絶縁性基板（12）の一方の側の表面に太陽電池（13）を形成し、その絶縁性基板（12）の太陽電池（13）の形成されない側の表面各部に、基準電位（32）に接続可能で、絶縁性基板（12）により太陽電池（13）と絶縁状態を保持しつつ一体化された電極薄膜（11）を形成して太陽電池モジュール（5）を設ける。太陽電池モジュール（5）は、電極薄膜（11）を基準電位（32）に接続し、携帯型電子機器（1）に搭載する。
明細書

太陽電池モジュール及びそれを搭載した携帯電話に関する。

技術分野

この発明は、省電力化を図る構造を備えた太陽電池モジュール及びそれを搭載した携帯型電子機器に関する。

背景技術

太陽電池は、太陽光又は白熱灯や蛍光灯等の人工的な光から電気エネルギーを生成する。太陽電池は、アモルファスシリコン又はアモルファスシリコン合金系の材料からなる発電層や、微結晶シリコン、結晶シリコン又は化合物半導体材料等を材料に用いた発電層から構成されており、電気エネルギーの供給源として、従来から腕時計、ラジオ、電子式卓上計算機、PDA（Personal Digital Assistants）等の携帯型電子機器に搭載されている。太陽電池を搭載した携帯型電子機器は、太陽電池により変換された電気エネルギーを二次電池に蓄積して駆動する構成となっており、ボタン型電池の交換が必要である等の利点があるため、年々需要が高まってきている。

太陽電池を搭載した携帯型電子機器は、腕時計のように絶えず身体に接触しながら携帯されることがあるため、身体に蓄積した静電気が入り込んで太陽電池を破壊し、太陽電池の特性が著しく低下してしまうことがある（この静電気による太陽電池の破壊を「静電衝撃」という）。静電衝撃は、特に太陽電池を絶縁性基板に形成している場合に起こりやすいことから、そのような太陽電池を搭載している従来の携帯型電子機器は、第16図に示すようにして静電衝撃への対策が施されていた。

第16図は、太陽電池を搭載した従来の携帯型電子機器101の内部構造を示す断面図である。太陽電池13は、発電層22のそれぞれの面に下部電極21と対向
電極2,3とが設けられ、その下部電極21が絶縁性基板12に形成されて太陽電池モジュール65を構成している。また、下部電極21と対向電極23とが駆動回路31に接続されていて、その駆動回路31側の太陽電池13の近傍に別体のシールド用金属板15が配置され、その金属板15が基準電位32に接続されている（接地されている）。従来の携帯型電子機器101は、以上のように外部から入り込む静電気を基準電位32に逃がすルート（以下このルートを「静電気の逃避ルート」という）を金属板15によって形成し、太陽電池13の破壊を防止するようにしていた。

しかし、携帯型電子機器は、携帯に便利なように小型化されているものが多く、それだけ部品の収納スペースや各部品の配置にも大きな制約がある。それにもかかわらず、従来の携帯型電子機器は、金属板15の収納スペースを別途確保しなければならないから、部品の収納スペースや配置の余裕が極端に少なく、部品の組込み自由度が著しく低いという問題があった。しかも、部品点数が金属板15の分だけ増加し、また、部品の配置を金属板15の分だけ別途工夫しなければならないことから、生産コストが高くなるという問題もあった。

この発明は、上記の問題を解決するためになされたもので、太陽電池モジュール及びそれを搭載した携帯型電子機器において、静電衝撃を回避して信頼性を高めることを可能とし、部品の組込み自由度を向上させて多様性を高める一方、コスト面でも有利な構造にすることを目指とする。

発明の開示

この発明による太陽電池モジュールは、太陽電池と絶縁状態を保持しつつ一体化され、かつ基準電位に接続可能な静電気導電性薄膜を設けたことを特徴とする。

この発明による太陽電池モジュールは、絶縁性基板の一方の表面に形成した太陽電池と、上記絶縁性基板の上記太陽電池の形成されない側の表面に形成され、かつ
基準電位に接続可能な静電気導電性薄膜とを有するようにするとよい。
また、絶縁性基板の一方の表面に形成した太陽電池と、その太陽電池の略全面を被覆するように上記絶縁性基板の一方の表面に形成した絶縁性保護膜と、その絶縁性保護膜の表面に形成され、かつ基準電位に接続可能な静電気導電性薄膜とを有するようにしてもよい。
さらに、上記絶縁性基板が透明性を有する材料からなるようにしてもよく、上記静電気導電性薄膜が透明性を有する材料からなるようにしてもよい。
また、上記静電気導電性薄膜は、透明導電性酸化物材料または透明導電性樹脂複合材からなるものでもよく、光が透過し得る程度に膜厚の薄い金属薄膜又は線状若しくはメッシュ状にパターンニングされた金属薄膜からなるものでもよい。
そして、上記静電気導電性薄膜は、抵抗値が上記太陽電池よりも低く設定されているのが好ましく、その抵抗値が上記太陽電池の示す抵抗値の変動幅を考慮して設定されているのが好ましい。
さらに、上記静電気導電性薄膜は、上記絶縁性基板に比べて無視し得る程度に膜厚が薄く形成されているとよい。
この発明による太陽電池モジュールは、上記太陽電池が透光性を有する程度に膜厚が薄く形成されているようにしてもよく、また、発電層のそれぞれの面に電極が形成され、かつその発電層及びその一方の電極に複数の欠落部が形成されて透光性を阻害しないように形成されていてもよい。
そしてこの発明は、太陽電池モジュールを搭載した携帯型電子機器において、上記太陽電池モジュールが、絶縁性基板の一方の表面に形成した太陽電池と、その絶縁性基板のその太陽電池の形成されない側の表面に形成され、かつ基準電位に接続可能な静電気導電性薄膜とを有して構成され、上記静電気導電性薄膜を上記基準電位に接続して搭載されている携帯型電子機器を提供する。
また、太陽電池モジュールを搭載した携帯型電子機器において、上記太陽電池モ
ジェールが、絶縁性基板の一方の表面に形成した太陽電池と、その太陽電池の略全面を被覆するように上記絶縁性基板の一方向の表面に形成した絶縁性保護膜と、その絶縁性保護膜の表面に形成され、かつ基準電位に接続可能な静電気導電性薄膜とを有して構成され、上記静電気導電性薄膜を上記基準電位に接続して搭載されている携帯型電子機器を提供する。

上記いずれの携帯型電子機器も、上記静電気導電性薄膜が入射光の入射方向を向くように配置して上記太陽電池モジュールを搭載しているとよい。また、上記絶縁性基板が透明性を有する材料からなり、かつ、上記静電気導電性薄膜が透明性を有する材料からなるとよい。

さらに、この発明は、太陽電池モジュールを搭載した携帯型電子機器において、上記太陽電池モジュールは、絶縁性基板の一方の表面に形成した太陽電池と、その絶縁性基板の該太陽電池の形成されない側の表面に形成された静電気導電性薄膜とを有して構成され、上記太陽電池により生成された電気エネルギーにより指針を駆動するムーブメントと上記太陽電池モジュールが金属製時計ケースに収納され、かつ、その太陽電池モジュールが、その金属製時計ケースに上記静電気導電性薄膜を接触させて搭載されている携帯型電子機器も提供する。

図面の簡単な説明

第１図及び第２図は、この発明による太陽電池モジュールを搭載した携帯型電子機器の内部構造の要部を模式的に示す断面図である。

第３図及び第４図は、この発明による別の太陽電池モジュールを搭載した別の携帯型電子機器の内部構造の要部を模式的に示す断面図である。

第５図及び第６図は、この発明によるシースルーリーター型太陽電池モジュールを搭載した携帯型電子機器の内部構造の要部を模式的に示す断面図である。

第７図及び第８図は、この発明による太陽電池モジュールを搭載した電子時計の
内部構造の要部を模式的に示す断面図である。

第9図〜第14図は、この発明によるそれぞれ別の配置パターンを有するシースルー型太陽電池モジュールを示す平面図である。

第15図は、第1図に示した太陽電池モジュールを金属製ケースに搭載した携帯型電子機器の内部構造の要部を模式的に示す断面図である。

第16図は、従来の太陽電池モジュールを搭載した携帯型電子機器の内部構造の要部を模式的に示す断面図である。

発明を実施するための最良の形態

以下、この発明による太陽電池モジュール及びそれを搭載した携帯型電子機器を実施するための最良の形態について、図面を用いて詳細に説明する。なお、第16図に示した従来の携帯型電子機器と同様な部分については同じ符号を付して説明する。

【第1の実施形態：第1図及び第2図、第7図及び第8図、第15図】

第1図は、この発明による太陽電池モジュール5を搭載した携帯型電子機器1の内部構造の要部を模式的に示す断面図である。

携帯型電子機器1は、太陽電池モジュール5と、駆動回路31とを収納して構成されている。その太陽電池モジュール5は、保護すべき太陽電池13と絶縁状態を保持しつつ一体化され、かつ基準電位32に接続可能な電極薄膜11を設けた点を特徴としている。すなわち、太陽電池モジュール5は、絶縁性基板12の一方の側の表面に太陽電池13が形成され、その絶縁性基板12の太陽電池13の形成されない他方の側の層全域に電極薄膜11が形成され、かつその電極薄膜11が基準電位32に接続可能に（接地可能に）構成されている。そして、太陽電池モジュール5は、電極薄膜11を太陽光等の入射光をの入射方向を向くように配置し、かつ電極薄膜11を基準電位32に接続して携帯型電子機器1に搭載されている。
この発明による携帯型電子機器１は、絶縁性基板１２により太陽電池１３との絶縁状態を保持しつつ電極薄膜１１を設けて太陽電池モジュール５を構成し、その電極薄膜１１を基準電位３２に接続することによって静電気の逃避ルートを形成している。

太陽電池１３は、従来と同様に発電層２２のそれぞれの面に下部電極２１と対向電極２３を有して構成されている。

発電層２２は、光から電気エネルギーを生成しうるように形成され、例えばP型半導体からなるP層と、真性半導体からなるI層と、N型半導体からなるN層からなるアモルファスシリコン膜である。この場合、各層は、例えばプラズマ化学気相成長法により形成されている。また、発電層２２は、アモルファスシリコン膜以外の膜でもよく、例えば、アモルファスシリコン合金系の膜、微結晶シリコン系の膜や化合物半導体を用いてもよい。下部電極２１は、透明な材料から形成された透明電極被膜であって、例えば、D Cマグネトロンスパッタリング法により形成されたITO膜からなり、駆動回路３１に接続されている。また、対向電極２３は、透明電極被膜のほかに不透明な金属等の材料からなる電極を用いてもよく、これも駆動回路３１に接続されている。

絶縁性基板１２は絶縁性を有する材料からなり、膜厚は約0.1から3mm程度である。絶縁性基板１２は好ましくは透明性を有する材料からなる透明基板とするのがよく、例えばガラス基板がよい。そして、絶縁性基板１２は、その一方の面の一部に下部電極２１を形成し、その下部電極２１を覆うようにして発電層２２を積層し、さらにその発電層２２を覆うようにして対向電極２３を下部電極２１と同様に形成することによって、太陽電池１３が形成されている。

電極薄膜１１は、静電気導電性を有する材料からなる静電気導電性薄膜であって、例えば、インジウム錯酸化物（以下「ITO」と略記する）膜からなっている。こ
の電極薄膜が、絶縁性基板の片面の略全域に形成されているが、基準電位32に接続可能であれば略全域に形成しなくてもよい。なお、後述のようにして、太陽電池モジュール5を金属製時計ケース51に搭載する場合は、絶縁性基板12の片面の略全域に形成すると、基準電位32との接続が容易になる。

また、電極薄膜11はIEC（International Electrotechnical Commission：国際電気標準化会議）による規格（IEC61340-5-1）を考慮するとともに、光が入射しているときは抵抗値が低く、入射していないときは抵抗値が高いという太陽電池の示す抵抗値の変動幅（例えば約10^1Ω/cm〜10^4Ω/cm程度）を考慮して、静電気の逃避ルートを効果的に形成するように、太陽電池13よりも抵抗値が低く設定されている。具体的には、体積抵抗率をρ、厚さをdといたときに、R_s = ρ / dで定義される値（以下このR_sを「表面抵抗」という）を約10000Ω/□（Ω/sq）以下の値にするのがよく、より好ましくは約1000Ω/□以下の値にするのがよい。この電極薄膜11は、表面抵抗を上記の値に設定すると、外部から入込んだ静電気を基準電位に効果的に逃がすことができる。また、発電層22の構成及び抵抗値に応じて表面抵抗を低く設定するとよい。

電極薄膜11は、その材質がITOでなくてもよく、例えば、ZnO、SnO2等の透明導電性酸化物材料を用いることができる。また、ITO微結晶膜のように、透明フィルムを透明樹脂に分散させた透明導電性樹脂複合材からなる被膜でもよく、さらには光が透過し得る程度に膜厚の薄い金属薄膜（例えば、Ti（チタン）、Al（アルミニウム）、Au（金）等の薄膜）や、線状もしくはメッシュ状にパターンニングされた金属薄膜（例えば、Ti、Al、Au等の薄膜）でもよい。これらの場合は、いずれも電極薄膜11が透明になるから、電極薄膜11を入射光の入射方向を向くように配置する場合に用いることができる。そうすると、入射光Lが太陽電池13に伝達しやすいようにすることができる。

電極薄膜11は、膜厚が絶縁性基板12に比べて無視し得る程度に極めて薄く形
成された薄膜であって、例えば、DCマグネトロンスパッタリング法により形成したITO膜の場合は、約50nm〜200nm程度に形成されている。光が透過し得る程度に膜厚の薄い金属薄膜（例えば、Ti, Al, Auの薄膜）の場合は膜厚が約10nm〜100nm程度に形成されており、線状もしくはメッシュ状にバーニングされた金属薄膜（例えば、Ti, Al, Auの薄膜）の場合は膜厚が約100nm〜500nm程度に形成されている。

そして、太陽電池モジュール5は、外部から入射光が入射すると、発電する22によりその入射光から電気エネルギーを生成する。その生成された電気エネルギーは、下部電極21と対向電極23とを通じて取り出され、回示しない2次電池に蓄積されて駆動回路31を駆動するエネルギーとなる。

上述のように、太陽電池モジュール5は電極薄膜11が形成され、かつその電極薄膜11が基準電位32に接続されている。その基準電位32を第15図に示す金属製ケース33によって形成するときは、電極薄膜11をその金属製ケース33に接触させて基準電位32に接続する。そうすると、静電気の逃避ルートrが図に示すようにして形成される。電極薄膜11の抵抗値は、太陽電池13の抵抗値よりも低く設定されているので、静電気eは太陽電池13よりも電極薄膜11の中を流れやすく、しかも、電極薄膜11は絶縁性基板12により太陽電池13との絶縁状態が保持されているから、電極薄膜11に入り込んだ静電気eが絶縁性基板12を通過して太陽電池13に入り込むことは無い。したがって、電極薄膜11に入り込んだ静電気eは静電気の逃れルートrを通じて基準電位（金属製ケース33）に逃げてしまう。そのため、太陽電池モジュール5は、静電衝撃を受けることがなく、太陽電池13の特性が静電気の影響を受けて低下するようなこともないから、信頼性が高い。

そして、静電気の逃れルートを形成する電極薄膜11は、保護すべき太陽電池13と絶縁性基板12とともに一体となっており、かつその電極薄膜11は膜厚が絶
線性基板12や太陽電池13よりも極薄い厚さで形成されている。そのため、太陽電池モジュール5を携帯型電子機器1に搭載する際に電極薄膜11の収納スペースを別途確保する必要はなく、わざわざ電極薄膜11の配置を考慮する必要もない。
したがって、携帯型電子機器1は、従来と比べて部品の収納スペースや配置に余裕を持たせることができるから、部品の組み込み自由度を向上させることができ、多様性が高まる。また、静電気の逃避ルートを形成するために部品点数を増やしたり、部品の配置を工夫する必要もないので、製造コストが高くなることもなくコスト面でも有利である。さらに、太陽電池モジュール5は、電極薄膜11、絶縁性基板12及び太陽電池13が一体化となっているからその取り扱いが容易である。したがって、従来のように、携帯型電子機器の中に金属板15と太陽電池モジュール65とを搭載する場合に比べ、部品を搭載して組立てる手間を省力化することができる。
ところで、携帯型電子機器1は、太陽電池モジュール5の配置を第1図とは異ならせてもよい。すなわち、太陽電池モジュール5は、第2図に示すように、太陽電池13が入射光1の入射方向を向くように配置して携帯型電子機器1に搭載してもよい。この場合も、第1図に示した携帯型電子機器1と同様の作用効果を奏する。ただし、太陽電池モジュール5を、第2図に示すようにして配置すると、太陽電池13によって生成された電気エネルギーを取り出すための出力端子部分が絶縁性基板12を挟んで駆動回路31と対反側に配置されることとなるので、その出力端子と駆動回路31との電気的な接続が困難になることがある。その場合、太陽電池モジュール5は第1図に示すようにして配置する方が好ましい。なお、第2図に示す配置の場合は、電極薄膜11、絶縁性基板12及び下部電極21は透明でなくてもよい。例えば、電極薄膜11は、Ti, A1, Au等の金属薄膜や、導電性ベースト材料を絶縁性基板12の裏面側に塗布して形成してもよい。また、絶縁性基板12はセラミック基板、樹脂基板等の材料を用いることができるし、下部電極21は前記金属薄膜と同じ材料に加え、Ag（銀）、P t（プラチナ）等の光反射性金属
材料を用いることができる点で好適である。

次に、太陽電池モジュール5の静電衝撃試験について説明する。ここでは、携帯型電子機器1として、太陽電池モジュール5を搭載した指針式の電子時計10と電子時計20を例にとり、そのそれぞれについて後述する静電衝撃試験を行った。電子時計10と電子時計20は、その内部構造の要部がそれぞれ第7図と第8図に示されている。第7図に示す電子時計10は、風防ガラス52が固着された金属製時計ケース51の内部に、半透過の文字板54と、その半透過の文字板54を透過した光により発電を行う太陽電池モジュール5と、駆動回路を含む駆動モジュール（ムーブメント）53を収納して構成され、太陽電池モジュール5の太陽電池13により生成した電気エネルギーを駆動モジュール53に供給し、駆動モジュール53により駆動される針芯56を文字板54と太陽電池モジュール5の中央を貫通させて配置しており、その針芯56に時分針がそれぞれ固定されている。

第8図に示す電子時計20は、太陽電池モジュール5を文字板54と風防ガラス52との間に配置したほかは、電子時計10と同じ構成を有している。そして、電子時計10及び電子時計20は、時計ケース51によって基準電位を形成している。その時計ケース51に太陽電池モジュール5に設けられた電極薄膜111を接触させることによって、電極薄膜111を接地して静電気の遮断ルートを形成している。この場合、電極薄膜111と時計ケース51とは同電位に保たれている。

電子時計20は、太陽電池モジュール5を後述するシースルーモジュールとし、文字板54に電子時計10では必須の半透過の材料だけでなく、不透明な材料を用いてもよい。こうすると、入射光が太陽電池モジュール5の上側に配置された部材で遮光されずに直接太陽電池13に入射されるようになる。

そして、静電衝撃試験は、時計ケース51に放電電圧を約0．5 kV～3．0 kVの範囲内で印加して静電衝撃が起こるか否かを確認することにより実行した。その静電衝撃試験を電子時計10と電子時計20のそれぞれ10個ずつのサンプルに
ついて行ったところ、静電衝撃の発生が確認されたものはいずれも0個であった。したがって、静電衝撃試験の結果から、この発明による太陽電池モジュール5を搭載した携帯型電子機器1は、太陽電池13を静電気から保護し得ることが確認された。

[第2の実施例：第3図、第4図]

第3図は、この発明による太陽電池モジュールを搭載した携帯型電子機器2の内部構造の要部を模式的に示す断面図である。

携帯型電子機器2は、太陽電池モジュール6を搭載している点で携帯型電子機器1と相違している。その太陽電池モジュール6は、太陽電池モジュール5と比較して、保護膜14を有する点と、電極薄膜11が絶縁性基板12ではなく保護膜14の太陽電池13を挟んで絶縁性基板12と対向する側の表面に形成されている点で相違し、その他は共通している。この太陽電池モジュール6は、太陽電池13と電極薄膜11とを保護膜14により絶縁状態を保持しつつ一体化しており、電極薄膜11を基準電位32に接続して携帯型電子機器2に搭載されている。

保護膜14は、例えば材質がアクリル系樹脂、エポキシ系樹脂、シリコーン系樹脂からなり、膜厚が約10μm～100μm程度の薄い絶縁性の樹脂膜である。この保護膜14は、太陽電池13の略平面を被覆するようにして絶縁性基板12に形成されている。なお、第4図に示す携帯型電子機器2は、太陽電池モジュール6の配置が異なるほかは、第3図に示す携帯型電子機器2と共通している。また、第3図に示す配置の場合は絶縁性基板12が透光性を有することが必須であり、第4図に示す配置の場合は電極薄膜11と保護膜14が透光性を有することが必須となる。このように入射光を太陽電池13にまで到達させるため、入射側に配置する部材に透光性材料を用いる点では携帯型電子機器1と同様である。その他、電極薄膜11の材質や膜厚は携帯型電子機器1と同様である。

携帯型電子機器2は、保護膜14が設けられているので、その保護膜14により
太陽電池１３を保護することができる。しかも、保護膜１４は、絶縁性の樹脂膜であり、かつ電極薄膜１１と太陽電池１３の間に介在しているから携帯型電子機器１の絶縁性基板１２のように機能し、電極薄膜１１と太陽電池１３とを絶縁状態を保持しつつ一体化する。したがって、携帯型電子機器２は、電極薄膜１１によって静電気の逃避ルートを形成するとともに、保護膜１４によって電極薄膜１１と太陽電池１３とを絶縁するため、電極薄膜１１に入り込んだ静電気を太陽電池１３に入り込まないように基準電位３２に逃がすことができる。

以上のようなる携帯型電子機器２についても、第３図と第４図のそれぞれについて１０個ずつのサンプルを用意して、携帯型電子機器１と同様の要領で静電衝撃試験を行ったところ、静電衝撃の発生が確認されたものはいずれも０個であった。この静電衝撃試験の結果から、携帯型電子機器２も太陽電池１３を静電気から保護し得ることが確認された。

[第３の実施の形態：第５図及び第６図、第９図～第１４図]

第５図及び第６図は、この発明による別の太陽電池モジュール７，８を搭載した携帯型電子機器３の内部構造の要部をそれぞれ模式的に示す断面図である。太陽電池モジュール７，８は、太陽電池モジュール５と異なり、透光性を有する太陽電池１８，１９によって構成されている。つまり、太陽電池モジュール７，８は、電極薄膜１１と絶縁性基板１２の両方を透明にすることとともに、太陽電池１８，１９が透光性を有する構造に形成されている。携帯型電子機器３は、この太陽電池モジュール７，８を、電極薄膜１１を光入射しの入射方向を向くように配置し、かつ基準電位３２に接続することによって搭載している。携帯型電子機器３は、入射光が電極薄膜１１及び絶縁性基板１２を透過し、さらに太陽電池１８，１９をも透過してその下側に配置された部材（例えば時計の文字板）に到達する。そのため、太陽電池モジュール７，８は、太陽電池１８，１９を透かして下側の情報を認識することが可能になっている（以下このような太陽電池モジュールを「シースルーモジュ
ール」という。
次に、太陽電池モジュールをシースルー型モジュールとするための手段について説明する。まず、第１の手段は、第５図に示すように、太陽電池１８を透光性を有する程度に膜厚の薄い透明型構造にすることである。太陽電池１８は、第１の実施の形態の場合と同じに、絶縁性基板１２の面に下部電極２１を形成し、その下部電極２１を被覆するようにして発電面２２を積層し、さらにその発電層２２を被覆するようにして対向電極２３を下部電極２１と同様に形成している。ただし、発電層２２は約４０μｍ～２００μｍ程度とし、膜厚を極めて薄く形成している。発電層２２の膜厚をこの程度の極薄い厚さに形成すると、発電層２２による遮光が極力抑制されるため、太陽電池モジュール７はシースルー型モジュールとなる。なお、太陽電池モジュール７は、太陽電池１８を保護膜１４により被覆して保護膜付きにしてもよい。その場合は、電極薄膜１１を保護膜１４の太陽電池１３を挟んで絶縁性基板１２と対向する側の表面の一部に形成すればよい。

そして、上述の太陽電池モジュール７を保護膜付きの場合と保護膜無しの場合のそれぞれについて、第１の実施の形態の場合と同様の要領で時計ケース５１に搭載して電子時計を得た。その各電子時計それぞれについて、１０個ずつのサンプルを用意して上述の要領で静電衝撃試験を行ったところ、静電衝撃の発生が確認されたものはいずれも０個であった。この静電衝撃試験の結果から、この発明による太陽電池モジュールによれば、シースルー型の太陽電池も静電気から保護し得ることが確認された。

太陽電池モジュールをシースルー型モジュールとするための第２の手段は、本件出願人によるＰＣＴ出願（出願番号：ＰＣＴ／ＪＰ９９／０６２４７号、国際公開番号：Ｗ００／２Ｓ５１３号）に開示されている。

すなわち、第６図に示すように、発電層２２及び対向電極２３さらに必要に応じて下部電極２１を肉眼で認識できない程度の細い幅をもつ細幅の特殊体２７を形成
する一方、その他の部分を部分的に欠落した欠落部２の部分、透光性を阻害しないように太陽電池１９を形成して太陽電池モジュール８を構成する。すると、太陽電池１９は入射光のうち、線状体２７を通る光は発電層２２による発電に寄与するが、欠落部２の部分を通過する光は、発電には寄与しないものの、太陽電池１９を透過させることができる。そして、各線状体２７は、肉眼で認識できない程度に細い幅を持つ細幅で形成されているため、肉眼では線状体２の存在を認識することができない。そのため、電極薄膜１と絶縁性基板１２とともに、太陽電池１９も肉眼では透明と認識されるようになるから、太陽電池モジュール８はシースルーワンモジュールとなる。

各線状体２は、肉眼で認識できない程度の細い幅を持ち細幅で形成すればよいが、人間の目は、不規則なパターンがあると即座に違和感を覚えることから、互いに平行かつ等間隔で隣接させて形成するのが良い。また、各線状体２の幅Ｗ及び各線状体２の配置間隔Ｐは、各線状体２の幅Ｗをできるだけ細く、かつその配置間隔Ｐをできるだけ広くすることがよい。ただし、各線状体２の幅Ｗを極端に細くすると、抵抗値が増して太陽電池１９の発電効率を悪化させることになるから、抵抗値が必要以上に増加しないような幅にする必要がある。これらの点から、各線状体２の幅Ｗと配置間隔Ｐは、絶縁性基板１２に対して太陽電池１９の占有率の面積の比率が約２０％以下であり、かつ太陽電池１９の光透過率が約７０％以上となるようにして設定するのが望ましい。例えば、各線状体２の幅Ｗは約２０μm以下とするのがよく、望ましくは約２μm以下とするのがよい。ただし、約８μmよりも細くすると抵抗値が増加してしまうので、各線状体２の幅Ｗは約８μm以上とする。また、各線状体２の配置間隔（欠落部２の幅）Ｐは、少なくとも約５０μm以上とするのが望ましい。

上述した条件を満たす太陽電池１９としては、例えば、第９図に示すような太陽電池１９が考えられる。この太陽電池１９は、円形状の絶縁性基板１２にそのほぼ
4等分された領域を占有する4つの太陽電池セル19aを配置するとともに、各太陽電池セル19aを直列に接続したもので、各線状体27によって1つの配置パターンを形成している。その配置パターンは、図面上で互いに上下に位置する太陽電池セル19aの長さの異なる複数本の線状体27（第9図では3本）が、互いに楕円状に嵌合し合うようにして形成されている。

また、各線状体27による配置パターンは、第9図に示すもののほかにも第10図～第14図に示す配置パターンなどがある。第10図に示す配置パターンは、各太陽電池セル19aからそれぞれ長さの異なる複数本の線状体27（第10図では5本ずつ）を並列状に形成するとともに、その線状体27の配列方向を太陽電池セル19a毎に互いに異ならせて配置したもので、第10図では、その配列方向を90度異ならせている。第11図に示す配置パターンは、円弧状の複数の線状体27が同心状に配置されるとともに、円弧状に形成された各線状線状体27を接続するプリッジ部分28が適宜な場所に配置されて形成されている。第12図に示す配置パターンは、各太陽電池セル19aからそれぞれ長さの異なる複数本の線状体27（第12図では5本ずつ）を並列状に形成するとともに、その線状体27の配列方向を一定方向（図面では上下方向）に揃えて配置したものである。第13図に示す配置パターンは、各太陽電池セル19aからそれぞれ長さの異なる複数本の線状体27（第13図では3本ずつ）を並列状に形成するとともに、各3本の線状体27により線状体群27Aを形成し、各線状体群27Aが互いに機能状に嵌合し合うように配置して形成されている。そして、第14図に示す配置パターンは、第13図に示すパターンと比較して、各線状体群27Aを構成する各線状体27をプリッジ部29により相互に連結している点が特徴となっている。

さらに図示はしないが、太陽電池モジュールをシースルーテ型モジュールとするためには、発電層22と対向電極23とに、円形、楕円形、三角形、四角形等任意の形状の欠落部（透孔）を複数形成して、透過性を阻害しないようにしてもよい。
そして、以上のようにしてシースルー型にした太陽電池モジュールを第1の実施の形態の場合と同様の要領で時計ケース51に搭載し、各配置パターンについて10個ずつのサンプルを用意して上述の要領で静電衝撃試験を行ったところ、静電衝撃の発生が確認されたものはどの配置パターンでも0個であった。また、太陽電池19に保護膜14を被覆して太陽電池モジュール8を保護膜付きにしてもよく、その場合も、上述の静電衝撃試験による静電衝撃の発生が確認されたものは0個であった。よって、この静電衝撃試験の結果から、線状体と欠落部を設けたシースルー型の太陽電池も、この発明による太陽電池モジュール8により静電気から保護し得ることが確認された。

なお、第8図に示す如く、シースルー型の太陽電池モジュール7又は太陽電池モジュール8を風防ガラス52と文字板54の間に配置するだけでなく、文字板54の上に直に配置してもよい。こうしても、第8図の場合と同じ作用効果が得られる。（比較例）

次に、この発明による太陽電池モジュールと比較するため、上述した太陽電池モジュール5と太陽電池モジュール6とをそれぞれ第7図に示す時計ケース51に搭載して電子時計のサンプルを10個づつ用意した。ただし、各サンプルとも、電極薄膜11を時計ケース51と接触させないようにして太陽電池モジュール5及び太陽電池モジュール6を搭載している（図示せず）。そして、各サンプルにつき上述の要領で時計ケース51に約0.5kV程度の放電電圧を印加して静電衝撃試験を行ったところ、8個のサンプルにおいて静電衝撃が起こり、搭載されていた太陽電池モジュールの太陽電池13が破壊されていることが確認された。このことから、電極薄膜11が形成されていてもそれを時計ケース51と接触させない場合、すなわち、基準電位32に接続していない場合は静電衝撃に耐えられないことがわかった。よって、電極薄膜11は基準電位32に接続されることによって、静電気から太陽電池を保護する役割を発揮することになる。
産業上の利用可能性

この発明による太陽電池モジュール及びそれを搭載した携帯型電子機器によれば、
静電気導電性薄膜を基準電位に接続することにより、入り込んだ静電気を基準電位
に逃がして静電衝撃を回避することができる。また、従来と比べて部品の収納スペ
ースや配置に余裕を持たせることができ、部品の組込み自由度を向上させることが
できる。太陽電池モジュールを搭載する際に静電気導電性薄膜の収納スペースや配
置を考慮する必要もなく、コスト面でも有利である。
請求の範囲

1. 太陽電池と絶縁状態を保持しつつ一体化され、かつ基準電位に接続可能な静電気導電性薄膜を設けた太陽電池モジュール。

2. 絶縁性基板の一方の表面に形成した太陽電池と、

前記絶縁性基板の前記太陽電池の形成されない侧の表面に形成され、かつ基準電位に接続可能な静電気導電性薄膜を有する太陽電池モジュール。

3. 絶縁性基板の一方の表面に形成した太陽電池と、

該太陽電池の略全面を被覆するように前記絶縁性基板の一方の表面に形成した絶縁性保護膜と、

該絶縁性保護膜の表面に形成され、かつ基準電位に接続可能な静電気導電性薄膜を有する太陽電池モジュール。

4. 前記絶縁性基板が透明性を有する材料からなることを特徴とする請求の範囲第2項記載の太陽電池モジュール。

5. 前記絶縁性基板が透明性を有する材料からなることを特徴とする請求の範囲第3項記載の太陽電池モジュール。

6. 前記静電気導電性薄膜が透明性を有する材料からなることを特徴とする請求の範囲第2項記載の太陽電池モジュール。

7. 前記静電気導電性薄膜が透明性を有する材料からなることを特徴とする請求の範囲第3項記載の太陽電池モジュール。

8. 前記静電気導電性薄膜は、透明導電性酸化物材料または透明導電性樹脂複合材からなることを特徴とする請求の範囲第2項記載の太陽電池モジュール。

9. 前記静電気導電性薄膜は、透明導電性酸化物材料または透明導電性樹脂複合材からなることを特徴とする請求の範囲第3項記載の太陽電池モジュール。

10. 前記静電気導電性薄膜は、光が透過し得る程度に膜厚の薄い金属薄膜又は線
状若しくはメッシュ状にパターンニングされた金属薄膜からなることを特徴とする請求の範囲第2項記載の太陽電池モジュール。

11. 前記静電気導電性薄膜は、光が透過し得る程度に薄膜の薄い金属薄膜又は線状若しくはメッシュ状にパターンニングされた金属薄膜からなることを特徴とする請求の範囲第3項記載の太陽電池モジュール。

12. 前記静電気導電性薄膜は、抵抗値が前記太陽電池よりも低く設定されていることを特徴とする請求の範囲第2項記載の太陽電池モジュール。

13. 前記静電気導電性薄膜は、抵抗値が前記太陽電池よりも低く設定されていることを特徴とする請求の範囲第3項記載の太陽電池モジュール。

14. 前記静電気導電性薄膜は、抵抗値が前記太陽電池の示す抵抗値の変動幅を考慮して設定されていることを特徴とする請求の範囲第12項記載の太陽電池モジュール。

15. 前記静電気導電性薄膜は、抵抗値が前記太陽電池の示す抵抗値の変動幅を考慮して設定されていることを特徴とする請求の範囲第13項記載の太陽電池モジュール。

16. 前記静電気導電性薄膜は、前記絶縁性基板に比べて無視し得る程度に膜厚が薄く形成されていることを特徴とする請求の範囲第2項記載の太陽電池モジュール。

17. 前記静電気導電性薄膜は、前記絶縁性基板に比べて無視し得る程度に膜厚が薄く形成されていることを特徴とする請求の範囲第3項記載の太陽電池モジュール。

18. 前記太陽電池は、透光性を有する程度に膜厚が薄く形成されていることを特徴とする請求の範囲第2項記載の太陽電池モジュール。

19. 前記太陽電池は、透光性を有する程度に膜厚が薄く形成されていることを特徴とする請求の範囲第3項記載の太陽電池モジュール。

20. 前記太陽電池は、発電層のそれぞれの面に電極が形成され、かつ該発電層及び該一方の電極に複数の欠落部が形成されて透光性を阻害しないように形成されて
いることを特徴とする請求の範囲第２項記載の太陽電池モジュール。
２１．前記太陽電池は、発電層のそれぞれの面に電極が形成され、かつ該発電層及び
該一方の電極に複数の欠落部が形成されて透光性を阻害しないように形成されて
いることを特徴とする請求の範囲第３項記載の太陽電池モジュール。
２２．太陽電池モジュールを搭載した携帯型電子機器において、
前記太陽電池モジュールは、絶縁性基板の一方の表面に形成した太陽電池と、該
絶縁性基板の該太陽電池の形成されない側の表面に形成され、かつ基準電位に接続
可能な静電気導電性薄膜を有して構成され、
該太陽電池モジュールが、前記静電気導電性薄膜を前記基準電位に接続して搭載
されていることを特徴とする携帯型電子機器。
２３．太陽電池モジュールを搭載した携帯型電子機器において、
前記太陽電池モジュールは、絶縁性基板の一方の表面に形成した太陽電池と、該
太陽電池の略全面を被覆するように前記絶縁性基板の一方の表面に形成した絶縁性
保護膜と、該絶縁性保護膜の表面に形成され、かつ基準電位に接続可能な静電気導
電性薄膜を有して構成され、
該太陽電池モジュールが、前記静電気導電性薄膜を前記基準電位に接続して搭載
されていることを特徴とする携帯型電子機器。
２４．前記静電気導電性薄膜が入射光の入射方向を向くように配置して、前記太陽
電池モジュールを搭載していることを特徴とする請求の範囲第２２項記載の携帯型
電子機器。
２５．前記静電気導電性薄膜が入射光の入射方向を向くように配置して、前記太陽
電池モジュールを搭載していることを特徴とする請求の範囲第２３項記載の携帯型
電子機器。
２６．前記絶縁性基板が透明性を有する材料からなり、かつ、前記静電気導電性薄膜
が透明性を有する材料からなることを特徴とする請求の範囲第２２項記載の携帯
型電子機器。

2.7. 前記絶縁性基板が透明性を有する材料からなり、かつ、前記静電気導電性薄膜が透明性を有する材料からなることを特徴とする請求の範囲第23項記載の携帯型電子機器。

2.8. 太陽電池モジュールを搭載した携帯型電子機器において、

前記太陽電池モジュールは、絶縁性基板の一方向の表面に形成した太陽電池と、該絶縁性基板の該太陽電池の形成されない側の表面に形成された静電気導電性薄膜とを有して構成され、

前記太陽電池により生成された電気エネルギーにより指針を駆動するムーブメントと前記太陽電池モジュールが金属製時計ケースに収納され、かつ、その太陽電池モジュールが、該金属製時計ケースに前記静電気導電性薄膜を接触させて搭載されていることを特徴とする携帯型電子機器。
第7図

第8図
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER
Int.Cl. H01L31/042

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED
Minimum documentation searched (classification system followed by classification symbols)
Int.Cl. H01L31/04-31/078, G04C10/00-10/04, G04C3/00-3/12, G04G1/00-1/10

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y A</td>
<td>Microfilm of the specification and drawings annexed to the request of Japanese Utility Model Application No. 32073/1984 (Laid-open No. 144257/1985), (The Furukawa Electric Co., Ltd.), 25 September, 1985 (25.09.85), Full text; Figs. 1 to 2 (Family: none)</td>
<td>1-27 28</td>
</tr>
<tr>
<td>Y A</td>
<td>Microfilm of the specification and drawings annexed to the request of Japanese Utility Model Application No. 200422/1984 (Laid-open No. 134058/1986), (Fuji Electric Co., Ltd.), 21 August, 1986 (21.08.86), Full text; Figs. 1 to 3 (Family: none)</td>
<td>1-27 28</td>
</tr>
<tr>
<td>Y A</td>
<td>JP 59-54269 A (Kabushiki Kaisha Suwa Seikosha), 29 March, 1984 (29.03.84), Full text; Figs. 1 to 2 (Family: none)</td>
<td>1-27 28</td>
</tr>
</tbody>
</table>

* Further documents are listed in the continuation of Box C. □ See patent family annex.

* "A" Special categories of cited documents: document defining the general state of the art which is not considered to be of particular relevance
* "E" earlier document but published on or after the international filing date
* "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
* "O" document referring to an oral disclosure, use, exhibition or other means
* "P" document published prior to the international filing date but later than the priority date claimed

"I" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
document member of the same patent family

Date of the actual completion of the international search 10 December, 2001 (10.12.01)
Date of mailing of the international search report 25 December, 2001 (25.12.01)

Name and mailing address of the ISA/ Japanese Patent Office
Authorized officer
Facsimile No.
Telephone No.

Form PCT/ISA/210 (second sheet) (July 1992)
INTERNATIONAL SEARCH REPORT

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>Microfilm of the specification and drawings annexed to the request of Japanese Utility Model Application No. 193205/1987 (Laid-open No. 95772/1989), (Kanegafuchi Chem. Ind. Co., Ltd.), 26 June, 1989 (26.06.89), description, page 2, line 16 to page 3, line 12; Fig. 17 (Family: none)</td>
<td>20,21</td>
</tr>
<tr>
<td>P,Y</td>
<td>JP 2001-264464 A (Citizen Watch Co., Ltd.), 26 September, 2001 (26.09.01), Full text; Figs. 1 to 8</td>
<td>20-27</td>
</tr>
<tr>
<td>P,A</td>
<td>26 September, 2001 (26.09.01), Full text; Figs. 1 to 8</td>
<td>28</td>
</tr>
<tr>
<td>Y</td>
<td>JP 2000-221278 A (Citizen Watch Co., Ltd.), 11 August, 2000 (11.08.00), Full text; Figs. 1 to 6 (Family: none)</td>
<td>22-27,28</td>
</tr>
<tr>
<td>A</td>
<td>JP 2000-292560 A (Seiko Epson Corporation), 20 October, 2000 (20.10.00), Full text; Figs. 1 to 8 (Family: none)</td>
<td>22-28</td>
</tr>
</tbody>
</table>

Form PCT/ISA/210 (continuation of second sheet) (July 1992)
A. 発明の属する分野の分類（国際特許分類（IPC））

Int. C17 H01L31/042

B. 調査を行った分野

調査を行った最小限資料（国際特許分類（IPC））

Int. C17 H01L31/04-31/078, G04C10/00-10/04, G04C9/00-3/12, G04G1/00-1/10

最小限資料以外の資料で調査を行った分野に含まれるもの

日本国実用新案公報 1940年－1996年
日本国公開実用新案公報 1971年－2001年
日本国登録実用新案公報 1994年－2001年
日本国実用新案登録公報 1996年－2001年

国際調査で使用した電子データベース（データベースの名前、調査に使用した用語）

C. 関連すると認められる文献

<table>
<thead>
<tr>
<th>引用文献のカテゴリ</th>
<th>引用文献名</th>
<th>及び一部の箇所が関連するときは、その関連する箇所の表示</th>
<th>関連する 請求の範囲の番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y A</td>
<td>日本国実用新案登録出願59－32073号（日本国実用新案登録出願公開60－144257号）の願書に添付した明細書及び図面の内容を撮影したマイクロフォイル（古河電気工業株式会社）25.9月.1985（25.09.85）全文、第1－2図（ファミリーなし）</td>
<td>1－27 28</td>
<td></td>
</tr>
<tr>
<td>Y A</td>
<td>日本国実用新案登録出願59－20422号（日本国実用新案登録出願公開61－134058号）の願書に添付した明細書及び図面の内容を撮影したマイクロフォイル（富士電機株式会社）</td>
<td>1－27 28</td>
<td></td>
</tr>
</tbody>
</table>

引用文献のカテゴリー

「A」特に関連のする文献ではなく、一般的な技術水準を示すもの
「E」国際出願日前の出願または特許であるが、国際出願日以後に公表されたもの
「L」優先権主張に疑義を抱起する文献文又は他の文献の発行日若しくは他の特別な理由を説明するために引用する文献（理由を付す）
「O」口頭による開示、使用、展示等に言及する文献
「P」国際出願日前で、かつ優先権の主張の基礎となる出願

国内調査を完了した日 10.12.01 国際調査報告の発送日 25.12.01

国内調査機関の名称及び住所

日本国特許庁（ISA／JP）
郵便番号100－8915
東京都千代田区霞が関三丁目4番3号

特許庁審査官（権限のある職員）
浜田 聖司
電話番号03－3581－1101 内線3253

日付 PCT／ISA／210（第2ページ） （1998年7月）
<table>
<thead>
<tr>
<th>引用文献のカテゴリ*</th>
<th>引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示</th>
<th>関連する請求の範囲の番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>JP 59-54269 A （株式会社鍛訪精工舎）</td>
<td>1-27</td>
</tr>
<tr>
<td>A</td>
<td>全文，第1-2図 (ファミリーなし)</td>
<td>28</td>
</tr>
<tr>
<td>Y</td>
<td>日本国実用新案登録出願62-193205号（日本国実用新案登録出願公開1-95772号）の願書に添付した明細書及び図面の内容を撮影したマイクロフィルム （錨洲化学工業株式会社） 26.6月.1989（26.06.89）明細書第2頁第16行～第3頁第12行，第17図 (ファミリーなし)</td>
<td>20, 21</td>
</tr>
<tr>
<td>P, Y</td>
<td>JP 2001-264464 A （シチズン時計株式会社）</td>
<td>20-27</td>
</tr>
<tr>
<td>P, A</td>
<td>26.9月.2001（26.09.01）全 部，第1-8図</td>
<td>28</td>
</tr>
<tr>
<td>Y</td>
<td>JP 2000-221278 A （シチズン時計株式会社）</td>
<td>22-27</td>
</tr>
<tr>
<td>A</td>
<td>11.8月.2000（11.08.00）全文，第1-6図 (ファミリーなし)</td>
<td>28</td>
</tr>
<tr>
<td>A</td>
<td>JP 2000-292560 A （セイコーミクロエプソン株式会社）</td>
<td>22-28</td>
</tr>
<tr>
<td></td>
<td>20.10月.2000（20.10.00）全文，第1-8図 (ファミリーなし)</td>
<td></td>
</tr>
</tbody>
</table>

様式PCT/ISA/210（第2ページの続き）（1998年7月）