epígrafe como um sólido branco, 30 mg, 55% de rendimento.

 1 H-RMN (CD₃OD, 400 MHz) δ: 0,95 (t, 3H), 1,45 (m, 1H), 1,62 (m, 5H), 2,48 (t, 2H), 2,58 (m, 1H), 2,76 (dd, 1H), 2,86 (m, 2H), 2,98 (dd, 1H), 6,60 (s, 1H).

HRMS: m/z 240,1718 (MH+), calculada 240,1707.

Análise Encontrada: C, 54,04; H, 8,97; N, 15,68. $C_{12}H_{21}N_3O_2 \bullet 1,5H_2O \text{ requer C, 54,12; H, 9,08; N, 15,78} \$.$

Exemplo 11

Ácido (2S)-2-[(2-aminoetil)amino]-3-(1H-imidazol-4il) propanóico

$$H_2N$$
 N
 OH

Ácido trifluoroacético (17 mL) foi adicionado gota a gota a uma solução com agitação do produto da Preparação 16 (2,58 g, 8,2 mmol) em metanol:água (27 mL:14 mL). A era ligeiramente exotérmica com evolução reaccão dióxido de carbono gasoso. A mistura foi agitada temperatura ambiente durante 4 horas e o solvente foi removido por evaporação a pressão reduzida para dar um óleo incolor que foi seco sob vácuo de um dia para o outro. O óleo resultante foi tratado com uma solução de hidróxido de sódio aquoso (1 N) até que a solução tivesse o pH=8. Uma outra porção de solução aquosa de hidróxido de sódio (1 N, 30 mL) foi adicionada e a solução foi agitada à temperatura ambiente durante 72 horas. A solução foi concentrada a pressão reduzida a 10 mL e purificada por cromatografia de troca iónica (DOWEX® 50WX8-200) eluindo com um gradiente de solvente de uma solução de água desionizada: amoníaco 0,88 (100:0 a 97:3). O solvente foi removido a pressão reduzida para dar um óleo amarelo que foi dissolvido em água desionizada (15 mL) e liofilizado de um dia para o outro para dar uma espuma. Este material água desionizada: metanol dissolvido em (95:5)adicionalmente purificado utilizando cromatografia em gel MCI™ (55 g), eluindo com um gradiente de solvente de água desionizada:metanol (95:5) para dar o composto em epígrafe, 1,13 g, 69% de rendimento.

 1 H-RMN (D₂O, 300 MHz) δ: 0,95 (t, 3H), 1,45 (m, 1H), 1,62 (m, 5H), 2,48 (t, 2H: 2,61-2,87 (m, 4H), 2,92 (m, 2H), 3,25 (t, 1H), 6,81 (s, 1H), 7,59 (s, 1H).

LRMS: m/z 199,2 (MH+)

Análise Encontrada: C, 43,36; H, 7,51; N, 25,12. $C_8H_{14}N_4O_2 \cdot 1,3H_2O$ requer C, 43,35; H, 7,54; N, 25,28%.

 $[\alpha]_D = +1,74$ (*c* 0,12, água desionizada)

Exemplo 12

$$H_2N$$
 N
 O
 O

O composto em epígrafe foi preparado a partir do produto da Preparação 17 utilizando o procedimento descrito para o Exemplo 11.

 1 H-RMN (D₂O, 300 MHz) δ: 0,95 (t, 3H), 1,45 (m, 1H), 1,62 (m, 5H), 2,48 (t, 2H: 2,57-2,82 (m, 4H), 2,89 (m, 2H), 3,22 (t, 1H), 6,77 (s, 1H), 7,55 (s, 1H).

 $[\alpha]_D = -1,0$ (c 0,10, água desionizada)

Exemplo 13

Ácido (±)-2-[(2-aminoetil)amino]-3-(1H-imidazol-2-il)propanóico

Ácido trifluoroacético (0,5 mL) foi adicionado gota a gota a uma solução com agitação do produto da Preparação 18 (105 mg, 0,34 mmol) em metanol:água (2 mL:1 mL) e a mistura foi agitada à temperatura ambiente durante 4 horas. O solvente foi então removido por evaporação a pressão reduzida e o resíduo foi tratado com uma solução aquosa de hidróxido de sódio (1 N) até que a solução tivesse o pH=7. Uma outra porção de solução de hidróxido de sódio aquoso (1 N, 5 mL) foi adicionada e a solução foi agitada à temperatura ambiente durante 72 horas. A solução de reacção foi então submetida a cromatografia de troca (DOWEX® 50WX8-200) eluindo desionizada:amoníaco 0,88 (97:3). O solvente foi removido por evaporação a pressão reduzida para dar um resíduo sólido branco. Este material foi dissolvido desionizada: metanol (95:5) e foi purificado adicionalmente utilizando cromatografia em gel MCI™, eluindo com água desionizada:metanol (95:5) para dar o composto epígrafe, 4 mg, 6% de rendimento.

 1 H-RMN (CD₃OD, 300 MHz) δ : 2,74-2,98 (m, 4H), 3,13 (m, 1H), 3,35 (m, 2H), 6,95 (s, 2H).

Exemplo 14

Ácido (2S) -2-[(2-aminoetil) amino] -3-(1H-imidazol-2-il) propanóico

O produto da Preparação 19 (200 mg, 0,45 mmol) foi tratado com ácido clorídrico aquoso (6 N, 4 mL) e aquecido até o refluxo durante 3 horas. O solvente foi então removido por evaporação a pressão reduzida e o resíduo foi purificado por cromatografia de troca iónica (DOWEX® 50WX8-200) eluindo com um gradiente de eluição água desionizada:amoníaco 0,88 (100:0 a 97:3). O material isolado foi então liofilizado para o dar o composto em epígrafe como uma espuma, 62 mg, 69% de rendimento.

 $^{1}\text{H-RMN}$ (CD₃OD, 300 MHz) δ : 2,71-2,98 (m, 4H), 3,13 (m, 1H), 3,34 (m, 2H), 6,92 (s, 2H).

HRMS: m/z 199,1184 (MH+), calculada 199,1190.

Exemplo 15

$$H_2N$$
 OH
 OH

Ácido trifluoroacético foi adicionado gota a gota a uma solução com agitação do produto da Preparação 21 (91 mg, 0,26 mmol) em diclorometano (1 mL) e a mistura foi agitada à temperatura ambiente durante 17 horas em atmosfera de azoto. O solvente foi então removido por evaporação a pressão reduzida e o resíduo foi azeotropado com tolueno. O material resultante foi dissolvido numa solução de hidróxido de sódio (5 mL, 2 N) e agitado à temperatura ambiente durante 72 horas. A solução foi então purificada por cromatografia de troca iónica (DOWEX® 50WX8-200), eluindo com um gradiente de solvente de água desionizada:amoníaco 0,88 (100:0 a 95:5), para dar o composto em epígrafe, 37,3 mg, 62% de rendimento.

 1 H-RMN (CD₃OD, 400 MHz) δ: 0,81 (t, 3H), 1,37 (m, 1H), 1,50 (m, 1H), 2,62 (m, 1H), 2,67 (m, 1H), 2,78 (m, 1H), 2,90 (dd, 1H), 2,98 (dd, 1H), 3,33 (dd, 1H), 6,87 (s, 1H), 7.57 (s, 1H).

HRMS: m/z 227,1511 (MH+), calculada 227,1503.

Exemplo 16

Ácido (2S) -2-{[(1S ou R)-1-(aminometil)propil] amino}-3-(1H-imidazol-4-il)-propanóico

Ácido trifluoroacético foi adicionado gota a gota a uma solução com agitação do produto da Preparação 22 (167 mg, 0,49 mmol) em diclorometano (1 mL) e a mistura foi agitada à temperatura ambiente durante 17 horas em atmosfera de azoto. O solvente foi removido por evaporação a pressão reduzida e o resíduo foi azeotropado com tolueno. O material resultante foi dissolvido numa solução aquosa de hidróxido de sódio (5 mL, 2 N) e agitada à temperatura ambiente durante 72 horas. A solução foi então purificada por cromatografia de troca iónica (DOWEX® 50WX8-200), eluindo com um gradiente de solvente de água desionizada:amoníaco 0,88 (100:0 a 95:5) para dar o composto em epígrafe, 38,7 mg, 35% de rendimento.

 1 H-RMN (CD₃OD, 400 MHz) δ: 0,73 (t, 3H), 1,35 (m, 2H), 2,43 (m, 1H), 2,53 (t, 1H), 2,70 (m, 1H), 2,95 (dd, 1H), 3,10 (dd, 1H), 3,40 (dd, 1H), 6,90 (s, 1H), 7,60 (s, 1H).

HRMS: m/z 227,1500 (MH+), calculada 227,1502.

Exemplo 17

$$H_3C$$
 CH_3
 N
 OH

Ácido trifluoroacético (2 mL) foi adicionado a uma solução com agitação do produto da Preparação 23 (100 mg, 0,28 mmol) em diclorometano (1 mL) e a mistura foi agitada à temperatura ambiente durante 17 horas. O solvente foi então removido por evaporação a pressão reduzida e o resíduo foi azeotropado com tolueno. O resíduo foi então dissolvido numa solução aquosa de hidróxido de sódio (2 M, 2 mL) e agitado à temperatura ambiente durante 72 horas. A solução foi então purificada por cromatografia de troca iónica (DOWEX® 50WX8-200) eluindo com um gradiente de solvente de água desionizada: amoníaco 0,88 (100:0 a 97:3). O material isolado (35 mg) foi adicionalmente purificado por cromatografia de fase reversa em sílica gel (C18 Sep-Pak®;), eluindo com água desionizada, e depois liofilizado dar o composto epígrafe (mistura em de diastereoisómeros), 20 mg, 30% de rendimento.

 $^{1}\text{H-RMN}$ (CD₃OD, 300 MHz), mistura de diastereoisómeros, δ : 0,67-0,90 (4x d, 6H), 2,40-3,40 (m, 7H), 6,85-6,95 (2 x s, 1H), 7,72-7,62 (2 x s, 1H).

HRMS: m/z 241,1661 (MH+), calculada 241,1659.

TLC: metanol: acetato de etilo: amoníaco 0,88: ácido acético: água (60: 12: 4: 4: 8)

Rf = 0,52 e 0,44.

Exemplo 18

$$H_2N$$
 H_2N OH

Ácido trifluoroacético (2 mL) foi adicionado a uma solução com agitação do produto da Preparação 24 (100 mg, 0,25 mmol) em diclorometano (1 mL) e a mistura foi agitada à temperatura ambiente durante 17 horas. O solvente foi então removido por evaporação a pressão reduzida e o resíduo foi azeotropado com tolueno. O resíduo foi dissolvido numa solução aquosa de hidróxido de sódio (2 N, 2 mL) e agitado à temperatura ambiente durante 17 horas. A solução foi então purificada por cromatografia de troca iónica (DOWEXO 50WX8-200) eluindo com um gradiente de solvente de água desionizada:amoníaco 0,88 (100:0 a 97:3) e o material isolado foi liofilizado para dar o composto em epígrafe, 41 mg, 58% de rendimento.

 1 H-RMN (CD₃OD, 300 MHz) δ: 2,48-2,72 (m, 2H), 2,77-3,10 (m, 3H), 3,25-3,47 (2 x m, 1H), 3,31 (d, 2H), 6,80 (2 x s, 1H), 6,91 (d, 1H), 7,10-7,30 (m, 4H), 7,55-7,63 (2 x s, 1H).

HRMS: m/z 289,1662 (MH+), calculada 289,1659.

Exemplo 19

 $\underline{\text{Acido}} \qquad (2S) - 3 - (1H - \text{imidazol} - 4 - \text{il}) - 2 - [(3RS) - \text{pirrolidinilamino}] \text{propanóico}$

Uma solução aquosa de hidróxido de sódio (1,7 mL, 5 N) foi adicionada gota a gota a uma solução com agitação do produto da Preparação 20 (200 mg, 0,8 mmol) em água desionizada (20 mL) e a solução foi agitada à temperatura ambiente de um dia para o outro. A solução foi então purificada por cromatografia de troca iónica (DOWEX® 50WX8-200) eluindo com um gradiente de solvente de água desionizada:amoníaco 0,88 (100:0 a 95:5) para dar o composto em epígrafe com uma espuma rosa, 90 mg, 50% de rendimento.

 1 H-RMN (D₂O, 300 MHz), mistura de diastereoisómeros, δ : 1,67 (m, 1H), 2,05 (m, 1H), 2,70 (m, 2H), 2,90 (m, 1H), 3,05-3,38 (m, 5H), 6,69 (s, 1H), 7,59 (s, 1H).

LRMS: m/z 225,3 (MH+)

 $[\alpha]_D$ = +1,57 (*c* 0,076, água desionizada)

Exemplo 20

Ácido (2S) -2-{[(1R,2S) -2-amino-1-metilpropil]amino} -3-(1H-imidazol-4-il)propanóico

$$H_2N$$
 CH_3
 N
 OH
 OH

Uma solução aquosa de hidróxido de sódio (2 mL, 2 N) foi adicionada a uma solução com agitação do produto da Preparação 26 (260 mg, 7,64 mmol) em dioxano (2 mL) e a mistura foi agitada durante 2,5 horas à temperatura ambiente. Ácido clorídrico aquoso (50% em volume, 4 mL) foi adicionado e a mistura foi agitada à temperatura ambiente durante 17 horas. A solução foi então purificada por cromatografia de troca iónica (DOWEX® 50WX8-200) eluindo com um gradiente de solvente de desionizada:amoníaco 0,88 (100:0 a 97:3) para dar um sólido branco que foi dissolvido em água desionizada e purificado adicionalmente por cromatografia de reversa em sílica gel (C18 Sep-Pak®;), eluindo com água desionizada, para dar o composto em epígrafe, 15 mg, 9% de rendimento.

 1 H-RMN (CD₃OD, 300 MHz) δ: 0,93 (d, 3H), 1,17 (d, 3H), 2,62-2,80 (m, 2H), 3,08 (m, 1H), 3,20 (m, 1H), 3,37 (m, 1H), 6,92 (s, 1H), 7,61 (s, 1H).

HRMS: m/z 227,1506 (MH+), calculada 227,1502.

Exemplo 21

Ácido (2S)-2-[(2-aminoetil)(metil)amino]-3-(1H-imidazol-4-vil)propanóico

Ácido trifluoroacético (10 mL) foi adicionado a uma solução com agitação do produto da Preparação 27 (900 mg, 2,8 mmol) em metanol:água desionizada (10 mL:8 mL) e a mistura foi agitada durante 2 horas. O solvente foi removido por evaporação a pressão reduzida para dar um óleo castanho claro que foi dissolvido numa solução aquosa de hidróxido de sódio em excesso (1 N) e agitada durante 17 horas. A solução foi concentrada a pressão reduzida e purificada por cromatografia de troca iónica (DOWEXO 50WX8-200), eluindo com um gradiente de solvente de água desionizada:amoníaco 0,88 (100:0 a 96:4) para dar o composto em epígrafe como uma espuma branca, 381 mg, 60% de rendimento.

 1 H-RMN (D₂O, 300 MHz) δ: 2,25 (s, 3H), 2,50 (m, 1H), 2,60-3,37 (m, 6H), 6,78 (s, 1H), 7,58 (s, 1H).

Exemplo 22

Uma solução aquosa de hidróxido de sódio (5 N, 170 μL) foi adicionada a uma solução com agitação do produto da Preparação 28 (50 mg, 0,012 mmol) em água (algumas gotas) e a solução foi agitada à temperatura ambiente durante 18 horas. A solução foi então submetida a cromatografia de troca iónica (DOWEX® 50WX8-200), eluindo com um gradiente de solvente de água desionizada:amoníaco 0,88 (100:0 a 95:5), e o solvente foi então removido por evaporação a pressão reduzida. O resíduo foi suspenso em éter dietílico e depois re-evaporado para dar o composto em epígrafe como um sólido branco, 17 mg, 73% de rendimento.

 1 H-RMN (D₂O, 300 MHz) δ : 2,62-2,98 (m, 6H), 3,05-3,30 (m, 5H), 6,80 (s, 1H), 7,60 (s, 1H).

HRMS: m/z 225,1338 (MH+), calculada 225,1346.

 $[\alpha]_D = +14,84$ (*c* 0,062, água desionizada)

TLC: metanol: acetato de etilo: amoníaco 0,88: ácido acético: água (60: 12: 4: 4: 8) Rf = 0,20.

Exemplo 23

Homopiperazina (1,86 g, 18,6 mmol) foi adicionada a uma solução com agitação do produto da Preparação 61 (350 mg, 1,86 mmol) em acetonitrilo (40 mL) e a solução foi agitada durante 2 horas à temperatura ambiente e depois aquecida até o refluxo durante 18 horas. O solvente foi removido a pressão reduzida e o resíduo foi dissolvido em diclorometano e lavado com água (3 x 20 mL). A fase orgânica foi concentrada a pressão reduzida e o óleo resultante foi dissolvido em água desionizada e purificado por cromatografia de troca iónica (DOWEX® 50WX8200) eluindo um gradiente de solvente com de água desionizada:amoníaco 0,88 (100:0 a 95:5) para composto em epígrafe como um sólido bege, 300 mg, 68% de rendimento.

 1 H-RMN (D₂O,300 MHz) δ: 1,83 (m, 2H), 2,70-3,23 (m, 10H), 3,40 (t, 1H), 6,80 (s, 1H), 7,60 (s, 1H).

LRMS: m/z 239,2 (MH+)

Análise Encontrada: C, 50,79; H, 7,85; N, 21,31. $C_{11}H_{18}N_4O_2 \bullet 1,25H_2O \text{ requer C, 50,66; H, 7,92; N, 21,48}\%.$

 $[\alpha]_D = +2,47$ (c 0,24, água desionizada)

Exemplo 24

Ácido (2S)-2-[(2-aminoetil)amino]-3-(1-etil-1Himidazol-4-il)propanóico

Ácido clorídrico concentrado (5 mL) foi adicionado a uma solução com agitação do produto da Preparação 30 (118 mg, 0,32 mmol) em água (5 mL) e a mistura foi aquecida até o refluxo durante 17 horas. A mistura foi deixada a arrefecer até à temperatura ambiente e o solvente foi removido por evaporação a pressão reduzida. O resíduo foi purificado por cromatografia de troca iónica (DOWEX® 50WX8-200), eluindo com água desionizada:amoníaco 0,88 (97:3). O material isolado foi liofilizado para dar o material do composto em epígrafe, 34 mg, 47% de rendimento.

 1 H-RMN (CD₃OD, 300 MHz) δ: 1,40 (t, 3H), 2,75-3,02 (m, 6H), 3,33 (m, 1H), 3,98 (q, 2H), 6,95 (s, 1H), 7,53 (s, 1H). HRMS: m/z 227,1492 (MH+), calculada 227,1503.

Exemplos 25 - 40

Os compostos dos seguintes exemplos dispostos em tabelas da fórmula geral:

foram preparados por um métodos similar ao do Exemplo 24 utilizando os produtos correspondentes das Preparações 31-46.

Exemplo	R1	Rendimento	Dados Analíticos
Ио		(%)	1 H-RMN (CD ₃ OD, 300 MHz) δ :
			0,90 (t, 3H), 1,78 (q, 2H),
1	H ₃ C		2,77-3,01 (m, 6H), 3,31 (m,
25 ¹	1.30	55	1H), 3,90 (t, 2H), 6,90 (s,
			1H), 7,52 (s, 1H). LRMS: m/z 241,1 (MH+)
			LAMS: 111/2 241,1 (MAT)
			$^{1}\text{H-RMN}$ (CD ₃ OD, 300 MHz) δ :
			0,70 (t, 3H), 1,05 (q, 2H),
			1,57 (m, 2H), 2,57-2,73 (m,
0.61	\wedge	0.0	4H), 2,85 (m, 2H), 3,08 (t,
26 ¹	H^3C	82	1H), 3,78 (t, 2H), 6,78 (s,
			1H), 7,42 (s, 1H). HRMS: m/z 255,1824 (MH+),
			calculada 255,1816.
			Anál. Encontrada: C, 55,79;
			H, 8,65; N, 21,96.
			C ₁₂ H ₂₂ N ₄ O ₂ •0,22H ₂ O requer C,
			55,80; H, 8,76; N, 21,69%.
			1 H-RMN (CD ₃ OD, 300 MHz) δ :
			0,90 (t, 3H), 1,20-1,40 (m,
			4H), 1,77 (m, 2H), 2,78-
0.71			3,05 (m, 6H), 3,30 (m, 1H),
27 ¹	H ₃ C	20	3,93 (t, 2H), 6,93 (s, 1H),
		38	7,57 (s, 1H). HRMS: m/z 269,1978 (MH+),
		<u> </u>	111010. III/2 200, 10/0 (PINT),

			calc 269,1972.
			Anál. Encontrada: C, 54,21;
			H, 8,83; N, 19,32.
			$C_{13}H_{24}N_4O_2O \bullet 1,2H2O$ requer C,
			53,85; н, 9,18; N, 19,32%.
			1 H-RMN (CD ₃ OD, 300 MHz) δ :
	ÇH ₃		1,45 (d, 6H), 2,72-3,03 (m,
			6H) 3,33 (m, 1H), 4,33 (m,
			1H), 7,00 (s, 1H), 7,58 (s,
28 ²	H _c C	96	1H).
	30		HRMS: m/z 241,1662 (MH),
			calc 241,1659.

Continuação

Exemplo	R1	Rendimento	Dados Analíticos
Ио		(왕)	
29 ²	H ₃ C CH ₃	54	1 H-RMN (CD ₃ OD, 300 MHz) δ: 0,90 (d, 6H), 2,01 (m, 1H), 2,77-3,03 (m, 6H), 3,33 (m, 1H), 3,77 (d, 2H), 6,90 (s, 1H), 7,50 (s, 1H).
			HRMS: m/z 255,1825 (MH+), calc 255,1816.
30 ¹	H ₃ C CH ₃	65	¹H-NMR(CD ₃ OD 300 MHz) δ: 0,93 (d, 6H), 1,55 (m, 1H),1,67 (m, 2H), 2,73-3,05 (m, 6H), 3,33 (m, 1H), 3,97 (t, 2H), 6,93 (s, 1H), 7,53 (s, 1H). HRMS: m/z 269,1980 (MH+), calc 269,1972. Anál. encontrada: C, 51,94; H, 8,99; N, 18,53. C ₁₃ H ₂₄ N ₄ O2•1,80H ₂ O requer C, 51,60; H, 9,26; N, 18,52%.
31 ¹ , ³	CH ₃	3	1 H-NMR(D ₂ O, 400 MHz) δ: 0,66 (t,3H), 1,34 (d,3H), 1,66 (m, 2H), 2,66-2,84 (m, 4H), 2,95 (m, 2H), 3,29 (t, 1H), 4,05 (m, 1H), 6,94 (s, 1H), 7,61 (s, 1H).

			HRMS: m/z 255,1827 (MH+),
			calc 255,1816.
			1 H-RMN (D ₂ O, 400 MHz) δ :
			0,66 (t, 3H), 1,35 (d, 3H),
	CH-		1,66 (m, 2H), 2,68-2,82 (m,
32 ^{1,4}	1 3	27	4H), 2,94 (m, 2H), 3,29 (t,
	H.C.		1H), 4,05 (m, 1H), 6,94 (s,
	.,30		1H), 7,60 (s, 1H).
			HRMS: m/z 255,1825 (MH+),
			calc 255,1816.
			1 H-RMN (CD 3 OD, 300 MHz) δ :
	\wedge		0,37 (m, 2H), 0,60 (m, 2H),
33		10	1,20 (m, 1H), 2,75-3,03 (m,
			6H), 3,33 (m, 1H), 3,80 (d,
	•		2H), 7,00 (s, 1H), 7,58 (s,
			1H).
			HRMS: m/z 253,1661 (MH+),
			calc 253,1659.

Continuação

Exemplo	R1	Rendimento	Dados Analíticos
Ио		(왕)	
			1 H-RMN (CD $_{3}$ OD, 300 MHz) δ :
			1,70-2,10 (m, 6H), 2,60-
			3,10 (m, 7H), 3,35 (m, 1H),
			3,95 (d, 2H), 6,90 (s, 1H),
34 ¹		53	7,50 (s, 1H).
	/ /		HRMS: m/z 267,1822 (MH+),
			calc 267,1816.
			Anál. Encontrada: C, 53,74;
			н, 8,43; N, 19,30.
			$C_{13}H_{22}O_2 \bullet 1,3H_2O$ requer C,
			53,92; H, 8,50; N, 19,34%.
			1 H-RMN (CD $_{3}$ OD, 300 MHz) δ :
			2,75-2,93 (m, 5H), 2,98
	.0. ^	2,5	(dd, 1H), 3,33 (s+m, 4H),
35	H ₃ C		3,62 (t, 2H), 4,10 (t, 2H),
	_		6,95 (s, 1H), 7,53 (s, 1H).
			HRMS: m/z 257,1607 (MH+),
			calc 257,1608.
			1 H-RMN (D ₂ O, 300 MHz) δ :
			1,90 (m, 2H), 2,64-2,82 (m,

36 ¹	но	55	4H), 2,97 (m, 2H), 3,28 (t, 1H), 3,44 (t, 2H), 3,98 (t, 2H), 6,88 (s, 1H), 7,57 (s, 1H). HRMS: m/z 257,1618 (MH+), calc 257,1608. Anál. Encontrada: C, 47,43; H, 7,81; N, 19,98.
			C ₁₁ H ₂₀ N ₄ O ₃ •1,3H ₂ O requer C, 47,23; H, 8,14; N, 20,03%.
37 ²	H ₃ C O CH ₃	28	1 H-RMN (CD ₃ OD, 400 MHz) δ: 1,43 (d, 3H), 2,82 (m, 3H), 2,90 (m, 2H), 3,00 (dd, 1H), 3,30 (s, 3H), 3,35 (m, 1H), 3,55 (d, 2H), 4,38 (q, 1H), 7,00 (s, 1H), 7,58 (s, 1H). HRMS: m/z 271,1770 (MH+), calc 271,1765.

Continuação

Exemplo	R1	Rendimento	Dados Analíticos
Ио		(용)	
38 ¹		42	¹ H-RMN (CD ₃ OD, 400 MHz) δ: 2,61-3,13 (m, 8H), 3,31 (m, 1H), 4,16 (t, 2H), 6,90 (s, 1H), 7,11 (m, 2H), 7,13- 7,40 (m, 4H). HRMS: m/z 303,1823 (MH+), calc 303,1816. Anál. Encontrada: C, 58,13; H, 7,51; N, 17,06. $C_{16}H_{22}N_4O_2 \bullet 6H_2O$ requer C, 58,02; H, 7,67; N, 16,92%.
			1 H-RMN (CD ₃ OD, 400MHz) δ: 2,78-3,01 (m, 5H), 3,34 (m,
			2H), 4,58 (d, 2H), 5,19 (d, 1H), 5,23 (d, 1H), 5,99 (m,

39	H ₂ C	64	1H), 6,92 (s, 1H), 7,54 (s, 1H).
			HRMS : m/z 239,1510 (MH+),
			calc 239,1503.
			Anál. Encontrada: C, 50,64;
			H, 7,56; N, 21,03.
			$C_{11}H_{18}N_4O_2 \bullet 1$, $3H_2O$ requer C ,
			50,48; H, 7,93; N, 21,41%.
			1 H-RMN (CD ₃ OD, 400 MHz) δ :
	(H		2,78-3,00 (m, 9H), 3,35 (m,
40	u a S		1H), 3,39 (t, 2H), 4,06 (t,
	H ₃ C //	14	2H), 6,97 (s, 1H), 7,58 (s,
	0		1H).
			HRMS m/z 320,1391 (MH),
			calc 320,1387.

Notas:

- 1. Ácido sulfúrico concentrado (4 M) utilizado em vez de ácido clorídrico (6 M).
- 2. Ácido sulfúrico (2 M) utilizado em vez de ácido clorídrico concentrado (6 M).
- 3. O produto isolado foi purificado adicionalmente utilizando uma coluna Hypersil Hypercarb de 5 μ m, utilizando um gradiente de eluição de água: ácido trifluoroacético: acetonitrilo (100: 0,1: 0 a 50: 0,05: 50), e depois submetido de novo a cromatografia de troca iónica (como no Exemplo 24).
- 4. O produto isolado foi purificado adicionalmente tal como descrito na nota (3) mas utilizando um gradiente de água: ácido trifluoroacético: metanol (100: 0,1: 0 a 50: 0,05: 50).

Exemplo 41

<u>Ácido</u> (2S)-2-[(2-aminoetil)amino]-3-[1-(carboximetil)-1H-imidazol-4-il]propanóico

O produto da Preparação 47 (145 mg, 0,296 mol) foi dissolvido em ácido sulfúrico concentrado (4 mL) e a solução foi aquecida sob refluxo durante 18 horas. A mistura arrefecida foi purificada directamente por cromatografia de troca iónica (DOWEX® 50WX8-200), eluindo com amoníaco 0,88:água (3:97). O óleo resultante foi triturado com metanol, para dar um sólido que foi liofilizado para dar o composto em epígrafe como uma espuma branca, 61 mg, 77% de rendimento.

 1 H-RMN (D₂O, 400 MHz) δ : 2,80 (m, 2H), 2,88 (m, 2H), 2,98 (m, 2H), 3,40 (m, 1H), 4,52 (s, 2H), 6,92 (s, 1H), 7,81 (s, 1H).

HRMS: m/z 257,1255 (MH+), calculada 257,1245.

Análise Encontrada: C, 42,66; H, 6,63; N, 20,29. $C_{10}H_{16}N_4O_4{}^{\bullet}1,3H_2O \text{ requer C, 42,95; H, 6,70; N, 20,03}\$.$

Exemplo 42

$\underline{(2S) - 3 - [(1-n-propil-1H-imidazol-4-il)metil] - 2-}$ piperidinona

O composto da Preparação 11 (500 mg, 1,6 mmol) em diclorometano (15 mL) foi tratado com ácido trifluoroacético (3 mL) e a solução resultante foi agitada à temperatura ambiente durante 2 horas. A mistura de reacção foi então concentrada a pressão reduzida e o

resíduo foi neutralizado com uma solução aquosa saturada de bicarbonato de sódio. A mistura resultante foi então concentrada até a secura a pressão reduzida e o resíduo foi purificado por cromatografia em coluna de sílica gel utilizando um gradiente de eluição de diclorometano: metanol: amoníaco 0,88 (99,8: 0: 0,2 a 94,8: 5: 0,2) para dar o composto em epígrafe como um óleo, 250 mg, 73% de rendimento.

 1 H-RMN (CDCl₃, 400 MHz) δ: 0,87 (t, 3H), 1,39-1,84 (m, 5H), 1,90 (m, 1H), 2,60 (m, 1H), 2,74 (dd, 1H), 3,13 (dd, 1H), 3,21 (m, 2H), 3,77 (t, 2H), 5,61 (br s, 1H), 6,65 (s, 1H), 7,31 (s, 1H).

LRMS: m/z 222 (MH+)

Análise Encontrada: C, 61,44; H, 8,85; N, 17,86. $C_{12}H_{19}N_3O \cdot 0,75H_2O$ requer C, 61,38; H, 8,80; N, 17,89%.

 $[\alpha]_D = -51,6 \ (c \ 0,095, \text{ metanol})$

Exemplo 43

Ácido (2S) -2-[(2-aminoetil) amino] -3-(1-metil-1H-imidazol-4-il) propanóico

Uma solução de hidróxido de sódio 2 M (0,61 mL, 1,22 mmol) foi adicionada a uma solução do aminoácido protegido da Preparação 90 (200 mg, 0,61 mmol) em dioxano (2 mL), e a reacção foi agitada à temperatura ambiente

durante 18 horas. Ácido clorídrico concentrado (2 mL) foi cuidadosamente adicionado e a solução foi agitada durante mais 24 horas, depois concentrada a pressão reduzida. O resíduo foi dissolvido em água e purificado por cromatografia em coluna sobre resina de troca iónica Ambertyst® 15 eluindo com uma solução a 5% de amoníaco aquoso. O produto foi obtido depois de liofilização como uma goma, 80 mg, 55% de rendimento.

 1 H-RMN (D₂O, 400 MHz) δ: 2,61-2,79 (m, 4H), 2,90 (m, 2H), 3,22 (m, 1H), 3,54 (s, 3H), 6,79 (s, 1H), 7,42 (s, 1H).

LRMS (ES^{-}) : m/z 211 (M-H) -

 $[\alpha]_D = -5,83$ (*c* 0,12, metanol)

Análise Encontrada: C, 45,63; H, 7,68; N, 23,15. $C_9H_{16}N_4O_2 \bullet 1,45H_2O \text{ requer C, 45,35; H, 7,99; N, 23,50\%. }$

Exemplos 44 a 47

Os seguintes exemplos de estrutura geral:

foram preparados a partir dos aminoácidos protegidos apropriados (Preparações 91-94), seguindo um procedimento similar ao descrito no Exemplo 43.

Exemplo	R	Rendimento	Dados
		(%)	
441		48	1 H-RMN (D ₂ O, 400 MHz) δ : 1,99
		sólido	(m, 2H), 2,06 (m, 2H), 2,68-
	F	branco	2,83 (m, 4H), 2,98 (t, 2H),
	- A		3,32 (t, 1H), 3,98 (t, 2H),
	F		6,90 (s, 1H), 7,58 (s, 1H).
			LRMS: m/z 309 (MH+)
			$[\alpha]_D = -0.75 (c 0.16, metanol)$
			Anál. Encontrada: C, 45,25;
			н, 6,31; N, 17,53.
			$C_{12}H_{19}F_3N_4 \bullet 0,5H_2O$ requer C,
			45,42; H, 6,35; N, 17,66%.
45 ²		49	¹ H-RMN (D_2O , 400 MHz) δ : 2,63-
		sólido	2,81 (m, 4H), 2,95 (m, 2H),
		branco	3,24 (m, 1H), 5,21 (s, 2H),
			6,85 (s, 1H), 7,41 (s, 1H),
			7,62 (s, 1H), 8,84 (s, 1H).
			LRMS (ES ⁻): m/z 294 (M-H) ⁻
			$[\alpha]_D = -5,00 \ (c \ 0,10, metanol)$
			Anál. Encontrada: C, 46,27;
			H, 5,81; N, 21,91.
			$C_{12}H_{17}N_5O_2S \bullet 1, OH_2O$ requer C ,
			45,94; H, 6,12; N, 22,32%.
46		52	$^{1}\text{H-RMN}$ (D ₂ O, 400 MHz) δ : 2,28
	N. ^ #	sólido	(dd, 1H), 2,68 (m, 3H), 2,89
			(t, 2H), 3,08 (t, 2H), 3,18
			(t, 1H), 4,21 (t, 2H), 6,70
			(s, 1H), 6,99 (d, 1H), 7,12
			(s, 1H), 7,18 (dd, 1H), 7,60
			(dd, 1H), 8,30 (d, 1H).
			LRMS: m/z 326 (MNa+)
			$[\alpha]_D = -4,17 \ (c \ 0,12, metanol)$
			Anál. Encontrada: C, 56,28;
			H, 7,15; N, 21,68.
			$C_{15}H_{21}N_5O_2$ •1,0 H_2O requer C ,
			56,06 н, 7,21; N, 21,79%.

Continuação

Exemplo	R	Rendimento	Dados
47		65	1 H-RMN (D ₂ O,400 MHz) δ : 2,70-
		sólido bege	2,90 (m, 4H), 2,95 (m, 2H),
			3,35 (t, 1H), 7,22 (s, 1H),
			7,32 (m, 1H), 7,41 (m, 4H),
			7,92 (s, 1H).
			LRMS: m/z 297 (MNa)
			$[\alpha]_D = +8,45 \ (c \ 0,09, \text{ metanol})$
			Anál. Encontrada: C, 55,68;
			н, 6,95; N, 18,29.
			$C_{14}H_{18}N_4O_2 \bullet 1,5H_2O$ requer C,
			55,80; H, 7,02; N, 18,59%.

- 1 = água foi utilizada como o eluente da coluna
- 2 = produto purificado sobre resina de troca iónica DOWEX® 50WX8-200 utilizando água:amoníaco 0,88(95:5) como eluente

Exemplo 48

Uma solução do composto da Preparação 95 (288 mg, 0,57 mmol) em ácido sulfúrico 4 M (10 mL), foi aquecida a 115 °C durante 36 horas. A solução arrefecida foi neutralizada utilizando uma solução de hidróxido de sódio 1 M, depois foi passada por uma coluna de troca iónica Amberlyst® 15, eluindo com amoníaco aquoso a 5%. O produto

foi obtido como uma goma de pois de liofilização, 70 mg, 39% de rendimento.

 1 H-RMN (D₂O, 400 MHz)δ: 2,40 (m, 1H), 2,48 (m, 1H), 2,58 (m, 4H), 3,14 (t, 1H), 5,00 (s, 2H), 6,77 (s, 1H), 7,14 (d, 2H), 7,22 (m, 3H), 7,50 (s, 1H).

LRMS: m/z 289 (MH+)

 $[\alpha]_D = +1,00 \ (c \ 0,14, metanol)$

Análise Encontrada: C, 56,96; H, 7,17; N, 17,63. $C_{15}H_{20}N_4O_2 \bullet 1,5H_2O \text{ requer C, 57,13; H, 7,35; N, 17,77%. }$

Exemplo 49

Uma solução de hidróxido de sódio (192 mg, 4,80 mmol) em água (6 mL) foi adicionada a uma solução do composto da Preparação 105 (420 mg, 1,20 mmol) em tetrahidrofurano (10 mL) e a reacção foi agitada vigorosamente durante 72 horas. Ácido clorídrico concentrado (6 mL) foi adicionado cuidadosamente e a mistura foi agitada à temperatura ambiente durante 3 horas, depois concentrada a pressão reduzida. O resíduo foi dissolvido em água (50 mL) e a solução foi purificada por cromatografia em coluna sobre resina de troca iónica Amberlyst® 15 utilizando um

gradiente de eluição de água:amoníaco 0,88 (100:0 a 98:2) para dar o composto em epígrafe, 120 mg, 35% de rendimento.

 1 H-RMN (D₂O, 400 MHz) δ: 0,72 (d, 6H), 1,23-1,40 (m, 3H), 1,46 (m, 4H), 2,30-2,43 (m, 2H), 2,59 (dd, 1H), 2,79 (m, 2H), 3,80 (t, 2H), 6,76 (s, 1H), 7,42 (s, 1H).

LRMS (ES^{-}) : m/z 266 $(M-H)^{-}$

Análise Encontrada: C, 58,60; H, 9,62; N, 14,56. $C_{14}H_{25}N_3O_2 \bullet 1,0H_2O$ requer C, 58,92; H, 9,54; N, 14,72%.

Exemplo 50

Uma solução do composto da Preparação 106 (170 mg, 0,65 mmol) em dioxano (1 mL) e ácido clorídrico concentrado (2 mL) foi aquecida até o refluxo durante 18 horas. A mistura arrefecida foi concentrada a pressão reduzida à temperatura ambiente e o resíduo foi dissolvido em água (50 mL). A solução foi purificada por cromatografia em coluna sobre resina de troca iónica Amberlyst® 15 utilizando um gradiente de eluição de água:amoníaco 0,88 (100:0 a 98:2). Liofilização deu o

composto em epígrafe como um sólido castanho, 120 mg, 66% de rendimento.

 1 H-RMN (D₂O, 400 MHz) δ: 0,75 (d, 6H), 1,25-1,42 (m, 3H), 1,50 (m, 4H), 2,34-2,44 (m, 2H), 2,55 (s, 3H), 2,62 (dd, 1H), 2,86 (m, 2H), 3,82 (t, 2H), 6,78 (s, 1H), 7,43 (s, 1H).

LRMS: m/z 282,2 (MH+)

Análise Encontrada: C, 58,56; H, 9,73; N, 13,61. $C_{15}H_{27}N_3O_2 \bullet 1,45H_2O$ requer C, 58,59; H, 9,80; N, 13,66%.

Exemplo 51

Uma solução de hidróxido de lítio (2 mL, 1 M, 2 mmol) foi adicionada a uma solução do composto da Preparação 108 (240 mg, 0,68 mmol) em tetra-hidrofurano (2 mL) e a reacção foi agitada à temperatura ambiente durante 5 horas. Ácido clorídrico concentrado (2 mL) foi adicionado cuidadosamente e a reacção foi agitada à temperatura ambiente durante 18 horas. A solução foi evaporada a pressão reduzida, o resíduo foi dissolvido em água e a solução foi purificada por cromatografia em

coluna sobre resina de troca iónica Amberlyst® 15 utilizando um gradiente de eluição de água:amoníaco 0,88 (100:0 a 95:5) para dar o composto em epígrafe como uma espuma branca, 88 mg, 45% de rendimento.

 1 H-RMN (D₂O, 400 MHz) δ: 1,43 (m, 2H), 1,54 (m, 2H), 2,42-2,59 (m, 2H), 2,74 (dd, 1H), 2,83 (m, 2H), 7,18 (s, 1H), 7,32 (m, 1H), 7,40 (m, 4H), 7,88 (s, 1H).

LRMS: m/z 296 (MNa+)

Análise Encontrada: C, 62,21; H, 7,01; N, 14,55. $C_{15}H_{19}N_3O_2 \bullet 1,0H_2O$ requer C, 61,84; H, 7,27; N, 14,42%.

Preparação 1

Uma mistura dos alcenos da Preparação 49 (460 mg, 0,77 mmol) e paládio sobre carvão a 10% (100 mg) em etanol (25 mL) foi hidrogenada a 1,5 atm e à temperatura ambiente durante 72 horas. A mistura de reacção foi filtrada em Arbocel™, lavada com etanol (200 mL), e o filtrado foi concentrado a pressão reduzida. O óleo residual foi purificado por cromatografia em coluna de sílica gel

utilizando acetato de etilo:pentano (50:50) como eluente, para dar o composto em epígrafe, 150 mg, 33% de rendimento.

 1 H-RMN (CDCl₃, 400 MHz) δ: -0,02 (s, 9H), 0,95 (t, 2H), 1,18 (t, 3H), 1,46 (m, 2H), 1,45-1,70 (m, 2H), 2,09 (m, 2H), 2,64-2,79 (m, 2H), 2,90 (dd, 1H), 3,42 (t, 2H), 4,09 (q, 2H), 5,18 (s, 2H), 6,75 (s, 1H), 7,17 (m, 3H), 7,22 (m, 7H), 7,42 (d, 6H).

Preparação 2

Boro-hidreto de sódio (7,2 g, 190 mmol) foi adicionado, em porções, durante um período de 2 horas, a uma solução dos alcenos da Preparação 50 (3,2 g, 6,3 mmol) e cloreto de cobre (I) (928 mg, 9,5 mmol) em metanol (120 mL), de modo a manter a temperatura da reacção em cerca de 45 °C e a reacção foi agitada nesta temperatura durante 2 horas, (foram adicionadas mais duas porções de cloreto de cobre (I) (310 mg, 3,1 mmol) depois de aproximadamente 40

e 80 minutos). A mistura de reacção foi filtrada em Arbocel^m e o filtrado foi concentrado a pressão reduzida. O resíduo foi divido entre acetato de etilo e água, as camadas foram separadas e a fase aquosa foi extraída com acetato de etilo (2 x). Os extractos orgânicos combinados foram secos (Na_2SO_4) e concentrados a pressão reduzida. O produto bruto foi purificado por cromatografia em coluna sobre gel de sílica utilizando um gradiente de eluição de acetato de etilo:pentano (50:50 a 100:0) para dar o composto em epígrafe, 2 g, 62% de rendimento.

 1 H-RMN (CDCl₃, 300 MHz) δ: 0,88 (t, 3H), 1,19 (t, 3H), 1,55 (m, 4H), 1,76 (m, 2H), 2,08 (m, 2H), 2,62-2,80 (m, 2H), 2,86 (dd, 1H), 3,79 (t, 2H), 4,07 (q, 2H), 6,60 (s, 1H), 7,18 (m, 3H), 7,24 (m, 7H), 7,43 (d, 6H).

LRMS: m/z 510 (MH+)

Preparação 3

$$H_3C$$
 CH_3
 OH
 OH

Uma solução do composto da Preparação 4 (32 mg, 0,07 mmol) em tetra-hidrofurano (2 mL) e etanol (50 μ L) foi adicionada a uma solução arrefecida (-78 °C) de sódio

(20 mg, 0,87 mmol) em amoníaco 0,88 (3 mL), e a solução foi agitada durante 15 minutos, até que a cor azul desaparecesse. A reacção foi deixada a aquecer até a temperatura ambiente, o amoníaco evaporou e depois a solução restante foi concentrada a pressão reduzida. O produto bruto foi purificado por cromatografia de troca iónica sobre resina DOWEX® (50WX8-200), eluindo com um gradiente de solvente de água:amoníaco 0,88 (100:0 a 97:3), para dar o composto em epígrafe, 17 mg, 69% de rendimento.

 1 H-RMN (CD₃OD, 300 MHz) δ: 0,90 (t, 3H), 1,42 (m, 13H), 1,61 (m, 2H), 1,80 (m, 2H), 2,57-2,68 (m, 2H), 2,80-2,95 (m, 2H), 3,00 (m, 1H), 3,95 (t, 2H), 6,98 (s, 1H), 7,76 (s, 1H).

LRMS: m/z 354,3 (MH+)

Preparação 4

$\frac{6-[\text{benzil}(\textit{terc}-\text{butoxicarbonil})\,\text{amino}]-2-[\,(1-\textit{n}-\text{propil}-1\textit{H}-\text{imidazol}-4-\text{il})\,\text{metil}]\,\text{hexanoato de sódio}}{}$

Uma solução aquosa de hidróxido de sódio (2 mL, 2 N) foi adicionada a uma solução do éster da Preparação 5

(50 mg, 0,106 mol) em dioxano (2 mL) e a reacção foi agitada à temperatura ambiente durante 18 horas. A mistura foi concentrada a pressão reduzida e o resíduo foi purificado por cromatografia em coluna de sílica gel eluindo com diclorometano: metanol: amoníaco 0,88 (90: 10: 1), para dar o composto em epígrafe, 32 mg, 65% de rendimento.

 1 H-RMN (CD₃OD, 300 MHz) δ: 0,88 (t, 3H), 1,15-1,57 (m, 15H), 1,80 (m, 2H), 2,60 (m, 2H), 2,82 (m, 1H), 3,17 (m, 2H), 3,94 (t, 2H), 4,42 (s, 2H), 6,96 (s, 1H), 7,22 (m, 3H), 7,32 (m, 2H), 7,78 (br s, 1H).

LRMS: m/z 444,7 (MH+)

Preparação 5

(±)-Etil 6-[benzil(terc-butoxicarbonil)amino]-2[(1-n-ropil-1H-imidazol-4-il)metil]hexanoato

Uma mistura dos alcenos da Preparação 51 (620 mg, 1,32 mmol) e paládio sobre carvão a 10% (70 mg) em metanol (50 mL) foi hidrogenada a 1 atm e à temperatura ambiente durante 4 horas. A mistura de reacção foi filtrada em Arbocel™ e o filtrado foi concentrado a pressão reduzida para dar o composto em epígrafe em rendimento quantitativo

como uma goma límpida, que foi utilizada sem purificação adicional.

 1 H-RMN (CDCl₃, 300 MHz) δ: 0,90 (t, 3H), 1,18 (t, 3H), 1,24 (m, 2H), 1,38-1,66 (m, 13H), 1,78 (m, 2H), 2,61-2,80 (m, 2H), 2,86 (dd, 1H), 3,04-3,22 (m, 2H), 3,80 (t, 2H), 4,06 (q, 2H), 4,40 (brs, 2H), 6,61 (s, 1H), 7,18-7,37 (m, 6H).

LRMS: m/z 472,4 (MH+)

Preparação 6

Etil (2R)-2-1[(1-n-butil-1H-imidazol-4-il)metil]-5-(tritilamino)pentanoato

e Preparação 7

Etil (2S)-2-[(1-n-butil-1H-imidazol-4-il)metil]-5- (tritilamino)pentanoato

O composto racémico da Preparação 8 foi resolvido em HPLC utilizando uma coluna Chiralcel® OD 250 (20 mm), e hexano: etanol: dietilamina (85: 15: 0,45) como eluente a uma taxa de 10 mL/minuto, para dar o composto em epígrafe da Preparação 6, 98,3% ee,

Tempo de retenção: 13,36 minutos,

 1 H-RMN (CDCl₃, 300 MHz) δ: 0,92 (t, 3H), 1,20 (t, 3H), 1,28 (m, 2H), 1,45-1,78 (m, 6H), 2,10 (m, 2H), 2,62-2,79 (m, 2H), 2,88 (dd, 1H), 3,81 (t, 2H), 4,08 (q, 2H), 6,60 (s, 1H), 7,18 (m, 3H), 7,24 (m, 7H), 7,43 (d, 6H).

e o composto em epígrafe da Preparação 7, 94,2% ee, Tempo de retenção: 14,91 minutos.

 1 H-RMN (CDCl₃, 300 MHz) δ: 0,92 (t, 3H), 1,20 (t, 3H), 1,28 (m, 2H), 1,45-1,78 (m, 6H), 2,10 (m, 2H), 2,62-2,79 (m, 2H), 2,88 (dd, 1H), 3,81 (t, 2H), 4,08 (q, 2H), 6,60 (s, 1H), 7,18 (m, 3H), 7,24 (m, 7H), 7,43 (d, 6H).

Preparação 8

Boro-hidreto de sódio (871 mq, 23 mmol) adicionado, em porções, durante um período de uma hora a uma solução do alceno da Preparação 52 (400 mg, 0,76 mmol) e cloreto de cobre (I) (112 mg, 1,15 mmol) em metanol (15 mL). Análise por TLC mostrou material de partida restante, então cloreto de cobre (I) (75 mg, 0,76 mmol) e borohidreto de sódio (290 mg, 7,7 mmol) adicionais foram adicionados e a reacção foi agitada à temperatura ambiente durante mais 2 horas. A mistura de reacção foi filtrada em Arbocel™, o filtrado foi concentrado a pressão reduzida e o resíduo foi partilhado entre acetato de etilo e solução aguosa saturada de cloreto de sódio . As camadas foram separadas, a fase aquosa foi extraída com acetato de etilo (2 x) e os extractos orgânicos combinados foram secos (Na₂SO₄) e concentrados a pressão reduzida para dar o composto em epígrafe, 185 mg, 47% de rendimento.

 1 H-RMN (CDCL3, 400 MHz) δ: 0,92 (t, 3H), 1,19 (t, 3H), 1,27 (m, 2H), 1,48-1,77 (m, 6H), 2,10 (m, 2H), 2,62-2,79 (m, 2H), 2,88 (dd, 1H), 3,82 (t, 2H), 4,08 (q, 2H), 6,60 (s, 1H), 7,17 (m, 3H), 7,24 (m, 7H), 7,43 (d, 6H).

Preparação 9

(2R)-5-[(terc-butoxicarbonil)amino]-2-[(1-n-propil-1H-imidazol-4-il)metil]pentanoato de lítio

$$H_3C$$
 CH_3
 CH_3

Água (2 mL) e hidróxido de lítio mono-hidratado (81 mg, 1,93 mmol) foram adicionados a uma solução da lactama da Preparação 10 (207 mg, 0,64 mmol) em tetra-hidrofurano (3,5 mL) e a solução foi agitada à temperatura ambiente durante 23 horas. A mistura foi concentrada a pressão reduzida e o resíduo foi purificado por cromatografia em coluna de sílica gel utilizando diclorometano: metanol: amoníaco 0,88 (90: 10: 0 a 90: 10: 1) para dar o composto em epígrafe, 200 mg, 92% de rendimento.

 1 H-RMN (CD 3 OD, 300 MHz) δ: 0,90 (t, 3H), 1,42 (s, 9H), 1,45-1,62 (m, 4H), 1,80 (m, 2H), 2,57-2,70 (m, 2H), 2,85 (m, 1H), 3,02 (m, 2H), 3,95 (t, 2H), 6,97 (s, 1H), 7,76 (s, 1H).

LRMS (ES $^{-}$): m/z 338 (M-H) $^{-}$

Preparação 10

e Preparação 11

$$\begin{array}{c} H_3C \\ \\ N \\ \\ O \\ \end{array} \begin{array}{c} H_3C \\ \\ CH_3 \\ \end{array}$$

Uma mistura do alceno da Preparação 53 (6,6 g, 20,6 mmol) e negro de paládio (700 mg) in etanol (120 mL) foi hidrogenada a 4 atm e 60 °C durante 18 horas. A mistura arrefecida foi filtrada em Arbocel™, lavada com acetato de etilo e o filtrado foi concentrado a pressão reduzida. O produto bruto foi purificado por cromatografia em coluna sobre gel de sílica, eluindo com diclorometano:metanol (97:3), para dar o racemeto do composto em epígrafe como um óleo amarelo, 4,3 g, 65% de rendimento. Este composto racémico foi resolvido em HPLC utilizando uma coluna Chiralcel® OG 250 (20 mm) e hexano:isopropanol (70:30) como eluente a uma taxa de 10 mL/minuto, para dar o composto em epígrafe da Preparação 10,1,56 g,99,5% ee,

Tempo de retenção: 10,10 minutes,

 1 H-RMN (CDCl₃, 300 MHz) δ: 0,92 (t, 3H), 1,54 (s, 9H), 1,63 (m, 2H), 1,80 (m, 3H), 2,00 (m, 1H), 2,65-2,88 (m, 2H), 3,18 (m, 1H), 3,58 (m, 1H), 3,70-3,90 (m, 3H), 6,72 (s, 1H), 7,38 (s, 1H).

LRMS: m/z 322,5 (MH+)

 $[\alpha]_D$ = -34,34 (c 0,12, diclorometano) e o composto em epígrafe da Preparação 11,1. 56 g, 98,9% ee,

Tempo de retenção: 15,23 minutes,

 1 H-RMN (CDCl₃, 300 MHz) δ: 0,92 (t, 3H), 1,54 (s, 9H), 1,80 (m, 4H), 2,00 (m, 2H), 2,63-2,85 (m, 2H), 3,19 (m, 1H), 3,58 (m, 1H), 3,90-3,98 (m, 3H), 6,72 (s, 1H), 7,37 (s, 1H).

LRMS: m/z 322,3 (MH+)

 $[\alpha]_D$ = +27,7 (c 0,22, diclorometano)

Preparação 12

 $\underline{(2R)-2-[(1-\{[2-(trimetilsilil)etoxi]metil\}-1H-}$ imidazol-4-il)metil]-5-tritilamino)pentanoato de etilo

e Preparação 13

$\underline{(2S)-2-[(1-\{[2-(trimetilsilil)etoxi]metil\}-1H-}$ imidazol-4-il)metil]-5-(tritilamino)pentanoato de etilo

O composto da Preparação 1 foi resolvido em HPLC utilizando uma coluna Chiralcel® OD 250 (20 mm) e hexano: isopropanol:dietilamina (90: 10: 0,5) como eluente a 10 mL/minuto, para dar o composto em epígrafe da Preparação 12, em 25% de rendimento, 99.4% ee,

Tempo de retenção: 16,90 minutes.

 1 H-RMN (CDCl₃, 400 MHz) δ: -0,02 (s, 9H), 0,95 (t, 2H), 1,20 (t, 3H), 1,44-1,66 (m, 4H), 2,09 (m, 2H), 2,64-2,80 (m, 2H), 2,90 (dd, 1H), 3,42 (t, 2H), 4,09 (q, 2H), 5,18 (s, 2H), 6,75 (s, 1H), 7,17 (m, 3H), 7,22 (m, 7H), 7,42 (d, 6H).

LRMS: m/z 598,7 (MH+)

e o composto em epígrafe da Preparação 13, em 36% de rendimento, 96,5% ee,

Tempo de retenção: 22,27 minutos.

 1 H-RMN (CDCl₃, 400 MHz) δ: -0,02 (s, 9H), 0,95 (t, 2H), 1,20 (t, 3H), 1,44-1,66 (m, 4H), 2,09 (m, 2H), 2,64-2,80 (m, 2H), 2,90 (dd, 1H), 3,42 (t, 2H), 4,09 (q, 2H), 5,18 (s, 2H), 6,75 (s, 1H), 7,17 (m, 3H), 7,22 (m, 7H), 7,42 (d, 6H).

Preparação 14

5-[(terc-butoxicarbonil)amino]-2-[(4-propil-1-[{2 (trimetilsilil)etoxi]metil}-1H-imidazol-2-il)metil]
pentanoato de lítio

$$\begin{array}{c|c} & H_3C \\ & & \\ CH_3 \\ & \\ CH_3 \\ & \\ CH_3 \\ \end{array}$$

Hidróxido de lítio mono-hidratado (42 mg, 0,99 mmol) foi adicionado a uma solução da lactama da Preparação 15 (150 mg, 0,33 mmol) em tetra-hidrofurano (1 mL) e água (1,5 mL) e a reacção foi agitada durante 4 horas à temperatura ambiente. A mistura foi concentrada a pressão reduzida e o resíduo foi purificado por cromatografia em coluna de sílica gel eluindo com diclorometano:metanol (90:10) como eluente para dar o composto em epígrafe, 108 mg, 70% de rendimento.

 1 H-RMN (CD₃OD, 300 MHz) δ: 0,00 (s, 9H), 0,96 (m, 5H), 1,42 (s, 9H), 1,54 (m, 3H), 1,63 (m, 3H), 2,58 (t, 2H), 2,80 (m, 1H), 2,88-2,98 (m, 1H), 3,02 (m, 2H), 3,16 (dd, 1H), 3,60 (t, 2H), 5,34 (d, 1H), 5,50 (d, 1H), 7,07 (s, 1H).

LRMS: m/z 470,3 (MH+)

Preparação 15

 $\frac{2-\mathsf{oxo}-3-[\,(4-\mathsf{n}-\mathsf{propil}-1-\{\,[2-(\mathsf{trimetilsilil})\,\mathsf{etoxi}\,]}{\mathsf{metil}\}-1H-\mathsf{imidazol}-2\mathsf{il})\,\mathsf{metil}]-1-\mathsf{piperidinacarboxilato}}$ de terc-butilo

$$H_3C$$
 CH_3
 H_3C
 CH_3
 O
 O
 O
 CH_3

O composto em epígrafe foi obtido em 75% de rendimento a partir dos alcenos da Preparação 54, seguindo um procedimento similar ao descrito na Preparação 10/11.

 1 H-RMN (CDCl₃, 300 MHz) δ: -0,02 (s, 9H), 0,82-0,98 (m, 5H), 1,50 (s, 9H), 1,60 (m, 3H), 1,81 (m, 2H), 2,05 (m, 1H), 2,46 (t, 2H), 2,74 (dd, 1H), 3,03 (m, 1H), 3,35 (dd, 1H), 3,46 (t, 2H), 3,58 (m, 1H), 3,82 (m, 1H), 5,15 (d, 1H), 5,30 (d, 1H), 6,59 (s, 1H).

LRMS: m/z 452,4 (MH+)

Preparação 16

(2S)-2-({2-[(terc-butoxicarbonil)amino]etil}amino)-3-(1H-imidazol-4-il)propanoato de metilo

Éster metílico de L-histidina (7,93 q, 32,8 mmol) e acetato de sódio (10,75 q, 131 mmol) foram adicionados a solução com agitação de *terc-*butil N-(2oxoetil)carbamato (5,22 g, 32,8 mmol) em metanol (100 mL). Peneira moleculares 4A e cianoboro-hidreto de sódio (4,12 q, 65,6 mmol) foram adicionados e a mistura foi agitada à temperatura ambiente durante 17 horas. Ácido clorídrico aquoso (2 N, 4 mL) foi adicionado e a mistura foi então basificada com uma solução aquosa saturada de carbonato de sódio ao pH=10. A mistura foi filtrada para remover o sólido que foi lavado com metanol. O metanol foi removido por evaporação a pressão reduzida e a solução aquosa residual foi extraída com acetato de etilo (2 x 300 mL). extractos orgânicos combinados foram então secos (MgSO₄), filtrados e concentrados a pressão reduzida. O resíduo resultante foi purificado por cromatografia em coluna de sílica gel, eluindo com um gradiente de solvente diclorometano:metanol (96:4 a 92:8), para composto em epígrafe como um óleo incolor, 8,07 q, 79% de rendimento.

 1 H-RMN (CDCl₃, 300 MHz) δ: 1,42 (s, 9H), 2,65 (m, 1H), 2,90 (m, 2H), 3,07 (m, 1H), 3,19 (m, 1H), 3,30 (m, 1H), 3,58 (m, 1H), 3,73 (s, 3H), 5,22 (br s, 1H), 6,97 (s, 1H), 7,02 (br s, 2H), 7,91 (s, 1H).

LRMS: m/z 313,1 (MH+)

Preparação 17

(2R)-2-({2-[(terc-butoxicarbonil)amino]etil}amino)3-(1H-imidaziol-4-il)propanoato de metilo

O composto em epígrafe foi preparado a partir do éster metílico de D-histidina de acordo com o procedimento descrito na Preparação 16.

 1 H-RMN (CDCl₃, 300 MHz) δ: 1,41 (s, 9H), 2,57 (m, 1H), 2,80 (m, 2H), 3,00 (m, 1H), 3,14 (m, 1H), 3,23 (m, 1H), 3,50 (m, 1H), 3,68 (s, 3H), 6,77 (s, 1H), 7,50 (s, 1H).

LRMS: m/z 313 (MH+)

Preparação 18

2-([2-[(terc-butoxicarbonil)amino]etil}amino)-3-(1H-imidazol-2-il)propanoato de (±)-metilo

Uma solução da amina da Preparação 55 (183 mg, 10,8 mmol) foi dissolvida em metanol (7 mL) e terc-butil N-(2oxoetil)carbamato (172 mg, 10,8 mmol) foi adicionado. Acetato de sódio (354 mg, 43,2 mmol), peneiras moleculares 4A e depois cianoboro-hidreto de sódio (135 mg, 21,6 mmol) foram adicionados e a mistura resultante foi agitada à temperatura ambiente durante 18 horas. Ácido clorídrico aquoso (2 N, 1 mL) foi então adicionado e a mistura de reacção foi muito bem agitada e depois basificada com uma solução aquosa saturada de carbonato de sódio ao pH=10. A mistura resultante foi então filtrada para remover o sólido e o filtrado foi extraído com acetato de etilo (2 x). Os extractos orgânicos combinados foram secos (MgSO₄), filtrados e depois concentrados a pressão reduzida. O resíduo foi purificado por cromatografia em coluna de sílica gel eluindo com um gradiente de solvente metanol:diclorometano (1:99 a 5:95) para dar o composto em epígrafe, 105 mg, 31 % de rendimento.

 $^{1}\text{H-RMN}$ (CD₃OD, 400 MHz) $\delta\colon$ 1,42 (s, 9H), 2,58 (m, 1H), 2,74 (m, 1H), 3,11 (m, 4H), 3,67 (m, 1H), 3,70 (s, 3H), 7,10 (s, 2H).

Preparação 19

(2S)-2-({2-[(terc-butoxicarbonil)amino]etil}amino) -3-(1-{[2(trimetilsilil)etoxi]metil}-1H-imidazol-2il)propanoato de metilo

Uma solução da amina da Preparação 56 (120 mg, 0,40 mmol) foi dissolvida em metanol (3,5 mL) e terc-butil N-(2-oxoetil)carbamato (51 mg, 0,33 mmol) foi adicionado. Acetato de sódio (131 mg, 1,60 mol), peneiras moleculares 4A e depois cianoboro-hidreto de sódio (50 mg, 0,80 mmol) foram adicionados e a mistura resultante foi agitada à temperatura ambiente durante 18 horas. Ácido clorídrico aguoso (1 N, 1 mL) foi então adicionado e a mistura de reacção foi muito bem agitada e depois basificada com uma solução aquosa saturada de carbonato de sódio ao pH=10. A mistura resultante foi então filtrada para remover o sólido e o filtrado foi extraído com acetato de etilo (2 x). Os extractos orgânicos combinados foram secos (MgSO₄), filtrados e depois concentrados a pressão reduzida. O resíduo foi purificado por cromatografia em coluna de sílica gel eluindo com acetato de etilo: metanol: amoníaco 0,88 (55: 5: 0,5) para dar o composto em epígrafe, 30 mg, 21% de rendimento.

 1 H-RMN (CDCl₃, 300 MHz) δ: -0,02 (s, 9H), 0,90 (t, 2H), 1,29 (s, 9H), 2,63 (m, 1H), 2,84 (m, 1H), 3,02 (dd,

1H), 3,13 (dd, 1H), 3,19 (m, 1H), 3,48 (t, 2H), 3,74 (s, 3H), 3,84 (m, 1H), 5,21 (dd, 2H), 5,77 (br s, 1H), 6,90 (s, 1H), 6,97 (s, 1H).

LRMS: m/z 443,3 (MH+)

Preparação 20

(2)-3-(1H-imidazol-5-il)-2-[(3RS)-pirrolidinilamino]propanoato de metilo

Uma solução do produto da Preparação 25 (0,4 g, 1,22 mmol) em ácido acético (30 mL) foi hidrogenizada sobre catalisador de paládio (10% sobre carbono, 50 mg) a 50 °C e 3,5 atm durante 72 horas. A solução foi filtrada em Arbocel™/Hyflo™ e o filtrado foi concentrado a pressão reduzida. O óleo resultante foi dissolvido diclorometano e extraído com uma solução aquosa saturada de bicarbonato de sódio (3 \times 20 mL). A fase aquosa foi concentrada a pressão reduzida e o sólido branco resultante foi triturado com acetato de etilo quente (2 x 50 mL) depois com metanol quente (2 x 50 mL). Os extractos metanol foram combinados e evaporados a pressão reduzida. O resíduo resultante foi dissolvido diclorometano: metanol: amoníaco 0,88 (80: 20: 2) e purificado por cromatografia em coluna de sílica gel, eluindo com diclorometano: metanol: amoníaco 0,88 (80: 20: 5), para dar o composto em epígrafe como um óleo cor de laranja, 200 mg, 70% de rendimento.

 1 H-RMN (300 MHz, D₂O), mistura de diastereoisómeros, δ : 1,70 (m, 1H), 2,02 (m, 1H), 2,93 (m, 3H), 3,10-3,47 (m, 4H), 3,58 (2 x s, 2 x1½H), 3,61 (m, 1H), 6,98 (2 x s, 2 x1½H), 8,00 (2 x s, 2 x1½H).

HRMS: m/z 239,1514 (MH+), calculado 239,1503.

Preparações 21 e 22

$$H_3C$$
 CH_3
 CH_3
 CH_3
 CH_3

Dicloridrato do éster metílico de L-histidina (945 mg, 3,9 mmol) e acetato de sódio (1,28 g, 15,6 mmol) foram adicionados a uma solução com agitação do produto da Preparação 77 (730 mg, 3,9 mmol) em metanol (50 mL).

Peneiras moleculares 4A e cianoboro-hidreto de sódio (491 mg, 7,8 mmol) foram adicionados e a mistura foi agitada à temperatura ambiente durante 17 horas. A mistura foi filtrada e o filtrado foi concentrado a 10 mL a pressão reduzida. Ácido clorídrico aquoso (2 N, 2 mL) foi adicionado e a mistura foi agitada durante dois minutos. Uma solução aquosa saturada de hidrogénio carbonato de sódio foi adicionada e a mistura foi extraída com acetato de etilo (3 x 150 mL). Os extractos orgânicos combinados foram secos (Na₂SO₄), filtrados e concentrados a pressão reduzida. O resíduo foi purificado por cromatografia em coluna de sílica gel (coluna da Biotage™), eluindo com um gradiente de solvente de diclorometano:metanol (95:5 a 90:10), para dar o composto em epígrafe da Preparação 21, 178 mg, 13% de rendimento:

 1 H-RMN (CDCl₃, 400 MHz) δ: 0,90 (t, 3H), 1,40 (m, 2H), 1,43 (s, 9H), 2,30 (br m, 1H), 2,82 (dd, 1H), 2,97 (dd, 1H), 3,02 (m, 1H), 3,20 (br m, 1H), 3,65 (m, 1H), 3,72 (s, 3H), 5,21 (br s, 1H), 6,80 (s, 1H), 7,57 (s, 1H).

LRMS: m/z 341,2 (MH+)

TLC: diclorometano:metanol (90:10) Rf = 0,48.

e Preparação 22,271 mg, 20% de rendimento:

 1 H-RMN(CDCl₃, 400 MHz) δ: 0,82 (t, 3H), 1,23-1,42 (m, 2H), 1,45 (s, 9H), 2,50 (br m, 1H), 2,80 (dd, 1H), 3,00 (dd, 1H), 3,03-3,18 (m, 2H), 3,60 (m, 1H), 3,73 (s, 3H), 5,30 (br s 1H), 6,82 (s, 1H), 7,53 (s, 1H)

LRMS: m/z 341,3 (MH+)

TLC: diclorometano: metanol (90:10) Rf = 0,41.

Preparações 23-26

Os compostos das seguintes Preparações dispostos em tabelas da fórmula geral:

foram preparados por um método similar ao da Preparação utilizando dicloridrato do éster metílico de L-histidina e os materiais de partida apropriados aldeído/cetona (produtos das Preparações 78-80 ou 1-benzil-3-pirrolidinona comercialmente disponível).

Exemplo N°	R ¹	Rendimento	Dados Analíticos
23	H ₃ C CH ₃ H ₃ C CH ₃ H ₃ C CH ₃	48	¹ H-RMN (CDCl ₃ , 300 MHz), mistura de diastereoisómeros, δ: 0,78-0,98 (4x d, 6H), 1,43 (2 x s, 9H), 1,69 (m, 1H), 2,37 (m, 1H), 2,78-3,28 (m, 4H), 3,66 (m, 1H), 3,73 (2 x s, 3H), 5,20 (br s, 1H), 6,82 (2 x s, 1H), 7,58 (2 x s, 1H). TLC: acetato de etilo: metanol (90:10) Rf = 0,27.
24	H ₃ C CH ₃	45	¹ H-RMN (CDCl ₃ , 300 MHz), mistura de diastereoisómeros, δ: 1,45 (2 x s, 9H), 2,50-3,30 (m, 7H), 3,45-3,70 (2 x m, 1H), 3,63-3,73 (2 x s, 3H), 5,07 (br m, 1H) 6,65-6,78 (2 x s, 1H), 7,10-7,58 (m + 2 x s, 6H). LRMS: m/z 402,6 (MH+)

	1		1 H-RMN (CDCl ₃ , 300 MHz), mistura de diastereoisómeros, δ: 1,53 (m, 1H), 2,00 (m, 1/2H) 2,13 (m, 1/2H), 2,30-2,60 (m, 2H), 2,63-2,81 (m, 2H), 2,90 (m, 1H), 2,99 (m,
25	NH	37	1H), 3,30 (m, 1H), 3,45 (m, 1H), 3,59 (m, 2H), 3,67 (s, 1 1/2H), 3,73 (s, 1 1/2) 6,80 (s, 1H), 7,28 (m, 5H), 7,41 (s, 1/2 H), 7,47 (s, 1/2H). LRMS: m/z 329,4 (MH+) Anál. Encontrada: C, 65,69; H, 7,41; N, 16,95. C ₁₈ H ₂₄ N ₄ O ₂ requer C, 65,83; H, 7,37; N, 17,06%.

Continuação

Exemplo	R^1	Rendimento	Dados Analíticos
Ио		(응)	
26	CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ HN CH ₃ H	67	¹ H-RMN (CDCl ₃ , 300 MHz), mistura de diastereoisómeros, δ: 0,87-1,13 (m, 6H), 1,45 (2 x s, 9H), 2,68 (m, 1H), 2,87 (m, 1H), 3,02 (m, 1H), 3,62 (br m, 1H), 3,70 (s, 3H), 4,45 (br s, 2H), 4,88 (br m, 1H), 6,85 (br s, 1H), 7,60 (br s, 1H). LRMS: m/z 341,2180 (MH+), calc 341,2184.

Preparação 27

(2S)-2-[{2-[(terc-butoxicarbonil)amino]etil}
(metil)amino]-3-(1H-imidazol-4-il)-propanoato de metilo

solução de (2S)-3-(4-imidazolidinil)-2-Uma (metilamino)propanoato de metilo (1 g, 4,55 mmol), de terc-butil N-2(-oxoetil)carbamato (833 mg, 5,23 mol), acetato de sódio (1,494 g, 18,22 mmol) e cianoboro-hidreto de sódio (572 mg, 9,10 mmol) em metanol (30 mL) foi agitada a 0 °C numa atmosfera de azoto. A mistura foi deixada a aquecer até à temperatura ambiente depois foi adicionado ácido clorídrico aquoso (5 mL, 1 N) seguido por uma solução aquosa saturada de hidrogénio carbonato de sódio. A solução foi filtrada e a fase aquosa foi extraída com acetato de etilo. Os extractos orgânicos combinados foram lavados com solução aquosa saturada de cloreto de sódio, secos (MgSO₄), filtrados e depois concentrados a pressão reduzida. O resíduo foi purificado cromatografia em coluna sobre gel de sílica, eluindo com diclorometano: metanol (100:5), para dar o composto em epígrafe, 900 mg, 61% de rendimento.

 1 H-RMN (CDCl₃, 300 MHz) δ: 1,43 (s, 9H), 2,32 (s, 3H), 2,60 (m, 1H), 2,78 (m, 1H), 2,90 (m, 1H), 3,02 (m, 1H), 3,19 (m, 2H), 3,60 (m, 1H), 3,70 (s, 3H), 5,30 (br m, 1H), 6,80 (s, 1H), 7,55 (s, 1H).

LRMS: m/z 327,1 (MH+)

Preparação 28

O produto da Preparação 29 (200 mg, 0,315 mmol) foi adicionado a uma suspensão de ácido 4-hidroxibenzóico (0,22 g, 1,5 mmol) numa solução de brometo de hidrogénio (45% em ácido acético, 5 mL) a 0 °C e a mistura foi agitada à temperatura ambiente durante 72 horas. Água desionizada (20 mL) foi adicionada para dar uma suspensão que foi extraída com acetato de etilo (3 x 20 mL). A solução aquosa residual foi então concentrada a pressão reduzida. A espuma cor de laranja resultante foi cristalizada de metanol:acetato de etilo para dar o sal tri-hidrobrometo do composto em epígrafe como um sólido incolor, 82 mg, 54% de rendimento. P. f. 211-213 °C.

 $^{1}\text{H-RMN}$ (D₂O, 300 MHz) δ : 2,80 (m, 2H), 2,97 (m, 2H), 3,15 (m, 6H), 3,65 (s, 3H), 3,73 (t, 1H), 7,23 (s, 1H), 8,53 (s, 1H).

LRMS: m/z 239,2 (MH+)

Análise Encontrada: C, 27,37; H, 4,45; N, 11,36. $C_{11}H_{18}N_4O_2 \bullet 3HBr \ requer \ C, \ 27,47; \ H, \ 4,40; \ N, \ 11,65\%.$

 $[\alpha]_D = -32,92$ (*c* 0,11, metanol)

Preparação 29

(2S)-2-{4-[(4-metilfenil)sulfonil]-1-piperazinil}3-(1-tritil-1H-imidazol-4-il)propanoato de metilo

Uma suspensão de imidazol-4-il)propanoato de metilo (1 g, 2,4 mmol) diisopropiletilamina (5 mL), foi agitada à temperatura ambiente durante 20 minutos. N, N-Bis-(2-cloroetil)-4metilbenzenossulfonamida (720 mg, 2,4 mmol) foi adicionada e a mistura foi agitada a refluxo durante 3 horas. A mistura foi deixada a arrefecer e foi diluída com acetonitrilo. A solução resultante foi concentrada a pressão reduzida e o resíduo foi suspenso em solução aquosa de carbonato de sódio e extraída com diclorometano (3 x 20 mL). Os extractos orgânicos combinados foram lavados com solução aquosa saturada de cloreto de sódio (3 x 20 mL), secos (Na₂SO₄), filtrados e depois concentrados a pressão reduzida. O resíduo foi purificado cromatografia em coluna de sílica gel, eluindo com um gradiente de solvente de diclorometano: metanol (99:1). O material isolado foi dissolvido em éter e a solução resultante foi concentrada a pressão reduzida para dar o composto em epígrafe como uma espuma incolor, 300 mg, 19% de rendimento.

 1 H-RMN (CDCl₃, 300 MHz) δ: 2,42 (s, 3H), 2,63 (m, 2H), 2,72 (m, 2H), 2,78 (dd, 1H), 2,97 (m, 5H), 3,57 (s, 3H), 3,60 (m, 1H), 6,50 (s, 1H), 7,07 (m, 6H), 7,50 (m, 12H), 7,62 (2 x s, 2H).

LRMS: m/z 635,3 (MH+)

Análise Encontrada: C, 69,51; H, 6,06; N, 8,69. $C_{37}H_{38}N_4O_4S \bullet 0,25H_2O \text{ requer C, 69,51; H, 6,07; N, 8,59\%}.$

 $[\alpha]_D = -3,73$ (*c* 0,10, diclorometano)

Preparação 30

Iodeto de (7i)-6-{2-[(terc-butoxicarbonil)amino]} etil}-2-etil-7-(metoxicarbonil)-5-oxo-5,6,7,8-tetra-hidroimidazo[1,5-c]1pirimidin-2-a

Iodeto de etilo (99 μ L, 1,243 mmol) foi adicionado a uma solução com agitação do produto Preparação 48 (200 mg, 0,592 mmol) em acetonitrilo (5 mL) e a mistura foi aquecida a refluxo durante 17 horas numa atmosfera de

azoto. A mistura foi deixada a arrefecer até a temperatura ambiente e o solvente foi removido por evaporação a pressão reduzida. O resíduo foi purificado por cromatografia em coluna de sílica gel eluindo com diclorometano: metanol (90:10) para dar o composto em epígrafe como uma espuma branca, 118 mg, 40% de rendimento.

 1 H-RMN (D₂O, 300 MHz) δ : 1,27 (s, 9H), 1,42 (t, 3H), 3,22-3,47 (m, 4H), 3,58 (m, 1H), 3,65 (s, 3H), 3,95 (m, 1H), 4,20 (q, 2H), 4,75 (m, 1H), 7,40 (s, 1H).

LRMS: 366,9 (M+)

TLC: diclorometano: metanol: amoníaco 0,88 (90: 10: 1) Rf = 0,26.

Preparações 31 - 46

Os compostos das seguintes Preparações dispostos em tabelas da fórmula geral:

foram preparados por um método similar ao da Preparação 30 utilizando o produto da Preparação 48 e o agente alquilante apropriado.

Prepara- ção N°	Agente alquilante	R ¹	Rendimento (%)	Dados Analíticos
31	Brometo de n-propilo (3 eq)	H ₃ C	44	1 H-RMN (D ₂ O, 400 MHz) δ: 0,75 (t, 3H), 1,20 (s, 9H), 1,75 (q, 2H), 3,20-3,40 (m, 4H), 3,50 (m, 1H), 3,60 (s, 3H), 3,90 (m, 1H), 4,07 (t, 2H), 4,65 (m, 1H), 7,30 (s, 1H).
32	Brometo de n-butilo (3 eq)	H ₃ C	46	1 H-RMN (D ₂ O, 300 MHz) δ: 0,82 (t, 3H), 1,22 (q, 2H), 1,30 (s,1 2H), 3,27-3,47 (m, 4H), 3,58 (m, 1H), 3,67 (s, 3H), 3,97 (m, 1H), 4,17 (t, 2H), 4,77 (m, 1H), 7.40 (s, 1H). LRMS: m/z 395,3 (M+)
33	Brometo de n- pentilo (5 eq)	H ₃ C	55	1 H-RMN (D ₂ O, 300 MHz) δ: 0,72 (t, 3H), 1,03-1,13 (m, 4H), 1,22 33 (s, 9H), 1,75 (m, 2H), 3,17-3,40 (m, 4H), 3,50 (m, 1H), 3,60 (s, 3H), 3,90 (m, 1H), 4,12 (t, 2H), 4,68 (m, 1H), 7,33 (s, 1H). LRMS: 409,4 (M+)
34	2- Bromo propano	H ₃ C	9	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

Prepara-	Agente	R ¹	Rendimento	
		17		Dados Analíticos
ção Nº	alquilante		(%)	
35	1-Iodo-2- metil propano (5 eq)	H ₃ C CH ₃	32	1 H-RMN (D ₂ O, 400 MHz) δ: 0,82 (d, 6H), 1,27 (s, 9H), 2,07 (m, 1H), 3,25-3,45 (m, 4H), 3,57 (m, 1H), 3,64 (s, 3H), 3,93 (m, 1H), 4,00 (d, 2H), 4,75 (m, 1H), 7,37 (s, 1H). LRMS: m/z 394,9 (M+)
36	1-Bromo-3- metilbutano (5 eq)	H ₃ C CH ₃	51	1 H-RMN (D ₂ O, 300 MHz) δ: 0,83 (d, 6H), 1,28 (s, 9H), 1,45 (m, 1H) 1,70 (m, 2H), 3,25-3,47 (m, 4H), 3,65 (s, 3H), 3,95 (m, 1H), 4,20 (t, 2H), 4,73 (m, 1H), 7,39 (s, 1H). LRMS: m/z 409,0 (M+)
37	Sulfonato de (1R)-1- metilpropil 4- metilbenzeno (1,1 eq) J. Org. Chem. 1983, 48, 4527	CH ₃	19	1 H-RMN (D ₂ O, 300 MHz) δ: 0,77 (t, 3H), 1,28 (s, 9H), 1,45 (d, 3H), 1,79 (m, 2H), 2,30 (s, 3H), 3,50-3,62 (m, 1H), 3,67 (s, 3H), 3,97 (m, 1H), 4,40 (m, 1H), 4,76 (m, 1H), 7,28 (d, 2H), 7,45 (s, 1H), 7,60 (d, 2H). LRMS: m/z 395,9 (M+)

D	70 1	Continua		
Prepara-	Agente	R ¹	Rendimento	Dados Analíticos
ção N°	alquilante		(용)	
38	Sulfonato de (1S)-1- metilpropil 4- metilbenzeno (1,1 eq) J. Org. Chem. 1974, 39, 1515	H ₃ C CH ₃	20	1H-RMN (D ₂ O, 300 MHz) 8: 0,77 (t, 3H), 1,28 (s, 9H), 1,45 (d, 3H), 1,79 (m, 2H), 2,30 (s, 3H), 3,22- 3,42 (m, 4H), 3,50- 3,62 (m, 1H), 3,67 (s, 3H), 3,97 (m, 1H), 4,40 (m, 1H), 4,76 (m, 1H), 7,28 (d, 2H), 7,45 (s, 1H), 7,60 (d, 2H). LRMS: m/z 395,1 (M+)
39	(Bromometil) ciclopropano (5 eq)		57	1H-RMN (D ₂ O, 300 MHz) 8: 0,40 (m, 2H), 0,67 (m, 2H), 1,25 (s+m, 10H), 3,18- 3,50 (m, 4H), 3,58 (m, 1H), 3,67 (s, 3H), 3,95 (m, 1H), 4,02 (d, 2H), 4,77 (m, 1H), 7,43 (s, 1H). LRMS: m/z 393,0 (M+)
40	(Bromometil) ciclobutano (5 eq)		35	1H-RMN (D ₂ O, 300 MHz) 8: 1,27 (s, 9H), 1,62-2,07 (m, 6H), 2,73 35 (m, 1H), 3,20-3,45 (m, 4H), 3,53 (m, 1H), 3,65 (s, 3H), 3,95 (m, 40 1H), 4,17 (d, 2H), 4,72 (m, 1H), 7,33 (s, 1H). LRMS: m/z 407,9 (M+)
41	1-Bromo-2- metoxietano (3 eq)	H ₃ C	73	1 H-RMN (D_{2} O, 400 MHz) δ : 1,27 (s, 9H), 3,20– 3,50 (m, 8H), 3,57 (m, 1H) 3,67 (m, 2H) 3,77 (m, 2H) 3,95 (m, 1H), 4,37 (m, 2H), 4,75 (m, 1H), 7,40 (s, 1H).

Bronses	7 marta	Continuac	Rendimento	1
Prepara-	Agente	IX.		Dados Analíticos
ção N°	alquilante		(%)	
42	1-Bromo propan-3-ol (3 eq)	но	73	1 H-RMN (D ₂ O, 300 MHz) δ: 1,30 (s, 9H), 2,05 (m, 2H), 3,25-3,48 (m, 4H), 3,58 (m, 3H), 3,67 (s, 3H), 3,97 (m, 1H), 4,30 (t, 2H), 4,78 (m, 1H), 7,41 (s, 1H). LRMS: m/z 397,3 (M+)
43	Sulfonato de (±)-2-metoxi- 1-metiletil 4- metilbenzeno¹ (2 eq)	H ₃ C CH ₃	30	1 H-RMN (D ₂ O, 400 MHz) δ: 1,27 (s, 9H), 1,43 (d, 3H), 2,27 (s, 3H), 3,20-3,45 (m, 7H), 3,57-3,72 (s+m, 5H), 3,95 (br m, 1H), 4,60-4,80 (m, 3H), 7,28 (d, 2H), 7,47 (s, 1H), 7,59 (d, 2H).
44	(2-Bromoetil) benzeno		33	1 H-RMN (D_{2} O, 300 MHz) δ : 1,27 (s, 9H), 3,06-3,40 (m, 6H), 3,52 (m, 1H), 3,71 (s, 3H), 3,90 (m, 1H), 4,47 (m, 2H), 4,84 (m, 1H), 7,03 (m, 2H), 7,26 (m, 4H). LRMS: m/z 443,3 (M+)
45	Brometo de alilo (5 eq)	H ₂ C	76	1 H-RMN (D ₂ O, 300 MHz) δ: 1,22 (s, 9H), 3,20-3,38 (m, 4H), 3,44-3,57 (m, 1H), 3,60 (s, 3H), 3,88 (m, 1H), 4,70 (m, 3H), 5,29 (d, 1H), 5,35 (d, 1H), 5,81-5,98 (m, 1H), 7,30 (s, 1H). LRMS: m/z 379,2

Prepara- ção Nº	Agente alquilante	R ¹	Rendimento (%)	Dados Analíticos
46	N-(2-bromoetil) Metano sulfonamida (1,5 eq) JACS 1951, 73, 3100	H₃C SI	29	1 H-RMN (D ₂ O, 300 MHz) δ: 1,30 (s, 9H), 2,95 (s, 3H), 3,24-3,56 (m, 7H), 3,64 (s, 3H), 3,98 (m, 1H), 4,32 (t, 2H), 4,77 (m, 1H), 7,42 (s, 1H), LRMS: m/z 460,7 (M+)
Nota:				

Preparação 47

1. Produto da Preparação 81.

Brometo de (7S)-6-{2-[(terc-butoxicarbonil)] amino]etil}-7-(metoxicarbonil)-2-[2-(metilamino)-2-oxoetil] -5-oxo-5,6,7,8-tetra-hidroimidazo[1,5-c]pirimidin-2-a

$$H_3C$$
 H_3C
 CH_3
 CH_3
 CH_3

Uma mistura do produto da Preparação 48 (300 mg, 0,89 mmol) e 2-bromo-N-metilacetamida (Heterocycles 1995, 41, 2427) (270 mg, 1,78 mmol) em acetonitrilo (7 mL) foi aquecida a 80 °C durante 72 horas. A reacção arrefecida foi concentrada a pressão reduzida e o resíduo foi purificado por cromatografia em coluna de sílica

utilizando um gradiente de eluição de diclorometano:metanol (95:5 a 90:10). O produto foi triturado com éter para dar o composto em epígrafe como um sólido branco, 380 mg, 87% de rendimento.

 1 H-RMN (D₂O, 300 MHz) δ: 1,30 (s, 9H), 2,71 (s, 3H), 3,23-3,47 (m, 5H), 3,60 (m, 1H), 3,68 (s, 3H), 3,97 (m, 1H), 4,77 (m, 1H), 5,00 (br s, 2H), 7,38 (s, 1H).

LRMS: m/z 410,4 (M+)

Preparação 48

Carbonildiimidazole (156 mg, 0,959 mmol) foi adicionado a uma solução com agitação do produto da Preparação 16 (300 mg, 0,959 mmol) em N,N-dimetilformamida (5 mL) e a mistura foi aquecida a 60-70 °C durante 17 horas. O solvente foi removido por evaporação a pressão reduzida, o resíduo foi dissolvido em solução aquosa saturada de hidrogénio carbonato de sódio e extraída com diclorometano. Os extractos orgânicos combinados foram secos (MgSO₄), filtrados e depois concentrados a pressão

reduzida. O resíduo foi purificado por cromatografia em coluna de sílica gel, eluindo com diclorometano:metanol (95:5), para dar o composto em epígrafe como um óleo incolor, 210 mg, 67% de rendimento.

 1 H-RMN (D₂O, 300 MHz) δ: 1,40 (s, 9H), 3,20-3,60 (m, 5H), 3,70 (s, 3H), 4,08 (m, 1H), 4,33 (m, 1H), 4,82 (br m, 1H), 6,80 (s, 1H), 8,13 (s, 1H).

LRMS: m/z 339 (MH+)

 $[\alpha]_D$ = +39,2 (*c* 0,12, diclorometano)

TLC: acetato de etilo:metanol (95:5) Rf = 0,79

Preparação 49

Os isómeros geométricos do composto em epígrafe foram obtidos em rendimentos de 32% e 38% respectivamente, a partir do composto da Preparação 60, e o aldeído da Preparação 68, seguindo um procedimento similar ao descrito na Preparação 52.

Isómero 1, $^{1}\text{H-RMN}$ (CDCl $_{3}$, 300 MHz) $\pmb{\delta}$: -0,02 (s, 9H), 0,90 (t, 2H), 1,28 (t, 3H), 1,78 (m, 2H), 2,18 (t, 2H), 2,40 (br s, 1H), 2,97 (t, 2H), 3,44 (t, 2H), 4,19 (q, 2H), 5,20 (s, 2H), 7,15-7,32 (m, 12H), 7,43 (d, 6H).

LRMS: m/z 596,5 (MH+)

e isómero 2, ${}^{1}\text{H-RMN}$ (CDCl₃, 300 MHz) δ : -0,01 (s, 9H), 0,90 (t, 2H), 1,28 (t, 3H), 1,72 (m, 2H), 2, 19 (t, 2H), 2,46 (t, 2H), 3,47 (t, 2H), 4,22 (q, 2H), 5,22 (s, 2H), 6,70 (s, 1H), 7,18 (m, 3H), 7,24 (m, 6H), 7,45 (d, 6H), 7,55 (s, 1H), 7,79 (s, 1H).

LRMS: m/z 596,3 (MH+)

Preparação 50

Uma solução do composto da Preparação 60 (5,9 g, 11,3 mmol) in tetra-hidrofurano (100 mL) foi adicionada a uma solução arrefecida com gelo de hidreto de sódio (457 mg, 60% dispersão em óleo mineral, 11,3 mmol) em tetra-hidrofurano (100 mL) e a mistura foi agitada durante 45

minutos. Uma solução do aldeído da Preparação 66 (1,56 g, 11,3 mmol) em tetra-hidrofurano (100 mL) foi então adicionada. A reacção foi então deixada a aquecer até à temperatura ambiente e foi agitada durante 18 horas. A mistura foi diluída com solução aquosa de cloreto de amónio, a camadas foram separadas e a fase aquosa foi extraída com acetato de etilo (3 x). Os extractos orgânicos combinados foram secos (MgSO₄), filtrados e concentrados a pressão reduzida. O resíduo foi purificado por cromatografia em coluna de sílica gel, eluindo com um gradiente de solvente de acetato de etilo:pentano (40:60 a 60:40), para dar os dois isómeros geométricos do composto em epígrafe, 1,87 g, 33% de rendimento (isómero 1):

 1 H-RMN (CDCl₃, 300 MHz) δ: 0,92 (t, 3H), 1,27 (t, 3H), 1,78 (m, 4H), 2,18 (t, 2H), 2,52 (br s, 1H), 2,96 (t, 2H), 3,82 (t, 2H), 4,18 (q, 2H), 7,10-7,28 (m, 12H), 7,42 (d, 6H).

LRMS: m/z 508,2 (MH+)

e 2,40 q, 42% de rendimento (isómero 2):

 1 H-RMN (CDCl₃, 300 MHz) δ: 0,95 (t, 3H), 1,27 (t, 3H), 1,72 (m, 2H), 1,82 (m, 2H), 2,18 (t, 2H), 2,45 (t, 2H), 3,86 (t, 2H), 4,22 (q, 2H), 6,75 (s, 1H), 7,18 (m, 3H), 7,28 (m, 7H), 7,44 (d, 6H), 7,76 (s, 1H).

LRMS: m/z 508,4 (MH+)

Preparação 51

Os isómeros geométricos do composto em epígrafe foram obtidos em rendimentos de 24% e 21%, respectivamente, a partir do composto da Preparação 59, e o aldeído da Preparação 66, seguindo os procedimentos descritos na Preparação 52.

Isómero 1, ${}^{1}\text{H-RMN}$ (CDCl $_{3}$, 300 MHz) δ : 0,96 (t, 3H), 1,27 (t, 3H), 1,37-1,58 (m, 13H), 1,80 (m, 2H), 2,80 (m, 2H), 3,20 (m, 2H), 3,88 (t, 2H), 4,20 (q, 2H), 4,40 (s, 2H), 7,04 (s, 1H), 7,22 (m, 5H), 7,42 (s, 1H), 7,52 (s, 1H).

LRMS: m/z 470,3 (MH+)

Isómero 2, ${}^{1}\text{H-RMN}$ (CDCl₃, 300 MHz) δ : 0,94 (t, 3H), 1,28 (t, 3H), 1,38-1,58 (m, 13H), 1,80 (m, 2H), 2,38 (m, 2H), 3,18 (m, 2H), 3, 85 (t, 2H), 4,22 (q, 2H), 4,40 (br s, 2H), 6,70 (s, 1H), 7,23 (m, 5H), 7,40 (s, 1H), 7,75 (s, 1H).

LRMS: m/z 470,3 (MH+)

Preparação 52

Uma solução do composto da Preparação 60 (1 g, 2,6 mmol) em tetra-hidrofurano (20 mL) foi adicionada a uma solução arrefecida com gelo de hidreto de sódio (106 mg, 60% dispersão em óleo mineral, 2,6 mmol) em tetrahidrofurano (20 mL), e a solução foi agitada durante 45 minutos. O aldeído da Preparação 67 (400 mg, 2,6 mmol) em tetra-hidrofurano (10 mL) foi então adicionado e a reacção foi agitada à temperatura ambiente durante 18 horas. A reacção foi neutralizada pela adição de uma solução aquosa de cloreto de amónio e a mistura foi extraída com acetato de etilo (2 x). Os extractos orgânicos combinados foram (Na₂SO₄), filtrados e concentrados a pressão secos reduzida. O resíduo foi dissolvido em tolueno, adsorvido em sílica e purificado por cromatografia em coluna de sílica gel, eluindo com um gradiente de solvente acetato de etilo:pentano (20:80 a 40:60), para dar os dois isómeros geométricos do composto em epígrafe, 390 mg, 29% de rendimento (isómero 1):

 1 H-RMN (CDCl₃, 300 MHz) δ: 0,94 (t, 3H), 1,28 (m, 5H), 1,76 (m, 4H), 2,18 (t, 2H), 2,55 (br s, 1H), 2,97 (t, 2H), 3,84 (t, 2H), 4,17 (q, 2H), 7,09-7,30 (m, 12H), 7,42 (d, 6H).

LRMS: m/z 522 (MH+)

e 400 mg, 30% de rendimento (isómero 2):

 1 H-RMN (CDCl₃, 300 MHz) δ: 0,94 (t, 3H), 1,30 (m, 5H), 1,76 (m, 4H), 2,19 (t, 2H), 2,45 (t, 2H), 3,92 (t, 2H), 4,22 (q, 2H), 6,76 (s, 1H), 7,18 (m, 3H), 7,24 (m, 7H), 7,46 (d, 6H), 7,75 (s, 1H).

LRMS: m/z 523,1 (M+2H)+

Preparação 53

$\underline{(3E)-2-oxo-3-[(1-n-propil-1H-imidazol-4-}$ il) metileno]-1-piperidinacarboxilato de terc-butilo

Uma solução de lítio bis(trimetilsilil) amida em tetra-hidrofurano (43,5 mL, 1 M, 43,5 mmol) foi adicionada, gota a gota, a uma solução arrefecida (-78 °C) de 2-oxo-1-piperidinacarboxilato de terc-butilo (J. Org. Chem. 1983, 48, 2424) (8,7 g, 43,5 mmol) em tetra-hidrofurano (120 mL) e, assim que a adição estava completa, a solução foi deixada a aquecer até 0 °C, e agitada durante uma hora. A solução foi arrefecida de novo a -78 °C, uma solução do aldeído da Preparação 66 (4 g, 28,9 mmol) em tetra-hidrofurano (40 mL) foi adicionada e a reacção foi então deixada a aquecer até à temperatura ambiente. A mistura de reacção foi agitada durante 18 horas e depois partilhada entre água e acetato de etilo.

As fases foram separadas e a fase orgânica foi seca (MgSO₄), filtrada e concentrada a pressão reduzida. O resíduo foi purificado por cromatografia em coluna de sílica gel, eluindo com diclorometano:metanol (95:5), para dar o composto em epígrafe com um único isómero geométrico, 4 g, 43% de rendimento.

 1 H-RMN (CDCl₃, 300 MHz) δ: 0,89 (t, 3H), 1,50 (s, 9H), 1,78 (m, 2H), 1,86 (m, 2H), 3,00 (m, 2H), 3,70 (t, 2H), 3,85 (t, 2H), 7,07 (s, 1H), 7,46 (s, 1H), 7,62 (s, 1H).

LRMS: m/z 320,3 (MH+)

<u>Método alternativo de síntese do composto em</u> epígrafe na Preparação 53

O composto da Preparação 99 (76,5g , 227 mmol) foi dissolvido em diclorometano (300 mL), a solução arrefecida a 0 °C e trietilamina (57 g, 560 mol) foi adicionada. Cloreto de metanossulfonilo (23,7 q, 207 mol) em diclorometano (15 mol) foi então adicionado lentamente à solução com agitação durante 0,5 horas enquanto era mantida a temperatura da reacção entre 0-5 °C. A reacção foi então deixada a aquecer à temperatura ambiente e foi agitada durante 3 horas. A mistura de reacção foi então neutralizada em água (315 mL) e a fase orgânica foi A fase aquosa foi então extraída separada. diclorometano (1 x 50 mL) e os extractos orgânicos combinados foram lavados com água (1 x 100 mL), secos e concentrados a pressão reduzida para dar o composto do título como um sólido, 58,0 g, 88% de rendimento.

Preparação 54

$$\begin{array}{c|c} H_3C \\ \hline \\ CH_3 \\ \hline \\ CH_3 \\ \hline \\ CH_3 \\ \hline \\ O \\ \hline \\ CH_3 \\ \hline \\ O \\ CH_3 \\ \hline \\ CH_3 \\ CH_3 \\ \hline \\ CH_3 \\ CH_$$

O composto em epígrafe foi obtido como um único estereoisómero num rendimento de 10% a partir dos aldeídos da Preparação 69 e 70, e 2-oxo-1-piperidinacarboxilato de terc-butilo (*J. Org. Chem.* 1983, 48, 2424), seguindo um procedimento similar ao descrito na Preparação 53, excepto por hexano:éter (50:50) terem sido utilizados como os eluentes da coluna.

 1 H-RMN (CDCl₃, 300 MHz) δ: -0,03 (s, 9H), 0,88 (t, 2H), 0,98 (t, 3H), 1,56 (s, 9H), 1,66 (m, 2H), 1,92 (m, 2H), 2,58 (t, 2H), 3,22 (m, 2H), 3,48 (t, 2H), 3,77 (m, 2H), 5,30 (s, 2H), 6,80 (s, 1H), 7,73 (s, 1H).

LRMS: m/z 450,6 (MH+)

Preparação 55

(2RS) -2-amino-3-(1H-imidazol-2-il)propanoato

de

metilo

$$H_2N$$
 O
 CH_3

Uma mistura do alceno da Preparação 57 (366 mg, 12 mmol) e paládio sobre carvão a 10% (50 mg) em metanol (8 mL) foi hidrogenada a 3,5 atm e 50 °C durante 18 horas. A mistura arrefecida foi filtrada em Arbocel™, lavada com metanol e o filtrado foi concentrado a pressão reduzida para dar o composto em epígrafe, 200 mg, 98% de rendimento.

 $^{1}\text{H-RMN}$ (CD₃OD, 400 MHz) δ : 3,65 (d, 2H), 3,80 (s, 3H), 4,60 (t, 1H), 7,55 (s, 2H).

LRMS: m/z 170,3 (MH+)

Preparação 56

(2S)-2-amino-3-(1-{[2-(trimetilsilil)etoxi]metil}1H-imidazol-2-il)propanoato de metilo

O produto da Preparação 58 (950 mg, 2,40 mmol) foi tratado com ácido clorídrico aquoso (48 mL, HCl 0,25 N, 12,0 mmol) e a mistura resultante foi agitada à temperatura ambiente durante 2 horas. A reacção foi então basificada com amoníaco 0,88 ao pH=9 e extraída com acetato de etilo (2 x). Os extractos orgânicos combinados foram secos (Na₂SO₄), filtrados e depois concentrados a pressão reduzida. O resíduo foi purificado por cromatografia em coluna de sílica gel eluindo com acetato de etilo: metanol: amoníaco 0,88 (95: 5: 0,5) para dar o composto em epígrafe, 600 mg, 83% de rendimento.

 1 H-RMN (CDCl₃, 300 MHz) δ: -0,03 (s, 9H), 0,90 (t, 2H), 3,00 (dd, 1H), 3,20 (dd, 1H), 3,48 (t, 2H), 3,71 (s, 3H), 4,05 (m, 1H), 5,23 (dd, 2H), 6,92 (s, 1H), 6,97 (s, 1H).

LRMS: m/z 300,2 (MH+)

Preparação 57

(2Z)-2-{[(benziloxi)carbonil]amino-3-(1H-imidazol-2-il)-2-propenoato de metilo

mistura de 2-{[(benziloxi)carbonil]amino}-3-(dimetoxifosforil)-propanoato de metilo (1 g, 30 mmol) em tetra-hidrofurano (7 mL) foi agitada a -40 tetrametilguanidina (380 mg, 33 mmol) foi adicionada. A mistura de reacção foi agitada a -40 °C durante 20 minutos e depois imidazol-2-carboxaldeído (317 mg, 33 mmol) foi adicionado. A reacção foi então deixada a aquecer até à temperatura ambiente e foi agitada à temperatura ambiente durante 18 horas. O solvente foi então removido por evaporação a pressão reduzida e o resíduo foi dissolvido em acetato de etilo e lavado com água e depois com solução aquosa saturada de cloreto de sódio. A fase orgânica foi então seca (MgSO₄), filtrada e depois concentrada a pressão reduzida. O resíduo foi purificado por cromatografia em coluna de sílica gel, eluindo com um gradiente de solvente de acetato de etilo:pentano (30:70 a 80:20), para dar o composto em epígrafe, 366 mg, 40% de rendimento.

 1 H-RMN (CDCl₃, 300 MHz) δ: 3,77 (s, 3H), 5,17 (s, 2H), 6,44 (s, 1H), 7,10 (brs, 2H), 7,35 (m, 5H), 10,2 (brs, 1H).

LRMS: m/z 301,9 (MH+)

Preparação 58

(2R, 5R)-2-Isopropil-3,6-dimetoxi-5-[(1-[(2-(trimetilsilil)etoxi]metil}-1H-imidazol-2-il)metil]-2,5-di-hidropirazina

Uma solução de (2R)-2-isopropil-3,6-dimetoxi-2,5di-hidropirazina (111 mg, 0,60 mmol) em tetra-hidrofurano (2,5 mL) foi arrefecida a -78 °C e tratada com n-butil lítio (0,388 mL, 1,6 M em hexanos, 0,62 mol). A reacção foi agitada a -78 °C durante 45 minutos e a solução orgânica da Preparação 73 foi adicionada. A reacção foi então deixada a aquecer à temperatura ambiente e foi agitada durante mais 18 horas. A reacção foi então neutralizada pela adição de metanol e depois o solvente foi removido por evaporação a pressão reduzida. O resíduo foi diluído com água e acetato de etilo. As camadas foram separadas e a fase aquosa foi extraída com mais acetato de etilo (2 x). Os extractos orgânicos combinados foram então secos (Na₂SO₄), filtrados e depois concentrados a pressão reduzida. O resíduo foi purificado por cromatografia em coluna de sílica gel, eluindo com um gradiente de solvente de acetato de etilo: hexano (50:50 a 100:0), para dar o composto em epígrafe, 40 mg, 17% de rendimento.

 1 H-RMN (CDCl₃, 400 MHz) δ : -0,03 (s, 9H), 0,65 (d, 3H), 0,84 (t, 2H), 1,00 (d, 3H), 2,16 (m, 1H), 3,03 (dd, 1H), 3,39 (dd, 1H), 3,44 (t, 2H), 3,58 (s, 3H), 3,71 (s,

3H), 3,77 (m, 1H), 4,39 (m, 1H), 5,29 (dd, 2H), 6,90 (s, 1H), 6,95 (s, 1H).

LRMS: m/z 394,8 (MH+)

Preparação 59

(dietoxifosforil) hexanoato de etilo

Fosfonoacetato de trietilo (2,6 mL, 12,9 mmol) foi adicionado a uma solução de hidreto de sódio (576 mg, 14,2 mmol) em tetra-hidrofurano (75 mL) e a solução foi agitada à temperatura ambiente durante 30 minutos. Uma solução do iodeto da Preparação 64 (5,0 g, 12,9 mmol) em tetra-hidrofurano (10 mL), e 18-c-6 (40 mg) foram adicionados e a reacção foi aquecida sob refluxo durante 18 horas. Foi adicionada uma solução aquosa de cloreto de amónio à reacção arrefecida e a mistura foi extraída com acetato de etilo (2 x). Os extractos orgânicos combinados foram secos (MgSO₄) filtrados e concentrados a pressão reduzida para dar um óleo amarelo. O produto bruto foi purificado por cromatografia em coluna de sílica gel, eluindo com um gradiente de solvente de acetato de etilo:pentano (40:60 a

100:0), para dar o composto em epígrafe, 2,69 g, 49% de rendimento.

 1 H-RMN (CDCl₃, 300 MHz) δ: 1,21-1,37 (m, 9H), 1,38-1,58 (m, 13H), 1,80 (m, 1H), 1,96 (m, 1H), 2,80-2,98 (m, 1H), 3,05-3,25 (m, 2H), 4,16-4,24 (m, 6H), 4,40 (s, 2H), 7,18-7,37 (m, 5H).

Preparação 60

(2RS)-2-(dietoxifosforil)-5-(tritilamino)pentanoato de etilo

O composto em epígrafe foi preparado num rendimento de 34% a partir do brometo da Preparação 62, seguindo um procedimento similar ao descrito na Preparação 59.

 1 H-RMN (CDCl₃, 400 MHz) δ: 1,28 (m, 11H), 1,84-2,02 (m, 2H), 2,15 (t, 2H), 2,93 (m, 1H), 4,17 (m, 6H), 7,18 (m, 3H), 7,24 (m, 6H), 7,44 (d, 6H).

LRMS: m/z 524,4 (MH+)

Preparação 61

Uma solução fria de nitreto de sódio (2,63 g, 38 mmol) em água (5 mL) foi adicionada, gota a gota, a uma suspensão com agitação de D-histidina (2 g, 11,5 mmol) em ácido clorídrico concentrado (30 mL) a -5 °C. A mistura foi agitada a 0 °C durante 1 hora e depois à temperatura ambiente durante 17 horas. A mistura foi arrefecida e basificada com uma solução aquosa de hidróxido de amónio (2 N) até o pH = 4-5. O solvente foi então removido por evaporação a pressão reduzida para dar o ácido (2R)-2-cloro-3-(1H-imidazol-4-il)propanóico.

 $^{1}\text{H-RMN}$ (D₂O, 300 MHz) δ : 3,25 (m, 2H), 4,45 (t, 1H), 7,12 (s, 1H), 8,15 (s, 1H).

LRMS: m/z 175,0 (MH+)

 $[\alpha]_D = +13,51$ (*c* 0,093, metanol)

Cloreto de hidrogénio gasoso foi borbulhado por uma suspensão com agitação do ácido (2R)-2-cloro-3-(1H-imidazol-4-il)propanóico em metanol (60~mL) a 0 °C durante 20 minutos e a suspensão foi agitada à temperatura ambiente durante 17 horas. O solvente foi então removido por evaporação a pressão reduzida e o resíduo resfriado foi suspenso numa solução aquosa saturada fria de bicarbonato de sódio (20~mL) e extraído com diclorometano (4~x~20~mL). Os extractos orgânicos combinados foram secos

 (Na_2SO_4) , filtrados e concentrados a pressão reduzida. O resíduo foi dissolvido em éter dietílico e a solução resultante foi concentrada a pressão reduzida para dar o composto em epígrafe como um óleo, 350 mg, 14% de rendimento.

 1 H-RMN (CDCl₃, 300 MHz) δ: 3,20 (dd, 1H), 3,37 (dd, 1H), 3,75 (s, 3H), 4,59 (m, 1H), 6,90 (s, 1H), 7,57 (s, 1H).

LRMS: m/z 189,0 (MH+)

 $[\alpha]_D = +2,13$ (c 0,16, metanol)

Preparação 62

N(3-bromopropil)-N-tritilamina

Trifenilfosfina (121 g, 0,46 mol) foi adicionada, em porções, a uma solução arrefecida no gelo do álcool da Preparação 63 (139 g, 0,44 mol) e tetrabrometo de carbono (153 g, 0,46 mol) em diclorometano (1360 mL) e, assim que a adição estava completa, a reacção foi agitada à temperatura ambiente durante 48 horas. A reacção foi diluída com água, as camadas foram separadas e a fase aquosa foi extraída com diclorometano (2 x). Os extractos orgânicos combinados foram secos (Na₂SO₄), filtrados e concentrados a pressão reduzida. O produto bruto foi

purificado por cromatografia em coluna de sílica gel, eluindo com um gradiente de solvente de hexano:acetato de etilo (99:1 a 95:5), para dar o composto em epígrafe, 81,5 g, 49% de rendimento.

 $^{1}\text{H-RMN}$ (CDCl₃, 300 MHz) δ : 2,02 (m, 2H), 2,28 (m, 2H), 3,58 (t, 2H), 7,19 (m, 3H), 7,27 (m, 6H), 7,46 (d, 6H).

Preparação 63

3-Hidroxi-N-tritil-1-propanamina

Uma mistura de 3-amino-1-propanol (51 mL, 0,66 mol), clorotrifenilmetano (184 g, 0,66 mol) e trietilamina (92 mL, 0,66 mol) em diclorometano (1000 mL) foi agitada à temperatura ambiente durante 18 horas. A mistura de reacção foi diluída com água e as camadas foram separadas. A fase aquosa foi extraída com mais diclorometano (2 x) e os extractos orgânicos combinados foram secos (Na₂SO₄), filtrados e concentrados a pressão reduzida. O resíduo foi bem triturado com éter diisopropílico e o sólido resultante foi filtrado e seco. O sólido foi então triturado com metanol, a suspensão foi filtrada e o filtrado foi concentrado a pressão reduzida, para dar o

composto em epígrafe como um sólido branco, 139,1 g, 66% de rendimento.

 $^{1}\text{H-RMN}$ (CDCl₃, 300 MHz) δ : 1,70 (m, 2H), 2,38 (t, 2H), 3,86 (t, 2H), 7,19 (m, 3H), 7,25 (m, 6H), 7,42 (d, 6H).

LRMS: m/z 318,4 (MH+)

Preparação 64

Benzil (4-iodobutil) carbamato de terc-butilo

Uma mistura do cloreto da Preparação 65 (9,3 g, 31,3 mmol) e iodeto de sódio (14,9 g, 100 mmol) em acetona (200 mL) foi aquecida a refluxo durante 18 horas. A mistura de reacção arrefecida foi concentrada a pressão reduzida e o resíduo foi partilhado entre éter e água. As camadas foram separadas e a fase aquosa foi extraída com éter. Os extractos orgânicos combinados foram então secos (Na_2SO_4), filtrados e concentrados a pressão reduzida para dar o composto em epígrafe como um óleo amarelo, 10,5 g, 87% de rendimento.

 1 H-RMN (CDCl₃, 300 MHz) δ: 1,40-1,65 (m, 11H), 1,79 (m, 2H), 3,19 (m, 4H), 4,42 (s, 2H), 7,20-7,38 (m, 5H). LRMS: m/z 390 (MH+)

Preparação 65

Benzil (4-clorobutil) carbamato de terc-butilo

Benzilcarbamato de terc-butilo (J. Org. Chem. 1993, 58, 56) (9,1 g, 44 mmol) foi adicionado a uma solução de hidreto de sódio (2,14 g, 53 mmol) em tetra-hidrofurano (160 mL), e a solução foi agitada à temperatura ambiente durante 20 minutes. 1-Bromo-4-clorobutano (5,07 mL, 44 mmol) foi então adicionado e a reacção foi aquecida a refluxo durante 18 horas. A reacção arrefecida foi neutralizada pela adição de uma solução aquosa de cloreto de amónio, e a mistura foi extraída com acetato de etilo (2 x). Os extractos orgânicos combinados foram secos (Na₂SO₄), filtrados e concentrados a pressão reduzida. O produto bruto foi purificado por cromatografia em coluna de sílica gel, eluindo com acetato:pentano (95:5), para dar o composto em epígrafe como um óleo límpido, 6,1 g, 47% de rendimento.

 1 H-RMN (CDCl₃, 300 MHz) δ : 1,45 (s, 9H), 1,58-1,80 (m, 4H), 3,14-3,30 (m, 2H), 3,52 (t, 2H), 4,42 (s, 2H), 7,25 (m, 5H).

LRMS: m/z 298,0 (MH+)

Preparação 66

1-Propil-1*H*-imidazol-4-carboxaldeído

Imidazole-4-carboxaldeído (30 g, 0,31 mol) foi adicionado, em porções, a uma solução de hidreto de sódio (13,9 g, 60% dispersão em óleo mineral, 0,348 mol) em tetra-hidrofurano (450 mL) e a solução foi agitada durante 45 minutos. Brometo de n-propilo (31,2 mL, 0,344 mol) foi então adicionado, em porções, seguido por 18-c-6 (150 mg), e a reacção foi aquecida a refluxo durante 18 horas. Uma solução aquosa de cloreto de amónio foi adicionada à reacção arrefecida e a mistura foi extraída com acetato de etilo (2 x) e diclorometano (2 x). Os extractos orgânicos combinados foram secos (MgSO₄), filtrados e concentrados a pressão reduzida. O produto bruto foi purificado por cromatografia em coluna de sílica gel, eluindo com acetato de etilo:pentano (40: 60), para dar o composto em epígrafe, 20,2 g, 47% de rendimento.

 $^{1}\text{H-RMN}$ (DMSO-d₆, 400 MHz) δ : 0,80 (t, 3H), 1,76 (m, 2H), 3,98 (t, 2H), 7,84 (s, 1H), 8,04 (s, 1H), 9,70 (s, 1H).

LRMS: m/z 277,3 (2M+H) +

Preparação 67

1-n-Butil-1H-imidazol-4-carboxaldeído

Imidazole-4-carboxaldeído (10 q, 104 mmol) foi adicionado, em porções, a uma solução de hidreto de sódio (4,56 g, 60% dispersão em óleo mineral, 114 mmol) em tetra-hidrofurano (150 mL) e a solução foi agitada durante 30 minutos. Brometo de n-butilo (15,7 g, 114 mmol) foi então adicionado, em porções, seguido por 18-c-6 (150 mg), e a reacção foi aquecida a refluxo durante 18 horas. Uma solução aquosa de cloreto de amónio foi adicionada à reacção arrefecida e a mistura foi extraída com acetato de etilo (2 x) e diclorometano (2 x). Os extractos orgânicos combinados foram secos (MgSO₄), filtrados e concentrados a pressão reduzida. O produto bruto foi purificado por cromatografia em coluna de sílica gel, eluindo com um gradiente de solvente de pentano: acetato de etilo (50:50 a 25:75), para dar o composto em epígrafe, 4,45 g, 28% de rendimento.

 1 H-RMN (CDCl₃, 300 MHz) δ: 0,97 (t, 3H), 1,37 (m, 2H), 1,80 (m, 2H), 4,00 (t, 2H), 7,55 (s, 1H), 7,62 (s, 1H), 9,88 (s, 1H).

LRMS: m/z 153,3 (MH+)

Preparação 68

$\frac{1-\{\,[2-(Trimetilsilil)\,etoxi\,]\,metil\,\}\,-1\,H-imidazol\,-4-}{carboxaldeido}$

Imidazole-4-carboxaldeído (1 q, 10,4 mmol) foi adicionado, em porções, a uma solução de hidreto de sódio (463 mg, 60% dispersão em óleo mineral, 11,4 mmol) em N,Ndimetilformamida (15 mL), e a solução foi agitada durante minutos à temperatura ambiente. Cloreto 2-(trimetilsilil) etoximetilo (2,03 mL, 11,4 mmol) adicionado e a reacção foi agitada à temperatura ambiente durante 18 horas. A reacção foi neutralizada pela adição de uma solução aquosa de cloreto de amónio e a mistura foi extraída com acetato de etilo (2 x). Os extractos orgânicos combinados foram secos (Na₂SO₄), filtrados e concentrados a pressão reduzida. O resíduo foi purificado por cromatografia em coluna de sílica gel, eluindo com metanol:acetato de etilo (3:97), para dar o composto em epígrafe, 1,8 g, 77% de rendimento.

 1 H-RMN (CDCl₃, 300 MHz) δ: -0,02 (s, 9H), 0,92 (t, 2H), 3,52 (t, 2H), 5,33 (s, 2H), 7,68 (s, 1H), 7,72 (s, 1H), 9,92 (s, 1H).

Preparações 69 e 70

$\underline{5-\texttt{Propil-1-}\{\texttt{[2-(trimetilsilil)etoxi]metil}\}-1}H-imidazol-2-carboxaldeído$

n-Butil lítio (11,9 mL, 1,6 M em hexanos, 19,14 mmol) foi adicionado, gota a gota, a uma solução arrefecida (-40 °C) dos imidazóis das Preparações 71 e 72 (4,6 g, 19,14 mmol) em tetra-hidrofurano (75 mL) e, assim que a adição estava completa, a solução vermelha resultante foi agitada durante 20 minutos. N,N-Dimetilformamida (1,36 mL, 19,14 mmol) foi adicionada, gota a gota, durante 15 minutos, e a reacção foi então deixada a aquecer à temperatura ambiente e agitada durante 18 horas. A reacção foi neutralizada pela adição de cloreto de amónio aquoso, extraída com éter e os extractos orgânicos foram concentrados a pressão reduzida. O produto

bruto foi purificado por cromatografia em coluna de sílica gel, eluindo com hexano:acetato de etilo (75:25), para dar os compostos em epígrafe das Preparações 69 e 70 respectivamente numa mistura regioisomérica 3:1, 3,4 g, 66% de rendimento.

 1 H-RMN (CDCl₃, 300 MHz) δ: -0,02 (s, 9H), 0,84-1,02 (m, 3H), 1,74 (m, 4H), 2,61 (m, 2H), 3,57 (m, 2H), 5,75 (s, 1,5H), 5,80 (s, 0,5H), 6,98 (s, 0,25H), 7,10 (s, 0,75H), 9,75 (s, 0,25H), 9,77 (s, 0,75H).

LRMS: m/z 269,0 (MH+)

Preparações 71 e 72

$\underline{5-n-\texttt{Propil-1-}\{\texttt{[2-(trimetilsilil)etoxi]metil}\}-1}H-imidazol$

Uma solução do imidazol da Preparação 76 (4,9 g, 44,6 mmol) em tetra-hidrofurano (20 mL) foi adicionada, gota a gota, a uma solução de hidreto de sódio (1,96 g, 60% dispersão em óleo mineral, 49,1 mmol) em tetra-hidrofurano (20 mL) e, assim que a adição estava completa,

a solução foi agitada durante uma hora. A solução foi °C e cloreto a 0 arrefecida de 2-(trimetilsilil)etoximetilo (8,28 mL, 46,8 mmol) adicionado, gota a gota, durante 20 minutos. A mistura de reacção foi agitada à temperatura ambiente durante 18 horas, depois concentrada a pressão reduzida. O resíduo foi partilhado entre éter e água, as camadas foram separadas e a fase aquosa foi extraída com éter. Os extractos orgânicos combinados foram lavados com solução aquosa saturada de cloreto de sódio, secas (MgSO₄), filtradas e concentradas a pressão reduzida. O óleo castanho residual foi purificado por cromatografia em coluna de sílica gel, eluindo com diclorometano: metanol (95:5), para dar os compostos em epígrafe da Preparação 71 e 72 respectivamente numa mistura regioisomérica de 3:1, 7 q, 65% de rendimento.

 1 H-RMN (CDCl₃, 300 MHz) δ: 0,0 (s, 9H), 0,90 (m, 3H), 1,65 (m, 4H), 2,58 (m, 2H), 3,45 (m, 2H), 5,20 (s, 2H), 6,74 (s, 0,75H), 6,80 (s, 0,25H), 7,28 (s, 1H).

LRMS: m/z 241,1 (MH+)

Preparação 73

2-(Clorometil)-1-{[2-(trimetilsilil)etoxi]metil}1H-imidazol

Uma solução do álcool (150 mg, 0,66 mmol) da Preparação 74 em diclorometano (3,7 mL) foi tratada com trietilamina (0,138 mL, 0,99 mmol). Cloreto de metanossulfonilo (0,061 mL, 1,79 mmol) foi então adicionado e a mistura de reacção foi agitada durante 1 hora. A reacção foi então diluída com água e extraída com diclorometano (2 x). Os extractos orgânicos combinados foram secos (Na_2SO_4) e filtrados. Uma pequena alíquota da solução resultante foi concentrada a pressão reduzida para proporcionar uma amostra do composto em epígrafe para caracterização. A solução orgânica resultante foi concentrada a um pequeno volume (0,5 mL) e diluída com tetra-hidrofurano (5 mL). Esta solução orgânica foi utilizada directamente na Preparação 58.

 1 H-RMN (CDCl₃, 400 MHz) δ: 0,00 (s, 9H), 0,94 (t, 2H), 3,52 (t, 2H), 4,72 (s, 2H), 5,37 (s, 2H), 7,01 (s, 2H).

LRMS: m/z 247 (MH+)

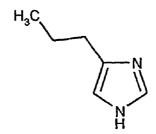
Preparação 74

(1-{[2-(Trimetilsilil)etoxi]metil}-1H-imidazol-2il)metanol

Uma solução do aldeído (2,3 g, 10,2 mmol) da Preparação 75 em metanol (30 mL) foi arrefecida a -20 °C. Boro-hidreto de sódio (462 mg, 12,2 mmol) foi adicionado, em porções, à solução com agitação e a reacção foi deixada a aquecer à temperatura ambiente durante 1 hora. A reacção foi neutralizada pela adição de uma solução aquosa de cloreto de amónio e a mistura resultante foi extraída com diclorometano (2 x). Os extractos orgânicos combinados foram secos (Na_2SO_4), filtrados e concentrados a pressão reduzida para dar o composto em epígrafe como um sólido bege, 2,15 g, 93% de rendimento.

 1 H-RMN (CDCl₃, 400 MHz) δ: -0,03 (s, 9H), 0,90 (t, 2H), 3,52 (t, 2H), 4,71 (s, 2H), 5,35 (s, 2H), 6,94 (s, 1H), 6,97 (s, 1H).

Preparação 75


 $\frac{1-\{\,[2-(Trimetilsilil)\,etoxi\,]\,metil\,\}\,-1\mathit{H}-imidazol\,-2-}{carboxalde\'ido}$

Hidreto de sódio (463 mg, 60% dispersão em óleo mineral, 11,4 mmol) foi lavado com hexano numa atmosfera azoto seco. N, N-Dimetilformamida (15 adicionada, a mistura resultante foi agitada à temperatura ambiente e imidazol-2-carboxaldeído (1 q, 10,4 mmol) foi adicionado, em porções. A reacção foi então agitada durante 1,5 horas, cloreto de 2-(trimetilsilil)etoxi metilo (2,03 mL, 11,4 mmol) foi adicionado e a mistura resultante foi então agitada à temperatura ambiente durante 18 horas. A reacção foi neutralizada pela adição de uma solução aquosa de cloreto de amónio e a mistura resultante foi extraída com acetato de etilo (2 x). Os extractos orgânicos combinados foram secos (Na₂SO₄), filtrados, concentrados a pressão reduzida depois azeotropados com xileno para dar o composto em epígrafe, 2,3 g, 98% de rendimento.

 1 H-RMN (CDCl₃, 400 MHz) δ: -0,03 (s, 9H), 0,90 (t, 2H), 3,55 (t, 2H), 5,77 (s, 2H), 7,32 (s, 1H), 7,35 (s, 1H), 9,84 (s, 1H).

Preparação 76

4-Propil-1*H*-imidazol

Uma mistura de 2-bromopentanal (15 g, 91 mmol) (Bull. Chim. Soc. Fr. 1973, 1465) e formamida (32 mL, 806 mmol) foi aquecida a 180 °C durante 8 horas, depois deixada a arrefecer. A formamida em excesso foi removida por destilação a vácuo e o resíduo foi partilhado entre uma solução aquosa de bicarbonato de sódio e acetato de etilo. As camadas foram separadas e a fase orgânica foi concentrada a pressão reduzida. O produto bruto foi purificado por cromatografia em coluna de sílica gel, eluindo com um gradiente de solvente de diclorometano:metanol (93:7 a 90:10), para dar o composto em epígrafe, 9 g, 90% de rendimento.

 $^{1}\text{H-RMN}$ (CDCl3, 300 MHz) $\pmb{\delta}$: 0,98 (t, 3H), 1,67 (m, 2H), 2,60 (t, 2H), 6,79 (s, 1H), 7,25 (s, 1H), 7,58 (s, 1H).

LRMS: m/z 221 (2M+H) +

Preparação 77

N-(2-oxobutil) carbamato de terc-butilo

Brometo de etil magnésio (solução 1 M em tetrahidrofurano, 13,7 mL, 13,7 mmol) foi adicionado a uma solucão agitação de 2-[metoxi(metil)amino]-2com oxoetilcarbamato de terc-butilo (Synth. Commun. 1988, 18, 2273) (1 g, 4,58 mmol) em tetra-hidrofurano (25 mL) a 0 $^{\circ}$ C depois agitada a 0 °C durante 15 minutos. A solução foi deixada a aquecer à temperatura ambiente e foi agitada durante 45 minutos. Acetato de etilo (5 mL) adicionado, seguido por uma solução saturada de cloreto de amónio. A fase aquosa foi extraída com acetato de etilo. Os extractos orgânicos combinados foram lavados com uma solução aquosa saturada de hidrogénio carbonato de sódio e solução aquosa saturada de cloreto de sódio. A fase orgânica foi então seca (Na₂SO₄), filtrada e concentrada a pressão reduzida. O resíduo foi purificado cromatografia em coluna de sílica gel, eluindo com um gradiente de solvente de hexano: acetato de etilo (85:15 a 70:30), para dar o composto em epígrafe como um óleo incolor, 730 mg, 84% de rendimento.

 $^{1}\text{H-RMN}$ (CDCl $_{3}$, 300 MHz) δ : 1,10 (t, 3H), 1,43 (s, 9H), 2, 45 (q, 2H), 4,01 (m, 2H), 5,22 (br s, 1H),

LRMS: m/z 187,9 (MH+), 204,9 (MNH4+)

TLC: hexano:acetato de etilo (70:30) Rf = 0,41

Preparações 78 e 79

Os compostos das seguintes Preparações dispostos em tabela de fórmula geral:

foram preparados por um método similar ao da Preparação 77 utilizando 2-[metoxi(metil)amino]-2-oxoetilcarbamato de terc-butilo (Synth. Commun. 1988, 18, 227) e os materiais de partida de Grignard apropriados.

Preparação	R ¹	Rendimento	Dados Analíticos
78		12	¹ H-RMN (CDCl ₃ , 300 MHz) δ: 1,41 (s, 9H), 3,72 (s, 2H), 4,05 (d, 2H), 5,15 (d, 1H), 7,17-7,40 (m, 5H).
79	CH ₃	58	1 H-RMN (CDCl ₃ , 300 MHz) δ: 1,15 (d, 6H), 1,43 (s, 9H), 2,82 (d, 1H), 4,07 (d, 2H), 5,25 (br s, 1H).

Preparação 80

(1S)-1-metil-2-oxopropilcarbamato de terc-butilo

$$\begin{array}{c|c} H_3C & CH_3 & O & CH_3 \\ \hline \\ H_3C & O & H & CH_3 \\ \hline \end{array}$$

Brometo de metil magnésio (solução 3,0 M em éter dietílico, 4,3 mL, 12,9 mmol) foi adicionado a uma solução agitação de (1S) -2-[metoxi(metil)amino]-1-metil-2oxoetilcarbamato de terc-butil (Tetrahedron: Asymmetry 1996, 7, 985) (1 g, 4,3 mmol) em tetra-hidrofurano anidro (20 mL) a -60 °C numa atmosfera de azoto. A mistura foi deixada a aquecer até 0 °C e depois até à temperatura ambiente e foi agitada à temperatura ambiente durante 1 hora. Cloreto de amónio saturado foi adicionado e a fase aquosa foi extraída com éter dietílico (2 x 76 mL). Os extractos orgânicos combinados foram então lavados com uma solução aquosa saturada de cloreto de amónio e uma solução aquosa saturada de cloreto de sódio. A fase orgânica foi então seca (MgSO₄), filtrada e concentrada a pressão reduzida. O resíduo foi purificado por cromatografia em coluna de sílica gel, eluindo com um gradiente de solvente de diclorometano: metanol (99:1 a 98:2), para dar o composto em epígrafe como um sólido incolor, 412 mg, 51% de rendimento.

 1 H-RMN (CDCl 3 , 300 MHz) δ: 1,35 (d, 3H), 1,45 (s, 9H), 2,20 (s, 3H), 4,30 (m, 1H), 5,22 (br s, 1H).

Preparação 81

(\pm) -2-Metoxi-1-metiletil 4-metilbenzenossulfonato

Uma solução de 1-metoxi-2-propanol em diclorometano (2,3 g, 25,5 mmol) (25 mL) e piridina (5 mL) foi arrefecida entre -5 e 0 °C. Cloreto de 4-metilbenzenossulfonilo (5,35 g, 28,1 mmol) foi adicionado, gota a gota, e a mistura foi agitada a 0 °C durante 15 minutos. A mistura foi então agitada à temperatura ambiente durante 18 horas. Gelo foi adicionado e a mistura foi agitada durante 1 hora. A fase orgânica foi separada, lavada com ácido sulfúrico aquoso a 10% (4x) e água (1x), e depois seca (MgSO₄) e filtrada. O filtrado foi purificado por cromatografia em coluna de sílica gel, eluindo com diclorometano. A solução obtida foi seca (MgSO₄), filtrada e concentrada a pressão reduzida para dar o composto em epígrafe como um óleo incolor, 4,3 g, 69% de rendimento.

 1 H-RMN (CDCl₃, 400 MHz) δ : 1,27 (d, 3H), 2,43 (s, 3H), 3,23 (s, 3H), 3,37 (m, 2H), 4,70 (m, 1H), 7,32 (d, 2H), 7,80 (d, 2H).

LRMS: $m/z 262,0 (MNH_4^+)$

Preparação 82

(2S)-2-[(terc-butoxicarbonil)amino]-3-[1-(4,4,4-trifluorobutil)-1H-imidazol-4-il]propanoato de metilo

Carbonato de césio (1,95 g, 6 mmol) e 1-bromo-4,4,4-trifluorobutano (954 mg, 5 mmol) foram adicionados a uma solução de (2S) -2-[(terc-butoxicarbonil)amino]-3(1Himidazol-4-il)propanoato de metilo (1,08 g, 4 mmol) em N, N-dimetilformamida (5 mL), e a reacção foi agitada a 70 °C durante 3 horas. A mistura arrefecida foi concentrada a pressão reduzida e o resíduo foi compartilhado entre acetato de etilo (150 mL) e água (50 mL). As camadas foram separadas, a fase orgânica foi seca ($MgSO_4$), filtrada e concentrada a pressão reduzida. O produto bruto foi purificado por cromatografia em coluna de sílica utilizando um gradiente de eluição de ciclo-hexano:acetato de etilo (100:0 a 0:100) para dar o composto em epígrafe como um óleo, 840 mg, 55% de rendimento.

 1 H-RMN (CDCl₃, 400 MHz) δ: 1,41 (s, 9H), 2,01 (m, 4H), 3,01 (m, 2H), 3,68 (s, 3H), 3,98 (t, 2H), 4,57 (m, 1H), 5,84 (m, 1H), 6,66 (s, 1H), 7,38 (s, 1H).

LRMS: m/z 380,3 (MH+)

 $[\alpha]D = -0.81$ (c 0.148, metanol)

Preparação 83

(2S)-2-[(terc-butoxicarbonil)amino]-3-[1-(1,3-tiazol-5-ilmetil)-1H-imidazol-4-il]propanoato de metilo

O composto em epígrafe foi obtido como um óleo num rendimento de 20%, a partir de (2S)-2[(terc-butoxicarbonil)amino]-3-(1H-imidazol-4-il)propanoato de metilo e cloridrato de 5-(clorometil)-1,3-tiazole (documento EP 373891), seguindo um procedimento similar ao descrito na Preparação 82, excepto por metanol:acetato de etilo (10:90) terem sido utilizados como eluentes da coluna.

 1 H-RMN (CDCl₃, 400 MHz) δ: 1,41 (s, 9H), 3,03 (m, 2H), 3,65 (s, 3H), 4,55 (m, 1H), 5,22 (s, 2H), 5,86 (m, 1H), 6,78 (s, 1H), 7,01 (s, 1H), 7,50 (s, 1H), 8,80 (s, 1H).

LRMS: m/z 367,1 (MH+)

Preparação 84

(2S)-2-[(terc-butoxicarbonil)amino]-3-{1-[2-(2-piridinil)etil]-1H-imidazol-4-il-propanoato de metilo

O composto em epígrafe foi obtido num rendimento de 16%, a partir de (2S)-2-[(terc-butoxicarbonil)amino]-3-(1H-imidazol-4-il)propanoato de metilo e bromidrato de 2-(2-brometilromoetil)piridina (J.~Het.~Chem.~1973,~10,~39) seguindo um procedimento similar ao descrito na Preparação 82, excepto por metanol:acetato de etilo terem sido utilizados como eluentes da coluna.

 1 H-RMN (CDCl₃, 400 MHz) δ: 1,41 (s, 9H), 2,95 (m, 1H), 3,03 (m, 1H), 3,18 (t, 2H), 3,65 (s, 3H), 4,32 (t, 2H), 4,50 (m, 1H), 5,80 (m, 1H), 6,58 (s, 1H), 6,95 (d, 1H), 7,15 (m, 1H), 7,20 (s, 1H), 7,58 (m, 1H), 8,58 (d, 1H).

LRMS: m/z 375,2 (MH+)

Preparação 85

(2S)-2-[(terc-butoxicarbonil)amino]-3-1-fenil-1Himidazol-4-il)propanoato de metilo

Ácido fenilborónico (2,44 g, 20 mol), acetato de cobre (2,72 q, 15 mmol), peneiras moleculares 4A (3 q) e piridina (1,62 mL, 20 mmol) foram adicionados a uma de (2S) -2-[(terc-butoxicarbonil)amino]-3-(1Himidazol-4-il) propanoato de metilo (2,69 g, 10 mmol) em diclorometano (60 mL), e a mistura de reacção foi agitada à temperatura ambiente ao mesmo tempo que borbulhava por ar comprimido, durante 2 dias. Uma solução de ácido etilenodiaminotetracético (5 q, 17 mmol) numa solução saturada de bicarbonato de sódio (200 mL) foi adicionada e a mistura foi agitada à temperatura ambiente durante 20 minutos. As fases foram separadas e a camada aquosa foi extraída com diclorometano (2 x 100 mL), e os extractos orgânicos combinados foram secos (MgSO₄), filtrados e concentrados a pressão reduzida. O resíduo foi azeotropado $(300 \, \text{mL})$, depois tolueno е purificado cromatografia em coluna de sílica utilizando um gradiente de eluição de pentano: acetato de etilo (100:0 a 40:60), para dar o composto em epígrafe como uma goma amarela, 1,87 g, 52% de rendimento.

 1 H-RMN (CDCl₃, 400 MHz) δ: 1,42 (s, 9H), 3,05-3,19 (m, 2H), 3,72 (s, 3H), 4,60 m, 1H), 5,84 (m, 1H), 7,04 (s, 1H), 7,36 (m, 3H), 7,46 (m, 2H), 7,78 (s, 1H).

LRMS: m/z 346,1 (MH+)

Análise Encontrada: C, 60,59; H, 6,56; N, 11,57. $C_{18}H_{23}N_3O_4 \bullet 0,75H_2O \text{ requer C, 60,24; H, 6,88; N, 11,71%. }$

 $[\alpha]_D = +10,64 \ (c \ 0,126, metanol)$

Preparação 86

Dicloridrato de metil(2S)-2-amino-3-[1-(4,4,4-trifluorobutil)-1H-imidazol-4-il]propanoato

Ácido clorídrico 4 M em dioxano (5 mL) foi adicionado à amina protegida da Preparação 82 (830 mg, 2,19 mmol), num frasco arrefecido com gelo. A solução foi deixada a aquecer até à temperatura ambiente, e foi agitada durante 3 horas. A mistura foi concentrada a pressão reduzida, o resíduo foi azeotropado com acetato de etilo 3 x 100 mL), depois seco sob vácuo, para dar o composto em epígrafe como uma espuma branca em rendimento quantitativo.

 1 H-RMN (D₂O, 400 MHz) δ: 2,00-2,19 (m, 4H), 3,28 (m, 2H), 3,70 (s, 3H), 4,17 (t, 2H), 4,37 (t, 1H), 7,40 (s, 1H), 8,62 (s, 1H).

LRMS: m/z 280,1 (MH+)

 $[\alpha]_D = +14,60 \ (c \ 0,1, \text{ metanol})$

Preparação 87

O composto em epígrafe foi obtido num rendimento de 90% como um sólido amarelo, depois de trituração com éter dietílico, a partir da amina protegida da Preparação 85, seguindo um procedimento similar ao descrito na Preparação 86.

 $^{1}\text{H-RMN}$ (D₂O, 400 MHz) δ : 3,40 (m, 2H), 3,77 (s, 3H), 4,42 (t, 1H), 7,50 (m, 5H), 7,77 (s, 1H), 9,00 (s, 1H).

LRMS: m/z 246 (MH+)

Análise Encontrada: C, 47,86; H, 5,51; N, 12,61, $C_{13}H_{17}N_3O_2Cl_2\bullet 1,0H_2O \text{ requer C, 47,72; H, 5,54; N, 12,84\%, } \\ [\alpha]_D = +12, 55 \text{ (c 0,11, metanol)}$

Preparação 88

Dicloridrato de metil(2S)-2-amino-3-[1-(1,3-tiazol-5-ilmetil)-1H-imidazol-4-il[]propanoato

Ácido clorídrico 4 M em dioxano (6 mL) foi adicionado à amina protegida da Preparação 83 (1,3 g, 3,5 mmol) num frasco arrefecido com gelo. Água (5 mL) seguida por ácido clorídrico concentrado foram então adicionados e a mistura foi concentrada a pressão reduzida e azeotropada com etanol para dar o composto em epígrafe, 1,2 g, 100% de rendimento.

 1 H-RMN (CD₃OD, 400 MHz) δ: 3,30-3,46 (m, 2H), 3,81 (s, 3H), 4,43 (m, 1H), 5,62 s, 2H), 7,63 (s, 1H), 7,95 (s, 1H), 9,10 (s, 1H), 9,18 (s, 1H).

LRMS: m/z 267,0 (MH+)

 $[\alpha]_D = +14,60 \ (c \ 0,1, \text{ metanol})$

Preparação 89

O composto em epígrafe foi obtido como uma goma num rendimento de 95%, a partir da amina protegida da Preparação 84, seguindo o procedimento descrito na Preparação 88.

Preparação 90

(2S)-2-({2-[(terc-butoxicarbonil)amino]etil}amino)3-(1-metil-1H-imidazol-4-il)propanoato de metilo

Dicloridrato de metil(2S)-2-amino-3-(1-metil-1H-imidazol-4-il)propanoato (1,06 g, 4 mmol), acetato de sódio (1,3 g, 16 mmol) e peneiras moleculares 4A (500 mg) foram adicionadas a uma solução de N-(2-oxoetil)carbamato de terc-butilo (637 mg, 4 mmol) em metanol (10 mL), e a solução foi agitada durante 10 minutos. Cianoboro-hidreto de sódio (1,3 g, 16 mmol) foi então adicionado e a reacção

foi agitada à temperatura ambiente durante 72 horas. Ácido clorídrico 2 M (2 mL) e água (50 mL) foram adicionados e a solução foi então basificada utilizando uma solução saturada de bicarbonato de sódio. A mistura foi extraída com acetato de etilo (5 x 100 mL), os extractos combinados foram secos (MgSO₄), filtrados e concentrados a pressão reduzida. O produto bruto foi purificado por cromatografia em coluna de sílica gel utilizando um gradiente de eluição de acetato de etilo: metanol: dietilamina (100: 0: 0 a 96: 2: 2) para dar o composto em epígrafe como um óleo incolor, 220 mg, 17% de rendimento.

 1 H-RMN (CDCl₃, 400 MHz) δ: 1,41 (s, 9H), 2,62 (m, 1H), 2,77-2,86 (m, 2H), 2,98 (dd, 1H), 3,18 (m, 2H), 3,60 (m, 4H), 3,70 (s, 3H), 5,38 (m, 1H), 6,63 (s, 1H), 7,34 (s, 1H).

LRMS: m/z 327,2 (MH+)

 $[\alpha]_D = -1,48 \ (c \ 0,108, \text{ metanol})$

Preparação 91

Peneiras moleculares 4A (500 mg)e N-(2oxoetil)carbamato de terc-butilo (350 mg, 2,2 mmol) foram adicionados a uma solução da amina da Preparação 86 (780 mg, 2,2 mmol) em metanol (5 mL, e a mistura foi agitada durante 20 minutos. Cianoboro-hidreto de sódio (276 mg, 4,4 mmol) foi adicionado e a reacção foi agitada à temperatura ambiente durante 18 horas. Ácido clorídrico 2 M (5 mL) foi adicionado, a mistura foi então neutralizada utilizando uma solução de bicarbonato de sódio, e filtrada em Arbocel®. O filtrado foi concentrado a pressão reduzida e o resíduo foi partilhado entre acetato de etilo (100 mL) e áqua (20 mL). As camadas foram separadas e a camada orgânica foi seca (MgSO₄), filtrada e concentrada a pressão reduzida. O produto bruto foi purificado por cromatografia em coluna de sílica gel utilizando um gradiente de eluição de acetato de etilo:metanol (100:0 a 90:10) para dar o composto em epígrafe como um óleo incolor, 300 mg, 32% de rendimento.

 $^{1}\text{H-RMN}$ (CDCl3, 400 MHz) $\delta\colon$ 1,42 (s, 9H), 2,02 (m, 4H), 2,62 (m, 1H), 2,78-2,92 (m, 2H), 2,98 (dd, 1H), 3,18 (m, 2H), 3,60 (t, 1H), 3,68 (s, 3H), 3,98 (t, 2H), 5,40 (m, 1H), 6,70 (s, 1H), 7,38 (s, 1H).

LRMS: m/z 423,2 (MH+)

 $[\alpha]_D = +2,0 \ (c \ 0,1, \text{ metanol})$

Preparações 92 a 94

Os seguintes compostos de estrutura geral:

foram preparados a partir das aminas apropriadas (Preparações 87-89) e N-(2-oxoetil) carbamato de terc-butilo, seguindo um procedimento similar ao descrito na Preparação 91.

Prep.	R	Rendimento	Dados Analíticos
		(%)	
			1 H-RMN (CDCl $_{3}$ 400 MHz) δ :
			1,38 (s, 9H), 2,58 (m, 1H),
	N/C		2,70-2,84 (m, 2H), 2,92
91 ¹		12 óleo	(dd, 1H), 3,10 (m, 2H),
	\		3,58 (dd, 1H), 3,62 (s,
			3H), 5,19 (s, 2H), 5,38 (m,
			1H), 6,75 (s, 1H), 7,00 (s,
			1H), 7,44 (s, 1H), 8,77 (s,
			1H). LRMS: m/z 410,0 (MH+)
			1 H-NM (CDCl ₃ , 400 MHz) δ :
			1,42 (s, 9H), 2,60 (m, 1H),
			2,75-2,84 (m, 2H), 2,94
93	N	35 óleo	(dd, 1H), 3,18 (m, 4H),
			3,58 (t, 1H), 3,68 (s, 3H),
			4,35 (t, 2H), 5,41 (m, 1H),
			6,61 (s, 1H), 6,98 (d, 1H),
			7,18 (m, 1H), 7,22 (s, 1H),
			7,58 (m, 1H), 8,58 (d,1H).
			LRMS: m/z 418,2 (MH+) $[\alpha]_D$
			= +2,52 (c 0,103, metanol)

Continuação

Prep.	R	Rendimento	Dados Analíticos
		(%)	
942		10 goma	¹ H-RMN (CDCl ₃ , 400 MHz) δ: 1,41 (s, 9H), 2,65 (m, 1H), 2,81 (m, 1H), 2,96 (dd, 1H), 3,03 (dd, 1H), 3,19 (m, 2H), 3,70 (m, 4H), 5,38 (m, 1H), 7,08 (s, 1H), 7,37 (m, 3H), 7,45 (m, 2H), 7,78 (s, 1H). LRMS: m/z 389,2 (MH+)

- 1 = o produto foi purificado adicionalmente por cromatografia em
 coluna de sílica gel, utilizando acetato de etilo:metanol:dietilamina
 (90:5:5) como eluente
- 2 = o produto foi purificado adicionalmente por cromatografia em coluna de fase reversa em gel de poliestireno utilizando água:metanol (100:0 a 0:100) como eluente

Preparação 95

Brometo de (7S) -2-Benzil-6-{2-[(terc-

butoxicarbonil) amino]etil}-7-(metoxicarbonil)-5-oxo-

5, 6, 7, 8-tetra-hidroimidazo[1, 5-c]pirimidin-2-o

Brometo de benzilo (119 μL , 1 mmol) foi adicionado a uma solução do composto da Preparação 48 (270 mg, 0,8 mmol) em acetonitrilo (5 mL) e a mistura foi aquecida a 60

°C durante 18 horas. A mistura arrefecida foi concentrada a pressão reduzida e o resíduo foi purificado por cromatografia em coluna de sílica gel utilizando um gradiente de eluição de diclorometano: metanol (100:0 a 90:10) para dar o composto em epígrafe, 299 mg, 59% de rendimento.

 1 H-RMN (DMSOd₆, 400 MHz) δ: 1,28 (s, 9H), 3,18 (m, 3H), 3,42 (m, 2H), 3,61 (s, 3H), 3,95 (m, 1H), 4,85 (m, 1H), 5,42 (dd, 2H), 6,94 (m, 1H), 7,38-7,48 (m, 5H), 7,64 (s, 1H), 10,08 (s, 1H).

LRMS: m/z 430 (M+)

 $[\alpha]_D = +42,09 \ (c \ 0,096, metanol)$

Preparação 96

1-Isopentil-1*H*-imidazol-4-carboxaldeído

Uma mistura de hidreto de sódio (20 g, 60% dispersão em óleo mineral, 0,5 mol) em tetra-hidrofurano (300 mL) foi arrefecido a 0 °C, e 2-imidazolecarboxaldeído (45 g, 0,47 mol) foi adicionado, em porções durante 30 minutos. Assim que a adição estava completa, a reacção foi agitada a 0 °C durante 30 minutos, depois deixada a aquecer à temperatura ambiente. 1-Bromo-3-metilbutano

(60,8 mL, 0,5 mol) e 18-c-6 (140 mg) foram adicionados e a reacção foi aquecida a refluxo durante 18 horas. A reacção arrefecida foi neutralizada pela adição de água (400 mL), e a mistura resultante foi extraída com diclorometano (800 mL no total). Os extractos orgânicos combinados foram secos (MgSO₄) e evaporados a pressão reduzida. O óleo residual cor de laranja foi purificado por cromatografia em coluna de sílica gel utilizando um gradiente de eluição de acetato de etilo: pentano: metanol (40: 60: 0 a 100: 0: 0 a 98: 0: 2) para dar o composto em epígrafe, 19,6 g. A purificação adicional de fracções impuras utilizando uma coluna Biotage® de sílica gel e acetato de etilo:ciclohexano (40: 60) como eluente deu mais 11,4 g do composto em epígrafe.

A combinação dos dois lotes proporcionou 31 g do composto em epígrafe, 41% de rendimento.

 1 H-RMN (CDCl₃, 400 MHz) δ: 0,90 (d, 6H), 1,52 (m, 1H), 1,63 (dt, 2H), 3,97 (t, 2H), 7,47 (s, 1H), 7,58 (s, 1H), 9,80 (s, 1H).

LRMS: m/z 189 (MNa+)

Análise Encontrada: C, 63,73; H, 8,43; N, 16,36. $C_9H_{14}N_2O; 0, 2H_2O \ \text{requer C, 63,65;, 8,55; N, 16,50\%}.$

Preparação 97

3-[Hidroxi(1-isopentil-1*H*-imidazol-4-il)metil]-2-oxo-1-piperidinacarboxilato de *terc*-butilo

Diisopropilamida de lítio (6,5 mL, 2 emheptano/tetra-hidrofurano/etilbenzeno, 13 mmol) adicionada, gota a gota, durante 5 minutos a uma solução arrefecida (-78 °C) de 2-oxo-1-piperidinacarboxilato de terc-butilo (J. Org. Chem. 1983, 48, 2424; J. Chem. Soc. I, 1989, 721) (2,6 g, 13 mmol) em tetra-hidrofurano (25 mL), de modo a manter uma temperatura inferior a -70 °C. Assim que a adição estava completa, a solução foi agitada durante 30 minutos, depois foi deixada a aquecer até -10 °C, e foi agitada durante mais 30 minutos, antes de ser arrefecida de novo até -78 $^{\circ}$ C. Uma solução do aldeído da Preparação 96 (1,66 g, 10 mmol) em tetra-hidrofurano (5 mL) foi adicionada, gota a gota, de modo a manter uma temperatura inferior a -70 °C, e assim que a adição estava completa, a solução foi agitada durante 30 minutos. Uma solução saturada de cloreto de (30 amónio mL) adicionada, а mistura foi deixada а aquecer temperatura ambiente e depois foi partilhada entre água e acetato de etilo. As camadas foram separadas e a fase aquosa foi extraída com acetato de etilo, e os extractos orgânicos combinados foram secos (MgSO₄), filtrados e concentrados a pressão reduzida. O óleo amarelo resultante foi purificado por cromatografia em coluna de sílica gel utilizando um gradiente de eluição de acetato de etilo: dietilamina: metanol (100: 0: 0 a 88: 6: 6) para dar o composto em epígrafe, 1,1 g, 30% de rendimento.

 1 H-RMN (CDCl 3 , 400 MHz) (mistura de diastereoisómeros) δ: 0,90 (d, 6H), 1,46-1,64 (m, 13H), 1,76 (m, 3H), 2,98 (m, 1H), 3,52 (m, 1H), 3,74 (m, 1H), 3,84 (t, 2H), 4,08, 4,90 (2 xm, 1H), 4,58,5,34 (2 xm, 1H), 6,85 (2 xs, 1H), 7,35 (2 xs, 1H).

LRMS: m/z 388 (MNa $^+$)

Preparação 98

3-[Hidroxi(1-isopentil-1H-imidazol-4-il)metil]-1-metil-2-piperidinona

O composto em epígrafe foi obtido num rendimento de 67% a partir do aldeído da Preparação 96 e 1-metil-2-piperidinona, seguindo o procedimento descrito na Preparação 97.

 1 H-RMN (CDCl₃, 400 MHz) (mistura de diastereoisómeros) δ: 0,88 (2 xd, 6H), 1,35-1,82 (m, 7H), 2,67,2,81 (m, 1H), 2,88, 2,94 (2 xs, 3H), 3,18,3,22 (m,

2H), 3,84 (t, 2H), 4,78 (m, 1H), 5,04 (m, 1H), 6,83 (2 xs, 1H), 7,32 (2 xs, 1H).

LRMS: m/z 302 (MNa⁺)

Preparação 99

3-[Hidroxi(1-propil-1*H*-imidazol-4-il)metil]-2-oxo-1-piperidinacarboxilato de t*erc*-butilo

Bis(trimetilsilil) amida de lítio (244 mL, 1 M em tetra-hidrofurano, 244 mmol) foi adicionado, gota a gota, durante uma hora a uma solução arrefecida (-75 °C) de 2oxo-1-piperidinacarboxilato de terc-butilo (J. Org. Chem. 1983, 48, 2424; J. Chem. Soc. I, 1989, 721) (48,7 g, 244 mmol) em tetra-hidrofurano (200 mL) sob azoto, de modo a manter uma temperatura inferior a -70 °C. A mistura foi aquecida a 0 °C, agitada durante 90 minutos, depois arrefecida de novo a -75 °C. Uma solução do imidazol da Preparação 66 (26,0 g, 188 mmol) em tetra-hidrofurano (86 mL) foi adicionada, gota a gota, durante 30 minutos. Assim que a adição estava completa, a solução foi agitada durante 2 horas a -75 °C. A mistura foi vertida numa solução aquosa de ácido cítrico a 15% (650 mL), e extraída com acetato de etilo (3 x 250 mL). A solução aquosa foi basificada ao pH 8 utilizando hidróxido de sódio a 10% e foi extraída com diclorometano (3 x 250 mL). Estes extractos orgânicos foram secos e concentrados a pressão reduzida para dar o composto em epígrafe como um sólido amarelo pálido, 54,1 g.

Os extractos de acetato de etilo acima mencionados foram combinados, evaporados a pressão reduzida e o resíduo foi re-suspenso numa solução aquosa de ácido cítrico a 10% (100 mL). Este foi extraído com acetato de etilo (3 x 50 mL), e a solução aquosa foi basificada ao pH 8 utilizando uma solução de hidróxido de sódio a 10%. A solução aquosa foi extraída com diclorometano (3 x 50 mL), e estes extractos orgânicos foram secos e evaporados a pressão reduzida para dar um produto adicional como um sólido amarelo pálido, 22,4 g. Assim, o rendimento como um todo do composto em epígrafe foi de 76,5 g, 93% de rendimento.

 1 H-RMN (CDCl₃, 300 MHz) (mistura de diastereoisómeros) δ: 0,88 (t, 3H), 1,52 (s, 9H), 1,78 (m, 6H), 3,00 (m, 1H), 3,58 (m, 2H), 3,74 (m, 1H), 3,82 (t, 2H), 5,38 (d, 1H), 6,87 (s, 1H), 7,38 (s, 1H).

Preparação 100

 $\frac{3-[\mathrm{Hidroxi}\,(1-\mathrm{tritil}-1H-\mathrm{imidazol}-4-\mathrm{il})\,\mathrm{metil}]-2-\mathrm{oxo}-}{1-\mathrm{piperidinacarboxilato}\,\,\mathrm{de}\,\,\,terc\text{-butilo}}$

Diisopropilamida de lítio (8 mL, 1,5 M em ciclohexano, 12 mmol) foi adicionado, gota a gota, durante 5 minutos a uma solução arrefecida (-78 °C) de 2-oxo-1piperidinacarboxilato de terc-butilo (J. Org. Chem. 1983, 48, 2424; J. Chem. Soc. I, 1989, 721) (1,99 g, 10 mmol) em tetra-hidrofurano (40 mL), de modo a manter temperatura inferior a -70 °C. Assim que a adição estava completa, a solução foi agitada durante 20 minutos. Uma solução de 1-tritilimidazole-4-carboxaldeído (J. Med. Chem. 1977, 20, 721) (4.06 g, 12 mmol)emhidrofurano (60 mL) foi adicionada lentamente e, assim que a adição estava completa, a reacção foi agitada a -78 °C durante 2 horas. Uma solução aquosa saturada de cloreto de amónio a (50 mL) foi adicionada, a mistura foi deixada a aquecer até à temperatura ambiente e depois foi partilhada entre água (50 mL) e acetato de etilo (300 mL). As fases foram separadas, a camada orgânica foi seca (MgSO₄), filtrada e concentrada a pressão reduzida para dar o composto em epígrafe, 5,3 g, 99% de rendimento.

 $^{1}\text{H-RMN}$ (CDCl₃, 400 MHz) (mistura de diastereoisómeros) δ : 1,50 (2 xs, 9H), 1,60-1,81 (m, 4H), 3,00 (m, 1H), 3,58 (m, 1H), 3,74 (m, 1H), 4,10, 4,90 (2

xm, 1H), 4,62,5.40 (2 xm, 1H), 6,80 (2 xs, 1H), 7,14 (m, 6H), 7,25-7,40 (m, 10H).

LRMS: m/z 538 (MH+)

Preparação 101

(3E) -3-[(1-isopentil-1H-imidazol-4-il)metileno]-2oxo-1-piperidinacarboxilato de terc-butilo

Trietilamina (1,25 mL, 9,0 mmol) e cloreto de metanossulfonilo (256 μ L, 3,3 mmol) foram adicionados a uma solução do composto da Preparação 97 (1,1 g, 3,0 mmol) em diclorometano (15 mL), e a reacção foi agitada à temperatura ambiente durante 18 horas. A solução foi vertida em água (200 mL) e extraída com acetato de etilo (300 mL). O extracto orgânico foi seco (MgSO₄), filtrado e concentrado a pressão reduzida. O produto bruto foi purificado por cromatografia em coluna de sílica gel utilizando um gradiente de eluição de pentano:acetato de etilo (25:75 a 0:100) para dar o composto em epígrafe como um sólido branco, 430 mg, 41 % de rendimento.

 $^{1}\text{H-RMN}$ (CDCl₃, 400 MHz) δ : 0,92 (d, 6H), 1,52 (s, 9H), 1,56 (m, 1H), 1,64 (m, 2H), 1,88 (m, 2H), 3,03 (t,

2H), 3,73 (dd, 2H), 3,92 (t, 2H), 7,05 (s, 1H), 7,45 (s, 1H), 7,62 (s, 1H).

LRMS: m/z 348,1 (MH+)

Análise Encontrada: C, 65,47; H, 8,49; N, 12,05. $C_{19}H_{29}N_3O_3$ requer C, 65,68; H, 8,41; N, 12,09%.

Preparação 102

 $\underline{(3E) - 3 - [(1-Isopentil-1H-imidazol-4-il)metileno] - 1 - metil-2-piperidinona e$

 $\underline{(3Z) - 3 - [1 - Isopentil - 1H - imidazol - 4 - il) metileno] - 1 - metil - 2 - piperidinona$

O composto em epígrafe foi obtido com um sólido amarelo num rendimento de 46% de rendimento, a partir do composto da Preparação 98, seguindo um procedimento similar ao descrito na Preparação 101, excepto por acetato de etilo: dietilamina: metanol (100: 0: 0 a 96: 2: 2) terem sido utilizados como eluentes da coluna.

 1 H-RMN (CDCl₃, 400 MHz) δ (mistura de isómeros): 0,94 (d, 6H), 1,58 (m, 1H), 1,70 (m, 2H), 1,92 (m, 2H), 3,03 (s, 3H), 3,12 (m, 2H), 3,40 (t, 2H), 3,97 (t, 2H), 7,02 (s, 1H), 7,48 (s, 1H), 7,58 (s, 1H).

LRMS: m/z 262 (MH+)

Preparação 103

$\underline{(3E)-2-\infty o-3-[(1-tritil-1H-imidazol-4-il)metileno]-}$ 1-piperidinacarboxilato de terc-butilo e

Trietilamina (2,78 mL, 20,0 mmol) e cloreto de metanossulfonilo (773 l, 10,0 mmol) foram adicionados a uma solução arrefecida com gelo do composto da Preparação 100 (5,3 g, 10,0 mmol) em diclorometano (50 mL) e a reacção foi agitada à temperatura ambiente durante 18 horas, e mais 4 horas ao refluxo. A solução arrefecida foi concentrada a pressão reduzida e o resíduo foi purificado por cromatografia em coluna de sílica gel utilizando um gradiente de eluição de tolueno:acetato de etilo (100:0 a 20:80) para dar o composto em epígrafe, 2,6 g, 50% de rendimento.

 $^{1}\text{H-RMN}$ (CDCl₃, 400 MHz) δ (mistura de isómeros): 1,54 (2 xs, 9H), 1,85 (m, 2H), 3,00 (t, 2H), 3,68 (t, 2H),

6,99 (s, 1H), 7,10 (m, 6H), 7,30 (m, 9H), 7,44 (s, 1H), 7,58 (s, 1H).

LRMS: m/z 520,1 (MH+)

Análise Encontrada: C, 76,40; H, 6,51; N, 7,85. $C_{33}H_{33}N_{3}O_{3}$ requer C, 76,28; H, 6,40; N, 8,09%.

Preparação 104

Ácido (2E)-2-{3-[(terc-butoxicarbonil)amino]propil} -3-(1-propil-1H-imidazol-4-il)-2-propenóico

Uma solução de hidróxido de sódio (171,3 g, 4,28 M) em água (4,55 L) foi adicionada a uma solução do composto da Preparação 53 (455 g, 1,42 M) em tetra-hidrofurano (2,275 L), e a reacção foi agitada à temperatura ambiente durante 18 horas. A mistura foi concentrada a pressão reduzida para remover o tetra-hidrofurano e a solução aquosa restante foi ajustada ao pH 5 utilizando ácido acético glacial. O precipitado resultante foi granulado num banho de gelo durante 1 hora, depois filtrado, lavado com água e seco sob vácuo. Este sólido foi recristalizado

de isopropanol e água para dar o composto em epígrafe como um sólido branco, 304 g, 63% de rendimento.

 1 H-RMN (DMSOd₆, 400 MHz) δ: 0,81 (t, 3H), 1,38 (s, 9H), 1,56 (m, 2H), 1,74 (m, 2H), 2,75 (t, 2H), 2,93 (m, 2H), 3,95 (t, 2H), 6,97 (bs, 1H), 7,37 (s, 1H), 7,52 (s, 1H), 7,76 (s, 1H), 12,02 (bs, 1H).

LRMS: m/z 264 (MH+)

Preparação 105

$\frac{3-[(1-isopentil-1H-imidazol-4-il)metil]-2-oxo-1-}{piperidinacarboxilato de(<math>\pm$)-terc-butilo

O alceno da Preparação 101 (430 mg, 1,25 mmol), e palácio sobre carvão a 10% (Degussa® 101) (100 mg) em etanol (10 mL) foi hidrogenado a 60 psi e temperatura ambiente durante 18 horas. A mistura foi filtrada em Arbocel® e lavada com etanol. O filtrado foi concentrado a pressão reduzida para dar o composto em epígrafe como um óleo incolor, 420 mg, 97% de rendimento.

 1 H-RMN (CDCl₃, 400 MHz) δ: 0,89 (d, 6H), 1,50 (m, 10H), 1,62 (m, 4H), 1,78 (m, 1H), 1,98 (m, 1H), 2,63 (dd, 1H), 2,77 (m, 1H), 3,15 (dd, 1H), 3,54 (m, 1H), 3,70 (m, 1H), 3,81 (t, 2H), 6,68 (s, 1H), 7,30 (s, 1H).

LRMS: m/z 350 (MH+)

Preparação 106

$\underline{\text{($\pm$)}} - 3 - [\text{($1$-Isopentil-1$H-imidazol-4-il)} \text{metil-2-piperidinona}$ metil-2-piperidinona

O composto em epígrafe foi obtido como um óleo incolor num rendimento de 24%, a partir dos alcenos da Preparação 102, seguindo um procedimento similar ao descrito na Preparação 105, excepto por o produto ser adicionalmente purificado por cromatografia em coluna de sílica gel utilizando um gradiente de eluição de acetato de etilo: dietilamina: metanol (100: 0: 0 a 90: 5: 5).

 1 H-RMN (CDCl₃, 400 MHz) δ: 0,94 (d, 6H), 1,55 (m, 1H), 1,62 (m, 3H), 1,75 (m, 2H), 1,86 (m, 1H), 2,60 (m, 1H), 2,73 (dd, 1H), 2,94 (s, 3H), 3,22 (m, 3H), 3,85 (t, 2H), 6,69 (s, 1H), 7,35 (s, 1H).

LRMS: m/z 264 (MH+)

Preparação 107

 $\frac{3-(1H-\text{imidazol-}4-\text{ilmetil})-2-\text{oxo-}1-}{\text{piperidinacarboxilato de }(\pm)-terc-\text{butilo}}$

Uma mistura dos alcenos da Preparação 103 (2,4 g, 4,6 mmol) e paládio sobre carvão a 10% (Degussa® 101) (200 mg) em etanol (400 mL) foi hidrogenada a 50 °C e 60 psi durante 18 horas. Análise por TLC mostrou material de partida restante, então paládio sobre carvão a 10% adicional (Degussa® 101) (100 mg) foi adicionado e a mistura foi hidrogenada durante mais 72 horas. A mistura foi filtrada em Arbocel® e o filtrado foi concentrado a pressão reduzida. O produto bruto foi purificado por cromatografia em coluna de sílica gel utilizando um gradiente de eluição de diclorometano: acetato de etilo: metanol (100: 0: 0 a 0: 100: 0 a 0: 90: 10) para dar o composto em epígrafe como um sólido, 1,2 g, 93% de rendimento.

 1 H-RMN (CDCl₃, 400 MHz) δ: 1,46-1,62 (m, 10H), 1,81 (m, 2H), 1,98 (m, 1H), 2,66 (m, 1H), 2,95 (m, 2H), 3,55 (m, 1H), 3,78 (m, 1H), 6,80 (s, 1H), 7,24 (s, 1H), 7,50 (s, 1H).

LRMS: m/z 280 (MH+)

Preparação 108

 $\frac{2-0\text{xo}-3-[\,(1-\text{fenil}-1\textit{H}-\text{imidazol}-4-\text{il})\,\text{metil}\,]-1-}{\text{piperidinecarboxilato de (\pm)-$terc$-butilo}}$

Ácido fenilborónico (366 mg, 3 mmol), peneiras moleculares 4A (1 g), acetato de cobre (408 mg, 2,25 mmol) e piridina (243 μ L, 3 mmol) foram adicionados a uma solução do imidazol da Preparação 107 (419 mg, 1,5 mmol) em diclorometano (10 mL), e a mistura de reacção foi agitada à temperatura ambiente durante 4 horas na presença de uma lenta corrente de ar comprimido. O fluxo de ar foi interrompido e a reacção foi agitada durante mais 18 horas temperatura ambiente. Uma solução de etilenodiaminotetracético (2 g) foi adicionada numa solução aguosa de bicarbonato de sódio (10 mL), a mistura foi agitada durante 10 minutos, depois diluída diclorometano (100 mL). As camadas foram separadas, a fase orgânica foi seca (MgSO₄) e concentrada a pressão reduzida. O resíduo foi purificado por cromatografia em coluna de sílica gel utilizando um gradiente de eluição de acetato de etilo:pentano (50:50 a 80:20) para dar o composto em epígrafe como uma goma, 253 mg, 47% de rendimento.

 1 H-RMN (CDCl₃, 400 MHz) δ: 1,52 (s, 9H), 1,81 (m, 2H), 2,05 (m, 1H), 2,78-2,90 (m, 2H), 3,22 (dd, 1H), 3,58 (m, 1H), 3,77 (m, 2H), 7,11 (s, 1H), 7,36 (m, 3H), 7,42 (m, 2H), 7,77 (s, 1H).

LRMS: m/z 356,1 (MH+)

Preparação 109

Ácido (±)-5-[(terc-Butoxicarbonil)amino]-2-[(1-propil-1H-imidazol-4-il)metil]pentanóico

Uma mistura do composto da Preparação 104 (302 g, 0,895 M) e paládio sobre carvão a 5% (30g) em etanol (3,0 L) foi hidrogenada a 60 psi e 60 °C durante 18 horas. A reacção arrefecida foi filtrada em Arbocel® e o filtrado foi evaporado a pressão reduzida para dar um óleo incolor. Este foi cristalizado de acetato de etilo e pentano, para dar o composto em epígrafe como um sólido branco, 291,7 g, 96% de rendimento.

 1 H-RMN (CDCl₃, 300 MHz) δ: 0,90 (t, 3H), 1,42 (m, 10H), 1,58 (m, 2H), 1,66-1,86 (m, 3H), 2,70 (m, 1H), 2,83 (d, 2H), 3,10 (m, 2H), 3,84 (t, 2H), 4,63 (bs, 1H), 6,68 (s, 1H), 7,49 (s, 1H).

Preparação 110

Ácido (2S)-5-[(terc-Butoxicarbonil)amino]-2-[(1-propil-1H-imidazol-4-il)metil]pentanóico com quinidina

Uma mistura do ácido da Preparação 104 (20 g, 59 mmol), quinidina (19,23 g, 59 mmol) e metanol (160 mL) num recipiente pressurizado foi purgada com azoto e depois hidrogénio até uma pressão de 3 psi. O recipiente foi aquecido a 60 °C, foi adicionada uma solução de [(R)-iPrFerroLANE Rh (COD)]BF4 (Chirotech Technology Limited) (9,8 mg, 0,012 mol) em metanol desoxigenado (1 mL) e a mistura de reacção foi hidrogenada a 145 psi durante 40 horas. A solução arrefecida foi concentrada a pressão reduzida e o produto bruto foi dissolvido em acetato de etilo, com aquecimento a 60 °C. Ao arrefecer até à temperatura ambiente com agitação, ocorreu a precipitação e o sólido foi filtrado e seco sob vácuo para dar o composto em epígrafe, 29,8 g, 76% de rendimento (94% de ee determinado por CE).

Método alternativo de síntese para o composto em epígrafe na Preparação 110

Uma mistura do ácido da Preparação 109 (50 g, 147 mmol) e quinidina (47,8 g, 147 mmol) em acetato de etilo (1,75 L) foi aquecida a 50 °C num banho de vapor até ser obtida uma solução. A solução foi aquecida a 60 °C, o calor foi removido e a solução foi deixada a arrefecer,

depois foi agitada à temperatura ambiente durante 18 horas. O precipitado resultante foi filtrado, lavado com acetato de etilo e seco a 80 °C sob vácuo para dar o composto em epígrafe como um sólido branco, 45,1 g, 46% de rendimento.

 1 H-RMN (CD₃OD, 400 MHz) δ: 0,83 (t, 3H), 1,10-1,20 (m, 1H), 1,40 (s, 9H), 1,45-1,62 (m, 5H), 1,65-1,80 (m, 4H), 1,88 (m, 1H), 2,37 (m, 1H), 2,50-2,64 (m, 3H), 2,84 (m, 1H), 3,00-3,14 (m, 3H), 2,21 (m, 1H), 3,39 (m, 1H), 3,80 (m, 2H), 3,96 (m, 4H), 5,17-5,25 (m, 2H), 5,91 (m, 1H), 6,07-6,18 (m, 1H), 6,89 (s, 1H), 7,38 (d, 1H), 7,43 (dd, 1H), 7,57 (s, 1H), 7,76 (d, 1H), 7,98 (d, 1H), 8,72 (d, 1H).

LRMS: m/z 340 (MH+), 325 (quinidinaH+)

Análise Encontrada: C, 65,82; H, 8,17; N, 10,32. $C_{37}H_{53}N_5O_6 \bullet 0,5H_2O \text{ requer } 66,05; \text{ H, } 8,09; \text{ N, } 10,41\%.$

 $[\alpha]_D = +121,36 \ (c \ 0,15, metanol)$

REFERÊNCIAS CITADAS NA DESCRIÇÃO

Esta lista de referências citadas pelo requerente é apenas para a conveniência do leitor. A mesma não faz parte do documento de Patente Europeia. Embora muito cuidado tenha sido tomado na compilação das referências, erros e omissões não podem ser excluídos e o IEP não assume qualquer responsabilidade neste sentido.

Documentos de Patente citados na descrição

- US 5993815 A [0007] [0015]
- WO 0066550 A [0013] [0014]
- WO 0066152 A [0014]
- WO 9111172 A [0201]

Literatura não relacionada com patente citada na descrição

- McKay et al. Biochemistry, 1978, vol. 17,401 [0008]
- Redlitz et al. J. Clin. Invest., 1995, vol. 96, 2534 [0010]
- Boffa et al. J. Bioi. Chem., 1998, vol. 273, 2127 [0011] [0166]
- Berge et al. J. Pharm. Sci., 1977, vol. 66, 1 [0026]
- Drugs of Today, 1983, vol. 19, 499-538 [0029]
- Annual Reports in Medicinal Chemistry. 1975, vol. 10, 306-326 [0029]
- T. W. Greene; P. G. M. Wutz. Protective Groups in Organic Synthesis. Wiley-Interscience, 991 [0029] [0077] [0094]
- J. Jacques; A. Collet. Enantiomers, Racemates and Resolutions. Wiley, 1981 [0033] [0093]

- Handbook of Chiral Chemicals. M. Dekker [0033]
- T. W. Greene; P. G. M. Wuts. Protective Groups in Organic Synthesis. John Wiley and Sons Inc, 1991 [0056]
- Org. Synth. Col/., 1988, vol. 6, 358 [0063]
- ORG. SYNTH. COLL., 1993, vol. 8, 265 [0063]
- Asymmetric Synthetic Methodology. CRC Press, 1996 [0064] [0100]
- G. Shapiro et al. Heterocycles, 1995, vol. 41, 215 [0065]
- L. A. Reiter. J. Org. Chem., 1987, vol. 52, 2714 [0065]
- B. H. Lipshutz et al. Tetrahedron Lett., 1986, vol. 27,4095 [0065]
- F. Aldebbagh et al. Tetrahedron Lett., 1997, vol. 38, 7937 [0065]
- S. M. Abdelaal. J. Het. Chem., 1995, vol. 32, 903 [0065]
- Helv. Chim. Acta., 1994, vol. 77, 1395 [0079]
- Angew. Chem. Int. Ed. Engl., 1981, vol. 20, 798 [0082]
- Handbook of Chiral Chemicals [0093]
- Jerry March. Advanced Organic Chemistry. John Wiley and Sons Inc, [0102]
- P.Y.S. Lam et al. Tetrahedron Lett., 1998, vol. 39, 2941 [0107]
- Tetrahedron, 1996, vol. 52, 5363 [0109]
- W. E. Rote et al. *J. Cardiovasc. Pharmacol.*, 1994, vol. 23, 203 [0137]
- Tan et al. Biochemistry, 1995, vol. 34, 5811 [0154]
- J. Cardiovasc. Pharmacol., February 1994, vol. 23 (2), 194-202203-211 [0185]
- J. Org. Chem., 1983, vol. 48, 4527 [0319]
- J. Org. Chem., 1974, vol. 39,1515 [0319]

- Heterocycles, 1995, vol. 41, 2427 [0321]
- J. Org. Chem., 1983, vol. 48, 2424 [0333] [0336] [0412] [0416] [0417]
- J. Org. Chem., 1993, vol. 58, 56 [0359]
- Bul/. Chim. Soc. Fr., 1973, 1465 [0377]
- Synth. Commun., 1988, vol. 18, 2273 [0379] [0380]
- Tetrahedron: Asymmetry, 1996, vol. 7, 985 [0382]
- J. Het. Chem., 1973, vol. 10, 39 [0390]
- J. Chem. Soc., 1989, vol. I, 721 [0412] [0416] [0417]
- J. Med. Chem., 1977, vol. 20, 721 [0417]

Lisboa, 22/12/2009

REIVINDICAÇÕES

1. Compostos de fórmula (I)

em que:

X é N ou CH

n é 0 a 3

R¹ é:

- a) alquilo C_{1-6} , de cadeia linear ou cadeia ramificada,
- b) alcenilo C_{1-6} , de cadeia linear ou cadeia ramificada,
- c) alcinilo C_{1-6} , de cadeia linear ou cadeia ramificada,
- d) heterociclo,
- e) heterociclo aromático,
- f) arilo;
- g) hidrogénio;

os referidos grupos (a), (b) e (c) opcionalmente também substituídos por: cicloalquilo C_{3-7} , arilo, heterociclo aromático, heterociclo, OR, $Nr^{11}R^{12}$, $S(O)_pR^{11}$, $OC(O)R^{11}$, CO_2R^{11} , $CONR^{11}R^{12}$, $SO_2NR^{11}R^{12}$, halogéneo e $NHSO_2R^{11}$, onde R^1 pode estar ligado a qualquer posição no anel

onde R^1 pode estar ligado a qualquer posição no anel imidazol,

 R^2 e R^3 são cada um independentemente seleccionado de entre hidrogénio, alquilo C_{1-6} , opcionalmente também substituído por OR^{11} , halogéneo; ou

em que R^2 e R^3 podem ser unidos para formar uma ligação, a referida ligação é alquileno C_{2-6}

 R^4 é hidrogénio, alquilo C_{1-6} , opcionalmente também substituído por cicloalquilo C_{3-7} , arilo, OR^{11} , halogéneo e R^{11} ; ou

em que R^4 e R^{10} podem ser unidos para formar uma ligação, em que a referida ligação é alquileno C_{1-4} , opcionalmente também substituído por OR^{11} , halogéneo e R^{11} ,

R⁵ e R⁶ são seleccionados de entre:

hidrogénio, arilo, alquilo C_{1-6} , o referido alquilo opcionalmente também substituído por cicloalquilo C_{3-7} , heterociclo aromático, heterociclo, arilo, OR^{11} , R^{11} e halogéneo; ou em que R^{10} e cada de R^{5} ou R^{6} podem ser unidos para formar uma ligação, em que a referida ligação é um alquileno C_{1-3} , opcionalmente também substituído por OR^{11} , halogéneo, R^{11} e arilo; ou

em que R^5 e R^6 podem ser unidos para formar uma ligação, em que a referida ligação é alquileno C_{2-6} .

 R^7 e R^8 são independentemente seleccionados de entre:

hidrogénio, alquilo C_{1-6} , opcionalmente também substituído por OR^{11} , halogéneo, arilo e R^{11} ; ou em que R^7 e R^8 podem ser unidos para formar uma ligação, em que a referida ligação é alquileno C_{2-6} ,

R⁹ e R¹⁰ são independentemente seleccionados de entre:

hidrogénio, $C(NR^{11})NR^{11}R^{12}$, alquilo C_{1-6} , o referido alquilo opcionalmente substituído por OR^{11} , halogéneo, arilo e R^{11} ; ou

em que R^9 e R^{10} podem ser unidos para formar uma ligação, em que a referida ligação é alquileno C_{2-6} .

 R^{11} e R^{12} são cada um independentemente seleccionados de entre hidrogénio ou alquilo C_{1-6} ; ou quando formam uma unidade $NR^{11}R^{12}$, R^{11} e R^{12} também podem ser unidos para formar uma ligação, em que a referida ligação é alquileno C_{2-6} ,

em que:

p é 0, 1 ou 2

arilo é definido como um carbociclo aromático de 6 a 14 membros, opcionalmente também substituído por R^{11} , halogéneo, OR^{11} , $NR^{11}R^{12}$, $NR^{11}CO_2R^{12}$, CO_2R^{11} , $NR^{11}SO_2R^{12}$, CN, haloalquilo, O(haloalquilo), $S(O)_pR^{11}$, $OC(O)R^{11}$, $SO_2NR^{11}R^{12}$, $C(O)NR^{11}R^{12}$,

heterociclo aromático é definido como um anel de 5 a 7 membros, contendo de 1 a 3 heteroátomos, cada um independentemente seleccionado de entre O, S e N, o

referido grupo heterociclo opcionalmente substituído por OR^{11} , $NR^{11}R^{12}$, CO_2R^{11} , $NR^{11}CO_2R^{12}R^{11}$, halogéneo, CN, haloalquilo, O(haloalquilo), $S(O)_pR^{11}$, $OC(O)R^{11}$, $NR^{11}SO_2R^{12}$, $SO_2NR^{11}R^{12}$, $C(O)NR^{11}R^{12}$,

heterociclo é definido como um anel de 3 a 8 membros contendo de 1 a 3 heteroátomos, cada um independentemente seleccionado de entre O, S e N, o referido anel sendo saturado ou parcialmente saturado, o referido grupo heterociclo opcionalmente substituído por OR^{11} , $NR^{11}R^{12}$, CO_2R^{11} , $NR^{11}CO_2R^{12}$, R^{11} , halo, CN, haloalquilo, O(haloalquilo), $S(O)_pR^{11}$, $OC(O)R^{11}$, $NR^{11}SO_2R^{12}$, $SO_2NR^{11}R^{12}$, $C(O)NR^{11}R^{12}$,

ou um seu sal ou solvato farmaceuticamente aceitável.

2. Composto de fórmula (I) de acordo com a reivindicação 1, em que o composto possui a estereoquímica de um composto de fórmula (IA) ou (IB)

- 3. Composto de fórmula (IA) de acordo com a reivindicação 2.
- 4. Composto de fórmula (I) de acordo com qualquer uma das reivindicações 1 a 3 em que o imidazol é 1,4-dissubstituído em que o grupo \mathbb{R}^1 é ligado a N1.
- 5. Composto de fórmula (I) de acordo com qualquer uma das reivindicações 1 a 3 em que o imidazol é 1,4-dissubstituído em que o grupo R^1 é ligado a C4.
- 6. Composto de fórmula (I) de acordo com qualquer uma das reivindicações 1 a 5 em que R^1 é um grupo arilo, grupo alcenilo C_{1-6} ou um grupo alquilo C_{1-6} , em que o referido grupo alquilo está opcionalmente substituído por um ou mais grupos seleccionados de entre CO_2R^{11} , OR^{11} , arilo, cicloalquilo C_{3-7} , $NHSO_2R^{11}$, halogéneo e heterociclo aromático.
- 7. Composto de fórmula (I) de acordo com qualquer uma das reivindicações 1 a 6, em que \mathbb{R}^1 é alquilo \mathbb{C}_{1-3} .
- 8. Composto de fórmula (I) de acordo com qualquer uma das reivindicações 1 a 7, em que ${\bf R}^2$ e ${\bf R}^3$ são hidrogénio.
- 9. Composto de fórmula (I) de acordo com qualquer uma das reivindicações 1 a 8, em que \mathbb{R}^4 é independentemente seleccionado de entre hidrogénio e

alquilo C_{1-3} ; ou em que R^4 e R^{10} podem ser unidos para formar uma ligação, a referida ligação é alquileno C_{2-3} .

- 10. Composto de fórmula (I) de acordo com qualquer uma das reivindicações 1 a 9, em que \mbox{R}^4 é hidrogénio.
- 11. Composto de fórmula (I) de acordo com qualquer uma das reivindicações 1 a 10, em que R^5 e R^6 são preferencialmente independentemente seleccionados de entre hidrogénio e alquilo C_{1-6} , o referido grupo alquilo opcionalmente substituído por fenilo; ou em que R^5 e R^{10} podem ser unidos para formar uma ligação, a referida ligação é alquileno C_{1-3} .
- 12. Composto de fórmula (I) de acordo com qualquer uma das reivindicações 1 a 11, em que ${\rm R}^5$ e ${\rm R}^6$ são hidrogénio.
- 13. Composto de fórmula (I) de acordo com qualquer uma das reivindicações 1 a 12, em que R^7 e R^8 são independentemente seleccionados de entre hidrogénio e alquilo C_{1-6} .
- 14. Composto de fórmula (I) de acordo com qualquer uma das reivindicações 1 a 13, em que ${\rm R}^7$ e ${\rm R}^8$ são hidrogénio.
- 15. Composto de fórmula (I) de acordo com qualquer uma das reivindicações 1 a 14, em que R^9 e R^{10} são independentemente seleccionados de entre hidrogénio e

alquilo C_{1-3} ; ou em que R^{10} e R^4 podem ser unidos para formar uma ligação, a referida ligação é alquileno C_{2-3} .

- 16. Composto de fórmula (I) de acordo com qualquer uma das reivindicações 1 a 15, em que ${\rm R}^9$ e ${\rm R}^{10}$ são hidrogénio.
- 17. Composto de fórmula (I) de acordo com qualquer uma das reivindicações 1 a 16, em que R^{11} e R^{12} são independentemente seleccionados de entre hidrogénio e alquilo C_{1-6} .
- $18. \, \text{Composto} \quad \text{de} \quad \text{fórmula} \quad \text{(I)} \quad \text{de} \quad \text{acordo} \quad \text{com}$ qualquer uma das reivindicações 1 a 17, em que R^{11} e R^{12} são independentemente seleccionados de entre hidrogénio e CH_3 .
- 19. Composto de fórmula (I) de acordo com qualquer uma das reivindicações 1 a 18, em que X é CH.
- 20. Composto de fórmula (I) de acordo com qualquer uma das reivindicações 1 a 19, em que n é 0.
- 21.Composto de fórmula (I) de acordo com qualquer uma das reivindicações 1 a 20, em que arilo é fenilo.
- 22. Composto de fórmula (I) de acordo com qualquer uma das reivindicações 1 a 21, em que heterociclo aromático é definido como um anel de 5 a 6 membros, contendo de 1 a 2 heteroátomos, cada um independentemente seleccionado de entre O, S e N.

23. Composto de acordo com a reivindicação 1 que é o ácido (+)-(2S)-5-amino-2-[(1-n-propil-1H-imidazol-4-il)metil]pentanóico.

24. Compostos de fórmula (II) e (III)

$$R^{10}$$
 R^{10}
 R

em que R^1 , R^2 , R^3 , R^4 , R^5 , R^6 , R^7 , R^8 , e X são conforme descrito em qualquer uma das reivindicações 1 a 22, R^9 e R^{10} são conforme descrito em qualquer uma das reivindicações 1 a 22 ou, além disso, um ou ambos os grupos podem ser um grupo apropriado protector do átomo de azoto e R^{13} é um grupo apropriado protector do átomo de oxigénio.

25. Compostos de fórmula (XXIII) e (XXIV)

onde R^1 , R^3 , R^5 , R^6 , R^7 , R^8 e R^{10} e Z são conforme descrito em qualquer uma das reivindicações 1 a 22, R^4 é hidrogénio, X é CH e R^9 é conforme descrito em qualquer uma das reivindicações 1 a 22, ou é um grupo apropriado protector do átomo de azoto.

26. Processo para a preparação de um composto de fórmula (IA) ou (IB) de acordo com qualquer uma das reivindicações 2 a 22 que compreende as etapas de

a) hidrólise de um composto de fórmula (XXIII)

onde R^1 , R^3 , R^5 , R^6 , R^7 e R^8 são conforme descrito em qualquer uma das reivindicações 1 a 22, R^4 é hidrogénio, n é 0, X é CH e R^9 é conforme descrito em qualquer uma das reivindicações 1 a 22, ou é um grupo apropriado protector do átomo de azoto;

para dar um composto de fórmula (XXIV)

onde R^1 , R^3 , R^5 , R^6 , R^7 , R^8 , n, X e R^9 são conforme definido aqui anteriormente e R^{10} é hidrogénio;

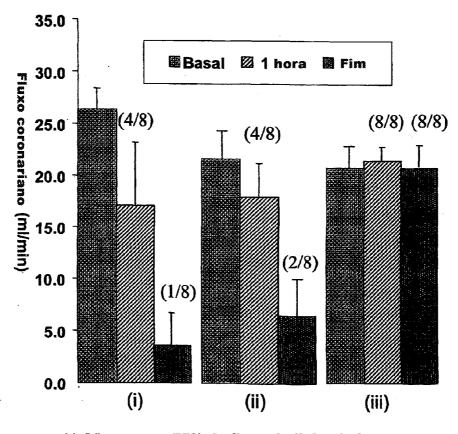
- b) hidrogenação do composto de fórmula (XXIV) assim obtido; e a seguir
- c) resolução da mistura enantiomérica para dar os compostos de fórmulas (IA) e (IB); e a seguir
- d) opcionalmente remoção do grupo protector do átomo de azoto quando R^9 é um grupo protector do átomo de azoto; e
- e) opcionalmente conversão dos referidos compostos de fórmulas (IA) ou (IB) num seu sal farmaceuticamente aceitável.
- 27. Processo de acordo com a reivindicação 26, em que a referida hidrogenação é uma hidrogenação assimétrica.
- 28. Composição compreendendo um composto de fórmula (I) ou um seu sal ou solvato farmaceuticamente aceitável de acordo com qualquer uma das reivindicações 1 a 23 e um diluente ou veículo farmaceuticamente aceitável.

- 29. Composto de fórmula (I) ou um seu sal ou solvato farmaceuticamente aceitável de acordo com qualquer uma das reivindicações 1 a 23 para utilização como um medicamento.
- 30. Utilização de um composto de fórmula (I) ou um seu sal ou solvato farmaceuticamente aceitável de acordo com qualquer uma das reivindicações 1 a 23 na preparação de um medicamento para o tratamento ou prevenção de um estado patológico seleccionado de entre trombose, aterosclerose, aderências, cicatrização dérmica, cancro, patologias fibróticas, doenças inflamatórias e aquelas doenças que beneficiam da manutenção ou aumento dos níveis de bradiquinina no corpo.
- 31. Utilização de acordo com a reivindicação 30, em que o estado patológico é uma patologia trombótica seleccionado de entre enfarte do miocárdio, trombose venosa profunda, acidente vascular cerebral, acidente vascular cerebral em pacientes jovens, enfarte cerebral, trombose cerebral, embolismo cerebral, doença vascular periférica, angina e outras formas de síndromes coronárias agudas, coagulação intravascular disseminada, embolismo pulmonar, eventos embólicos secundários arritmias cardíacas e a prevenção de eventos cardiovasculares а seguir a revascularização ou intervenção cirúrgica.
- 32. Utilização de acordo com a reivindicação 30, em que o estado patológico é a aterosclerose.

- 33. Utilização de acordo com a reivindicação 30, em que o estado patológico é aderências ou cicatrização dérmica.
- 34. Utilização de acordo com a reivindicação 30, em que o estado patológico é o cancro.
- 35. Utilização de acordo com a reivindicação 30, em que o estado patológico é uma doença fibrótica seleccionada de entre fibrose cística, doenças fibróticas pulmonares, doença pulmonar obstrutiva crónica (COPD), síndrome da angústia respiratória do adulto (ARDS), displasia fibromuscular, doença pulmonar fibrótica e depósitos de fibrina no olho durante cirurgia oftálmica e artrite.
- 36.Utilização de acordo com a reivindicação 30, em que o estado patológico é uma doença inflamatória seleccionada de entre asma, endometriose, doenças inflamatórias do intestino, psoríase e dermatite atópica e doenças neurodegenerativas tais como Alzheimer e Parkinson.
- 37. Utilização de acordo com a reivindicação 30, em que o estado patológico é um que beneficia com a manutenção ou aumento dos níveis de bradiquinina no corpo seleccionado de entre hipertensão, angina, insuficiência cardíaca, hipertensão pulmonar, insuficiência renal e falência de órgãos.

- 38. Utilização de um composto de fórmula (I) ou um seu sal ou solvato farmaceuticamente aceitável de acordo com qualquer uma das reivindicações 1 a 23 na preparação de um medicamento em associação com um antitrombótico para o tratamento da trombose.
- 39. Utilização de acordo com a reivindicação 38, em que o antitrombótico é um fibrinolítico.
- 40. Utilização de acordo com qualquer uma das reivindicações 38 e 39 em que o antitrombótico é activador do plasminogénio tecidual (tPA) recombinante.
- 41. Utilização de um composto de fórmula (I) ou um seu sal ou solvato farmaceuticamente aceitável de acordo com qualquer uma das reivindicações 1 a 23 como um revestimento sobre dispositivos intravasculares.
- 42.Um dispositivo intravascular revestido com um composto de fórmula (I) de acordo com qualquer uma das reivindicações 1 a 23.

43.Um kit compreendendo:


a) uma composição compreendendo um composto de fórmula (I) ou um seu sal ou solvato farmaceuticamente aceitável de acordo com qualquer uma das reivindicações 1 a 23 e um diluente ou veículo farmaceuticamente aceitável;

- b) uma composição compreendendo um antitrombótico e um diluente ou veículo farmaceuticamente aceitável; e
- c) um recipiente.

Lisboa, 22/12/2009

Fig. 1

Gráfico para comparar o efeito de (i) aspirina e tPA, (ii) tPA; e (iii) inibidor de TAFIa e tPA sobre o fluxo sanguíneo após reperfusão.

() Cães com > 75% de fluxo de linha de base