实用新型专利

申请号 201320097065.3
申请日 2013.03.04
优先权数据
61/606, 321 2012.03.02 US
61/606, 301 2012.03.02 US
61/606, 313 2012.03.02 US
61/606, 333 2012.03.02 US
61/606, 336 2012.03.02 US
61/607, 451 2012.03.06 US
61/613, 745 2012.03.21 US
13/471, 237 2012.05.14 US

专利权人 微软公司
地址 美国华盛顿州

发明人 D. O. 惠特三世 R. R. 麦克劳林
S. L. 施奈德 E. J. 瓦尔 J. H. 怀斯
C. 利昂 K. 阿加德 T. C. 奥利弗

实用新型名称
通量喷泉设备、通量喷泉输入装置和通量喷泉计算装置

摘要
描述了通量喷泉技术。在一个或多个实施方式中，一种设备包括：覆盖件，其配置成布置在计算装置的显示装置的至少部分上，计算装置配置为平板计算机；以及连接部，其使用柔性铰接部附接到覆盖件。该连接部配置成使用电磁合装置物理地耦合到计算装置。该电磁合装置包括：第一磁体，其在连接部中布置成使得磁场沿者轴对齐，以及第二磁体和第三磁体，其在连接部中布置在第一磁体的彼此相对侧。第二磁体和第三磁体具有相应磁场，所述磁场沿着与第一磁体的磁场的轴基本上垂直的相应轴对齐。
1. 一种通量喷泉设备，包括：
 覆盖件，其配置成布置在计算装置的显示装置的至少部分上，该计算装置配置成平板计算机；以及

连接部（202），其使用柔性铰接部（106）附接到该覆盖件，该连接部配置成使用磁耦合装置物理地耦合到该计算装置，该磁耦合装置包括：
 第一磁体，其在该连接部中布置成使得磁场沿着轴对齐，以及
 第二磁体和第三磁体，其在该连接部中布置在该第一磁体的彼此相对侧，第二磁体和第三磁体分别具有相应磁场，所述磁场沿着与该第一磁体的磁场的轴基本上垂直的轴对齐。

2. 如权利要求1所述的通量喷泉设备，其中第二磁体和第三磁体在该连接部中布置在第一磁体的相对侧，使得与不存在第二磁体和第三磁体的相应磁场影响时该第一磁体的磁场相比，第二磁体和第三磁体的相应磁场导致该第一磁体的磁场延伸得更远离该连接部。

3. 如权利要求1所述的通量喷泉设备，其中第二磁体和第三磁体在该磁耦合装置中布置成具有在基本上相反方向布置的相应磁场。

4. 如权利要求1所述的通量喷泉设备，其中该第一磁体的磁场的强度分别强于第二磁体和第三磁体的相应磁场的强度。

5. 如权利要求1所述的通量喷泉设备，其中该磁耦合装置包括第四磁体和第五磁体，所述第四磁体和第五磁体与所述第一磁体、第二磁体和第三磁体一起形成通量喷泉。

6. 如权利要求5所述的通量喷泉设备，其中：
 该第四磁体具有与该第一磁体的磁场基本上相对地对齐的磁场；
 该第五磁体具有基本上对应于该第二磁体的磁场并且与该第三磁体的磁场基本上相对的磁场；以及
 该第四磁体在该磁耦合装置中布置在该第三磁体和第五磁体之间。

7. 如权利要求5所述的通量喷泉设备，其中：
 该第四磁体和第五磁体具有与该第一磁体的磁场基本上相对地对齐的磁场；
 该第二磁体在该磁耦合装置中布置在该第一磁体和第四磁体之间；以及
 该第三磁体在该磁耦合装置中布置在该第一磁体和第五磁体之间。

8. 如权利要求1所述的通量喷泉设备，其中表面还包括输入部，该输入部可通过通信地耦合到该连接部的多个通信接触部，该输入部配置成提供一个或多个输入到该计算装置。

9. 一种通量喷泉输入装置（104），包括：
 输入部，其配置成产生信号以用于由该计算装置处理，该输入部包括至少一个键；以及
 连接部，其使用柔性铰接部附接到该输入部，该连接部配置成：
 可通信地耦合到计算装置从而传送所述信号以用于由该计算装置处理；以及
 使用磁耦合装置物理地耦合到该计算装置，该磁耦合装置具有配置成实施通量喷泉的多个磁体。

10. 一种通量喷泉计算装置（102），包括：
 壳体；
 一个或多个模块，其布置在该壳体中并且至少部分地在硬件中实施以执行一个或多个操作；以及
磁耦合装置，该磁耦合装置由壳体支持，并且该磁耦合装置配置成形成与一种装置的磁和物理耦合，该磁耦合装置包括：

第一磁体，其在该磁耦合装置中布置成使得磁场沿着轴对齐；以及

第二和第三磁体，其在该磁耦合装置中布置在该第一磁体的彼此相对侧，第二磁体和第三磁体分别具有相应磁场，所述磁场沿着与该第一磁体的磁场的轴基本上垂直的轴对齐。
通量喷泉设备、通量喷泉输入装置和通量喷泉计算装置

[0001] 相关申请
[0002] 本申请要求以下美国临时专利申请的35 U.S.C § 119(e)下的优先权，这些申请中每一个的全部内容通过引用全部包含在本申请中；
[0003] 2012年3月2日提交的代理案卷号为336082.01并且名称为“Screen Edge”的美国临时专利申请No.61/606,321；
[0004] 2012年3月2日提交的代理案卷号为336083.01并且名称为“Input Device Functionality”的美国临时专利申请No.61/606,301；
[0005] 2012年3月2日提交的代理案卷号为336084.01并且名称为“Functional Hinge”的美国临时专利申请No.61/606,313；
[0006] 2012年3月2日提交的代理案卷号为336086.01并且名称为“Usage and Authentication”的美国临时专利申请No.61/606,333；
[0007] 2012年3月21日提交的代理案卷号为336086.02并且名称为“Usage and Authentication”的美国临时专利申请No.61/613,745；
[0008] 2012年3月2日提交的代理案卷号为336087.01并且名称为“Kickstand and Camera”的美国临时专利申请No.61/606,336；以及
[0009] 2012年3月6日提交的代理案卷号为336143.01并且名称为“Spanaway Provisional”的美国临时专利申请No.61/607,451。
[0010] 并且另外以下申请通过引用全部包含在本申请中；
[0011] 2012年5月14日提交的代理案卷号为336554.01并且名称为“Flexible Hinge and Removable Attachment”的美国专利申请No.______；
[0012] 2012年5月14日提交的代理案卷号为336564.01并且名称为“Input Device Assembly”的美国专利申请No.______。

背景技术

[0013] 移动计算装置已被开发以在移动设置中增加用户可利用的功能。例如，用户可以与移动电话、平板计算机或者其它移动计算装置交互，以检查电子邮件、网上冲浪、对文本排版、与应用程序交互等等。
[0014] 然而由于移动计算装置配置成移动的，所述装置可能暴露于对于计算装置的具有变化的安全系数的各种各样环境。因此，发展了帮助保护移动计算装置免受它们环境影响的装置。然而，将所述装置安装到计算装置以及从计算装置移除所述装置的传统技术或者难以移除但是提供良好的保护，或者相对容易移除但是提供有限的保护。

实用新型内容

[0015] 描述了通量喷泉(flux fountain)技术。在一个或多个实施方式中，一种通量喷泉设备包括：覆盖件(cover)，其配置成布置在计算装置的显示装置的至少部分上，该计算装置配置成平板计算机；以及连接部，其使用柔性铰接部附接到覆盖件。该连接部配置成使
用磁耦合装置物理地耦合到计算装置。该磁耦合装置包括：第一磁体，其在连接部中布置成使得磁场沿着轴对齐；以及第二磁体和第三磁体，其在连接部中布置在第一磁体的彼此相对侧。第二磁体和第三磁体具有相应磁场，所述磁场沿着与第一磁体的磁场的轴基本上垂直的轴对称。

[0016] 在一个或多个实施方式中，该通量喷泉输入装置包括：输入部，其配置成产生信号以用于由计算装置处理，该输入部包括至少一个键；以及连接部，其使用柔性铰接部附接至该输入部。该连接部配置成可通信地耦合到计算装置从而传送信号以用于由计算装置处理，并且使用磁耦合装置物理地耦合到计算装置，该磁性耦合装置具有配置成实施通量喷泉的多个磁体。

[0017] 在一个或多个实施方式中，一种通量喷泉计算装置包括：壳体；一个或多个模块，其布置在壳体中并且至少部分地在硬件中实施以执行一个或多个操作；以及磁耦合装置，该磁耦合装置由壳体支持，并且该磁耦合装置配置成形成与一种装置的磁和物理耦合。该磁耦合装置包括：第一磁体，其在该磁耦合装置中布置成使得磁场沿着轴对齐；以及第二磁体和第三磁体，其在该磁耦合装置中布置在第一磁体的彼此相对侧，第二磁体和第三磁体分别具有相应磁场，所述磁场沿着与第一磁体的磁场的轴基本上垂直的轴对齐。

[0018] 本实用新型内容部分被提供用于以简化形式介绍在下面的具体实施方式中进一步描述的概念选集。本实用新型内容部分不意图确定所要求保护的主题的关键特征或必要特征，也不意图用于帮助确定所要求保护的主题的范围。

附图说明

[0019] 参考附图描述详细的说明书。在附图中，附图标记中最左边的数字标识第一次出现该附图标记的附图。在说明书和附图中的不同情形中使用相同附图标记可以表示类似或相同的项目。图中描绘的实体可以表示一个或多个实体，并且因此在讨论中可以可互换地提及实体的单数或复数形式。

[0020] 图 1 是可操作以采用此处描述的技术的示例性实施方式中的环境的图示。
[0021] 图 2 描述图 1 的输入装置的示范性实施方式，更详细地示出了柔性铰接部。
[0022] 图 3 将与计算装置有关的输入装置的示范性取向描述为覆盖计算装置的显示装置。
[0023] 图 4 将与计算装置有关的输入装置的示例性取向描述为采取打字（typing）取向。
[0024] 图 5 将与计算装置有关的输入装置的示范性取向描述为覆盖计算装置 102 的后壳体并且露出计算装置的显示装置。
[0025] 图 6 将输入装置的示范性取向描述为包括这样的一部分，该部分配置成覆盖计算装置的后部，其在此情形中用于支持计算装置的支架。
[0026] 图 7 描述示例性取向，其中包括图 6 的所述部分的输入装置用于覆盖计算装置的前部和背部。
[0027] 图 8 描述示例实施方式，其示出图 2 的连接部的透视图，该连接部包括机械耦合突出部（protrusion）和多个通信接触部。
[0028] 图 9 更详细地描述沿着示出通信接触部的轴截取的截面以及计算装置的腔体的截面。
图 10 更详细地描述沿着示出机械耦合装置的轴截取的截面以及计算装置的腔体的截面。

图 11 更详细地描述沿着示出磁耦合装置的轴截取的截面以及计算装置的腔体的截面。

图 12 描述可以由输入装置或计算装置采用以实施通量喷泉的磁耦合部的示例。

图 13 描述可以由输入装置或计算装置采用以实施通量喷泉的磁耦合部的另一示例。

图 14 描述覆盖件的示例，该覆盖件配置成被吸引到计算装置的磁耦合装置的一个或多个。

图 15 示出示例性系统，该系统包括可以实施为如参考图 1-14 所述任何类型计算装置从而实施此处所述技术的实施例的示例性装置的各种部件。

具体实施方式

概述

各种不同装置可以物理地附接到移动计算装置从而提供各种功能。例如，一种装置可以配置成提供一种覆盖件，其至少用于计算装置的显示装置以保护其免受危害。诸如输入装置（例如具有跟踪垫的键盘）的其它装置也可以物理地附接到该移动计算装置，从而提供输入到该计算装置。另外，这些装置的功能可以被组合，从而诸如提供覆盖件和输入装置的组合。然而，被用于将装置附接到计算装置的传统技术会在下述之间交替：显著的保护以及对应的在安装和移除装置中的复杂化，以及有限的保护但是安装和移除比较容易。

描述了通量喷泉技术。在一个或多个实施方式中，一种装置可以配置成使用磁耦合装置附接到计算装置。该磁耦合装置可包括多个磁体，所述多个磁体具有相应磁场，所述磁场布置在多个轴中从而扩展磁场的有效性。这可以用于促进对齐，以及增加足以发起物理耦合，例如致使装置“扣合（snap）”在一起的磁体的范围。此情形的一个示例为通量喷泉，通量喷泉的各情形结合图 12 和 13 予以讨论。计算装置也可以包括通量喷泉从而运用此功能。在一个示例中，磁体的范围可以从几毫米被扩展到几厘米并且增大由磁体支持的物理耦合的强度。结合下述各图可以发现这些和其它技术的另外讨论。

在下面的讨论中，首先描述可以采用此处描述的技术的示例性环境。随后描述可以在该示例性环境以及其它环境中进行的示例性程序。因此，该示例性程序的执行局限于该示例性环境，并该示例性环境不局限于该示例性程序的执行。此外，尽管描述了输入装置，但是不包括输入功能的其它装置，如覆盖件，也被预期。例如这些技术同样可应用于无源装置，例如具有一种或多种材料（例如磁体、铁质材料等等）的覆盖件，如下文进一步所述利用突出部和连接部等，所述材料配置且定位于覆盖件内从而被吸引到计算装置的磁耦合装置。

示例性环境

图 1 是可操作以采用此处所述技术的示例性实施方式中的环境 100 的图示。所说明的环境 100 包括计算装置 102 的示例，该计算装置 102 经由柔性接触部 106 物理地并且可通信地耦合到输入装置 104。计算装置 102 可以按各种方式配置。例如，计算装置 102 可以配置用于移动用途，诸如移动电话、所说明的平板计算机等等。因此，计算装置 102 可以

[0039] 示例性环境

[0040] 图 1 是可操作以采用此处所述技术的示例性实施方式中的环境 100 的图示。所说明的环境 100 包括计算装置 102 的示例，该计算装置 102 经由柔性接触部 106 物理地并且可通信地耦合到输入装置 104。计算装置 102 可以按各种方式配置。例如，计算装置 102 可以配置用于移动用途，诸如移动电话、所说明的平板计算机等等。因此，计算装置 102 可以
涵盖从具有大容量存储器和处理器资源的全资源装置到具有有限存储器和/或处理器资源的低资源装置的范围。计算装置 102 还可以涉及致使计算装置 102 执行一个或多个操作的软件。

[0041] 例如，计算装置 102 被声明为包括输入/输出模块 108。输入/输出模块 108 与计算装置 102 的输入的处理和输出的再现有关的功能。输入/输出模块 108 可以处理各种不同输入，诸如与功能有关的输入，所述功能对应于输入装置 104 的键，由显示装置 110 显示的虚拟键盘的键从而标识手形并且致使与该手形对应的操作被执行，所述手形可以通过输入装置 104 和/或显示装置 110 的触摸屏功能等被识别。因此，输入/输出模块 108 可以通过识别并运用包括键的下按、手势等的输入类型之间的区分来支持各种不同输入技术。

[0042] 在说明的示例中，输入装置 104 被配置成具有输入部，该输入部包括具有 QWERTY 布置的键的键盘以及跟踪垫，不过其它布置的键也被预期。此外，其它非传统布置也被预期，如游戏控制器、模拟乐器的配置等等。因此，输入装置 104 和输入装置 104 包括的键可以采用各种不同配置以支持各种不同功能。

[0043] 如前文所述，在此示例中，输入装置 104 通过使用柔性铰接部 106 物理地并且可通信地耦合到计算装置 102。柔性铰接部 106 是柔性的，因为与铰的机械旋转相反，由铰接部支持的旋转移动是通过形成铰接部的材料的挠曲（例如，弯曲）实现的，但是由铰支持的机械旋转的该实施例也被预期的。此外，该柔性旋转可被配置为支持在一个或多个方向上的（例如，图中垂直）移动，但是仍限制在其它方向上的移动，诸如输入装置 104 相对于计算装置 102 的横向移动。这可被用于支持输入装置 104 相对于计算装置 102 的一致对齐，从而对齐用于改变电力状态、应用状态等等的传感器。

[0044] 柔性铰接部 106 例如可以使用一层或多层织物形成，并且包括被形成为柔性材料的导体从而将输入装置 104 可通信地耦合到计算装置 102，反之亦然。此通信例如可被用于将键下按的结果传送到计算装置 102，接收来自计算装置的电力，执行认证，向计算装置 102 提供补充电力等等。柔性铰接部 106 可以根据各种方式配置，结合下述的图可以找到该柔性铰接部的进一步讨论。

[0045] 图 2 更详细地描述图 1 的输入装置 104 的示例性实施方式 200，示出了柔性铰接部 106。在此示例中，示出了该输入装置的连接部 202，该连接部被配置成在输入装置 104 和计算装置 102 之间提供通信和物理连接。如所说明，连接部 202 具有高度和宽度，其配置成被接收在计算装置 102 的壳体中的通道内，不过在不偏离其精神和范围的情况下，该配置也可以被颠倒。

[0046] 连接部 202 通过使用柔性铰接部 106 柔性地连接到输入装置 104 的包括键的部位。因此，当连接部 202 物理地连接到该计算装置时，连接部 202 和柔性铰接部 106 的组合支持输入装置 104 相对于计算装置 102 的移动，这与书的铰接部类似。

[0047] 通过这种旋转移动，可以支持输入装置 104 相对于计算装置 102 的各种不同取向。例如，旋转移动可以由柔性铰接部 106 支持，使得输入装置 104 可以被旋转在计算装置 102 的显示装置 110 并且由此作为如图 3 的示例性取向 300 所示的覆盖件。因而，输入装置 104 可以用于保护计算装置 102 的显示装置 110 免受危害。

[0048] 如图 4 的示例性取向 400 所示，可以支持打字布置。在这种取向中，输入装置 104
放平抵住表面，并且例如，诸如通过使用置于计算装置 102 的后表面上的支架 402，计算装置 102 成角度布置以允许观看显示装置 110。

在图 5 的示例性取向 500 中，输入装置 104 也可以被旋转从而布置为抵住计算装置 102 的背部，例如抵住计算装置 102 的后壳体，该后壳体与计算装置 102 上的显示装置 110 相对地布置。在此示例中，通过连接部 202 到计算装置 102 的取向，柔性铰接部 106 被致使“卷绕”连接部 202 从而将输入装置 104 置于计算装置 102 的后部。

这种卷绕致使计算装置 102 的后部的一部分保持露出。这可以被运用于各种功能，诸如即使在计算装置 102 的后部的显著部分被输入装置 104（在此示例中取向 500）覆盖时，允许置于计算装置 102 后部上的照相机 502 被使用。尽管在上文描述了覆盖计算装置 102 单侧的输入装置 104 的配置，它其它配置也被预期。

在图 6 的示例性取向 600 中，输入装置 104 被说明为包括部分 602，该部分配置成覆盖计算装置的后部。此部分 602 也用柔性铰接部 604 连接到连接部 202。

图 6 的示例性取向 600 也说明打字布置，其中输入装置 104 放平抵住表面并且计算装置 102 成角度布置从而允许观看显示装置 110。在此示例中这是通过使用支架 402 得以支持，该支架布置在计算装置 102 的后表面上从而接触该部分 602。

图 7 描述示例性取向 700，其中包括该部分 602 的输入装置 104 用于覆盖计算装置 102 的前部（例如显示装置 110）和后部（例如壳体的与显示装置相对侧）。在一个或多个实施方式中，电和其它连接器也可以例如沿着计算装置 102 和 / 或输入装置 104 的各侧布置，从而在关闭时提供辅助电力。

理所当然，还支持各种其它取向。比如，计算装置 102 和输入装置 104 可以采样这样的布局，使得二者均放平抵住表面，如图 1 所示。其它情形也被预期，诸如三脚架布置，会议布置、演示布置等等。

再次回到图 2，连接部 202 在此示例中被说明为包括磁耦合装置 204, 206, 机械耦合装置 208, 210 和多个通信接触部 212。磁耦合装置 204, 206 配置成通过使用一个或多个磁体而磁耦合到计算装置 102 的互补的磁耦合装置。以此方式，输入装置 104 可以通过利用磁引力而物理地紧固到计算装置 102。

连接部 202 还包括机械耦合突出部 208, 210 以形成输入装置 104 和计算装置 102 之间的机械物理连接。结合在下文讨论的图 8 更详细地示出机械耦合突出部 208, 210。

图 8 描述示例实施方式 800，其示出图 2 的连接部 202 的透视图，该连接部包括机械耦合突出部 208, 210 和多个通信接触部 212。如所说明，机械耦合突出部 208, 210 配置成远离连接部 202 的表面延伸，其这种情况下是垂直的，不过其它角度也被预期。

机械耦合突出部 208, 210 配置成被接收在计算装置 102 的通道内的互补腔体中。当如此被接收时，机械耦合突出部 208, 210 在与轴未对齐的力被应用时促进各装置之间的机械接合，所述轴定义为对应于突出部的高度以及腔体的深度，可以结合图 10 找到对其的进一步讨论。

连接部 202 还被说明为包括多个通信接触部 212。所述多个通信接触部 212 配置成接触计算装置 102 的对应通信接触部，从而形成各装置之间的通信耦合，如结合下述图更详细示出和讨论。

图 9 更详细地描述沿线 2 和 8 的轴 900 截取的示出通信接触部 212 其中之一的
截面以及计算装置 102 的腔体的截面。连接部 202 被说明为包括凸部 (projection) 902。该凸部配置成与计算装置 102 的通道 904 互补, 例如具有互补形状, 使得凸部 902 在腔体 904 中的移动受到限制。

【0061】通信接触部 212 可以按各种方式配置。在说明的示例中, 连接部 202 的通信接触部 212 形成弹簧负载的轴 906。其被捕获在连接部的筒 908 内。弹簧负载的轴 906 从筒 908 向外偏置从而提供输入装置 104 和计算装置 102 之间 (诸如到计算装置 102 的接触 910) 的一致的通信接触部。因此, 在装置的移动或冲撞期间, 接触并且通信可以被维持。各种其它示例也被预期, 包括将轴压在计算装置 102 上以及将轴接触装置在输入装置 104 上。

【0062】图 10 更详细地描述沿着图 2 和 8 的轴 1000 侧取的示出机械耦合突出部 208 的截面以及计算装置 102 的腔体 904 的截面。如前文那样, 凸部 902 和通道 904 配置成具有互补尺寸和形状从而限制连接部 202 相对于计算装置 102 的移动。

【0063】在此示例中, 连接部 202 的凸部 902 还包括布置在其上的机械耦合突出部 208, 该突出部配置成胶被放在在布置于通道 904 中的互补腔体 1002 内。腔体 1002 比如可以配置成接收如图 8 所示配置基本上椭圆柱的突出部 208, 不过其它示例也被预期。

【0064】当与轴轴吻合的力被应用时, 用户仅仅克服由磁体应用的磁耦合力从而将输入装置 104 与计算装置 102 分离, 其中该轴轴环机械耦合突出部 208 的高度以及腔体 1002 的深度。然而, 在其它角度, 机械耦合突出部 208 配置成机械地接合在腔体 1002 内。除了磁耦合装置 204、206 的磁力之外, 这形成了抑制输入装置 104 从计算装置 102 移除的力。以此方式, 机械耦合突出部 208 可以偏置输入装置 104 从计算装置 102 的移除以模仿从本书上撕扯一页并且限制分离各装置的其它尝试。

【0065】图 11 更详细地描述沿着图 2 和 8 的轴 1100 侧取的示出机械耦合装置 204、206 的截面以及计算装置 102 的腔体 904 的截面。在此示例中, 磁耦合装置 204 的磁体被说明为布置在连接部 202 内。

【0066】连接部 202 和通道 904 一起移动会致使磁体 1102 被吸引到计算装置 102 的磁耦合装置 1106 的磁体 1104, 其在此示例中布置在计算装置 102 的壳体的通道 904 内。在一个或多个实施方式中, 柔性铰接部 106 的柔性会致使连接部 202 “扣合” 到通道 904 内。另外, 这也会致使连接部 202 与通道 904“对直 (line up)”, 使得机械耦合突出部 208 对齐以用于插入腔体 1002 中并且通信接触部 208 与通道中的相应接触 910 对齐。

【0067】磁耦合装置 204、20106 可以按各种方式配置。例如, 磁耦合装置 204 可以采用背衬 1108(例如, 诸如钢), 从而致使磁体 1102 产生的磁场离开背衬 1108 向外延伸。因而, 磁体 1102 产生的磁场的范围可以被扩展。磁耦合装置 204、1106 也可以采用各种其它配置, 其示例结合下文参考的图予以描述和示出。

【0068】图 12 描述可以由输入装置 104 或计算装置 102 采用以实施通量喷泉的磁耦合部的示例 1200。在此示例中, 使用箭头表示所述多个磁体的每一个的磁场的对齐。

【0069】第一磁体 1202 布置在磁耦合装置中, 具有沿着一轴对齐的磁场。第二和第三磁体 1204、1206 布置在第一磁体 1202 的相对侧上。第二和第三磁体 1204、1206 的磁场的对齐基本上垂直于第一磁体 1202 的轴并且通常彼彼相反。

【0070】这种情况下, 第二和第三磁体的磁场指向第一磁体 1202。这造成第一磁体 1202 的
磁场沿着所指示的轴进一步延伸，由此增加第一磁体 1202 的磁场的范围。

[0071] 使用第四和第五磁体 1208, 1210 可以进一步扩展该效应。在此示例中，第四和第五磁体 1208, 1210 的磁场与第一磁体 1202 的磁场基本上相反地对齐。另外，第二磁体 1204 布置在第四磁体 1208 和第一磁体 1202 之间。第三磁体 1206 布置在第一磁体 1202 和第五磁体 1210 之间。因此，第四和第五磁体 1208, 1210 的磁场也可以被使沿着它们相应轴进一步延伸，这可以进一步增加这些磁体以及该集合中其它磁体的强度。5 个磁体的这种布置适合于形成通量喷泉。尽管描述了 5 个磁体，5 以及更大数目的任何奇数个磁体可以重复此关系从而形成甚至更大强度的通量喷泉。

[0072] 为了磁附接到另一磁耦合装置，类似的磁体布置可以布置在所说明的布置“之上”或“之下”，例如因此第一、第四和第五磁体 1202, 1208, 1210 的磁场与这些磁体上或下的对应磁体对齐。另外，在说明的示例中，第一、第四和第五磁体 1202, 1208, 1210 的强度强于第二和第三磁体 1204, 1206，不过其它实施方式也被预期。结合该图的下述讨论来描述通量喷泉的另一示例。

[0073] 图 13 描述可以由输入装置 104 或计算装置 102 采用以实施通量喷泉的磁耦合部的示例 1300。在此示例中，也使用箭头表示多个磁体的每一个的磁场的对齐。

[0074] 与图 12 的示例 1200 相似，第一磁体 1302 布置在磁耦合装置中，具有沿着轴对齐的磁场。第二和第三磁体 1304, 1306 布置在第一磁体 1302 的相对侧上。第二和第三磁体 1304, 1306 的磁场的对齐基本上垂直于第一磁体 1302 的轴并且通常彼此相反，类似于图 12 的示例 1200。

[0075] 这种情况下，第二和第三磁体的磁场指向第一磁体 1302。这造成第一磁体 1302 的磁场沿着所指示的轴进一步延伸，由此增加第一磁体 1302 的磁场的范围。

[0076] 使用第四和第五磁体 1308, 1310 可以进一步扩展该效应。在此示例中，第四磁体 1308 具有与第一磁体 1302 的磁场基本上相反地对齐的磁场。第五磁体 1310 的磁场对齐成基本上对应于第二磁体 1304 的磁场并且基本上与第三磁体 1306 的磁场相反。第四磁体 1308 在磁耦合装置中布置在第二和第五磁体 1306, 1310 之间。

[0077] 5 个磁体的这种布置适合于形成通量喷泉。尽管描述了 5 个磁体，5 以及更大数目的任何奇数个磁体可以重复此关系从而形成甚至更大强度的通量喷泉。因内，第一磁体 1302 和第四磁体 1308 的磁场也可以被使沿着其轴进一步延伸，这可以进一步增加此磁体的强度。

[0078] 为了磁附接到另一磁耦合装置，类似的磁体布置可以布置在所说明的布置“之上”或“之下”，例如因此第一和第四磁体 1302, 1308 的磁场与这些磁体上或下的对应磁体对齐。另外，在说明的示例中，第一和第四磁体 1302, 1308 的强度（分别）强于第二、第三和第五磁体 1304, 1306, 1310 的强度，不过其它实施方式也被预期。

[0079] 另外，相对于图 13 的示例 1300，使用类似磁体尺寸的图 12 的示例 1200 可以具有增加的磁耦合。比如，图 12 的示例 1200 使用 3 个磁体（例如第一、第四和第五磁体 1202, 1208, 1210）从而主要提供磁耦合，利用例如第二和第三磁体 1204, 1206 这两个磁体用于“操纵”这些磁体的磁场。然而，图 13 的示例 1300 使用 2 个磁体（例如第一和第四磁体 1302, 1308）从而主要提供磁耦合，利用例如第二、第三和第五磁体 1304, 1306, 1308 这三个磁体用于“操纵”这些磁体的磁场。
因此，虽然，相对于图 12 的示例 1200，使用类似磁体尺寸的图 13 的示例 1300 可以具有增加的磁对齐能力。比如，图 13 的示例 1300 使用 3 个磁体（例如第二、第三和第五磁体 1304、1306、1310）来“操纵”第一和第四磁体 1302、1308 的磁场，所述第一和第四磁体 1302、1308 用于提供主要磁耦合。因此，与图 12 的示例 1200 的对齐相比，图 13 的示例 1300 中磁体的场的对齐可以更靠近。

与所采用的技术无关，应容易显而易见的是，所描述的磁场的“操纵”或“指向”可以用于增加磁体的有效范围，例如与使用在传统对齐状态中本身具有类似强度的磁体相比。在一个或多个实施方式中，这会是由于使用一定数量的磁性材料的几率增加到使用相同数量磁性材料的几率。

图 14 描述的配置可以采用此处所述技术的覆盖件 1402 的示例实施方式 1400。在此示例中，覆盖件 1402 包括沿着覆盖件的连接部布置的材料 1404、1406，其配置成被吸引到计算装置 102 的一个或多个磁体。

例如，覆盖件 1402 可以包括单个磁体、一个或多个铁质材料条等等，其配置成被吸引到计算装置 102 的一个或多个磁体，例如较早描述的通量喷泉。比如，一个或多个磁体（以及其各种组合）可以配置为被吸引到计算装置 102 时的通量喷泉的一个或多个对应磁体。以此方式，可以如前所述支持强物理连接而不仅包括在该连接“两侧”的磁体布置。各种其它示例也被预期。

示例性系统和装置

图 15 在 1500 通常示出示例性系统，该系统包括示例性计算装置 1502，计算装置 1502 代表可以实施此处所述各种技术的一个或多个计算系统和 / 或装置。例如，通过利用形状和尺寸适合于用户用一只手或两只手握取并携带的壳体，可以将计算装置 1502 配置为采用可移动配置。所说明的该计算装置的示例包括移动电话、移动游戏和音乐装置以及平板计算机，不过其它示例也被预期。

所说明的示例计算装置 1502 包括彼此可通信地耦合的处理系统 1504、一个或多个计算机可读介质 1506 以及一个或多个 I/O 接口 1508。尽管没有示出，计算装置 1502 可以进一步包括系统总线或者将各部件彼此耦合的其它数据和命令传输系统。系统总线可以包括不同总线结构中的任意一个或组合，诸如存储器总线或存储器控制器、外围总线、通用串行总线和 / 或使用各种总线架构中任意一种的处理器或本地总线，如控制和数据总线的各个其它示例也被预期。

处理系统 1504 代表使用硬件执行一个或多个操作的功能。因此，处理系统 1504 被说明为包括硬件元件 1510，该硬件元件可以被配置为处理器、功能块等等。这可以包括作为专用集成电路或者使用一个或多个半导体形成的其它逻辑装置的硬件中的实施方式。硬件元件 1510 不受形成它们的材料或者在其中采用的处理装置的限制。例如，处理器可以包括半导体和 / 或晶体管（例如，电子集成电路（IC））。在这种上下文中，处理器可执行的指令可以是可电子执行的指令。

计算机可读存储介质 1506 被说明为包括存储器 / 储存器 1512。存储器 / 储存器 1512 代表与一个或多个计算机可读介质相关联的存储 / 储存能力。存储 / 储存部件 1512 可以包括易失性介质（如随机存取存储器（RAM））和 / 或非易失性介质（如只读存储器（ROM）、闪存、光盘、磁盘等等）。存储 / 储存部件 1512 可以包括固定介质（例如，RAM、ROM、固定硬
驱动器等）以及可移动介质（例如，闪存、可移动硬驱动器、光盘等）。如下面进一步描述，计算机可读介质 1506 可以按各种其它方式配置。

（多个）输入 / 输出接口 1508 代表通过使用各种输入 / 输出装置允许用户将命令和信息输入到计算装置 1502 并且还允许将信息呈现给用户和 / 或其它部件或装置的功能。输入装置的示例包括键盘、光标控制装置（例如，鼠标）、麦克风、扫描器、触摸功能（例如，配置成检测物理接触的电容性或其它传感器）、照相机（例如，它可以采用可见或不可见波长、诸如红外频率，以识别作为不涉及触摸的手势的移动）等等。输出装置的示例包括显示装置（例如，监视器或投影器）、扬声器、打印机、网卡、触摸感应装置等等。因此，计算装置 1502 可以按各种方式配置以支持用户交互。

计算装置 1502 被进一步说明为可通过地并且物理地耦合到输入装置 1514，该输入装置可物理地和通信地从计算装置 1502 移除。以此方式，各种不同输入装置可以耦合到具有各种各样的计算装置 1502 以支持各种各样的功能。在此示例中，输入装置 1514 包括一个或多个键 1516，其可被配置为压力敏感键、机械切换键等等。

输入装置 1514 被进一步说明为包括一个或多个模块 1518，该模块可被配置以支持各种功能。例如，所述一个或多个模块 1518 可被配置为处理分键 1516 接收的模拟信号或数字信号，以及判断击键是否有效的判断输入是否是静止压力、支持输入装置 1514 的认证以用于利用计算装置 1502 操作等等。

此处可以在软件、硬件元件或程序模块的一般上下文中描述各种技术。一般来说，这种模块包括执行特定任务或者实施特定抽象数据类型的例程、程序、对象、元件、部件、数据结构等。此处使用的术语“模块”“功能”和“部件”通常代表软件、固件、硬件或者其组合。此处描述的技术的特征是独立于平台的，这意味着所述技术可以在各种各种商用计算平台上实施。

可以在某种形式的计算机可读介质上存储或传送所描述的模块和技术的实施方式。该计算机可读介质可以包括可以由计算装置 1502 访问的各种介质。通过示例方式但不限于限制性的，计算机可读介质可以包括“计算机可读存储介质”和“计算机可读信号介质”。“计算机可读存储介质”可以指的是，与单项的信号传输、载波或信号本身相反，使得能够持续并且 / 或者非暂时地存储信息的介质和 / 或装置。因此，计算机可读存储介质指的是非信号承载介质。该计算机可读存储介质包括以适合于存储信息（诸如计算机可读指令、数据结构、程序模块、逻辑元件 / 电路或其它数据）的方法或技术实现的硬件，诸如易失性和非易失性、可移动和不可移动的介质和 / 或存储装置。计算机可读存储介质的示例可以包括但不限于 RAM、ROM、EEPROM、闪存或其它存储器技术、CD-ROM、数字多功能盘 (DVD) 等。计算机可读存储介质可以包含其它光学存储器、硬盘、磁带盒、磁带、磁盘存储器或其他存储装置，或者其它存储装置，具有介质，或者适合于存储期望信息并且可以由计算机访问的制品。

计算机可读信号介质可以指的是被配置为例如经由网络将指令传送到计算装置 1502 的硬件的信号承载介质。信号介质典型地可以将计算机可读指令、数据结构、程序模块或者调制的数据信号（如载波、数据信号或者其它传输机制）中的其它数据数据化。信号介质还包括任何信息传递介质。术语“调制的数据信号”意思是以将信息编码在信号中的方式设置或改变其一个或多个特征的信号。通过示例的方式但不是限制性的，通信介质包括有线介质，如有线网络或直接有线连接，以及无线介质，如声学介质、RF 介质、红外介质。
以及其它无线介质。

【0096】 如上所述，硬件元件 1510 和计算机可读介质 1506 代表可以在一些实施例中采用的以硬件形式实现的模块、可编程装置逻辑和 / 或固定装置逻辑，从而实施此处所述技术的至少方面，诸如执行一个或多个指令。硬件可以包括集成电路或芯片上系统、专用集成电路 (ASIC)、现场可编程门阵列 (FPGA)、复杂可编程逻辑装置 (CPLD) 以及在硅或其它硬件中其它实施方式的部件。在此上下文中，硬件可以作为执行由该硬件具体化的指令和 / 或逻辑定义的程序任务的处理装置来操作，以及作为用于存储指令以供执行的硬件（例如前面描述的计算机可读存储介质）来操作。

【0097】 还可以采用前述的组合来实施此处所述各种技术。因此，软件、硬件或可执行模块可以被实施为在某种形式计算机可读存储介质上具体化的一个或多个指令和 / 或逻辑，并且 / 或者通过一个或多个硬件元件 1510 来实施。计算装置 1502 可以被配置成实施与该软件和 / 或硬件模块对应的特定指令和 / 或功能。因此，例如通过使用计算机可读存储介质和 / 或处理系统 1504 的硬件元件 1510，可以至少部分在硬件中实现可由计算装置 1502 作为软件执行的模块的实施。所述指令和 / 或功能可以由一个或多个制品（例如，一个或多个计算装置 1502 和 / 或处理系统 1504）来执行 / 操作，以实施此处所述技术、模块和示例。

【0098】 结论

【0099】 尽管以结构特征和 / 或方法动作特有的语言描述了示例性实施方式，但是将理解，所附权利要求中限定的实施方式不一定局限于所描述的具体特征或动作。相反，所述具体特征和动作是作为实施所要求保护的特征的示例性形式公开的。
图 9
图 13