
DE60103737T220050707
ß (19)
Bundesrepublik Deutschland
Deutsches Patent- und Markenamt
(10) DE 601 03 737 T2 2005.07.07

(12) Übersetzung der europäischen Patentschrift

(97) EP 1 257 084 B1
(21) Deutsches Aktenzeichen: 601 03 737.5
(96) Europäisches Aktenzeichen: 01 309 740.7
(96) Europäischer Anmeldetag: 19.11.2001
(97) Erstveröffentlichung durch das EPA: 13.11.2002
(97) Veröffentlichungstag

der Patenterteilung beim EPA: 09.06.2004
(47) Veröffentlichungstag im Patentblatt: 07.07.2005

(51) Int Cl.7: H04L 9/32

(54) Bezeichnung: System und Verfahren zur Nachrichtenauthentisierung

(30) Unionspriorität:
854251 11.05.2001 US

(73) Patentinhaber:
Lucent Technologies Inc., Murray Hill, N.J., US

(74) Vertreter:
derzeit kein Vertreter bestellt

(84) Benannte Vertragsstaaten:
AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT,
LI, LU, MC, NL, PT, SE, TR

(72) Erfinder:
Patel, Sarvar, Montville, New Jersey 07045, US

Anmerkung: Innerhalb von neun Monaten nach der Bekanntmachung des Hinweises auf die Erteilung des europä-
ischen Patents kann jedermann beim Europäischen Patentamt gegen das erteilte europäische Patent Einspruch
einlegen. Der Einspruch ist schriftlich einzureichen und zu begründen. Er gilt erst als eingelegt, wenn die Ein-
spruchsgebühr entrichtet worden ist (Art. 99 (1) Europäisches Patentübereinkommen).

Die Übersetzung ist gemäß Artikel II § 3 Abs. 1 IntPatÜG 1991 vom Patentinhaber eingereicht worden. Sie wurde
vom Deutschen Patent- und Markenamt inhaltlich nicht geprüft.
1/26

DE 601 03 737 T2 2005.07.07
Beschreibung

1. Erfindungsgebiet

[0001] Die vorliegende Erfindung bezieht sich auf Kommunikationen und insbesondere auf die Authentifizie-
rung von Nachrichten.

2. Beschreibung des Standes der Technik

[0002] Fig. 1 zeigt eine schematische Darstellung erster und zweiter drahtloser Kommunikationssysteme, die
drahtlose Kommunikationsdienste für drahtlose Einheiten (z.B. drahtlose Einheiten 12a–c) bereitstellen, die in-
nerhalb der geografischen Regionen 14 bzw. 16 liegen. Eine Mobilfunkvermittlungsstelle (z.B. MSCs 20 und
24) ist u.a. verantwortlich für die Herstellung und Aufrechterhaltung von Gesprächen zwischen drahtlosen Ein-
heiten, Gesprächen zwischen einer drahtlosen Einheit und einer Festnetzeinheit (z.B. Festnetzeinheit 25),
und/oder Verbindungen zwischen einer drahtlosen Einheit und einem PDN (Packet Data Network) wie z.B.
dem Internet. In dieser Eigenschaft schaltet die MSC die drahtlosen Einheiten innerhalb ihrer geografischen
Region mit einem PSTN (öffentliches Fernsprechnetz) 28 und/oder einem PDN 29 zusammen. Der von der
MSC abgedeckte geografische Bereich ist in räumlich getrennte Bereiche, sog. „Zellen", unterteilt. Wie in
Fig. 1 dargestellt, ist jede Zelle schematisch durch ein Hexagon im Honigwabenmuster dargestellt; in der Pra-
xis hat jede Zelle jedoch eine unregelmäßige Form, die sich nach der Topographie des die Zelle umgebenden
Terrains richtet.

[0003] Typisch enthält jede Zelle eine Basisstation (z.B. Basisstationen 22a–e und 26a–e), die Radios und
Antennen aufweist, die von der Basisstation zum Kommunizieren mit den drahtlosen Einheiten in dieser Zelle
benutzt werden. Die Basisstationen weisen ferner die Übertragungsausrüstung auf, die von der Basisstation
zum Kommunizieren mit der MSC in dem geografischen Bereich benutzt wird. Beispielsweise ist MSC 20 mit
den Basisstationen 22a–e im geografischen Bereich 14 verbunden, und eine MSC 24 ist mit den Basisstatio-
nen 26a–e in der geografischen Region 16 verbunden. Innerhalb einer geografischen Region vermittelt die
MSC Gespräche zwischen den Basisstationen in Echtzeit, während die drahtlose Einheit von einer zu einer
anderen Zelle geht, was als Hand-Over bezeichnet wird. Je nach Ausführungsform kann ein Basisstationscon-
troller (BSC) ein separater, an mehrere Basisstationen angeschlossener oder in jeder Basisstation angeordne-
ter (nicht dargestellter) Basisstationscontroller (BSC) sein, der die Radioressourcen für die Basisstationen ver-
waltet und Informationen an die MSC zurücksendet.

[0004] Die MSCs 20 und 24 benutzen ein Signalisierungsnetzwerk 32 wie z.B. ein Signalisierungsnetzwerk,
welches dem Standard TIA/EIA-41-D, betitelt „Cellular Radiotelecommunications Intersystem Operations", De-
zember 1997, („IS-41") entspricht, der den Austausch von Information über die drahtlosen Einheiten ermög-
licht, die zwischen den betreffenden geografischen Bereichen 14 und 16 vagabundieren. Zum Beispiel vaga-
bundiert eine drahtlose Einheit 12a, wenn sie den geografischen Bereich 14 der MSC 20 (wie Home MSC) ver-
lässt, der sie ursprünglich zugeordnet war. Um sicherzustellen, dass eine vagabundierende drahtlose Einheit
ein Gespräch empfangen kann, meldet sich die vagabundierende drahtlose Einheit 12a bei der MSC 24 an, in
der sie sich gerade aufhält (d.h. der Besucher-MSC), indem sie die Besucher-MSC 24 von ihrer Gegenwart
benachrichtigt. Sobald eine vagabundierende drahtlose Einheit 12a von einer Besucher-MSC 24 erkannt wird,
sendet die Besucher-MSC 24 eine Anmeldeaufforderung über das Signalisierungsnetzwerk 32 an die Ho-
me-MSC 20, und die Home MSC 20 schreibt die Kennung der Besucher-MSC 24 in eine Datenbank 34, das
sog. Heimatstandortregister HLR, wodurch die Home-MSC 20 weiß, an welchem Standort sich die vagabun-
dierende drahtlose Einheit 12a aufhält. Nach Authentifizierung der vagabundierenden drahtlosen Einheit
schickt die Home-MSC 20 der Besucher-MSC 24 ein Kundenprofil. Nach Erhalt des Kundenprofils aktualisiert
die Besucher-MSC 24 eine Datenbank 36, das sog. Besucherstandortregister (VLR), um die gleichen Merkma-
le wie die Home-MSC 20 bereitzustellen. Das HLR, das VLR und/oder das Authentifizierungszentrum (AC)
können ebenfalls in der MSC angeordnet oder für entfernten Zugriff eingerichtet sein.

[0005] Wenn im UMTS (Universal Mobile Telecommunications System) oder 3G IS-41 eine drahtlose Einheit
ein Gespräch initiiert oder empfängt, wird sie identifiziert, bevor sie wählen kann. Nach der Authentifizierung
wird ein 128-Bit-Integritätsschlüssel (IK), der mit Hilfe eines Geheimschlüssels erzeugt wurde, aktiviert und
kann zum Prüfen der Integrität einer Nachricht, die zwischen der drahtlosen Einheit und der System- oder
Nachrichtenauthentifizierung gesendet wurde, verwendet werden.

[0006] Der Entwurf guter Nachrichtenauthentifizierungssysteme ist einer der wichtigsten Bereiche in der
Kryptographie. Das Ziel von Nachrichtenauthentifizierungssystemen besteht darin, Nachrichten effizient derart
2/26

DE 601 03 737 T2 2005.07.07
von einer zu einer anderen Partei zu übertragen, dass die empfangende Partei ermitteln kann, ob die von ihr
erhaltene Nachricht in unerlaubter Weise geändert wurde. Fig. 2 zeigt, wie bei einer drahtlosen Einheit in ei-
nem drahtlosen Kommunikationssystem eine Nachrichtenauthentifizierung durchgeführt wird. An der Einstel-
lung sind zwei Parteien – die drahtlose Einheit und das drahtlose Kommunikationssystem – beteiligt, die sich
auf einen Geheimschlüssel k geeinigt haben. Es werden zwei Algorithmen benutzt: ein Bereitschaftsalgorith-
mus Sk und ein Prüfungsalgorithmus Vk. Wenn die drahtlose Einheit eine Nachricht M an das drahtlose Kom-
munikationssystem schicken will, berechnet sie unter Einsatz des MAC-Generators 50 als erstes ein Kennzei-
chen (TAG) oder einen Nachrichtenauthentifizierungscode (MAC), μ=Sk(M). Die Einheit sendet die Nachricht
und das Tag-Paar (M,μ) an das drahtlose Kommunikationssystem, und nach Empfang des Paares (M,μ) be-
rechnet das drahtlose Kommunikationssystem Vk(M,μ), welches 1 zurückgibt, wenn der MAC gültig ist, oder 0,
wenn nicht. Aus Fig. 2 ist ersichtlich, dass das drahtlose Kommunikationssystem die Nachricht und das k in
den MAC-Generator 52 eingibt, der ein Tag' erzeugt, und es wird ein Vergleich 54 zwischen dem von der draht-
losen Einheit empfangenen Tag (μ) und dem im System erzeugten Tag' vorgenommen. Wenn beide gleich sind,
wird die Nachricht als gültig akzeptiert; andernfalls wird die Nachricht abgelehnt. Ohne den Geheimschlüssel
k zu kennen, ist es praktisch unmöglich für einen Gegner, eine Nachricht und einen entsprechenden MAC zu
konstruieren, die der Prüfungsalgorithmus als gültig akzeptiert.

[0007] Das gleiche Nachrichtenauthentifizierungssystem kommt bei der Übertragung von Nachrichten vom
drahtlosen Kommunikationssystem zur drahtlosen Einheit zum Einsatz. Zum Beispiel zeigt Fig. 3, wie das
drahtlose Kommunikationssystem durch Generieren eines Tags mit einem MAC-Generator 56 eine geschützte
Nachricht an eine drahtlose Einheit sendet, wobei als Eingaben die Nachricht und ein Geheimschlüssel k ver-
wendet werden. Das drahtlose Kommunikationssystem sendet eine Nachricht zusammen mit dem Tag an eine
drahtlose Einheit, die die Nachricht und den Geheimschlüssel k in einen MAC-Generator 58 eingibt, um ein
Tag' zu generieren. Die drahtlose Einheit stellt einen Vergleich 60 zwischen Tag' und dem vom drahtlosen Kom-
munikationssystem empfangenen Tag an. Wenn die Tags übereinstimmen, wird die Nachricht als gültig akzep-
tiert. Wenn nicht, wird die Nachricht als geändert oder ungültig abgelehnt.

[0008] Das Sicherheitserfordernis für einen Nachrichtenauthentifizierungscode lässt sich wie folgt erklären:
Ein Gegner fälscht einen MAC, wenn er, vorausgesetzt, dass er den MAC Sk, Vk für bestimmte Nachrichten,
bei denen k geheim bleibt, abfragen kann, ein gültiges Paar (M*,μ*) finden kann, so dass sich Vk(M*μ*) zu 1
ergibt, wobei die Nachricht M* jedoch nie als Eingabe für Sx verwendet wurde.

[0009] Bei einem in der Praxis allgemein benutzten Ansatz für Nachrichtenauthentifizierungssysteme kom-
men kryptographische Hash-Funktionen zum Einsatz. Eine Hash-Funktion kann typisch als Funktion beschrie-
ben werden, welche Eingaben einer bestimmten Länge auf Ausgaben einer kürzeren Länge abbildet. Ferner
ist es schwierig, zwei Eingaben zu finden, die sich auf die gleiche Ausgabe abbilden lassen. Diese auf krypto-
graphischen Hash-Funktionen basierten MAC-Systeme sind gut, weil sie schnelle und sichere kryptographi-
sche Bausteine benutzen. Kryptographische Hash-Funktionen F(x) sind typisch öffentliche, schlüssellose und
kollisionsresistente Funktionen, die beliebig lange Eingaben x auf kurze Ausgaben abbilden. Kollisionsresis-
tenz bedeutet, dass es von der Berechnung her unmöglich sein müsste, zwei Nachrichten x1 und x2 zu finden,
die sich zu F(x1)=F(x2) ergeben. MD5, SHA-1 und RIPE-MD sind weit verbreitet benutzte kryptographische
Hash-Funktionen. Neben der Kollisionsresistenz werden Hash-Funktionen gewöhnlich noch mit anderen Merk-
malen versehen, sowohl um die Funktion für andere Zwecke einsetzen zu können als auch um die Wahrschein-
lichkeit der Kollisionsresistenz zu erhöhen.

[0010] Die meisten kryptographischen Hash-Funktionen wie MD5 und SHA-1 benutzen eine iterierte Kon-
struktion, in der die Eingangsnachricht Block für Block verarbeitet wird. Wie in Fig. 4 dargestellt, wird der
grundlegende Block die Komprimierungsfunktion f genannt, welche eine Hash-Funktion ist, die zwei Eingaben
der Größe t und b nimmt und sie auf eine kürzere Ausgabe der Länge t abbildet. In MD5 hat die Eingabe der
Größe t eine Länge von 128 Bits und die Eingabe der Größe b eine Länge von 512 Bits. In SHA-1 hat die Ein-
gabe der Größe t eine Länge von 160 Bits und die Eingabe der Größe b eine Länge von 512 Bits. Die Eingabe
der Größe t wird die Verkettungsvariable genannt und die Eingabe der Größe b oder Nutzinformation oder
Block dient zur eigentlichen Verarbeitung der Nachricht x in jeweils b Bits. Wie in Fig. 5 dargestellt, wird also
die Hash-Funktion F(x) dadurch geformt, dass die Komprimierungsfunktion f über die Nachricht m iteriert wird,
wobei hi als Verkettungsvariable und xi als Nutzinformation, wie in den folgenden Schritten angegeben, ver-
wendet werden:

1. Benutzen Sie ein geeignetes Verfahren zum Auffüllen der Nachrichtenlänge, und zwar so, dass für die
Eingabe ein Mehrfaches der Blockgröße b erhalten wird. Die Eingabe kann in Blockgrößenstücke x=x1....xn

aufgeteilt werden.
2. ho = IV, eine feste Konstante
3/26

DE 601 03 737 T2 2005.07.07
3. Für i = 1 bis n
4. hi = f (hi-1,xi)
5. Ausgabe hn als F (x)

[0011] Zum Beispiel hat, wenn eine SHA-1-Hash-Funktion verwendet wird, jeder Aufruf an die SHA-1
Hash-Funktion einen 160-Bit-Anfangsvektor (IV), wobei eine 512-Bit-Eingabe oder -Nutzinformation verwen-
det wird, die auf eine 160-Bit-Ausgabe abgebildet wird. Der IV wird auf den IV eingestellt, der im Standard für
die SHA-1-Hash-Funktion (National Institute of Standards and Technology, NIST FIPS PUB 180 „Secure Hash
Standard", U.S. Department of Commerce, Mai 1993) definiert ist.

[0012] Kryptographische Hash-Funktionen werden ohne Schlüssel konzipiert. Da jedoch die Nachrichtenau-
thentifizierung den Einsatz eines Geheimschlüssels erfordert, wird ein Verfahren benötigt, durch welches die
Hash-Funktion mit einem Schlüssel versehen wird. Eine Möglichkeit zum Erstellen eines Schlüssels für die
Hash-Funktion besteht darin, einen Geheimschlüssel, anstatt des festen und bekannten IV, zu benutzen. Wie
in Fig. 6 dargestellt, wird die Verkettungsvariable in der Komprimierungsfunktion f (Verkettungsvariable,x1)
durch den Schlüssel k ersetzt, um fk(x1) = f(k,x1) zu bilden, worin x1 die Blockgröße b hat. Die iterierte
Hash-Funktion F(IV,x) wird modifiziert, indem der feste IV durch den Geheimschlüssel k ersetzt wird, um Fk(x)=
F(k,x) zu bilden. Die Kollisionsresistenz für eine Schlüssel-Funktion ist anders als bei schlüssellosen Funktio-
nen, weil der Gegner Fk(x) zu keinem Zeitpunkt ohne Abfragen des Benutzers auswerten kann. Dieses Erfor-
dernis ist schwächer als das Standardkollisionserfordernis, deshalb wollen wir die Funktion Fk(x) als schwach
kollisionsresistent bezeichnen.

[0013] Eine allgemeine Beschreibung der iterierten Hash-Funktionen und Schlüssel-Hash-Funktionen ist im
HANDBOOK OF APPLIED CRYPTOGRAPHY, 1996, von Menezes, Oorschot, Vanstone, CRC Press LLC,
USA XP002198439, zu finden.

[0014] Um die Sicherheit der kryptographischen Schlüssel-Hash-Funktion zu verbessern, wurde eine vernes-
tete MAC-Funktion (NMAC) entwickelt, die als

NMACk (x) = Fk1(Fk2 (x))

definiert wird, wobei die kryptographische Hash-Funktion F zuerst mit dem Geheimschlüssel k2 anstatt mit IV
versehen wird, und die Nachricht x iterativ auf die Ausgabe von Fk2 (x) hash-codiert wird. M. Bellare, R. Canetti
und H. Krawczyk, Keying Hash Functions for Message Authentication, Advances in Cryptology – Crypto '96
16th Annual International Cryptology Conference. Die vernesteten Hash-Konstruktionen NMAC und HMAC sind
in Proceedings of the Annual International Cryptology Conference (Crypto), Berlin, Springer, DE (18-08-1196),
CONF 16,1–15, Santa Barbara, Aug. 18–22, 1996, beschrieben. Die Ausgabe Fk2(x) wird auf eine Blockgröße
gemäß dem Füllzeichensystem von F aufgefüllt, und dann wird das Ergebnis von Fk2(x) mit dem Geheim-
schlüssel k1 versehen und mit einer äußeren Hash-Funktion F, wie in Fig. 7 dargestellt, hash-codiert. Somit hat
der NMAC-Schlüssel k zwei Teile k = (k1, k2). Der folgende Lehrsatz über die Sicherheit von NMAC, bezogen
auf die Sicherheit der zugrunde liegenden krpytographischen Hash-Funktion, ist in M. Bellare, R. Canetti und
H. Krawczyk, Keying Hash Functions for Message Authentication, wie oben angegeben, bewiesen.

[0015] Lehrsatz 1: In t Schritten und q Abfragen, wenn die Schlüssel-Komprimierungsfunktion f ein ∈f sicherer
MAC und die iterierte Schlüssel-Hash-Funktion F ∈F schwach kollisionsresistent ist, dann ist die NMAC-Funk-
tion ein (∈f + ∈F) sicherer MAC.

[0016] Die NMAC-Konstruktion ruft die Komprimierungsfunktion mindestens zweimal auf; der innere Aufruf
an Fk2(x) kostet das Gleiche wie die schlüssellose Hash-Funktion F(x). Somit ist der äußere Aufruf an Fk1 ein
zusätzlicher Aufruf, der über die Erfordernisse für die schlüssellose Hash-Funktion hinausgeht. Der äußere
Funktionsaufruf ist im Grunde genommen ein Aufruf an die Schlüssel-Komprimierungsfunktion fk1, da die Aus-
gabe der Größe t von Fk2(x) in die Eingabe der Größe b für die Komprimierungsfunktion passt. Für große, aus
mehreren Blöcken bestehende x sind die Kosten des zusätzlichen äußeren Komprimierungsaufrufs nicht sig-
nifikant. Für kleine Nachrichten x jedoch kann die zusätzliche äußere Komprimierungsfunktion, in Prozenten
ausgedrückt, im Vergleich zu der schlüssellosen Hash-Funktion zu einer signifikant hohen Ineffizienz führen.
In Tabelle 1 ist die Ineffizienz für kleine x für die SHA-1-Hash-Funktion dargestellt. Die Anzahl der von der zu-
grunde liegenden Hash-Funktion und dem NMAC benötigten Komprimierungsaufrufe werden für verschiedene
kleine x, die um jeweils 30 Byte zunehmen, miteinander verglichen. Die Ineffizienz von NMAC mit Bezug auf
die zugrunde liegende Hash-Funktion ist ebenfalls in der Tabelle angegeben.
4/26

DE 601 03 737 T2 2005.07.07
[0017] Wie ersichtlich ist, kann der Mehraufwand für kurze Nachrichten groß sein. Beispielsweise ist der
Mehraufwand für Nachrichten, die in einen Block passen, 100 %, weil NMAC zwei Komprimierungsfunktions-
aufrufe benötigt, während bei der zugrunde liegenden kryptographischen Hash-Funktion ein Komprimierungs-
aufruf ausreicht.

[0018] HMAC ist eine praktische Variante von NMAC für diejenigen Implementierungen, die keinen Zugriff auf
die Komprimierungsfunktion f haben, sondern nur die kryptographische Hash-Funktion F mit der Nachricht auf-
rufen können. Für diese Implementierungen kann der Schlüssel nicht in die Verkettungsvariable gesetzt wer-
den, und die Funktion F wird mit dem festen und bekannten IV aufgerufen, der in der anfänglichen Komprimie-
rungsfunktion benutzt wurde. Die HMAC-Funktion wird definiert als

HMACk (x) =F (k ⊕opad, F (k ⊕ipad, x))

worin ein Schlüssel k benutzt wird und k die Auffüllung von k mit Nullen darstellt, um den Größe-b-Block der
iterierten Hash-Funktion fertig zu stellen. Der Wert k wird bitweise ausschließlich mit opad geORt, und das Er-
gebnis wird zu der Nachricht x verkettet. Die Hash-Funktion F wird mit der gesamten verketteten Nachricht auf-
gerufen. Wie in Fig. 8 dargestellt, wird nach der ersten Iteration der Komprimierungsfunktion f der Schlüssel
k2 als k2 = f(k ⊕ipad) produziert. Nachdem die Hash-Funktion F fertiggestellt ist, wird der resultierende Wert
F(k ⊕ipad,X) produziert. Die Hash-Funktion F wird nochmals mit einer Nachricht aufgerufen, die den Wert von
k ⊕opad – eine bitweise ausschließliche Operation mit k und opad – aufweist. Nach der ersten Iteration inner-
halb des zweiten Aufrufs der Hash-Funktion F wird der Schlüssel k1 aus der Komprimierungsfunktion f (IV, k
⊕opad) erhalten. Die Werte ipad und opad sind feste Konstanten, wie in M. Bellare, R. Canetti und H. Krawc-
zyk, Keying Hash Functions for Message Authentication, In Proc. CRYPTO 96, Lecture Notes in Computer Sci-
ence, Springer-Verlag 1996 beschrieben. Die zweite Iteration innerhalb des zweiten Aufrufs der Hash-Funktion
benutzt die Komprimierungsfunktion f(k1,F(k ⊕ipad,X)), um die HMAC-Funktion F (k ⊕opad, F (k ⊕ipad,x)) zu
erzeugen.

[0019] Wenn für k1 = f (k ⊕opad) und k2 = f (k ⊕ipad) definiert wird, ergibt sich HMACk(x) zu NMAC(k1,k2)(x).
HMAC ist der Internet-Standard für Nachrichtenauthentifizierung. Wie dargestellt, bezieht sich der Sicherheits-
beweis von HMAC auf NMAC und nimmt an, dass die zugrunde liegende kryptographische Hash-Funktion
(schwach) kollisionsresistent und die zugrunde liegende Komprimierungsfunktion ein sicherer MAC ist, wenn
beide mit einem entsprechenden Schlüssel versehen sind. HMAC ist effizient für lange Nachrichten, bei kurzen
Nachrichten führt die vernestete Konstruktion jedoch zu einer signifikanten Ineffizienz. Wenn zum Beispiel eine
Nachricht, die kürzer als ein Block ist, mit MAC kodiert werden soll, ohne Zugriff auf die Komprimierungsfunk-
tion zu haben, benötigt HMAC vier Aufrufe für die Komprimierungsfunktion. In Fällen, wo Zugriff auf die Kom-
primierungsfunktion erlaubt ist, können k1 und k2 vorweg berechnet und in die Verkettungsvariable der Kom-

Tabelle 1: Vergleich zwischen der Anzahl der Komprimierungsaufrufe für kurze Nachrichten unterschiedlicher
Größen.
5/26

DE 601 03 737 T2 2005.07.07
primierungsfunktion eingefügt werden, so dass zwei Aufrufe an die Komprimierungsfunktion erforderlich sind.
Diese Ineffizienz kann für manche Anwendungen, wie Nachrichtenauthentifizierung von Signalisierungsnach-
richten, wo die einzelnen Nachrichten alle in einen oder zwei Blöcke passen, besonders hoch sein. Auch im
TCP/IP-Verkehr ist bekannt, dass eine große Anzahl von Paketen (z.B. Bestätigung) eine Größe von ungefähr
40 Bytes haben, die in einen Block der meisten kryptographischen Hash-Funktionen passen. Wir schlagen
eine Verbesserung vor, die es gestattet, sowohl kurze als auch lange Nachrichten effizienter als HMAC zu au-
thentifizieren, und außerdem auch Sicherheitsbeweise bereitstellt.

KURZDARSTELLUNG DER ERFINDUNG

[0020] Ein erfindungsgemäßes Verfahren und System sind in den unabhängigen Ansprüchen definiert. Be-
vorzugte Ausführungsformen sind in den abhängigen Ansprüchen definiert.

KURZBESCHREIBUNG DER ZEICHNUNGEN

[0021] Andere Aspekte und Vorteile der vorliegenden Erfindung ergeben sich aus dem Lesen der folgenden
ausführlichen Beschreibung unter Bezugnahme auf die Zeichnungen, in denen:

[0022] Fig. 1 ein allgemeines Diagramm eines drahtlosen Kommunikationssystems veranschaulicht, für wel-
ches das MAC-Erzeugungssystem gemäß den Prinzipien der vorliegenden Erfindung verwendet werden kann;

[0023] Fig. 2 ein allgemeines Diagramm ist, welches darstellt, wie ein MAC zur Authentifizierung von Nach-
richten verwendet wird, die von einer drahtlosen Einheit an ein drahtloses Kommunikationssystem gesendet
werden;

[0024] Fig. 3 ein allgemeines Diagramm ist, welches darstellt, wie ein MAC zur Authentifizierung von Nach-
richten verwendet wird, die von einem drahtlosen Kommunikationssystem an eine drahtlose Einheit gesendet
werden;

[0025] Fig. 4 ein Blockdiagramm einer Komprimierungsfunktion f ist;

[0026] Fig. 5 ein Blockdiagramm ist, welches die iterierte Konstruktion einer Hash-Funktion F für eine gege-
bene Komprimierungsfunktion f darstellt;

[0027] Fig. 6 ein Blockdiagramm ist, welches eine Schlüssel-Hash-Funktion darstellt;

[0028] Fig. 7 ein Blockdiagramm ist, welches eine vernestete Hash-Funktion (NMAC) darstellt;

[0029] Fig. 8 ein Blockdiagramm ist, welches eine Variante einer NMAC-Funktion darstellt, die als HMAC be-
kannt ist;

[0030] Fig. 9 ein Blockdiagramm eines Einzelblockfalls im Nachrichtenauthentifizierungssystem gemäß den
Prinzipien der vorliegenden Erfindung darstellt;

[0031] Fig. 10 ein Blockdiagramm eines Mehrfachblockfalls im Nachrichtenauthentifizierungssystem gemäß
den Prinzipien der vorliegenden Erfindung darstellt;

[0032] Fig. 11a und Fig. 11b Blockdiagramme einer ENMAC-Ausführungsform des Nachrichtenauthentifizie-
rungssystems gemäß den Prinzipien der vorliegenden Erfindung darstellen;

[0033] Fig. 12 ein Blockdiagramm einer ENMAC-Ausführungsform des Nachrichtenauthentifizierungssys-
tems gemäß den Prinzipien der vorliegenden Erfindung darstellt;

[0034] Fig. 13a und Fig. 13b Blockdiagramme einer EHMAC-Ausführungsform des Nachrichtenauthentifizie-
rungssystems gemäß den Prinzipien der vorliegenden Erfindung darstellen;

[0035] Fig. 14a und Fig. 14b Blockdiagramme einer SMAC-Ausführungsform des Nachrichtenauthentifizie-
rungssystems gemäß den Prinzipien der vorliegenden Erfindung darstellen; und

[0036] Fig. 15 ein Blockdiagramm für eine SMAC-Ausführungsform des Nachrichtenauthentifizierungssys-
6/26

DE 601 03 737 T2 2005.07.07
tems gemäß den Prinzipien der vorliegenden Erfindung darstellt.

AUSFÜHRLICHE BESCHREIBUNG

[0037] Im Folgenden sind illustrierte Ausführungsformen eines MAC-Konstruktionssystems und Verfahrens
gemäß den Prinzipien der vorliegenden Erfindung zur Verarbeitung von Nachrichten beliebiger Länge be-
schrieben, die eine verbesserte Effizienz bereitstellen. In der folgenden Beschreibung umfasst der Ausdruck
Hash-Funktion eine Komprimierungsfunktion f und eine iterierte Hash-Funktion F. Eine Hash-Funktion kann
schlüssellos oder mit einem Schlüssel versehen sein, wobei Fk eine iterierte Schlüssel-Hash-Funktion und fk
eine Schlüssel-Komprimierungsfunktion darstellt. Es wird daran erinnert, dass fk(x) die Schlüssel-Komprimie-
rungsfunktion ist, die eine Eingangsblockgröße von b Bits und eine Ausgangsgröße von t Bits aufweist, und
deren Verkettungsvariablengröße und somit Schlüsselgröße ebenfalls t Bits ist. Gemäß eines Aspekts der vor-
liegenden Erfindung benutzt der MAC-Generator, je nach Größe der Nachricht, verschiedene Hash-Funktions-
anordnungen, um den MAC zu erzeugen. Zum Beispiel könnte der MAC-Generator eine einzelne Iteration ei-
ner Schlüsselkomprimierungsfunktion als Hash-Funktion vornehmen, wenn die Nachricht x (und irgendwelche
zusätzlich benötigten Bits) in einen Eingangsblock der Komprimierungsfunktion f passt. Für Nachrichten, die
nicht in den Eingangsblock passen, benutzt der MAC-Generator vernestete Hash-Funktionen. Wie in Fig. 9
dargestellt, wird eine Nachricht x in die Komprimierungsfunktion f zusammen mit irgendwelchen benötigten
Füllzeichen, Nachrichtenlängefeldern, Blockanzeigefeldern oder anderen Feldern, die an die Nachricht x an-
gehängt werden, eingegeben. Wenn die Nachricht x (und irgendwelche zusätzlich benötigten Bits) in den Ein-
gangsblock für die Komprimierungsfunktion passt, wird eine einzelne Iteration der Schlüssel-Komprimierungs-
funktion f 90 vorgenommen, wobei die Nachricht x und ein Schlüssel k dazu benutzt werden, einen MAC fk(x)
für die Nachricht x zu erzeugen.

[0038] Andernfalls wird gemäß Fig. 10, wenn die Nachricht x (und irgendwelche zusätzlich benötigten Bits)
nicht in einen Eingangsblock der Komprimierungsfunktion f passt, der Nachrichtenblock x in Teile, wie Teil 1
und Teil 2, eingeteilt. Teile des Nachrichtenblocks können überlappende oder nicht überlappende Sätze der
Bits sein, die zusammen die Nachricht x ergeben. Gemäß eines anderen Aspekts der vorliegenden Erfindung
wird in der inneren Hash-Funktion F ein erster Teil und in der äußeren Hash-Funktion ein zweiter Teil benutzt,
welcher als Komprimierungsfunktion fcv1 dargestellt ist. Zum Beispiel wird Teil 2 für die innere Hash-Funktion F
bereitgestellt, wo Aufrufe an die, oder Iterationen der, Komprimierungsfunktion 100a bis 100n (falls benötigt)
mit Blöcken Teil 21 und Teil 2n des Teils 2 einschließlich irgendwelcher angehängten Füllzeichen oder Felder
vorgenommen werden, worin n>=1 ist. Die anfängliche Iteration oder der Aufruf 100a an die Komprimierungs-
funktion f benutzt eine Verkettungsvariable CV2, die ein Schlüssel oder ein von einem Schlüssel abgeleiteter
Schlüssel oder, je nach Ausführungsform, der Standardanfangswert für die Hash-Funktion F sein könnte. Das
Ergebnis der inneren Hash-Funktion Fcv2 (Teil 2) wird zusammen mit Teil 1 der gesamten Nachricht x und einer
Verkettungsvariable CV1 der äußeren Hash-Funktion oder Komprimierungsfunktion f (102) zugeführt. Die Ver-
kettungsvariable CV1 könnte ein Schlüssel oder ein von einem Schlüssel abgeleiteter Schlüssel oder, je nach
Ausführungsform, der Standardanfangswert IV für die Hash-Funktion F sein. Der resultierende Wert fcv1 (Teil 1,
Fcv2(Teil2))Teil1) kann zur Erzeugung des in der Nachrichtenauthentifizierung benutzten MAC verwendet wer-
den.

[0039] Die obige allgemeine Beschreibung kann zur Bereitstellung einer verbesserten Leistung gegenüber
MAC-Erzeugungstechniken nach dem Stand der Technik verwendet werden. Um zum Beispiel eine verbesser-
te Effizienz gegenüber NMAC für kurze Nachrichten und auch eine etwas größere Effizienz für längere Nach-
richten zu ermöglichen, wird folgende MAC-Konstruktion bereitgestellt. Es wird daran erinnert, dass fk(x) die
Komprimierungsfunktion ist, deren Eingangsblockgröße b Bits und deren Ausgangsgröße t Bits ist, und dass
die Größe der Verkettungsvariable und somit der Schlüsselgröße ebenfalls t Bits ist. Wie in Fig. 11a und
Fig. 11b dargestellt, sieht eine bestimmte Ausführungsform der Konstruktion für einen MAC gemäß den Prin-
zipien der vorliegenden Erfindung folgendermaßen aus:

ENMACk(x) = fk1(x,pad,1) wenn |x|<=b-2 Bits = fk1 (xpref, Fk2 (xsuff), 0) oder,

worin im ersten Fall die ersten b-2 Bits im Block zur Aufnahme der Nachricht x verwendet werden. Wenn die
Nachricht x die ersten b-2 Bits nicht füllt, werden Füllzeichen benötigt, und der restliche Block, außer dem letz-
ten Bit, wird mit einer obligatorischen 1, möglicherweise gefolgt von Nullen, gefüllt. Falls die Nachricht eine
Länge von b-2 Bits hat, wird das b-1te Bit auf 1 gesetzt. In dieser Ausführungsform zeigt das letzte Bit des
Blocks an, ob ein einziger Komprimierungsaufruf für ENMAC verwendet wird. Das letzte Bit des Blocks wird im
Fall eines einzigen Komprimierungsaufrufs auf 1 und, falls mehrfache Aufrufe oder Iterationen der Komprimie-
rungsfunktion f benötigt werden, auf 0 gesetzt. Im zweiten Fall, wenn die Dinge nicht in einen einzigen Block
7/26

DE 601 03 737 T2 2005.07.07
passen, wird die Zeichenkette x in zwei Teile oder Segmente xpref und xsuff aufgeteilt, worin

xpref = x1...xb-t-1, und

xsuff = xb-t...x|x|.

[0040] Zuerst wird xsuff unter Einsatz eines Schlüsselwertes k2 hash-codiert, um das-t-Bit-Ergebnis von
Fk2(xsuff) zu produzieren. Dann wird ein äußerer Komprimierungsaufruf unter Einsatz eines Schlüsselwertes k1
durchgeführt, wobei die ersten b-t-1 Bits auf xpref und die nächsten t Bits auf das Ergebnis Fk2(xsuff) gesetzt wer-
den, und wobei das letzte Bit auf Null gesetzt wird.

[0041] Die oben beschriebene ENMAC-Konstruktion kann eine SHA-1-Hash-Funktion als zugrunde liegende
kryptographische Hash-Funktion, wie unten mit besonderer Bezugnahme auf Fig. 12 beschrieben, benutzen.
Wie in Block 110 dargestellt, bestimmen die Verarbeitungsschaltkreise, die die ENMAC-Konstruktion imple-
mentieren, ob die Länge von x,|x| kleiner oder gleich 510 Bits ist. Falls ja, gehen sie zu Schritt 112, um die
512-Bit-Nutzinformation von fk1() zu formen, indem sie x in die ersten 510 Bits lädt. Dann wird in Block 114 eine
„1" an x angehängt, gefolgt von der Auffüllung mit so vielen Nullen wie nötig (möglicherweise keine), um die
511 Bits in Block 116 zu füllen. Wenn |x| kleiner als 510 Bits ist, wird der restliche Platz hinter der 1 mit Nullen
aufgefüllt, oder falls |x| 510 Bits ist, wird nicht mit Nullen aufgefüllt, und nur eine einzige 1 in der 511ten Bitposi-
tion bei Block 114 angehängt. Bei Block 118 wird das letzte 512te (Blockanzeigebit) auf Eins gesetzt, um anzu-
zeigen, dass die Nachricht in einen einzigen Block passt. Bei Block 120 wird die Schlüssel-Komprimierungs-
funktion fk1(x,pad,1) unter Einsatz von Schlüssel k1 als 160-Bit-Verkettungsvariable und die Nachricht x, Füll-
bits) und Blockanzeigebit als 512-Bit-Nutzinformation oder Eingangsblock ausgeführt. Anschließend wird das
Ergebnis fk1(x,pad,1) ausgegeben und zur Bereitstellung des MAC bei Block 122 verwendet.

[0042] Wenn bei Block 110 die Nachricht x größer als 510 Bits ist, gehen die Verarbeitungsschaltkreise zu
Block 124, wo die Nachricht in zwei Teile xpref und xsuff aufgeteilt wird, wobei xpref = x1...x351 und xsuff = x352...x|x|

ist. Dann führen die Verarbeitungsschaltkreise bei Block 126 die Schlüssel-Hash-Funktion Fk2 aus, wobei
Schlüssel k2 und der Nachrichtenteil xsuff mit irgendwelchen zusätzlichen Füllbit(s) und/oder einem oder meh-
reren Bitfeldern als Nutzinformation zum Einsatz kommt, um das 160-Bit-Ergebnis von Fk2(xsuff) zu erzielen. Bei
Block 128 werden die ersten 351 Bits der Nutzinformation der äußeren Komprimierungsfunktion fk1 auf xpref und
bei Block 130 die nächsten 160 Bits der Nutzinformation auf das in Block 126 berechnete Ergebnis von Fk2(xsuff)
eingestellt. Das letzte 512te Bit der Nutzinformation wird bei Block 132 auf 0 gesetzt. Schließlich wird bei Block
134 die äußere Schlüssel-Komprimierungsfunktion fk1 auf die bei Block 128 bis 132 gebildete 512-Bit-Nutzin-
formation angewendet, und das Ergebnis fk1(xpref,Fk2(xsuff), 0) wird bei Block 136 zur Erzeugung eines MAC aus-
gegeben.

[0043] Tabelle 2 unten vergleicht die Anzahl der Komprimierungsaufrufe, die von der zugrunde liegenden
Hash-Funktion, SHA-1 und von ENMAC für kurze Nachrichten verschiedener, in Stufen von 30 Bytes anstei-
genden Größen benötigt werden. Eine signifikante Differenz besteht zwischen Tabelle 2 und der vorhergehen-
den Tabelle 1, in der einfache NMACs verglichen wurden. Für viele der kleinen Nachrichtengrößen hat NMAC
die gleiche Effizienz wie die zugrunde liegende Hash-Funktion. Für größere Nachrichten besteht kein großer
Unterschied zwischen der Effizienz von NMAC, ENMAC und der der zugrunde liegenden Hash-Funktion. Für
Nachrichten mit einer Größe von 480 Bits zeigt der Eintrag in Tabelle 2 überraschenderweise, dass der
ENMAC effizienter als die zugrunde liegende Hash-Funktion ist. Der Grund dafür ist, dass die zugrunde liegen-
de SHA-1-Funktion 64 Bits für die Größeninformation reserviert, während ENMAC für Nachrichten unter 510
Bits nur 2 Bits reserviert. Somit sind die Einsparungen, die sich aus dem Einsatz von ENMAC ergeben, signi-
fikant für Nachrichten, die in einen oder einige wenige Blöcke passen.
8/26

DE 601 03 737 T2 2005.07.07
[0044] Wenn ein anderer Schlüssel k3 zum Erzeugen von MACs für Nachrichten, die in einen einzigen Block
passen, und Schlüssel k = (k1, k2) zum Erzeugen von MACs für größere Nachrichten, die NMAC verwenden,
benutzt würde, könnte man sagen, dass das System gesichert ist. Dies ist im Wesentlichen das, was hier be-
zweckt wird, aber anstatt einen anderen Schlüssel zum Erstellen eines anderen MAC zu benutzen, wird das
nachlaufende Bit auf 1 gesetzt, wenn die Nachricht in einen Block passt, und im anderen Fall auf 0 gesetzt.
Zweitens, während NMAC die Nutzinformation des äußeren Komprimierungsaufrufs mit Nullen auffüllt, setzt
ENMAC einen Teil der Nachricht in den äußeren Aufruf.

[0045] Die ENMAC-Sicherheitsergebnisse sind ähnlich denen von NMAC und sollen im Folgenden zu Lehr-
zwecken beschrieben und bewiesen werden.

[0046] Lehrsatz 2. In t Schritten und q Abfragen, wenn die Schlüssel-Komprimierungsfunktion f ein εf sicherer
MAC und die iterierte Schlüssel-Hash-Funktion F εF schwach kollisionsresistent ist, dann ist die ENMAC-Funk-
tion ein (εf + εF) sicherer MAC.

[0047] Beweis: Es sei angenommen, dass ein Gegner AE mit einer Wahrscheinlichkeit εE erfolgreich gegenü-
ber ENMAC ist, wobei t Zeitschritte und q adaptiv gewählte Abfragen an die ENMAC-Funktion angenommen
werden. Dieser Gegner wird dazu benutzt, einen anderen Gegner Af zu erstellen, der einen MAC fälscht, der
für eine vorher nicht abgefragte Nachricht mit einer Schlüssel-Komprimierungsfunktion assoziiert ist. Diese
Wahrscheinlichkeit, den MAC zu brechen, ist, an die Ausdrücken εE und εF gebunden, die beste Wahrschein-
lichkeit für einen Gegner, eine Kollision in der Hash-Funktion F t Zeit und q Abfragen zu finden. Die Wahr-
scheinlichkeit, den MAC auf diese bestimmte Weise unter Einsatz von AE zu brechen, muss kleiner als die bes-
te Wahrscheinlichkeit sein, den MAC in irgendeiner Weise εf zu brechen. Dies kann dazu verwendet werden,
εE zu binden. Der Algorithmus Af, der zur Fälschung des Schlüsselkomprimierungs-MAC verwendet wird, ist im
Folgenden definiert.

[0048] Wählen Sie irgendein k2
Für i...q
AE → xi
Wenn xi > b – 2
AE ← fk1 (xi, pad, 1)
oder
AE ← fk1 (1,xi, pref, Fk2 (xi,suff), 0
AE → (x, y)
Wenn x < b – 2
Ausgabe (x, pad, 1),y
oder
Ausgabe (xpref, Fk2 (xsuff), 0)y

[0049] Angenommen, εE = εE1 + εE+, worin εE1 die Wahrscheinlichkeit darstellt, dass ENMAC angegriffen wird,
und die von AE gefälschte ENMAC-Nachricht ungefähr eine Blockgröße, oder genauer ausgedrückt b – 2 Bits,
ist. Und angenommen, E+ ist das Ereignis und εE+ die Wahrscheinlichkeit, dass ENMAC angegriffen wird, und
die von AE gefälschte ENMAC-Nachricht größer als eine Blockgröße ist. Weiterhin ist εE+ = εE+pref≠ + εE+pref= worin
εE+pref≠ die Wahrscheinlichkeit ausdrückt, dass der ENMAC mit einer Mehrfachblock-Nachricht gefälscht wurde,
und dass das Präfix der Nachricht nicht gleich dem Präfix irgendeiner der vorher von AE abgefragten Nachrich-

Tabelle 2: Vergleich zwischen der Anzahl der Komprimierungsaufrufe für kurze Nachrichten verschiedener
Größen.
9/26

DE 601 03 737 T2 2005.07.07
ten ist. Und εE+pref= ist die Wahrscheinlichkeit, dass der ENMAC mit einer Mehrfachblock-Nachricht gefälscht
wurde, und dass das Präfix der Nachricht gleich dem Präfix einiger vorher von AE abgefragten Nachrichten ist.
In diesem Fall muss das Suffix der gefälschten Nachricht ein anderes als das Suffix der Nachrichten mit dem
gleichen Präfix sein.

P[Fälschung von f-MAC]
=P[f-MAC gefälscht über E1 + P[f-MAC gefälscht über E+] (1)

=εE1+P[f-MAC gefälscht über E+]
=εe1+P[f-MAC gefälscht über E+pref≠]
+ P[f-MAC gefälscht über E+pref=] (2)

=εE1+εE+pref≠ +P[f-MAC gefälscht über E+pref=]
=εE1+εE+pref≠ +P[E+pref= ⋂ keine Suffix-Kollision im Satz
bei gleichem Präfix] (3)

=εE1+εE+pref≠ +1–P[E+pref= ⋃ Suffix-Kollision im Satz bei
gleichem Präfix] (4)

=εE1+εE+pref≠ +1–P[E+pref=] – P [Kollision im Satz] +
P[E+pref= ⋂ Kollosion im Satz]
≥=εE1+εE+pref≠ + 1 – P [E+pref= – P [Kollision in q Satz] (5)

≥ =εE1+εE+pref≠ +1–1 +εE+pref= –P [Kollision in q Abfragen] (6)

≥ =εE1+εE+pref≠ +1–1 + εE+pref= – εF
≥ εE1+εE+ – εF
≥ εE – εF
(7)

ef ≥ P[Fälschung von f-MAC über ENMAC-Fälschung] ≥ εE – εF
(8)

ef ≥ εE – εF
deshalb eE ≤ εf – εF (9)

[0050] Gleichung 1 bricht die Wahrscheinlichkeit, einen neuen f-Mac zu fälschen, in die Wahrscheinlichkeit
auf, einen neuen f-MAC durch Fälschen eines ENMAC MAC, entweder Einzelblock oder Mehrfachblock, zu
fälschen. Die Wahrscheinlichkeit, f durch Brechen eines Mehrfachblock-ENMACs aufzubrechen, wird in Glei-
chung 2 in den Fall, dass kein Präfix gleich irgendeinem anderen Präfix in allen abgefragten Nachrichten ist,
und in den Fall, dass unter den abgefragten Nachrichten einige das gleiche Präfix haben, aufgebrochen. In
Gleichung 3 wird die Wahrscheinlichkeit, dass der f-MAC über E+pref= gefälscht wurde, mit dem Fall gleichge-
setzt, dass die Wahrscheinlichkeit von E+pref= eintritt, und dass keine Kollisionen in der Hash-Funktion des Suffix
in den Nachrichten mit dem gleichen Präfix vorkommen. In Gleichung 4 wird Gleichung 3 unter Einsatz des
Demorgan-Gesetzes umgeschrieben. In Gleichung 6 wird die Wahrscheinlichkeit einer Kollision in dem Satz
mit dem gleichen Präfix durch die Wahrscheinlichkeit der Kollision mit allen g Abfragen ersetzt. Gleichung 9 ist
das gewünschte Ergebnis für die Wahrscheinlichkeit, den ENMAC zu fälschen: εE ist kleiner als εf, die Wahr-
scheinlichkeit den MAC zu fälschen, plus εF, die Wahrscheinlichkeit, eine Kollision zu finden.

[0051] Da in der Praxis Daten oft in Bytes verarbeitet werden, ist es angebracht, den Fall eines Einzelblocks
auszuführen, wenn die Länge der Nachricht x kleiner als b-8 Bits, anstatt der oben angegebenen b-2 Bits ist.
Im Fall eines Mehrfachblock-ENMAC kann die Bildung von xsuff, beginnend an einer Nicht-Wort-Grenze, eine
Neuausrichtung aller Worte in xsuff verursachen. Dies kann dadurch vermieden werden, dass man, wie im Fol-
genden dargestellt, aus praktischen Gründen eine andere Variante von ENMAC verwendet, wobei Byte-Grö-
ßen, anstatt Bits zum Einsatz kommen.

ENMACk(x) = fk1(x,pad,1) wenn |x| <= 504 Bits = fk1(Fk2(xpref),xsuff, 0) oder

worin für SHA-1 als zugrunde liegende kryptographische Hash-Funktion f,
10/26

DE 601 03 737 T2 2005.07.07
xpref = x1...x|x|–344, und

xsuff = x|x|–343...x|x|.

[0052] Bei Nachrichten mit Längen bis zu 63 Bytes (504 Bits) und zusätzlich zu irgendwelchen zusätzlichen
Füllzeichen, wie 1 gefolgt von Nullen, um die Nachricht auf 504 Bits aufzufüllen, wird das letzte Byte als Blo-
ckanzeiger oder „X0000001" reserviert, worin eine 1 eine Einzelblocknachricht bezeichnet, und das X eine „1"
nach einer nicht aufgefüllten 504-Bit-Nachricht sein kann. Bei nicht aufgefüllten Nachrichten von weniger als
504 Bits ist das X eine „0". Bei Nachrichten von über 504 Bits wird die Nachricht in die Teile xpref und xsuff auf-
geteilt. Wobei die Länge von xsuff 43 Bytes (344 Bits) und die Länge von xpref = Länge der Nachricht – 344 Bits
ist.

[0053] Neben der/den oben beschriebenen Ausführungsformen kann das Nachrichtenauthentifizierungssys-
tem gemäß den Prinzipien der vorliegenden Erfindung Eingangsparameter und/oder Komprimierungs-
und/oder Hash-Funktionen oder andere Operationen, Schlüsselwerte auslassen und/oder hinzufügen
und/oder Variationen oder Teile des beschriebenen Systems benutzen. Zum Beispiel ist im Folgenden eine in
Fig. 13a und Fig. 13b dargestellte Ausführungsform des Nachrichtenauthentifizierungssystems beschrieben,
welches als verbessertes HMAC-System benutzt wird.

EHMACk(x)= F(k ⊕opad,x,1) wenn|x|<= b-a-1-andere Felder = F(k ⊕opad, xpref, F(k ⊕ipad, xsuff), 0) oder.

[0054] Im ersten Fall, Fig. 13a, passt die Nachricht x in einen einzigen Block. Dies bedeutet, dass die Nach-
richt x kleiner als b-1-other fields sein muss, wobei „other fields" einige Bits aufgrund von Auffüllung und/oder
Längenanhängesystemen der Hash-Funktion F aufweisen kann. In der Annahme, dass x klein genug ist, wird
eine größere Eingabe gebildet, deren erster Teil k ⊕opad, gefolgt von x ist, auf welches wiederum ein auf 1
gesetztes Bit folgt. Diese längere Nachricht wird in die zugrunde liegende Hash-Funktion F eingegeben. Inner-
halb von F sehen wir, dass zuerst durch Aufruf der Komprimierungsfunktion f(k ⊕opad) ein Schlüssel k1 erstellt
wird, wobei k möglicherweise auf die entsprechende Länge aufzufüllen ist. Das Ergebnis wird als Verkettungs-
variable für den nächsten Aufruf an die Komprimierungsfunktion verwendet, deren Nutzinformation (x,1) durch
Füllzeichen aufgefüllt und/oder gemäß der Spezifikation der Hash-Funktion F an die Länge angehängt wird.

[0055] In Fig. 13b, wo die Nachricht x zusammen mit zusätzlichen obligatorischen Feldern nicht in einen ein-
zigen Block passt, ist die Zeichenkette x in zwei Teile oder Segmente xpref und xsuff aufgeteilt, wobei

xpref = x1...xb-t-1-andere, und

xsuff = Rest von x

[0056] Zuerst wird in einer inneren Hash-Funktion 130 ein bitweises exclusive-or zwischen Schlüssel k und
ipad durchgeführt, um k2 zu produzieren, welches zusammen mit dem Eingangsblock xsuff1 als Verkettungsva-
riable benutzt wird. Die Komprimierungsfunktion f wird aufgerufen, bis Block xsuffn mit irgendwelchen Füllzei-
chen, angehängten Längenfeldern oder anderen Feldern in die letzte Komprimierungsfunktion eingegeben
wird, um das Ergebnis der Hash-Funktion für F (k⊕ipad, xsuff) zu produzieren, wobei k möglicherweise auf die
entsprechende Länge aufzufüllen ist. Bei einer äußeren Hash-Funktion 132 wird der Schlüssel k1 durch Auf-
rufen einer Komprimierungsfunktion 134 mit dem Wert IV als Verkettungsvariable und k⊕opad als Eingabe be-
stimmt. Der Wert k1 wird als Verkettungsvariable für eine Komprimierungsfunktion 136 benutzt, wobei die Ein-
gabe auf xpref mit vorlaufendem F(k⊕ipad, xsuff) und nachlaufender Null eingestellt ist. Das Ergebnis F(k⊕opad,
xpref, F(k⊕ipad, xsuff), 0) kann zur Bereitstellung des MAC verwendet werden.

[0057] Fig. 14a und Fig. 14b zeigen wiederum eine andere Ausführungsform des Nachrichtenauthentifizie-
rungs-systems, welches als SMAC-System, wie unten im Zusammenhang einer spezifischen Beispielimple-
mentierung für Bytes beschrieben, benutzt wird.
11/26

DE 601 03 737 T2 2005.07.07
[0058] Wie bei den anderen Ausführungsformen besteht SMAC aus zwei Fällen, dem Einzelblockfall (<=63
Bytes) (Fig. 14a) und dem Mehrfachblockfall (>63 Bytes) (Fig. 14b). In beiden Fällen ergeht ein Aufruf an die
Schlüssel-Komprimierungsfunktion f, z.B. eine SHA-Funktion. Im Einzelblockfall werden keine weiteren Funk-
tionsaufrufe benötigt. Im Mehrfachblockfall wird jedoch eine schlüssellose Hash-Funktion F 140, z.B. die Stan-
dard SHA1_HASH-Funktion, auf den Anfangsteil der Nachricht xpref angewendet. Dann werden das Hash-Er-
gebnis und der Rest der Nachricht in einen Eingangs- oder Nutzinformationsblock eingefügt, und es ergeht ein
Aufruf an eine Schlüssel-Komprimierungsfunktion f 142. Weitere Details über das Laden der SHA-1 Kompri-
mierungsfunktion f sind in Tabelle 3 und 4 angegeben.

[0059] Wie dargestellt, wird das letzte 512te Bit der SHA-1-Komprimierungsfunktion als „Einzelblockanzeige-
bit" benutzt und wird im Einzelblockauf auf 1, und im Mehrfachblockfall auf 0 gesetzt. Da die Nachricht in dieser
Ausführungsform in Mehrfachen von Bytes verarbeitet wird, kann keines der restlichen Bits im letzten Byte zur
Verarbeitung der Nachricht verwendet werden. Daher wird das letzte (64te) Byte der Komprimierungsfunktion
als Ganzes reserviert. Im Mehrfachblockfall werden die Bits 505–511, wie in Tabelle 4 angegeben, ebenfalls
auf Null gesetzt. Im Einzelblockfall werden Bits 506–511 auf Null gesetzt; das 505te Bit wird jedoch als extra
Füllbit benutzt, dessen Funktion klar wird, sobald das im Einzelblockfall verwendete Füllsystem erklärt wird.

[0060] Nachrichten, die einen Block teilweise füllen, benötigen eine Füllmethode. Im Mehrfachblockfall ist kei-
ne Füllmethode zum Füllen der Komprimierungsfunktion erforderlich, da der Block, wie in Tabelle 4 dargestellt,
voll ist. Die SHA1_Hash-Funktion benutzt jedoch nicht ihre eigenen Füllzeichen, wenn sie xpref hash-codiert.
Um Nachrichten im Einzelblockfall aufzufüllen, wird eine 1 an die Nachricht angehängt, dann werden so lange
Nullen angehängt (möglicherweise keine), bis die restlichen Bits den Block füllen, oder genauer gesagt, bis das
505te Bit gefüllt ist. Beispielsweise wird für den Fall, dass die Einzelblock-Nachricht 63 Bytes oder 504 Bits lang
ist, eine 1 zum 505ten Bit hinzugefügt. Die restlichen Bits 506–512 werden wie oben beschrieben gefüllt.

[0061] Im Mehrfachblockfall wird die Hash-Funktion F 140 in den Blöcken xpref1 bis xprefn auf alle außer den
letzten 43 Bytes der Nachricht angewendet, die eine 20-Byte-Übersicht ausgibt. Die letzten 43 Bytes werden
nicht in der Hash-Funktion F verarbeitet, so dass sie von der Komprimierungsfunktion f 142 verarbeitet werden
können. Der Grund für 43 Bytes ist, dass von den 64 verfügbaren Bytes die ersten 20 Bytes dazu dienen, die
Übersicht zu laden, und das letzte Byte, wie in Tabelle 4 aufgezeigt, speziell für die SHA-1-Hash-Funktion und
die SHA-1-Komprimierungsfunktion reserviert wird.

Yi...Y20 = SHA–HASH(x1....x|x|–43)

Tabelle 3: Einzelblock – Laden der SHA-1-Komprimierungs funktion
12/26

DE 601 03 737 T2 2005.07.07
[0062] Fig. 15 zeigt ein Ablaufdiagramm für die SMAC-Konstruktion. Zu Anfang wird der Schlüssel mit dem
IV XOR-bearbeitet und in die Verkettungsvariable der SHA1-Komprimierungsfunktion geladen, wie bei Block
148 dargestellt. Bei Block 150 bestimmen Verarbeitungs-Schaltkreise, ob |x|> 63 Bytes ist. Wenn nicht, gehen
die Verarbeitungsschaltkreise wie im Einzelblockfall vor, wobei die Nachricht x bei Block 152 auf die linke Seite
des 512-Bit-Blocks der Komprimierungsfunktion f geladen wird. Bei Block 154 hängen die Verarbei-
tungs-Schaltkreise eine „1" an das nächste Bit. Bei Block 156 wird der Rest des Blocks mit Nullen bis zum letz-
ten 512ten Bit gefüllt, welches in Block 158 auf 1 gesetzt wird. Bei Block 160 wird die Komprimierungsfunktion
f aufgerufen, wobei die Verkettungsvariable (K XOR IV) und die Nutzinformation der Blöcke 152–158 zum Ein-
satz kommt. Bei Block 162 wird der 20-Byte-MAC zurückgegeben.

[0063] Wenn |x| >63 Bytes ist, gehen bei Block 150 die Verarbeitungsschaltkreise wie für den Mehrfachblock-
fall vor. Bei Block 164 wird die Nachricht x in zwei Stücke aufgeteilt: xpref Bytes x1...x|x|–43 und xsuff Bytes x|x|–43

....x|x|. Bei Block 166 wird die SHA1_HASH-Funktion mit xpref aufgerufen, und ein 20-Byte-Ergebnis wird produ-
ziert. Bei Block 168 wird das 20-Byte-Ergebnis auf die linke Seite des 64-Byte-Blocks der SHA1-Komprimie-
rungsfunktion geladen, und xsuff wird zu Bytes 21 bis 63 hinzugefügt. Bei Block 170 wird das letzte 64te Byte
auf 0 gesetzt. Schließlich wird bei Block 172 die SHA1-Komprimierungsfunktion aufgerufen, wobei die zu An-
fang berechnete Verkettungsvariable (K XOR IV) und die Nutzinformation der Blöcke 168 und 170 zum Einsatz
kommen. Der 20-Byte-MAC wird bei Block 162 zurückgegeben.

[0064] SMAC ist NMAC ähnlicher als HMAC, deshalb soll es jetzt mit NMAC anstatt HMAC verglichen wer-
den. NMAC enthält einen inneren Aufruf an die Hash-Funktion F und einen äußeren Aufruf an die Komprimie-
rungsfunktion f. SMAC verhält sich gleich für Nachrichten, die größer als 63 Bytes sind, überspringt jedoch den
Hash-Aufruf für kleinere Nachrichten. Für längere Nachrichten verarbeitet SMAC einen Teil der Nachricht im
äußeren Komprimierungsaufruf, so dass der vom internen Hash-Funktions-Aufruf verarbeitete Text reduziert
wird. NMAC tut dies nicht, sondern füllt stattdessen den Rest der Nutzinformation der äußeren Komprimie-
rungsaufrufe mit Nullen. In NMAC wird die innere Hash-Funktion mit einem Schlüssel versehen, während
SMAC den internen Aufruf nicht mit einem Schlüssel versieht. Der interne SMAC-Aufruf kann mit einem
Schlüssel versehen werden, was jedoch aus Effizienzgründen in dieser Ausführungsform nicht geschah. Die
Sicherheit wird davon, im Grunde genommen, nicht betroffen, weil es für unmöglich gehalten wird, eine Kolli-
sion selbst in der schlüssellosen SHA1-HASH-Funktion zu finden.

[0065] Im Folgenden ist der Code, der zur Implementierung von SMAC verwendet werden sollte, angegeben:
Ausgaben an intern gespeicherte Daten:

Tabelle 4: Mehrfachblock – Laden der SHA1-Komprimierungsfunktion
13/26

DE 601 03 737 T2 2005.07.07
14/26

DE 601 03 737 T2 2005.07.07
[0066] Das MAC-System wurde für den Einsatz bestimmter Hash- oder Komprimierungsfunktionen, wie z.B.
für SHA-1, beschrieben, es können aber auch andere Hash-Funktionen oder verwandte kryptographische
Funktionen sowie andere oder zusätzliche Funktionen verwendet werden. Darüber hinaus wurden bestimmte
Bit- oder Byte-Werte für die Nachricht, für Nutzinformationen, Verkettungsvariablen und Schlüsselwerte be-
schrieben, diese Zahlen können sich jedoch je nach Ausführungsform ändern. Des Weiteren können die
Schlüsselwerte ein Schlüssel sein, der von einem Schlüssel oder einem/mehreren Teilen desselben abgeleitet
wurde. Es versteht sich, dass andere Notationen, Bezugszeichen und Kennzeichnungen für die verschiedenen
Werte, Eingaben und Architekturblöcke verwendet werden können. Zum Beispiel wird der Ausdruck Kompri-
mierungsfunktion f und Hash-Funktion F benutzt, wo die iterierte Hash-Funktion F unter Einsatz von iterierten
oder verketteten Komprimierungsfunktionen f konstruiert wird. Es versteht sich, dass eine Komprimierungs-
funktion auch eine Hash-Funktion ist.

[0067] In anderen Ausführungsformen kann die für das Nachrichtenauthentifizierungssystem beschriebene
Funktionalität mit Verarbeitungsschaltkreisen in einem Heimatstandortregister (HLR), einer Home-MSC, einem
Besucherauthentifizierungszentrum, einem Besucherstandortregister (VLR) und/oder einer Besucher-MSC
realisiert werden. Darüber hinaus kann das Nachrichtenauthentifizierungssystem und Teile desselben in einer
drahtlosen Einheit, einer Basisstation, einem Basisstationscontroller, MSC, VLR, HLR oder einem anderen
Subsystem eines drahtlosen Kommunikationssystems realisiert werden. Je nach Ausführungsform kann der
MAC in Assoziation mit der Nachricht gesendet werden, wobei er mit einem am empfangenden Ende erzeug-
ten MAC verglichen und/oder geprüft wird. Durch zusätzliche Funktionalität kann der MAC geändert oder trans-
formiert werden, bevor er in Assoziation mit der Nachricht gesendet wird, und die gleiche Funktionalität kann
15/26

DE 601 03 737 T2 2005.07.07
für den am empfangenden Ende zu Vergleichs- und/oder Prüfungszwecken (Nachrichtenauthentifizierung) er-
zeugten MAC realisiert werden. Schließlich könnte der MAC gesendet, und der empfangene MAC sowie der
am empfangenden Ende erzeugte MAC durch zusätzliche Funktionalität zur Realisierung der Nachrichtenau-
thentifizierung geändert oder transformiert werden. Ein Beispiel für zusätzliche Funktionalität wäre der Einsatz
der unwichtigsten 32 Bits des MAC für irgendwelche Vergleiche oder Prüffunktionen bei der Realisierung der
Nachrichtenauthentifizierung. Der geänderte und/oder transformierte MAC selbst kann als MAC oder TAG be-
zeichnet werden.

[0068] Zusätzlich, obwohl das Nachrichtenauthentifizierungssystem im Zusammenhang mit dem drahtlosen
Kommunikationssystem beschrieben wird, kann es dazu benutzt werden, die Integrität einer Kommunikations-
nachricht, die über ein beliebiges Netzwerk oder Kommunikationsmedium von einem Sendepunkt an einen
Empfangspunkt geschickt wird, zu prüfen oder sie zu authentisieren. Es versteht sich, dass das System und
Teile desselben sowie Teile der beschriebenen Architektur in den Verarbeitungs-Schaltkreisen in der Einheit
oder an verschiedenen Standorten des Kommunikationssystems, oder in anwendungsspezifischen integrier-
ten Schaltkreisen, softwaregetriebenen Verarbeitungsschaltkreisen, programmierbaren Logikeinheiten, Firm-
ware-, Hardware- oder anderen Anordnungen diskreter Komponenten, die von einem normalen Fachmann im
Zusammenhang mit dieser Offenbarung verstanden würden, implementiert oder mit diesen integriert werden
können. Was beschrieben wurde, dient lediglich zur Veranschaulichung der Prinzipien der vorliegenden Erfin-
dung. Der Fachmann wird ohne Weiteres erkennen, dass diese und verschiedene andere Modifikationen, An-
ordnungen und Methoden auf die vorliegende Erfindung angewendet werden können, ohne die hierin veran-
schaulichten und beschriebenen beispielhaften Anwendungen genau zu befolgen, und ohne vom Geltungsbe-
reich der vorliegenden Erfindung, wie beansprucht, abzuweichen.

Patentansprüche

1. Verfahren zum Verarbeiten einer Nachricht zur Authentifizierung unter Verwendung einer Komprimie-
rungsfunktion (90) und einer vernesteten Hash-Funktion mit einer inneren Hash-Funktion (100) und einer äu-
ßeren Hash-Funktion (102), wodurch die innere Hash-Funktion (100) ein Ergebnis für die äußere Hash-Funk-
tion (102) produziert, gekennzeichnet durch die folgenden Schritte:
Durchführen einer einzigen Iteration der Komprimierungsfunktion (90) unter Verwendung eines Schlüssels (K)
und der Nachricht (X) als Eingaben, wenn die Nachricht (X) in einen Eingangsblock der Komprimierungsfunk-
tion (90) paßt; und
wenn die Nachricht größer als der Eingangsblock der Komprimierungsfunktion (90) ist, Zuführen der Nachricht
(X) und eines Schlüssels zu der vernesteten Hash-Funktion, um die Nachricht (X) zu verarbeiten.

2. Verfahren nach Anspruch 1, mit den folgenden Schritten:
Durchführen einer Hash-Funktion als die innere Hash-Funktion (100) unter Verwendung eines ersten Teils (Teil
2) der Nachricht als Eingabe, um das Ergebnis zu erreichen; und
Durchführen einer Schlüssel-Hash-Funktion (102) als die äußere Hash-Funktion unter Verwendung des zwei-
ten Teils (Teil 1) der Nachricht und des Ergebnisses als Eingabe.

3. Verfahren nach Anspruch 2, wobei die Hash-Funktion eine iterierte Hash-Funktion F und die Schlüs-
sel-Hash-Funktion eine Schlüssel-Komprimierungsfunktion f ist.

4. Verfahren nach Anspruch 2, wobei die Hash-Funktion eine iterierte Hash-Funktion F und die Schlüs-
sel-Hash-Funktion eine iterierte Hash-Funktion F ist.

5. Verfahren nach Anspruch 1, mit den folgenden Schritten:
Verwenden eines Ergebnisses der Komprimierungsfunktion, um einen Nachrichtenauthentifizierungscode
(TAG) zu erzeugen; und
Senden des Nachrichtenauthentifizierungscodes (TAG) in Assoziation mit der Nachricht (MESSAGE) zur Au-
thentifizierung der Nachricht unter Verwendung des Nachrichtenauthentifizierungscodes (TAG).

6. Verfahren nach Anspruch 1, mit den folgenden Schritten:
Verwenden eines Ergebnisses der Komprimierungsfunktion, um einen Nachrichtenauthentifizierungscode
(TAG') zu erzeugen; und
Vergleichen des Nachrichtenauthentifizierungscodes (TAG') mit dem Nachrichtenauthentifizierungscode
(TAG) einer empfangenen Nachricht, der mit der Nachricht (MESSAGE) empfangen wird, wodurch die Nach-
richt authentisch ist, wenn der Nachrichtenauthentifizierungscode (TAG') und der Nachrichtenauthentifizie-
rungscode (TAG) übereinstimmen.
16/26

DE 601 03 737 T2 2005.07.07
7. Nachrichtenauthentifizierungssystem, das eine Komprimierungsfunktion (90) und eine vernestete
Hash-Funktion mit einer inneren Hash-Funktion (100) und einer äußeren Hash-Funktion (102) verwendet, wo-
durch die innere Hash-Funktion (100) ein Ergebnis für die äußere Hash-Funktion (102) produziert, wobei das
System durch folgendes gekennzeichnet ist:
Verarbeitungsschaltkreise, die so ausgelegt sind, daß sie eine einzige Iteration der Komprimierungsfunktion
(90) unter Verwendung eines Schlüssels (K) und der Nachricht (X) als Eingaben durchführen, wenn die Nach-
richt (X) in einen Eingangsblock der Komprimierungsfunktion (90) paßt, und die Nachricht (X) und einen
Schlüssel der vernesteten Hash-Funktion zuführen, um die Nachricht (X) zu verarbeiten, wenn die Nachricht
größer als der Eingangsblock der Komprimierungsfunktion (90) ist.

Es folgen 9 Blatt Zeichnungen
17/26

DE 601 03 737 T2 2005.07.07
Anhängende Zeichnungen
18/26

DE 601 03 737 T2 2005.07.07
19/26

DE 601 03 737 T2 2005.07.07
20/26

DE 601 03 737 T2 2005.07.07
21/26

DE 601 03 737 T2 2005.07.07
22/26

DE 601 03 737 T2 2005.07.07
23/26

DE 601 03 737 T2 2005.07.07
24/26

DE 601 03 737 T2 2005.07.07
25/26

DE 601 03 737 T2 2005.07.07
26/26

	Titelseite
	Beschreibung
	Patentansprüche
	Anhängende Zeichnungen

