Title

Fixation clamp

International Patent Classification(s)

A61B 17/64 (2006.01)

Application No: 2010201872

Date of Filing: 2010.05.07

Priority Data

<table>
<thead>
<tr>
<th>Number</th>
<th>Date</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>09 160 445.4</td>
<td>2009.05.15</td>
<td>EP</td>
</tr>
</tbody>
</table>

Publication Date: 2010.12.02

Publication Journal Date: 2010.12.02

Accepted Journal Date: 2015.01.29

Applicant(s)

Stryker Trauma SA

Inventor(s)

Cremer, Axel; Murner, Beat; Verma, Umesh; Mathur, Usha

Agent / Attorney

Pizzeys Patent and Trade Mark Attorneys, GPO Box 1374, BRISBANE, QLD, 4001

Related Art

US 5728096
US 2006/0287652
US 6652523
ABSTRACT

A fixation clamp (10) for use in an external fixation system for holding bone fragments adjacent to each other with the help of fixation elements comprises at least one clamping assembly (20, 30) having at least two receptions (71, 72, 73) to accommodate a fixation element. Said clamping assembly (20, 30) comprises at least three receptions (71, 72, 73) wherein at least two receptions have a different size adapted to accommodate a correspondingly sized fixation element (100). The longitudinal axes of said receptions (71, 72, 73) span a polygon.

(Fig. 1)
Fixation Clamp

The present invention relates to a fixation clamp and, more particularly, to a fixation clamp for use in an external fixation system for holding bone fragments adjacent to each other.

External fixation systems are widely used to connect two or more bone fragments to each other. Such systems comprise bone screws, pins, wires which are inserted directly into the bone material and these systems use external structural elements as fixation rods, bars and rings. In order to connect the rods and bars to form a rigid frame, fixation clamps are used. Furthermore, fixation clamps are used to connect this screws and pins to the rigid frame to specifically hold bone fragments at an intended place.

One adjustable fixation clamp is known from EP 0 700 664 comprising two pairs of jaws allowing clamping of a rod as well as of a pin.

A clamp for multiple rod-shaped elements is known from EP 1 627 609 having one single pair of jaws. However, such a clamp allows clamping more than two, e.g. three or four rod-shaped elements as pins with one single clamp, thus reducing the number of clamps. However, one further fixation clamp is necessary to fix the rod of said clamp to the frame of the fixation system.

WO 2007/001945 mentions that usual fixation clamps as e.g. known from EP 0 700 664 allow clamping of one single screw or pin to the frame and that this way to attach pins or rods leads to bulky fixation systems. Therefore WO 2007/001945 discloses a fixation clamp addressing this problem and comprises two pairs of jaws within which each pair of jaws allows the introduction and clamping of two rods or pins etc. at the same time.
These clamps according to the prior art either provide different diameters of the receptions provided by the jaws to introduce different sizes of rods, pins or wires, or they rely on additional inserts as e.g. disclosed in EP 1 661 523. Such inserts reduce the diameter of the reception cavities to allow a secure fixing of differently sized rods, pins or wires.

SUMMARY OF THE INVENTION

Solutions according to the prior art providing different diameter receptions necessitate provision of either a variety of different clamps or additional inserts.

It is an object of the invention to overcome this problem and to provide the practitioner with a fixation clamp, especially for use in an external fixation system, which clamp can directly be used with a variety of differently sized rods, pins, screws and wires.

Such a device is achieved with a clamp having the features of claim 1.

The clamp according to the invention allows readily treating different types of fractures or connecting bones of different sizes to each other, since usually different pin diameters are required. The clamp provides a plurality of different couplings possibilities which is an advantage, avoiding mismatching of components, which can lead to insufficient connecting strength and thus bad clinical outcome. The clamp according to the invention also allows to click-in rods from the side. The clamp can be built based on usual metallic components and can comprise non magnetic and non conductive materials, which are safe for temporary exposition in a MRI scanner, and can furthermore comprise plastic or composite materials or have electrical insulating cover surfaces.

Further embodiments of the invention are laid down in the dependent claims.

It is an advantage of the clamp according to the invention that after having clamped a bone screw with one clamping assembly, a practitioner attaching subsequently a rod of an external fixator to the other clamping assembly can check the robustness of his external fixator, and if he finds that the rod he has used is not stiff enough, he simply opens the
other clamping assembly, removes the thinner rod, turns the other clamping assembly e.g. 60 degrees into one direction or the other around the longitudinal axis to align a larger reception with the new thicker rod and replaces said rod. This change does not necessitate the replacement of the clamp itself and is thus faster and more reliable since the clamping of the bone screw is not changed, and it avoids use of a second sterile clamp at said time.

BRIEF DESCRIPTION OF THE DRAWINGS

Preferred embodiments of the invention are described in the following description with reference to the drawings, which are provided for the purpose of illustrating the present preferred embodiments of the invention and not for the purpose of limiting the same. In the drawings,

Fig. 1 shows an exploded view of a first embodiment of the clamp of the present invention;

Fig. 2 shows a view from above on the clamp according to Fig. 1;

Fig. 3 shows a first side view of the clamp of Fig. 1;

Fig. 4 shows a second side view of the clamp of Fig. 1 from a different direction;

Fig. 5 shows a view from above on the inner jaw portion of the clamp according to Fig. 1;

Fig. 6 shows a view from above on the outer jaw portion of the clamp according to Fig. 1;

Fig. 7 shows a cross-section of the clamp according to Fig. 4;

Fig. 8 shows an exploded view of a second embodiment of the clamp of the present invention;

Fig. 9 shows a view from above on the clamp according to Fig. 8;

Fig. 10 shows a cross-section of the clamp according to Fig. 8 along line X-X of Fig. 9;

Fig. 11 shows a view from above of the clamp of the present invention with two attached fixation elements;

Fig. 12 shows a front view of the clamp with two attached fixation elements according to Fig. 11; and

Fig. 13 shows a view from the right of the clamp with two attached fixation elements according to Fig. 11.
DESCRIPTION OF PREFERRED EMBODIMENTS

Fig. 1 shows a perspective exploded view of a preferred first embodiment of a clamp 10 pursuant to the invention. The clamp 10 consists of a first clamping assembly 20 and a second clamping assembly 30 and a shaft 40 which is positioned through bores 21, 31 within the two clamp assemblies 20, 30 along the longitudinal axis of shaft 40. The shaft 40 is preferably a locking element adapted to allow closing the clamp assemblies 20 and 30. Shaft 40 enters a first jaw 11 through a washer 41. The shaft 40 comprises a proximal portion 42 and a reduced diameter portion 43 which is followed by a thread portion 49. The outer threaded portion 49 is adapted to be screwed into a complementary inner thread within the distal jaw 11 so that turning the head of the shaft 40 changes the longitudinal position of the shaft 40 against the lower jaw 11, which allows opening or closing the entire clamp 10 against the force of a spring 15 provided between the two clamp assemblies 20 and 30. Said spring 15 is preferably positioned in corresponding receptions in the jaws 12. Instead of a spring 15, provided around shaft 40, it is possible to provide a different spring means as Belleville washers or an elastic compressible solid or foam. Upon closing of the clamp assemblies 20 and 30 the jaws adjacent to the spring 15 can eventually come into contact an then the anti-rotation surface 44 which is provided in both surfaces of the jaws fixing the angular orientation of each clamping assembly 20 and 30 against the other.

Preferably after having mounted the shaft 40 with the thread 49 within the lower jaw 11, the end portion of the thread 49 is destroyed through pressure to ensure that the shaft 40 cannot be removed from the clamping assemblies 20, 30 to maintain the clamp as one single piece.

Each clamping assembly 20 or 30 comprises two opposing clamping jaws 11 and 12. These jaws 11 and 12 are essentially similarly shaped on the sides facing each other beside a pin 13 which extends into a corresponding bore 14. This pin-bore connection which is oriented along the longitudinal axis of the clamping device is an anti-rotation device for jaws 11 and 12, so that these jaws 11, 12 cannot change their mutual angular orientation. The plane surface of jaw 11 facing the plane surface of jaw 12 is provided with three
spacers 17 arranged in the corners of said surface. The spacers 17 have a mostly triangular form and a height to allow the function of a counter bearing as explained below. Additionally, the spacers 17 allow that the two plane surfaces of the jaws 11 and 12 are in a distance so that the free room between these surfaces can be cleaned.

The jaws 11 and 12 are provided here with three grooves 51, 52 and 53. Grooves 51, 52 and 53 are all provided in a same plane perpendicular to the longitudinal axis of shaft 40. In that plane they are oriented perpendicular to the radial direction from the center of the bore 21 or 31. As such the grooves 51, 52 and 53 are parallel to outer side wall 61, 62 or 63 of each pair of jaws 11 and 12.

Each pair of grooves 51, 52 or 53, respectively, in each jaw 11 and 12, define one reception, i.e. a first reception 71, a second reception 72 and a third reception 73. The grooves 51, 52 and 53 are each formed as a rounded semi-spherical recess in section to provide receptions 71, 72 and 73 which accommodate cylindrical pins or rods 100 with a defined diameter (see Fig. 11 to 13), if the clamp is closed. The outer side walls 61, 62 or 63 can comprise an inclined sliding surface to allow an easier clipping of such pins or rods 100 into the corresponding reception. The grooves 51, 52, 53 are called to form rounded semi-spherical recesses in a section. This means that the recesses provided by the grooves 51, 52, 53 have a hollow cylindrical shape to accommodate rod-shaped elements.

All three grooves 51, 52 and 53 have different sizes so that the corresponding receptions 71, 72 and 73 have three different sizes. In other words each reception 71, 72 or 73 is adapted to accept a different fixation element, i.e. a rod, screw, pin or wire having a different diameter. One preferred embodiment of the first clamping assembly 20 has grooves to accept fixation elements having a diameter of 12 mm, 8 mm and 5 mm, respectively. A different embodiment may have a sequence of diameters of 8 mm, 6 mm and 4 mm, respectively.

The second clamping assembly 30 according to the embodiment of Fig. 1 also comprises two jaw portions 11 and 12 and these comprise three grooves 51, 52, 53. These grooves 51, 52, 53 also comprise a sequence of different sizes. In the embodiment shown the inner jaws portion 12 have an identical structure as have the outer jaws 11, especially in view of
the anti-rotation device 44, the reception for a spring 15 as well as ribs 45 inside the grooves 51, 52, and 53.

Within a preferred embodiment the first clamping assembly 20 may comprise a sequence of smaller sizes, e.g. 7 mm, 5 mm and 3 mm; or 6 mm, 5 mm and 4 mm; and the second clamping assembly 30 may comprise a sequence of larger sizes, e.g. 13.5 mm, 12 mm and 10 mm. Different sizes are possible, usually for wires starting from 2 mm diameter until thicker rods with a diameter of 30 mm are used within such a clamp 10. Such a clamp 10 allows using one single versatile clamp, wherein the first clamping assembly 20 is used to fix a specific pin or screw or wire having a diameter for which one of the receptions 71, 72 or 73 is adapted. The user takes the clamp 10 and orients the first clamping assembly 20 into the correct alignment so that the pin or screw can be clipped into the corresponding reception.

Then the clamp 10 can be clamped on a rod of an external fixator with the help of the second clamping assembly 30. Said second clamping assembly 30 can be oriented in a way so that the rod can be clipped into the corresponding reception. It is an advantage of the clamp 10 having two clamping assemblies 20 and 30 according to the invention, that a practitioner attaching such a clamp at a bone screw with one clamping assembly 20 and subsequently a rod of an external fixator to the other clamping assembly 30 can check the robustness of his external fixator, and if he finds that the rod he has used is not stiff enough, he simply opens the second clamping assembly 30, removes the thinner rod, turns the second clamping assembly 30 e.g. 60 degrees into one direction or the other around the longitudinal axis to align the larger reception with the new thicker rod and replaces it. This change does not necessitate the replacement of the clamp 10 itself as necessary with prior art systems. The method to replace such a rod 100 is faster and more reliable since the clamping of the bone screw is not changed, and avoids use of a second sterile clamp at said time.

It is of course also possible that the second clamping assembly 30 is a traditional clamping assembly or even any other element known in the prior art with clamping elements. The object of a versatile clamping assembly is already achieved through one first clamping assembly 20, since it allows clamping one of three different sizes of screws, pins of wires
through simple reorientation of the first clamping assembly 20.

Fig. 2 shows a view from above on the clamp according to Fig. 1. Since the embodiment of Fig. 1 comprises three grooves 51, 52 and 53, there are three side walls 61, 62 and 63, which provide, when looked from above as in Fig. 2 a triangular shape of each clamping assembly 20 or 30.

Fig. 3 shows a first side view of the clamp of Fig. 1 and Fig. 4 shows a second different side view of the clamp 10 of Fig. 1 from a different direction. Identical reference signs are used for identical features within the same embodiment and are used for identical or similar features in further embodiments.

It is clear from Fig. 3 that the first receptions 71 are identical in their size and allow reception of a large rod. From Fig. 4 it can be learned that the third receptions 73 are small receptions, e.g. for a pin. In this embodiment, second receptions 72 have an intermediate size. From Fig. 4 it can be seen that the depicted embodiment has a decreasing size sequence of the receptions 71, 72 and 73 in the upper first clamping assembly 20 in clockwise direction whereas the depicted embodiment has a decreasing size sequence of the receptions 71, 72 and 73 in the lower second clamping assembly 30 in counter-clockwise direction.

Fig. 5 shows a view from above on an inner jaw portion 12, whereas Fig. 6 shows a similar view on a corresponding outer jaw portion 11. It is clear that each jaw portion 11 or 12 of any clamping assembly 20, 30 according to the invention comprises three differently sized grooves 51, 52 and 53, respectively. The longitudinal axes of these grooves 51, 52 and 53 are oriented in an angle of 60 degree one to another. However, these angles of 60 degree are not mandatory. It is only necessary that the total internal angle of the triangle provided by these three grooves 51, 52 and 53 is 180 degrees. The grooves are also in the same median plane which indicates that only one pin, screw or rod can usually be introduced in one of the grooves 51, 52 or 53 and such an introduction blocks the other empty grooves. It is an aim of this orientation to provide a simpler mounting of a fixation device, since based on the chosen pin or screw a clamp of the invention can be chosen and through rotation of the clamping assembly the correct sized reception 71, 72 or 73 is usable for a well clamped
connection, wherein the clipping of the pin or screw from the open side facilitates the introduction even further.

It is clear from Fig. 5 and 6 that the grooves 51, 52 and 53 are intersecting mutually. The inner jaw portion 12 shown in Fig. 5 comprises ribs 45 which are oriented in the longitudinal direction of the grooves 51, 52 and 53. Each groove is provided with two lines of ribs 45, which are arranged one behind the other and thus can also be described to be a single line interrupted in the middle part. Of course there may be one or no ribs 45, or there may be more than two lines, and these lines can be provided uninterrupted, although the embodiment with interrupted ribs 45 as well as two lines of these ribs 45 is preferred.

It is possible to deviate from the correct triangular orientation of the grooves; especially the angle between the largest groove 51 and the neighboring grooves can be less than 60 degree, so that the angle between the longitudinal axes of the grooves 52 and 53 is greater then 60 degrees.

It is also possible, in different embodiments, not shown in the Fig., to provide four, five or more grooves. If four grooves are provided, then the form of such a clamping assembly 20 seen from above is a square and each jaw comprises four grooves joining in the corners in a – preferably - right angle. Then a sequence of four sizes of the receptions is possible as 12 mm, 8 mm, 6 mm and 4 mm. If five grooves are provided, then the form of such a clamping assembly 20 seen from above is a pentagon and each jaw comprises five grooves joining in the corners, preferably at an angle of around 108 degrees. Then a sequence of five sizes of the receptions is possible as 12 mm, 20 mm, 8 mm, 6 mm and 4 mm. Of course deviations from such a symmetrical polygon are possible.

It is noted that the spacers 17 and thus the counter bearings as well as the corners of the jaw planes are not symmetrically positioned in view of the central bore 21 of a jaw. The deviation from the symmetric form is smaller for the largest reception 71 and larger for the smallest reception 73. However, this is not problematic, since the largest reception 71 with the smallest deviation accepts the largest rod and thus the largest forces, wherein the largest deviation occurs for the smallest reception and the function of such a small reception resides in accepting a limited force.
Fig. 7 shows a cross-section of the clamp according to Fig. 4, wherein the clamp 10 is shown in a premounted state, i.e. the spring 15 is under tension. The upper jaw 11 of the first clamping assembly 20 is therefore pushing the rounded counter piece 41 against a flange of the head of shaft 40. The jaw 11 has around its bore 21 a rounded recess to accommodate the washer 41. This enables a pivoting movement of the upper jaw 11 against the axis of the shaft 40, since the shaft 40 comprises a reduced diameter portion 43 extending over the whole length of the jaws 11 and 12 in both assemblies. It is also possible that there is no play between shaft 40 and jaw 11; the bore 21 just allows the introduction of the shaft 40. Then jaw 11 and jaw 12 can only effect a translatory movement.

The pin 13 of the upper jaw 11 is lodged in a room 16 in the bore 14. It is possible but not necessary that the pin 13 or the room 16 receives an elastic fitting piece allowing elastic movements of the pin within the room 16.

The shaft 40 as part of a locking element is threaded into the lower jaw 11 of the second clamping assembly 30 and is further connected with a counter nut 46, which is fixedly lodged in shaft 40. Therefore the two clamp assemblies 20, 30 can be opened and closed through turning the head of shaft 40 and thus turning said shaft 40 with the blocking counter nut 46 in the jaw thread.

The combination of shaft 40 and counter nut 46 can also be replaced by a single screw to be screwed into the lower jaw 11 of the second clamping assembly 30. Threading may be provided in the bore or the screw may exhibit self-tapping threading. Quite generally, a locking element may be provided which may be a lever locking element or a bayonet lock. Among these locking elements may also be supporting disks or toothed disks, which, for the sake of simplicity, are not shown in the drawings.

Fig. 8 shows an exploded view of a second embodiment of the clamp of the present invention; Fig. 9 shows a view from above on said clamp and Fig. 10 shows a cross-section of said clamp along line X-X in Fig. 9. The sequence of sizes for the first clamping assembly 20 is 13.5 mm, 8 mm and 5 mm. The choice of this sequence depends on the
intended application (e.g. which limb is to be treated) of the external fixator set and follows the needs of the application.

The clamping assemblies 20, 30 of said embodiment have a triangular form, as can be seen from Fig. 9, having defined straight side walls 61, 62 and 63 and identically curved transitory portions. For a description of features which are identical to the clamp of Fig. 1 reference is made to said description.

Instead of spacers 17 in the corners of the plane surface of the jaws 11 there are provided two flattened semi-spherical spacers 27 on said surface. As mentioned above, the first clamping assembly 20 comprises a sequence of larger sized receptions 71, 72, 73. The lower second clamping assembly 30 comprises a different sequence of smaller sized receptions 71, 72, 73. The corresponding grooves 51, 52 and 53 within the lower jaw 11 are not semi-spherical as with the clamp of Fig. 1 but are triangular grooves 51, 52, 53 having a bottom line 54. The corresponding groove portion in the opposite jaw 12 is a rounded groove, in Fig. 10 receiving the numeral 55, so that slightly different sizes of elements can be clamped. However, the sizes of the grooves 51, 52 and 53 are nevertheless different one from the other.

Usually the rounded grooves are intended to be used especially with carbon rods and allow high precision clamping under all circumstances, whereas the triangular grooves are more flexible. They usually provide two sizes with one groove, e.g. 4-5 mm, 5-6 mm and 7-8 mm for three grooves.

Element 47 is a steel helicoil inserted into the aluminum jaw 11 to provide a better counter thread for the thread 49 of shaft 40. The end portion 49 of shaft 40 is hollow with an additional inner thread to accommodate the outer thread 58 of the counter nut 48.

Fig. 11 shows a view from above of the clamp 10 of the present invention with two attached fixation elements 100 and 101. Fig. 12 shows a front view of the clamp according to Fig. 11; and Fig. 13 shows a view from the right.

The fixation elements shown here are small-sized rods. Fixation element 100 is introduced
in the smallest size reception 73 of the first clamping assembly 20 leaving the middle-sized reception 72 and the large-size reception 71 empty. From Fig. 12 it can be seen that the introduction of rod 100 blocks the section of reception 72. From Fig. 13 it can be seen that the introduction of rod 100 also blocks the section of reception 73. Therefore a clamping assembly 20 is usable for one single rod or pin at the same time, here rod 100.

The same is true for rod 101 used in connection with the second clamping assembly 30. In this embodiment, the two clamping assemblies have an identical sequence of reception sizes, i.e. there are three sizes of receptions twice in the clamp 10. As mentioned above it is possible to provide different reception sizes in the two clamping assemblies 20 and 30. Therefore it is possible to have up to six different sizes of receptions within one clamp consisting of two clamping assemblies according to the invention, e.g. 3 mm, 4 mm, 5 mm, 6 mm, 8 mm, and 10 mm. It has to be noted that the sequence is not necessarily distributed according to size. One clamping assembly can have sizes 3 mm, 5 mm and 8 mm, whereas the complementary assembly has the sizes 4 mm, 6 mm and 10 mm, showing a mixed sequence.

It is also possible to use two rods 100 and 101 with one single clamping assembly 20, if the rods are shorter so that the rods 100, 101 cannot intersect behind the clamp 10. This allows providing a so-called Y-frame with one single clamping assembly, wherein the two rods or bone screws are oriented within an angle of 60 degrees.

It is noted that the grooves 51, 52 and 53 are preferably provided in a distance from the center of the clamp 10 so that the rods, pins or screws which are to be inserted in the created receptions are flush with the side walls 61, 62 or 63 as it can be seen in Fig. 11.

The single clamping assemblies 20 or 30 can be combined in different ways. If a clamping assembly having round grooves is called a rod clamping assembly and a clamping assembly having triangular grooves is called a pin clamping assembly then several clamps having two single clamping assemblies 20 or 30 are possible, i.e. pin-pin, rod-pin or rod-rod.

The clamp or articulation element according to the invention has at least two opposing first
and second clamping jaws 11 and 12, providing one lateral open free space for laterally receiving a rod-shaped element 100. Said lateral open free space is formed through grooves and is also called reception. It is also possible to accommodate inserts, i.e. a jacket element adapted to be inserted in one jaw of the clamp to modify the space available for the rod-shaped element. Such an insert can be built according to e.g. EP 1 661 523 and introduced into the receptions to have additional versatility. On the other side it is also possible that a triangular clamp 10 according to the invention comprises a clamping assembly 20 or 30 having two identical grooves within the three grooves. This is especially true, if according to a different embodiment, four, five or more grooves are provided.

For four grooves it is possible to combine the advantage of using two sizes of receptions which are provided one opposite to the other. Then – in clockwise direction – the four receptions may be: small, large, small, large; which allows the parallel introduction and fixation of two small pins or two large rods, since the square disposition do not hinder the simultaneous introduction of two pins or rods. The same is true, if five grooves/receptions are provided, since an angle of around 108 degrees, two out of the five receptions can be used.

Within a preferred embodiment it is contemplated that at least the lower jaw 11 of the second assembly 30 has a different color than the other jaws to indicate that there is a specific sequence of sizes. It is e.g. possible that said lower jaw is green, indicating that said clamping assembly 30 provides a sequence of larger receptions (13.5 mm, 10 mm, 8 mm) whereas the other clamping assembly 20 provide smaller receptions (e.g. 6 mm, 5 mm and 4 mm). It is also possible to provide the upper most jaw 11 of the first clamping assembly 20 with a different color, e.g. blue to indicate that said clamping assembly 20 provides the smaller receptions. Then of course, blue-blue, blue-green and green-green combinations of clamps 10 would provide a high usability of use with direct indication for the user, which clamp he should choose. This color model can be extended to a third of fourth color according to the above mentioned sequences of reception sizes.
<table>
<thead>
<tr>
<th>Reference Number</th>
<th>Description</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>clamp</td>
<td>46</td>
</tr>
<tr>
<td>11</td>
<td>jaw</td>
<td>47</td>
</tr>
<tr>
<td>12</td>
<td>jaw</td>
<td>48</td>
</tr>
<tr>
<td>13</td>
<td>pin</td>
<td>49</td>
</tr>
<tr>
<td>14</td>
<td>bore</td>
<td>51</td>
</tr>
<tr>
<td>15</td>
<td>spring</td>
<td>52</td>
</tr>
<tr>
<td>16</td>
<td>room</td>
<td>53</td>
</tr>
<tr>
<td>17</td>
<td>spacer</td>
<td>54</td>
</tr>
<tr>
<td>20</td>
<td>first clamping assembly</td>
<td>55</td>
</tr>
<tr>
<td>21</td>
<td>bore</td>
<td>58</td>
</tr>
<tr>
<td>27</td>
<td>spacer</td>
<td>61</td>
</tr>
<tr>
<td>30</td>
<td>second clamping assembly</td>
<td>62</td>
</tr>
<tr>
<td>31</td>
<td>bore</td>
<td>63</td>
</tr>
<tr>
<td>40</td>
<td>shaft</td>
<td>71</td>
</tr>
<tr>
<td>41</td>
<td>washer</td>
<td>72</td>
</tr>
<tr>
<td>42</td>
<td>proximal portion</td>
<td>73</td>
</tr>
<tr>
<td>43</td>
<td>reduced diameter portion</td>
<td>100</td>
</tr>
<tr>
<td>44</td>
<td>anti-rotation surface</td>
<td>101</td>
</tr>
<tr>
<td>45</td>
<td>rib</td>
<td></td>
</tr>
</tbody>
</table>
CLAIMS

1. A fixation clamp (10), more particularly for use in an external fixation system for holding bone fragments adjacent to each other with the help of fixation elements (100), comprising at least one clamping assembly (20, 30) having two jaws (11, 12) and having three receptions (71, 72, 73) each of them adapted to accommodate a fixation element (100) along the longitudinal axis of the reception, wherein each of said receptions (71, 72, 73) is formed by grooves (51, 52, 53) located on each of the two jaws (11, 12), characterized in that the longitudinal axes of said receptions (71, 72, 73) span a triangle and in that at least two receptions (71, 72, 73) having a different cross-sectional size, each of them adapted to accommodate a correspondingly diameter-sized fixation element (100).

2. The fixation clamp (10) according to claim 1, wherein each groove (51, 52, 53) forming a corresponding reception (71, 72, 73) has a different diameter size.

3. The fixation clamp (10) according to any one of claims 1 or 2, wherein the grooves (51, 52, 53) have the form of a part of a hollow cylinder or they are triangular.

4. The fixation clamp (10) according to any one of claims 1 to 3, wherein the grooves (51, 52, 53) comprise longitudinal ribs (45).

5. The fixation clamp (10) according to any of claims 1 to 4, wherein each clamping assembly (20, 30) comprises an anti-rotation pin (13) extending from one jaw (11) into a complementary recess (16) in the other jaw (12).

6. The fixation clamp (10) according to any of claims 1 to 5, wherein the clamp (10) comprises a locking shaft (40) extending through the clamping assemblies (20, 30) for blocking the position of the clamping assemblies (20, 30) in a defined angular position.

7. The fixation clamp (10) according to any of claims 1 to 6, wherein the fixation elements are rods (100, 101) and wherein the receptions (71, 72, 73) are provided within the outer side walls (61, 62, 63) of each clamping assembly (20, 30) in a way that the
surface of the corresponding rod (100, 101) pointing away from a central locking shaft (40) when inserted into one reception (71, 72, 73) is flush with the corresponding side wall (61, 62, 63).
Fig. 7