wo 2012/016085 A2]I IO KOO0 0 OO A

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

ot VAP,
(19) World Intellectual Property Organization /g [} 1M1 LA 0100 0O 0
ernational Bureau S,/ ‘ 0 |
. . . ME' (10) International Publication Number
(43) International Publication Date \,!:,: #
2 February 2012 (02.02.2012) WO 2012/016085 A2

(51) International Patent Classification: Wagnerstr. 7, 72535 Heroldstatt, BW (DE). LAIL, Konrad

GO6F 12/00 (2006.01) K. [US/US]; 520 Se Columbia River DR, Apt. 520, Van-

(21) International Application Number: couver, OR 98661 (US).
PCT/US2011/045797 (74) Agents: TROP, Timothy N. et al.; Trop, Pruner & Hu,

. - . P.C., 1616 S. Voss Rd., Ste. 750, Houston, TX
(22) International Filing Date: 77057-2631 (US).

28 July 2011 (28.07.2011)
(81) Designated States (unless otherwise indicated, for every

(25) Filing Language: English kind of national protection available). AE, AG, AL, AM,
(26) Publication Language: English AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
. CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,

(30) Priority Data: DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
12/845.554 28 July 2010 (28.07.2010) Us HN. HR, HU. ID, IL, IN, IS, JP, KE. KG, KM. KN, KP.

(71) Applicant (for all designated States except US): INTEL KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
CORPORATION [US/US]; 2200 Mission College ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
Boulevard, MS: RNB-4-150, Santa Clara, CA 95052 NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD,
(US). SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR,

TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
(72) Inventors; and . .
(75) Inventors/Applicants (for US only): RAJWAR, Ravi (84) Designated States (unless otherwise indicated, for every

[IN/US]; 12792 NW Kyla LN, Portland, OR 97229 (US). kind of regional protection available): ARIPO (BW, GH,
KNAUTH, Laura A. [US/US]; 6464 NW Shelsam Ter, GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG,
Portland, OR 97229 (US). LACHNER, Peter [AT/DE]; ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ,

[Continued on next page]

(54) Title: LAST BRANCH RECORD INDICATORS FOR TRANSACTIONAL MEMORY
(57) Abstract: In one embodiment, a

10 processor includes an execution unit
— 15 and at least one last branch record
17 16 / (LBR) register to store address infor-
mation of a branch taken during pro-

From Address gram execution. This register may fur-

12 ther store a transaction indicator to in-

— dicate whether the branch was taken

To Address during a transactional memory (TM)

transaction. This register may further

ﬂ store an abort indicator to indicate

whether the branch was caused by a
transaction abort. Other embodiments
are described and claimed.

27 26 25
From Aborting Instruction Address
22

To Abort Handler Address
24

FIG. 1

WO 2012/016085 A2 I W00 AT 00T A A

TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, Published:

EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SF, SI, SK,
SM, TR), OAPI (BF, BJ, CF, CG, CL CM, GA, GN, GQ,

GW, ML, MR, NE, SN, TD, TG).

without international search report and to be republished
upon receipt of that report (Rule 48.2(g))

10

15

20

25

30

35

WO 2012/016085 PCT/US2011/045797

LAST BRANCH RECORD INDICATORS FOR TRANSACTIONAL MEMORY

Background

As technology advances, computer systems include greater numbers of processors, in the
form of multiprocessor systems, e.g., via one or more multi-core processors that can execute
multiple threads concurrently. Generally, before a thread accesses a shared resource, it may
acquire a lock on the shared resource. In situations where the shared resource is a data structure
stored in memory, all threads that are attempting to access the same resource may serialize the
execution of their operations in light of mutual exclusivity provided by the locking mechanism.
This may be detrimental to system performance and may cause program failures, e.g., due to
deadlocks or other unwanted behavior.

The ever increasing number of cores and logical processors in a system enables more
software threads to be executed. However, the increase in the number of software threads that
may be executed simultaneously has created problems with synchronizing data shared among the
software threads. One common solution to accessing shared data in multiple core or multiple
logical processor systems uses locks to guarantee mutual exclusion across multiple accesses to
shared data. However, the ever increasing ability to execute multiple software threads potentially
results in false contention and a serialization of execution.

To reduce performance loss resulting from utilization of locking mechanisms, some
computer systems may use transactional memory (TM). Transactional memory generally refers
to a synchronization model that allows multiple threads to concurrently access a shared resource
without utilizing a locking mechanism.

Often transactional execution may include speculatively executing groups of micro-
operations, operations, or instructions. Current TM systems include hardware TM systems in
which processor hardware is used to perform transactions, software TM systems in which
transactions are implemented in software and hybrid TM systems in which both hardware and
software can be used to execute a transaction. Typically, a hardware TM system can be most
cfficient, but if a transaction becomes too large, e.g., overflows a hardware memory, then the
transaction is usually restarted. Here, the time taken to execute the transaction up to the overflow
is potentially squandered.

Processors include various hardware and can also provide hardware for testing, debug
and other operations. For example, various registers can be provided in a processor for
performing processor checkpointing, exception reporting, branch recording and so forth.
However, such performance monitoring hardware is generally not used in the context of

transactional memory.

10

15

20

25

30

WO 2012/016085 PCT/US2011/045797

Brief Description of the Drawings

FIG. 1 is a block diagram of last branch register pairs in accordance with an embodiment
of the present invention.

FIG. 2 is a block diagram of a processor core in accordance with one embodiment of the
present invention.

FIG. 3 is a block diagram of a processor core in accordance with another embodiment of
the present invention.

FIG. 4 is a flow diagram of a method for generating branch records in accordance with
one embodiment of the present invention.

FIG. 5 is a flow diagram of a method for using branch records in accordance with an
embodiment of the present invention.

FIG. 6 is a block diagram of a system in accordance with an embodiment of the present

invention.

Detailed Description

In various embodiments, branch information obtained during execution of a program can
be recorded and then used for purposes of profiling, debugging and/or optimization of
transactional memory transactions. In this way, improved transactional memory operation and
code can be realized. In various embodiments, the information included in such registers may
include last branch information, in which information regarding branches taken during program
execution can be recorded. In addition to the identification of such branches, information
regarding execution of a pending transaction of a transactional memory can also be recorded.
Using this information, debugging and other operations can be realized for transactional memory
transactions.

Transactional execution usually includes grouping a plurality of instructions or
operations into a transaction, atomic section, or critical section of code. In some cases, the term
instruction refers to a macro-instruction which is made up of a plurality of operations, while in
other cases an instruction can refer to a smaller operation, ¢.g., a micro-operation (uop). There
are commonly two ways to identify transactions. The first example includes demarcating the
transaction in software. Here, some software demarcation is included in code to identify a
transaction. In another embodiment, which may be implemented in conjunction with the
foregoing software demarcation, transactions are grouped by hardware or recognized by
instructions indicating a beginning of a transaction and an end of a transaction.

In a processor, a transaction is executed either speculatively or non-speculatively. In the

second case, a grouping of instructions is executed with some form of lock or guaranteed valid

2

10

15

20

25

30

35

WO 2012/016085 PCT/US2011/045797

access to memory locations to be accessed. In the alternative, speculative execution of a
transaction is more common, where a transaction is speculatively executed and committed upon
the end of the transaction. A pendency of a transaction, as used herein, refers to a transaction that
has begun execution and has not been committed or aborted, i.c., pending.

Typically, during speculative execution of a transaction, updates to memory are not made
globally visible until the transaction is committed. While the transaction is still pending,
locations loaded from and written to a memory are tracked. Upon successful validation of those
memory locations, the transaction is committed and updates made during the transaction are
made globally visible. However, if the transaction is invalidated during its pendency, the
transaction is restarted without making the updates globally visible.

In various embodiments last branch recording facilities may be provided in a processor.
Such facilities may store branch records in a set of registers, which one embodiment may be
machine or model specific registers (MSRs). For example, a processor may include a last branch
record (LBR) stack of MSRs for storing information regarding the most recently taken branches.
A branch record includes a pair of registers, one of which to store a branch-from instruction
address and a branch-to instruction address which may be linear addresses, in one embodiment.
In some implementations, the registers may be automatically read, while in other embodiments, a
control signal may cause the stack to send branch records as branch trace messages (BTMs) to a
selected destination location.

Note that operation of LBR registers can be controlled to be enabled or disabled. For
example, an LBR flag may be present in a debug control MSR to enable the processor to
automatically record branch records for taken branches. Note that in some embodiments, in
addition to LBRs, information regarding interrupts and exceptions can also be recorded in the
LBR registers, although in other embodiments separate recording facilities may be provided for
such situations.

In one embodiment, a debugger can use addresses in a LBR stack to enable a backward
trace from the manifestation of a particular bug toward its source.

Note that the number of MSRs in the LBR stack can vary in different embodiments. For
example, in different implementations, the size of the LBR stack may be 4, 8 or 16, although the
scope of the present invention is not limited in this regard. As described above, last branch
recording mechanisms may track not only branch instructions (like jumps, loops and call
instructions), but also other operations that cause a change in the instruction pointer (like
external interrupts, traps and faults).

Referring now to FIG. 1, shown is a block diagram of a LBR register pair in accordance

with an embodiment of the present invention. As shown in FIG. 1, register pair 10 may include
3

10

15

20

25

30

35

WO 2012/016085 PCT/US2011/045797

two MSRs, namely a first MSR 12 and a second MSR 14. As seen, MSR 12 may store a source
address. That is, this register may store a source address of a recent branch, namely the “from”
address at which a branch occurs. In turn, register 14 may store a destination address, namely a
“to” address to which control is passed by the branch. In addition to an address field 15 that
stores an instruction pointer address, additional fields may be present in these registers.
Specifically, in the embodiment of FIG. 1 a transaction indicator 16 and an abort indicator 17
may be associated with each register. More specifically, transaction indicator 16 may be set
when the corresponding branch occurs during execution of a transaction. In turn, abort indicator
17 may be set for a first branch that occurs after a transaction is aborted. More precisely, an
abort causes a jump to an abort handler. This jump is then recorded in the LBR with the abort
indicator set. This abort indicator is used to distinguish this branch from other branches. Further
details regarding storage of information regarding an aborting event is discussed below. In this
way, information regarding the execution of a transaction in which the branch occurs can be
recorded. As will be discussed further below, using this information, a greater understanding of
the execution of a transaction can be gained, potentially improving execution, e.g., via
optimizations or so forth.

As described above, in addition to register pairs for branch information, information
regarding an aborting event can be recorded. Specifically, as shown in FIG. 1, an additional
register pair 20 may include information regarding an instruction that causes an abort to occur to
a pending transaction. Specifically, register 22 may store an instruction pointer for the
instruction that caused the transaction to abort. The second register of the pair, namely register
24, may store a destination address which can be the address of an abort handler corresponding
to code, logic or so forth to enable recovery from the abort. While shown with only these two
register pairs in the embodiment of FIG. 1, understand that a LBR stack may include many more
pairs. In addition, the structure, arrangement and information included in the LBRs may be
different in different embodiments. For example, in some embodiments the LBR storage may be
implemented as a circular array.

Note that additional information may be present in the LBR registers. For example, in
some embodiments a prediction indicator may be provided that, when set indicates that the
branch taken was predicted correctly. Otherwise, the indicator may be cleared to indicate that
the branch was mispredicted. Of course additional indicators and other information may be
provided in these registers.

In some embodiments a last branch record top-of-stack (TOS) pointer may store a pointer
to the MSR in the LBR stack that contains the most recent branch, interrupt, or exception

recorded.

10

15

20

25

30

35

WO 2012/016085 PCT/US2011/045797

As will be described below, in some embodiments a debug store (DS) mechanism may
store BTMs in a branch trace store (BTS) which may be part of a given portion of a memory
hierarchy such as a hardware buffer, cache, or system memory. In one embodiment, when the
BTS flag in the debug control MSR is set, a branch record is stored in the BTS buffer in the DS
save area whenever a taken branch, interrupt, or exception is detected.

In some embodiments, filtering of last branch records can be realized via a LBR select
register that may provide fields to specify the conditions of subsets of branches that will not be
captured in the LBR. For example, this register may include fields to filter branches occurring in
predetermined privilege levels or so forth.

Thus in one embodiment, each branch record includes two linear addresses, which
represent the “from” and “to” instruction pointers for a branch, interrupt, or exception. The
contents of the from and to addresses may differ, depending on the source of the branch. Where
the record is for a taken branch, the “from” address is the address of the branch instruction and
the “to” address is the target instruction of the branch. Where the record is for an interrupt, the
“from” address is the return instruction pointer (RIP) saved for the interrupt and the “to” address
is the address of the first instruction in the interrupt handler routine. The RIP is the linear
address of the next instruction to be executed upon returning from the interrupt handler. Where
the record is for an exception, the “from” address is the lincar address of the instruction that
caused the exception to be generated and the “to” address is the address of the first instruction in
the exception handler routine.

Referring now to FIG. 2, shown is a block diagram of a processor core in accordance
with one embodiment of the present invention. As shown in FIG. 2, processor core 100 may be a
multi-stage pipelined out-of-order processor. Processor core 100 is shown with a relatively
simplified view in FIG. 2 to illustrate various features used in connection with branch record
reporting in accordance with an embodiment of the present invention. Further, understand that
as described above a processor may or may not provide hardware support for TM transactions.
For sake of illustration assume that core 100 includes such hardware support. However, in some
embodiments using transactional status information stored in LBRs, even in the absence of such
hardware support, analysis of transaction execution can occur. In this way, an understanding of
what branches occur during a transaction, whether a branch causes a transaction to abort or so
forth, can be obtained. Then debug, optimization, profiling or other activities can occur with this
information.

As shown in FIG. 2, core 100 includes front end units 110, which may be used to fetch
instructions to be executed and prepare them for use later in the processor. For example, front

end units 110 may include a fetch unit 101, an instruction cache 103, and an instruction decoder
5

10

15

20

25

30

35

WO 2012/016085 PCT/US2011/045797

105. In some implementations, front end units 110 may further include a trace cache, along with
microcode storage as well as a micro-operation storage. Fetch unit 101 may fetch macro-
instructions, e.g., from memory or instruction cache 103, and feed them to instruction decoder
105 to decode them into primitives, i.c., micro-operations for execution by the processor.

Coupled between front end units 110 and execution units 120 is an instruction dispatcher
115 which can be implemented as out-of-order logic in out-of-order implementations to receive
the micro-instructions and prepare them for execution. More specifically instruction dispatcher
115 may include various buffers to allocate various resources needed for execution, as well as to
provide renaming of logical registers onto storage locations within various register files such as
register file 130 and extended register file 135. Register file 130 may include separate register
files for integer and floating point operations. Extended register file 135 may provide storage for
vector-sized units, e.g., 256 or 512 bits per register.

As further seen in FIG. 2, processor 100 may include a set of MSRs 125. As discussed
above, various types of model specific information may be stored in such registers. In the
embodiment of FIG. 2, shown is a set of LBRs 128 which as discussed above may store
information regarding branches taken during execution of code. These or similar registers may
further include information regarding other execution occurrences such as interrupts, traps,
exceptions and so forth.

Various resources may be present in execution units 120, including, for example, various
integer, floating point, and single instruction multiple data (SIMD) logic units, among other
specialized hardware. For example, such execution units may include one or more arithmetic
logic units (ALUs) 122. In addition, execution units may further include a performance
monitoring unit (PMU) 124. In various embodiments, PMU 124 may be used to control
obtaining of various information, e.g., profiling counters, information in MSRs and so forth. In
particular implementations here, PMU 124 or other such logic may be used to control recording
of information, including information regarding transaction execution in LBR 128 and to further
obtain such information for further use. Results may be provided to retirement logic, namely a
reorder buffer (ROB) 140. More specifically, ROB 140 may include various arrays and logic to
receive information associated with instructions that are executed. This information is then
examined by ROB 140 to determine whether the instructions can be validly retired and result
data committed to the architectural state of the processor, or whether one or more exceptions
occurred that prevent a proper retirement of the instructions. Of course, ROB 140 may handle
other operations associated with retirement.

As shown in FIG. 2, ROB 140 is coupled to a cache 150 which, in one embodiment may

be a low level cache (e.g., an L1 cache) although the scope of the present invention is not limited
6

10

15

20

25

30

35

WO 2012/016085 PCT/US2011/045797

in this regard. As seen, cache 150 in one embodiment may include a branch trace buffer 152 that
may store branch information, e.g., received from LBRs 128. For example, PMU 124 may
control the creation and sending of branch target messages from LBR 128 to branch trace buffer
152. From here, the information may be accessed, e.g., via a profiler optimizer or so forth to
enable analysis of information regarding transaction execution in accordance with an
embodiment of the present invention. Also, execution units 120 can be directly coupled to cache
150. While shown with this high level in the embodiment of FIG. 2, understand the scope of the
present invention is not limited in this regard.

FIG. 3 is a block diagram of a processor core in accordance with an embodiment of the
present invention that may execute transactional memory access requests in hardware. Using a
core such as core 206, transaction status indicators for LBRs may be set using information
obtained from hardware of the core. As shown in FIG. 3, the processor core 206 may include a
fetch unit 202 to fetch instructions for execution by the core 206. Core 206 may also include a
decode unit 204 to decode the fetched instruction. For instance, the decode unit 204 may decode
the fetched instruction into a plurality of uops.

Additionally, the core 206 may include a schedule unit 207. Schedule unit 207 may
perform various operations associated with storing decoded instructions (e.g., received from the
decode unit 204) until the instructions are ready for dispatch, e.g., until all source values of a
decoded instruction become available. In one embodiment, schedule unit 207 may schedule
and/or issue (or dispatch) decoded instructions to one or more execution units 208 for execution.
Execution unit 208 may include a memory execution unit, an integer execution unit, a floating-
point execution unit, or other execution units. A retirement unit 210 may retire executed
instructions after they are committed. In an embodiment, retirement of the executed instructions
may result in processor state being committed from the execution of the instructions, physical
registers used by the instructions being de-allocated, etc.

A memory order buffer (MOB) 218 may include a load buffer, a store buffer and logic to
store pending memory operations that have not loaded or written back to a main memory. In
various embodiments, a core may include a local cache, e.g., a private cache such as cache 216
that may include one or more cache lines 224 (e.g., cache lines 0 through W and that is managed
by cache logic 239. In an embodiment, each line of cache 216 may include a transaction read bit
226 and/or a transaction write bit 228 for each thread executing on core 206. Bits 226 and 228
may be set or cleared to indicate (load and/or store) access to the corresponding cache line by a
transactional memory access request. Note that while in the embodiment of FIG. 3 each cache
line 224 is shown as having a respective bit 226 and 228, other configurations are possible. For

example, a transaction read bit 226 (or transaction write bit 228) may correspond to a select
7

10

15

20

25

30

35

WO 2012/016085 PCT/US2011/045797

portion of the cache 216, such as a cache block or other portion of the cache 216. Also, the bits
226 and/or 228 may be stored in locations other than the cache 216. Thus information in such
hardware can be used to set various indicators for LBRs.

To aid in executing TM operations, core 206 may include a transaction depth counter 230
to store a value corresponding to the number of transactional memory access requests that remain
uncommitted. For example, the value stored in counter 230 may indicate the nesting depth of
multiple transactional memory access requests that correspond to the same thread. In one
instance, multiple transactional memory access requests may result when one transaction is
initiated inside a pending transaction (such as via a library call or other nested procedure).
Counter 230 may be implemented as any type of a storage device such as a hardware register or a
variable stored in a memory (e.g., system memory or cache 216). Core 206 may also include a
transaction depth counter logic 232 to update the value stored in the counter 230. Core 206 may
include a transaction check pointing logic 234 to check point (or store) the state of various
components of the core 206 and a transaction restoration logic 236 to restore the state of various
components of the core 206, e.g., on abort of a given transaction. Additionally, core 206 may
include one or more additional registers 240 that correspond to various transactional memory
access requests, such as a transaction status and control register (TXSR), a transaction instruction
pointer (TXIP) (e.g., that may be an instruction pointer to an instruction at the beginning (or
immediately preceding) the corresponding transaction), and/or transaction stack pointer (TXSP)
(e.g., that may be a stack pointer to the head of a stack that stores various states of one or more
components of core 206). Further, to enable capture of transaction information for branches,
MSRs 250 may also be present which may store, in addition to branch information, transaction
status information such as a transaction present indicator and a transaction abort indicator.

Referring now to FIG. 4, shown is a flow diagram of a method in accordance with one
embodiment of the present invention. In the embodiment of FIG. 4, method 300 may be used to
populate information in a LBR record register in accordance with an embodiment of the present
invention. For example, method 300 may be implemented using processor logic such as logic of
a PMU or so forth. As seen, method 300 may begin by determining whether an abort occurs
during program execution (diamond 310). This determination of an abort may occur by analysis
of the in-transaction internal state, which is set to false either when a transaction passes an end-
of-transaction marker (which can be an instruction) or when a transaction aborts. Note that an
abort is not a state, but an event that causes a jump from wherever the current execution stream is
to the abort handler location.

If an abort is determined to have occurred at diamond 310, control passes to block 320,

where a next LBR entry may be allocated. As discussed above, different types of branch record
8

10

15

20

25

30

35

WO 2012/016085 PCT/US2011/045797

entries may be possible. For example, a single register may include destination only
information, a register pair may store source and destination information, or so forth. Thus in
some embodiments multiple branch addresses may be added to this entry. Specifically, a source
and destination address may be stored (note that here the destination address may be for the abort
handler). In addition as shown at block 330, transaction and abort indicators for this entry may
also be set, thus indicating that an abort of a pending transaction has occurred.

Control next passes to block 340, where the next executed instruction may be taken. As
seen, this causes method 300 to begin again with regard to a determination of an abort, as
described above. Instead this time, assume that at diamond 310 it is determined that an abort has
not occurred, control instead passes to diamond 350, where it may be determined whether a
branch has occurred. As discussed above such branches may occur for given instruction types
such as jumps, calls, or so forth. If no branch occurs, the method concludes with regard to that
instruction and control passes to block 340 to the next executed instruction.

Referring still to FIG. 4, if instead it is determined that a given instruction is a branch
instruction, various information may be stored. Specifically as shown in FIG. 4, at block 360 a
next LBR entry may be allocated and branch address information stored into the entry.

Next, it may be determined whether the branch has occurred during a transaction
(diamond 370). For example, in one embodiment an internal processor state “in-transaction”
may be set to true when an instruction that signifies the start of a transaction is executed. If not,
control passes to block 340 discussed above (also understand that here both the transaction and
abort indicators may be cleared).

If instead at diamond 370 it is determined that the branch has occurred during execution
of a transaction, control passes to block 380 where a transaction indicator of the LBR entry may
be set to indicate that the branch occurred during transaction execution. Then control passes to
block 340, discussed above. While shown with this particular implementation in the
embodiment of FIG. 4, understand the scope of the present invention is not limited in this regard.

Referring now to FIG. 5, shown is a flow diagram of a method for using branch records
in accordance with an embodiment of the present invention. As shown in FIG. 5, method 400
may be implemented by various logic such as a debugger, analyzer, optimizer or so forth.
Method 400 may begin by storing last branch records into a branch trace buffer (block 410). For
example, in a given implementation a limited number of MSR pairs may be present to store last
branch records. Accordingly, when these pairs have been filled, responsive to a control bit of a
control register or so forth, logic such as a PMU or dedicated LBR logic may generate BTMs to
send this information to the buffer. Then, these records may be obtained from the buffer (block

420). For example, an optimizer or other such logic can obtain these records.
9

10

15

20

25

30

35

WO 2012/016085 PCT/US2011/045797

Still referring to FIG. 5, based on the information in the records, branches that occur
within the context of one or more transactions can be identified based on the transaction
indicators. For example, assume that a first entry has a cleared transaction indicator and that a
following entry has a set transaction indicator, this means that this second entry is the first
branch inside the transaction region. Assume instead that the first entry has a set transaction
indicator and the second entry has a clear transaction indicator, this means that the first entry was
the last branch inside a transaction region. Assume yet again that all entries in a set of records
under analysis have a cleared transaction indicator, this indicates that none of the branches
occurred during transaction execution, while instead if all such transaction indicators are set, this
indicates that all branches occurred in the context of a TM transaction.

Still referring to FIG. 5, next at block 440, any branches that are identified as part of an
aborted transaction region can be identified. Specifically, based on a combination of the
transaction indicators and abort indicators, such information can be determined. Specifically, a
first entry having its abort indicator set indicates that the abort occurred prior to that LBR entry.
Accordingly from this information, a branch back trace can be generated. This information can
be used, for example to optimize the code (block 450). Assume that a code section includes a
branch that causes the transaction to abort, an optimizer may cause this code to be modified to
cause that branch not to be taken or to modify the branch to avoid a transaction abort in a future
execution of the code segment. Of course other uses of this transaction status information are
possible such as understanding if and at which instruction a transaction aborted inside a
debugger tool.

Due to the nature of transactions, on an abort no architectural visible state is exposed to
the outside world. This transaction information allows reconstruction of otherwise invisible and
unknown program flow up to the aborting location. Thus embodiments enable use of
information stored in the LBR registers to be used in generation of an execution back trace. This
execution back trace can then be used, both online and offline. For example, the execution back
trace can be used by a debugger tool to allow inspection of code flow inside the TM transaction.
Or an offline analysis tool can use the execution back trace to allow a post mortem code flow
inspection. While shown with this particular implementation in the embodiment of FIG. 5,
understand the scope of the present invention is not limited in this regard.

Embodiments may be implemented in many different system types. Referring now to
FIG. 6, shown is a block diagram of a system in accordance with an embodiment of the present
invention. As shown in FIG. 6, multiprocessor system 500 is a point-to-point interconnect
system, and includes a first processor 570 and a second processor 580 coupled via a point-to-

point interconnect 550. As shown in FIG. 6, each of processors 570 and 580 may be multicore
10

10

15

20

25

30

35

WO 2012/016085 PCT/US2011/045797

processors, including first and second processor cores (i.e., processor cores 574a and 574b and
processor cores 584a and 584b), although potentially many more cores may be present in the
processors. Such cores may include LBR registers in accordance with an embodiment of the
present invention to enable analysis of branches occurring within TM transactions.

Still referring to FIG. 6, first processor 570 further includes a memory controller hub
(MCH) 572 and point-to-point (P-P) interfaces 576 and 578. Similarly, second processor 580
includes a MCH 582 and P-P interfaces 586 and 588. As shown in FIG. 6, MCH’s 572 and 582
couple the processors to respective memories, namely a memory 532 and a memory 534, which
may be portions of main memory (e.g., a dynamic random access memory (DRAM)) locally
attached to the respective processors. First processor 570 and second processor 580 may be
coupled to a chipset 590 via P-P interconnects 552 and 554, respectively. As shown in FIG. 6,
chipset 590 includes P-P interfaces 594 and 598.

Furthermore, chipset 590 includes an interface 592 to couple chipset 590 with a high
performance graphics engine 538, by a P-P interconnect 539. In turn, chipset 590 may be
coupled to a first bus 516 via an interface 596. As shown in FIG. 6, various input/output (I/O)
devices 514 may be coupled to first bus 516, along with a bus bridge 518 which couples first bus
516 to a second bus 520. Various devices may be coupled to second bus 520 including, for
example, a keyboard/mouse 522, communication devices 526 and a data storage unit 528 such as
a disk drive or other mass storage device which may include code 530, in one embodiment.
Further, an audio I[/O 524 may be coupled to second bus 520.

Embodiments may be implemented in code and may be stored on a storage medium
having stored thercon instructions which can be used to program a system to perform the
instructions. The storage medium may include, but is not limited to, any type of disk including
floppy disks, optical disks, optical disks, solid state drives (SSDs), compact disk read-only
memories (CD-ROMs), compact disk rewritables (CD-RWs), and magneto-optical disks,
semiconductor devices such as read-only memories (ROMs), random access memories (RAMs)
such as dynamic random access memories (DRAMSs), static random access memories (SRAMs),
erasable programmable read-only memories (EPROMs), flash memories, electrically erasable
programmable read-only memories (EEPROMSs), magnetic or optical cards, or any other type of
media suitable for storing electronic instructions.

While the present invention has been described with respect to a limited number of
embodiments, those skilled in the art will appreciate numerous modifications and variations
therefrom. It is intended that the appended claims cover all such modifications and variations as

fall within the true spirit and scope of this present invention.

11

10

15

20

25

30

35

WO 2012/016085 PCT/US2011/045797

What is claimed is:

1. An apparatus comprising:

a processor including an execution unit and at least one last branch record (LBR) register
to store at least one of source and destination address information of a branch taken during
program execution, the at least one LBR register further including a transaction indicator to
indicate whether the branch was taken during a transactional memory (TM) transaction.

2. The apparatus of claim 1, wherein the at least one LBR register is to further store
an abort indicator to indicate whether an abort of the TM transaction occurred prior to when the
branch was taken.

3. The apparatus of claim 2, further comprising logic to store the at least one of
source and destination address information, the transaction indicator and the abort indicator into
the at least one LBR register.

4. The apparatus of claim 1, further comprising an abort transaction register to store
first address information of an instruction that causes the TM transaction to abort, and second
address information of a handler to receive control responsive to the abort.

5. The apparatus of claim 1, further comprising a branch trace buffer (BTB) to store
information from the at least one LBR register, wherein the at least one LBR register includes a
plurality of LBR register pairs.

6. The apparatus of claim 5, further comprising an optimizer to use an execution
back trace for the TM transaction obtained based at least in part on the information stored in the
BTB.

7. The apparatus of claim 1, further comprising a debug tool to allow inspection of a
code flow inside the TM transaction via use of an execution back trace of the TM transaction
based on information stored in the at least one LBR register.

8. The apparatus of claim 1, further comprising an analysis tool to enable a post
mortem inspection of a code flow of the TM transaction via use of an execution back trace of the
TM transaction based on information stored in the at least one LBR register.

9. A method comprising:

inserting branch address information into a last branch record (LBR) entry of a processor
when a branch is taken during program execution;

writing a transaction indicator of the LBR entry if the branch is taken during execution of
a transactional memory (TM) transaction, and otherwise not writing the transaction indicator;
and

writing an abort indicator of the LBR entry if the branch occurs after an abort of the TM

transaction, and otherwise not writing the abort indicator.
12

10

15

20

25

30

35

WO 2012/016085 PCT/US2011/045797

10. The method of claim 9, further comprising using transaction state information of
the processor to determine whether the branch occurs within the TM transaction.

11. The method of claim 9, further comprising storing information from a plurality of
LBR entries into a branch trace buffer of a cache memory of the processor.

12. The method of claim 11, further comprising identifying one or more branches
within the TM transaction based on one or more transaction indicators stored in the branch trace
buffer.

13. The method of claim 12, further comprising identifying one or more branches
taken during a region of the TM transaction that aborted based on one or more abort indicators
stored in the branch trace buffer.

14. The method of claim 13, further comprising optimizing code of the region based
on the identification of the branches taken.

15. A system comprising;:

a processor including an execution unit and a plurality of last branch record (LBR)
register pairs each to store source and destination address information of a branch taken during
program execution, each of the LBR register pairs further including a transaction indicator to
indicate whether the branch was taken during a transactional memory (TM) transaction and an
abort indicator to indicate whether an abort of the TM transaction occurred prior to when the
branch was taken; and

a dynamic random access memory (DRAM) coupled to the processor.

16. The system of claim 15, wherein the processor includes hardware support for the
TM transaction.

17. The system of claim 16, wherein the hardware support includes a cache memory
having a plurality of entries each to store transaction metadata with regard to the TM transaction.

18. The system of claim 15, wherein the processor further includes logic to store the
source and destination address information, the transaction indicator and the abort indicator into
the plurality of LBR register pairs.

19. The system of claim 15, wherein the processor further includes an abort
transaction register to store first address information of an instruction that causes the TM
transaction to abort, and second address information of a handler to receive control responsive to
the abort.

20. The system of claim 15, wherein the processor further includes a cache memory
to store a branch trace buffer (BTB) for storage of information from the plurality of LBR register
pairs.

21. The system of claim 20, further comprising logic to issue a signal to the plurality
13

WO 2012/016085 PCT/US2011/045797

of LBR register pairs to cause contents of the plurality of LBR register pairs to be written into

the BTB.
22. The system of claim 15, further comprising an optimizer to use an execution back

trace for the TM transaction obtained based at least in part on the information stored in the LBR

register pairs.

14

WO 2012/016085 PCT/US2011/045797

1/6

17 16 P

From Address
12

To Address
14

27 26 25
From Aborting Instruction Address
22

To Abort Handler Address
24

FIG. 1

SUBSTITUTE SHEET (RULE 26)

PCT/US2011/045797

WO 2012/016085

2/6

¢ Ol

0clL

0S1

ayoen

4

et
N4

443
SNV

SJiun uonnosx3y

St
Jayng
aoel|

youeig

A

g0d

Gl

N

oLl

\

9)14 Joys160Yy
pspusixg

Jayojedsiq
uonoNJsu|

/
Gel

3|14 4918165y

A

/

0gl

8zl

sydn
SHSW

/
Gcl

sjun pu3z juoi4

GoL
N

IBROOB
LOEONSL

€0l
~

FUSET
UOHONSLY

L0l
~N

BN
Yo¥ed

SUBSTITUTE SHEET (RULE 26)

PCT/US2011/045797

WO 2012/016085

3/6

90¢

H

0l¢
un juswaJney

UM UonNoaxg

80¢

82z 922
N \ ~
ML | ¥XL M 8uI syoen
> ¥Z2T 6EC

Mx1 | XL | sur] syoen 21607 ayoe)
M1 | ¥XL 0 auI] syoen

S

L ¢ ®yded
0S¢ (s)dsi

0vc (s)ieisibay

Z¢2Z 01607 Jouno)
yidaqg uonoesuel |

0€¢ J8wuno)
yidaqg uonoesuel |

Hun SINPayYds

10¢

¥0¢

8107 10SS820.d

Jun 9pooaq

[°I %4
21607 uone.IoISay
uolnoesuel |

¥€C
21607
Bunuiod %098y0
uolijoesuel |

81¢
don

20¢
yun yoyed

¢ Old

o
AN

SUBSTITUTE SHEET (RULE 26)

WO 2012/016085

o)
-
o

310
Y

4/6

PCT/US2011/045797

Abort?\ N

Allocate Next Last
Branch Record

350
Y

Allocate Next Last
Branch Record
Entry And Add

Branch Addresses | 360

In
Transaction?

370

Set Transaction

Indicator N\
380

Entry And N\
Add Branch Addresses | 320
Set Transaction And
' N\
Abort Indicators 330
Take Next Executed
Instruction
N
340

FIG. 4

SUBSTITUTE SHEET (RULE 26)

WO 2012/016085

N
(@]

5/6

Store Last Branch Records
Into Branch Trace Buffer

Obtain Records From Buffer

Identify Branches Within
Transaction Based On
Transaction Indicators

Identify Branches Of Aborted
Transactions Region Based
On Abort Indicators

410

420

430

440

Generate Branch Back Trace
From LBR Records

N\

450

Optimize Code With
Transactional Memory
Transactions Based On

Branch Back Trace

N\

460

FIG. 5

SUBSTITUTE SHEET (RULE 26)

PCT/US2011/045797

PCT/US2011/045797

WO 2012/016085

6/6

009G

9 'Old

3d00 H
/ — E—
7 03 925 449
JOVHOLS Y1V 020 SIOIAIAWWOD | [ISNON / QEVOFAIM
H / H —
[z4] 716 816
o/l olany S3VIA3IA O/l 394di449 snd
. : F -
916G 968 6%
4/ 4/ 65
\ 8€S
365 e 765 SOIHAVYHO
d-d 13SdIHD d-d 4H93d-HOIH
s =]
93¢ 88¢ 8¢ 97¢G
d-d d-d / d-d d-d
0GSG
EG 288 ¢S b3
AHONW3N HOW HOW AHONW3N
08% (2]
HOSS3IO0™Hd HOSS3IO0™Hd

\

qv8s

/

av.S

SUBSTITUTE SHEET (RULE 26)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - claims
	Page 15 - claims
	Page 16 - claims
	Page 17 - drawings
	Page 18 - drawings
	Page 19 - drawings
	Page 20 - drawings
	Page 21 - drawings
	Page 22 - drawings

