PATENT SPECIFICATION

(21) Application No. 9114/77

(22) Filed 4 March 1977

(31) Convention Application No. 187 857

(32) Filed 10 March 1976 in

(33) Poland (PL)

(44) Complete Specification published 21 May 1980

(51) INT. CL.3 D01H 1/12

(52) Index at acceptance DID AEB

(54) METHOD OF AND DEVICE FOR THE PNEUMATIC SPINNING OF YARN

(71)We, CENTRALNY OSRODEK BADAWCZO-ROZWOJOWY MASZYN WLOKIEN-NICZYCH, a State Enterprise organised and existing under the laws of Poland, of Lodz, 5 55/59 Wolczanska Str., Poland, do hereby declare the invention, for which we pray that a patent may be granted to us, and the method by which it is to be performed, to be particularly described in and by the 10 following statement:

This invention relates to a method and a device for the pneumatic spinning of yarn

from natural and synthetic fibres.

A method of pneumatic spinning known 15 heretofore consists in admitting fibres entrained by air into a non-rotational or stationary spinning chamber where they are set into rotating motion by air jets, and producing appropriate peripheral velocities 20 in a section of the chamber where the yarn is to be formed and twisted by gathering of fibres from a sort of whirling ring thereof, whereafter the produced yarn is discharged from the chamber.

The device for putting said method into practice consists of a cylindrical, nonrotational or stationary chamber, which communicates at one of its ends with a source of vacuum, and is closed at the other 30 of its ends by the cylindrical insert from end to end through which extends an axial channel through which the spun yarn is discharged. In the peripheral wall of the chamber, and in communication with the source 35 of vacuum, are air-supply ducts which extend tangentially to the inner wall surface

of the chamber, and a fibre delivery The rate of spinning is proportional to

40 the peripheral velocities within the zone where the fibre ring is being formed in the spinning section of the chamber.

The whirl core developed in the centre of the chamber mitigates against appro-45 priate formation of said zone by the peripheral velocities, however, this whirl core becoming stabilized on the lower surface of the insert, and—from the other side—at the inlet to the suction source.

According to the present invention, we 50 provide a method of pneumatically spinning yarn inside a cylindrical, non-rotational spinning chamber closed at one end by a cylindrical insert incorporating a yarndischarge channel and communicating at its 55 other end with a source of vacuum through which loose fibres are drawn by suction into the chamber to be subjected to the action of air streams whirled into the chamber interior with the whirl core centred on the 60 axis of the chamber comprising restraining blades mounted on the inner end of the cylindrical insert and guide blades fitted to the wall of the spinning chamber at the inlet to the vacuum source in order to 65 inhibit the rotational velocity of air particles whirled into the chamber interior thereby to reduce the velocity in the whirl

Also according to the present invention, 70 we provide a device for pneumatic spinning of yarn from loose fibres, comprising a cylindrical, non-rotational spinning chamber communicating through one of its ends with a source of vacuum, and closed through the 75 other of its ends by a cylindrical insert incorporating a yarn discharge channel and provided with peripheral ducts to supply air and also with a fibre delivery channel, restraining blades mounted on the inner end 80 of the cylindrical insert, and guide blades fitted to the wall of the spinning chamber at the inlet to the vacuum source, in order to inhibit the rotational velocity of air particles whirled into the chamber interior in 85 operation of the device and thus reduce the velocity in the whirl core.

With the method and the device according to this invention, appropriate velocity distribution becomes possible in the section 90

of the chamber where the yarn is formed from the ring of rotating fibres, and thus the rate of spinning can be increased

accordingly.

An embodiment of the invention will now be described, by way of example, with reference to the accompanying drawings, in which Fig. 1 is a longitudinal section through a device for the pneumatic spin-10 ning of yarn from loose fibres, and Fig. 2 is an underneath plan view as seen from the vacuum source.

Referring to the drawing, the device according to the invention comprises a 15 cylindrical, non-rotational or stationary spinning chamber 1, which is restricted at one of its ends by a cylindrical insert 2 having a coaxial cylindrical boss 3 projecting from its end leading in the direction of 20 insertion. This insert 2 is provided with a channel 4 extending along the axis of the insert and from end to end thereof. Spun yarn 5 is discharged to the outside of the chamber through said channel 4. At the 25 other of its ends the chamber 1 communicates via suction duct 6 with a vacuum source (not shown). The chamber 1 has peripheral ducts 7 to supply air thereinto and which can be arranged in any section 30 of the chamber, and a fibre delivery channel 8 which is located in the upper part of the chamber. The ducts 7 extend tangentially

to the inner wall surface of the chamber 1. The cylindrical insert 2 is provided at its 35 lower face or end with radial restraining blades 9 to inhibit the velocity in the whirl core. The cylindrical insert 2 is widened at its end 14 leading in the direction of insertion and has at that end a peripheral

40 depending skirt 13 which shrouds the radial restraining blades 9 and defines with the boss at said end 14 an annular recess in which the blades 9 are located. Peripherallyspaced and longitudinally-extending guide

45 blades 11 are fitted to the wall chamber 1 at the inlet end of the suction duct 6 the guide blades 11 being in planes radial of the longitudinal axis of the duct 6. The blades 9 and 11 have a ram effect on the air particles

50 whirling inside the whirl core at the lower surface of the insert 2 and at the inlet end of the suction duct 6, and improve the distribution in the field of velocities, especially in favour of an increase in the velocities at

55 the wall of the spinning chamber 1.

In use of the device described, air supplied through the ducts 7 is sucked away through the suction duct 6, whereby the ducts 7 cause whirling of the air inside the chamber 1. Because of the restraining 60 blades 9, a proportion of the air particles swirling within the whirl core is obstructed and thereby causes the internal pressure in the core to increase and the direction of air flow to change, whereby the rotational 65 velocity in the whirl core is reduced.

The fibres delivered through the inlet channel 8 in consequence of the air draught produced by the source of vacuum, form a sort of a ring 12 swirling over the inner wall 70 of the chamber 1. To start spinning a length of yarn is introduced into the chamber I through the axial channel 4. When rotating, the free end of this length associates with swirling fibres, gathering and twisting them. 75 The spun yarn 5 is then discharged out of the chamber.

Reference is made to our co-pending patent applications nos. 7756/77 (Serial No. 1567681), 8052/77 (Serial No. 1567682) and 80 8957/77 (Serial No. 1567683). WHAT WE CLAIM IS:—

1. A method of penumatically spinning yarn inside a cylindrical, non-rotational spinning chamber closed at one end by a 85 cylindrical insert incorporating a yarndischarge channel and communicating at its other end with a source of vacuum through which loose fibres are drawn by suction into the chamber to be subjected to the action 90 of air streams whirled into the chamber interior with the whirl core centred on the axis of the chamber comprising restraining blades mounted on the inner end of the cylindrical insert and guide blades fitted to 95 the wall of the spinning chamber at the inlet to the vacuum source in order to inhibit the rotational velocity of air particles whirled into the chamber interior thereby to 100 reduce the velocity in the whirl core.

2. A device for pneumatic spinning of yarn from loose fibres, comprising a cylindrical, non-rotational spinning chamber communicating through one of its ends with a source of vacuum, closed through the 105 other of its ends by a cylindrical insert incorporating a yarn discharge channel, and provided with peripheral ducts to supply air and also with a fibre delivery channel, restraining blades mounted on the inner end 110

of the cylindrical insert, and guide blades fitted to the wall of the spinning chamber at the inlet to the vacuum source, in order to inhibit the rotational velocity of air particles whirled into the chamber interior in operation of the device and thus reduce the velocity in the whirl core.

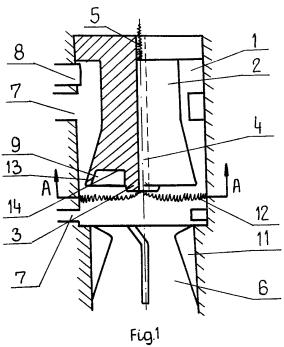
the velocity in the whirl core.

3. A method of pneumatically spinning yarn from loose fibres, substantially as 10 hereinbefore described with reference to the accompanying drawing.

4. A device for pneumatic spinning of

yarn from loose fibres, substantially as hereinbefore described with reference to the accompanying drawing.

FITZPATRICKS,
Chartered Patent Agents,
14/18 Cadogan Street,
Glasgow G2 6QW.
— and —
Warwick House,
Warwick Court,
London WC1R 5DJ.


Printed for Her Majesty's Stationery Office by The Tweeddale Press Ltd., Berwick-upon-Tweed, 1980 Published at the Patent Office, 25 Southampton Buildings, London, WC2A 1AY, from which copies may be obtained

1567684

COMPLETE SPECIFICATION

1 SHEET

This drawing is a reproduction of the Original on a reduced scale

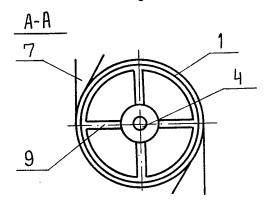


Fig. 2