

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁴ : H01S 3/10, 3/23		A1	(11) International Publication Number: WO 87/ 05751 (43) International Publication Date: 24 September 1987 (24.09.87)
(21) International Application Number: PCT/US87/00202 (22) International Filing Date: 2 February 1987 (02.02.87)		(81) Designated States: BE (European patent), CH (European patent), DE (European patent), FR (European patent), GB (European patent), IT (European patent), JP, KR, NL (European patent), NO, SE (European patent).	
(31) Priority Application Number: 839,475 (32) Priority Date: 14 March 1986 (14.03.86) (33) Priority Country: US		Published <i>With international search report.</i>	
(71) Applicant: HUGHES AIRCRAFT COMPANY [US/US]; 7200 Hughes Terrace, Los Angeles, CA 90045-0066 (US).			
(72) Inventor: BRUESSELBACH, Hans, W. ; 847 Malibu Meadows Drive, Calabassas, CA 91302 (US).			
(74) Agents: DURAISWAMY, Vijayalakshmi, D. et al.; Hughes Aircraft Company, Post Office Box 45066, Bldg. C1, M.S. A126, Los Angeles, CA 90045-0066 (US).			

(54) Title: EFFICIENT PHASE CONJUGATE LASER

(57) Abstract

A laser apparatus (10) utilizing a master oscillator power amplifier configuration wherein a master oscillator (12) provides a source of low energy, high phase front quality, and high spectral purity radiation, injected into at least one laser medium gain element (14) disposed along an optical path. Coupling means (16) is positioned to selectively couple a predetermined percentage of the master oscillator (12) radiation into the gain element (14) medium while preventing all but a predetermined percentage of any amplified radiation exiting the gain element (14) from re-entering the master oscillator (12). Phase conjugation means (20) is disposed along the optical path on the opposite side of the gain element (14) as the coupling means (16), for reflecting the phase conjugate of laser radiation incident thereon. Delay means positioned between the gain element (14) and the phase conjugation means (20) assures that radiation pulses coupled along the optical path traverse and substantially exit from the gain element (14), toward the phase conjugation means (20), before any reflected radiation from the phase conjugation means (20) enters the gain element (14).

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT Austria	FR France	ML Mali
AU Australia	GA Gabon	MR Mauritania
BB Barbados	GB United Kingdom	MW Malawi
BE Belgium	HU Hungary	NL Netherlands
BG Bulgaria	IT Italy	NO Norway
BJ Benin	JP Japan	RO Romania
BR Brazil	KP Democratic People's Republic of Korea	SD Sudan
CF Central African Republic	KR Republic of Korea	SE Sweden
CG Congo	LI Liechtenstein	SN Senegal
CH Switzerland	LK Sri Lanka	SU Soviet Union
CM Cameroon	LU Luxembourg	TD Chad
DE Germany, Federal Republic of	MC Monaco	TG Togo
DK Denmark	MG Madagascar	US United States of America
FI Finland		

-1-

EFFICIENT PHASE CONJUGATE LASER

1

BACKGROUND

5 This invention relates to lasers and more particularly to laser oscillator/amplifiers using phase conjugate reflectors to compensate for wavefront distortions.

10 Lasers and laser systems suffer from several sources of wavefront distortion and spectral broadening. Effects caused by thermal stress or gradients, vibration, or aberrations are all problems that contribute to distortions in the radiation wavefronts traversing a laser. In addition, thermal effects cause large transient effects on the operation during start-up, before the thermal equilibrium of steady state operation is reached for the optical elements. This can be a severe problem 15 for pulsed lasers and CW lasers if they are operated in bursts, since the transient period then comprises a larger percentage of the overall laser operating cycle.

20 Wavefront distortions degrade the performance of a laser and manifest themselves as poor energy extraction efficiency and beam divergence. Depending on the output beam quality and power levels desired, wavefront distortion in the components internal to the laser can make it inadequate for a given application. This is especially true for advanced communications or tracking 25 systems where a nearly diffraction limited laser output

1 is desired. Moreover, even if steady state operation
can be made to be satisfactory by conventional means,
thermal effects in high power or high energy density
lasers still create unsatisfactory performance during
5 the initial start-up periods prior to steady state
operation, when the laser elements are acquiring thermal
equilibrium.

Several techniques have been proposed for removing or
10 preventing wavefront distortion including specialized
retro-reflectors and deformable mirrors. In typical solid
state laser rods, thermal gradients generated by the
pumping energy causes an effect known as positive lensing
which can be corrected with a negative lens. However, for
15 the transient state mechanical drives must be employed to
dynamically compensate for the changing lensing. While
this has been employed with some success, there are several
drawbacks. First, for geometries that are not radially
symmetric, such as slab geometry laser gain media, media
lensing effects are not those of a simple lens and
20 requires complex lens structures to compensate. Second,
any "dynamic" lens system requires precise closed-loop
detection and adjustment at very high speeds. This has
led to the development of electronically controlled,
mechanically driven, deformable or flexible mirrors and
25 feedback loops or servo systems in large laser systems.
As is readily apparent, this makes a laser or laser system
more complex, costly and alignment error prone than
desired. This approach also still has operating response
(speed) limitations which simply cannot match the
30 transient effects rate to adequately compensate for a
variety of applications. No mechanical system has
achieved the desired level of compensation for advanced,
nearly diffraction limited lasers.

1 In addition, many applications require or desire
efficient operation even during the initial warm-up
or start-up phase of operation. Even the previously
proposed elaborate mechanical thermal lensing compensation
5 systems have failed to achieve good performance, in
terms of efficiency, under transient warm-up conditions.
Diffraction limited performance has been demonstrated
only in laboratory lasers under steady state conditions.

10 An alternate proposal to aberration compensation in
lasers is the use of phase conjugating reflectors. Here
laser energy from a gain medium is reflected by a phase
conjugate reflector, which replaces a conventional laser
mirror, and then passed back through the gain medium in a
double pass configuration.

15 The phase conjugate reflector produces reflected
radiation whose wavefronts behave as a time reversed
version of the incident wavefronts. This allows the
radiation to re-traverse the same optical path, including
any aberrations, in a reverse sense and thus become a non-
20 distorted wavefront. This is discussed in more detail in
"Optical Phase Conjugation" by V. V. Shkunov and B. Y.
Zel'dovich in SCIENTIFIC AMERICAN 253 #6, 54 (Dec 1985).
In this approach phase conjugation would be used to
passively compensate for short and long term transient
25 response or behavior as well as compensate for steady
state optical distortions. However, the proposed phase
conjugation schemes or embodiments described in the
literature either have not been demonstrated, require
relatively large amounts of oscillator power and are
30 consequently relatively inefficient, or do not address
limitations on energy extraction imposed by amplified
spontaneous emission in the amplifying medium.

1 The basic premise of the oscillator/amplifier
arrangement is as follows. Oscillators with excellent
beam quality and transient performance can be made at low
power. As oscillators are scaled to higher power, thermal
5 problems in the lasing medium become progressively
more severe, making it progressively more difficult to
simultaneously obtain good oscillator quality, transient
performance, and efficiency. The same problems occur
with amplifiers; however with amplifiers these problems
10 can more readily be surmounted by the use of phase
conjugation, or other, techniques. Therefore, in an
oscillator/amplifier it is desirable to minimize the
fraction of the total output, and input, energy in the
oscillator.

15 Laser oscillator/amplifiers using phase conjugation
have been described in the Soviet literature in articles
such as "Cancellation of Phase Distortions in an Amplifying
Medium with a Brillouin Mirror," O. Y. Nosach, et al, ZhETF
PIS. RED., Vol. 16, No. 11, pp. 617-621 (5 December 1972)
20 and "Connection between the Wave Fronts of the Reflected
and Exciting Light in Stimulated Mandel'Shtam-Brillouin
Scattering," B. Y. Zel'dovich, et al, ZhETF PIS. RED.,
Vol. 15, No. 3, pp. 160-164 (5 February 1972). Although
pulsed systems operating at a high energies have been
25 described, those operating at a high repetition rate
have been low gain and energy.

30 Additional lasers or laser systems are illustrated in
U.S. patents number 4,321,550 to Evtohov, and 4,233,571
to Wang et al. These patents cover lasers whose output is
obtained after single or multiple passing laser radiation
through a gain medium. Energy is extracted out of the
gain media on one round trip. While these lasers appear
to offer aberration compensation and improved wavefront

1 output, they require relatively large amounts of
oscillator energy to drive since the medium is not
efficiently driven to saturation. Also, these designs do
not allow for a wide range of optical distortions in the
5 lasing medium, and, therefore, transient performance is
not good and/or performance is limited to a narrow power
range.

What is needed, then, is a method to saturate the
laser gain media, and thus obtain high extraction
10 efficiency while minimizing oscillator performance
requirements. This requires that the amplifier has high
gain. However, since the gain is limited by amplified
spontaneous emission, methods are also needed to minimize
this effect. At the same time, methods are needed to
15 improve the optical layout so that phase conjugation can
be made effective over a wide range of optical
distortions, allowing operation during transients and
over a wide power range.

20

SUMMARY

One purpose of the invention is to allow the maximum
extraction of energy from the gain medium while using
phase conjugation.

A second purpose of the invention is to improve the
25 range of output powers and transient response for phase
conjugated lasers.

A third purpose is to increase the overall efficiency
of the oscillator/amplifier configuration by maximizing
the ratio of amplifier to oscillator energy.

30 A fourth purpose is to increase the amount of power
output.

A fifth purpose of the invention is to maximize the
fidelity of the phase conjugation by an optical design
that minimizes the loss of phase information along the
35 optical path.

1 These and other purposes of the invention are
realized in a laser apparatus utilizing a master
oscillator power amplifier (MOPA) configuration wherein
a master oscillator provides a source of radiation
5 that is injected into an amplifying stage where it is
amplified to provide desired higher power output laser
radiation. The master oscillator comprises a low
energy, high phase front quality, and high spectral
purity laser oscillator which provides pulses of laser
10 radiation. The pulses have a duration and wavelength
determined by the desired laser application as well as
the type of oscillator medium used.

15 The amplifier stage comprises at least one lasing
medium gain element disposed along an optical path
extending between phase conjugate reflector means disposed
on one end and a coupling means on the other.

20 The energy from the master oscillator is coupled into
the gain element using the coupling means to selectively
couple a predetermined percentage of the output from the
master oscillator along the optical path through the gain
element. The coupling means is also configured to prevent
all but a predetermined percentage of radiation exiting
the amplifier stage from re-entering the master
oscillator.

25 The laser further utilizes a delay means positioned
between the gain element and the phase conjugation means
to assure that radiation pulses from the master oscillator
output traverse and substantially exit the gain element,
toward said phase conjugation means, before any reflected
30 radiation from the phase conjugation means enters the gain
element again. The delay means is preferably achieved by
establishing an optical path between the gain element and
the phase conjugate reflector whose length is equal to or
greater than a distance, D, which is defined as $D = 1/2 \tau_{cn}$

1 where τ is the temporal duration of pulses being
5 injected by the master oscillator, c is the speed of
light, and n is the index of refraction of the medium
10 being traversed.

15 In a further aspect of the invention, the coupling
means has a polarization dependent transmittance of
radiation from the master oscillator into or along the
gain element optical path and the laser further includes
polarization rotating means for rotating the polarization
20 of radiation reflected by the phase conjugate reflector
and traversing along the optical path toward the coupling
means. This is preferably accomplished by using a high
quality optical flat positioned at Brewster's angle with
respect to the master oscillator input radiation and a
25 polarization rotator, a quarter wave plate, or a frequency
doubler adjacent to the Brewster plate. This arrangement
provides isolation between the oscillator and the
amplifier.

30 In another aspect of the invention, the laser employs
one or more imaging elements disposed along the optical
path between the gain element and the phase conjugate
reflector so as to provide substantially maximum transfer
of phase information from the media to the phase conjugate
reflector and back. This increases the fidelity of
35 conjugation, efficiency of the amplification and
saturation, and the range of powers over which the device
can operate.

40 In a further aspect of the invention, the master
oscillator and amplifier stages are additionally optically
isolated from each other by an isolation means which is
preferably a plasma shutter. This prevents laser
radiation above a predetermined energy density from re-
entering the master oscillator from the amplifier stage.

1 In still further aspects of the invention, additional
laser gain elements may be disposed along the optical path
between the first gain element and the phase conjugate
reflector. The phase conjugate reflector may comprise a
5 Stimulated Brillouin Scattering medium operating at the
desired wavelength or a waveguide.

BRIEF DESCRIPTION OF THE DRAWINGS

10 The novel features of the present invention may be
better understood from the accompanying description when
taken in conjunction with the accompanying drawings in
which like characters refer to like parts and in which:

15 FIG. 1 illustrates a diagrammatic view of a high
extraction efficiency laser apparatus according to the
principles of the present invention;

FIG. 2 illustrates a diagrammatic view of a high
extraction efficiency laser according to the present
invention which utilizes multiple gain elements and the
important principle of imaging; and

20 FIG. 3 illustrates an alternative embodiment of
the phase conjugating reflector.

DESCRIPTION OF THE PREFERRED EMBODIMENTS

25 The present invention comprises a laser apparatus
utilizing a basic master oscillator power amplifier
(MOPA) configuration having coupling means between the
master oscillator and amplifier stages as well as a
delay means positioned between the amplifier stage and
a phase conjugate reflector for double pass reflection.
30 This configuration has the advantage of increased
extraction efficiency from the laser gain media and
high power output.

1 The principles of the invention are further
illustrated in Fig. 1 where a laser 10 has a master
oscillator source 12 which provides pulses of radiation to
pump a single laser gain element 14. In the embodiment of
5 Fig 1, the master oscillator is preferably a laser
oscillator and is relatively conventional in design. The
laser oscillator can comprise one of several known lasers
or laser types and use gas, dye or solid state laser
media. The laser oscillator in the usual embodiment
10 provides a very high quality output beam, that is, single
radial and axial mode performance. However, the output of
the oscillator could be designed to have any phase front
desired or required of the laser 10. The output of laser
10 will duplicate this oscillator phase front. The MOPA
15 configuration in conjunction with other elements described
below increases energy extraction of laser 10 from gain
element 14 and therefore allows oscillator 12 to operate
at very low energy on the order of a few millijoules.
This differs from previous laser designs and further
20 enhances the ease of constructing an oscillator 12 having
a very high quality output. This follows from the fact
that at lower energies and powers mode quality,
divergence, and spectral broadening are easier to control.

Typically oscillator 12 is operated at only 1 to 2
25 percent of the energy level of amplifier 14. An added
benefit of this design is that oscillator 12 operation can
more easily be made to have good performance under
transient conditions without significantly effecting
overall laser efficiency.

30

1 The output of oscillator 12 is coupled into gain
element 14 using coupling means 16. Coupling means 16
comprises an optical element that is capable of
transferring a predetermined percentage of the oscillator
5 12 output, but not all, to the optical path leading to
gain element 14 without, in conjunction with element 24,
allowing return. The preferred embodiment of Fig 1.
utilizes a Brewster plate. The coupling means 16 can also
consist of other elements known in the art including, but
10 not limited to, a polarizer, coated optical flats, or
attenuators.

15 The Brewster plate serves several purposes. It
defines a plane beyond which wavefront aberrations are
corrected by phase conjugation. All optical components
positioned in the optical train after the Brewster plate
have their aberrations corrected. More importantly,
it also serves to help isolate the oscillator and the
amplifier from each other. The Brewster plate will,
according to basic principles of optical physics, reflect,
20 depending upon the type of glass used, approximately 15%
of the output of oscillator 12 into medium 14. This is
accomplished by the automatic separation of incident
oscillator 12 output into two polarization modes, p and s
polarization. Since it is usually arranged that all of
25 the oscillator output is p polarization, only 15 %
of oscillator output enters the amplifier stage.
Reciprocally, only 15% of any amplified spontaneous
emission having the p polarization will enter oscillator
30 12 from the gain element 14. This approximately 16 dB of
induced loss provides isolation that effectively prevents
amplified spontaneous emission from occurring as a result
of multiple passes through the gain media and/or
oscillator. If this is not sufficient, additional loss
may be introduced either by using alternate glass in the
35 Brewster plate, attenuators, or other means.

1 The above paragraph addresses the importance of
isolation of the oscillator from the amplifier before the
oscillator pulse has been emitted, but while the amplifier
elements have high gain. It is also important to isolate
5 or shield the oscillator from being impinged upon by high
energy from the amplifier after the oscillator pulse has
occurred. The combination of the polarizing Brewster
plate and the polarization altering element either in
location 22 or 24 does this. If either element 22 or 24
10 (both would not be used at the same time) is a quarter
wave plate or a 45° Faraday rotator, the combination
is a method well known to the art. In this case, a
Brewster plate is particularly effective because of
its extremely small ratio of "s" polarization reflection
15 to transmission. If element 24 is a high efficiency
frequency doubler operating in what is known to the
art as 90 degree phase matching, effective shielding
of the oscillator is also achieved.

20 In the preferred embodiment of Fig. 1, Brewster plate
16 is an uncoated optical flat, so that its damage
threshold is high. Other optical elements, such as but
not limited to, beam splitters having multi-layer
dielectric coatings could be used for coupler 16.
However, the dielectric coatings have consequently
25 lower damage thresholds. In that case laser 10 could
not be operated in as simple and efficient configuration
as described herein because the high fluence levels
beneficial to good amplifier energy extraction could
not be used without damage. The use of an uncoated
30 Brewster plate makes the gain element the optical
element limiting the allowable laser radiation fluence.

1 Gain element 14 amplifies the radiation injected by
coupler 16 as it traverses element 14 and exits along an
optical path to reflector 20. Reflector 20 is a phase
conjugate reflector which can comprise several known phase
5 conjugation materials or elements. However, for the
preferred embodiment, and the highest efficiency output,
some phase conjugation schemes are not well suited for
this application. A four-wave mixing element, as an
example, typically requires additional pumping beams or
10 optics which calls for even more power and therefore lower
output to input energy ratio as well as increased
complexity. Another complication is the fact that four-
wave mixers also perform conjugation at essentially any
incident radiation energy. Since some low energy
15 stimulated emission is always present, it would be
reflected and amplified which is an undesirable result.

Therefore, the preferred phase conjugate reflector 20
comprises a stimulated scattering type medium. Stimulated
Brillouin scattering (SBS) reflectors induce a small
20 wavelength shift that can be readily tolerated by the
linewidth of the gain element used in the preferred
embodiment.

Another very important advantage of a stimulated
scattering phase conjugate reflector is the presence
25 of a threshold effect. This threshold effect means
that phase conjugation does not start to occur until a
minimum intensity is present in the medium comprising
phase conjugate reflector 20. In the preferred embodiment,
the phase conjugator is, therefore, deliberately designed
30 to have its threshold higher than any expected amplified
spontaneous emission but sufficiently lower than the
amplified oscillator pulse that efficient reflection
occurs.

1 The threshold effect means that amplified spontaneous
emission radiation from gain element 14 will not be
reflected or phase conjugated as it has a very low
intensity. This isolation is provided by a SBS reflector
5 in a passive and simple way. Such isolation would be very
difficult to achieve by conventional means. The operation
of laser 10 with an ordinary mirror and without elaborate
isolation devices of some type would not be possible
because self oscillation of the gain element, which is
10 pumped to very a high gain, would certainly occur. This
oscillation cannot occur with the SBS mirror because it
can be designed to have essentially zero reflectivity for
the low level spontaneous emission of the gain element.

15 The positioning of phase conjugate reflector 20 is
also critical to the function of the present invention.
Previously proposed lasers using a phase conjugate
reflector did not recognize the importance of this.
Therefore, it was implicitly thought desirable to have
20 the phase conjugate reflector close to the medium for
purposes of construction, decreased beam divergence,
or other reasons. However, this is not the case. The
transit time for radiation reflected from reflector 18
is an important factor contributing to the efficiency of
laser 10.

25 Oscillator 12 injects a pulse of radiation (assume
not CW) along the optical path through gain element 14 to
reflector 20. This pulse has some finite duration,
typically pulses on the order of 10 to 30 nanoseconds
which corresponds to a physical length of 10 to 30
30 feet (based on approximately 1 ft/nanosecond). At the
same time the gain element is usually only a few inches
in length. Even if the gain element were several feet
long, it is clear that the oscillator pulse will travel
through the amplifier a part at a time.

1 This being the case, if reflector 20 is too close to
gain element 14, the pulse front will start to be
reflected from reflector 20 before the whole pulse has
cleared element 14. Therefore, what happens with previous
5 approaches to phase conjugation and indeed multiple pass
amplification in general, is that some of the pulse
returns to the gain element before the entire pulse has
cleared the first pass. This means that while some of the
initially injected pulse is still being amplified some of
10 the returned pulse is already taking energy out of the
pumped gain medium.

15 In terms of detailed laser amplification processes, a
pulse traversing an amplifying medium is amplified by
creating emission from energetically pumped atoms or
molecules present. For a small amount of energy in the
pulse the gain is high, say a 100 to 1 ratio for example.
The same process occurs for the reflected pulse with a
major difference. The returning pulse energy is already
high (amplified) so the gain is saturated and the ratio is
20 therefore lower, say 10 to 1.

25 Gain in general is proportional to the stored energy
in an amplifier gain element. Laser 10 is designed in
such a way that maximum extraction of the stored energy
occurs on the final or second pass of radiation through
element 14. Using techniques known in the art of laser
design, gain element characteristics and oscillator energy
are adjusted so that the first pass gain is high and the
gain element medium is saturated by the return pulse
resulting in very high energy and efficient extraction
30 from the gain element medium. It is not possible to have
high gain in an amplifier element unless it is well
isolated.

1 If the first radiation pass occurs contemporaneously
with the second, the later portions of the entering pulses
experience very little amplification because a significant
fraction of the stored energy, and therefore gain, have
5 already been removed. In this case not all of the of the
initial pulse gets amplified, resulting in the reflected
pulse not having sufficient energy to ensure saturation on
the return pass. To put it another way, while some of the
initial pulse is trying to obtain energy, the return pulse
10 at a higher energy is already depleting the medium. The
last part of entering pulse from oscillator 12 would not
be adequately amplified due to this depletion. As a
result, when reflected from 20, the last part of the pulse
would also not saturate the amplifier medium upon return,
15 resulting in less than optimal output. In the past a
proposed solution to this problem was to use a higher
energy oscillator in order to provide pulses initially with
sufficient energy to effect total extraction on the final
pass. This creates other problems. First, a higher energy
20 and power, and therefore more difficult and inefficient to
realize, high quality oscillator is required. Second, the
reflectors 16 and 20 must be capable of efficiently
reflecting higher amounts of energy; losses in either
have a greater effect on the laser efficiency. Third,
25 greater distortion of the temporal structure of the
pulse occurs.

30 Laser 10 solves these problems by employing an
optical delay between phase conjugate reflector 20 and
gain element 14 to assure that all of the initial pulse
has traversed the medium before returning. The use of the
delay path removes the energy extraction difficulties of
configurations without delay. Maximum possible gain is
achieved during the first radiation pass because gain
element 14 has high undepleted stored energy on this pass.

1 High extraction is then achieved on the second because the gain is very little depleted and the oscillator energy was chosen so that the first pass amplified it above the saturation fluence for the amplifier.

5 The optical delay is implemented in the preferred embodiment of FIG. 1 as an optical path 26 whose length D is chosen to be equal to or greater than the distance, $1/2 \tau c$, where c is the speed of light, that light travels during the pulse duration τ of oscillator 12. The 10 pulse thus completes the first traversal of the amplifier before it begins the second. This feature allows very efficient operation of the amplifier with small oscillator energy.

15 The now amplified pulse exiting gain element 14 again encounters coupling means 16. If the polarization of the pulses is rotated near 90 degrees from the input polarization, then the pulse passes out of laser 10. Recalling of course the earlier discussion regarding the transfer of 15% of the energy by reflection from the Brewster 20 plate, only 15% of the energy of non-polarization rotated pulses would return toward oscillator 12.

25 To accomplish the desired high percentage output and low percentage reflection back to oscillator 12, the output from gain element 14 is linearly polarized perpendicular to the input from the oscillator. This is achieved by using one of several means including using a frequency doubler, quarter wave plate, or a 45° Faraday rotator. The embodiment illustrated in FIG. 1 uses a Faraday rotator or quarter wave plate positioned either 30 between gain element 14 and reflector 20 at 22 or between the Brewster plate 16 and the gain element 14 at 24, or a frequency doubler at 24. The output can thus pass through the Brewster plate without loss. Note that 22 and 24 may represent different optical elements in different 35 embodiments.

1 As described a component which changes polarization
of the beam is required in the amplifier chain. If a
depolarization compensating phase conjugation mirror is
employed, a nonreciprocal element such as
5 a Faraday rotator or frequency doubler would be
necessary.

While most of the basic principles of the present invention are illustrated in FIG. 1, further elements can be used to improve the output of laser 10. These
10 additions are shown in FIG. 2 where a laser 100 is illustrated using the basic MOPA configuration. Elements having a number similar to that of Fig 1 are the same, thus elements 112, 114, 116 and so on are equivalent in function to 12, 14, 16, and so on in FIG. 1.

15 In FIG. 2 master oscillator 112 provides pulses for pumping laser gain elements 114a and 114b. Multiple gain elements are used in order to obtain increased energy and/or power output. In the illustrated embodiment two rods spaced apart so as to prevent amplified spontaneous
20 emission (ASE) between them are used. However, any transverse geometry consistent with ASE considerations can be used.

When using multiple gain elements, the aperture size of each element is controlled so that each successive
25 element is smaller than the previous. Because the phase conjugate mirror has a finite reflectivity, efficiency considerations make it desirable to reflect small amounts of energy from it. If multiple amplifiers of graduated size are used, the energy lost to the phase
30 conjugate mirror will be small. In a reduction to practice of the present invention, approximately 20mJ were lost in this manner: output was 850mJ. The amount of energy at the mirror was approximately 100mJ.

1 The oscillator 112 input portion of laser 100 has
additional elements present for increased protection of
the oscillator from stray amplifier output. When a
frequency doubler 124 is included in laser 100 adjacent
5 to gain element 114, 15 percent of the residual undoubled
energy is reflected back toward the oscillator by
Brewster plate 116. This could damage the oscillator.
This can also occur when something other than the
frequency doubler is used if significant depolarization
10 is present which allows a large percentage of the
output to have the same polarization as the input. To
prevent this damage a positive lens telescope, 130,
arranged as a plasma shutter is positioned in the
optical path of the oscillator output. Telescope 130
15 comprises lens elements that focus the radiation to a
narrow waist or spot. The lenses are chosen so that
air sparks will occur for an energy level above that
of the oscillator output by a factor that takes into
account damage tolerance of the relevant components.

20 Brewster angle polarizing beam splitter 118 again
serves to purify the polarization of oscillator 112 output
as in Fig 1. and also serves as a convenient, movement
insensitive, fold, in conjunction with the Brewster plate
116.

25 If additional protection or isolation is desired, a
Brewster angle or other passive saturable absorber dye Q-
switch can be placed between the master oscillator and the
amplifier elements and a multiple etalon used for
oscillator output coupling. This also aids in protecting
30 the oscillator from stray amplifier output and in
preventing isolation of the oscillator and amplifier from
pre-lasing prior to Q-switch opening.

1 A single aperture, which may or may not be apodized,
or even consist of the rod end, is used to define the
amplifier beam near field spot size. It is important that
only one beam limiting aperture is encountered by the
5 beam.

10 The embodiment of FIG. 2 further illustrates another
improvement provided in the efficiency of laser operation
by the use of the present invention. Disposed at several
points along the optical path of laser 100 are a series of
lenses used as imaging elements, 128a, b, c and lenses 132
used for otherwise altering beam propagation. These
lenses provide for improved operation of laser 100 by
transferring substantially all of the phase information
from the gain elements through or to each other and
15 the phase conjugate reflector 118.

20 To achieve good phase conjugation fidelity sub-
stantially all of the phase information in the beam
must be collected by the phase conjugator. As a beam
traverses a long optical path, diffraction occurs, and
the phase information concerned with aberrations having
25 smaller transverse scale than the entire beam, spreads
into a diverging angle that becomes larger in inverse
proportion to the transverse size of the aberrations. If
the energy at these larger angles is removed by apertures
elsewhere in the optical path before reaching the phase
25 conjugator, the phase information it carries is lost and
fidelity is commensurately poorer. Optical elements other
than deliberate apertures can effectively, albeit
inadvertently, have this effect. For example, in FIG 2.
30 if one of the features (lens 128) of this invention were
not included, the outer diameter of amplifier element 114b
would remove phase information introduced into the beam by
amplifier element 114a. Element 128a is a lens positioned

1 in such a way, known in the art, that it images the
aperture of element 114a into that of 114b. The
transverse size of element 128a is chosen by design to
be such that sufficient of the diverging phase information
5 is collected to provide the desired fidelity.

This imaging technique has not previously been used
for laser oscillator/amplifiers, with or without phase
conjugation. One reason for this is that the imaging
results in the beam being focused at some point between
10 what are known in the art as the object and image planes.
This is a problem in high power lasers because air
breakdown or materials damage near the focus occurs unless
the focus is in an evacuated chamber. In the present
invention, however, this problem is controlled in two
15 ways. First, additional lenses 132 in the image planes
are used to position the focuses away from optics. Second,
an aberrator 136 which deliberately distorts the phase
front of the beam in a controlled way, is placed in or
near one of the image planes. This results in the focuses
20 not being sufficiently intense to cause air or gas
breakdown. The second technique only works if the
reflector 120 is phase conjugating. The imaging technique
is applicable to all optical amplifiers.

Because the distance between the amplifiers 114a,
25 114b and the phase conjugating reflector 120 may be
large, additional relay imaging lenses, 128b and 128c,
are used in the embodiment of FIG. 2. Folding reflectors
134 can comprise prisms or conventional mirror elements
suitable for the intensity, energy density, and wave-
30 length of interest. The use of elements 134 allows
for a long optical delay path 126 to be established in
a short laser apparatus.

1 The phase conjugate reflector 120 is again preferably
a Stimulated Brillouin Scattering (SBS) type reflector.
An exemplary SBS reflector would be methane or tetra-
fluoromethane in a pressurized gas cell having an
5 optically clear input window. The present invention
is not limited, however, to this media, or to the SBS
process. Other nonlinear optical processes and other
forms of media such as liquids, solid state crystals,
glasses and plasmas can be utilized as would be
10 appreciated by those skilled in the art of phase
conjugation.

Other geometries of the phase conjugator can be
advantageously utilized; one embodiment is briefly
illustrated in FIG 3. Here element 222 is an aberrator
15 which would be placed in the image plane of lens 128c
in the same manner as aberrator 122. Lens 232 is
positioned so as to produce a demagnified image of
plane 222 into the entrance face of light guide 220
which constitutes the nonlinear optical medium producing
20 phase conjugation. The light guide may be a solid
optical fiber or a tube filled with similar gaseous or
liquid media as those given above. The advantage of
this geometry is that substantially all the phase
information is collected by the phase conjugator 220,
25 meaning that it maintains nearly perfect phase conjugation.
This in turn improves the wavefront in the gain elements
and therefore, the transfer of energy and efficiency of
laser 100.

30

Example

The phase conjugate mirror for the embodiment being
described consisted of a six inch long cell filled with
pressurized methane or tetrafluoromethane into which the
beam was focused using a 100mm focal length lens; phase
35 conjugation was achieved by backward SBS. Threshold for
the device being described occurred at approximately 10mJ.

1 An optical schematic is shown in FIG. 2 of an
apparatus in which 850mJ of essentially diffraction
limited output energy, at 10 pulses per second, has
been demonstrated with the use of 2 Nd:YAG rods 3
5 inches long (one 1/4 inch and the other 5/16 inch in
diameter) as amplifier stages and an oscillator having
a 12mJ output.

10

15

20

25

30

35

CLAIMSWhat is Claimed is:

1. A laser apparatus utilizing a master oscillator power amplifier configuration wherein a master oscillator provides a source of radiation that is injected into an amplifying stage where it is amplified to provide desired higher power output laser radiation, comprising:
 - a master oscillator which further comprises a low energy, high phase front quality, and high spectral purity laser oscillator;
 - an amplifier stage comprising at least one lasing medium gain element disposed along an optical path along which output radiation from said master oscillator is directed;
 - coupling means for selectively coupling a predetermined percentage of the output radiation of said master oscillator along said optical path and into said gain element while preventing all but a predetermined percentage of any amplified radiation exiting said amplifier stage from re-entering said master oscillator;
 - phase conjugation means also disposed along said optical path on the opposite side of said gain element as said coupling means, for reflecting the phase conjugate of laser radiation incident thereon; and
 - delay means positioned between said amplifier stage gain element and said phase conjugation means in order to assure that radiation pulses coupled along said optical path from said master oscillator traverse and substantially exit from said lasing medium gain element, toward said phase conjugation means, before any reflected radiation from said phase conjugation means enters said gain element.
- 5
- 10
- 15
- 20
- 25
- 30

1 2. The laser apparatus of Claim 1 wherein said delay
means comprises an optical path separation length between
said gain element and said phase conjugate reflector whose
length is equal to or greater than a distance, D, which is
5 defined by the relationship:

$$D = 1/2(\tau)cn$$

10 where (τ) is the temporal duration of pulses of radiation
injected from said master oscillator, c is the speed of
light, and n is the index of refraction for the medium
being traversed.

1 3. The laser apparatus of Claim 1 wherein said
coupling means has a polarization dependent transmittance of
radiation from said master oscillator along said optical
path and said laser further includes polarization rotating
5 means for rotating the polarization of radiation re-
traversing said gain element and exiting along said optical
path toward said coupling means.

1 4. The laser apparatus of Claim 3 wherein said
coupling means comprises a high quality optical flat
positioned at Brewster's angle with respect to the optical
path of the output from said master oscillator; and said
5 polarization rotation means comprises a polarization
rotator, quarter wave plate, or frequency doubler adjacent
said flat.

1 5. The laser apparatus of Claim 1 further comprising
imaging means disposed along the optical path between said
phase conjugation means and said gain element so as to
provide maximum transfer of phase information from the
5 lasing medium of said gain element to said phase conjugate
reflector and back.

1 6. The laser apparatus of Claim 5 further comprising
aberration means disposed along said optical path
between said imaging means and said coupling means for
distorting the radiation in a predetermined manner to
5 sufficiently decrease the intensity of the radiation at
focus to prevent breakdown.

1 7. The laser apparatus of Claim 1 further
comprising optical isolation means disposed between said
master oscillator and said coupling means to further prevent
laser radiation above a predetermined energy density from
5 re-entering said master oscillator from said amplifier
stage.

1 8. The laser apparatus of Claim 7 wherein said
optical isolation means comprises a plasma shutter.

1 9. The laser apparatus of Claim 1 further comprising
at least a second lasing medium gain element disposed along
said optical path between said coupling means and said phase
conjugation means.

1 10. The laser of Claim 9 further comprising imaging
means disposed along the optical path between said said gain
element and said second gain element to provide maximum
transfer of phase information from one gain element to the
5 other gain element and back.

1 11. The laser of Claim 9 further including a
telescoping lens system disposed between said gain element
and said second gain element.

1 12. The laser apparatus of Claim 1 further comprising focus means for focusing laser radiation into said phase conjugate means being disposed along said optical path between said gain element and said phase conjugation means.

1 13. The laser of Claim 1 wherein said phase conjugation means comprises a Stimulated Brillouin Scattering medium operating at a predetermined, desired wavelength.

1 14. The laser of Claim 13 wherein said SBS medium comprises a waveguide.

1 15. The laser of Claim 13 wherein said SBS medium comprises an enclosure containing a pressurized gaseous medium chosen from the group of methane or tetrafluoromethane.

1 16. The laser of Claim 1 wherein said phase conjugation means comprises a Stimulated Raman Scattering medium operating at a predetermined, desired wavelength.

1/2

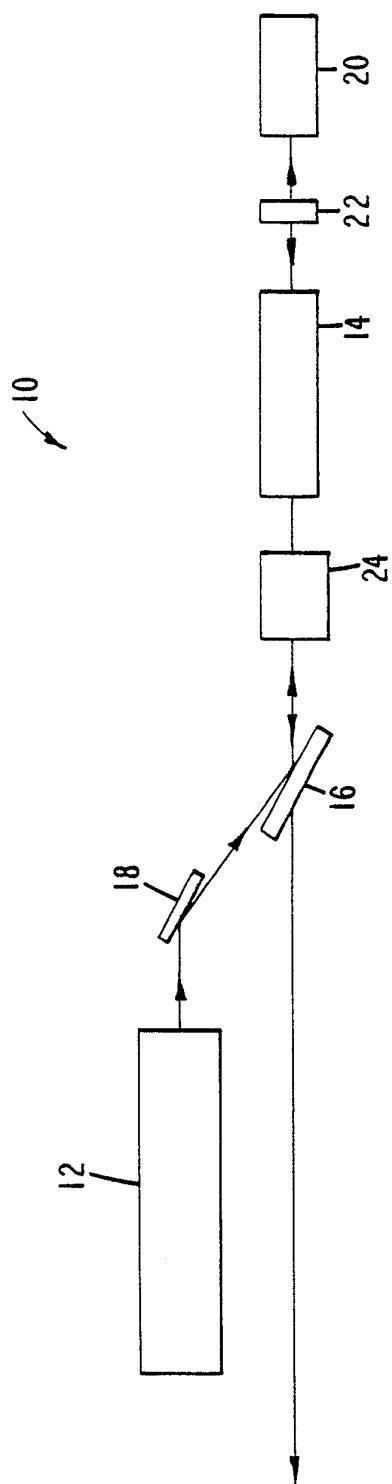


Fig. 1.

Fig. 2.

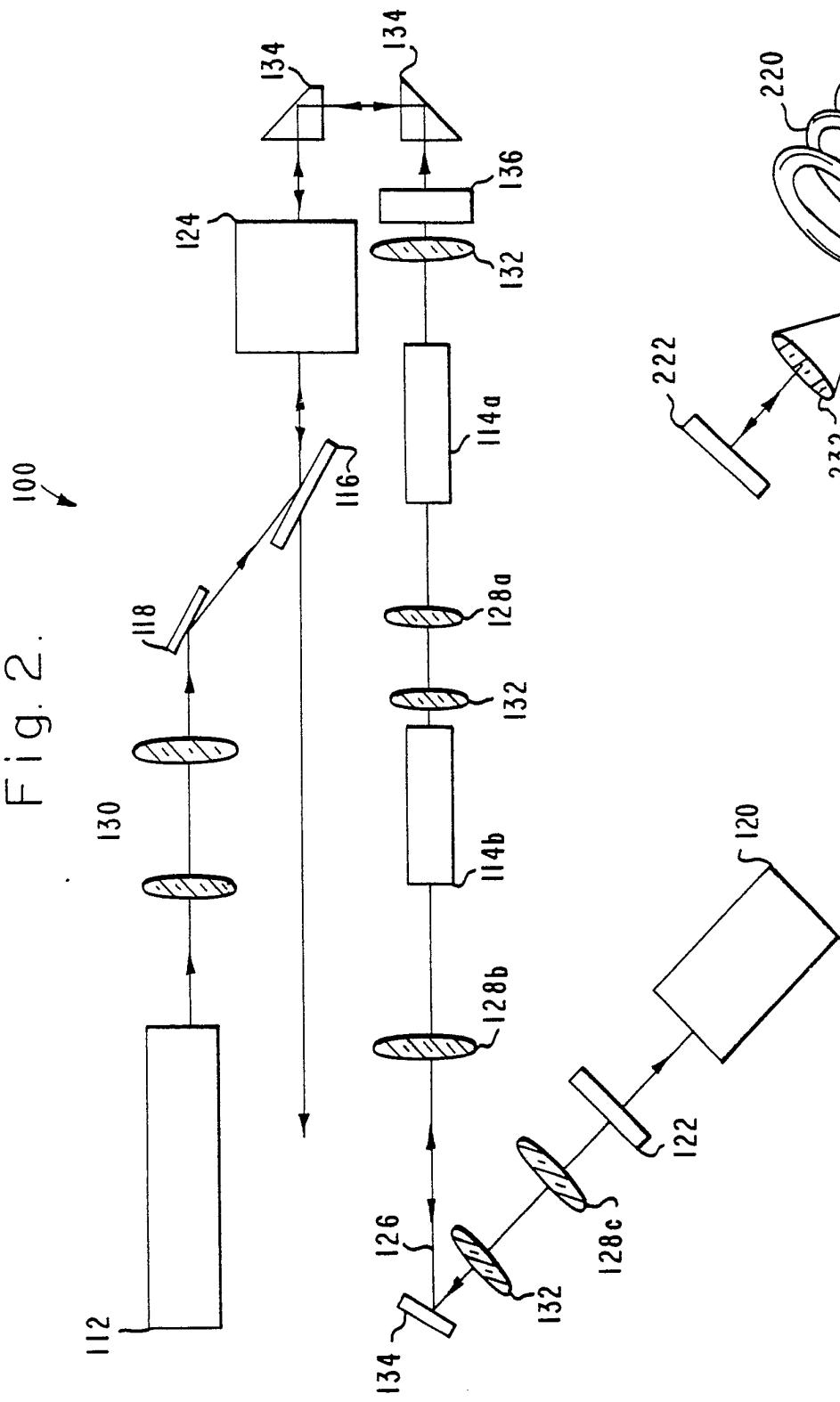


Fig. 3.

INTERNATIONAL SEARCH REPORT

International Application No. PCT/US 87/00202

I. CLASSIFICATION OF SUBJECT MATTER (if several classification symbols apply, indicate all) *

According to International Patent Classification (IPC) or to both National Classification and IPC

IPC⁴: H 01 S 3/10; H 01 S 3/23

II. FIELDS SEARCHED

Minimum Documentation Searched ⁷

Classification System ⁸	Classification Symbols
IPC ⁴	H 01 S; G 02 F

Documentation Searched other than Minimum Documentation
to the Extent that such Documents are Included in the Fields Searched *

III. DOCUMENTS CONSIDERED TO BE RELEVANT*

Category *	Citation of Document, ¹¹ with indication, where appropriate, of the relevant passages ¹²	Relevant to Claim No. ¹³
X	Applied Physics B. Photophysics and Laser Chemistry, vol. B36, no. 2, February 1985 (Springer-Verlag, Berlin, DE), I.D. Carr et al., "Performance of a Nd:YAG oscillator/amplifier with phase-conjugation via stimulated brillouin scattering", pages 83-92, see abstract; page 83, column 2, lines 1-18; figure 1(a)	1-3,6,12-15
Y	--	4,5,7-10,16
X	Soviet Journal of Quantum Electronics, vol. 13, no. 10, October 1983 (American Institute of Physics, New York, USA), B.N. Borisov et al., "Pulse-periodic neodymium laser with wavefront reversal in a stimulated-Brillouin-scattering mirror and with frequency doubling", pages 1411-1413, see page 1411, column 1, lines 29-32; figure 1	1-3,12
A	IEEE Journal of Quantum Electronics, vol. QE-17, no. 9, September 1981 (IEEE, New York, USA), K.J. Witte et al.,	./.

- * Special categories of cited documents: ¹⁰
- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

- "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step
- "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- "Z" document member of the same patent family

IV. CERTIFICATION

Date of the Actual Completion of the International Search

25th May 1987

Date of Mailing of this International Search Report

19 JUN 1987

International Searching Authority

EUROPEAN PATENT OFFICE

Signature of Authorized Officer

M. VAN VEL

III. DOCUMENTS CONSIDERED TO BE RELEVANT (CONTINUED FROM THE SECOND SHEET)

Category *	Citation of Document, with indication, where appropriate, of the relevant passages	Relevant to Claim No
Y	"Advanced iodine laser concepts", pages 1809-1818, see page 1813, column 1, lines 17-20; figures 2,3 --	1,2 5,7,10,11
A	Soviet Journal of Quantum Electronics, vol. 12, no. 7, July 1982 (American Institute of Physics, New York, USA), V.A. Boiko et al., "High-power ruby laser with a stimulated Brillouin scattering mirror for generation of a high-temperature plasma", pages 970- 972, see page 971, column 1, lines 8-12; figure 1 --	1,2 7-11
Y	GB, A, 2004411 (COMPAGNIE GENERALE D'ELECTRICITE) 23 March 1979, see page 1, line 107 - page 2, line 19; figure 1 --	4,7
Y	Soviet Physics Technical Physics, vol. 24, no. 10, October 1979 (American Institute of Physics, New York, USA), S.A. Lesnik et al., "Laser with a stimulated-Brillouin-scattering complex-conjugate mirror", pages 1249- 1250, see page 1249, column 1, lines 19-22 -----	16

ANNEX TO THE INTERNATIONAL SEARCH REPORT ON

INTERNATIONAL APPLICATION NO. PCT/US 87/00202 (SA 16232)

This Annex lists the patent family members relating to the patent documents cited in the above-mentioned international search report. The members are as contained in the European Patent Office EDP file on 10/06/87

The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
GB-A- 2004411	28/03/79	BE-A- 869734	14/02/79
		FR-A, B 2402956	06/04/79
		DE-A- 2838225	22/03/79
		US-A- 4186353	29/01/80
		CA-A- 1102438	02/06/81
