WO 2006/071969 A1 | |00 000 0 000 0 A

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
6 July 2006 (06.07.2006)

2| ) R
2 {0 O 0 OO0

(10) International Publication Number

WO 2006/071969 Al

(51) International Patent Classification:
GOGF 9/52 (2006.01) GOGF 9/46 (2006.01)

(21) International Application Number:
PCT/US2005/047376

(22) International Filing Date:
23 December 2005 (23.12.2005)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:

11/027,623 29 December 2004 (29.12.2004) US

(71) Applicant (for all designated States except US): INTEL
CORPORATION [US/US]; 2200 Mission College Boule-
vard, Santa Clara, CA 95052 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): KOTTAPALLI,
Sailesh [IN/US]; 330 Elan Village Lane #224, San Jose,
CA 95134 (US). CRAWFORD, John, H. [US/US];

(74)

(81)

(84)

20128 Chateau Drive, Saratoga, CA 95070 (US). VAID,
Kushagra [IN/US]; 507 White Chapel Drive, San Jose,
CA 95136 (US).

Agents: VINCENT, Lester J. et al.; BLAKELY,
SOKOLOFF, TAYLOR & ZAFMAN LLP, 12400 Wilshire
Boulevard, 7th Floor, Los Angeles, CA 90025 (US).

Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KM, KN, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV,
LY, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NG, NI,
NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG,
SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US,
UZ, VC, VN, YU, ZA, ZM, ZW.

Designated States (unless otherwise indicated, for every
kind of regional protection available): ARTPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, 7ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,

[Continued on next page]

(54) Title: TRANSACTION BASED SHARED DATA OPERATIONS IN A MULTIPROCESSOR ENVIRONMENT

(57) Abstract: The apparatus and method described herein are for handling shared

Tracking invalidating accesses to
a plurality of lines in a shared
memory referenced by a first

transaction during execution of
the first transaction

executed.

605

Re-executing the first transaction
a first number of times, if
invalidating accesses are tracked

610

Yy
Locking out access fo the
plurality of lines in shared
memory after re-executing the
transaction a first number of
times

615

A

Re-executing the transaction,
after access to the plurality lines
has been locked

620

memory Accesses between multiple processors utilizing lock-free synchronization
through transactional-execution. A transaction demarcated in software is speculatively
During execution invalidating remote accesses/requests to addresses
loaded from and to be written to share memory are tracked by a transactional buffer.
If an invalidating access is encountered, the transaction is re-executed.
pre-determined number of times re-executing the transaction, the transaction may be
re-executed non-speculatively with locks/semaphores.

After a



WO 2006/071969 A1 1IN0V NDVYH) AT VK00 N0 AR

FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL,, PL, PT, —  before the expiration of the time limit for amending the
RO, SE, SI, SK, TR), OAPI (BF, BJ, CFE, CG, CI, CM, GA, claims and to be republished in the event of receipt of
GN, GQ, GW, ML, MR, NE, SN, TD, TG). amendments

For two-letter codes and other abbreviations, refer to the "Guid-
Published: ance Notes on Codes and Abbreviations" appearing at the begin-
—  with international search report ning of each regular issue of the PCT Gazette.



WO 2006/071969 PCT/US2005/047376

TRANSACTION BASED SHARED DATA OPERATIONS IN A MULTIPROCESSOR

ENVIRONMENT

FIELD

[0001] This invention relates to the field of integrated circuits and,
in particular, to shared data operations between multiple integrated

circuits, cores, and threads.
BACKGROUND

[0002] Advances in semi-conductor processing and logic design
have permitted an increase in the amount of logic that may be present on
integrated circuit devices. As a result, computer system configurations
have evolved from a single or multiple inteéfated circuits in a system to
multiple cores and multiple logical processors present on individual
integrated circuits. An integrated circuit typically comprises a single
processor die, where the processor die may include any number of cores
or logical processors.

[0003] As an example, a single integrated circuit may have one or
multiple cores. The term core usually refers to the ability of logic on an
integrated circuit to maintain an independent architecture state, where
each independent architecture state is associated with dedicated execution

resources. Therefore, an integrated circuit with two cores typically



WO 2006/071969 PCT/US2005/047376

comprises logic for maintaining two separate and independent
architecture states, each architecture state being associated with its own
execution resources, such as low-level caches, execution units, and control
logic. Each core may share some resources, such as higher level caches,

bus interfaces, and fetch/decode units.

[0004] As another example, a single integrated circuit or a single
core may have multiple logical processors for executing multiple software
threads, which is also referred to as a multi-threading integrated circuit or

a multi-threading core. Multiple logical processors usually share common

data caches, instruction caches, execution units, branch predictors, control
logic, bus interfaces, and other processor resources, while maintaining a

unique architecture state for each logical processor. An example of multi-

threading technology is Hyper-Threading Technology (HT) from Intel®
Corporation of Santa Clara, California, that enables execution of threads in
parallel using a signal physical processor.

[0005] Current software has the ability to run individual software
threads that may schedule execution on a plurality of cores or logical
processors in parallel. The ever increasing number of cores and logical
processors on integrated circuits enables more software threads to be

executed. However, the increase in the number of software threads that



WO 2006/071969 PCT/US2005/047376

may be executed simultaneously have created problems with
synchronizing data shared among the software threads.

[0006] One common solution to accessing shared data in multiple
core or multiple logical processor systems comprises the use of locks to
guarantee mutual exclusion across multiple accesses to shared data. Asan
example, if a first software thread is accessing a shared memory location,
the semaphore guarding the shared memory location is locked to exclude
any other software threads in the system from accessing the shared
memory location until the semaphore guarding the memory location is
unlocked.

[0007] However, as stated above, the ever increasing ability to
execute multiple software threads potentially results in false contention
and a serialization of execution. False contention occurs due to the fact
that semaphores are commonly arranged to guard a collection of data,
which, depending on the granularity of sharing supported by the
software, may cover a very large amount of data. For this reason,
semaphores act as contention “amplifiers” in that there may be contention
by multiple software threads for the semaphores, even though the
software threads are accessing totally independent data items. This leads
to situations where a first software thread locks a semaphore guarding a
data location that a second software thread may safely access without

disrupting the execution of the first software thread. Yet, since the first



WO 2006/071969 PCT/US2005/047376

software thread locked the semaphore, the second thread must wait until
the semaphore is unlocked, resulting in serialization of an otherwise

parallel execution.

BRIEF DESCRIPTION OF THE DRAWINGS

[0008] The present invention is illustrated by way of example and
not intended to be limited by the figures of the accompanying drawings.

[0009] Figure 1 illustrates an integrated circuit having N cores and
M logical processors in each of the N cores.

[0010] Figure 2 illustrates an embodiment of an integrated circuit

for implementing transactional execution.

[0011] Figure 3 illustrates an embodiment of the transaction buffer
shown in Figure 3.
[0012] Figure 4 illustrates a transaction demarcated in software

code, the software code shown compiled into a first and a second

embodiment of compiled code.

[0013] Figure 5 illustrates an embodiment of transaction execution
in a system.
[0014] Figure 6 illustrates an embodiment of a flow diagram for a

method of executing a transaction.



WO 2006/071969 PCT/US2005/047376

[0015] Figure 7 illustrates an embodiment of the code flow for

transactional execution.

DETAILED DESCRIPTION
[0016] In the following description, numerous specific details are
set forth such as a specific number of physical/logical processors, specific
transaction buffer fields, and specific processor logic and implementations
in order to provide a thorough understanding of the present invention. It
will be apparent, however, to one skilled in the art that these specific
details need not be employed to practice the present invention. In other
instances, well known components or methods, such well-known
functional blocks of a microprocessor, etc., have not been described in
detail in order to avoid unnecessarily obscuring the present invention.
[0017] The apparatus and method described herein are for handling
|

shared memory accesses between multiple software threads utilizing lock-

free synchronization through transactional-execution. It is readily
apparent to one skilled in the art, that the method and apparatus disclosed
herein may be implemented in any level computer system, such as
personal digital assistants, mobile platforms, desktop platforms, and
server platforms, as well as with any number of integrated circuits, cores,

or logical processors. For example, a multiprocessor system with four



WO 2006/071969 PCT/US2005/047376

integrated circuits may use the method and apparatus herein described to
manage shared accesses to a memory shared by any four of the integrated

circuits.

[0018] In Figure 1 integrated circuit 105, which may implement
transactional execution, is shown. In one embodiment, integrated circuit
105 is a microprocessor capable of operating independently from other
microproceséors. Alternatively, integrated circuit 105 is a processing
element that operates in conjunction with a plurality of processing
elements.

[0019] Integrated circuit 105 illustrates first core 110, second core
115, and Nth core 120. A core, as used herein, refers to any logic located
on an integrated circuit capable to maintain an independent architecture
state, wherein each independently maintained architecture state is
associated with at least some dedicated execution resources. Execution
resources may include arithmetic logic units (ALUs), floating-point units
(FPUs), register files, operand registers for operating on single or multiple
integer and/or floating-point data operands in serial or parallel, and other
logic for executing code. Moreover, a plurality of cores may share access
to other resources, such as high-level caches, bus interface and control

logic, and fetch/decode logic.



WO 2006/071969 PCT/US2005/047376

[0020] As an illustrative example, integrated circuit 105 has eight
cores, each core associated with a set of architecture state registers, such as
general-purpose registers, control registers, advanced programmable
interrupt control (APIC) registers, machine state registers (MSRs), or
registers for storing the state of an instruction pointer, to maintain an
independent architecture state. Furthermore, each set of architecture state
registers are exclusively associated with individual execution units.
[0021] Integrated circuit 105 also illustrates core 110 comprising
first logical processor 125, second logical processor 130, and Mth logical
processor 135. A logical processor, as used herein, refers any logic located
on an integrated circuit capable to maintain an independent architecture
state, wherein the independently maintained architecture states share
access to execution resources. As above, each logical processor has a set of
architecture state registers to maintain an independent architecture state;
however, each of the architecture states share access to the execution
resources. Consequently, on any single integrated circuit there may be
any number of cores and/or any number of logical processors. For the
purpose of illustration, the term processor will be referred to in discussing
- the operation of a core and/or a logical processor when discussing the

apparatus and method used for transactional execution.



WO 2006/071969 PCT/US2005/047376

[0022] Referring to Figure 2, an embodiment of an integrated circuit
is depicted to illustrate a specific implementation of transactional
execution. However, it is readily apparent that the method and apparatus
described in reference to Figure 2 may be implemented in any level
system, such as the system depicted in Figure 5. In one embodiment,
integrated circuit 205 is capable of out-of-order speculative, where
instructions are able to be executed in an order that is different that given
in a program. Alternatively, processor 205 is capable of in-order
execution, where the instructions are issued and executed in original
program order.

[0023] Integrated circuit 205 may comprise any number of
processors, which may be cores or logical processors. For instance,
integrated circuit 205 has eight cores, each core having two logical
processors, which would allow for execution of 16 software threads on
integrated circuit 205 at one time. Consequently, integrated circuit 205 is
typically referred to as a multi-threading multi-core processor. In Figure
2, integrated circuit 205 is depicted individually, as to not obscure the
invention; yet, integrated circuit 205 may operate individually or in

cooperation with other processors.



WO 2006/071969 PCT/US2005/047376

[0024] Integrated circuit 205 may also include, but is not required to
include, any one or any combination of the following, which are not
specifically depicted: a data path, an instruction path, a virtual memory
address translation unit (a translation buffer), an arithmetic logic unit
(ALU), a floating point calculation unit capable of executing a single
instruction or multiple instructions, as well as capable to operate on single
or multiple data operands in serial or in parallel, a register, an interrupt
controller, an advanced programmable interrupt controller (APIC), a pre-
fetch unit, an instruction re-order unit, and any other logic that is be used
for fetching or executing instructions and operating on data.

[0025] Integrated circuit 205 illustrates front-end 210. Front-end 210
is shown as including instruction fetch 215, instruction decode 220, and
branch predication 225. Front-end 210 is not limited to only including the
logic shown, but may also include other logic, such as external data
interface 265 and a low-level instruction cache. Front-end 210 fetches and
decodes instructions to be executed by integrated circuit 205. As shown,
front-end 210 also includes branch prediction logic 225 to predict
instructions to be fetched and decoded. Front-end 210 may fetch and
decode fixed length instructions, variable length instructions, macro-

instructions, or instructions having individual operations.



WO 2006/071969 PCT/US2005/047376

[0026] An instruction usually includes multiple operations to be
performed on data operands and is commonly referred to as a macro-
instruction, while the individual operations to be executed are commonly
referred to as micro-operations. However, an instruction may also refer
to a single operation. Therefore, a micro-operation, as used herein, refers
to any single operation to be performed by integrated circuit 205, while an
instruction refers to a macro-instrucﬁon, a single operation instruction, or
both. As an example, an add macro-instruction includes a first micro-
operation to read a first data operand from a first associated address, a
second micro-operation to read a second data operand from a second
associated address, a third micro-operation to add the first and the second
data operand to obtain a result, and a fourth micro-operation to store the
result in a register location.

[0027] Transe.lctional execution typically includes grouping a
plurality of instructions or oOperations into a transaction or a critical section
of code. In one embodiment, hardware in integrated circuit 205 groups
macro-operations into transactions. Identifying transactions in hardware
includes several factors, such as usage of lock acquire and lock releases,
nesting of transactions, mutual exclusion of non-speculative memory

operations, and overlay of memory ordering requirements over constructs

10



WO 2006/071969 PCT/US2005/047376

used to build transactions. In another embodiment, transactions are
demarcated in software. Software demarcation of transactions is
discussed in more detail in reference to Figure 5.

[0028] Integrated circuit 205 further comprises execution units 275
and register file 270 to execute the groups of macro-operations, also
referred to as transactions and critical sections. Unlike traditional locking
techniques, transactional execution usually entails speculatively executing
a transaction/critical section and postponing state updates until the end of
speculative execution, when the final status of the transaction is
determined. As an example, a critical section is identified by front-end
210, specﬁlatively executed, and then retired by retirement logic 235 only
if remote agents, such as another core or logical processor have not made
an invalidating request to the memory locations accessed during execution
of the critical section.

[0029] As illustrative examples, remote agents include memory
updating devices, such as another integrated circuit, processing element,
core, logical processot, or any processor/device that is not scheduled to
execute or is not executing the pending transaction. Typically,
invalidating requests comprise requests/accesses by a remote agent to

memory locations manipulated by micro-operations within the

11



WO 2006/071969 PCT/US2005/047376

transaction, requests to lock a semaphore guarding the memory locations
manipulated by micro-operations within the transaction, or requests by a
remote agent for ownership of memory locations manipulated by micro-
operations within the transaction. Invalidating requests will be discussed
in more detail in reference to Figure 3.

[0030] If at the end of executing the transaction/critical section the
results are deemed inconsistent or invalid, then the transaction/critical
section is not retired and the state updates are not committed to registers
or memory. Additionally, if the transaction is not retired, then two
options for re-executing the transaction include: (1) speculatively re-
executing the transaction as previously executed or (2) non-speculatively
re-executing the transaction utilizing locks/semaphores.

[0031] Speculative execution of transactions may include memory
updates and register state updates. In one embodiment, integrated circuit
205 is capable of holding and merging speculative memory and register
file state updates to ensure transaction execution results are valid and
'consistent before updating memory and the register file. As an illustrative
example, integrated circuit 205 holds all instructions/micro-operations
results identified as part of the same transaction in a

speculative/temporary state for an arbitrary period of time. To accomplish

12



WO 2006/071969 PCT/US2005/047376

the holding and merging of speculative memory and register file state
updates, special register checkpoint hardware and operand bypass logic is
used to store the speculative results in temporary registers.

[0032] In another embodiment, integrated circuit 205 is capable of
decoupling register state updates and instruction retirement from memory
updates. In this embodiment, speculative updates are committed to
register file 370 before speculation is resolved; however, the memory
updates are buffered until after the transaction is retired. Therefore, one
potential advantage is each individual instruction or micro-operation
within a transaction may be retired immediately after execution.
Furthermore, the decoupling of the register state update and the memory
update potentially reduces the extra registers for storage of speculative
results before committing to architectural register file 270.

[0033] However in this embodiment, speculatively updating
register file 276 entails treating each update to register file 270 asa
speculative update. Register re-use and allocation policies may account
for updates to register file 270 as being speculative updates. Asan
illustrative example, input registers that are used for buffering data for
transactions are biased against receiving new data during the pendancy of

commitment of the transaction. In this example, input registers used

13



WO 2006/071969 PCT/US2005/047376

during the transaction are biased against receiving new data; therefore, if
the speculative execution fails or needs to be re-started, the input register
set is usually able to be re-used without re-initialization, as other registers
that are not part of the input register set would be used first.

[0034] In another example, if input registers receive new data
during speculative execution or pendancy of commitment of the
transaction, the state of the input registers re-used are stored in a separate
storage area, such as another register. The storage of the input register’s
original contents allows the input registers to be reloaded with their
original contents in case of an execution failure or initiation of re-
execution. The processor temporarily storing a registers contents and then
re-loading upon re-execution is typically referred to as spilling and
refilling.

[0035] The consistency of memory accesses to a shared memory,
such as cache 240, within a transaction/critical section may be tracked to
ensure memory locations read from still have the same information and
memory locations to be updated/written-to have not been read or updated
by another agent. As a first example, a memory access is a load operation

that reads/loads data, a data operand, a data line, or any contents of a

14



WO 2006/071969 PCT/US2005/047376

memory location. As a second example, a memory access includes a
memory update, store, or write operation.

[0036] In one embodiment, transaction buffer 265 tracks accesses
to lines of data, such as cache lines 245, 250, and 255, ‘in shared memory,
such as cache 240. As an illustrative example, cache lines 245-255 comprise
a line of data, an associated physical address, and a tag. The associated
physical address references a memory location external to integrated
circuit 205 or a memory location located on integrated circuit 205.

[0037] Turning to Figure 3, an embodiment of transaction buffer
265 is illustrated. Transaction buffer 265 may include transaction tracking
logic to track invalidating requests/accesses by remote agents to each
address loaded from and each address to be written to a shared memory
within a transaction. As illustrative examples, remote agents include other
processing elements, such as another logical processor, core, integrated
circuit, processing element, or any processor/device that is not scheduled
to execute or is not executing the pending transaction.

[0038] In one embodiment, transaction buffer 265 includes a load
table 305 and a store/write buffer 325 to track the loads/reads and the
stores/writes, respectively, during execution of a pending transaction.

Here, the load table 305 stores a load entry, such as load entry 307, to

15



WO 2006/071969 PCT/US2005/047376

correspond to each line of data loaded/read from a shared memory during
execution of a pending transaction/critical sectioh. In one embodiment,
load entry comprises a representation of a physical address 310 and an
invalidating access field (IAF) 315. As first example, representation of
physical address 310 includes the actual physical address used to reference
the memory location. As a second example, the representation includes a
coded version or a portion of the physical address, such as a tag value, to
reference the loaded data line, along with length/size information. The
length of loaded data may be implicit in the design; therefore, no specific
reference to length/size of the data loaded is required. In one
embodiment, the implicit length/size of loaded data is a single cache line.
[0039] As an illustrative example, IAF 315 has a first value when
load entry 307 is first stored in load table 305 and is changed to a second
value when a remote agent makes an invalidating access or invalidating
access request to the memory location referenced by physical address 310.
For instance, an invalidating request/access constitutes a remote agent
writing to the memory location referenced by physical address 310 during
execution of the pending critical section, where physical address 310
represents a memory location that was read from during execution of the

pending critical section. As a simplified example, IAF 315 is initialized to a

16



WO 2006/071969 PCT/US2005/047376

first logical value of 1 upon storing load entry 307, load entry 307
comprising physical address 310, which references a memory location
loaded from during execution of a critical section. If a remote ‘agent,
writes to the memory location referenced by physical address 310 during
execution of the pending critical section, then IAF 315 field is changed to a
second value of 0 to represent that a remote agent made an invalidating
access to the memory location referenced by load entry 307.

[0040] In one embodiment, load tgble 305 may also be used to track
invalidating lock/semaphore requests made by remote agents. When a
transaction is executed, a semaphore or separate load entry, such as load
entry 307 is used to track a semaphore for the transaction. A semaphore
variable may be tracked using a common load operation for the
semaphore variable, the load operation being tracked in a similar manner
as discussed above. In fact, a semaphore load entry, such as load entry
307, to track invalidating requests to the semaphore comprises physical
address field 310 and IAF 315. Physical address field 310 may comprise a
representation of a physical address that the semaphore value is stored at.
[0041] Analogous to the operation of creating a load enfry

explained above, IAF 315 is loaded with a first value upon storing

semaphore load entry 307 in load table 305 to track a locking

17



WO 2006/071969 PCT/US2005/047376

variable/semaphore for the current transaction. If a remote agent requests
or acquires a lock with the semaphore, referenced by the physical address
310, during execution of the pending transaction, then IAF 315 is set to a

- second value to represent that a remote agent requested/obtained a lock
on the transaction during execution. It is apparent that multiple agents
may track a lock; however, the invalidation is performed when one of the
agents acquires an actual lock.
[0042] Load table 305 is not limited to the embodiment shown in
Figure 4. Asan example, transaction buffer 265 determines which load
entries, such as load entry 307, are empty (entries not used by the current
transaction and may have default or garbage data) and which load entries
are full (entries created by the current transaction). Here, a counter may
be used to keep track of an allocation pointer that references the current
load entry. Alternatively, another field, such as an allocation tracidng field
(ATF), is present in each load entry to track whether that load entry is
empty or full. As an example, load entry 307 has an ATF with a first
value, such as a logical 1, to represent an empty load entry that has not
been created by the current transaction. The ATF in load entry 307 is
changed to a second value, such as a logical 0, when load entry 307 is

created by the current transaction.

18



WO 2006/071969 PCT/US2005/047376

[0043] In another embodiment, the size/length of the data line
loaded/read is not implicit, but rather, another field, such as a length field,
is present in load table 305 to establish the length/size of the data loaded.
Load table 305 may be an advanced load address table (ALAT) known in
the art for tracking speculative loads.

[0044] Referring again to Figure 3, store write buffer 325 stores a
write entry, such as write entry 327, to correspond to each line of data or
partial line of data to be written to/updated within a shared memory
during execution of a pending transaction/critical section. For example,
write entry 327 comprises a representation of a physical address 330, an
invalidating access field (IAF) 335, and a data hold field 340. As a first
example, representation of physical address 330 includes the actual
physical address used to reference a memory location to be written to at
the end or during execution of a pending critical section. As a second
example, the representation includes a coded version or a portion of the
physical address, such as a tag value, to reference a data line to be written
to at the end of execution a pending critical section.

[0045] For the above example, IAF 335 has a first value when write
entry 327 is first stored in write table 325 and is changed to a second value

when an invalidating access to a memory location reference by physical

19



WO 2006/071969 PCT/US2005/047376

address 330 is made by a remote agent. In one embodiment, an
invalidating access constitutes a remote agent writing to the memory
location referenced by physical address 330 during execution of the
pending critical section. Additionally, an invalidating access constitutes a
remote agent reading from physical address 330 during execution of the
pending critical section. Another invalidating access may constitute a
remote agent gaining ownership of the memory location referenced by
physical address 330. As a simplified example, IAF 335 is initialized to a
first logical value of 1 upon storing write entry 327. If a remote agent
reads or writes to the memory location referenced by physical address 330
during execution of the pending critical section, then IAF 325 is changed to
a second logical value of 0 to represent that a remote agent has made an
invalidating access to the memory location referenced by write entry 327.
[0046] Write entry 327 further illustrates data hold field 340 to
buffer/hold the speculative data to be written. Data hold field 340 may
also be used to track which portion of a tracked line of data contains new
data versus which portion has not been targeted by the speculative store.
Tracking the changed portions may aid in merging speculative data to

actual memory locations later during the commitment process.

20



WO 2006/071969 PCT/US2005/047376

[0047] In one embodiment, owngrship of a line to be written to,
from a store operation, is gained upon execution and retirement of the
individual operation within a transaction. As an alternative to pre-
fetching ownership, at the retirement of each individual write/store micro-
operation, the ownership of the physical address to be written toisnot
gained until the end of the transaction before transaction retirement. In
either embodiment, at the end of the transaction, if ownership was
relinquished during execution of the transaction, then the transaction is
not retired (fails), because an invalidating access was made. Once the
transaction is to be retired, ownership of each line to be written to is not
relinquished until after all of the memory updates have been committed.
If a remote agent requests ownership of a line during retirement, the
request may be queued and held pending until after all of the memory
updates/writes have been committed.

[0048] Write table 325 is not limited to what is shown in Figure 4. It
may, for example, include a pinning field, not depicted, to block Snoops
from remote agents to a shared memory, such as a cache, when set. The
pinning field of a write éntry is set to a first value to allow snoops to a
corresponding physical address and set to a second value when a cache

line is pinned to block snoops to the cache line by remote agents. A

21



WO 2006/071969 PCT/US2005/047376

pinning field may be especially useful during the commit process to block
snoops and to disallow any ownership changes. As stated above, any
requests for ownership from a remote agent may be queued until after the
transaction has been committed. One exemplary method to implement
the pinning field is to block snoops for a predetermined length of time,
when the pinning field is set, wherein the predetermined length of time is
based on the number of store buffers present.

[0049] Write table 325 may also include a length field, such as the
length field discussed in reference to load table 305 above, for storing the
length of speculative data to be written. Any amount of other fields or
combinations of fields may be included in store table/buffer 325. For
instance, a remote agent field is used to track a processor ID or other ID to
identify the remote agent that made an invalidating access.

[0050] Transaction buffer 265 may be implemented in hardware or
firmware. In another instance, transaction buffer 365.is implemented in
software and executed by integrated circuit 205. In yet another example,
transaction buffer is implemented in microcode.

[0051] After executing all the micro-operations within a critical
section/transaction, a transaction is typically committed, if no invalidating

accesses occurred during execution of a pending critical section. After

22



WO 2006/071969 PCT/US2005/047376

retirement, the transaction is typically committed in an atomic manner. As
an example, atomically writing/committing a pending critical section
includes writing-each and every data line buffered during execution of a
critical section to a shared memory.

[0052] In one embodiment, a pending transaction is retired by
retirement logic 235, shown in Figure 2, after checking transaction buffer
265 for invalidating accesses that were tracked during execution of the
pending critical section. As an example, for a pending transaction to be
retired, each load entry IAF stored in load table 305 and each write entry
IAF stored in store table/buffer 325, which is associated with the pending
transaction is checked. Additionally, any load entries that were created to
track a lock variable or a semaphdre for the pending transaction are also
checked to ensure no invalidating access was made by a remote agent
requesting the lock or the semaphore, If no invalidating accesses are
discovered then the transaction retirement is granted and the store buffers
are pinned. Once pinned and retirement is granted, which is done
simultaneously, the memory updates may be performed in a serial
fashion. Once completed, the “pin” status is removed, the line is

relinquished, and the transaction is considered committed.

23



WO 2006/071969 PCT/US2005/047376

[0053] As a simplified example, a transaction includes a micro-
operation to read from location 0001 and write the value 1010 to location
0002. When executing the first micro-operation, load table 305 would
store load entry 307 comprising physical address field 310, which
represents location 0001, and IAF 315 with a first value 1. When executing
the second micro-operation store table 325 would store write entry 327
comprising physical address 330, which represents location 0002, IAF 335
with a first value of 1, and 1010 in data field 340. Additionally, the load
and write entries may further comprise size/length information or other
fields described above. If a remote agent writes to location 0001 during
execution or while the transaction is still pending, then IAF 315 is set to the
second value of 0 to represent an invalidating access was made. Upon
trying to retire the transaction, IAF 315 represents an invalidating access,
so the transaction would not be retired and the value 1010 would not be
written to location 0002. However, if no remote agent writes to location
0001 and no remote agents reads/writes to location 0002 as represented by
1’s in IAF 315 and 335, then the transaction is retired and the value 1010 is
written to location 0002.

[0054] After determining an invalidating access occurred during the

pending transaction, therefore, not retiring the transaction, there are a

24



WO 2006/071969 PCT/US2005/047376

number of options. The first option includes re-executing the transaction.
As discussed above, the input registers are either (1) re-initialized to their
original state, if they received new data during pendancy of the
transaction or (2) are already present in their original state, if they received
no new data during pendancy of the transaction. Consequently, the
transaction is speculatively re-executed in the same manner as before. A
second option includes speculatively re-executing the transaction using a
back-off algorithm in conjunction with the remote agent that made the
invalidating access. As an example, an exponential back-off algorithm is
used to attempt to complete the transaction without the remote agent
contending for the same data. Another option includes using a software
non-blocking mechanism, known in the art, to re-execute the transaction.
A fourth option includes re-executing the transaction non-speculatively
with locks/semaphores after re-executing the transaction speculatively a
predetermined number of times. The semaphores effectively locking the
addresses to be read from and written to during the transaction.

[0055] The fourth option, utilizing locks/semaphores as a failure
mechanism, may be implemented in hardware, software, or a combination
of hardware for executing software. For instance, in software

implemented lockout mechanism, a semaphore is used for locking access

25



WO 2006/071969 PCT/US2005/047376

to any granularity of memory locations. Each processor that wants to
access a certain memory location contends for the semaphore guarding
that location. If the semaphore is set to a first value representing no lock,
then the first processor flips the semaphore to a second value representing
that address/memory location is locked. Flipping the semaphore to the
second value ensures through software that the processor, who flipped the
semaphore, gets exclusive access to that memory location, and likely a
range of memory locations guarded by that semaphore. Integrated circuit
205 may have separate lockout logic 260 to invoke/execute the semaphores
in software or may simply use existing execution logic to execute/invoke
the software lockouts. The semaphore may be software implemented;
therefore, it the semaphore may be present in system memory (not
depicted).

[0056] As another example of implementing lockout logic 260,
shown in Figure 2, lockout logic 260 or software executed on lockout logic
260 uses a lockout mechanism for preventing at least one remote agent
access to designated lines of a shared memory. In one embodiment, the
lockout logic includes a lock bit. As a first example, in hardware, the lock

bit is in a register or in the cache line. As a second example, the lock bit is

26



WO 2006/071969 PCT/US2005/047376

represented in software that is executed on lockout logic 260 and present
in system memory.

[0057] When the lock bit has a first value access to predetermined
or designated lines of shared memory is allowed. However, when the lock
bit has a second value access to the designated lines of shared memory is
prevented. The lock bit may be present in cache 240, in the lockout logic
260, any other memory in processor 205, or system memory. Any
granularity of data lines may be locked by a single semaphore or by
setting a single bit. As an example, 2 lines are locked by the setting of a
single locking bit.

[0058] As an example of the use of semaphores as a fail safe
mechanism, a transaction is executed a first number of time, such as five
times, but during each execution a remote agent makes an invalidating
access to an address that was read from during execution of the
transaction, such as illustrative address 0001. Looping through the
transaction code a sixth time, an execution threshold of six is met. Once
the threshold or predetermined number of executions is met, a semaphore
is used for executing the transaction.

[0059] In a software implementation, a semaphore guarding

address 0001 is contended for. If address 0001 is not currently locked by

27



WO 2006/071969 PCT/US2005/047376

the semaphore, then the semaphore is flipped in value to represent that it
is currently locked. The transaction is then re-executed non-speculatively.
[0060] As an alternative, in a hardware implementation, a locking
circuit, such as locking circuit 263, which may consists of a single transistor
or any number of transistors, sets a locking bit associated with address
0001 to a second value preventing remote agents access at least to address
0001 during the sixth execution of the transaction.

[0061] Locking of data lines is not limited to the use of semaphores
or a locking bit, but includes any method or apparatus for preventing
access to lines of data, whether implemented in hardware or software. As
another example, a tri-state device is used to prevent interconnect access
to lines of data.

[0062] Turning to Figure 4, an example of a transaction demarcated
in software is shown. As stated above, a transaction typically includes a
group of instructions/micro-operations to be executed. Therefore, a
transaction declaration may be any method of demarcating a transaction.
In Figure 4, transaction 410 has examples of some operations, such as read
memory, perform operations, and update/write to memory. Transaction
410 is demarcated by transaction declaration/identifier 405, which is

depicted as Atomic {.. .J;. However, a transaction declaration is not so

28



WO 2006/071969 PCT/US2005/047376

limited. As a simple example, a pair of brackets grouping a plurality of
operations or instructions is a transaction declaration/identifier to identify
the bounds of a transaction/critical section.

[0063] An instance of transaction declaration 405 compiled is shown
in complied example 415. Transaction 430’s bounds are identified by
transaction identifier 425; tﬁerefore, a processor executing the transaction
is able to identify the micro-operations that make ui) a transaction/critical
section from the identifier. Another instance of transaction declaration 405
compiled is shown in complied example 425./ In this instance, transaction
declaration 435 identifies the bounds of transaction 440.

[0064] To step through this example, lines 1 through 3 identify
transactional execution, sets predicates Px to 1 and Py to 0, initializes a
count variable to 0 in Rm, and the threshold of the count in Rn. Predicates
typically include one type or path of execution when the predicate has one
value and another type or path of execution when the predicate has
another value. In lines 4-9, the count variable is initialized to a number
representing the amount of times the transaction is to be executed
speculatively, the count variable is then compared to a threshold or
otherwise evaluated to see if the locking predicate should be set to execute

the transaction with locks/semaphores (non-speculatively), the count

29



WO 2006/071969 PCT/US2005/047376

variable is decremented, or incremented depending on the design, to
represent the amount of times the transaction has been executed, and the
transaction is started. Lines 10 through 12 include any amount of
operations within a critical section in transaction 440. Finally, line 14
includes a check instruction for probing the transaction tracking
logic/buffer, discussed above, for invalidating accesses made by a remote
agent during the execution of the transaction.

[0065] Turning to Figure 5, an embodiment of a system using
transactional execution is shown. Microprocessors 505 and 510 are
illustrated, however, the system may have any number of physical
microprocessors, each physical microprocessor having any number of
cores or any number of logical processors utilizing transactional execution.
As an example, microprocessors 505 and 510 each have a plurality of cores
present on their die, each core having a plurality of threads resulting in
multi-threading cores. In one embodiment, micro-processor 505 and 510
are capable of out-of-order speculative and non-speculative execution. In
another embodiment, microprocessor 505 and 510 are capable of only in-
order execution.

[0066] Microprocessors 505 and 510 have caches 507 and 512. In

one embodiment, caches 507 and 512 store recently fetched data and/or

30



WO 2006/071969 PCT/US2005/047376

instructions from system memory 530. In this embodiment, cache 507 and
cache 512 would cache data private to their respectivé microprocessors.
Memory 530 may be a shared memory that transactional execution is used
to access. In another embodiment, any memory present in the system
accessed during a transaction is a shared memory. For example, if
microprocessors 505 and 510 accessed a higher level shared cache, not
depicted in Figure 5.

[0067] Microprocessors 505 and 510 are shown coupled to memory
controller 520 by interconnect 515. Memory controller is coupled to
graphics device 540 by interconnects 535, respectively. In one
embodiment, graphics device 540 is integrated in memory controller 520.
Memory controller is also coupled to system memory 530 by interconnect
525. System memory 530 may be any type of access memory used in a
system. In one embodiment, system memory 530 is a random access
memory (RAM) device such as a static random access memory (SRAM), a
dynamic random access memory (DRAM), a single data rate (SDR) RAM,
a double data rate (DDR) RAM, any other multiple data rate RAM, or any
other type of access memory.

[0068] Input/Output (I/O) controller 550 is coupled to memory

controller 545 through interconnect 545. 1/O controller 550 is coupled to

31



WO 2006/071969 PCT/US2005/047376

storage 560, network interface 565, and I/O devices 570 by interconnect
555. In one embodiment, storage 560 is a hard-drive. In another
embodiment storage 560 is a disk drive. In yet another embodiment,
storage 560 is any static storage device in the system. In one embodiment,
network interface 565 interfaces with a local area network (LAN). In
another embodiment, network interface 565 interfaces with a larger
network, such as the internet. Input/output devices 570 may include any
user input or system related output devices, such as a keyboard, mouse,
monitor, or printer.

[0069] Referring next to Figure 6, an embodiment of a flow
diagram for a method of executing a transaction is illustrated. Ih block
605, during execution of a first transaction, invalidating accesses to a
plurality of lines in a shared memory referenced by the first transaction
are tracked.

[0070] In one example, a transaction buffer is used to track the
invalidating accesses. The transaction buffer includes a load table and a
store table/buffer. The load table tracking invalidating accesses to
addresses loaded from during execution of the first transaction.
Invalidating accesses to addresses/memory locations loaded from include

a remote agent, such as a processor, core, thread, or logical processor, not

32



WO 2006/071969 PCT/US2005/047376

scheduled to execute the first transaction, writing to an address or
memory location loaded from during execution of the first transaction.
Additionally, the load table may include a lockout mechanism entry to
track invalidating accesses to a semaphore or other lockout mechanism
during execution of the transaction. In this example, an invalidating
access to the lockout mechanism includes a remote agent requesting or
obtaining a lock on an address guarded/locked by the lockout mechanism.
[0071] The store table/buffer working similarly to the load table
tracks invalidating accesses to addresses or memory locations that are to
be written to upon commitment of the transaction. An invalidating access
here may include a remote agent either reading from or writing to the
aforementioned addresses or memory locations.

[0072] In block 610, the first transaction is re-executed a first
number of times, if invalidating accesses are tracked. Therefore, if an
invalidating access is tracked during execution of the first transaction, the
first transaction is merely re-executed. However, if the first transaction
has been re-executed a predetermined number of times, which may be
represented by a count variable in software or logic within a processor, the
plurality of lines in shared memory referenced by the first transaction are

locked. Locking may occur through a software implemented lockout

33



WO 2006/071969 PCT/US2005/047376

mechanism, such as a semaphore, which locks out or gives exclusive
access to one processor the plurality of lines. Locking may also occur
through hardware utilizing lockout légic to physically lockout access to
the plurality of lines referenced by the first transaction.

[0073] In block 620, the transaction is re-executed again, after access
to the plurality of lines has been locked. Therefore, the processor, which
may be a core or a logical processor that was re-executing the transaction
speculatively, but failing to commit the results because invalidating
accesses were tracked, would have exclusive access to the plurality of lines
referenced by the first transaction. Consequently, the first transaction may
be executed non-speculatively, since exclusive access is available to the
executing processor.

[0074] Turning now to Figure 7, an embodiment of the code flow
for transactional execution is shown. In block 705, a group of micro-
operations, which when grouped together may span multiple instructions
or macro-operations, are executed. As above, in block 710, invalidating
accesses to shared memory locations associated with each load and store
micro-operation are tracked.

[0075] In block 715, the execution of the first group of micro-

operations is looped through until (1) no invalidating accesses are tracked

34



WO 2006/071969 PCT/US2005/047376

or (2) the first group of micro-operations have been executed a first
number of times. Therefore, instead of having to jump to a new location in
the code, the same input register set may be used and the transaction
simply looped through again. As stated above, this is accomplished by
biasing the input register set from receiving new data during the
pendancy of the transaction, as well as spilling and refilling an input
register’s contents upon re-use of the input register. On again in block
720, the shared memory locations associated with each load and each store
micro-operation are locked and the first group of micro-operaions are re-
executed.

[0076] Transactional execution as described above avoids the false
contention that potentially occurs in locking architectures and limits
contention to actual contention by tracking invalidating accesses to
memory locations during execution of a transaction. Furthermore, if the
transaction is re-executed a predetermined number of times, because
actual contention continues to occur, then the transaction is non-
speculatively executed utilizing locks/semaphores to ensure the
transaction is executed and committed after trying to speculatively execute
the transaction the predetermined number of times. Alternatively, a

software non-blocking mechanism might be employed instead of a non-

35



WO 2006/071969 PCT/US2005/047376

speculative execution method. Asnoted above, speculative register state
updates/commits can be supported in software by ensuring that the “live-
in” data of the transaction is preserved, either in the original input
registers, or by copying the input data values to a save location, which
may be either other registers or memory, from which they can be restored
if the transaction must be retried. A processor may also contain hardware
mechanisms to buffer the register state, possibly using a mechanism
typically used to support out-of-order execution

[0077] In the foregoing specification, the invention has been
described with reference to specific exemplary embodiments thereof. It
will, however, be evident that various modifications and changes may be
made thereto without departing from the broader spirit and scope of the
invention as set forth in the appended claims. The specification and
drawings are, accordingly, to be regarded in an illustrative sense rather

than a restrictive sense.

36



WO 2006/071969 PCT/US2005/047376

CLAIMS

What is claimed is:

1. An apparatus comprising:

a shared memory to be shared by a first agent and a remote agent;

execution logic to execute a transaction, the transaction comprising a
plurality of instructions;

transaction tracking logic to track invalidating accesses made by the
remote agent to each address loaded from and each address to be
written to the shared memory during execution of the plurality of
instructions; and

transaction retirement logic to (1) retire the transaction, if an invalidating
access to each address loaded from and each address to be written
to the shared memory has not been tracked by the transaction
tracking logic during execution of the transaction, and (2) initiate a
re-execution of the transaction, if an invalidating access to any
address loaded from or any address to be written to the shared
memory has been tracked by the transaction tracking logic during

execution of the transaction.

2. The microprocessor of claim 1, further comprising a lockout mechanism to
deny the remote agent access to each address loaded from and to be written to the
shared memory during execution of the transaction, if the transaction is re-

executed a first number of times without retiring the transaction.

3. The microprocessor of claim 2, wherein the lockout mechanism comprises

a lockout circuit operable to set a lockout bit to deny at least one remote agent

37



WO 2006/071969 PCT/US2005/047376

access to each address loaded from and to be written to the shared memory during
execution of the transaction, if the transaction is re-executed a first number of

times without retiring the transaction.

4. The microprocessor of claim 2, wherein the lockout mechanism comprises
logic operable to execute code to invoke a semaphore to deny at least one remote
agent access to each address loaded from and to be written to the shared memory
during execution of the transaction, if the transaction is re-executed a first number

of times without retiring the transaction.

5. The microprocessor of claim 1, wherein the transaction tracking logic
comprises logic operable to store a load table to track each address loaded from
the shared memory and a write buffer to track each address to be written to the

shared memory during execution of the plurality of macro-operations.

6. The microprocessor of claim 1, wherein logic operable to store a load table

includes an Advanced Load Address Table (ALAT).

7. The microprocessor of claim 5, wherein the load table is operable to store
a load entry for each address loaded from the shared memory, each load entry
comprising a representation of the address loaded from the shared memory and an
invalidating access field, and wherein the write buffer is operable to store a write
entry for each address to be written to the shared memory, each write entry
comprising the address to be written to, a data line to write, and an invalidating

access field.

38



WO 2006/071969 PCT/US2005/047376

8. The microprocessor of claim 5, wherein the load table further comprises a
lock mechanism load entry, the lock mechanism load entry to track remote agent

accesses to the software implemented lockout mechanism

9. The microprocessor of claim 1, wherein an invalidating access comprises
(1) the remote agent writing to an address loaded from the shared memory during
execution of the plurality of instructions or (2) the remote agent reading from or
writing to an address to be written to the shared memory during execution of the

plurality of micro-operations.

10.  The microprocessor of claim 9, wherein the remote agent is selected from
a group consisting of a core on an integrated circuit including the agent, a thread
on an integrated circuit including the agent, a logical processor on an integrated
circuit including the agent, a physical processor, a processor coupled to an

integrated circuit including the agent.

11.  The microprocessor of claim 1, wherein shared memory is a cache, and

wherein the agent and remote agents are logical processors that share the cache.

12. A system comprising:
software demarcating a transaction with a transaction declaration, the
transaction comprising a critical section with a plurality of micro-
operations to be executed, and the transaction declaration
comprising an identifier to identify the bounds of the transaction, a
count variable to represent the number of times the critical section

has been executed, and a check instruction;

39



WO 2006/071969 PCT/US2005/047376

a first microprocessor to execute the transaction, wherein the first
microprocessor comprises, logic to store a load tracking table for
tracking invalidating accesses to addresses associated with load
micro-operations within the plurality of micro-operations, logic to
store a write-tracking table for tracking invalidating accesses to
addresses associated with store micro-operations within the
plurality of micro-operations, check logic to execute the check
instruction for probing the load and store tracking tables for
invalidating accesses, retirement logic to (1) retire the transaction if
execution of the check instruction returns no invalidating accesses
and (2) initiate re-execution of the transaction and change the count
variable, if execution of the check instruction returns at least one

invalidating access.

13.  The system of claim 12, wherein the transaction declaration further
comprises a locking predicate, when set, to execute the transaction using a lockout
mechanism, and wherein the locking predicate is set, if the count variable

represents the transaction has been re-executed a predetermined number of times.

14.  The system of claim 12, further comprising a storage medium coupled to
the first microprocessor for storing the software, a system memory for storing
lines of data, and a cache in the first microprocessor for storing recently accessed

lines of data from the system memory.

15. The system of claim 14, wherein invalidating accesses to addresses
associated with load micro-operations comprise a first remote agent writing to an

address loaded from the cache during execution of the transaction, and wherein

40



WO 2006/071969 PCT/US2005/047376

invalidating accesses to addresses associated with store micro-operations comprise
a second remote agent reading or writing to an address to be written to the cache

during execution of the transaction.

16. The system of claim 15, wherein the first microprocessor further comprises
a plurality of cores, each core having a plurality of logical processors, and wherein
the first and second remote agents are any one of the plurality of cores or plurality

of logical processors that are not scheduled to execute the transaction.

17. A method comprisiﬁg:

tracking invalidating accesses to a plurality of lines in a shared memory
referenced by a first transaction during speculative execution of the
first transaction;

speculatively re-executing the first transaction each time an invalidating
access to the plurality lines in the shared memory is tracked during
execution of the first transaction;

locking out access to the plurality of lines in the shared memory referenced
by the first transaction after a first number of times speculatively
re-executing the first transaction; and

non-speculatively re-executing the first transaction after locking out access

to the plurality of lines in the shared memory.

18.  The method of claim 17, wherein an invalidating access to the plurality of
lines in the shared memory comprises (1) a remote agent writing to one of the
plurality of lines in the shared memory that was loaded during speculative

execution of the first transaction or (2) a remote agent writing to or reading from

41



WO 2006/071969 PCT/US2005/047376

one of the plurality of lines in the shared memory that is to be written to upon

commitment of the first transaction.

19.  The method of claim 17, wherein tracking invalidating accesses to lines in

a shared memory comprises: storing a load entry in a load table for each line in the
shared memory loaded during execution of the first transaction, each load entry
comprising a representation of an address associated with the line loaded and an
invalidating access field to (1) store a first value, upon storing the load entry in the
load table to represent that no invalidating access has occurred during execution of |
the first transaction and (2) store a second value, if an invalidating access occurred

during execution of the first transaction.

20.  The method of claim 19, wherein tracking invalidating accesses to lines in
a shared memory further comprises: storing a write entry in a write table for each
line in the shared memory that is to be written to at the end of executing the first
transaction, each write entry comprising a representation of a physical address
associated with the line to be written to, a data field, and an invalidating accéss
field to (1) store a first value, upon storing the load entry in the load table to
represent that no invalidating access has occurred during execution of the first
transaction and (2) store a second value, if an invalidating access occurred during

execution of the first transaction.
21.  The method of claim 20, wherein each write entry and each load entry

further comprises a length field for storing the length of the line loaded or the line

to be written.

42



WO 2006/071969 PCT/US2005/047376

22.  The method of claim 20, wherein the length of each line loaded and each

line to be written to is implicit in the design of the processor.

23.  The method of claim 17, further comprising biasing input registers used

during execution of the first transaction from receiving new data.

24.  The method of claim 23, further comprising spilling a first input register’s
contents to a second register, if the first input register is re-used during execution

of the first transaction.
25.  The method of claim 24, further comprising refilling the first input register

with the contents stored in the second register upon speculatively re-executing the

transaction.

43



WO 2006/071969 PCT/US2005/047376

177

First logical
processor 125

Second logical
processor 130

Mth logical
processor 135

First core 110 Second core 115 Nth core 120

Integrated circuit 105

FIG. 1




WO 2006/071969 PCT/US2005/047376
207
S —
| |
1

i E Execution

! ; unit(s)

| | Retirement Logic 235 i 275

]

| |

| i

1 }

} %

|____000 Execution Engine 230 , Register file 270
[ ——— Cache line 245 J\
| | Branch Predication | | Cache line 250 }\
} 225 { Transaction Cache line 255 |R
| i Buffer 265
i Instruction Decode E Cache 240
! 220 i
! ]
| | Loskout Locking circuit 263 [
| |Instruction Fetch 215| | g
| |
} i

——————— e Y T e

External Data Interface 265

Processor 205

FIG. 2



WO 2006/071969 PCT/US2005/047376

37

Load Table 305
Load enry___ \

307 'Physical Address 310 IAF 315
Store Table/Buffer 325
write entry \
327 | Physical Address 330 IAF 335 [data 340

Transaction Buffer 365

FIG. 3



WO 2006/071969

4/7
1. start:
2.
3.
Transaction 4
Declaration/ldentifier 5
425 6

NS

Transaction 410 \
/‘1. Atomic {

Transac?lon 2 reéd-siime—memé?fy; L
Declarg?lon/ 3. perform-some-operations;, -
Identifier e

4. - update-memory;;

405 B
ks. %

4

1.
2.
3.
4. start: (Px)
Transaction 5.
Declaration/ 6. Px)
Identifier 7. ®Py)
435 8.
9, (Pa)
10.
11.
12.
13. ®y)
14. (Px)

FIG. 4

PCT/US2005/047376

/- Transaction 430

cmpxchg Rx <- [Rz], Ry, ar.ccy
cmp Pa, Pb <- Rx, RO

(Pa) br start

- read-some-memory;

i perform-some-operations;
 update-memory;

(Py) st.rel [R7], RO;

Ap'iled example 415

Compiled example 420

tf <transactional execution>
set Px to 1 and Py to 0 based on tf results.
Set iteration threshold in Rn and iteration count to 0 in Rm.

cmp.ne Px, Py <- Rn, Rm

Rm =Rm + 1;;

Id Rx <- [Rz

cmpxchg Rx <- [Rz], Ry, ar.cev ;;
cmp Pa, Pb <- Rx, RO

br start;;

- read-some-memory;
~ perform-some-operations;
update-memory;

st.rel [Rz], RO
chk.txstart;;

\

Transaction 440



WO 2006/071969 PCT/US2005/047376

5/7
Microprocessor Microprocessor
505 A 510
| cache 507 | e o o || cache512 |
A
515
Y
Graphics 535 525
Device ¢ - Memory Controller < >~ Memory
520 530
540
1545
/0
Controller
550
A
555
Y
A A A
A4
Input/
Storage Network output
Interface A
560 565 devices
570

FIG. 5



WO 2006/071969

6/7

Tracking invalidating accesses to
a plurality of lines in a shared
memory referenced by a first

transaction during execution of
the first transaction
605

) J

Re-executing the first transaction
a first number of times, if
invalidating accesses are tracked

610

Y

Locking out access to the
plurality of lines in shared
memory after re-executing the
transaction a first number of
times
615

Y

Re-executing the transaction,
after access to the plurality lines
has been locked

620

F1G. 6

PCT/US2005/047376



WO 2006/071969 PCT/US2005/047376

717

Executing a first group of micro-
operations
705

A 4
Tracking invalidating accesses to
shared memory locations
associated with each load and
store micro-operation
710

A J

Looping through execution of
the first group of micro-
operations until no invalidating
accesses are tracked

715

/

Locking the shared memory
locations associated with each
load and each store micro-
operation and re-executing the
first group of micro-operations

720

FIG. 7



INT.NATIONAL SEARCH REPORT

Intermapplication No

PCT/US2005/047376

CLASSIFICATION OF SUBJECT MATTER

NV “G06F0/52 GO6FO/46

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

GO6F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, PAJ, IBM-TDB, INSPEC, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

CHAUDHRY, SH)
2 September 2004 (2004-09-02)
abstract

claims 1-27

TREMBLAY, MARC; JACOBSON, QUINN, A;

paragraph [0014] - paragraph [0033]
paragraph [00471 - paragraph [00971;

Category* | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X WO 2004/075044 A (SUN MICROSYSTEMS INC; 1-25
TREMBLAY, MARC; JACOBSON, QUINN, A;
CHAUDHRY, SH)
2 September 2004 (2004-09-02)
abstract
paragraph [0014] - paragraph [0033]
paragraph [0048] - paragraph [0097];
claims 1-29
X WO 2004/075045 A (SUN MICROSYSTEMS INC; 1-25

-/

Further documents are listed inthe continuation of Box C,

See patent family annex.

* Special categories of cited documents :

“A" document defining the general state of the art which is not
considered to be of particular relevance

"E" earlier document but published on or after the international
filing date

“L" document which may throw doubts on priority claim(s) or
which is cited to establish the publication date of another
citation or other special reason (as specified)

"0 document referring to an oral disclosure, use, exhibition or
other means

"P" document published prior to the international filing date but
later than the priority date claimed

"T" later document published after the international filing date
or priority date and not in conflict with the application but
cited to understand the principle or theory underlying the
invention

'X" document of particular relevance; the claimed invention
cannot be considered novel or cannot be considered to
involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention
cannot be considered to involve an inventive step when the
document is combined with one or more other such docu-
g'n?Rts, ftUCh combination being obvious to a person skilled
in the art.

"&" document member of the same patent family

Date of the actual completion of the international search

13 April 2006

Date of mailing of the intemational search report

25/04/2006

Name and mailing address of the 1ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL — 2280 HV Rijswijk

Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Wierzejewski, P

Form PCT/ISA/210 (second sheet) (April 2005)




INT.NATIONAL SEARCH REPORT

Intern’. al application No

PCT/US2005/047376

C(Continuation), DOCUMENTS CONSIDERED TO BE RELEVANT

Category*

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

A

US 5 809 503 A (AOSHIMA ET AL)

15 September 1998 (1998-09-15)

the whole document

OPLINGER J ET AL: "Enhancing software
reliability with speculative threads" _
ACM SIGPLAN NOTICES, ACM, ASSOCIATION FOR
COMPUTING MACHINERY, NEW YORK, NY, US,
vol. 37, no. 10, October 2002 (2002-10),
pages 184-196, XP002285168

ISSN: 0362-1340

the whole document

HERLIHY M ET AL: "Transactional Memory:
Architectural Support For Lock-free Data
Structures™

PROCEEDINGS OF THE ANNUAL INTERNATIONAL
SYMPOSIUM ON COMPUTER ARCHITECTURE. SAN
DIEGO, MAY 16 - 19, 1993, LOS ALAMITOS,
IEEE. COMP. SOC. PRESS, US,

vol. SYMP. 20, 16 May 1993 (1993-05-16),
pages 289-300, XP010095799

ISBN: 0-8186-3810-9

the whole document

SHAVIT N ET AL: "SOFTWARE TRANSACTIONAL
MEMORY"

PROCEEDINGS OF THE ANNUAL ACM SYMPOSIUM ON
PRINCIPLES OF DISTRIBUTED COMPUTING.
OTTAWA, AUG. 20 - 23, 1995, PROCEEDINGS OF
THE ANNUAL ACM SYMPOSIUM ON PRINCIPLES OF
DISTRIBUTED COMPUTING.(PODC), NEW YORK,
ACM, US,

vol. SYMP. 14,

20 August 1995 (1995-08-20), pages
204-213, XP000643146

ISBN: 0-89791-710-3

the whole document

1-25

1-25

1-25

1-25

Form PCT/ISA/210 (continuation of second sheet) (April 2005)




INT.NATIONAL SEARCH REPORT —ﬂmwma ——

Information on patent family members

PCT/US2005/047376
Patent document Publication Patent family Publication
cited in search report date member(s) date
WO 2004075044 A 02-09-2004 US 2004187115 Al 23-09-2004
WO 2004075045 A 02-09-2004 US 2004187116 Al 23-09-2004
US 5809503 A 15-09-1998  NONE

Form PCT/ISA/210 (patent family annex) (April 2005)




	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

