发明名称
用于汽车、电气装置/电子装置、家用器具、办公设备或日用品的部件

摘要
本发明涉及用于汽车、电气装置/电子装置、家用器具、办公设备或日用品的部件，该部件使用聚合物树脂组合物来制造。所述聚合物树脂组合物能够提供呈现改进的耐化学性的含环境友好生物的合成树脂。本发明可以提供用于汽车、电气装置/电子装置、家用器具、办公设备或日用品的部件，该部件使用聚合物树脂组合物来制造。所述聚合物树脂组合物包含聚酯共聚物，其包含包括对苯二甲酸的二羧酸组分的残基和包括二乙烯基二醇的二醇组分的残基；以及选自以下组成的组的至少一种共聚物：不饱和脂肪基团-共聚物、软聚酯基团-芳香族含乙烯基化合物基团共聚物、甲基丙烯酸甲基酯基团-共聚物、芳香族含乙烯基化合物基团共聚物和甲基丙烯酸甲基酯基团-共聚物。
1. 一种用于汽车的零件，所述零件由聚合物树脂组合物来制造，其中所述组合物包含：聚酯共聚物，其包含包括对苯二甲酸的二羧酸组分的残基和包括二甲水苯糖醇的二醇组分的残基；以及选自由以下组成的组的一种或更多种共聚物：不饱和脂基-基于二烯的橡胶-芳香族含乙烯基化合物接枝共聚物、甲基丙烯酸烷基酯-基于二烯的橡胶-芳香族含乙烯基化合物接枝共聚物和甲基丙烯酸烷基酯-硅酮/丙烯酸烷基酯接枝共聚物，并且具有在以下等式1中定义的在从0.5%至30%的范围内的抗拉强度损失率：

[等式1]
抗拉强度损失率（%） = [(测试前的抗拉强度 - 测试后的抗拉强度) / 测试前的抗拉强度] × 100。

2. 一种用于电气装置/电子装置的零件，所述零件由聚合物树脂组合物来制造，其中所述组合物包含：聚酯共聚物，其包含包括对苯二甲酸的二羧酸组分的残基和包括二甲水苯糖醇的二醇组分的残基；以及选自由以下组成的组的一种或更多种共聚物：不饱和脂基-基于二烯的橡胶-芳香族含乙烯基化合物接枝共聚物、甲基丙烯酸烷基酯-基于二烯的橡胶-芳香族含乙烯基化合物接枝共聚物和甲基丙烯酸烷基酯-硅酮/丙烯酸烷基酯接枝共聚物，并且具有在以下等式1中定义的在从0.5%至30%的范围内的抗拉强度损失率：

[等式1]
抗拉强度损失率（%） = [(测试前的抗拉强度 - 测试后的抗拉强度) / 测试前的抗拉强度] × 100。

3. 一种用于家用器具的零件，所述零件由聚合物树脂组合物来制造，其中所述组合物包含：聚酯共聚物，其包含包括对苯二甲酸的二羧酸组分的残基和包括二甲水苯糖醇的二醇组分的残基；以及选自由以下组成的组的一种或更多种共聚物：不饱和脂基-基于二烯的橡胶-芳香族含乙烯基化合物接枝共聚物、甲基丙烯酸烷基酯-基于二烯的橡胶-芳香族含乙烯基化合物接枝共聚物和甲基丙烯酸烷基酯-硅酮/丙烯酸烷基酯接枝共聚物，并且具有在以下等式1中定义的在从0.5%至30%的范围内的抗拉强度损失率：

[等式1]
抗拉强度损失率（%） = [(测试前的抗拉强度 - 测试后的抗拉强度) / 测试前的抗拉强度] × 100。

4. 一种用于办公设备的零件，所述零件由聚合物树脂组合物来制造，其中所述组合物包含：聚酯共聚物，其包含包括对苯二甲酸的二羧酸组分的残基和包括二甲水苯糖醇的二醇组分的残基；以及选自由以下组成的组的一种或更多种共聚物：不饱和脂基-基于二烯的橡胶-芳香族含乙烯基化合物接枝共聚物、甲基丙烯酸烷基酯-基于二烯的橡胶-芳香族含乙烯基化合物接枝共聚物和甲基丙烯酸烷基酯-硅酮/丙烯酸烷基酯接枝共聚物，并且具有在以下等式1中定义的在从0.5%至30%的范围内的抗拉强度损失率：

[等式1]
抗拉强度损失率（%） = [(测试前的抗拉强度 - 测试后的抗拉强度) / 测试前的抗拉强度] × 100。

5. 一种用于日用品的零件，所述零件由聚合物树脂组合物来制造，其中所述组合物包含：聚酯共聚物，其包含包括对苯二甲酸的二羧酸组分的残基和包括二甲水苯糖醇的二醇组合物来制造，其中所述组合物包含：聚酯共聚物，其包含包括对苯二甲酸的二羧酸组分的残基和包括二甲水苯糖醇的二醇组分的残基；以及选自由以下组成的组的一种或更多种共聚物：不饱和脂基-基于二烯的橡胶-芳香族含乙烯基化合物接枝共聚物、甲基丙烯酸烷基酯-基于二烯的橡胶-芳香族含乙烯基化合物接枝共聚物和甲基丙烯酸烷基酯-硅酮/丙烯酸烷基酯接枝共聚物，并且具有在以下等式1中定义的在从0.5%至30%的范围内的抗拉强度损失率：

[等式1]
抗拉强度损失率（%） = [(测试前的抗拉强度 - 测试后的抗拉强度) / 测试前的抗拉强度] × 100。
组分的残基；以及选自由以下组成的组的一种或更多种共聚物：不饱和脂－基二烯橡胶－芳香族含乙烯基化合物接枝共聚物、甲基丙烯酸烷基酯－基二烯橡胶－芳香族含乙烯基化合物接枝共聚物和甲基丙烯酸烷基酯－硅酮／丙烯酸烷基酯接枝共聚物，并且具有在以下等式 1 中定义的在从 0.5％至 30％的范围内的抗拉强度损失率：

[等式 1]

抗拉强度损失率（％） = [(测试前的抗拉强度－测试后的抗拉强度)/测试前的抗拉强度]×100。

6. 根据权利要求 1 至 5 中任一项所述的零件，其中所述聚合物树脂组合物包含以按重量计 5％至 90％的量的所述聚酯共聚物，并且以按重量计 1％至 50％的量的选自由以下组成的组的第一种或更多种共聚物：不饱和脂－基二烯橡胶－芳香族含乙烯基化合物接枝共聚物、甲基丙烯酸烷基酯－基二烯橡胶－芳香族含乙烯基化合物接枝共聚物和甲基丙烯酸烷基酯－硅酮／丙烯酸烷基酯接枝共聚物。

7. 根据权利要求 1 至 5 中任一项所述的零件，其中所述聚合物树脂组合物还包括以按重量计 5％至 90％的量的聚碳酸酯。

8. 根据权利要求 1 至 5 中任一项所述的零件，其中所述聚合物树脂组合物还包括以按重量计 1％至 30％的量的聚对苯二甲酸丁二酯。

9. 根据权利要求 1 至 5 中任一项所述的零件，其中所述聚合物树脂组合物还包括以按重量计 1％至 20％的量的苯乙烯－乙烯－丁烯－苯乙烯嵌段共聚物。

10. 根据权利要求 1 至 5 中任一项所述的零件，其中所述聚酯共聚物具有 10,000 至 100,000 的重均分子量和 0℃至 200℃的玻璃化转变温度。

11. 根据权利要求 1 至 5 中任一项所述的零件，其中所述聚酯共聚物，所述四羧酸组合物还包括选自由以下组合物的组的一种或更多种：具有 8 个至 20 个碳原子的芳香族四羧酸和具有 4 个至 20 个碳原子的脂肪族二羧酸。

12. 根据权利要求 1 至 5 中任一项所述的零件，其中所述聚酯共聚物中，所述二缩水己糖醇是异山梨醇。

13. 根据权利要求 1 至 5 中任一项所述的零件，其中所述聚酯共聚物中，所述二缩水己糖醇以基于所述二醇组合物的总量的 5mol％至 60mol％的量被包含。

14. 根据权利要求 1 至 5 中任一项所述的零件，其中所述聚酯共聚物中，所述二醇组合物还包括选自由化学式 1、化学式 2 和化学式 3 的化合物组成的组的一种或更多种：

[化学式 1]

其中 R1、R2、R3 和 R4 各自独立地是氢或具有 1 个至 5 个碳原子的被取代的或未被取代的烷基，并且 n1 和 n2 各自独立地是 0 至 5 的整数。

[化学式 2]
其中 R₁, R₂, R₃, 和 R₄ 各自独立地是氢或具有 1 个至 5 个碳原子的被取代的或未被取代的烷基，以及

[化学式 3]

其中 n 是 1 至 7 的整数。

15. 根据权利要求 1 至 5 中任一项所述的零件，其中所述聚酯共聚物中，所述二醇组分还包括 1, 4-环己二醇和乙二醇。

16. 根据权利要求 1 至 5 中任一项所述的零件，其中所述不饱和腈 - 基于二烯的橡胶 - 芳香族含乙烯基化合物接枝共聚物呈核 - 壳橡胶的形式并且具有 0.01 μm 至 5 μm 的平均颗粒直径和 5% 至 90% 的接枝率，并且所述核具有 -20°C 或更小的玻璃化转变温度并且所述壳具有 20°C 或更大的玻璃化转变温度。

17. 根据权利要求 1 至 5 中任一项所述的零件，其中在所述不饱和腈 - 基于二烯的橡胶 - 芳香族含乙烯基化合物接枝共聚物中，不饱和腈是选自以下组成的组的一种或更多种：丙烯腈、甲基丙烯腈、乙基丙烯腈、苯基丙烯腈和 α- 氯丙烯腈。

18. 根据权利要求 1 至 5 中任一项所述的零件，其中所述接枝共聚物中，基于二烯的橡胶是丁二烯型橡胶或异戊二烯型橡胶。

19. 根据权利要求 1 至 5 中任一项所述的零件，其中所述接枝共聚物中，芳香族含乙烯基化合物是选自由以下组成的组的一种或更多种：苯乙烯、α- 甲基苯乙烯、乙基苯乙烯、叔丁基苯乙烯、被卤素取代的苯乙烯、1, 3- 二甲基苯乙烯、2, 4- 二甲基苯乙烯、和乙基苯乙烯。

20. 根据权利要求 1 至 5 中任一项所述的零件，其中所述不饱和腈 - 基于二烯的橡胶 - 芳香族含乙烯基化合物接枝共聚物是丙烯腈 - 丁二烯 - 苯乙烯接枝共聚物。

21. 根据权利要求 1 至 5 中任一项所述的零件，其中所述甲基丙烯酸烷基酯 - 基于二烯的橡胶 - 芳香族含乙烯基化合物接枝共聚物是甲基丙烯酸甲酯 - 丁二烯 - 苯乙烯接枝共聚物。

22. 根据权利要求 1 至 5 中任一项所述的零件，其中所述甲基丙烯酸烷基酯 - 硅酮 / 丙烯酸烷基酯接枝共聚物是甲基丙烯酸甲酯 - 硅酮 / 丙烯酸丁酯接枝共聚物。

23. 根据权利要求 7 所述的零件，其中所述聚碳酸酯具有 50°C 至 200°C 的玻璃化转变温度和 10,000 至 200,000 的重均分子量。

24. 根据权利要求 8 所述的零件，其中所述聚对苯二甲酸丁二酯具有 10,000 到
150,000 的重均分子量。

25. 根据权利要求 1 至 5 中任一项所述的零件，其中所述聚合物树脂组合物还包含选自由以下组成的组的一种或更多种：基于不饱和腈-芳香族含乙烯基化合物-甲基丙烯酸缩水甘油酯的增容剂、基于不饱和腈-芳香族含乙烯基化合物-马来酸酐的增容剂、基于饱和的亚乙基-丙烯酸烷基酯-甲基丙烯酸缩水甘油酯的增容剂、和基于碳化二亚胺的抗水解剂。

26. 根据权利要求 1 至 5 中任一项所述的零件，其中所述聚合物树脂组合物包含选自由以下组成的组的一种或更多种添加剂：抗氧化剂、润滑剂、光稳定剂、光吸收剂、酯交换抑制剂、和抗水解剂。
用于汽车、电气装置 / 电子装置、家用器具、办公设备或日用品的部件

技术领域
[0001] 本发明涉及用于汽车、电气装置 / 电子装置、家用器具、办公设备、或日用品的零件，该零件通过使用聚合物树脂组合物来制造。所述聚合物树脂组合物能够提供呈改进的耐化学性的含环境友好的生物质的合成树脂。

背景技术
[0002] 聚酯树脂由于其相对优良的特性例如耐热性、机械强度、和弹性强度而被广泛地用于增强塑料、涂料、膜和用于模拟的树脂以及类似物。而且，聚酯树脂被用作用于衣服的纤维材料。

[0003] 最近，这些聚酯树脂由于其特性性质而已经越来越多地用于内部建筑材料、塑料招牌及类似物的领域。然而，与其他聚合物材料例如基于丙烯酸酯的材料或基于聚碳酸酯的材料相比，聚酯树脂具有低的耐热性。因此，存在在于以下的问题：聚酯树脂不适合于应该能够抵御每一个季节的若干温度变化的外部材料。

[0004] 同时，聚碳酸酯树脂具有优良的物理性质例如耐冲击性或耐热性并且因此已经被用于多种领域，包括许多建筑材料和电子产品的外部、包装材料、箱、盒，以及用于内部设计的内部材料或外部材料。这些聚碳酸酯树脂由于其优良的机械性质而已经需求很大，然而存在在于以下的问题：由于在社区中常用的各种洗涤剂、女性化妆品、和儿童的洗手液，产生聚碳酸酯的外观或颜色的改变或裂纹，并且产品的恶化可以由日常生活中使用的多种化学品引起。

[0005] 已经进行各种尝试以解决聚酯树脂和聚碳酸酯树脂遭遇的问题。而且，对于掺和聚酯树脂和聚碳酸酯树脂的研究仍然正在进行。

[0006] 此外，掺和聚碳酸酯树脂与基于丙烯腈 - 丁二烯 - 苯乙烯（ABS）的接枝共聚物或类似物以改进其耐冲击性和耐热性的技术已经被开发。然而，存在以下限制：这些组分被简单地掺和以改进耐热性。此外，已经提出各种方法以增强聚碳酸酯的耐化学性，同时保持其机械性质和物理性质，特别是其耐热性。然而，改进耐化学性的程度已经不足以用于在实际工业中的应用并且得到的产品的外观特性恶化。此外，已经尝试进一步掺和聚碳酸酯树脂与一种或更多种另外的材料的方法以同时地改进耐热性和耐化学性。然而，难以获得合适水平的耐化学性。

[0007] 在另一方面，通常丙烯腈 - 丁二烯 - 苯乙烯（ABS）或聚碳酸酯 / ABS（PC/ABS）已经被越来越多地用作工程塑料，并且 PC/ABS 已经被开发用于利用 PC 的耐热性、耐冲击性和自熄性质以及 ABS 的加工性和经济优势的目的。然而，PC/ABS 对化学品、特别是某些化学品例如芳香族烃、丙酮、和醇具有差的抗性，由此通过与上文提及的化学品在长期内直接接触可以发生褪色、溶胀、和裂纹，从而失去产品价值。因此，已经进行用于制备对化学品具有优于常规耐热 ABS 或 PC/ABS 的抗性的树脂组合物的大量研究。例如，为了改进 ABS 的耐化
学性，已经报道的是，具有良好的耐化学性的基于聚烯烃的树脂可以与 ABS 混合。然而，这需要嵌段共聚物作为增溶剂用于改进不相容材料的相容性。此外，其由于相分离发生并且机械性质迅速恶化而难以被实际地应用。

【0008】发明详述

【0009】【技术问题】

【0010】本发明提供用于汽车、电气装置 / 电子装置、家用器具、办公设备、或日用品的零件，该零件通过使用聚合物树脂组合物来制造，所述聚合物树脂组合物能够提供改进的耐化学性同时呈现优良的耐冲击性和耐热性的含环境友好的生物质的合成树脂。

【0011】【技术方案】

【0012】本发明提供用于汽车、电气仪器 / 电子仪器、家用器具、办公机器、或家居用品的零件，该零件用聚合物树脂组合物来制造，其中所述组合物包含：聚酯共聚物，其包含包括对苯二甲酸的二羧酸组分的残基和包括二失水己糖醇的二醇组分的残基；以及选自自由以下组成的组的一种或更多种共聚物：不饱和脂 - 基于二烯的橡胶 - 芳香族含乙烯基化合物接枝共聚物 (unsaturated nitrile-diene-based rubber-aromatic vinyl graft copolymer)，甲基丙烯酸烷基酯 - 基于二烯的橡胶 - 芳香族含乙烯基化合物接枝共聚物、和甲基丙烯酸烷基酯 - 硅酮 / 丙烯酸烷基酯接枝共聚物，并且具有在以下等式 1 中定义的在从 0.5% 至 30% 的范围内的抗拉强度损失率。

【0013】[等式 1]

【0014】抗拉强度损失率 (%) = [(测试前的抗拉强度 - 测试后的抗拉强度) / 测试前的抗拉强度] × 100

【0015】聚合物树脂组合物可以包含有按重量计 5% 至 90% 的量的聚酯共聚物，以及以按重量计 1% 至 50% 的量的选自由以下组成的组的一种或更多种共聚物：不饱和脂 - 基于二烯的橡胶 - 芳香族含乙烯基化合物接枝共聚物、甲基丙烯酸烷基酯 - 基于二烯的橡胶 - 芳香族含乙烯基化合物接枝共聚物、和甲基丙烯酸烷基酯 - 硅酮 / 丙烯酸烷基酯接枝共聚物。

【0016】聚合物树脂组合物还可以包含有按重量计 5% 至 90% 的量的聚碳酸酯。

【0017】聚合物树脂组合物还可以包含有按重量计 1% 至 30% 的量的聚对苯二甲酸丁二酯。

【0018】聚合物树脂组合物还可以包含有按重量计 1% 至 20% 的量的苯乙烯 - 乙烯 - 丁烯 - 苯乙烯嵌段共聚物。

【0019】聚酯共聚物可以具有 10,000 至 100,000 的重均分子量和 0℃至 200℃的玻璃化转变温度。

【0020】在聚酯共聚物中，二羧酸组分还可以包括选自由以下组成的组的一种或更多种：具有 8 个至 20 个碳原子的芳香族二羧酸和具有 4 个至 20 个碳原子的脂肪族二羧酸。

【0021】在聚酯共聚物中，二失水己糖醇可以是异山梨醇。

【0022】此外，聚酯共聚物中，二失水己糖醇可以以基于二醇组分的总量的 5mol% 至 60mol% 的量被包含。

【0023】在聚酯共聚物中，二醇组分还可以包括选自由化学式 1、化学式 2、和化学式 3 的化合物组成的组的一种或更多种；

【0024】[化学式 1]
[0025]

[0026] 其中 R₁, R₂, R₃, 和 R₄ 各自独立地是氢或具有 1 个至 5 个碳原子的被取代的或未被取代的烷基，并且 n₁ 和 n₂ 各自独立地是 0 至 3 的整数。
[0027] [化学式 2]

[0028]

[0029] 其中 R₁, R₂, R₃, 和 R₄ 各自独立地是氢或具有 1 个至 5 个碳原子的被取代的或未被取代的烷基，以及
[0030] [化学式 3]

[0031]

[0032] 其中 n 是 1 至 7 的整数。
[0033] 在另一方面，在聚酯共聚物中，二醇组分还可以包括 1, 4-环己二醇和乙二醇。
[0034] 不饱和腈 - 基于二烯的橡胶 - 芳香族含乙烯基化合物按枝共聚物可以呈核 - 壳橡胶的形式并且具有 0.01 μm 至 5 μm 的平均颗粒直径和 5% 至 90% 的接枝率，并且核可以具有 -20℃或更小的玻璃化转变温度并且壳可以具有 20℃或更大的玻璃化转变温度。
[0035] 在不饱和腈 - 基于二烯的橡胶 - 芳香族含乙烯基化合物按枝共聚物中，不饱和腈可以是选自由以下组成的组的一种或更多种：丙烯腈、甲基丙烯腈、乙基丙烯腈、苯基丙烯腈、和 α- 氯丙烯腈。
[0036] 在按枝共聚物中，基于二烯的橡胶可以是丁二烯型橡胶或异戊二烯型橡胶。
[0037] 此外，在按枝共聚物中，芳香族含乙烯基化合物 (aromatic vinyl) 可以是选自由以下组成的组的一种或更多种：苯乙烯、α- 甲基苯乙烯、乙烯基甲苯、叔丁基苯乙烯、被卤素取代的苯乙稀、1, 3- 二甲基苯乙烯、2, 4- 二甲基苯乙烯、和乙基苯乙烯。
[0038] 不饱和腈 - 基于二烯的橡胶 - 芳香族含乙烯基化合物按枝共聚物可以是丙烯腈 - 丁二烯 - 苯乙烯按枝共聚物。
[0039] 甲基丙烯酸烷基酯 - 基于二烯的橡胶 - 芳香族含乙烯基化合物按枝共聚物可以是
说 明 书

甲基丙烯酸甲酯 - 丁二烯 - 苯乙烯接枝共聚物。
[0040] 甲基丙烯酸烷基酯 - 硅酮 / 丙烯酸烷基酯接枝共聚物可以是甲基丙烯酸甲酯 - 硅酮 / 丙烯酸丁酯接枝共聚物。
[0041] 聚碳酸酯可以具有 50°C 至 200°C 的玻璃化转变温度和 10,000 至 200,000 的重均分子量。
[0042] 聚对苯二甲酸丁二酯可以具有 10,000 至 150,000 的重均分子量。
[0043] 聚合物树脂组合物还可以包含选自由以下组成的组的一种或更多种：基于不饱和脂 - 芳香族含乙烯基化合物 - 甲基丙烯酸缩水甘油酯的增容剂、基于不饱和脂 - 芳香族含乙烯基化合物 - 来自醇酚的增容剂、基于饱和的亚乙基 - 丙烯酸烷基酯 - 甲基丙烯酸缩水甘油酯的增容剂 (saturated ethylene-alkylacrylate-glycidyl methacrylate-based compatibilizer)、和基于碳化二亚胺的抗水解剂。
[0044] 聚合物树脂组合物可以包含选自由以下组成的组的一种或更多种：抗氧化剂、润滑剂、光稳定剂、光吸收剂、酯交换的抑制剂和抗水解剂。
[0045] 【有利效果】
[0046] 根据本发明，可以提供用于汽车 / 电气装置 / 电子装置 / 家用器具 / 办公设备 / 或日用品的零件，该零件使用聚合物树脂组合物来制造，所述聚合物树脂组合物能够提供呈现改进的耐化学性同时呈现优良的耐冲击性和耐热性的含环境友好的生物质的合成树脂。
[0047] 【实施方案详述】
[0048] 本发明可以包括包含各种变化或修改的若干实施方案并且将参考特定的实施方案来详细地描述。然而，应该被本领域技术人员理解的是，其不意图将本发明限于特定的实施方案，并且可以对本发明做出各种变化、等同物、和修改，而不背离本发明的精神和范围。在本公开内容中，如果相关的现有技术的具体描述致使本发明的特征模糊，则其可以被省略。
[0049] 本发明提供用于汽车、电气装置 / 电子装置 / 家用器具 / 办公设备 / 或日用品的零件，该零件使用聚合物树脂组合物来制造，所述组合物包含：聚酯共聚物，其包含包括对苯二甲酸的二羧酸组分的残基和包括二缩水甘油醇的二醇组分的残基；以及选自以下组成的组的一种或更多种共聚物：不饱和脂 - 基于二烯的橡胶 - 芳香族含乙烯基化合物接枝共聚物、甲基丙烯酸烷基酯 - 基于二烯的橡胶 - 芳香族含乙烯基化合物接枝共聚物、和甲基丙烯酸烷基酯 - 硅酮 / 丙烯酸烷基酯接枝共聚物，并且具有在以下等式 1 中定义的在从 0.5% 至 30% 的范围内的抗拉强度损失率。
[0050] 〔等式 1〕
[0051] 抗拉强度损失率 (%) = [(测试前的抗拉强度 - 测试后的抗拉强度) / 测试前的抗拉强度] × 100。
[0052] 在下文中，将详细地描述根据本发明的特定实施方案的聚合物树脂组合物。
[0053] 本发明的一个实施方案提供用于汽车、电气装置 / 电子装置 / 家用器具 / 办公设备 / 或日用品的零件，该零件通过使用聚合物树脂组合物来制造，其中所述组合物包含：聚酯共聚物，其包含包括对苯二甲酸的二羧酸组分的残基和包括二缩水甘油醇的二醇组分的残基；以及选自以下组成的组的一种或更多种共聚物：不饱和脂 - 基于二烯的橡胶 - 芳
香酰基乙烯基化合物接枝共聚物，甲基丙烯酸胺基酯 - 基于二烯的橡胶 - 芳香族含乙烯基化合物接枝共聚物，和甲基丙烯酸胺基酯 - 硅酮 / 丙烯酸烯基接枝共聚物，并且具有在以下等式 1 中定义的在从 0.5% 至 30% 的范围内的抗拉强损失率。

\[\text{抗拉强度损失率} (\%) = \left(\frac{(\text{测试前的抗拉强度} - \text{测试后的抗拉强度})}{\text{测试前的抗拉强度}} \right) \times 100 \]

常规地，已经开发掺和聚碳酸酯树脂与基于丙烯酸 - 丁二烯 - 苯乙烯 (ABS) 的接枝共聚物或类似物以改进耐冲击性和耐热性的技术。然而，存在以下限制：该技术未能获得对化学品的良好抗性或对环境应力裂纹的抗性，并且该技术不涉及环境友好的生物质产品。

因此，本发明人进行广泛研究以开发具有良好的耐热性或耐冲击性以及对化学品的改进的抗性或对环境应力裂纹的抗性，环境友好的树脂组合物，并且通过实验发现，包含特定的聚酯共聚物以及一种或多种共聚物的聚合物树脂组合物可以具有耐热性或耐冲击性的性质并且呈现对化学品的改进的抗性或对环境应力裂纹的改进的抗性。所述一种或更多共聚物选自以下组合的组：不饱和聚 - 基于二烯的橡胶 - 芳香族含乙烯基化合物接枝共聚物，甲基丙烯酸胺基酯 - 基于二烯的橡胶 - 芳香族含乙烯基化合物接枝共聚物，和甲基丙烯酸胺基酯 - 硅酮 / 丙烯酸烯基接枝共聚物。

抗拉强度损失率可以通过以下方法来测量。

使根据本发明的聚合物树脂组合物经历均匀的捏和和挤出以制备小球，并且将小球以相同的方式在 250°C 的温度下注入，使用于测试抗拉强度的注入的样品在 23±2°C 和相对湿度 50±5% 的条件下经历其调节持续 24h。以上测试样本被固定在耐化学性测试夹具中，其中变形的临界量被设定至 2.2%。随后，将测试样本用芳香族化学试剂 / 脂肪族化学试剂或 UV 弹蔽剂的共混物涂敷持续 1 分钟并且然后留在 23±2°C 下持续 72h。其后，在测试前和测试后针对抗拉强度来测量测试样品以计算抗拉强度损失率 (%)，从而评价和比较耐化学性的程度。

芳香族化学试剂 / 脂肪族化学试剂的共混物包含按重量计 10% 至 90% 的乙醇和按重量计 90% 至 99% 的多元醇，并且还包含选自以下组成的组的一种或更多种附加组分：脂肪族醇和芳香族醇、脂肪族酸和芳香族酸、芳香族醛、不饱和烃、饱和烃、脂肪族胺、脂肪族二胺和粘性烃。在基于多元醇的情况下，仅包含脂肪族胺或脂肪族二胺中的一种附加组分。

抗拉强度损失率通过以下等式 1 来计算并且通过“%”来表示。

\[\text{抗拉强度损失率} (\%) = \left(\frac{(\text{测试前的抗拉强度} - \text{测试后的抗拉强度})}{\text{测试前的抗拉强度}} \right) \times 100 \]

如上文提及的，聚合物树脂组合物的耐化学性变得更好，因为测试后的抗拉强度损失率 (%) 被降低。

聚合物树脂组合物可以在用于汽车、电气装置 / 电子装置、家用器具、办公设备、或日用品的零件中使用。具体地，在汽车的情况下，聚合物树脂组合物可以在用于仪表盘模具的塑料零件、用于门饰板 (door trim) 的塑料零件、用于灯外壳 (lamp housing) 的零件、
用于车轮盖的零件、用于汽车内饰物、外饰件的零件、用于门手柄杆的零件以及类似零件中使用，并且在电气仪器、电子仪器的情况下，聚合物树脂组合物可以在用于移动电话外壳的零件、用于电子词典外壳的零件、用于CD播放器的零件、用于MP3播放器的零件、用于电子计算器外壳的零件以及类似零件中使用。

而且，在家用电器的情况下，聚合物树脂组合物可以在用于冰箱的内部零件、用于洗衣机的塑料零件、用于空调外壳的零件、用于真空外壳的零件、用于混合器外壳的零件、用于坐浴盆的零件以及类似零件中使用。在办公设备的情况下，聚合物树脂组合物可以在用于多功能打印机的内部零件/外部零件、用于打印机的内部零件/外部零件、用于传真机的内部零件/外部零件、用于扫描仪的内部零件/外部零件以及类似零件中使用。在日用品的情况下，聚合物树脂组合物可以在用于厨房物品的塑料零件、用于浴室物品的塑料零件以及类似零件中使用。

在制备上述描述的聚合物树脂组合物的过程中，可以使用用于制备聚合物树脂的共混物（blend）或混合物（mixture）的常规的方法和设备，而没有特定的限制。例如，聚合物树脂组合物可以通过将聚酯和聚酯和/或聚酯组合物引入常规的混合器、混合器、或转筒中并且随后通过双螺杆捏合挤出机（twin-screw kneading extruder）将其混合来制备。所述一种或更多种聚酯组合物选自由以下组成的组：不饱和聚酯-基于二烯的橡胶-芳香族含乙烯基化合物接枝共聚物-甲基丙烯酸烷基酯-基于二烯的橡胶-芳香族含乙烯基化合物接枝共聚物-和甲基丙烯酸烷基酯-硅酮-丙烯酸烷基酯接枝共聚物。在制备上述描述的聚合物树脂组合物的过程中，每种树脂优选地以其干燥状态来使用。

聚合物树脂组合物可以包含以下以重量计5%至90%的聚酯共聚物以及以下重量计1%至50%的聚酯组合物。例如：不饱和聚酯-基于二烯的橡胶-芳香族含乙烯基化合物接枝共聚物-甲基丙烯酸烷基酯-基于二烯的橡胶-芳香族含乙烯基化合物接枝共聚物-和甲基丙烯酸烷基酯-硅酮-丙烯酸烷基酯接枝共聚物。而且，聚合物树脂组合物还可以包含以下以重量计5%至90%的聚酯共聚物。聚合物树脂组合物还可以包含以下以重量计1%至30%的聚对苯二苯酸丁二酯，以改进其对化学品的抗性或对环境应力裂纹的抗性。

聚合物树脂组合物还可以包含以下以重量计1%至20%的聚酯-乙烯-丁烯-苯乙烯嵌段共聚物，以改进其对化学品的抗性或对环境应力裂纹的抗性并且更多。

如本文所使用的，术语“残基”指的是被包含在来自特定化合物的化学反应的生成物内并且衍生自特定化合物的某个部分或单元。例如，在由酯化或缩聚形成的聚酯中，二羧酸组分的“残基”和二醇组分的“残基”分别是衍生自二羧酸组分和衍生自二醇组分的部分。如本文所使用的，术语“二羧酸组分”指的是包括二羧酸例如对苯二甲酸、其烷基酯（C_C，C,低级烷基酯，例如单甲酯、单乙酯、二甲酯、二乙酯、二丁酯），和/或其酸酐，并且可以与二醇组分反应以形成二羧酸部分例如对苯二甲酸酯部分（terephthaloyley moiety）。

因为用于合成聚酯的二羧酸组分包括对苯二甲酸，所以制备的聚酯树脂可以具有改进的物理性例如耐热性、耐化学性、或耐候性（例如防止分子量降低或由于UV的氧化现象）。

二羧酸组分还可以包含芳香族二羧酸、脂肪族二羧酸、或其混合物作为另外的二羧酸组分。如本文所使用的，术语“另外的二羧酸组分”指的是二羧酸组分中排除对苯二甲
酸的组分。

【0076】 同时，在聚酯共聚物中，二羧酸组分还可以包括选自由以下组成的组中的一种或多种：具有8个至20个碳原子的芳香族二羧酸和具有4个至20个碳原子的脂肪族二羧酸。

【0077】 芳香族二羧酸组分可以包括具有8个至20个碳原子、优选地8个至14个碳原子或其混合物的芳香族二羧酸及类似物。芳香族二羧酸的实例可以包括间苯二甲酸、萘二羧酸例如2,6-萘二羧酸、联苯二羧酸、4,4’-二苯乙烯二羧酸、2,5-呋喃二羧酸、2,5-噻吩二羧酸及类似物，但芳香族二羧酸的具体实例不限于那些。

【0078】 脂肪族二羧酸组分可以包含具有4个至20个碳原子、优选地4个至12个碳原子或其混合物的脂肪族二羧酸组分及类似物。脂肪族二羧酸的实例可以包括直链的、支链的、或环状的脂肪族二羧酸组分例如环己烷二羧酸，例如1,4-环己烷二羧酸和1,3-环己烷二羧酸、邻苯二甲酸、癸二酸、琥珀酸、异癸基琥珀酸、马来酸、富马酸、己二酸、戊二酸、壬二酸、及类似物，但脂肪族二羧酸的具体实例不限于那些。

【0079】 二羧酸组分可以包含以50mol%至100mol%、优选地70mol%至100mol%的量的对苯二甲酸以及以5mol%至30mol%、优选地5mol%至20mol%的量的选自由芳香族二羧酸和脂肪族二羧酸组成的组中的一种或多种二羧酸。如果在二羧酸组分中对苯二甲酸以非常小的量或过多的量存在，则聚酯树脂的耐热性、耐化学性、或耐气候性可能被恶化。

【0080】 用于合成聚酯的二醇组分包含以5mol%至60mol%的量的二元环己烷二醇、以5mol%至80mol%的量的环己烷二甲醇，以及剩余量的其他二醇化合物。

【0081】 二醇组分优选地包括间苯二甲酸(1,4:3,6-二无水葡糖二醇)作为二元环己烷二醇以改进制备的聚酯树脂的耐热性以及耐化学性和耐药性的性质。而且，因为环己烷二甲醇(例如，1,2-环己烷二甲醇、1,3-环己烷二甲醇、或1,4-环己烷二甲醇)在二醇组分中的含量被提高，所以制备的聚酯树脂的耐冲击强度也可以令人惊讶地增加。

【0082】 除了间苯二甲酸和环己烷二甲醇之外，二醇组分还可以包括其他二醇组分。如本文所使用的，术语“其他二醇组分”指的是除了间苯二甲酸和环己烷二甲醇之外的二醇组分，并且其实例可以包括脂肪族二醇、芳香族二醇、或其混合物。

【0083】 在聚酯共聚物中，二醇组分还可以包括选自由化学式1、化学式2，和化学式3的化合物组成的组中的一种或更多种：

【0084】 [化学式1]

【0085】

【0086】 其中，R1、R2、R3、R4、R5各自独立地是氢或具有1个至5个碳原子的被取代的或未被取代的烷基，并且n1和n2各自独立地是0至3的整数。

【0087】 [化学式2]

【0088】

12
其中 $R_1, R_2, R_3,$ 和 R_4 各自独立地是氢或具有 1 个至 5 个碳原子的被取代的或未被取代的烷基;以及

【化学式 3】

其中 n 是 1 至 7 的整数。

如上文所提及的，聚酯树脂的二醇组分可以包含以 5mol% 至 60mol% 的量的二失水乙糖醇。如果二失水乙糖醇在二醇组分中的量小于 5mol%，则制备的聚酯树脂可能具有不足的耐热性或耐化学性并且未能呈现如上文提及的聚酯树脂的熔融粘度。而且，如果二失水乙糖醇在二醇组分中的量超过 60mol%，则聚酯树脂或其产品的外观可能恶化或黄化现象可能发生。

聚酯共聚物可以具有 10,000 至 100,000 的重均分子量和 0°C 至 200°C 的玻璃化转变温度。

此外，聚对苯二甲酸丁二酯可以具有 10,000 至 150,000 的重均分子量。

聚酯树脂可以通过包括以下的方法来制备：用包括对苯二甲酸的二羧酸组分酯化包含 5mol% 至 60mol% 的异山梨醇、5mol% 至 80mol% 的环己烷二甲醇和剩余部分的其他二醇化合物如二失水乙糖醇的二酯组分；在酯化被进行 80% 或更多时，将基于磷的稳定剂添加到反应溶液；以及缩聚酯化的影响产物。

在聚酯树脂的此制备方法中，含锌化合物被用作酯化的反应催化剂，并且在酯化结束时例如在酯化被进行 80% 或更多时，将基于磷的稳定剂添加到反应溶液，酯化的生成物被缩聚，从而提供具有物理性质例如高的耐热温性、耐燃性、耐冲击性以及良好的外观性质、高透明性、和良好的模制性质的聚酯树脂。
组分例如在室温下呈固态的二水水己糖醇可以溶解在水或乙二醇中并且然后与二羧酸组
分例如对苯二甲酸混合以形成浆料。可选择地，二水水己糖醇可以在 60℃或更大的温度下
熔化并且然后与二羧酸组分例如对苯二甲酸混合以形成浆料。还可以将水添加至二羧酸组
分和共聚物二醇组分例如二水水己糖醇和乙二醇被混合于其中的浆料，从而有助于浆料的
流动性的增强。
[0101] 参与酯化的二羧酸组分和二醇组分的摩尔比可以在从 1:1.05 至 1:3.0 的范围中。
如果二羧酸组分和二醇组分的摩尔比小于 1.05，则未反应的二羧酸组分可能在聚合期间保
持以恶化树脂的透明度。如果摩尔比超过 3.0，则聚合速率可能降低或树脂的生产率可能恶
化。
[0102] 酯化反应产物的缩聚步骤可以包括使二羧酸组分和二醇组分的酯化反应产物在
600mmHg 至 0.01mmHg 的减压条件下在 150℃至 300℃的温度下反应持续 1h 至 24h。
[0103] 这样的缩聚可以在 150℃至 300℃、优选地 200℃至 290℃、更优选地 260℃
至 280℃的温度下在 600mmHg 至 0.01mmHg、优选地 200mmHg 至 0.05mmHg、并且更优选地
100mmHg 至 0.1mmHg 的减压条件下进行。由于在缩聚中应用减压条件，缩聚反应的副产物
即乙二醇可以被移除于体系外部。如果缩聚在超出 400mmHg 至 0.01mmHg 的减压条件范围
下进行，则副产物的移除可能是不充分的。
[0104] 如果缩聚在超出 150℃至 300℃的温度范围下进行，例如，如果缩聚在小于 150℃
的温度下进行，则难以将缩聚反应的副产物即乙二醇移除于体系外部，由此最终反应产物
的固有粘度变得低并且制备的聚酯树脂的物理性质被恶化，并且如果缩聚在大于 300℃的
温度下进行，则制备的聚酯树脂的外观极可能经亮黄化。而且，缩聚可以被进行持续获得在
合适水平内的最终反应产物的固有粘度所需要的时间，例如，持续 1h 至 24h 的平均滞留时
间。
[0105] 聚酯树脂组合物的制备方法还可以包括添加用于缩聚的催化剂的步骤。这样的缩
聚催催化剂可以在缩聚的引发之前被添加至酯化或酯交换的产物，该缩聚催化剂可以在酯化
之后被添加至包含二醇组分和二羧酸组分的混合的浆料，或其可以在酯化期间被添加。
[0106] 作为缩聚催化剂，可以使用含铝化合物、含锂化合物、含镁化合物、含锌化合物、含
锡化合物或其混合物。含铝化合物和含锆化合物的实例与上文描述的相同。
[0107] 上文描述的聚合物树脂组合物包括选自由以下组成的组的一种或更多种共聚物：
不饱和脂－基于二烯的橡胶－芳香族含乙烯基化合物接枝共聚物、甲基丙烯酸苯基酯－基
于二烯的橡胶－芳香族含乙烯基化合物接枝共聚物、和甲基丙烯酸烷基酯－硅酮 / 丙烯酸
烷基酯接枝共聚物。
[0108] 不饱和脂－基于二烯的橡胶－芳香族含乙烯基化合物接枝共聚物可以呈核－壳橡
胶的形式，可以具有 0.01 μm 至 5 μm 的平均颗粒直径和 5% 至 90% 的接枝率，并且核可以
具有 -20℃或更小的玻璃化转变温度并且壳可以具有 20℃或更大的玻璃化转变温度。
[0109] 不饱和脂－基于二烯的橡胶－芳香族含乙烯基化合物接枝共聚物是通过乳液聚合
或整体聚合获得的核－壳橡胶，可以具有 0.01 μm 至 5 μm 的平均颗粒直径和 5% 至 90% 的
接枝率，并且核可以具有 -20℃或更小的玻璃化转变温度并且壳可以具有 20℃或更大的玻
璃化转变温度。任选地，壳可以于其中包含或不包含官能团例如甲基丙烯酸缩水甘油酯或
马来酸酐。
[0110] 在不饱和脂 - 基于二烯的橡胶 - 芳香族含乙烯基化合物接枝共聚物中，不饱和脂
可以是选自由以下组成的组的一种或更多种：丙烯脂、甲基丙烯脂、乙基丙烯脂、苯基丙烯
脂和 α - 氰丙烯脂。
[0111] 在接枝共聚物中，基于二烯的橡胶可以是丁二烯型橡胶或异戊二烯型橡胶。
[0112] 此外，在接枝共聚物中，芳香族含乙烯基化合物可以是选自由以下组成的组的一
种或更多种：苯二烯、α - 甲基苯乙烯、乙烯基苯甲苯、叔丁基苯乙烯、被卤素取代的苯乙烯、
1, 3-二甲基苯乙烯、2, 4- 二甲基苯乙烯、和乙基苯乙烯。
[0113] 核 - 壳橡胶可以选择性地具有其平均颗粒直径在从 0.01 μm 至 5 μm 的范围内的
单模态分布（monomodal distribution）的形态学或其平均颗粒直径在从 0.01 μm 至 5 μm
的范围内的多模态分布的形态学。
[0114] 甲基丙烯酸烷基酯可以是选自由以下组成的组的一种或更多种：甲基丙烯酸甲
酯、甲基丙烯酸乙烯酯、甲基丙烯酸丙酯、甲基丙烯酸异丙酯、和甲基丙烯酸丁酯。
[0115] 优选地，不饱和脂 - 基于二烯的橡胶 - 芳香族含乙烯基化合物接枝共聚物可以是
丙烯脂 - 丁二烯 - 苯乙烯接枝共聚物，并且甲基丙烯酸烷基酯 - 基于二烯的橡胶 - 芳香族
含乙烯基化合物接枝共聚物可以是甲基丙烯酸甲酯 - 丁二烯 - 苯乙烯接枝共聚物。此外，
甲基丙烯酸烷基酯 - 硅醇 / 丙烯酸烷基酯接枝共聚物可以是甲基丙烯酸甲酯 - 硅醇 / 丙烯
酸丁酯接枝共聚物。
[0116] 聚碳酸酯可以具有 50℃至 200℃的玻璃化转变温度和 10,000 至 200,000 的重均
分子量。
[0117] 聚合物树脂组合物还可以包含选自由以下组成的组的一种或更多种：基于不饱和
脂 - 芳香族含乙烯基化合物 - 甲基丙烯酸缩水甘油酯的增容剂、基于不饱和脂 - 芳香族含
乙烯基化合物 - 马来酸酐的增容剂、基于饱和的亚乙基 - 丙烯酸烷基酯 - 甲基丙烯酸缩水
甘油酯的增容剂、和基于碳化二亚胺的抗水解剂。
[0118] 在此情况下，基于不饱和脂 - 芳香族含乙烯基化合物 - 甲基丙烯酸缩水甘油酯
的增容剂可以以按重量计 15%或更小的量被包含，基于不饱和脂 - 芳香族含乙烯基化合
物 - 马来酸酐的增容剂可以以按重量计 15%或更小的量被包含，基于饱和的亚乙基 - 丙烯
酸烷基酯 - 甲基丙烯酸缩水甘油酯的增容剂可以以按重量计 15%或更小的量被包含，并且
基于碳化二亚胺的抗水解剂可以以按重量计 10%或更小的量被包含。
[0119] 丙烯酸烷基酯可以是选自由以下组成的组的一种或更多种：丙烯酸甲酯、丙烯酸
乙酯、丙烯酸丙酯、丙烯酸异丙酯、丙烯酸丁酯、丙烯酸己酯、丙烯酸辛酯、和丙烯酸 2- 乙基
己酯。
[0120] 基于不饱和脂 - 芳香族含乙烯基化合物 - 甲基丙烯酸缩水甘油酯的增容剂可以具
有 20℃至 200℃的玻璃化转变温度和 200 至 300,000 的重均分子量，并且可以选择性地被
芳香族含乙烯基化合物 - 甲基丙烯酸缩水甘油酯代替。
[0121] 基于不饱和脂 - 芳香族含乙烯基化合物 - 马来酸酐的增容剂可以具有 20℃至
200℃的玻璃化转变温度和 200 至 300,000 的重均分子量，并且基于饱和的亚乙基 - 丙烯酸
烷基酯 - 甲基丙烯酸缩水甘油酯的增容剂可以具有 -150℃至 200℃的玻璃化转变温度和
200 至 300,000 的重均分子量。
[0122] 基于碳化二亚胺的抗水解剂可以具有 50 至 300,000 的重均分子量并且可以由以
下的化学式 4 或化学式 5 来表示。

[0123] [化学式 4]

[0124] \[\text{R}_1\text{-N = C = N-R}_2 \]

[0125] 此处, R_1 和 R_2 各自独立地是氢原子, 具有 1 个至 20 个碳原子的烷基, 或具有 6 个至 36 个碳原子的芳基。

[0126] [化学式 5]

[0127]

\[
\begin{array}{c}
\text{N} \\
\text{C} \\
\text{N} \\
\end{array}
\text{R} \\
\left[\right]_n
\]

[0128] 此处, R 是具有 1 个至 20 个碳原子的烷基或具有 6 个至 36 个碳原子的芳基, 并且 n 是 2 至 30,000 的整数, 其指示平均聚合度。

[0129] 聚合物树脂组合物可以包含: 以基于总基体树脂的按重量计 10% 或更少的量的选自由以下组成的组的一种或更多种添加剂: 抗氧化剂、润滑剂、光稳定剂、光吸收剂、酯交换抑制剂和抗水解剂, 所述总基体树脂由包含包括对苯二甲酸的二羧酸组分的残基和包括二硫化二磷烷的二硫组分的残基的聚酯共聚物组成, 以及

[0131] 基于受阻酚的抗氧化剂 (hindered phenol-based antioxidant) 可以具有 50 至 300,000 的重均分子量。

[0132] 此外, 基于亚磷酸酯的抗氧化剂可以选自由以下化学式 6, 化学式 7, 和化学式 8 组成的组:

[0133] [化学式 6]

[0134]

\[
\begin{array}{c}
\text{O} \\
\text{P} \\
\text{O} \\
\end{array}
\left[\right]
\begin{array}{c}
\text{O} \\
\text{P} \\
\text{O} \\
\end{array}
\text{R}_1 \\
\text{R}_2
\]

[0135] 此处, R_1 和 R_2 各自独立地是具有 1 个至 40 个碳原子的被取代的或未被取代的烷基或具有 6 个至 40 个碳原子的被取代的或未被取代的芳基。

[0136] [化学式 7]

[0137]
[0138] 此处，R₁和R₂各自独立地是具有1个至40个碳原子的被取代的或未被取代的烷基或具有6个至40个碳原子的被取代的或未被取代的芳基，并且n是1或更大的整数，其指示取代基的重复单元。

[0139] [化学式8]

[0140]

[0141] 此处，R₁、R₂、R₃和R₄各自独立地是具有1个至40个碳原子的被取代的或未被取代的烷基或具有6个至40个碳原子的被取代的或未被取代的芳基。

[0142] 另一方面，基于硫酯的抗氧化剂可以是由以下的化学式9或化学式10表示的化合物。

[0143] [化学式9]

[0144]

[0145] [化学式10]

[0146]

[0147] 此处，R₃和R₄各自独立地是具有1个至40个碳原子的被取代的或未被取代的烷基或作为具有6个至40个碳原子的被取代的或未被取代的芳基。

[0148] 润滑剂可以是选自由以下组成的组的一种或更多种：基于金属硬脂酸盐的润滑
剂，基于酰胺的润滑剂，基于石蜡的润滑剂，和基于酯的润滑剂。

【0149】光稳定剂和光吸收剂可以是基于受阻胺的光稳定剂（HALS）、基于苯并三唑的光吸收剂或基于二苯甲酮的光吸收剂。

【0150】同时，酯交换抑制剂可以是具有至少羟基官能团和烷基酯官能团的磷化合物，和具有由以下的化学式11表示的单元的烯化合物。

【0151】[化学式11]

【0152】

根据本发明的聚合物树脂组合物还可以包含选自以下组成的组的添加剂：偶联剂或具有甲基丙烯酸缩水甘油酯的单元的扩链剂、无机添加剂、填充剂、染料、颜料、和着色剂。

【0154】在上下文中，将通过具体的实施例来详细地描述本发明。然而，应该理解的是，本发明不受这些实施例的限制。

【0155】实施例1

【0156】基于60wt%的对苯二甲酸- 异山梨醇 -1,4-环己烷二醇 - 乙二醇共聚物聚酯（Tg:120℃，重均分子量：50,000）、10wt%的丙烯腈 - 丁二烯 - 苯乙烯接枝共聚物、5wt%的甲基丙烯酸甲酯 - 丁二烯 - 苯乙烯接枝共聚物和25wt%的聚碳酸酯组成的100wt%的树脂，添加0.5wt%的丙烯腈 - 苯乙烯 - 甲基丙烯酸缩水甘油酯、0.2wt%的酚的一级抗氧化剂（phenolic primary antioxidant）、和0.2wt%的基于亚磷酸酯的二级抗氧化剂，并且使用双螺杆捏合挤出机（Φ:40mm, L/D = 40）均匀地进行捏合挤出以便制备小球。

【0157】在这点上，对苯二甲酸 - 异山梨醇 -1,4-环己烷二醇 - 乙二醇共聚物聚酯是可购自SK Chemicals（韩国）的具有高的耐冲击性的环境友好的树脂，丙烯腈 - 丁二烯 - 苯乙烯接枝共聚物是HR-181，所述HR-181是可购自Kumho Petrochemical（韩国）的丙烯腈 - 苯乙烯共聚物的绝缘产品，甲基丙烯酸甲酯 - 丁二烯 - 苯乙烯接枝共聚物是M-511，所述M-511是可购自KANEKA Corporation（日本）的丙烯腈 - 苯乙烯共聚物的绝缘产品，聚碳酸酯是可购自Samyang Corporation（韩国）的3022PJ,丙烯腈 - 苯乙烯 - 甲基丙烯酸缩水甘油酯是可购自SUNNY FC（中国）的SAG-005,酚的一级抗氧化剂是可购自ADEKA Corporation（日本）的AO-60，并且基于亚磷酸酯的二级抗氧化剂是可购自DOVER Chemical Corp.（USA）的S-9228。

【0158】实施例2

【0159】基于由50wt%的对苯二甲酸 - 异山梨醇 -1,4-环己烷二醇 - 乙二醇共聚物聚酯（Tg:120℃，重均分子量：50,000）、15wt%的丙烯腈 - 丁二烯 - 苯乙烯接枝共聚物和35wt%的聚碳酸酯组成的100wt%的树脂，添加0.5wt%的丙烯腈 - 苯乙烯 - 甲基丙烯酸缩水甘油酯、0.2wt%的酚的一级抗氧化剂、和0.2wt%的基于亚磷酸酯的二级抗氧化剂，并且使用双螺杆捏合挤出机（Φ:40mm, L/D = 40）均匀地进行捏合挤出以便制备小球。
说 明 书

[0160] 在这点上，对苯二甲酸 - 异山梨醇 -1,4- 环己烷二醇 - 乙二醇共聚物聚酯是可商
购自 SK Chemicals (韩国) 的具有高的耐冲击性的环境友好的树脂, 丙烯腈 - 丁二烯 - 苯乙
烯接枝共聚物是 HR-181, 所述 HR-181 是可购自 Kumho Petrochemical (韩国) 的呈核 - 壳
橡胶的形式的接枝 ABS 产品, 甲基丙烯酸甲酯 - 丁二烯 - 苯乙烯接枝共聚物是 M-511, 所
述 M-511 是可购自 KANEKA Corporation (日本) 的呈核 - 壳橡胶的形式的接枝 MBS 产品,
聚碳酸酯是可购自 Samyang Corporation (韩国) 的 3025PJ, 丙烯腈 - 苯乙烯 - 甲基丙烯
酸缩水甘油酯是可购自 SUNNY FC (中国) 的 SAG-005, 苯的一级抗氧化剂是可购自 ADEKA
Corporation (日本) 的 AO-60, 并且基于亚磷酸酯的二级抗氧化剂是可购自 Clariant (瑞
士) 的 Irgafos 168。

[0161] 实施例 3

[0162] 基于由 40wt% 的对苯二甲酸 - 异山梨醇 -1,4- 环己烷二醇 - 乙二醇共聚物聚酯
(Tg : 110℃, 重均分子量 : 55,000)、15wt% 的丙烯腈 - 丁二烯 - 苯乙烯接枝共聚物和 45wt%
的聚碳酸酯组成的 100wt% 的树脂, 添加 0.5wt% 的丙烯腈 - 苯乙烯 - 甲基丙烯酸缩水甘油
酯、0.2wt% 的酚的一级抗氧化剂、和 0.2wt% 的基于亚磷酸酯的二级抗氧化剂，并且使用双
螺杆捏合挤出机（Φ : 40mm, L/D = 40）均匀地进行捏合挤出以便制备小球。

[0163] 在这点上，对苯二甲酸 - 异山梨醇 -1,4- 环己烷二醇 - 乙二醇共聚物聚酯是可商
购自 SK Chemicals (韩国) 的具有高的耐冲击性的环境友好的树脂, 丙烯腈 - 丁二烯 - 苯乙
烯接枝共聚物是 HR-181, 所述 HR-181 是可购自 Kumho Petrochemical (韩国) 的呈核 - 壳
橡胶的形式的接枝 ABS 产品, 甲基丙烯酸甲酯 - 丁二烯 - 苯乙烯接枝共聚物是 M-511, 所
述 M-511 是可购自 KANEKA Corporation (日本) 的呈核 - 壳橡胶的形式的接枝 MBS 产品,
聚碳酸酯是可购自 Samyang Corporation (韩国) 的 3025PJ, 丙烯腈 - 苯乙烯 - 甲基丙烯
酸缩水甘油酯是可购自 SUNNY FC (中国) 的 SAG-005, 苯的一级抗氧化剂是可购自 ADEKA
Corporation (日本) 的 AO-60, 并且基于亚磷酸酯的二级抗氧化剂是可购自 Clariant (瑞
士) 的 Irgafos 168。

[0164] 实施例 4

[0165] 基于由 22wt% 的对苯二甲酸 - 异山梨醇 -1,4- 环己烷二醇 - 乙二醇共聚物聚酯
(Tg : 110℃, 重均分子量 : 55,000)、10wt% 的丙烯腈 - 丁二烯 - 苯乙烯接枝共聚物、10wt%
的聚对苯二甲酸丁二酯、3wt% 的苯乙烯 - 乙烯 - 丁烯 - 苯乙烯接枝共聚物, 和 55wt% 的聚
碳酸酯组成的 100wt% 的树脂, 添加 0.5wt% 的丙烯腈 - 苯乙烯 - 甲基丙烯酸缩水甘油酯、
0.2wt% 的酚的一级抗氧化剂、和 0.2wt% 的基于亚磷酸酯的二级抗氧化剂，并且使用双螺
杆捏合挤出机（Φ : 40mm, L/D = 40）均匀地进行捏合挤出以便制备小球。

[0166] 在这点上，对苯二甲酸 - 异山梨醇 -1,4- 环己烷二醇 - 乙二醇共聚物聚酯是可商
购自 SK Chemicals (韩国) 的具有高的耐冲击性的环境友好的树脂, 丙烯腈 - 丁二烯 - 苯乙
烯接枝共聚物是 HR-181, 所述 HR-181 是可购自 Kumho Petrochemical (韩国) 的呈核 - 壳
橡胶的形式的接枝 ABS 产品, 聚对苯二甲酸丁二酯是可购自 Chang Chun Plastics (台湾)
的 1200-211M, 苯乙烯 - 乙烯 - 丁烯 - 苯乙烯接枝共聚物是可购自 Asahi Kasei Corporation
(日本) 的 H-1025, 聚碳酸酯是可购自 Samyang Corporation (韩国) 的 3030PJ, 丙烯腈 - 苯
乙烯 - 甲基丙烯酸缩水甘油酯是可购自 SUNNY FC (中国) 的 SAG-005, 苯的一级抗氧
化剂是可购自 ADEKA Corporation (日本) 的 AO-60, 并且基于亚磷酸酯的二
级抗氧化剂是可购自DOVER Chemical Corp. (USA) 的S-9228。

实施例5

基于由24wt%的对苯二甲酸-异山梨醇-1,4-环己烷二醇-乙二醇共聚物聚酯 (Tg : 110°C, 重均分子量 : 55,000), 10wt%的丙烯腈-丁二烯-苯乙烯接枝共聚物, 13wt%的聚对苯二甲酸丁二酯、3wt%的苯乙烯-乙二醇-丁二烯-苯乙烯嵌段共聚物, 和 50wt%的聚碳酸酯组成的100wt%的树脂, 添加0.5wt%的丙烯腈-苯乙烯-甲基丙烯酸缩水甘油酯, 0.2wt%的酚的一级抗氧化剂, 和 0.2wt%的基于亚磷酸酯的二级抗氧化剂，并且使用双螺杆捏合挤出机（Φ: 40mm, L/D = 40）均匀地进行捏合挤出以便制备小球。

实施例6

基于由14wt%的对苯二甲酸-异山梨醇-1,4-环己烷二醇-乙二醇共聚物聚酯 (Tg : 110°C, 重均分子量 : 55,000), 13wt%的丙烯腈-丁二烯-苯乙烯接枝共聚物, 15wt%的聚对苯二甲酸丁二酯、3wt%的苯乙烯-乙二醇-丁二烯-苯乙烯嵌段共聚物, 和 55wt%的聚碳酸酯组成的100wt%的树脂, 添加0.5wt%的丙烯腈-苯乙烯-甲基丙烯酸缩水甘油酯, 0.5wt%的基于碳化二亚胺的抗水解剂, 0.2wt%的酚的一级抗氧化剂, 和 0.2wt%的基于亚磷酸酯的二级抗氧化剂，并且使用双螺杆捏合挤出机（Φ: 40mm, L/D = 40）均匀地进行捏合挤出以便制备小球。

实施例7

基于由10wt%的对苯二甲酸-异山梨醇-1,4-环己烷二醇-乙二醇共聚物聚酯 (Tg : 110°C, 重均分子量 : 55,000), 10wt%的丙烯腈-丁二烯-苯乙烯接枝共聚物, 18wt%的聚对苯二甲酸丁二酯、2wt%的苯乙烯-乙二醇-丁二烯-苯乙烯嵌段共聚物, 和 60wt%的聚
碳酸酯组成的 100wt%的树脂，添加 0.5wt%的丙烯酸、苯乙烯、甲基丙烯酸缩水甘油酯、0.2wt%的酚的一级抗氧化剂，和 0.2wt%的亚磷酸酯的二级抗氧化剂，并且使用双螺杆捏合挤出机（Φ: 40mm, L/D = 40）均匀地进行捏合挤出以便制备小球。

[0176] 比较实施例 1 至 5
[0177] 如下文描述的，适用于汽车、电气装置 / 电子装置、家用器具、办公设备或日用品的常规的 ABS 产品和 PC/ABS 产品被用于比较。
[0178] - 比较实施例 1，具有高负载 (1.82MPa) 和 95℃的耐热温度的 ABS 产品
[0179] - 比较实施例 2，具有高负载 (1.82MPa) 和 100℃的耐热温度的 ABS 产品
[0180] - 比较实施例 3，具有 50%的聚碳酸酯含量的 PC/ABS 产品
[0181] - 比较实施例 4，具有 60%的聚碳酸酯含量的 PC/ABS 产品
[0182] - 比较实施例 5，具有 70%的聚碳酸酯含量的 PC/ABS 产品
[0183] 实验实施例，从聚合物树脂组合物制造的模制部分的物理性质的测量
[0184] 将在实施例 1 至 7 和比较实施例 1 至 5 中制备的每种小球使用注型成型机以相同的方式在 250℃的温度下注型，使注入的样品在 23±2℃和相对湿度 50±5%的条件下经历控制，并且根据以下方法来测量其机械性质。其结果在以下表 1 至表 3 中示出。
[0185] 实验实施例 1：冲击强度的测量
[0186] 制备用于测试的样品并且根据 ASTM D 256 使用悬臂梁式冲击机 (Izod Impact Tester) (Toyoseiki) 来对于其冲击强度进行测量。
[0187] 实验实施例 2：抗拉性能的测量
[0189] 实验实施例 3：弯曲性质的测量
[0190] 制备用于测试的样品并且根据 ASTM D 790 使用万能测试机（Zwick Roell 2010）来对于其弯曲强度和弯曲弹性模量进行测量。
[0191] 实验实施例 4：耐热性的测量
[0192] 制备用于测试的样品并且根据 ASTM D 648 使用热变形温度 (HDT) 测试机 (Toyoseiki) 来对于其耐热性进行测量。
[0193] 实验实施例 5：从聚合物树脂组合物制造的模制部分的耐化学性的测量
[0194] 将在实施例 1 至 7 和比较实施例 1 至 5 中制备的每种小球使用注型成型机以相同的方式在 250℃的温度下注型，使用于测试抗拉强度的注入的样品在 23±2℃和相对湿度
50±5%的条件下经历调节持续24h，并且然后根据以下方法进行测试。

[0195] ①将抗拉测试样品固定在耐化学性测试夹具中，其中变形的临界量被设定至2.2%。

[0196] ②将抗拉测试样品用芳香族化学试剂/脂肪族化学试剂或UV掩蔽剂的共混物涂敷持续1分钟并且然后留在23±2℃下持续72h。

[0197] ③在23±2℃下流逝72h的时间之后，测量测试前的抗拉强度和测试后的抗拉强度以计算抗拉强度损失率（%），从该抗拉强度损失率（%）来计算和比较其耐化学性。

[0198] [等式1]

抗拉强度损失率（%） = (测试前的抗拉强度 - 测试后的抗拉强度) / 测试前的抗拉强度 × 100。

[0200] 在上文中，芳香族化学品/脂肪族化学品的共混物特征在于包含按重量计10%至90%的乙醇，并且还包含可选自由以下附加组分组成的组的一种或更多种。

[0201] 附加组分：脂肪族醇和芳香族醇、脂肪族酯和芳香族酯、芳香族醚、不饱和烃、饱和烃、脂肪族胺、脂肪族二胺、和萜烃。

[0202] 然而，在基于多元醇的情况下，仅包含脂肪族胺或脂肪族二胺作为附加组分。而且，掺杂的UV掩蔽剂是通常分布在本领域中的产品。

[0203] [表1]

<table>
<thead>
<tr>
<th>实施例</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>悬臂梁式冲击强度(1/8”)</td>
<td>J/m</td>
<td>850</td>
<td>830</td>
<td>840</td>
<td>820</td>
</tr>
<tr>
<td>悬臂梁式冲击强度(1/4”)</td>
<td>J/m</td>
<td>650</td>
<td>630</td>
<td>640</td>
<td>655</td>
</tr>
<tr>
<td>抗拉强度</td>
<td>kg/cm²</td>
<td>530</td>
<td>535</td>
<td>525</td>
<td>535</td>
</tr>
<tr>
<td>伸长率</td>
<td>%</td>
<td>135</td>
<td>145</td>
<td>135</td>
<td>120</td>
</tr>
<tr>
<td>耐热性(1.82 MPa)</td>
<td>℃</td>
<td>108</td>
<td>110</td>
<td>107</td>
<td>104</td>
</tr>
<tr>
<td>弯曲强度</td>
<td>kg/cm²</td>
<td>780</td>
<td>800</td>
<td>770</td>
<td>810</td>
</tr>
<tr>
<td>弯曲弹性模量</td>
<td>kg/cm²</td>
<td>19,400</td>
<td>19,500</td>
<td>19,300</td>
<td>21,000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>对化学品的抗性</th>
<th>结果</th>
</tr>
</thead>
<tbody>
<tr>
<td>抗拉强度损失率(%)</td>
<td>① 6 7 8 - -</td>
</tr>
<tr>
<td></td>
<td>② - - - 25 11</td>
</tr>
<tr>
<td></td>
<td>③ - - - 18 10</td>
</tr>
</tbody>
</table>

[0205] ①：基于多元醇的脂肪族胺或脂肪族二胺的共混物
[0206] ②：基于醇的芳香族化学品/脂肪族化学品的共混物
[0207] ③：UV掩蔽剂

[0208] [表2]

[0209]
说明 书

<table>
<thead>
<tr>
<th>分类</th>
<th>单位</th>
<th>实施例</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>悬臂梁式冲击强度(1/8")</td>
<td>J/m</td>
<td>760</td>
</tr>
<tr>
<td>悬臂梁式冲击强度(1/4")</td>
<td>J/m</td>
<td>710</td>
</tr>
<tr>
<td>抗拉强度</td>
<td>kg/cm²</td>
<td>525</td>
</tr>
<tr>
<td>伸长率</td>
<td>%</td>
<td>125</td>
</tr>
<tr>
<td>耐热性(1.82 MPa)</td>
<td>℃</td>
<td>100</td>
</tr>
<tr>
<td>弯曲强度</td>
<td>kg/cm²</td>
<td>830</td>
</tr>
<tr>
<td>弯曲弹性模量</td>
<td>kg/cm²</td>
<td>21,200</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>对化学品的抗性</th>
<th>结果</th>
</tr>
</thead>
<tbody>
<tr>
<td>抗拉强度损失率(%)</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

[0210]

| | ③ | 8 | 0.5 |

[0211] ① 基于多元醇的脂肪族胺或二胺的共混物
[0212] ② 基于醇的芳香族化学品／脂肪族化学品的共混物
[0213] ③ UV 拖蔽剂
[0214] [表 3]

表 3

<table>
<thead>
<tr>
<th>分类</th>
<th>单位</th>
<th>比较实施例</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>悬臂梁式冲击强度(1/8")</td>
<td>J/m</td>
<td>250</td>
</tr>
<tr>
<td>悬臂梁式冲击强度(1/4")</td>
<td>J/m</td>
<td>210</td>
</tr>
<tr>
<td>抗拉强度</td>
<td>kg/cm²</td>
<td>470</td>
</tr>
<tr>
<td>伸长率</td>
<td>%</td>
<td>20</td>
</tr>
<tr>
<td>耐热性(1.82 MPa)</td>
<td>℃</td>
<td>95</td>
</tr>
<tr>
<td>弯曲强度</td>
<td>kg/cm²</td>
<td>630</td>
</tr>
<tr>
<td>弯曲弹性模量</td>
<td>kg/cm²</td>
<td>21,000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>对化学品的抗性</th>
<th>结果</th>
</tr>
</thead>
<tbody>
<tr>
<td>抗拉强度损失率(%)</td>
<td>①</td>
</tr>
<tr>
<td>②</td>
<td>-</td>
</tr>
<tr>
<td>③</td>
<td>57</td>
</tr>
<tr>
<td>62</td>
<td>60</td>
</tr>
</tbody>
</table>
[0216] ①基于多元醇的脂肪族胺或脂肪族二胺的共混物
[0217] ②基于醇的芳香族化学品/脂肪族化学品的共混物
[0218] ③UV 指蔽剂
[0219] 如在上文测量结果中可以看到，与比较实施例相比，实施例呈现较好的耐热性和耐冲击性。从而，根据本发明的聚合物树脂组合物是环境友好的组合物，并且具有改进的耐热性和耐冲击性的物理性质，以及对环境应力裂纹的良好的抗性。
[0220] 已经参考具体的实施方案详细描述本发明。然而，将对本领域技术人员明显的是，用于阐明本发明的优选的实施方案和范围的目的而给出的详细描述不限于此。因此，本发明的实质范围将由所附权利要求和其等效物定义。